*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
b7209cb4
FF
174/* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
c906108c 181 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 182 report all the functions that are actually present. */
c906108c
SS
183
184int auto_solib_add = 1;
b7209cb4
FF
185
186/* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194int auto_solib_limit;
c906108c 195\f
c5aa993b 196
0fe19209
DC
197/* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
c906108c
SS
199
200static int
0cd64fe2 201compare_psymbols (const void *s1p, const void *s2p)
c906108c 202{
0fe19209
DC
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
4725b721
PH
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
208}
209
210void
fba45db2 211sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
212{
213 /* Sort the global list; don't sort the static list */
214
c5aa993b
JM
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
217 compare_psymbols);
218}
219
c906108c
SS
220/* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225char *
63ca651f 226obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 227{
52f0bd74 228 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
aa1ee363
AC
233 const char *p1 = ptr;
234 char *p2 = p;
63ca651f 235 const char *end = ptr + size;
c906108c
SS
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241}
242
243/* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246char *
fba45db2
KB
247obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
c906108c 249{
52f0bd74
AC
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256}
257
258/* True if we are nested inside psymtab_to_symtab. */
259
260int currently_reading_symtab = 0;
261
262static void
fba45db2 263decrement_reading_symtab (void *dummy)
c906108c
SS
264{
265 currently_reading_symtab--;
266}
267
268/* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273struct symtab *
aa1ee363 274psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
275{
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
c5aa993b 282 {
c906108c
SS
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290}
291
5417f6dc
RM
292/* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
c906108c
SS
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301void
4efb68b1 302find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 303{
c5aa993b 304 asection **lowest = (asection **) obj;
c906108c
SS
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316}
317
a39a16c4
MM
318/* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320struct section_addr_info *
321alloc_section_addr_info (size_t num_sections)
322{
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333}
62557bbc 334
7b90c3f9
JB
335
336/* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338struct section_addr_info *
339copy_section_addr_info (struct section_addr_info *addrs)
340{
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357}
358
359
360
62557bbc
KB
361/* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364extern struct section_addr_info *
0542c86d
PA
365build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
62557bbc
KB
367{
368 struct section_addr_info *sap;
0542c86d 369 const struct target_section *stp;
62557bbc
KB
370 int oidx;
371
a39a16c4 372 sap = alloc_section_addr_info (end - start);
62557bbc
KB
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
5417f6dc 376 if (bfd_get_section_flags (stp->bfd,
fbd35540 377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 378 && oidx < end - start)
62557bbc
KB
379 {
380 sap->other[oidx].addr = stp->addr;
5417f6dc 381 sap->other[oidx].name
fbd35540 382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389}
390
391
392/* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394extern void
395free_section_addr_info (struct section_addr_info *sap)
396{
397 int idx;
398
a39a16c4 399 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 400 if (sap->other[idx].name)
b8c9b27d
KB
401 xfree (sap->other[idx].name);
402 xfree (sap);
62557bbc
KB
403}
404
405
e8289572
JB
406/* Initialize OBJFILE's sect_index_* members. */
407static void
408init_objfile_sect_indices (struct objfile *objfile)
c906108c 409{
e8289572 410 asection *sect;
c906108c 411 int i;
5417f6dc 412
b8fbeb18 413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 426 if (sect)
b8fbeb18
EZ
427 objfile->sect_index_rodata = sect->index;
428
bbcd32ad
FF
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
31d99776
DJ
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
bbcd32ad
FF
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
b8fbeb18 464}
c906108c 465
c1bd25fd
DJ
466/* The arguments to place_section. */
467
468struct place_section_arg
469{
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472};
473
474/* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
2c0b251b 477static void
c1bd25fd
DJ
478place_section (bfd *abfd, asection *sect, void *obj)
479{
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
3bd72c6f 483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 484
2711e456
DJ
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
494 start_addr = (arg->lowest + align - 1) & -align;
495
c1bd25fd
DJ
496 do {
497 asection *cur_sec;
c1bd25fd 498
c1bd25fd
DJ
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
2711e456
DJ
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
3bd72c6f 527 break;
c1bd25fd
DJ
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 537}
e8289572
JB
538
539/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 540 of how to represent it for fast symbol reading. This is the default
e8289572
JB
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545void
546default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548{
549 int i;
550
a39a16c4 551 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 552 objfile->section_offsets = (struct section_offsets *)
5417f6dc 553 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 555 memset (objfile->section_offsets, 0,
a39a16c4 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
a39a16c4 560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
c1bd25fd
DJ
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
2711e456
DJ
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
2711e456
DJ
637 offsets[cur_sec->index] = 0;
638 }
639 }
c1bd25fd
DJ
640 }
641
e8289572
JB
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645}
646
647
31d99776
DJ
648/* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654struct symfile_segment_data *
655default_symfile_segments (bfd *abfd)
656{
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710}
711
c906108c
SS
712/* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
96baa820
JM
715 OBJFILE is where the symbols are to be read from.
716
7e8580c1
JB
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
96baa820 737
7eedccfa
PP
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
c906108c
SS
741
742void
7e8580c1
JB
743syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
7eedccfa 747 int add_flags)
c906108c 748{
a39a16c4 749 struct section_addr_info *local_addr = NULL;
c906108c 750 struct cleanup *old_chain;
7eedccfa 751 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 752
7e8580c1 753 gdb_assert (! (addrs && offsets));
2acceee2 754
c906108c 755 init_entry_point_info (objfile);
31d99776 756 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 757
75245b24
MS
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
c906108c
SS
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
74b7792f 763 old_chain = make_cleanup_free_objfile (objfile);
c906108c 764
a39a16c4
MM
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
5417f6dc 770 local_addr
a39a16c4
MM
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
c5aa993b 778 if (mainline)
c906108c
SS
779 {
780 /* We will modify the main symbol table, make sure that all its users
c5aa993b 781 will be cleaned up if an error occurs during symbol reading. */
74b7792f 782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
789 symfile_objfile = NULL;
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
c906108c 796
c5aa993b 797 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
53a5351d 802 and assume that <addr> is where that got loaded.
c906108c 803
53a5351d
JM
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
1549f619 806 if (!mainline && addrs && addrs->other[0].name)
c906108c 807 {
1549f619
EZ
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
5417f6dc 813 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
c906108c 818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 819 &lower_sect);
2acceee2 820 if (lower_sect == NULL)
ff8e85c3
PA
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
2acceee2 826 else
ff8e85c3 827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 828
13de58df 829 /* Calculate offsets for the loadable sections.
2acceee2
JM
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
5417f6dc 832
13de58df
JB
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
2acceee2
JM
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
1549f619 839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
8a3fe4f8 855 warning (_("section %s not found in %s"),
5417f6dc 856 addrs->other[i].name,
7e8580c1
JB
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
c906108c
SS
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
c5aa993b 870 (*objfile->sf->sym_init) (objfile);
7eedccfa 871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 872
7e8580c1
JB
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
8b92e4d5 883 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
c906108c 888
96baa820 889 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 890
c906108c
SS
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
f7545552 894 xfree (local_addr);
c906108c
SS
895}
896
897/* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
c5aa993b 900
c906108c 901void
7eedccfa 902new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
903{
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
7eedccfa 908 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
7eedccfa 915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 916 {
69de3c6a 917 breakpoint_re_set ();
c906108c
SS
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
922}
923
924/* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
5417f6dc
RM
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
7904e09f 929
7eedccfa
PP
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 936
c906108c
SS
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
7eedccfa 939
7904e09f 940static struct objfile *
7eedccfa
PP
941symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
7904e09f
JB
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
7eedccfa 946 int flags)
c906108c
SS
947{
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
77069918 950 char *debugfile = NULL;
7b90c3f9 951 struct section_addr_info *orig_addrs = NULL;
a39a16c4 952 struct cleanup *my_cleanups;
5417f6dc 953 const char *name = bfd_get_filename (abfd);
7eedccfa 954 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 955
5417f6dc 956 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 957
5417f6dc
RM
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
c906108c
SS
960
961 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 962 && (add_flags & SYMFILE_MAINLINE)
c906108c 963 && from_tty
9e2f0ad4 964 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 965 error (_("Not confirmed."));
c906108c 966
2df3850c 967 objfile = allocate_objfile (abfd, flags);
5417f6dc 968 discard_cleanups (my_cleanups);
c906108c 969
a39a16c4 970 if (addrs)
63cd24fe 971 {
7b90c3f9
JB
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 974 }
a39a16c4 975
78a4a9b9
AC
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
c906108c 980 {
769d7dc4
AC
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
78a4a9b9 983 else
c906108c 984 {
55333a84
DE
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
c906108c 988 }
c906108c 989 }
78a4a9b9 990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 991 add_flags);
c906108c
SS
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
2acceee2 998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 999 {
55333a84 1000 if (from_tty || info_verbose)
c906108c 1001 {
a3f17187 1002 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
c5aa993b 1007 for (psymtab = objfile->psymtabs;
c906108c 1008 psymtab != NULL;
c5aa993b 1009 psymtab = psymtab->next)
c906108c
SS
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
77069918
JK
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1020 if (debugfile)
1021 {
5b5d99cf
JB
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
7eedccfa 1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
7eedccfa 1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
5417f6dc 1034
5b5d99cf
JB
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1038
5b5d99cf
JB
1039 xfree (debugfile);
1040 }
5417f6dc 1041
55333a84
DE
1042 if ((from_tty || info_verbose)
1043 && !objfile_has_partial_symbols (objfile)
1044 && !objfile_has_full_symbols (objfile))
cb3c37b2
JB
1045 {
1046 wrap_here ("");
55333a84 1047 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1048 wrap_here ("");
1049 }
1050
c906108c
SS
1051 if (from_tty || info_verbose)
1052 {
769d7dc4
AC
1053 if (deprecated_post_add_symbol_hook)
1054 deprecated_post_add_symbol_hook ();
c906108c 1055 else
55333a84 1056 printf_unfiltered (_("done.\n"));
c906108c
SS
1057 }
1058
481d0f41
JB
1059 /* We print some messages regardless of whether 'from_tty ||
1060 info_verbose' is true, so make sure they go out at the right
1061 time. */
1062 gdb_flush (gdb_stdout);
1063
a39a16c4
MM
1064 do_cleanups (my_cleanups);
1065
109f874e 1066 if (objfile->sf == NULL)
8caee43b
PP
1067 {
1068 observer_notify_new_objfile (objfile);
1069 return objfile; /* No symbols. */
1070 }
109f874e 1071
7eedccfa 1072 new_symfile_objfile (objfile, add_flags);
c906108c 1073
06d3b283 1074 observer_notify_new_objfile (objfile);
c906108c 1075
ce7d4522 1076 bfd_cache_close_all ();
c906108c
SS
1077 return (objfile);
1078}
1079
7904e09f 1080
eb4556d7
JB
1081/* Process the symbol file ABFD, as either the main file or as a
1082 dynamically loaded file.
1083
1084 See symbol_file_add_with_addrs_or_offsets's comments for
1085 details. */
1086struct objfile *
7eedccfa 1087symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1088 struct section_addr_info *addrs,
7eedccfa 1089 int flags)
eb4556d7 1090{
7eedccfa
PP
1091 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1092 flags);
eb4556d7
JB
1093}
1094
1095
7904e09f
JB
1096/* Process a symbol file, as either the main file or as a dynamically
1097 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1098 for details. */
1099struct objfile *
7eedccfa
PP
1100symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1101 int flags)
7904e09f 1102{
7eedccfa
PP
1103 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1104 flags);
7904e09f
JB
1105}
1106
1107
d7db6da9
FN
1108/* Call symbol_file_add() with default values and update whatever is
1109 affected by the loading of a new main().
1110 Used when the file is supplied in the gdb command line
1111 and by some targets with special loading requirements.
1112 The auxiliary function, symbol_file_add_main_1(), has the flags
1113 argument for the switches that can only be specified in the symbol_file
1114 command itself. */
5417f6dc 1115
1adeb98a
FN
1116void
1117symbol_file_add_main (char *args, int from_tty)
1118{
d7db6da9
FN
1119 symbol_file_add_main_1 (args, from_tty, 0);
1120}
1121
1122static void
1123symbol_file_add_main_1 (char *args, int from_tty, int flags)
1124{
7eedccfa
PP
1125 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1126 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1127
d7db6da9
FN
1128 /* Getting new symbols may change our opinion about
1129 what is frameless. */
1130 reinit_frame_cache ();
1131
1132 set_initial_language ();
1adeb98a
FN
1133}
1134
1135void
1136symbol_file_clear (int from_tty)
1137{
1138 if ((have_full_symbols () || have_partial_symbols ())
1139 && from_tty
0430b0d6
AS
1140 && (symfile_objfile
1141 ? !query (_("Discard symbol table from `%s'? "),
1142 symfile_objfile->name)
1143 : !query (_("Discard symbol table? "))))
8a3fe4f8 1144 error (_("Not confirmed."));
1adeb98a 1145
d10c338d 1146 free_all_objfiles ();
1adeb98a 1147
d10c338d
DE
1148 /* solib descriptors may have handles to objfiles. Since their
1149 storage has just been released, we'd better wipe the solib
1150 descriptors as well. */
1151 no_shared_libraries (NULL, from_tty);
1152
1153 symfile_objfile = NULL;
1154 if (from_tty)
1155 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1156}
1157
77069918
JK
1158struct build_id
1159 {
1160 size_t size;
1161 gdb_byte data[1];
1162 };
1163
1164/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1165
1166static struct build_id *
1167build_id_bfd_get (bfd *abfd)
1168{
1169 struct build_id *retval;
1170
1171 if (!bfd_check_format (abfd, bfd_object)
1172 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1173 || elf_tdata (abfd)->build_id == NULL)
1174 return NULL;
1175
1176 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1177 retval->size = elf_tdata (abfd)->build_id_size;
1178 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1179
1180 return retval;
1181}
1182
1183/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1184
1185static int
1186build_id_verify (const char *filename, struct build_id *check)
1187{
1188 bfd *abfd;
1189 struct build_id *found = NULL;
1190 int retval = 0;
1191
1192 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1193 if (remote_filename_p (filename))
1194 abfd = remote_bfd_open (filename, gnutarget);
1195 else
1196 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1197 if (abfd == NULL)
1198 return 0;
1199
1200 found = build_id_bfd_get (abfd);
1201
1202 if (found == NULL)
1203 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1204 else if (found->size != check->size
1205 || memcmp (found->data, check->data, found->size) != 0)
1206 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1207 else
1208 retval = 1;
1209
1210 if (!bfd_close (abfd))
1211 warning (_("cannot close \"%s\": %s"), filename,
1212 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1213
1214 xfree (found);
1215
77069918
JK
1216 return retval;
1217}
1218
1219static char *
1220build_id_to_debug_filename (struct build_id *build_id)
1221{
1222 char *link, *s, *retval = NULL;
1223 gdb_byte *data = build_id->data;
1224 size_t size = build_id->size;
1225
1226 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1227 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1228 + 2 * size + (sizeof ".debug" - 1) + 1);
1229 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1230 if (size > 0)
1231 {
1232 size--;
1233 s += sprintf (s, "%02x", (unsigned) *data++);
1234 }
1235 if (size > 0)
1236 *s++ = '/';
1237 while (size-- > 0)
1238 s += sprintf (s, "%02x", (unsigned) *data++);
1239 strcpy (s, ".debug");
1240
1241 /* lrealpath() is expensive even for the usually non-existent files. */
1242 if (access (link, F_OK) == 0)
1243 retval = lrealpath (link);
1244 xfree (link);
1245
1246 if (retval != NULL && !build_id_verify (retval, build_id))
1247 {
1248 xfree (retval);
1249 retval = NULL;
1250 }
1251
1252 return retval;
1253}
1254
5b5d99cf
JB
1255static char *
1256get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1257{
1258 asection *sect;
1259 bfd_size_type debuglink_size;
1260 unsigned long crc32;
1261 char *contents;
1262 int crc_offset;
1263 unsigned char *p;
5417f6dc 1264
5b5d99cf
JB
1265 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1266
1267 if (sect == NULL)
1268 return NULL;
1269
1270 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1271
5b5d99cf
JB
1272 contents = xmalloc (debuglink_size);
1273 bfd_get_section_contents (objfile->obfd, sect, contents,
1274 (file_ptr)0, (bfd_size_type)debuglink_size);
1275
1276 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1277 crc_offset = strlen (contents) + 1;
1278 crc_offset = (crc_offset + 3) & ~3;
1279
1280 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1281
5b5d99cf
JB
1282 *crc32_out = crc32;
1283 return contents;
1284}
1285
1286static int
1287separate_debug_file_exists (const char *name, unsigned long crc)
1288{
1289 unsigned long file_crc = 0;
f1838a98 1290 bfd *abfd;
777ea8f1 1291 gdb_byte buffer[8*1024];
5b5d99cf
JB
1292 int count;
1293
f1838a98
UW
1294 if (remote_filename_p (name))
1295 abfd = remote_bfd_open (name, gnutarget);
1296 else
1297 abfd = bfd_openr (name, gnutarget);
1298
1299 if (!abfd)
5b5d99cf
JB
1300 return 0;
1301
f1838a98 1302 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1303 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1304
f1838a98 1305 bfd_close (abfd);
5b5d99cf
JB
1306
1307 return crc == file_crc;
1308}
1309
aa28a74e 1310char *debug_file_directory = NULL;
920d2a44
AC
1311static void
1312show_debug_file_directory (struct ui_file *file, int from_tty,
1313 struct cmd_list_element *c, const char *value)
1314{
1315 fprintf_filtered (file, _("\
1316The directory where separate debug symbols are searched for is \"%s\".\n"),
1317 value);
1318}
5b5d99cf
JB
1319
1320#if ! defined (DEBUG_SUBDIRECTORY)
1321#define DEBUG_SUBDIRECTORY ".debug"
1322#endif
1323
1324static char *
1325find_separate_debug_file (struct objfile *objfile)
1326{
1327 asection *sect;
1328 char *basename;
1329 char *dir;
1330 char *debugfile;
1331 char *name_copy;
aa28a74e 1332 char *canon_name;
5b5d99cf
JB
1333 bfd_size_type debuglink_size;
1334 unsigned long crc32;
1335 int i;
77069918
JK
1336 struct build_id *build_id;
1337
1338 build_id = build_id_bfd_get (objfile->obfd);
1339 if (build_id != NULL)
1340 {
1341 char *build_id_name;
1342
1343 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1344 xfree (build_id);
77069918
JK
1345 /* Prevent looping on a stripped .debug file. */
1346 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1347 {
1348 warning (_("\"%s\": separate debug info file has no debug info"),
1349 build_id_name);
1350 xfree (build_id_name);
1351 }
1352 else if (build_id_name != NULL)
1353 return build_id_name;
1354 }
5b5d99cf
JB
1355
1356 basename = get_debug_link_info (objfile, &crc32);
1357
1358 if (basename == NULL)
1359 return NULL;
5417f6dc 1360
5b5d99cf
JB
1361 dir = xstrdup (objfile->name);
1362
fe36c4f4
JB
1363 /* Strip off the final filename part, leaving the directory name,
1364 followed by a slash. Objfile names should always be absolute and
1365 tilde-expanded, so there should always be a slash in there
1366 somewhere. */
5b5d99cf
JB
1367 for (i = strlen(dir) - 1; i >= 0; i--)
1368 {
1369 if (IS_DIR_SEPARATOR (dir[i]))
1370 break;
1371 }
fe36c4f4 1372 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1373 dir[i+1] = '\0';
5417f6dc 1374
1ffa32ee
JK
1375 /* Set I to max (strlen (canon_name), strlen (dir)). */
1376 canon_name = lrealpath (dir);
1377 i = strlen (dir);
1378 if (canon_name && strlen (canon_name) > i)
1379 i = strlen (canon_name);
1380
5b5d99cf 1381 debugfile = alloca (strlen (debug_file_directory) + 1
1ffa32ee 1382 + i
5b5d99cf
JB
1383 + strlen (DEBUG_SUBDIRECTORY)
1384 + strlen ("/")
5417f6dc 1385 + strlen (basename)
5b5d99cf
JB
1386 + 1);
1387
1388 /* First try in the same directory as the original file. */
1389 strcpy (debugfile, dir);
1390 strcat (debugfile, basename);
1391
1392 if (separate_debug_file_exists (debugfile, crc32))
1393 {
1394 xfree (basename);
1395 xfree (dir);
1ffa32ee 1396 xfree (canon_name);
5b5d99cf
JB
1397 return xstrdup (debugfile);
1398 }
5417f6dc 1399
5b5d99cf
JB
1400 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1401 strcpy (debugfile, dir);
1402 strcat (debugfile, DEBUG_SUBDIRECTORY);
1403 strcat (debugfile, "/");
1404 strcat (debugfile, basename);
1405
1406 if (separate_debug_file_exists (debugfile, crc32))
1407 {
1408 xfree (basename);
1409 xfree (dir);
1ffa32ee 1410 xfree (canon_name);
5b5d99cf
JB
1411 return xstrdup (debugfile);
1412 }
5417f6dc 1413
5b5d99cf
JB
1414 /* Then try in the global debugfile directory. */
1415 strcpy (debugfile, debug_file_directory);
1416 strcat (debugfile, "/");
1417 strcat (debugfile, dir);
5b5d99cf
JB
1418 strcat (debugfile, basename);
1419
1420 if (separate_debug_file_exists (debugfile, crc32))
1421 {
1422 xfree (basename);
1423 xfree (dir);
1ffa32ee 1424 xfree (canon_name);
5b5d99cf
JB
1425 return xstrdup (debugfile);
1426 }
5417f6dc 1427
aa28a74e
DJ
1428 /* If the file is in the sysroot, try using its base path in the
1429 global debugfile directory. */
aa28a74e
DJ
1430 if (canon_name
1431 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1432 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1433 {
1434 strcpy (debugfile, debug_file_directory);
1435 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1436 strcat (debugfile, "/");
1437 strcat (debugfile, basename);
1438
1439 if (separate_debug_file_exists (debugfile, crc32))
1440 {
1441 xfree (canon_name);
1442 xfree (basename);
1443 xfree (dir);
1444 return xstrdup (debugfile);
1445 }
1446 }
1447
1448 if (canon_name)
1449 xfree (canon_name);
1450
5b5d99cf
JB
1451 xfree (basename);
1452 xfree (dir);
1453 return NULL;
1454}
1455
1456
c906108c
SS
1457/* This is the symbol-file command. Read the file, analyze its
1458 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1459 the command is rather bizarre:
1460
1461 1. The function buildargv implements various quoting conventions
1462 which are undocumented and have little or nothing in common with
1463 the way things are quoted (or not quoted) elsewhere in GDB.
1464
1465 2. Options are used, which are not generally used in GDB (perhaps
1466 "set mapped on", "set readnow on" would be better)
1467
1468 3. The order of options matters, which is contrary to GNU
c906108c
SS
1469 conventions (because it is confusing and inconvenient). */
1470
1471void
fba45db2 1472symbol_file_command (char *args, int from_tty)
c906108c 1473{
c906108c
SS
1474 dont_repeat ();
1475
1476 if (args == NULL)
1477 {
1adeb98a 1478 symbol_file_clear (from_tty);
c906108c
SS
1479 }
1480 else
1481 {
d1a41061 1482 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1483 int flags = OBJF_USERLOADED;
1484 struct cleanup *cleanups;
1485 char *name = NULL;
1486
7a292a7a 1487 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1488 while (*argv != NULL)
1489 {
78a4a9b9
AC
1490 if (strcmp (*argv, "-readnow") == 0)
1491 flags |= OBJF_READNOW;
1492 else if (**argv == '-')
8a3fe4f8 1493 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1494 else
1495 {
cb2f3a29 1496 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1497 name = *argv;
78a4a9b9 1498 }
cb2f3a29 1499
c906108c
SS
1500 argv++;
1501 }
1502
1503 if (name == NULL)
cb2f3a29
MK
1504 error (_("no symbol file name was specified"));
1505
c906108c
SS
1506 do_cleanups (cleanups);
1507 }
1508}
1509
1510/* Set the initial language.
1511
cb2f3a29
MK
1512 FIXME: A better solution would be to record the language in the
1513 psymtab when reading partial symbols, and then use it (if known) to
1514 set the language. This would be a win for formats that encode the
1515 language in an easily discoverable place, such as DWARF. For
1516 stabs, we can jump through hoops looking for specially named
1517 symbols or try to intuit the language from the specific type of
1518 stabs we find, but we can't do that until later when we read in
1519 full symbols. */
c906108c 1520
8b60591b 1521void
fba45db2 1522set_initial_language (void)
c906108c
SS
1523{
1524 struct partial_symtab *pst;
c5aa993b 1525 enum language lang = language_unknown;
c906108c
SS
1526
1527 pst = find_main_psymtab ();
1528 if (pst != NULL)
1529 {
c5aa993b 1530 if (pst->filename != NULL)
cb2f3a29
MK
1531 lang = deduce_language_from_filename (pst->filename);
1532
c906108c
SS
1533 if (lang == language_unknown)
1534 {
c5aa993b
JM
1535 /* Make C the default language */
1536 lang = language_c;
c906108c 1537 }
cb2f3a29 1538
c906108c 1539 set_language (lang);
cb2f3a29 1540 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1541 }
1542}
1543
cb2f3a29
MK
1544/* Open the file specified by NAME and hand it off to BFD for
1545 preliminary analysis. Return a newly initialized bfd *, which
1546 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1547 absolute). In case of trouble, error() is called. */
c906108c
SS
1548
1549bfd *
fba45db2 1550symfile_bfd_open (char *name)
c906108c
SS
1551{
1552 bfd *sym_bfd;
1553 int desc;
1554 char *absolute_name;
1555
f1838a98
UW
1556 if (remote_filename_p (name))
1557 {
1558 name = xstrdup (name);
1559 sym_bfd = remote_bfd_open (name, gnutarget);
1560 if (!sym_bfd)
1561 {
1562 make_cleanup (xfree, name);
1563 error (_("`%s': can't open to read symbols: %s."), name,
1564 bfd_errmsg (bfd_get_error ()));
1565 }
1566
1567 if (!bfd_check_format (sym_bfd, bfd_object))
1568 {
1569 bfd_close (sym_bfd);
1570 make_cleanup (xfree, name);
1571 error (_("`%s': can't read symbols: %s."), name,
1572 bfd_errmsg (bfd_get_error ()));
1573 }
1574
1575 return sym_bfd;
1576 }
1577
cb2f3a29 1578 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1579
1580 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1581 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1582 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1583#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1584 if (desc < 0)
1585 {
1586 char *exename = alloca (strlen (name) + 5);
1587 strcat (strcpy (exename, name), ".exe");
014d698b 1588 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1589 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1590 }
1591#endif
1592 if (desc < 0)
1593 {
b8c9b27d 1594 make_cleanup (xfree, name);
c906108c
SS
1595 perror_with_name (name);
1596 }
cb2f3a29
MK
1597
1598 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1599 bfd. It'll be freed in free_objfile(). */
1600 xfree (name);
1601 name = absolute_name;
c906108c 1602
9f76c2cd 1603 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1604 if (!sym_bfd)
1605 {
1606 close (desc);
b8c9b27d 1607 make_cleanup (xfree, name);
f1838a98 1608 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1609 bfd_errmsg (bfd_get_error ()));
1610 }
549c1eea 1611 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1612
1613 if (!bfd_check_format (sym_bfd, bfd_object))
1614 {
cb2f3a29
MK
1615 /* FIXME: should be checking for errors from bfd_close (for one
1616 thing, on error it does not free all the storage associated
1617 with the bfd). */
1618 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1619 make_cleanup (xfree, name);
f1838a98 1620 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1621 bfd_errmsg (bfd_get_error ()));
1622 }
cb2f3a29 1623
4f6f9936
JK
1624 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1625 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1626
cb2f3a29 1627 return sym_bfd;
c906108c
SS
1628}
1629
cb2f3a29
MK
1630/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1631 the section was not found. */
1632
0e931cf0
JB
1633int
1634get_section_index (struct objfile *objfile, char *section_name)
1635{
1636 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1637
0e931cf0
JB
1638 if (sect)
1639 return sect->index;
1640 else
1641 return -1;
1642}
1643
cb2f3a29
MK
1644/* Link SF into the global symtab_fns list. Called on startup by the
1645 _initialize routine in each object file format reader, to register
1646 information about each format the the reader is prepared to
1647 handle. */
c906108c
SS
1648
1649void
fba45db2 1650add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1651{
1652 sf->next = symtab_fns;
1653 symtab_fns = sf;
1654}
1655
cb2f3a29
MK
1656/* Initialize OBJFILE to read symbols from its associated BFD. It
1657 either returns or calls error(). The result is an initialized
1658 struct sym_fns in the objfile structure, that contains cached
1659 information about the symbol file. */
c906108c 1660
31d99776
DJ
1661static struct sym_fns *
1662find_sym_fns (bfd *abfd)
c906108c
SS
1663{
1664 struct sym_fns *sf;
31d99776 1665 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1666
75245b24
MS
1667 if (our_flavour == bfd_target_srec_flavour
1668 || our_flavour == bfd_target_ihex_flavour
1669 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1670 return NULL; /* No symbols. */
75245b24 1671
c5aa993b 1672 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1673 if (our_flavour == sf->sym_flavour)
1674 return sf;
cb2f3a29 1675
8a3fe4f8 1676 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1677 bfd_get_target (abfd));
c906108c
SS
1678}
1679\f
cb2f3a29 1680
c906108c
SS
1681/* This function runs the load command of our current target. */
1682
1683static void
fba45db2 1684load_command (char *arg, int from_tty)
c906108c 1685{
4487aabf
PA
1686 /* The user might be reloading because the binary has changed. Take
1687 this opportunity to check. */
1688 reopen_exec_file ();
1689 reread_symbols ();
1690
c906108c 1691 if (arg == NULL)
1986bccd
AS
1692 {
1693 char *parg;
1694 int count = 0;
1695
1696 parg = arg = get_exec_file (1);
1697
1698 /* Count how many \ " ' tab space there are in the name. */
1699 while ((parg = strpbrk (parg, "\\\"'\t ")))
1700 {
1701 parg++;
1702 count++;
1703 }
1704
1705 if (count)
1706 {
1707 /* We need to quote this string so buildargv can pull it apart. */
1708 char *temp = xmalloc (strlen (arg) + count + 1 );
1709 char *ptemp = temp;
1710 char *prev;
1711
1712 make_cleanup (xfree, temp);
1713
1714 prev = parg = arg;
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 strncpy (ptemp, prev, parg - prev);
1718 ptemp += parg - prev;
1719 prev = parg++;
1720 *ptemp++ = '\\';
1721 }
1722 strcpy (ptemp, prev);
1723
1724 arg = temp;
1725 }
1726 }
1727
c906108c 1728 target_load (arg, from_tty);
2889e661
JB
1729
1730 /* After re-loading the executable, we don't really know which
1731 overlays are mapped any more. */
1732 overlay_cache_invalid = 1;
c906108c
SS
1733}
1734
1735/* This version of "load" should be usable for any target. Currently
1736 it is just used for remote targets, not inftarg.c or core files,
1737 on the theory that only in that case is it useful.
1738
1739 Avoiding xmodem and the like seems like a win (a) because we don't have
1740 to worry about finding it, and (b) On VMS, fork() is very slow and so
1741 we don't want to run a subprocess. On the other hand, I'm not sure how
1742 performance compares. */
917317f4 1743
917317f4
JM
1744static int validate_download = 0;
1745
e4f9b4d5
MS
1746/* Callback service function for generic_load (bfd_map_over_sections). */
1747
1748static void
1749add_section_size_callback (bfd *abfd, asection *asec, void *data)
1750{
1751 bfd_size_type *sum = data;
1752
2c500098 1753 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1754}
1755
1756/* Opaque data for load_section_callback. */
1757struct load_section_data {
1758 unsigned long load_offset;
a76d924d
DJ
1759 struct load_progress_data *progress_data;
1760 VEC(memory_write_request_s) *requests;
1761};
1762
1763/* Opaque data for load_progress. */
1764struct load_progress_data {
1765 /* Cumulative data. */
e4f9b4d5
MS
1766 unsigned long write_count;
1767 unsigned long data_count;
1768 bfd_size_type total_size;
a76d924d
DJ
1769};
1770
1771/* Opaque data for load_progress for a single section. */
1772struct load_progress_section_data {
1773 struct load_progress_data *cumulative;
cf7a04e8 1774
a76d924d 1775 /* Per-section data. */
cf7a04e8
DJ
1776 const char *section_name;
1777 ULONGEST section_sent;
1778 ULONGEST section_size;
1779 CORE_ADDR lma;
1780 gdb_byte *buffer;
e4f9b4d5
MS
1781};
1782
a76d924d 1783/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1784
1785static void
1786load_progress (ULONGEST bytes, void *untyped_arg)
1787{
a76d924d
DJ
1788 struct load_progress_section_data *args = untyped_arg;
1789 struct load_progress_data *totals;
1790
1791 if (args == NULL)
1792 /* Writing padding data. No easy way to get at the cumulative
1793 stats, so just ignore this. */
1794 return;
1795
1796 totals = args->cumulative;
1797
1798 if (bytes == 0 && args->section_sent == 0)
1799 {
1800 /* The write is just starting. Let the user know we've started
1801 this section. */
5af949e3
UW
1802 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1803 args->section_name, hex_string (args->section_size),
1804 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1805 return;
1806 }
cf7a04e8
DJ
1807
1808 if (validate_download)
1809 {
1810 /* Broken memories and broken monitors manifest themselves here
1811 when bring new computers to life. This doubles already slow
1812 downloads. */
1813 /* NOTE: cagney/1999-10-18: A more efficient implementation
1814 might add a verify_memory() method to the target vector and
1815 then use that. remote.c could implement that method using
1816 the ``qCRC'' packet. */
1817 gdb_byte *check = xmalloc (bytes);
1818 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1819
1820 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1821 error (_("Download verify read failed at %s"),
1822 paddress (target_gdbarch, args->lma));
cf7a04e8 1823 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1824 error (_("Download verify compare failed at %s"),
1825 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1826 do_cleanups (verify_cleanups);
1827 }
a76d924d 1828 totals->data_count += bytes;
cf7a04e8
DJ
1829 args->lma += bytes;
1830 args->buffer += bytes;
a76d924d 1831 totals->write_count += 1;
cf7a04e8
DJ
1832 args->section_sent += bytes;
1833 if (quit_flag
1834 || (deprecated_ui_load_progress_hook != NULL
1835 && deprecated_ui_load_progress_hook (args->section_name,
1836 args->section_sent)))
1837 error (_("Canceled the download"));
1838
1839 if (deprecated_show_load_progress != NULL)
1840 deprecated_show_load_progress (args->section_name,
1841 args->section_sent,
1842 args->section_size,
a76d924d
DJ
1843 totals->data_count,
1844 totals->total_size);
cf7a04e8
DJ
1845}
1846
e4f9b4d5
MS
1847/* Callback service function for generic_load (bfd_map_over_sections). */
1848
1849static void
1850load_section_callback (bfd *abfd, asection *asec, void *data)
1851{
a76d924d 1852 struct memory_write_request *new_request;
e4f9b4d5 1853 struct load_section_data *args = data;
a76d924d 1854 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1855 bfd_size_type size = bfd_get_section_size (asec);
1856 gdb_byte *buffer;
cf7a04e8 1857 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1858
cf7a04e8
DJ
1859 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1860 return;
e4f9b4d5 1861
cf7a04e8
DJ
1862 if (size == 0)
1863 return;
e4f9b4d5 1864
a76d924d
DJ
1865 new_request = VEC_safe_push (memory_write_request_s,
1866 args->requests, NULL);
1867 memset (new_request, 0, sizeof (struct memory_write_request));
1868 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1869 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1870 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1871 new_request->data = xmalloc (size);
1872 new_request->baton = section_data;
cf7a04e8 1873
a76d924d 1874 buffer = new_request->data;
cf7a04e8 1875
a76d924d
DJ
1876 section_data->cumulative = args->progress_data;
1877 section_data->section_name = sect_name;
1878 section_data->section_size = size;
1879 section_data->lma = new_request->begin;
1880 section_data->buffer = buffer;
cf7a04e8
DJ
1881
1882 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1883}
1884
1885/* Clean up an entire memory request vector, including load
1886 data and progress records. */
cf7a04e8 1887
a76d924d
DJ
1888static void
1889clear_memory_write_data (void *arg)
1890{
1891 VEC(memory_write_request_s) **vec_p = arg;
1892 VEC(memory_write_request_s) *vec = *vec_p;
1893 int i;
1894 struct memory_write_request *mr;
cf7a04e8 1895
a76d924d
DJ
1896 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1897 {
1898 xfree (mr->data);
1899 xfree (mr->baton);
1900 }
1901 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1902}
1903
c906108c 1904void
917317f4 1905generic_load (char *args, int from_tty)
c906108c 1906{
c906108c 1907 bfd *loadfile_bfd;
2b71414d 1908 struct timeval start_time, end_time;
917317f4 1909 char *filename;
1986bccd 1910 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1911 struct load_section_data cbdata;
a76d924d
DJ
1912 struct load_progress_data total_progress;
1913
e4f9b4d5 1914 CORE_ADDR entry;
1986bccd 1915 char **argv;
e4f9b4d5 1916
a76d924d
DJ
1917 memset (&cbdata, 0, sizeof (cbdata));
1918 memset (&total_progress, 0, sizeof (total_progress));
1919 cbdata.progress_data = &total_progress;
1920
1921 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1922
d1a41061
PP
1923 if (args == NULL)
1924 error_no_arg (_("file to load"));
1986bccd 1925
d1a41061 1926 argv = gdb_buildargv (args);
1986bccd
AS
1927 make_cleanup_freeargv (argv);
1928
1929 filename = tilde_expand (argv[0]);
1930 make_cleanup (xfree, filename);
1931
1932 if (argv[1] != NULL)
917317f4
JM
1933 {
1934 char *endptr;
ba5f2f8a 1935
1986bccd
AS
1936 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1937
1938 /* If the last word was not a valid number then
1939 treat it as a file name with spaces in. */
1940 if (argv[1] == endptr)
1941 error (_("Invalid download offset:%s."), argv[1]);
1942
1943 if (argv[2] != NULL)
1944 error (_("Too many parameters."));
917317f4 1945 }
c906108c 1946
917317f4 1947 /* Open the file for loading. */
c906108c
SS
1948 loadfile_bfd = bfd_openr (filename, gnutarget);
1949 if (loadfile_bfd == NULL)
1950 {
1951 perror_with_name (filename);
1952 return;
1953 }
917317f4 1954
c906108c
SS
1955 /* FIXME: should be checking for errors from bfd_close (for one thing,
1956 on error it does not free all the storage associated with the
1957 bfd). */
5c65bbb6 1958 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1959
c5aa993b 1960 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1961 {
8a3fe4f8 1962 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1963 bfd_errmsg (bfd_get_error ()));
1964 }
c5aa993b 1965
5417f6dc 1966 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1967 (void *) &total_progress.total_size);
1968
1969 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1970
2b71414d 1971 gettimeofday (&start_time, NULL);
c906108c 1972
a76d924d
DJ
1973 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1974 load_progress) != 0)
1975 error (_("Load failed"));
c906108c 1976
2b71414d 1977 gettimeofday (&end_time, NULL);
ba5f2f8a 1978
e4f9b4d5 1979 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1980 ui_out_text (uiout, "Start address ");
5af949e3 1981 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1982 ui_out_text (uiout, ", load size ");
a76d924d 1983 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1984 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1985 /* We were doing this in remote-mips.c, I suspect it is right
1986 for other targets too. */
fb14de7b 1987 regcache_write_pc (get_current_regcache (), entry);
c906108c 1988
7ca9f392
AC
1989 /* FIXME: are we supposed to call symbol_file_add or not? According
1990 to a comment from remote-mips.c (where a call to symbol_file_add
1991 was commented out), making the call confuses GDB if more than one
1992 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1993 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1994
a76d924d
DJ
1995 print_transfer_performance (gdb_stdout, total_progress.data_count,
1996 total_progress.write_count,
1997 &start_time, &end_time);
c906108c
SS
1998
1999 do_cleanups (old_cleanups);
2000}
2001
2002/* Report how fast the transfer went. */
2003
917317f4
JM
2004/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2005 replaced by print_transfer_performance (with a very different
2006 function signature). */
2007
c906108c 2008void
fba45db2
KB
2009report_transfer_performance (unsigned long data_count, time_t start_time,
2010 time_t end_time)
c906108c 2011{
2b71414d
DJ
2012 struct timeval start, end;
2013
2014 start.tv_sec = start_time;
2015 start.tv_usec = 0;
2016 end.tv_sec = end_time;
2017 end.tv_usec = 0;
2018
2019 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2020}
2021
2022void
d9fcf2fb 2023print_transfer_performance (struct ui_file *stream,
917317f4
JM
2024 unsigned long data_count,
2025 unsigned long write_count,
2b71414d
DJ
2026 const struct timeval *start_time,
2027 const struct timeval *end_time)
917317f4 2028{
9f43d28c 2029 ULONGEST time_count;
2b71414d
DJ
2030
2031 /* Compute the elapsed time in milliseconds, as a tradeoff between
2032 accuracy and overflow. */
2033 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2034 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2035
8b93c638
JM
2036 ui_out_text (uiout, "Transfer rate: ");
2037 if (time_count > 0)
2038 {
9f43d28c
DJ
2039 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2040
2041 if (ui_out_is_mi_like_p (uiout))
2042 {
2043 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2044 ui_out_text (uiout, " bits/sec");
2045 }
2046 else if (rate < 1024)
2047 {
2048 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2049 ui_out_text (uiout, " bytes/sec");
2050 }
2051 else
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2054 ui_out_text (uiout, " KB/sec");
2055 }
8b93c638
JM
2056 }
2057 else
2058 {
ba5f2f8a 2059 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2060 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2061 }
2062 if (write_count > 0)
2063 {
2064 ui_out_text (uiout, ", ");
ba5f2f8a 2065 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2066 ui_out_text (uiout, " bytes/write");
2067 }
2068 ui_out_text (uiout, ".\n");
c906108c
SS
2069}
2070
2071/* This function allows the addition of incrementally linked object files.
2072 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2073/* Note: ezannoni 2000-04-13 This function/command used to have a
2074 special case syntax for the rombug target (Rombug is the boot
2075 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2076 rombug case, the user doesn't need to supply a text address,
2077 instead a call to target_link() (in target.c) would supply the
2078 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2079
c906108c 2080static void
fba45db2 2081add_symbol_file_command (char *args, int from_tty)
c906108c 2082{
5af949e3 2083 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2084 char *filename = NULL;
2df3850c 2085 int flags = OBJF_USERLOADED;
c906108c 2086 char *arg;
2acceee2 2087 int expecting_option = 0;
db162d44 2088 int section_index = 0;
2acceee2
JM
2089 int argcnt = 0;
2090 int sec_num = 0;
2091 int i;
db162d44
EZ
2092 int expecting_sec_name = 0;
2093 int expecting_sec_addr = 0;
5b96932b 2094 char **argv;
db162d44 2095
a39a16c4 2096 struct sect_opt
2acceee2 2097 {
2acceee2
JM
2098 char *name;
2099 char *value;
a39a16c4 2100 };
db162d44 2101
a39a16c4
MM
2102 struct section_addr_info *section_addrs;
2103 struct sect_opt *sect_opts = NULL;
2104 size_t num_sect_opts = 0;
3017564a 2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2106
a39a16c4 2107 num_sect_opts = 16;
5417f6dc 2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2109 * sizeof (struct sect_opt));
2110
c906108c
SS
2111 dont_repeat ();
2112
2113 if (args == NULL)
8a3fe4f8 2114 error (_("add-symbol-file takes a file name and an address"));
c906108c 2115
d1a41061 2116 argv = gdb_buildargv (args);
5b96932b 2117 make_cleanup_freeargv (argv);
db162d44 2118
5b96932b
AS
2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2120 {
2121 /* Process the argument. */
db162d44 2122 if (argcnt == 0)
c906108c 2123 {
db162d44
EZ
2124 /* The first argument is the file name. */
2125 filename = tilde_expand (arg);
3017564a 2126 make_cleanup (xfree, filename);
c906108c 2127 }
db162d44 2128 else
7a78ae4e
ND
2129 if (argcnt == 1)
2130 {
2131 /* The second argument is always the text address at which
2132 to load the program. */
2133 sect_opts[section_index].name = ".text";
2134 sect_opts[section_index].value = arg;
f414f22f 2135 if (++section_index >= num_sect_opts)
a39a16c4
MM
2136 {
2137 num_sect_opts *= 2;
5417f6dc 2138 sect_opts = ((struct sect_opt *)
a39a16c4 2139 xrealloc (sect_opts,
5417f6dc 2140 num_sect_opts
a39a16c4
MM
2141 * sizeof (struct sect_opt)));
2142 }
7a78ae4e
ND
2143 }
2144 else
2145 {
2146 /* It's an option (starting with '-') or it's an argument
2147 to an option */
2148
2149 if (*arg == '-')
2150 {
78a4a9b9
AC
2151 if (strcmp (arg, "-readnow") == 0)
2152 flags |= OBJF_READNOW;
2153 else if (strcmp (arg, "-s") == 0)
2154 {
2155 expecting_sec_name = 1;
2156 expecting_sec_addr = 1;
2157 }
7a78ae4e
ND
2158 }
2159 else
2160 {
2161 if (expecting_sec_name)
db162d44 2162 {
7a78ae4e
ND
2163 sect_opts[section_index].name = arg;
2164 expecting_sec_name = 0;
db162d44
EZ
2165 }
2166 else
7a78ae4e
ND
2167 if (expecting_sec_addr)
2168 {
2169 sect_opts[section_index].value = arg;
2170 expecting_sec_addr = 0;
f414f22f 2171 if (++section_index >= num_sect_opts)
a39a16c4
MM
2172 {
2173 num_sect_opts *= 2;
5417f6dc 2174 sect_opts = ((struct sect_opt *)
a39a16c4 2175 xrealloc (sect_opts,
5417f6dc 2176 num_sect_opts
a39a16c4
MM
2177 * sizeof (struct sect_opt)));
2178 }
7a78ae4e
ND
2179 }
2180 else
8a3fe4f8 2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2182 }
2183 }
c906108c 2184 }
c906108c 2185
927890d0
JB
2186 /* This command takes at least two arguments. The first one is a
2187 filename, and the second is the address where this file has been
2188 loaded. Abort now if this address hasn't been provided by the
2189 user. */
2190 if (section_index < 1)
2191 error (_("The address where %s has been loaded is missing"), filename);
2192
db162d44
EZ
2193 /* Print the prompt for the query below. And save the arguments into
2194 a sect_addr_info structure to be passed around to other
2195 functions. We have to split this up into separate print
bb599908 2196 statements because hex_string returns a local static
db162d44 2197 string. */
5417f6dc 2198
a3f17187 2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2200 section_addrs = alloc_section_addr_info (section_index);
2201 make_cleanup (xfree, section_addrs);
db162d44 2202 for (i = 0; i < section_index; i++)
c906108c 2203 {
db162d44
EZ
2204 CORE_ADDR addr;
2205 char *val = sect_opts[i].value;
2206 char *sec = sect_opts[i].name;
5417f6dc 2207
ae822768 2208 addr = parse_and_eval_address (val);
db162d44 2209
db162d44
EZ
2210 /* Here we store the section offsets in the order they were
2211 entered on the command line. */
a39a16c4
MM
2212 section_addrs->other[sec_num].name = sec;
2213 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2214 printf_unfiltered ("\t%s_addr = %s\n", sec,
2215 paddress (gdbarch, addr));
db162d44
EZ
2216 sec_num++;
2217
5417f6dc 2218 /* The object's sections are initialized when a
db162d44 2219 call is made to build_objfile_section_table (objfile).
5417f6dc 2220 This happens in reread_symbols.
db162d44
EZ
2221 At this point, we don't know what file type this is,
2222 so we can't determine what section names are valid. */
2acceee2 2223 }
db162d44 2224
2acceee2 2225 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2226 error (_("Not confirmed."));
c906108c 2227
7eedccfa
PP
2228 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2229 section_addrs, flags);
c906108c
SS
2230
2231 /* Getting new symbols may change our opinion about what is
2232 frameless. */
2233 reinit_frame_cache ();
db162d44 2234 do_cleanups (my_cleanups);
c906108c
SS
2235}
2236\f
70992597 2237
c906108c
SS
2238/* Re-read symbols if a symbol-file has changed. */
2239void
fba45db2 2240reread_symbols (void)
c906108c
SS
2241{
2242 struct objfile *objfile;
2243 long new_modtime;
2244 int reread_one = 0;
2245 struct stat new_statbuf;
2246 int res;
2247
2248 /* With the addition of shared libraries, this should be modified,
2249 the load time should be saved in the partial symbol tables, since
2250 different tables may come from different source files. FIXME.
2251 This routine should then walk down each partial symbol table
2252 and see if the symbol table that it originates from has been changed */
2253
c5aa993b
JM
2254 for (objfile = object_files; objfile; objfile = objfile->next)
2255 {
2256 if (objfile->obfd)
2257 {
52d16ba8 2258#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2259 /* If this object is from a shared library, then you should
2260 stat on the library name, not member name. */
c906108c 2261
c5aa993b
JM
2262 if (objfile->obfd->my_archive)
2263 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2264 else
c906108c 2265#endif
c5aa993b
JM
2266 res = stat (objfile->name, &new_statbuf);
2267 if (res != 0)
c906108c 2268 {
c5aa993b 2269 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2270 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2271 objfile->name);
2272 continue;
c906108c 2273 }
c5aa993b
JM
2274 new_modtime = new_statbuf.st_mtime;
2275 if (new_modtime != objfile->mtime)
c906108c 2276 {
c5aa993b
JM
2277 struct cleanup *old_cleanups;
2278 struct section_offsets *offsets;
2279 int num_offsets;
c5aa993b
JM
2280 char *obfd_filename;
2281
a3f17187 2282 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2283 objfile->name);
2284
2285 /* There are various functions like symbol_file_add,
2286 symfile_bfd_open, syms_from_objfile, etc., which might
2287 appear to do what we want. But they have various other
2288 effects which we *don't* want. So we just do stuff
2289 ourselves. We don't worry about mapped files (for one thing,
2290 any mapped file will be out of date). */
2291
2292 /* If we get an error, blow away this objfile (not sure if
2293 that is the correct response for things like shared
2294 libraries). */
74b7792f 2295 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2296 /* We need to do this whenever any symbols go away. */
74b7792f 2297 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2298
b2de52bb
JK
2299 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2300 bfd_get_filename (exec_bfd)) == 0)
2301 {
2302 /* Reload EXEC_BFD without asking anything. */
2303
2304 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2305 }
2306
c5aa993b
JM
2307 /* Clean up any state BFD has sitting around. We don't need
2308 to close the descriptor but BFD lacks a way of closing the
2309 BFD without closing the descriptor. */
2310 obfd_filename = bfd_get_filename (objfile->obfd);
2311 if (!bfd_close (objfile->obfd))
8a3fe4f8 2312 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2313 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2314 if (remote_filename_p (obfd_filename))
2315 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2316 else
2317 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2318 if (objfile->obfd == NULL)
8a3fe4f8 2319 error (_("Can't open %s to read symbols."), objfile->name);
3db741ef
PP
2320 else
2321 objfile->obfd = gdb_bfd_ref (objfile->obfd);
c5aa993b
JM
2322 /* bfd_openr sets cacheable to true, which is what we want. */
2323 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2324 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2325 bfd_errmsg (bfd_get_error ()));
2326
2327 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2328 objfile_obstack. */
c5aa993b 2329 num_offsets = objfile->num_sections;
5417f6dc 2330 offsets = ((struct section_offsets *)
a39a16c4 2331 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2332 memcpy (offsets, objfile->section_offsets,
a39a16c4 2333 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2334
ae5a43e0
DJ
2335 /* Remove any references to this objfile in the global
2336 value lists. */
2337 preserve_values (objfile);
2338
c5aa993b
JM
2339 /* Nuke all the state that we will re-read. Much of the following
2340 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2341 other parts of GDB that there is nothing currently there.
2342
2343 Try to keep the freeing order compatible with free_objfile. */
2344
2345 if (objfile->sf != NULL)
2346 {
2347 (*objfile->sf->sym_finish) (objfile);
2348 }
2349
2350 clear_objfile_data (objfile);
c5aa993b
JM
2351
2352 /* FIXME: Do we have to free a whole linked list, or is this
2353 enough? */
2354 if (objfile->global_psymbols.list)
2dc74dc1 2355 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2356 memset (&objfile->global_psymbols, 0,
2357 sizeof (objfile->global_psymbols));
2358 if (objfile->static_psymbols.list)
2dc74dc1 2359 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2360 memset (&objfile->static_psymbols, 0,
2361 sizeof (objfile->static_psymbols));
2362
2363 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2364 bcache_xfree (objfile->psymbol_cache);
2365 objfile->psymbol_cache = bcache_xmalloc ();
2366 bcache_xfree (objfile->macro_cache);
2367 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2368 if (objfile->demangled_names_hash != NULL)
2369 {
2370 htab_delete (objfile->demangled_names_hash);
2371 objfile->demangled_names_hash = NULL;
2372 }
b99607ea 2373 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2374 objfile->sections = NULL;
2375 objfile->symtabs = NULL;
2376 objfile->psymtabs = NULL;
930123b7 2377 objfile->psymtabs_addrmap = NULL;
c5aa993b 2378 objfile->free_psymtabs = NULL;
a1b8c067 2379 objfile->cp_namespace_symtab = NULL;
c5aa993b 2380 objfile->msymbols = NULL;
0a6ddd08 2381 objfile->deprecated_sym_private = NULL;
c5aa993b 2382 objfile->minimal_symbol_count = 0;
0a83117a
MS
2383 memset (&objfile->msymbol_hash, 0,
2384 sizeof (objfile->msymbol_hash));
2385 memset (&objfile->msymbol_demangled_hash, 0,
2386 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2387
af5f3db6
AC
2388 objfile->psymbol_cache = bcache_xmalloc ();
2389 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2390 /* obstack_init also initializes the obstack so it is
2391 empty. We could use obstack_specify_allocation but
2392 gdb_obstack.h specifies the alloc/dealloc
2393 functions. */
2394 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2395 if (build_objfile_section_table (objfile))
2396 {
8a3fe4f8 2397 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2398 objfile->name, bfd_errmsg (bfd_get_error ()));
2399 }
15831452 2400 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2401
2402 /* We use the same section offsets as from last time. I'm not
2403 sure whether that is always correct for shared libraries. */
2404 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2405 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2406 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2407 memcpy (objfile->section_offsets, offsets,
a39a16c4 2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2409 objfile->num_sections = num_offsets;
2410
2411 /* What the hell is sym_new_init for, anyway? The concept of
2412 distinguishing between the main file and additional files
2413 in this way seems rather dubious. */
2414 if (objfile == symfile_objfile)
2415 {
2416 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2417 }
2418
2419 (*objfile->sf->sym_init) (objfile);
b9caf505 2420 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2421 /* The "mainline" parameter is a hideous hack; I think leaving it
2422 zero is OK since dbxread.c also does what it needs to do if
2423 objfile->global_psymbols.size is 0. */
96baa820 2424 (*objfile->sf->sym_read) (objfile, 0);
55333a84
DE
2425 if (!objfile_has_partial_symbols (objfile)
2426 && !objfile_has_full_symbols (objfile))
c5aa993b
JM
2427 {
2428 wrap_here ("");
a3f17187 2429 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2430 wrap_here ("");
2431 }
c5aa993b
JM
2432
2433 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2434 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2435
c5aa993b
JM
2436 /* Getting new symbols may change our opinion about what is
2437 frameless. */
c906108c 2438
c5aa993b 2439 reinit_frame_cache ();
c906108c 2440
c5aa993b
JM
2441 /* Discard cleanups as symbol reading was successful. */
2442 discard_cleanups (old_cleanups);
c906108c 2443
c5aa993b
JM
2444 /* If the mtime has changed between the time we set new_modtime
2445 and now, we *want* this to be out of date, so don't call stat
2446 again now. */
2447 objfile->mtime = new_modtime;
2448 reread_one = 1;
5b5d99cf 2449 reread_separate_symbols (objfile);
6528a9ea 2450 init_entry_point_info (objfile);
c5aa993b 2451 }
c906108c
SS
2452 }
2453 }
c906108c
SS
2454
2455 if (reread_one)
ea53e89f 2456 {
ff3536bc
UW
2457 /* Notify objfiles that we've modified objfile sections. */
2458 objfiles_changed ();
2459
ea53e89f
JB
2460 clear_symtab_users ();
2461 /* At least one objfile has changed, so we can consider that
2462 the executable we're debugging has changed too. */
781b42b0 2463 observer_notify_executable_changed ();
ea53e89f 2464 }
c906108c 2465}
5b5d99cf
JB
2466
2467
2468/* Handle separate debug info for OBJFILE, which has just been
2469 re-read:
2470 - If we had separate debug info before, but now we don't, get rid
2471 of the separated objfile.
2472 - If we didn't have separated debug info before, but now we do,
2473 read in the new separated debug info file.
2474 - If the debug link points to a different file, toss the old one
2475 and read the new one.
2476 This function does *not* handle the case where objfile is still
2477 using the same separate debug info file, but that file's timestamp
2478 has changed. That case should be handled by the loop in
2479 reread_symbols already. */
2480static void
2481reread_separate_symbols (struct objfile *objfile)
2482{
2483 char *debug_file;
2484 unsigned long crc32;
2485
2486 /* Does the updated objfile's debug info live in a
2487 separate file? */
2488 debug_file = find_separate_debug_file (objfile);
2489
2490 if (objfile->separate_debug_objfile)
2491 {
2492 /* There are two cases where we need to get rid of
2493 the old separated debug info objfile:
2494 - if the new primary objfile doesn't have
2495 separated debug info, or
2496 - if the new primary objfile has separate debug
2497 info, but it's under a different filename.
5417f6dc 2498
5b5d99cf
JB
2499 If the old and new objfiles both have separate
2500 debug info, under the same filename, then we're
2501 okay --- if the separated file's contents have
2502 changed, we will have caught that when we
2503 visited it in this function's outermost
2504 loop. */
2505 if (! debug_file
2506 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2507 free_objfile (objfile->separate_debug_objfile);
2508 }
2509
2510 /* If the new objfile has separate debug info, and we
2511 haven't loaded it already, do so now. */
2512 if (debug_file
2513 && ! objfile->separate_debug_objfile)
2514 {
2515 /* Use the same section offset table as objfile itself.
2516 Preserve the flags from objfile that make sense. */
2517 objfile->separate_debug_objfile
2518 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2519 (symfile_bfd_open (debug_file),
7eedccfa 2520 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2521 0, /* No addr table. */
2522 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2523 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2524 | OBJF_USERLOADED)));
2525 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2526 = objfile;
2527 }
73780b3c
MS
2528 if (debug_file)
2529 xfree (debug_file);
5b5d99cf
JB
2530}
2531
2532
c906108c
SS
2533\f
2534
c5aa993b
JM
2535
2536typedef struct
2537{
2538 char *ext;
c906108c 2539 enum language lang;
c5aa993b
JM
2540}
2541filename_language;
c906108c 2542
c5aa993b 2543static filename_language *filename_language_table;
c906108c
SS
2544static int fl_table_size, fl_table_next;
2545
2546static void
fba45db2 2547add_filename_language (char *ext, enum language lang)
c906108c
SS
2548{
2549 if (fl_table_next >= fl_table_size)
2550 {
2551 fl_table_size += 10;
5417f6dc 2552 filename_language_table =
25bf3106
PM
2553 xrealloc (filename_language_table,
2554 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2555 }
2556
4fcf66da 2557 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2558 filename_language_table[fl_table_next].lang = lang;
2559 fl_table_next++;
2560}
2561
2562static char *ext_args;
920d2a44
AC
2563static void
2564show_ext_args (struct ui_file *file, int from_tty,
2565 struct cmd_list_element *c, const char *value)
2566{
2567 fprintf_filtered (file, _("\
2568Mapping between filename extension and source language is \"%s\".\n"),
2569 value);
2570}
c906108c
SS
2571
2572static void
26c41df3 2573set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2574{
2575 int i;
2576 char *cp = ext_args;
2577 enum language lang;
2578
2579 /* First arg is filename extension, starting with '.' */
2580 if (*cp != '.')
8a3fe4f8 2581 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2582
2583 /* Find end of first arg. */
c5aa993b 2584 while (*cp && !isspace (*cp))
c906108c
SS
2585 cp++;
2586
2587 if (*cp == '\0')
8a3fe4f8 2588 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2589 ext_args);
2590
2591 /* Null-terminate first arg */
c5aa993b 2592 *cp++ = '\0';
c906108c
SS
2593
2594 /* Find beginning of second arg, which should be a source language. */
2595 while (*cp && isspace (*cp))
2596 cp++;
2597
2598 if (*cp == '\0')
8a3fe4f8 2599 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2600 ext_args);
2601
2602 /* Lookup the language from among those we know. */
2603 lang = language_enum (cp);
2604
2605 /* Now lookup the filename extension: do we already know it? */
2606 for (i = 0; i < fl_table_next; i++)
2607 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2608 break;
2609
2610 if (i >= fl_table_next)
2611 {
2612 /* new file extension */
2613 add_filename_language (ext_args, lang);
2614 }
2615 else
2616 {
2617 /* redefining a previously known filename extension */
2618
2619 /* if (from_tty) */
2620 /* query ("Really make files of type %s '%s'?", */
2621 /* ext_args, language_str (lang)); */
2622
b8c9b27d 2623 xfree (filename_language_table[i].ext);
4fcf66da 2624 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2625 filename_language_table[i].lang = lang;
2626 }
2627}
2628
2629static void
fba45db2 2630info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2631{
2632 int i;
2633
a3f17187 2634 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2635 printf_filtered ("\n\n");
2636 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2637 printf_filtered ("\t%s\t- %s\n",
2638 filename_language_table[i].ext,
c906108c
SS
2639 language_str (filename_language_table[i].lang));
2640}
2641
2642static void
fba45db2 2643init_filename_language_table (void)
c906108c
SS
2644{
2645 if (fl_table_size == 0) /* protect against repetition */
2646 {
2647 fl_table_size = 20;
2648 fl_table_next = 0;
c5aa993b 2649 filename_language_table =
c906108c 2650 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2651 add_filename_language (".c", language_c);
2652 add_filename_language (".C", language_cplus);
2653 add_filename_language (".cc", language_cplus);
2654 add_filename_language (".cp", language_cplus);
2655 add_filename_language (".cpp", language_cplus);
2656 add_filename_language (".cxx", language_cplus);
2657 add_filename_language (".c++", language_cplus);
2658 add_filename_language (".java", language_java);
c906108c 2659 add_filename_language (".class", language_java);
da2cf7e0 2660 add_filename_language (".m", language_objc);
c5aa993b
JM
2661 add_filename_language (".f", language_fortran);
2662 add_filename_language (".F", language_fortran);
2663 add_filename_language (".s", language_asm);
aa707ed0 2664 add_filename_language (".sx", language_asm);
c5aa993b 2665 add_filename_language (".S", language_asm);
c6fd39cd
PM
2666 add_filename_language (".pas", language_pascal);
2667 add_filename_language (".p", language_pascal);
2668 add_filename_language (".pp", language_pascal);
963a6417
PH
2669 add_filename_language (".adb", language_ada);
2670 add_filename_language (".ads", language_ada);
2671 add_filename_language (".a", language_ada);
2672 add_filename_language (".ada", language_ada);
c906108c
SS
2673 }
2674}
2675
2676enum language
fba45db2 2677deduce_language_from_filename (char *filename)
c906108c
SS
2678{
2679 int i;
2680 char *cp;
2681
2682 if (filename != NULL)
2683 if ((cp = strrchr (filename, '.')) != NULL)
2684 for (i = 0; i < fl_table_next; i++)
2685 if (strcmp (cp, filename_language_table[i].ext) == 0)
2686 return filename_language_table[i].lang;
2687
2688 return language_unknown;
2689}
2690\f
2691/* allocate_symtab:
2692
2693 Allocate and partly initialize a new symbol table. Return a pointer
2694 to it. error() if no space.
2695
2696 Caller must set these fields:
c5aa993b
JM
2697 LINETABLE(symtab)
2698 symtab->blockvector
2699 symtab->dirname
2700 symtab->free_code
2701 symtab->free_ptr
2702 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2703 */
2704
2705struct symtab *
fba45db2 2706allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2707{
52f0bd74 2708 struct symtab *symtab;
c906108c
SS
2709
2710 symtab = (struct symtab *)
4a146b47 2711 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2712 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2713 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2714 &objfile->objfile_obstack);
c5aa993b
JM
2715 symtab->fullname = NULL;
2716 symtab->language = deduce_language_from_filename (filename);
2717 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2718 &objfile->objfile_obstack);
c906108c
SS
2719
2720 /* Hook it to the objfile it comes from */
2721
c5aa993b
JM
2722 symtab->objfile = objfile;
2723 symtab->next = objfile->symtabs;
2724 objfile->symtabs = symtab;
c906108c 2725
c906108c
SS
2726 return (symtab);
2727}
2728
2729struct partial_symtab *
fba45db2 2730allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2731{
2732 struct partial_symtab *psymtab;
2733
c5aa993b 2734 if (objfile->free_psymtabs)
c906108c 2735 {
c5aa993b
JM
2736 psymtab = objfile->free_psymtabs;
2737 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2738 }
2739 else
2740 psymtab = (struct partial_symtab *)
8b92e4d5 2741 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2742 sizeof (struct partial_symtab));
2743
2744 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2745 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2746 &objfile->objfile_obstack);
c5aa993b 2747 psymtab->symtab = NULL;
c906108c
SS
2748
2749 /* Prepend it to the psymtab list for the objfile it belongs to.
2750 Psymtabs are searched in most recent inserted -> least recent
2751 inserted order. */
2752
c5aa993b
JM
2753 psymtab->objfile = objfile;
2754 psymtab->next = objfile->psymtabs;
2755 objfile->psymtabs = psymtab;
c906108c
SS
2756#if 0
2757 {
2758 struct partial_symtab **prev_pst;
c5aa993b
JM
2759 psymtab->objfile = objfile;
2760 psymtab->next = NULL;
2761 prev_pst = &(objfile->psymtabs);
c906108c 2762 while ((*prev_pst) != NULL)
c5aa993b 2763 prev_pst = &((*prev_pst)->next);
c906108c 2764 (*prev_pst) = psymtab;
c5aa993b 2765 }
c906108c 2766#endif
c5aa993b 2767
c906108c
SS
2768 return (psymtab);
2769}
2770
2771void
fba45db2 2772discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2773{
2774 struct partial_symtab **prev_pst;
2775
2776 /* From dbxread.c:
2777 Empty psymtabs happen as a result of header files which don't
2778 have any symbols in them. There can be a lot of them. But this
2779 check is wrong, in that a psymtab with N_SLINE entries but
2780 nothing else is not empty, but we don't realize that. Fixing
2781 that without slowing things down might be tricky. */
2782
2783 /* First, snip it out of the psymtab chain */
2784
2785 prev_pst = &(pst->objfile->psymtabs);
2786 while ((*prev_pst) != pst)
2787 prev_pst = &((*prev_pst)->next);
2788 (*prev_pst) = pst->next;
2789
2790 /* Next, put it on a free list for recycling */
2791
2792 pst->next = pst->objfile->free_psymtabs;
2793 pst->objfile->free_psymtabs = pst;
2794}
c906108c 2795\f
c5aa993b 2796
c906108c
SS
2797/* Reset all data structures in gdb which may contain references to symbol
2798 table data. */
2799
2800void
fba45db2 2801clear_symtab_users (void)
c906108c
SS
2802{
2803 /* Someday, we should do better than this, by only blowing away
2804 the things that really need to be blown. */
c0501be5
DJ
2805
2806 /* Clear the "current" symtab first, because it is no longer valid.
2807 breakpoint_re_set may try to access the current symtab. */
2808 clear_current_source_symtab_and_line ();
2809
c906108c 2810 clear_displays ();
c906108c
SS
2811 breakpoint_re_set ();
2812 set_default_breakpoint (0, 0, 0, 0);
c906108c 2813 clear_pc_function_cache ();
06d3b283 2814 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2815
2816 /* Clear globals which might have pointed into a removed objfile.
2817 FIXME: It's not clear which of these are supposed to persist
2818 between expressions and which ought to be reset each time. */
2819 expression_context_block = NULL;
2820 innermost_block = NULL;
8756216b
DP
2821
2822 /* Varobj may refer to old symbols, perform a cleanup. */
2823 varobj_invalidate ();
2824
c906108c
SS
2825}
2826
74b7792f
AC
2827static void
2828clear_symtab_users_cleanup (void *ignore)
2829{
2830 clear_symtab_users ();
2831}
2832
c906108c
SS
2833/* clear_symtab_users_once:
2834
2835 This function is run after symbol reading, or from a cleanup.
2836 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2837 has been blown away, but the other GDB data structures that may
c906108c
SS
2838 reference it have not yet been cleared or re-directed. (The old
2839 symtab was zapped, and the cleanup queued, in free_named_symtab()
2840 below.)
2841
2842 This function can be queued N times as a cleanup, or called
2843 directly; it will do all the work the first time, and then will be a
2844 no-op until the next time it is queued. This works by bumping a
2845 counter at queueing time. Much later when the cleanup is run, or at
2846 the end of symbol processing (in case the cleanup is discarded), if
2847 the queued count is greater than the "done-count", we do the work
2848 and set the done-count to the queued count. If the queued count is
2849 less than or equal to the done-count, we just ignore the call. This
2850 is needed because reading a single .o file will often replace many
2851 symtabs (one per .h file, for example), and we don't want to reset
2852 the breakpoints N times in the user's face.
2853
2854 The reason we both queue a cleanup, and call it directly after symbol
2855 reading, is because the cleanup protects us in case of errors, but is
2856 discarded if symbol reading is successful. */
2857
2858#if 0
2859/* FIXME: As free_named_symtabs is currently a big noop this function
2860 is no longer needed. */
a14ed312 2861static void clear_symtab_users_once (void);
c906108c
SS
2862
2863static int clear_symtab_users_queued;
2864static int clear_symtab_users_done;
2865
2866static void
fba45db2 2867clear_symtab_users_once (void)
c906108c
SS
2868{
2869 /* Enforce once-per-`do_cleanups'-semantics */
2870 if (clear_symtab_users_queued <= clear_symtab_users_done)
2871 return;
2872 clear_symtab_users_done = clear_symtab_users_queued;
2873
2874 clear_symtab_users ();
2875}
2876#endif
2877
2878/* Delete the specified psymtab, and any others that reference it. */
2879
2880static void
fba45db2 2881cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2882{
2883 struct partial_symtab *ps, *pprev = NULL;
2884 int i;
2885
2886 /* Find its previous psymtab in the chain */
c5aa993b
JM
2887 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2888 {
2889 if (ps == pst)
2890 break;
2891 pprev = ps;
2892 }
c906108c 2893
c5aa993b
JM
2894 if (ps)
2895 {
2896 /* Unhook it from the chain. */
2897 if (ps == pst->objfile->psymtabs)
2898 pst->objfile->psymtabs = ps->next;
2899 else
2900 pprev->next = ps->next;
2901
2902 /* FIXME, we can't conveniently deallocate the entries in the
2903 partial_symbol lists (global_psymbols/static_psymbols) that
2904 this psymtab points to. These just take up space until all
2905 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2906 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2907
2908 /* We need to cashier any psymtab that has this one as a dependency... */
2909 again:
2910 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2911 {
2912 for (i = 0; i < ps->number_of_dependencies; i++)
2913 {
2914 if (ps->dependencies[i] == pst)
2915 {
2916 cashier_psymtab (ps);
2917 goto again; /* Must restart, chain has been munged. */
2918 }
2919 }
c906108c 2920 }
c906108c 2921 }
c906108c
SS
2922}
2923
2924/* If a symtab or psymtab for filename NAME is found, free it along
2925 with any dependent breakpoints, displays, etc.
2926 Used when loading new versions of object modules with the "add-file"
2927 command. This is only called on the top-level symtab or psymtab's name;
2928 it is not called for subsidiary files such as .h files.
2929
2930 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2931 FIXME. The return value appears to never be used.
c906108c
SS
2932
2933 FIXME. I think this is not the best way to do this. We should
2934 work on being gentler to the environment while still cleaning up
2935 all stray pointers into the freed symtab. */
2936
2937int
fba45db2 2938free_named_symtabs (char *name)
c906108c
SS
2939{
2940#if 0
2941 /* FIXME: With the new method of each objfile having it's own
2942 psymtab list, this function needs serious rethinking. In particular,
2943 why was it ever necessary to toss psymtabs with specific compilation
2944 unit filenames, as opposed to all psymtabs from a particular symbol
2945 file? -- fnf
2946 Well, the answer is that some systems permit reloading of particular
2947 compilation units. We want to blow away any old info about these
2948 compilation units, regardless of which objfiles they arrived in. --gnu. */
2949
52f0bd74
AC
2950 struct symtab *s;
2951 struct symtab *prev;
2952 struct partial_symtab *ps;
c906108c
SS
2953 struct blockvector *bv;
2954 int blewit = 0;
2955
2956 /* We only wack things if the symbol-reload switch is set. */
2957 if (!symbol_reloading)
2958 return 0;
2959
2960 /* Some symbol formats have trouble providing file names... */
2961 if (name == 0 || *name == '\0')
2962 return 0;
2963
2964 /* Look for a psymtab with the specified name. */
2965
2966again2:
c5aa993b
JM
2967 for (ps = partial_symtab_list; ps; ps = ps->next)
2968 {
6314a349 2969 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2970 {
2971 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2972 goto again2; /* Must restart, chain has been munged */
2973 }
c906108c 2974 }
c906108c
SS
2975
2976 /* Look for a symtab with the specified name. */
2977
2978 for (s = symtab_list; s; s = s->next)
2979 {
6314a349 2980 if (strcmp (name, s->filename) == 0)
c906108c
SS
2981 break;
2982 prev = s;
2983 }
2984
2985 if (s)
2986 {
2987 if (s == symtab_list)
2988 symtab_list = s->next;
2989 else
2990 prev->next = s->next;
2991
2992 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2993 or not they depend on the symtab being freed. This should be
2994 changed so that only those data structures affected are deleted. */
c906108c
SS
2995
2996 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2997 This test is necessary due to a bug in "dbxread.c" that
2998 causes empty symtabs to be created for N_SO symbols that
2999 contain the pathname of the object file. (This problem
3000 has been fixed in GDB 3.9x). */
c906108c
SS
3001
3002 bv = BLOCKVECTOR (s);
3003 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3004 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3005 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3006 {
e2e0b3e5 3007 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3008 name);
c906108c
SS
3009 clear_symtab_users_queued++;
3010 make_cleanup (clear_symtab_users_once, 0);
3011 blewit = 1;
c5aa993b
JM
3012 }
3013 else
e2e0b3e5
AC
3014 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3015 name);
c906108c
SS
3016
3017 free_symtab (s);
3018 }
3019 else
3020 {
3021 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3022 even though no symtab was found, since the file might have
3023 been compiled without debugging, and hence not be associated
3024 with a symtab. In order to handle this correctly, we would need
3025 to keep a list of text address ranges for undebuggable files.
3026 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3027 ;
3028 }
3029
3030 /* FIXME, what about the minimal symbol table? */
3031 return blewit;
3032#else
3033 return (0);
3034#endif
3035}
3036\f
3037/* Allocate and partially fill a partial symtab. It will be
3038 completely filled at the end of the symbol list.
3039
d4f3574e 3040 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3041
3042struct partial_symtab *
fba45db2
KB
3043start_psymtab_common (struct objfile *objfile,
3044 struct section_offsets *section_offsets, char *filename,
3045 CORE_ADDR textlow, struct partial_symbol **global_syms,
3046 struct partial_symbol **static_syms)
c906108c
SS
3047{
3048 struct partial_symtab *psymtab;
3049
3050 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3051 psymtab->section_offsets = section_offsets;
3052 psymtab->textlow = textlow;
3053 psymtab->texthigh = psymtab->textlow; /* default */
3054 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3055 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3056 return (psymtab);
3057}
3058\f
2e618c13
AR
3059/* Helper function, initialises partial symbol structure and stashes
3060 it into objfile's bcache. Note that our caching mechanism will
3061 use all fields of struct partial_symbol to determine hash value of the
3062 structure. In other words, having two symbols with the same name but
3063 different domain (or address) is possible and correct. */
3064
11d31d94 3065static const struct partial_symbol *
2e618c13
AR
3066add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3067 enum address_class class,
3068 long val, /* Value as a long */
3069 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3070 enum language language, struct objfile *objfile,
3071 int *added)
3072{
3073 char *buf = name;
3074 /* psymbol is static so that there will be no uninitialized gaps in the
3075 structure which might contain random data, causing cache misses in
3076 bcache. */
3077 static struct partial_symbol psymbol;
3078
3079 if (name[namelength] != '\0')
3080 {
3081 buf = alloca (namelength + 1);
3082 /* Create local copy of the partial symbol */
3083 memcpy (buf, name, namelength);
3084 buf[namelength] = '\0';
3085 }
3086 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3087 if (val != 0)
3088 {
3089 SYMBOL_VALUE (&psymbol) = val;
3090 }
3091 else
3092 {
3093 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3094 }
3095 SYMBOL_SECTION (&psymbol) = 0;
3096 SYMBOL_LANGUAGE (&psymbol) = language;
3097 PSYMBOL_DOMAIN (&psymbol) = domain;
3098 PSYMBOL_CLASS (&psymbol) = class;
3099
3100 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3101
3102 /* Stash the partial symbol away in the cache */
11d31d94
TT
3103 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3104 objfile->psymbol_cache, added);
2e618c13
AR
3105}
3106
3107/* Helper function, adds partial symbol to the given partial symbol
3108 list. */
3109
3110static void
3111append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3112 const struct partial_symbol *psym,
2e618c13
AR
3113 struct objfile *objfile)
3114{
3115 if (list->next >= list->list + list->size)
3116 extend_psymbol_list (list, objfile);
11d31d94 3117 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3118 OBJSTAT (objfile, n_psyms++);
3119}
3120
c906108c 3121/* Add a symbol with a long value to a psymtab.
5417f6dc 3122 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3123 Return the partial symbol that has been added. */
3124
3125/* NOTE: carlton/2003-09-11: The reason why we return the partial
3126 symbol is so that callers can get access to the symbol's demangled
3127 name, which they don't have any cheap way to determine otherwise.
3128 (Currenly, dwarf2read.c is the only file who uses that information,
3129 though it's possible that other readers might in the future.)
3130 Elena wasn't thrilled about that, and I don't blame her, but we
3131 couldn't come up with a better way to get that information. If
3132 it's needed in other situations, we could consider breaking up
3133 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3134 cache. */
3135
3136const struct partial_symbol *
176620f1 3137add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3138 enum address_class class,
2e618c13
AR
3139 struct psymbol_allocation_list *list,
3140 long val, /* Value as a long */
fba45db2
KB
3141 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3142 enum language language, struct objfile *objfile)
c906108c 3143{
11d31d94 3144 const struct partial_symbol *psym;
2de7ced7 3145
2e618c13 3146 int added;
c906108c
SS
3147
3148 /* Stash the partial symbol away in the cache */
2e618c13
AR
3149 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3150 val, coreaddr, language, objfile, &added);
c906108c 3151
2e618c13
AR
3152 /* Do not duplicate global partial symbols. */
3153 if (list == &objfile->global_psymbols
3154 && !added)
3155 return psym;
5c4e30ca 3156
2e618c13
AR
3157 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3158 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3159 return psym;
c906108c
SS
3160}
3161
c906108c
SS
3162/* Initialize storage for partial symbols. */
3163
3164void
fba45db2 3165init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3166{
3167 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3168
3169 if (objfile->global_psymbols.list)
c906108c 3170 {
2dc74dc1 3171 xfree (objfile->global_psymbols.list);
c906108c 3172 }
c5aa993b 3173 if (objfile->static_psymbols.list)
c906108c 3174 {
2dc74dc1 3175 xfree (objfile->static_psymbols.list);
c906108c 3176 }
c5aa993b 3177
c906108c
SS
3178 /* Current best guess is that approximately a twentieth
3179 of the total symbols (in a debugging file) are global or static
3180 oriented symbols */
c906108c 3181
c5aa993b
JM
3182 objfile->global_psymbols.size = total_symbols / 10;
3183 objfile->static_psymbols.size = total_symbols / 10;
3184
3185 if (objfile->global_psymbols.size > 0)
c906108c 3186 {
c5aa993b
JM
3187 objfile->global_psymbols.next =
3188 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3189 xmalloc ((objfile->global_psymbols.size
3190 * sizeof (struct partial_symbol *)));
c906108c 3191 }
c5aa993b 3192 if (objfile->static_psymbols.size > 0)
c906108c 3193 {
c5aa993b
JM
3194 objfile->static_psymbols.next =
3195 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3196 xmalloc ((objfile->static_psymbols.size
3197 * sizeof (struct partial_symbol *)));
c906108c
SS
3198 }
3199}
3200
3201/* OVERLAYS:
3202 The following code implements an abstraction for debugging overlay sections.
3203
3204 The target model is as follows:
3205 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3206 same VMA, each with its own unique LMA (or load address).
c906108c 3207 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3208 sections, one by one, from the load address into the VMA address.
5417f6dc 3209 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3210 sections should be considered to be mapped from the VMA to the LMA.
3211 This information is used for symbol lookup, and memory read/write.
5417f6dc 3212 For instance, if a section has been mapped then its contents
c5aa993b 3213 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3214
3215 Two levels of debugger support for overlays are available. One is
3216 "manual", in which the debugger relies on the user to tell it which
3217 overlays are currently mapped. This level of support is
3218 implemented entirely in the core debugger, and the information about
3219 whether a section is mapped is kept in the objfile->obj_section table.
3220
3221 The second level of support is "automatic", and is only available if
3222 the target-specific code provides functionality to read the target's
3223 overlay mapping table, and translate its contents for the debugger
3224 (by updating the mapped state information in the obj_section tables).
3225
3226 The interface is as follows:
c5aa993b
JM
3227 User commands:
3228 overlay map <name> -- tell gdb to consider this section mapped
3229 overlay unmap <name> -- tell gdb to consider this section unmapped
3230 overlay list -- list the sections that GDB thinks are mapped
3231 overlay read-target -- get the target's state of what's mapped
3232 overlay off/manual/auto -- set overlay debugging state
3233 Functional interface:
3234 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3235 section, return that section.
5417f6dc 3236 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3237 the pc, either in its VMA or its LMA
714835d5 3238 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3239 section_is_overlay(sect): true if section's VMA != LMA
3240 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3241 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3242 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3243 overlay_mapped_address(...): map an address from section's LMA to VMA
3244 overlay_unmapped_address(...): map an address from section's VMA to LMA
3245 symbol_overlayed_address(...): Return a "current" address for symbol:
3246 either in VMA or LMA depending on whether
3247 the symbol's section is currently mapped
c906108c
SS
3248 */
3249
3250/* Overlay debugging state: */
3251
d874f1e2 3252enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3253int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3254
c906108c 3255/* Function: section_is_overlay (SECTION)
5417f6dc 3256 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3257 SECTION is loaded at an address different from where it will "run". */
3258
3259int
714835d5 3260section_is_overlay (struct obj_section *section)
c906108c 3261{
714835d5
UW
3262 if (overlay_debugging && section)
3263 {
3264 bfd *abfd = section->objfile->obfd;
3265 asection *bfd_section = section->the_bfd_section;
3266
3267 if (bfd_section_lma (abfd, bfd_section) != 0
3268 && bfd_section_lma (abfd, bfd_section)
3269 != bfd_section_vma (abfd, bfd_section))
3270 return 1;
3271 }
c906108c
SS
3272
3273 return 0;
3274}
3275
3276/* Function: overlay_invalidate_all (void)
3277 Invalidate the mapped state of all overlay sections (mark it as stale). */
3278
3279static void
fba45db2 3280overlay_invalidate_all (void)
c906108c 3281{
c5aa993b 3282 struct objfile *objfile;
c906108c
SS
3283 struct obj_section *sect;
3284
3285 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3286 if (section_is_overlay (sect))
3287 sect->ovly_mapped = -1;
c906108c
SS
3288}
3289
714835d5 3290/* Function: section_is_mapped (SECTION)
5417f6dc 3291 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3292
3293 Access to the ovly_mapped flag is restricted to this function, so
3294 that we can do automatic update. If the global flag
3295 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3296 overlay_invalidate_all. If the mapped state of the particular
3297 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3298
714835d5
UW
3299int
3300section_is_mapped (struct obj_section *osect)
c906108c 3301{
9216df95
UW
3302 struct gdbarch *gdbarch;
3303
714835d5 3304 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3305 return 0;
3306
c5aa993b 3307 switch (overlay_debugging)
c906108c
SS
3308 {
3309 default:
d874f1e2 3310 case ovly_off:
c5aa993b 3311 return 0; /* overlay debugging off */
d874f1e2 3312 case ovly_auto: /* overlay debugging automatic */
1c772458 3313 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3314 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3315 gdbarch = get_objfile_arch (osect->objfile);
3316 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3317 {
3318 if (overlay_cache_invalid)
3319 {
3320 overlay_invalidate_all ();
3321 overlay_cache_invalid = 0;
3322 }
3323 if (osect->ovly_mapped == -1)
9216df95 3324 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3325 }
3326 /* fall thru to manual case */
d874f1e2 3327 case ovly_on: /* overlay debugging manual */
c906108c
SS
3328 return osect->ovly_mapped == 1;
3329 }
3330}
3331
c906108c
SS
3332/* Function: pc_in_unmapped_range
3333 If PC falls into the lma range of SECTION, return true, else false. */
3334
3335CORE_ADDR
714835d5 3336pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3337{
714835d5
UW
3338 if (section_is_overlay (section))
3339 {
3340 bfd *abfd = section->objfile->obfd;
3341 asection *bfd_section = section->the_bfd_section;
fbd35540 3342
714835d5
UW
3343 /* We assume the LMA is relocated by the same offset as the VMA. */
3344 bfd_vma size = bfd_get_section_size (bfd_section);
3345 CORE_ADDR offset = obj_section_offset (section);
3346
3347 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3348 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3349 return 1;
3350 }
c906108c 3351
c906108c
SS
3352 return 0;
3353}
3354
3355/* Function: pc_in_mapped_range
3356 If PC falls into the vma range of SECTION, return true, else false. */
3357
3358CORE_ADDR
714835d5 3359pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3360{
714835d5
UW
3361 if (section_is_overlay (section))
3362 {
3363 if (obj_section_addr (section) <= pc
3364 && pc < obj_section_endaddr (section))
3365 return 1;
3366 }
c906108c 3367
c906108c
SS
3368 return 0;
3369}
3370
9ec8e6a0
JB
3371
3372/* Return true if the mapped ranges of sections A and B overlap, false
3373 otherwise. */
b9362cc7 3374static int
714835d5 3375sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3376{
714835d5
UW
3377 CORE_ADDR a_start = obj_section_addr (a);
3378 CORE_ADDR a_end = obj_section_endaddr (a);
3379 CORE_ADDR b_start = obj_section_addr (b);
3380 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3381
3382 return (a_start < b_end && b_start < a_end);
3383}
3384
c906108c
SS
3385/* Function: overlay_unmapped_address (PC, SECTION)
3386 Returns the address corresponding to PC in the unmapped (load) range.
3387 May be the same as PC. */
3388
3389CORE_ADDR
714835d5 3390overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3391{
714835d5
UW
3392 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3393 {
3394 bfd *abfd = section->objfile->obfd;
3395 asection *bfd_section = section->the_bfd_section;
fbd35540 3396
714835d5
UW
3397 return pc + bfd_section_lma (abfd, bfd_section)
3398 - bfd_section_vma (abfd, bfd_section);
3399 }
c906108c
SS
3400
3401 return pc;
3402}
3403
3404/* Function: overlay_mapped_address (PC, SECTION)
3405 Returns the address corresponding to PC in the mapped (runtime) range.
3406 May be the same as PC. */
3407
3408CORE_ADDR
714835d5 3409overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3410{
714835d5
UW
3411 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3412 {
3413 bfd *abfd = section->objfile->obfd;
3414 asection *bfd_section = section->the_bfd_section;
fbd35540 3415
714835d5
UW
3416 return pc + bfd_section_vma (abfd, bfd_section)
3417 - bfd_section_lma (abfd, bfd_section);
3418 }
c906108c
SS
3419
3420 return pc;
3421}
3422
3423
5417f6dc 3424/* Function: symbol_overlayed_address
c906108c
SS
3425 Return one of two addresses (relative to the VMA or to the LMA),
3426 depending on whether the section is mapped or not. */
3427
c5aa993b 3428CORE_ADDR
714835d5 3429symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3430{
3431 if (overlay_debugging)
3432 {
3433 /* If the symbol has no section, just return its regular address. */
3434 if (section == 0)
3435 return address;
3436 /* If the symbol's section is not an overlay, just return its address */
3437 if (!section_is_overlay (section))
3438 return address;
3439 /* If the symbol's section is mapped, just return its address */
3440 if (section_is_mapped (section))
3441 return address;
3442 /*
3443 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3444 * then return its LOADED address rather than its vma address!!
3445 */
3446 return overlay_unmapped_address (address, section);
3447 }
3448 return address;
3449}
3450
5417f6dc 3451/* Function: find_pc_overlay (PC)
c906108c
SS
3452 Return the best-match overlay section for PC:
3453 If PC matches a mapped overlay section's VMA, return that section.
3454 Else if PC matches an unmapped section's VMA, return that section.
3455 Else if PC matches an unmapped section's LMA, return that section. */
3456
714835d5 3457struct obj_section *
fba45db2 3458find_pc_overlay (CORE_ADDR pc)
c906108c 3459{
c5aa993b 3460 struct objfile *objfile;
c906108c
SS
3461 struct obj_section *osect, *best_match = NULL;
3462
3463 if (overlay_debugging)
3464 ALL_OBJSECTIONS (objfile, osect)
714835d5 3465 if (section_is_overlay (osect))
c5aa993b 3466 {
714835d5 3467 if (pc_in_mapped_range (pc, osect))
c5aa993b 3468 {
714835d5
UW
3469 if (section_is_mapped (osect))
3470 return osect;
c5aa993b
JM
3471 else
3472 best_match = osect;
3473 }
714835d5 3474 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3475 best_match = osect;
3476 }
714835d5 3477 return best_match;
c906108c
SS
3478}
3479
3480/* Function: find_pc_mapped_section (PC)
5417f6dc 3481 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3482 currently marked as MAPPED, return that section. Else return NULL. */
3483
714835d5 3484struct obj_section *
fba45db2 3485find_pc_mapped_section (CORE_ADDR pc)
c906108c 3486{
c5aa993b 3487 struct objfile *objfile;
c906108c
SS
3488 struct obj_section *osect;
3489
3490 if (overlay_debugging)
3491 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3492 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3493 return osect;
c906108c
SS
3494
3495 return NULL;
3496}
3497
3498/* Function: list_overlays_command
3499 Print a list of mapped sections and their PC ranges */
3500
3501void
fba45db2 3502list_overlays_command (char *args, int from_tty)
c906108c 3503{
c5aa993b
JM
3504 int nmapped = 0;
3505 struct objfile *objfile;
c906108c
SS
3506 struct obj_section *osect;
3507
3508 if (overlay_debugging)
3509 ALL_OBJSECTIONS (objfile, osect)
714835d5 3510 if (section_is_mapped (osect))
c5aa993b 3511 {
5af949e3 3512 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3513 const char *name;
3514 bfd_vma lma, vma;
3515 int size;
3516
3517 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3518 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3519 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3520 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3521
3522 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3523 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3524 puts_filtered (" - ");
5af949e3 3525 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3526 printf_filtered (", mapped at ");
5af949e3 3527 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3528 puts_filtered (" - ");
5af949e3 3529 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3530 puts_filtered ("\n");
3531
3532 nmapped++;
3533 }
c906108c 3534 if (nmapped == 0)
a3f17187 3535 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3536}
3537
3538/* Function: map_overlay_command
3539 Mark the named section as mapped (ie. residing at its VMA address). */
3540
3541void
fba45db2 3542map_overlay_command (char *args, int from_tty)
c906108c 3543{
c5aa993b
JM
3544 struct objfile *objfile, *objfile2;
3545 struct obj_section *sec, *sec2;
c906108c
SS
3546
3547 if (!overlay_debugging)
8a3fe4f8 3548 error (_("\
515ad16c 3549Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3550the 'overlay manual' command."));
c906108c
SS
3551
3552 if (args == 0 || *args == 0)
8a3fe4f8 3553 error (_("Argument required: name of an overlay section"));
c906108c
SS
3554
3555 /* First, find a section matching the user supplied argument */
3556 ALL_OBJSECTIONS (objfile, sec)
3557 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3558 {
3559 /* Now, check to see if the section is an overlay. */
714835d5 3560 if (!section_is_overlay (sec))
c5aa993b
JM
3561 continue; /* not an overlay section */
3562
3563 /* Mark the overlay as "mapped" */
3564 sec->ovly_mapped = 1;
3565
3566 /* Next, make a pass and unmap any sections that are
3567 overlapped by this new section: */
3568 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3569 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3570 {
3571 if (info_verbose)
a3f17187 3572 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3573 bfd_section_name (objfile->obfd,
3574 sec2->the_bfd_section));
3575 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3576 }
3577 return;
3578 }
8a3fe4f8 3579 error (_("No overlay section called %s"), args);
c906108c
SS
3580}
3581
3582/* Function: unmap_overlay_command
5417f6dc 3583 Mark the overlay section as unmapped
c906108c
SS
3584 (ie. resident in its LMA address range, rather than the VMA range). */
3585
3586void
fba45db2 3587unmap_overlay_command (char *args, int from_tty)
c906108c 3588{
c5aa993b 3589 struct objfile *objfile;
c906108c
SS
3590 struct obj_section *sec;
3591
3592 if (!overlay_debugging)
8a3fe4f8 3593 error (_("\
515ad16c 3594Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3595the 'overlay manual' command."));
c906108c
SS
3596
3597 if (args == 0 || *args == 0)
8a3fe4f8 3598 error (_("Argument required: name of an overlay section"));
c906108c
SS
3599
3600 /* First, find a section matching the user supplied argument */
3601 ALL_OBJSECTIONS (objfile, sec)
3602 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3603 {
3604 if (!sec->ovly_mapped)
8a3fe4f8 3605 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3606 sec->ovly_mapped = 0;
3607 return;
3608 }
8a3fe4f8 3609 error (_("No overlay section called %s"), args);
c906108c
SS
3610}
3611
3612/* Function: overlay_auto_command
3613 A utility command to turn on overlay debugging.
3614 Possibly this should be done via a set/show command. */
3615
3616static void
fba45db2 3617overlay_auto_command (char *args, int from_tty)
c906108c 3618{
d874f1e2 3619 overlay_debugging = ovly_auto;
1900040c 3620 enable_overlay_breakpoints ();
c906108c 3621 if (info_verbose)
a3f17187 3622 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3623}
3624
3625/* Function: overlay_manual_command
3626 A utility command to turn on overlay debugging.
3627 Possibly this should be done via a set/show command. */
3628
3629static void
fba45db2 3630overlay_manual_command (char *args, int from_tty)
c906108c 3631{
d874f1e2 3632 overlay_debugging = ovly_on;
1900040c 3633 disable_overlay_breakpoints ();
c906108c 3634 if (info_verbose)
a3f17187 3635 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3636}
3637
3638/* Function: overlay_off_command
3639 A utility command to turn on overlay debugging.
3640 Possibly this should be done via a set/show command. */
3641
3642static void
fba45db2 3643overlay_off_command (char *args, int from_tty)
c906108c 3644{
d874f1e2 3645 overlay_debugging = ovly_off;
1900040c 3646 disable_overlay_breakpoints ();
c906108c 3647 if (info_verbose)
a3f17187 3648 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3649}
3650
3651static void
fba45db2 3652overlay_load_command (char *args, int from_tty)
c906108c 3653{
e17c207e
UW
3654 struct gdbarch *gdbarch = get_current_arch ();
3655
3656 if (gdbarch_overlay_update_p (gdbarch))
3657 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3658 else
8a3fe4f8 3659 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3660}
3661
3662/* Function: overlay_command
3663 A place-holder for a mis-typed command */
3664
3665/* Command list chain containing all defined "overlay" subcommands. */
3666struct cmd_list_element *overlaylist;
3667
3668static void
fba45db2 3669overlay_command (char *args, int from_tty)
c906108c 3670{
c5aa993b 3671 printf_unfiltered
c906108c
SS
3672 ("\"overlay\" must be followed by the name of an overlay command.\n");
3673 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674}
3675
3676
3677/* Target Overlays for the "Simplest" overlay manager:
3678
5417f6dc
RM
3679 This is GDB's default target overlay layer. It works with the
3680 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3681 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3682 so targets that use a different runtime overlay manager can
c906108c
SS
3683 substitute their own overlay_update function and take over the
3684 function pointer.
3685
3686 The overlay_update function pokes around in the target's data structures
3687 to see what overlays are mapped, and updates GDB's overlay mapping with
3688 this information.
3689
3690 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3691 unsigned _novlys; /# number of overlay sections #/
3692 unsigned _ovly_table[_novlys][4] = {
3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3694 {..., ..., ..., ...},
3695 }
3696 unsigned _novly_regions; /# number of overlay regions #/
3697 unsigned _ovly_region_table[_novly_regions][3] = {
3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3699 {..., ..., ...},
3700 }
c906108c
SS
3701 These functions will attempt to update GDB's mappedness state in the
3702 symbol section table, based on the target's mappedness state.
3703
3704 To do this, we keep a cached copy of the target's _ovly_table, and
3705 attempt to detect when the cached copy is invalidated. The main
3706 entry point is "simple_overlay_update(SECT), which looks up SECT in
3707 the cached table and re-reads only the entry for that section from
3708 the target (whenever possible).
3709 */
3710
3711/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3712static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3713#if 0
c5aa993b 3714static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3715#endif
c5aa993b 3716static unsigned cache_novlys = 0;
c906108c 3717#if 0
c5aa993b 3718static unsigned cache_novly_regions = 0;
c906108c
SS
3719#endif
3720static CORE_ADDR cache_ovly_table_base = 0;
3721#if 0
3722static CORE_ADDR cache_ovly_region_table_base = 0;
3723#endif
c5aa993b
JM
3724enum ovly_index
3725 {
3726 VMA, SIZE, LMA, MAPPED
3727 };
c906108c
SS
3728
3729/* Throw away the cached copy of _ovly_table */
3730static void
fba45db2 3731simple_free_overlay_table (void)
c906108c
SS
3732{
3733 if (cache_ovly_table)
b8c9b27d 3734 xfree (cache_ovly_table);
c5aa993b 3735 cache_novlys = 0;
c906108c
SS
3736 cache_ovly_table = NULL;
3737 cache_ovly_table_base = 0;
3738}
3739
3740#if 0
3741/* Throw away the cached copy of _ovly_region_table */
3742static void
fba45db2 3743simple_free_overlay_region_table (void)
c906108c
SS
3744{
3745 if (cache_ovly_region_table)
b8c9b27d 3746 xfree (cache_ovly_region_table);
c5aa993b 3747 cache_novly_regions = 0;
c906108c
SS
3748 cache_ovly_region_table = NULL;
3749 cache_ovly_region_table_base = 0;
3750}
3751#endif
3752
9216df95 3753/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3754 Convert to host order. int LEN is number of ints */
3755static void
9216df95 3756read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3757 int len, int size, enum bfd_endian byte_order)
c906108c 3758{
34c0bd93 3759 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3760 gdb_byte *buf = alloca (len * size);
c5aa993b 3761 int i;
c906108c 3762
9216df95 3763 read_memory (memaddr, buf, len * size);
c906108c 3764 for (i = 0; i < len; i++)
e17a4113 3765 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3766}
3767
3768/* Find and grab a copy of the target _ovly_table
3769 (and _novlys, which is needed for the table's size) */
c5aa993b 3770static int
fba45db2 3771simple_read_overlay_table (void)
c906108c 3772{
0d43edd1 3773 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3774 struct gdbarch *gdbarch;
3775 int word_size;
e17a4113 3776 enum bfd_endian byte_order;
c906108c
SS
3777
3778 simple_free_overlay_table ();
9b27852e 3779 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3780 if (! novlys_msym)
c906108c 3781 {
8a3fe4f8 3782 error (_("Error reading inferior's overlay table: "
0d43edd1 3783 "couldn't find `_novlys' variable\n"
8a3fe4f8 3784 "in inferior. Use `overlay manual' mode."));
0d43edd1 3785 return 0;
c906108c 3786 }
0d43edd1 3787
9b27852e 3788 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3789 if (! ovly_table_msym)
3790 {
8a3fe4f8 3791 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3792 "`_ovly_table' array\n"
8a3fe4f8 3793 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3794 return 0;
3795 }
3796
9216df95
UW
3797 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3798 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3799 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3800
e17a4113
UW
3801 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3802 4, byte_order);
0d43edd1
JB
3803 cache_ovly_table
3804 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3805 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3806 read_target_long_array (cache_ovly_table_base,
777ea8f1 3807 (unsigned int *) cache_ovly_table,
e17a4113 3808 cache_novlys * 4, word_size, byte_order);
0d43edd1 3809
c5aa993b 3810 return 1; /* SUCCESS */
c906108c
SS
3811}
3812
3813#if 0
3814/* Find and grab a copy of the target _ovly_region_table
3815 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3816static int
fba45db2 3817simple_read_overlay_region_table (void)
c906108c
SS
3818{
3819 struct minimal_symbol *msym;
e17a4113
UW
3820 struct gdbarch *gdbarch;
3821 int word_size;
3822 enum bfd_endian byte_order;
c906108c
SS
3823
3824 simple_free_overlay_region_table ();
9b27852e 3825 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3826 if (msym == NULL)
c5aa993b 3827 return 0; /* failure */
e17a4113
UW
3828
3829 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3830 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3831 byte_order = gdbarch_byte_order (gdbarch);
3832
3833 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3834 4, byte_order);
3835
c906108c
SS
3836 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3837 if (cache_ovly_region_table != NULL)
3838 {
9b27852e 3839 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3840 if (msym != NULL)
3841 {
3842 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3843 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3844 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3845 cache_novly_regions * 3,
3846 word_size, byte_order);
c906108c 3847 }
c5aa993b
JM
3848 else
3849 return 0; /* failure */
c906108c 3850 }
c5aa993b
JM
3851 else
3852 return 0; /* failure */
3853 return 1; /* SUCCESS */
c906108c
SS
3854}
3855#endif
3856
5417f6dc 3857/* Function: simple_overlay_update_1
c906108c
SS
3858 A helper function for simple_overlay_update. Assuming a cached copy
3859 of _ovly_table exists, look through it to find an entry whose vma,
3860 lma and size match those of OSECT. Re-read the entry and make sure
3861 it still matches OSECT (else the table may no longer be valid).
3862 Set OSECT's mapped state to match the entry. Return: 1 for
3863 success, 0 for failure. */
3864
3865static int
fba45db2 3866simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3867{
3868 int i, size;
fbd35540
MS
3869 bfd *obfd = osect->objfile->obfd;
3870 asection *bsect = osect->the_bfd_section;
9216df95
UW
3871 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3872 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3874
2c500098 3875 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3876 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3877 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3878 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3879 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3880 {
9216df95
UW
3881 read_target_long_array (cache_ovly_table_base + i * word_size,
3882 (unsigned int *) cache_ovly_table[i],
e17a4113 3883 4, word_size, byte_order);
fbd35540
MS
3884 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3885 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3886 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3887 {
3888 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3889 return 1;
3890 }
fbd35540 3891 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3892 return 0;
3893 }
3894 return 0;
3895}
3896
3897/* Function: simple_overlay_update
5417f6dc
RM
3898 If OSECT is NULL, then update all sections' mapped state
3899 (after re-reading the entire target _ovly_table).
3900 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3901 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3902 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3903 re-read the entire cache, and go ahead and update all sections. */
3904
1c772458 3905void
fba45db2 3906simple_overlay_update (struct obj_section *osect)
c906108c 3907{
c5aa993b 3908 struct objfile *objfile;
c906108c
SS
3909
3910 /* Were we given an osect to look up? NULL means do all of them. */
3911 if (osect)
3912 /* Have we got a cached copy of the target's overlay table? */
3913 if (cache_ovly_table != NULL)
3914 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3915 if (cache_ovly_table_base ==
9b27852e 3916 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3917 /* Then go ahead and try to look up this single section in the cache */
3918 if (simple_overlay_update_1 (osect))
3919 /* Found it! We're done. */
3920 return;
3921
3922 /* Cached table no good: need to read the entire table anew.
3923 Or else we want all the sections, in which case it's actually
3924 more efficient to read the whole table in one block anyway. */
3925
0d43edd1
JB
3926 if (! simple_read_overlay_table ())
3927 return;
3928
c906108c
SS
3929 /* Now may as well update all sections, even if only one was requested. */
3930 ALL_OBJSECTIONS (objfile, osect)
714835d5 3931 if (section_is_overlay (osect))
c5aa993b
JM
3932 {
3933 int i, size;
fbd35540
MS
3934 bfd *obfd = osect->objfile->obfd;
3935 asection *bsect = osect->the_bfd_section;
c5aa993b 3936
2c500098 3937 size = bfd_get_section_size (bsect);
c5aa993b 3938 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3939 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3940 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3941 /* && cache_ovly_table[i][SIZE] == size */ )
3942 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3943 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3944 break; /* finished with inner for loop: break out */
3945 }
3946 }
c906108c
SS
3947}
3948
086df311
DJ
3949/* Set the output sections and output offsets for section SECTP in
3950 ABFD. The relocation code in BFD will read these offsets, so we
3951 need to be sure they're initialized. We map each section to itself,
3952 with no offset; this means that SECTP->vma will be honored. */
3953
3954static void
3955symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3956{
3957 sectp->output_section = sectp;
3958 sectp->output_offset = 0;
3959}
3960
3961/* Relocate the contents of a debug section SECTP in ABFD. The
3962 contents are stored in BUF if it is non-NULL, or returned in a
3963 malloc'd buffer otherwise.
3964
3965 For some platforms and debug info formats, shared libraries contain
3966 relocations against the debug sections (particularly for DWARF-2;
3967 one affected platform is PowerPC GNU/Linux, although it depends on
3968 the version of the linker in use). Also, ELF object files naturally
3969 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3970 the relocations in order to get the locations of symbols correct.
3971 Another example that may require relocation processing, is the
3972 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3973 debug section. */
086df311
DJ
3974
3975bfd_byte *
3976symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3977{
065a2c74 3978 /* We're only interested in sections with relocation
086df311
DJ
3979 information. */
3980 if ((sectp->flags & SEC_RELOC) == 0)
3981 return NULL;
086df311
DJ
3982
3983 /* We will handle section offsets properly elsewhere, so relocate as if
3984 all sections begin at 0. */
3985 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3986
97606a13 3987 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3988}
c906108c 3989
31d99776
DJ
3990struct symfile_segment_data *
3991get_symfile_segment_data (bfd *abfd)
3992{
3993 struct sym_fns *sf = find_sym_fns (abfd);
3994
3995 if (sf == NULL)
3996 return NULL;
3997
3998 return sf->sym_segments (abfd);
3999}
4000
4001void
4002free_symfile_segment_data (struct symfile_segment_data *data)
4003{
4004 xfree (data->segment_bases);
4005 xfree (data->segment_sizes);
4006 xfree (data->segment_info);
4007 xfree (data);
4008}
4009
28c32713
JB
4010
4011/* Given:
4012 - DATA, containing segment addresses from the object file ABFD, and
4013 the mapping from ABFD's sections onto the segments that own them,
4014 and
4015 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4016 segment addresses reported by the target,
4017 store the appropriate offsets for each section in OFFSETS.
4018
4019 If there are fewer entries in SEGMENT_BASES than there are segments
4020 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4021
8d385431
DJ
4022 If there are more entries, then ignore the extra. The target may
4023 not be able to distinguish between an empty data segment and a
4024 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4025int
4026symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4027 struct section_offsets *offsets,
4028 int num_segment_bases,
4029 const CORE_ADDR *segment_bases)
4030{
4031 int i;
4032 asection *sect;
4033
28c32713
JB
4034 /* It doesn't make sense to call this function unless you have some
4035 segment base addresses. */
4036 gdb_assert (segment_bases > 0);
4037
31d99776
DJ
4038 /* If we do not have segment mappings for the object file, we
4039 can not relocate it by segments. */
4040 gdb_assert (data != NULL);
4041 gdb_assert (data->num_segments > 0);
4042
31d99776
DJ
4043 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4044 {
31d99776
DJ
4045 int which = data->segment_info[i];
4046
28c32713
JB
4047 gdb_assert (0 <= which && which <= data->num_segments);
4048
4049 /* Don't bother computing offsets for sections that aren't
4050 loaded as part of any segment. */
4051 if (! which)
4052 continue;
4053
4054 /* Use the last SEGMENT_BASES entry as the address of any extra
4055 segments mentioned in DATA->segment_info. */
31d99776 4056 if (which > num_segment_bases)
28c32713 4057 which = num_segment_bases;
31d99776 4058
28c32713
JB
4059 offsets->offsets[i] = (segment_bases[which - 1]
4060 - data->segment_bases[which - 1]);
31d99776
DJ
4061 }
4062
4063 return 1;
4064}
4065
4066static void
4067symfile_find_segment_sections (struct objfile *objfile)
4068{
4069 bfd *abfd = objfile->obfd;
4070 int i;
4071 asection *sect;
4072 struct symfile_segment_data *data;
4073
4074 data = get_symfile_segment_data (objfile->obfd);
4075 if (data == NULL)
4076 return;
4077
4078 if (data->num_segments != 1 && data->num_segments != 2)
4079 {
4080 free_symfile_segment_data (data);
4081 return;
4082 }
4083
4084 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4085 {
4086 CORE_ADDR vma;
4087 int which = data->segment_info[i];
4088
4089 if (which == 1)
4090 {
4091 if (objfile->sect_index_text == -1)
4092 objfile->sect_index_text = sect->index;
4093
4094 if (objfile->sect_index_rodata == -1)
4095 objfile->sect_index_rodata = sect->index;
4096 }
4097 else if (which == 2)
4098 {
4099 if (objfile->sect_index_data == -1)
4100 objfile->sect_index_data = sect->index;
4101
4102 if (objfile->sect_index_bss == -1)
4103 objfile->sect_index_bss = sect->index;
4104 }
4105 }
4106
4107 free_symfile_segment_data (data);
4108}
4109
c906108c 4110void
fba45db2 4111_initialize_symfile (void)
c906108c
SS
4112{
4113 struct cmd_list_element *c;
c5aa993b 4114
1a966eab
AC
4115 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4116Load symbol table from executable file FILE.\n\
c906108c 4117The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4118to execute."), &cmdlist);
5ba2abeb 4119 set_cmd_completer (c, filename_completer);
c906108c 4120
1a966eab 4121 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4122Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4123Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4124ADDR is the starting address of the file's text.\n\
db162d44
EZ
4125The optional arguments are section-name section-address pairs and\n\
4126should be specified if the data and bss segments are not contiguous\n\
1a966eab 4127with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4128 &cmdlist);
5ba2abeb 4129 set_cmd_completer (c, filename_completer);
c906108c 4130
1a966eab
AC
4131 c = add_cmd ("load", class_files, load_command, _("\
4132Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4133for access from GDB.\n\
4134A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4135 set_cmd_completer (c, filename_completer);
c906108c 4136
5bf193a2
AC
4137 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4138 &symbol_reloading, _("\
4139Set dynamic symbol table reloading multiple times in one run."), _("\
4140Show dynamic symbol table reloading multiple times in one run."), NULL,
4141 NULL,
920d2a44 4142 show_symbol_reloading,
5bf193a2 4143 &setlist, &showlist);
c906108c 4144
c5aa993b 4145 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4146 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4147 "overlay ", 0, &cmdlist);
4148
4149 add_com_alias ("ovly", "overlay", class_alias, 1);
4150 add_com_alias ("ov", "overlay", class_alias, 1);
4151
c5aa993b 4152 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4153 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4154
c5aa993b 4155 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4156 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4157
c5aa993b 4158 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4159 _("List mappings of overlay sections."), &overlaylist);
c906108c 4160
c5aa993b 4161 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4162 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4163 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4164 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4165 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4166 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4167 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4168 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4169
4170 /* Filename extension to source language lookup table: */
4171 init_filename_language_table ();
26c41df3
AC
4172 add_setshow_string_noescape_cmd ("extension-language", class_files,
4173 &ext_args, _("\
4174Set mapping between filename extension and source language."), _("\
4175Show mapping between filename extension and source language."), _("\
4176Usage: set extension-language .foo bar"),
4177 set_ext_lang_command,
920d2a44 4178 show_ext_args,
26c41df3 4179 &setlist, &showlist);
c906108c 4180
c5aa993b 4181 add_info ("extensions", info_ext_lang_command,
1bedd215 4182 _("All filename extensions associated with a source language."));
917317f4 4183
525226b5
AC
4184 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4185 &debug_file_directory, _("\
4186Set the directory where separate debug symbols are searched for."), _("\
4187Show the directory where separate debug symbols are searched for."), _("\
4188Separate debug symbols are first searched for in the same\n\
4189directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4190and lastly at the path of the directory of the binary with\n\
4191the global debug-file directory prepended."),
4192 NULL,
920d2a44 4193 show_debug_file_directory,
525226b5 4194 &setlist, &showlist);
c906108c 4195}
This page took 1.550263 seconds and 4 git commands to generate.