Class-ify ui_out
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void info_ext_lang_command (char *args, int from_tty);
392a587b 118
31d99776
DJ
119static void symfile_find_segment_sections (struct objfile *objfile);
120
a14ed312 121void _initialize_symfile (void);
c906108c
SS
122
123/* List of all available sym_fns. On gdb startup, each object file reader
124 calls add_symtab_fns() to register information on each format it is
c378eb4e 125 prepared to read. */
c906108c 126
c256e171
DE
127typedef struct
128{
129 /* BFD flavour that we handle. */
130 enum bfd_flavour sym_flavour;
131
132 /* The "vtable" of symbol functions. */
133 const struct sym_fns *sym_fns;
134} registered_sym_fns;
00b5771c 135
c256e171
DE
136DEF_VEC_O (registered_sym_fns);
137
138static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 139
770e7fc7
DE
140/* Values for "set print symbol-loading". */
141
142const char print_symbol_loading_off[] = "off";
143const char print_symbol_loading_brief[] = "brief";
144const char print_symbol_loading_full[] = "full";
145static const char *print_symbol_loading_enums[] =
146{
147 print_symbol_loading_off,
148 print_symbol_loading_brief,
149 print_symbol_loading_full,
150 NULL
151};
152static const char *print_symbol_loading = print_symbol_loading_full;
153
b7209cb4
FF
154/* If non-zero, shared library symbols will be added automatically
155 when the inferior is created, new libraries are loaded, or when
156 attaching to the inferior. This is almost always what users will
157 want to have happen; but for very large programs, the startup time
158 will be excessive, and so if this is a problem, the user can clear
159 this flag and then add the shared library symbols as needed. Note
160 that there is a potential for confusion, since if the shared
c906108c 161 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 162 report all the functions that are actually present. */
c906108c
SS
163
164int auto_solib_add = 1;
c906108c 165\f
c5aa993b 166
770e7fc7
DE
167/* Return non-zero if symbol-loading messages should be printed.
168 FROM_TTY is the standard from_tty argument to gdb commands.
169 If EXEC is non-zero the messages are for the executable.
170 Otherwise, messages are for shared libraries.
171 If FULL is non-zero then the caller is printing a detailed message.
172 E.g., the message includes the shared library name.
173 Otherwise, the caller is printing a brief "summary" message. */
174
175int
176print_symbol_loading_p (int from_tty, int exec, int full)
177{
178 if (!from_tty && !info_verbose)
179 return 0;
180
181 if (exec)
182 {
183 /* We don't check FULL for executables, there are few such
184 messages, therefore brief == full. */
185 return print_symbol_loading != print_symbol_loading_off;
186 }
187 if (full)
188 return print_symbol_loading == print_symbol_loading_full;
189 return print_symbol_loading == print_symbol_loading_brief;
190}
191
0d14a781 192/* True if we are reading a symbol table. */
c906108c
SS
193
194int currently_reading_symtab = 0;
195
196static void
fba45db2 197decrement_reading_symtab (void *dummy)
c906108c
SS
198{
199 currently_reading_symtab--;
2cb9c859 200 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
201}
202
ccefe4c4
TT
203/* Increment currently_reading_symtab and return a cleanup that can be
204 used to decrement it. */
3b7bacac 205
ccefe4c4
TT
206struct cleanup *
207increment_reading_symtab (void)
c906108c 208{
ccefe4c4 209 ++currently_reading_symtab;
2cb9c859 210 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 211 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
212}
213
5417f6dc
RM
214/* Remember the lowest-addressed loadable section we've seen.
215 This function is called via bfd_map_over_sections.
c906108c
SS
216
217 In case of equal vmas, the section with the largest size becomes the
218 lowest-addressed loadable section.
219
220 If the vmas and sizes are equal, the last section is considered the
221 lowest-addressed loadable section. */
222
223void
4efb68b1 224find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 225{
c5aa993b 226 asection **lowest = (asection **) obj;
c906108c 227
eb73e134 228 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
229 return;
230 if (!*lowest)
231 *lowest = sect; /* First loadable section */
232 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
233 *lowest = sect; /* A lower loadable section */
234 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
235 && (bfd_section_size (abfd, (*lowest))
236 <= bfd_section_size (abfd, sect)))
237 *lowest = sect;
238}
239
d76488d8
TT
240/* Create a new section_addr_info, with room for NUM_SECTIONS. The
241 new object's 'num_sections' field is set to 0; it must be updated
242 by the caller. */
a39a16c4
MM
243
244struct section_addr_info *
245alloc_section_addr_info (size_t num_sections)
246{
247 struct section_addr_info *sap;
248 size_t size;
249
250 size = (sizeof (struct section_addr_info)
251 + sizeof (struct other_sections) * (num_sections - 1));
252 sap = (struct section_addr_info *) xmalloc (size);
253 memset (sap, 0, size);
a39a16c4
MM
254
255 return sap;
256}
62557bbc
KB
257
258/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 259 an existing section table. */
62557bbc
KB
260
261extern struct section_addr_info *
0542c86d
PA
262build_section_addr_info_from_section_table (const struct target_section *start,
263 const struct target_section *end)
62557bbc
KB
264{
265 struct section_addr_info *sap;
0542c86d 266 const struct target_section *stp;
62557bbc
KB
267 int oidx;
268
a39a16c4 269 sap = alloc_section_addr_info (end - start);
62557bbc
KB
270
271 for (stp = start, oidx = 0; stp != end; stp++)
272 {
2b2848e2
DE
273 struct bfd_section *asect = stp->the_bfd_section;
274 bfd *abfd = asect->owner;
275
276 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 277 && oidx < end - start)
62557bbc
KB
278 {
279 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
280 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
281 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
282 oidx++;
283 }
284 }
285
d76488d8
TT
286 sap->num_sections = oidx;
287
62557bbc
KB
288 return sap;
289}
290
82ccf5a5 291/* Create a section_addr_info from section offsets in ABFD. */
089b4803 292
82ccf5a5
JK
293static struct section_addr_info *
294build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
295{
296 struct section_addr_info *sap;
297 int i;
298 struct bfd_section *sec;
299
82ccf5a5
JK
300 sap = alloc_section_addr_info (bfd_count_sections (abfd));
301 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
302 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 303 {
82ccf5a5
JK
304 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
305 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 306 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
307 i++;
308 }
d76488d8
TT
309
310 sap->num_sections = i;
311
089b4803
TG
312 return sap;
313}
314
82ccf5a5
JK
315/* Create a section_addr_info from section offsets in OBJFILE. */
316
317struct section_addr_info *
318build_section_addr_info_from_objfile (const struct objfile *objfile)
319{
320 struct section_addr_info *sap;
321 int i;
322
323 /* Before reread_symbols gets rewritten it is not safe to call:
324 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
325 */
326 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 327 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
328 {
329 int sectindex = sap->other[i].sectindex;
330
331 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
332 }
333 return sap;
334}
62557bbc 335
c378eb4e 336/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
337
338extern void
339free_section_addr_info (struct section_addr_info *sap)
340{
341 int idx;
342
a39a16c4 343 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 344 xfree (sap->other[idx].name);
b8c9b27d 345 xfree (sap);
62557bbc
KB
346}
347
e8289572 348/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 349
e8289572
JB
350static void
351init_objfile_sect_indices (struct objfile *objfile)
c906108c 352{
e8289572 353 asection *sect;
c906108c 354 int i;
5417f6dc 355
b8fbeb18 356 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 357 if (sect)
b8fbeb18
EZ
358 objfile->sect_index_text = sect->index;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_data = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_bss = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_rodata = sect->index;
371
bbcd32ad
FF
372 /* This is where things get really weird... We MUST have valid
373 indices for the various sect_index_* members or gdb will abort.
374 So if for example, there is no ".text" section, we have to
31d99776
DJ
375 accomodate that. First, check for a file with the standard
376 one or two segments. */
377
378 symfile_find_segment_sections (objfile);
379
380 /* Except when explicitly adding symbol files at some address,
381 section_offsets contains nothing but zeros, so it doesn't matter
382 which slot in section_offsets the individual sect_index_* members
383 index into. So if they are all zero, it is safe to just point
384 all the currently uninitialized indices to the first slot. But
385 beware: if this is the main executable, it may be relocated
386 later, e.g. by the remote qOffsets packet, and then this will
387 be wrong! That's why we try segments first. */
bbcd32ad
FF
388
389 for (i = 0; i < objfile->num_sections; i++)
390 {
391 if (ANOFFSET (objfile->section_offsets, i) != 0)
392 {
393 break;
394 }
395 }
396 if (i == objfile->num_sections)
397 {
398 if (objfile->sect_index_text == -1)
399 objfile->sect_index_text = 0;
400 if (objfile->sect_index_data == -1)
401 objfile->sect_index_data = 0;
402 if (objfile->sect_index_bss == -1)
403 objfile->sect_index_bss = 0;
404 if (objfile->sect_index_rodata == -1)
405 objfile->sect_index_rodata = 0;
406 }
b8fbeb18 407}
c906108c 408
c1bd25fd
DJ
409/* The arguments to place_section. */
410
411struct place_section_arg
412{
413 struct section_offsets *offsets;
414 CORE_ADDR lowest;
415};
416
417/* Find a unique offset to use for loadable section SECT if
418 the user did not provide an offset. */
419
2c0b251b 420static void
c1bd25fd
DJ
421place_section (bfd *abfd, asection *sect, void *obj)
422{
19ba03f4 423 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
424 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
425 int done;
3bd72c6f 426 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 427
2711e456
DJ
428 /* We are only interested in allocated sections. */
429 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
430 return;
431
432 /* If the user specified an offset, honor it. */
65cf3563 433 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
434 return;
435
436 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
437 start_addr = (arg->lowest + align - 1) & -align;
438
c1bd25fd
DJ
439 do {
440 asection *cur_sec;
c1bd25fd 441
c1bd25fd
DJ
442 done = 1;
443
444 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
445 {
446 int indx = cur_sec->index;
c1bd25fd
DJ
447
448 /* We don't need to compare against ourself. */
449 if (cur_sec == sect)
450 continue;
451
2711e456
DJ
452 /* We can only conflict with allocated sections. */
453 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
454 continue;
455
456 /* If the section offset is 0, either the section has not been placed
457 yet, or it was the lowest section placed (in which case LOWEST
458 will be past its end). */
459 if (offsets[indx] == 0)
460 continue;
461
462 /* If this section would overlap us, then we must move up. */
463 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
464 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
465 {
466 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
467 start_addr = (start_addr + align - 1) & -align;
468 done = 0;
3bd72c6f 469 break;
c1bd25fd
DJ
470 }
471
472 /* Otherwise, we appear to be OK. So far. */
473 }
474 }
475 while (!done);
476
65cf3563 477 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 478 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 479}
e8289572 480
75242ef4
JK
481/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
482 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
483 entries. */
e8289572
JB
484
485void
75242ef4
JK
486relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
487 int num_sections,
3189cb12 488 const struct section_addr_info *addrs)
e8289572
JB
489{
490 int i;
491
75242ef4 492 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 493
c378eb4e 494 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 495 for (i = 0; i < addrs->num_sections; i++)
e8289572 496 {
3189cb12 497 const struct other_sections *osp;
e8289572 498
75242ef4 499 osp = &addrs->other[i];
5488dafb 500 if (osp->sectindex == -1)
e8289572
JB
501 continue;
502
c378eb4e 503 /* Record all sections in offsets. */
e8289572 504 /* The section_offsets in the objfile are here filled in using
c378eb4e 505 the BFD index. */
75242ef4
JK
506 section_offsets->offsets[osp->sectindex] = osp->addr;
507 }
508}
509
1276c759
JK
510/* Transform section name S for a name comparison. prelink can split section
511 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
512 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
513 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
514 (`.sbss') section has invalid (increased) virtual address. */
515
516static const char *
517addr_section_name (const char *s)
518{
519 if (strcmp (s, ".dynbss") == 0)
520 return ".bss";
521 if (strcmp (s, ".sdynbss") == 0)
522 return ".sbss";
523
524 return s;
525}
526
82ccf5a5
JK
527/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
528 their (name, sectindex) pair. sectindex makes the sort by name stable. */
529
530static int
531addrs_section_compar (const void *ap, const void *bp)
532{
533 const struct other_sections *a = *((struct other_sections **) ap);
534 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 535 int retval;
82ccf5a5 536
1276c759 537 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
538 if (retval)
539 return retval;
540
5488dafb 541 return a->sectindex - b->sectindex;
82ccf5a5
JK
542}
543
544/* Provide sorted array of pointers to sections of ADDRS. The array is
545 terminated by NULL. Caller is responsible to call xfree for it. */
546
547static struct other_sections **
548addrs_section_sort (struct section_addr_info *addrs)
549{
550 struct other_sections **array;
551 int i;
552
553 /* `+ 1' for the NULL terminator. */
8d749320 554 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 555 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
556 array[i] = &addrs->other[i];
557 array[i] = NULL;
558
559 qsort (array, i, sizeof (*array), addrs_section_compar);
560
561 return array;
562}
563
75242ef4 564/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
565 also SECTINDEXes specific to ABFD there. This function can be used to
566 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
567
568void
569addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
570{
571 asection *lower_sect;
75242ef4
JK
572 CORE_ADDR lower_offset;
573 int i;
82ccf5a5
JK
574 struct cleanup *my_cleanup;
575 struct section_addr_info *abfd_addrs;
576 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
577 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
578
579 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
580 continguous sections. */
581 lower_sect = NULL;
582 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
583 if (lower_sect == NULL)
584 {
585 warning (_("no loadable sections found in added symbol-file %s"),
586 bfd_get_filename (abfd));
587 lower_offset = 0;
e8289572 588 }
75242ef4
JK
589 else
590 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
591
82ccf5a5
JK
592 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
593 in ABFD. Section names are not unique - there can be multiple sections of
594 the same name. Also the sections of the same name do not have to be
595 adjacent to each other. Some sections may be present only in one of the
596 files. Even sections present in both files do not have to be in the same
597 order.
598
599 Use stable sort by name for the sections in both files. Then linearly
600 scan both lists matching as most of the entries as possible. */
601
602 addrs_sorted = addrs_section_sort (addrs);
603 my_cleanup = make_cleanup (xfree, addrs_sorted);
604
605 abfd_addrs = build_section_addr_info_from_bfd (abfd);
606 make_cleanup_free_section_addr_info (abfd_addrs);
607 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
608 make_cleanup (xfree, abfd_addrs_sorted);
609
c378eb4e
MS
610 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
611 ABFD_ADDRS_SORTED. */
82ccf5a5 612
8d749320 613 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
614 make_cleanup (xfree, addrs_to_abfd_addrs);
615
616 while (*addrs_sorted)
617 {
1276c759 618 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
619
620 while (*abfd_addrs_sorted
1276c759
JK
621 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
622 sect_name) < 0)
82ccf5a5
JK
623 abfd_addrs_sorted++;
624
625 if (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) == 0)
82ccf5a5
JK
628 {
629 int index_in_addrs;
630
631 /* Make the found item directly addressable from ADDRS. */
632 index_in_addrs = *addrs_sorted - addrs->other;
633 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
634 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
635
636 /* Never use the same ABFD entry twice. */
637 abfd_addrs_sorted++;
638 }
639
640 addrs_sorted++;
641 }
642
75242ef4
JK
643 /* Calculate offsets for the loadable sections.
644 FIXME! Sections must be in order of increasing loadable section
645 so that contiguous sections can use the lower-offset!!!
646
647 Adjust offsets if the segments are not contiguous.
648 If the section is contiguous, its offset should be set to
649 the offset of the highest loadable section lower than it
650 (the loadable section directly below it in memory).
651 this_offset = lower_offset = lower_addr - lower_orig_addr */
652
d76488d8 653 for (i = 0; i < addrs->num_sections; i++)
75242ef4 654 {
82ccf5a5 655 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
656
657 if (sect)
75242ef4 658 {
c378eb4e 659 /* This is the index used by BFD. */
82ccf5a5 660 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
661
662 if (addrs->other[i].addr != 0)
75242ef4 663 {
82ccf5a5 664 addrs->other[i].addr -= sect->addr;
75242ef4 665 lower_offset = addrs->other[i].addr;
75242ef4
JK
666 }
667 else
672d9c23 668 addrs->other[i].addr = lower_offset;
75242ef4
JK
669 }
670 else
672d9c23 671 {
1276c759
JK
672 /* addr_section_name transformation is not used for SECT_NAME. */
673 const char *sect_name = addrs->other[i].name;
674
b0fcb67f
JK
675 /* This section does not exist in ABFD, which is normally
676 unexpected and we want to issue a warning.
677
4d9743af
JK
678 However, the ELF prelinker does create a few sections which are
679 marked in the main executable as loadable (they are loaded in
680 memory from the DYNAMIC segment) and yet are not present in
681 separate debug info files. This is fine, and should not cause
682 a warning. Shared libraries contain just the section
683 ".gnu.liblist" but it is not marked as loadable there. There is
684 no other way to identify them than by their name as the sections
1276c759
JK
685 created by prelink have no special flags.
686
687 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
688
689 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 690 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
691 || (strcmp (sect_name, ".bss") == 0
692 && i > 0
693 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
694 && addrs_to_abfd_addrs[i - 1] != NULL)
695 || (strcmp (sect_name, ".sbss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
699 warning (_("section %s not found in %s"), sect_name,
700 bfd_get_filename (abfd));
701
672d9c23 702 addrs->other[i].addr = 0;
5488dafb 703 addrs->other[i].sectindex = -1;
672d9c23 704 }
75242ef4 705 }
82ccf5a5
JK
706
707 do_cleanups (my_cleanup);
75242ef4
JK
708}
709
710/* Parse the user's idea of an offset for dynamic linking, into our idea
711 of how to represent it for fast symbol reading. This is the default
712 version of the sym_fns.sym_offsets function for symbol readers that
713 don't need to do anything special. It allocates a section_offsets table
714 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
715
716void
717default_symfile_offsets (struct objfile *objfile,
3189cb12 718 const struct section_addr_info *addrs)
75242ef4 719{
d445b2f6 720 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
721 objfile->section_offsets = (struct section_offsets *)
722 obstack_alloc (&objfile->objfile_obstack,
723 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
724 relative_addr_info_to_section_offsets (objfile->section_offsets,
725 objfile->num_sections, addrs);
e8289572 726
c1bd25fd
DJ
727 /* For relocatable files, all loadable sections will start at zero.
728 The zero is meaningless, so try to pick arbitrary addresses such
729 that no loadable sections overlap. This algorithm is quadratic,
730 but the number of sections in a single object file is generally
731 small. */
732 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
733 {
734 struct place_section_arg arg;
2711e456
DJ
735 bfd *abfd = objfile->obfd;
736 asection *cur_sec;
2711e456
DJ
737
738 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
739 /* We do not expect this to happen; just skip this step if the
740 relocatable file has a section with an assigned VMA. */
741 if (bfd_section_vma (abfd, cur_sec) != 0)
742 break;
743
744 if (cur_sec == NULL)
745 {
746 CORE_ADDR *offsets = objfile->section_offsets->offsets;
747
748 /* Pick non-overlapping offsets for sections the user did not
749 place explicitly. */
750 arg.offsets = objfile->section_offsets;
751 arg.lowest = 0;
752 bfd_map_over_sections (objfile->obfd, place_section, &arg);
753
754 /* Correctly filling in the section offsets is not quite
755 enough. Relocatable files have two properties that
756 (most) shared objects do not:
757
758 - Their debug information will contain relocations. Some
759 shared libraries do also, but many do not, so this can not
760 be assumed.
761
762 - If there are multiple code sections they will be loaded
763 at different relative addresses in memory than they are
764 in the objfile, since all sections in the file will start
765 at address zero.
766
767 Because GDB has very limited ability to map from an
768 address in debug info to the correct code section,
769 it relies on adding SECT_OFF_TEXT to things which might be
770 code. If we clear all the section offsets, and set the
771 section VMAs instead, then symfile_relocate_debug_section
772 will return meaningful debug information pointing at the
773 correct sections.
774
775 GDB has too many different data structures for section
776 addresses - a bfd, objfile, and so_list all have section
777 tables, as does exec_ops. Some of these could probably
778 be eliminated. */
779
780 for (cur_sec = abfd->sections; cur_sec != NULL;
781 cur_sec = cur_sec->next)
782 {
783 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
784 continue;
785
786 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
787 exec_set_section_address (bfd_get_filename (abfd),
788 cur_sec->index,
30510692 789 offsets[cur_sec->index]);
2711e456
DJ
790 offsets[cur_sec->index] = 0;
791 }
792 }
c1bd25fd
DJ
793 }
794
e8289572 795 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 796 .rodata sections. */
e8289572
JB
797 init_objfile_sect_indices (objfile);
798}
799
31d99776
DJ
800/* Divide the file into segments, which are individual relocatable units.
801 This is the default version of the sym_fns.sym_segments function for
802 symbol readers that do not have an explicit representation of segments.
803 It assumes that object files do not have segments, and fully linked
804 files have a single segment. */
805
806struct symfile_segment_data *
807default_symfile_segments (bfd *abfd)
808{
809 int num_sections, i;
810 asection *sect;
811 struct symfile_segment_data *data;
812 CORE_ADDR low, high;
813
814 /* Relocatable files contain enough information to position each
815 loadable section independently; they should not be relocated
816 in segments. */
817 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
818 return NULL;
819
820 /* Make sure there is at least one loadable section in the file. */
821 for (sect = abfd->sections; sect != NULL; sect = sect->next)
822 {
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 break;
827 }
828 if (sect == NULL)
829 return NULL;
830
831 low = bfd_get_section_vma (abfd, sect);
832 high = low + bfd_get_section_size (sect);
833
41bf6aca 834 data = XCNEW (struct symfile_segment_data);
31d99776 835 data->num_segments = 1;
fc270c35
TT
836 data->segment_bases = XCNEW (CORE_ADDR);
837 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
838
839 num_sections = bfd_count_sections (abfd);
fc270c35 840 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
841
842 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
843 {
844 CORE_ADDR vma;
845
846 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
847 continue;
848
849 vma = bfd_get_section_vma (abfd, sect);
850 if (vma < low)
851 low = vma;
852 if (vma + bfd_get_section_size (sect) > high)
853 high = vma + bfd_get_section_size (sect);
854
855 data->segment_info[i] = 1;
856 }
857
858 data->segment_bases[0] = low;
859 data->segment_sizes[0] = high - low;
860
861 return data;
862}
863
608e2dbb
TT
864/* This is a convenience function to call sym_read for OBJFILE and
865 possibly force the partial symbols to be read. */
866
867static void
b15cc25c 868read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
869{
870 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 871 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
872
873 /* find_separate_debug_file_in_section should be called only if there is
874 single binary with no existing separate debug info file. */
875 if (!objfile_has_partial_symbols (objfile)
876 && objfile->separate_debug_objfile == NULL
877 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
878 {
879 bfd *abfd = find_separate_debug_file_in_section (objfile);
880 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
881
882 if (abfd != NULL)
24ba069a
JK
883 {
884 /* find_separate_debug_file_in_section uses the same filename for the
885 virtual section-as-bfd like the bfd filename containing the
886 section. Therefore use also non-canonical name form for the same
887 file containing the section. */
888 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
889 objfile);
890 }
608e2dbb
TT
891
892 do_cleanups (cleanup);
893 }
894 if ((add_flags & SYMFILE_NO_READ) == 0)
895 require_partial_symbols (objfile, 0);
896}
897
3d6e24f0
JB
898/* Initialize entry point information for this objfile. */
899
900static void
901init_entry_point_info (struct objfile *objfile)
902{
6ef55de7
TT
903 struct entry_info *ei = &objfile->per_bfd->ei;
904
905 if (ei->initialized)
906 return;
907 ei->initialized = 1;
908
3d6e24f0
JB
909 /* Save startup file's range of PC addresses to help blockframe.c
910 decide where the bottom of the stack is. */
911
912 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
913 {
914 /* Executable file -- record its entry point so we'll recognize
915 the startup file because it contains the entry point. */
6ef55de7
TT
916 ei->entry_point = bfd_get_start_address (objfile->obfd);
917 ei->entry_point_p = 1;
3d6e24f0
JB
918 }
919 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
920 && bfd_get_start_address (objfile->obfd) != 0)
921 {
922 /* Some shared libraries may have entry points set and be
923 runnable. There's no clear way to indicate this, so just check
924 for values other than zero. */
6ef55de7
TT
925 ei->entry_point = bfd_get_start_address (objfile->obfd);
926 ei->entry_point_p = 1;
3d6e24f0
JB
927 }
928 else
929 {
930 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 931 ei->entry_point_p = 0;
3d6e24f0
JB
932 }
933
6ef55de7 934 if (ei->entry_point_p)
3d6e24f0 935 {
53eddfa6 936 struct obj_section *osect;
6ef55de7 937 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 938 int found;
3d6e24f0
JB
939
940 /* Make certain that the address points at real code, and not a
941 function descriptor. */
942 entry_point
df6d5441 943 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
944 entry_point,
945 &current_target);
946
947 /* Remove any ISA markers, so that this matches entries in the
948 symbol table. */
6ef55de7 949 ei->entry_point
df6d5441 950 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
951
952 found = 0;
953 ALL_OBJFILE_OSECTIONS (objfile, osect)
954 {
955 struct bfd_section *sect = osect->the_bfd_section;
956
957 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
958 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
959 + bfd_get_section_size (sect)))
960 {
6ef55de7 961 ei->the_bfd_section_index
53eddfa6
TT
962 = gdb_bfd_section_index (objfile->obfd, sect);
963 found = 1;
964 break;
965 }
966 }
967
968 if (!found)
6ef55de7 969 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
970 }
971}
972
c906108c
SS
973/* Process a symbol file, as either the main file or as a dynamically
974 loaded file.
975
36e4d068
JB
976 This function does not set the OBJFILE's entry-point info.
977
96baa820
JM
978 OBJFILE is where the symbols are to be read from.
979
7e8580c1
JB
980 ADDRS is the list of section load addresses. If the user has given
981 an 'add-symbol-file' command, then this is the list of offsets and
982 addresses he or she provided as arguments to the command; or, if
983 we're handling a shared library, these are the actual addresses the
984 sections are loaded at, according to the inferior's dynamic linker
985 (as gleaned by GDB's shared library code). We convert each address
986 into an offset from the section VMA's as it appears in the object
987 file, and then call the file's sym_offsets function to convert this
988 into a format-specific offset table --- a `struct section_offsets'.
96baa820 989
7eedccfa
PP
990 ADD_FLAGS encodes verbosity level, whether this is main symbol or
991 an extra symbol file such as dynamically loaded code, and wether
992 breakpoint reset should be deferred. */
c906108c 993
36e4d068
JB
994static void
995syms_from_objfile_1 (struct objfile *objfile,
996 struct section_addr_info *addrs,
b15cc25c 997 symfile_add_flags add_flags)
c906108c 998{
a39a16c4 999 struct section_addr_info *local_addr = NULL;
c906108c 1000 struct cleanup *old_chain;
7eedccfa 1001 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1002
8fb8eb5c 1003 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1004
75245b24 1005 if (objfile->sf == NULL)
36e4d068
JB
1006 {
1007 /* No symbols to load, but we still need to make sure
1008 that the section_offsets table is allocated. */
d445b2f6 1009 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1010 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1011
1012 objfile->num_sections = num_sections;
1013 objfile->section_offsets
224c3ddb
SM
1014 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1015 size);
36e4d068
JB
1016 memset (objfile->section_offsets, 0, size);
1017 return;
1018 }
75245b24 1019
c906108c
SS
1020 /* Make sure that partially constructed symbol tables will be cleaned up
1021 if an error occurs during symbol reading. */
74b7792f 1022 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1023
6bf667bb
DE
1024 /* If ADDRS is NULL, put together a dummy address list.
1025 We now establish the convention that an addr of zero means
c378eb4e 1026 no load address was specified. */
6bf667bb 1027 if (! addrs)
a39a16c4 1028 {
d445b2f6 1029 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1030 make_cleanup (xfree, local_addr);
1031 addrs = local_addr;
1032 }
1033
c5aa993b 1034 if (mainline)
c906108c
SS
1035 {
1036 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1037 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1038 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1039
1040 /* Since no error yet, throw away the old symbol table. */
1041
1042 if (symfile_objfile != NULL)
1043 {
1044 free_objfile (symfile_objfile);
adb7f338 1045 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1046 }
1047
1048 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1049 If the user wants to get rid of them, they should do "symbol-file"
1050 without arguments first. Not sure this is the best behavior
1051 (PR 2207). */
c906108c 1052
c5aa993b 1053 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1054 }
1055
1056 /* Convert addr into an offset rather than an absolute address.
1057 We find the lowest address of a loaded segment in the objfile,
53a5351d 1058 and assume that <addr> is where that got loaded.
c906108c 1059
53a5351d
JM
1060 We no longer warn if the lowest section is not a text segment (as
1061 happens for the PA64 port. */
6bf667bb 1062 if (addrs->num_sections > 0)
75242ef4 1063 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1064
1065 /* Initialize symbol reading routines for this objfile, allow complaints to
1066 appear for this new file, and record how verbose to be, then do the
c378eb4e 1067 initial symbol reading for this file. */
c906108c 1068
c5aa993b 1069 (*objfile->sf->sym_init) (objfile);
7eedccfa 1070 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1071
6bf667bb 1072 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1073
608e2dbb 1074 read_symbols (objfile, add_flags);
b11896a5 1075
c906108c
SS
1076 /* Discard cleanups as symbol reading was successful. */
1077
1078 discard_cleanups (old_chain);
f7545552 1079 xfree (local_addr);
c906108c
SS
1080}
1081
36e4d068
JB
1082/* Same as syms_from_objfile_1, but also initializes the objfile
1083 entry-point info. */
1084
6bf667bb 1085static void
36e4d068
JB
1086syms_from_objfile (struct objfile *objfile,
1087 struct section_addr_info *addrs,
b15cc25c 1088 symfile_add_flags add_flags)
36e4d068 1089{
6bf667bb 1090 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1091 init_entry_point_info (objfile);
1092}
1093
c906108c
SS
1094/* Perform required actions after either reading in the initial
1095 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1096 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1097
e7d52ed3 1098static void
b15cc25c 1099finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1100{
c906108c 1101 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1102 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1103 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1104 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1105 {
1106 /* OK, make it the "real" symbol file. */
1107 symfile_objfile = objfile;
1108
c1e56572 1109 clear_symtab_users (add_flags);
c906108c 1110 }
7eedccfa 1111 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1112 {
69de3c6a 1113 breakpoint_re_set ();
c906108c
SS
1114 }
1115
1116 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1117 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1118}
1119
1120/* Process a symbol file, as either the main file or as a dynamically
1121 loaded file.
1122
5417f6dc 1123 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1124 A new reference is acquired by this function.
7904e09f 1125
24ba069a
JK
1126 For NAME description see allocate_objfile's definition.
1127
7eedccfa
PP
1128 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1129 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1130
6bf667bb 1131 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1132 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1133
63524580
JK
1134 PARENT is the original objfile if ABFD is a separate debug info file.
1135 Otherwise PARENT is NULL.
1136
c906108c 1137 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1138 Upon failure, jumps back to command level (never returns). */
7eedccfa 1139
7904e09f 1140static struct objfile *
b15cc25c
PA
1141symbol_file_add_with_addrs (bfd *abfd, const char *name,
1142 symfile_add_flags add_flags,
6bf667bb 1143 struct section_addr_info *addrs,
b15cc25c 1144 objfile_flags flags, struct objfile *parent)
c906108c
SS
1145{
1146 struct objfile *objfile;
7eedccfa 1147 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1148 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1149 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1150 && (readnow_symbol_files
1151 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1152
9291a0cd 1153 if (readnow_symbol_files)
b11896a5
TT
1154 {
1155 flags |= OBJF_READNOW;
1156 add_flags &= ~SYMFILE_NO_READ;
1157 }
9291a0cd 1158
5417f6dc
RM
1159 /* Give user a chance to burp if we'd be
1160 interactively wiping out any existing symbols. */
c906108c
SS
1161
1162 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1163 && mainline
c906108c 1164 && from_tty
9e2f0ad4 1165 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1166 error (_("Not confirmed."));
c906108c 1167
b15cc25c
PA
1168 if (mainline)
1169 flags |= OBJF_MAINLINE;
1170 objfile = allocate_objfile (abfd, name, flags);
c906108c 1171
63524580
JK
1172 if (parent)
1173 add_separate_debug_objfile (objfile, parent);
1174
78a4a9b9
AC
1175 /* We either created a new mapped symbol table, mapped an existing
1176 symbol table file which has not had initial symbol reading
c378eb4e 1177 performed, or need to read an unmapped symbol table. */
b11896a5 1178 if (should_print)
c906108c 1179 {
769d7dc4
AC
1180 if (deprecated_pre_add_symbol_hook)
1181 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1182 else
c906108c 1183 {
55333a84
DE
1184 printf_unfiltered (_("Reading symbols from %s..."), name);
1185 wrap_here ("");
1186 gdb_flush (gdb_stdout);
c906108c 1187 }
c906108c 1188 }
6bf667bb 1189 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1190
1191 /* We now have at least a partial symbol table. Check to see if the
1192 user requested that all symbols be read on initial access via either
1193 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1194 all partial symbol tables for this objfile if so. */
c906108c 1195
9291a0cd 1196 if ((flags & OBJF_READNOW))
c906108c 1197 {
b11896a5 1198 if (should_print)
c906108c 1199 {
a3f17187 1200 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1201 wrap_here ("");
1202 gdb_flush (gdb_stdout);
1203 }
1204
ccefe4c4
TT
1205 if (objfile->sf)
1206 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1207 }
1208
b11896a5 1209 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1210 {
1211 wrap_here ("");
55333a84 1212 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1213 wrap_here ("");
1214 }
1215
b11896a5 1216 if (should_print)
c906108c 1217 {
769d7dc4
AC
1218 if (deprecated_post_add_symbol_hook)
1219 deprecated_post_add_symbol_hook ();
c906108c 1220 else
55333a84 1221 printf_unfiltered (_("done.\n"));
c906108c
SS
1222 }
1223
481d0f41
JB
1224 /* We print some messages regardless of whether 'from_tty ||
1225 info_verbose' is true, so make sure they go out at the right
1226 time. */
1227 gdb_flush (gdb_stdout);
1228
109f874e 1229 if (objfile->sf == NULL)
8caee43b
PP
1230 {
1231 observer_notify_new_objfile (objfile);
c378eb4e 1232 return objfile; /* No symbols. */
8caee43b 1233 }
109f874e 1234
e7d52ed3 1235 finish_new_objfile (objfile, add_flags);
c906108c 1236
06d3b283 1237 observer_notify_new_objfile (objfile);
c906108c 1238
ce7d4522 1239 bfd_cache_close_all ();
c906108c
SS
1240 return (objfile);
1241}
1242
24ba069a
JK
1243/* Add BFD as a separate debug file for OBJFILE. For NAME description
1244 see allocate_objfile's definition. */
9cce227f
TG
1245
1246void
b15cc25c
PA
1247symbol_file_add_separate (bfd *bfd, const char *name,
1248 symfile_add_flags symfile_flags,
24ba069a 1249 struct objfile *objfile)
9cce227f 1250{
089b4803
TG
1251 struct section_addr_info *sap;
1252 struct cleanup *my_cleanup;
1253
1254 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1255 because sections of BFD may not match sections of OBJFILE and because
1256 vma may have been modified by tools such as prelink. */
1257 sap = build_section_addr_info_from_objfile (objfile);
1258 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1259
870f88f7 1260 symbol_file_add_with_addrs
24ba069a 1261 (bfd, name, symfile_flags, sap,
9cce227f 1262 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1263 | OBJF_USERLOADED),
1264 objfile);
089b4803
TG
1265
1266 do_cleanups (my_cleanup);
9cce227f 1267}
7904e09f 1268
eb4556d7
JB
1269/* Process the symbol file ABFD, as either the main file or as a
1270 dynamically loaded file.
6bf667bb 1271 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1272
eb4556d7 1273struct objfile *
b15cc25c
PA
1274symbol_file_add_from_bfd (bfd *abfd, const char *name,
1275 symfile_add_flags add_flags,
eb4556d7 1276 struct section_addr_info *addrs,
b15cc25c 1277 objfile_flags flags, struct objfile *parent)
eb4556d7 1278{
24ba069a
JK
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1280 parent);
eb4556d7
JB
1281}
1282
7904e09f 1283/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1285
7904e09f 1286struct objfile *
b15cc25c
PA
1287symbol_file_add (const char *name, symfile_add_flags add_flags,
1288 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1289{
8ac244b4
TT
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1293
24ba069a 1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1295 do_cleanups (cleanup);
1296 return objf;
7904e09f
JB
1297}
1298
d7db6da9
FN
1299/* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1305 command itself. */
5417f6dc 1306
1adeb98a 1307void
ecf45d2c 1308symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1309{
ecf45d2c 1310 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1311}
1312
1313static void
ecf45d2c
SL
1314symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1315 objfile_flags flags)
d7db6da9 1316{
ecf45d2c 1317 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1318
7eedccfa 1319 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1320
d7db6da9
FN
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1324
b15cc25c 1325 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1326 set_initial_language ();
1adeb98a
FN
1327}
1328
1329void
1330symbol_file_clear (int from_tty)
1331{
1332 if ((have_full_symbols () || have_partial_symbols ())
1333 && from_tty
0430b0d6
AS
1334 && (symfile_objfile
1335 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1336 objfile_name (symfile_objfile))
0430b0d6 1337 : !query (_("Discard symbol table? "))))
8a3fe4f8 1338 error (_("Not confirmed."));
1adeb98a 1339
0133421a
JK
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1342 no_shared_libraries (NULL, from_tty);
1343
0133421a
JK
1344 free_all_objfiles ();
1345
adb7f338 1346 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1347 if (from_tty)
1348 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1349}
1350
5b5d99cf 1351static int
287ccc17 1352separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1353 struct objfile *parent_objfile)
5b5d99cf 1354{
904578ed
JK
1355 unsigned long file_crc;
1356 int file_crc_p;
f1838a98 1357 bfd *abfd;
32a0e547 1358 struct stat parent_stat, abfd_stat;
904578ed 1359 int verified_as_different;
32a0e547
JK
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1365 the separate debug infos with the same basename can exist. */
32a0e547 1366
4262abfb 1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1368 return 0;
5b5d99cf 1369
2938e6cf 1370 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1371
1372 if (!abfd)
5b5d99cf
JB
1373 return 0;
1374
0ba1096a 1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1389 {
904578ed
JK
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
cbb099e8 1393 gdb_bfd_unref (abfd);
904578ed
JK
1394 return 0;
1395 }
1396 verified_as_different = 1;
32a0e547 1397 }
904578ed
JK
1398 else
1399 verified_as_different = 0;
32a0e547 1400
dccee2de 1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1402
cbb099e8 1403 gdb_bfd_unref (abfd);
5b5d99cf 1404
904578ed
JK
1405 if (!file_crc_p)
1406 return 0;
1407
287ccc17
JK
1408 if (crc != file_crc)
1409 {
dccee2de
TT
1410 unsigned long parent_crc;
1411
0a93529c
GB
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
904578ed 1415
dccee2de 1416 if (!verified_as_different)
904578ed 1417 {
dccee2de 1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1419 return 0;
1420 }
1421
dccee2de 1422 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1425 name, objfile_name (parent_objfile));
904578ed 1426
287ccc17
JK
1427 return 0;
1428 }
1429
1430 return 1;
5b5d99cf
JB
1431}
1432
aa28a74e 1433char *debug_file_directory = NULL;
920d2a44
AC
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
3e43a32a
MS
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1441 value);
1442}
5b5d99cf
JB
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
1db33378
PP
1448/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1454
1455static char *
1456find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
9cce227f 1460{
1db33378
PP
1461 char *debugdir;
1462 char *debugfile;
9cce227f 1463 int i;
e4ab2fad
JK
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
5b5d99cf 1467
325fac50 1468 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1469 i = strlen (dir);
1db33378
PP
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1ffa32ee 1472
224c3ddb
SM
1473 debugfile
1474 = (char *) xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
5b5d99cf
JB
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1db33378 1483 strcat (debugfile, debuglink);
5b5d99cf 1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1486 return debugfile;
5417f6dc 1487
5b5d99cf
JB
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1db33378 1492 strcat (debugfile, debuglink);
5b5d99cf 1493
32a0e547 1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1495 return debugfile;
5417f6dc 1496
24ddea62 1497 /* Then try in the global debugfile directories.
f888f159 1498
24ddea62
JK
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
5417f6dc 1501
e4ab2fad
JK
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1504
e4ab2fad
JK
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
aa28a74e 1508 strcat (debugfile, "/");
24ddea62 1509 strcat (debugfile, dir);
1db33378 1510 strcat (debugfile, debuglink);
aa28a74e 1511
32a0e547 1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
24ddea62
JK
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1db33378
PP
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1522 strlen (gdb_sysroot)) == 0
1db33378 1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1524 {
e4ab2fad 1525 strcpy (debugfile, debugdir);
1db33378 1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1527 strcat (debugfile, "/");
1db33378 1528 strcat (debugfile, debuglink);
24ddea62 1529
32a0e547 1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
24ddea62 1535 }
aa28a74e 1536 }
f888f159 1537
e4ab2fad 1538 do_cleanups (back_to);
25522fae 1539 xfree (debugfile);
1db33378
PP
1540 return NULL;
1541}
1542
7edbb660 1543/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547static void
1548terminate_after_last_dir_separator (char *path)
1549{
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560}
1561
1562/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565char *
1566find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567{
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
cc0ea93c 1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
71bdabee 1583 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1584 dir = xstrdup (objfile_name (objfile));
71bdabee 1585 make_cleanup (xfree, dir);
1db33378
PP
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1db33378
PP
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
4262abfb
JK
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1602 {
1603 char *symlink_dir;
1604
4262abfb 1605 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1db33378 1621 }
aa28a74e 1622
1db33378 1623 do_cleanups (cleanups);
25522fae 1624 return debugfile;
5b5d99cf
JB
1625}
1626
c906108c
SS
1627/* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
c906108c
SS
1639 conventions (because it is confusing and inconvenient). */
1640
1641void
fba45db2 1642symbol_file_command (char *args, int from_tty)
c906108c 1643{
c906108c
SS
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1adeb98a 1648 symbol_file_clear (from_tty);
c906108c
SS
1649 }
1650 else
1651 {
d1a41061 1652 char **argv = gdb_buildargv (args);
b15cc25c 1653 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1654 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1655 struct cleanup *cleanups;
1656 char *name = NULL;
1657
ecf45d2c
SL
1658 if (from_tty)
1659 add_flags |= SYMFILE_VERBOSE;
1660
7a292a7a 1661 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1662 while (*argv != NULL)
1663 {
78a4a9b9
AC
1664 if (strcmp (*argv, "-readnow") == 0)
1665 flags |= OBJF_READNOW;
1666 else if (**argv == '-')
8a3fe4f8 1667 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1668 else
1669 {
ecf45d2c 1670 symbol_file_add_main_1 (*argv, add_flags, flags);
78a4a9b9 1671 name = *argv;
78a4a9b9 1672 }
cb2f3a29 1673
c906108c
SS
1674 argv++;
1675 }
1676
1677 if (name == NULL)
cb2f3a29
MK
1678 error (_("no symbol file name was specified"));
1679
c906108c
SS
1680 do_cleanups (cleanups);
1681 }
1682}
1683
1684/* Set the initial language.
1685
cb2f3a29
MK
1686 FIXME: A better solution would be to record the language in the
1687 psymtab when reading partial symbols, and then use it (if known) to
1688 set the language. This would be a win for formats that encode the
1689 language in an easily discoverable place, such as DWARF. For
1690 stabs, we can jump through hoops looking for specially named
1691 symbols or try to intuit the language from the specific type of
1692 stabs we find, but we can't do that until later when we read in
1693 full symbols. */
c906108c 1694
8b60591b 1695void
fba45db2 1696set_initial_language (void)
c906108c 1697{
9e6c82ad 1698 enum language lang = main_language ();
c906108c 1699
9e6c82ad 1700 if (lang == language_unknown)
01f8c46d 1701 {
bf6d8a91 1702 char *name = main_name ();
d12307c1 1703 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1704
bf6d8a91
TT
1705 if (sym != NULL)
1706 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1707 }
cb2f3a29 1708
ccefe4c4
TT
1709 if (lang == language_unknown)
1710 {
1711 /* Make C the default language */
1712 lang = language_c;
c906108c 1713 }
ccefe4c4
TT
1714
1715 set_language (lang);
1716 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1717}
1718
cb2f3a29
MK
1719/* Open the file specified by NAME and hand it off to BFD for
1720 preliminary analysis. Return a newly initialized bfd *, which
1721 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1722 absolute). In case of trouble, error() is called. */
c906108c
SS
1723
1724bfd *
97a41605 1725symfile_bfd_open (const char *name)
c906108c
SS
1726{
1727 bfd *sym_bfd;
97a41605
GB
1728 int desc = -1;
1729 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1730
97a41605 1731 if (!is_target_filename (name))
f1838a98 1732 {
97a41605 1733 char *expanded_name, *absolute_name;
f1838a98 1734
97a41605 1735 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1736
97a41605
GB
1737 /* Look down path for it, allocate 2nd new malloc'd copy. */
1738 desc = openp (getenv ("PATH"),
1739 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1740 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1741#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1742 if (desc < 0)
1743 {
0ae1c716 1744 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1745
97a41605
GB
1746 strcat (strcpy (exename, expanded_name), ".exe");
1747 desc = openp (getenv ("PATH"),
1748 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1749 exename, O_RDONLY | O_BINARY, &absolute_name);
1750 }
c906108c 1751#endif
97a41605
GB
1752 if (desc < 0)
1753 {
1754 make_cleanup (xfree, expanded_name);
1755 perror_with_name (expanded_name);
1756 }
cb2f3a29 1757
97a41605
GB
1758 xfree (expanded_name);
1759 make_cleanup (xfree, absolute_name);
1760 name = absolute_name;
1761 }
c906108c 1762
1c00ec6b 1763 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1764 if (!sym_bfd)
faab9922
JK
1765 error (_("`%s': can't open to read symbols: %s."), name,
1766 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1767
1768 if (!gdb_bfd_has_target_filename (sym_bfd))
1769 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1770
1771 if (!bfd_check_format (sym_bfd, bfd_object))
1772 {
f9a062ff 1773 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1774 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1775 bfd_errmsg (bfd_get_error ()));
1776 }
cb2f3a29 1777
faab9922
JK
1778 do_cleanups (back_to);
1779
cb2f3a29 1780 return sym_bfd;
c906108c
SS
1781}
1782
cb2f3a29
MK
1783/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1784 the section was not found. */
1785
0e931cf0
JB
1786int
1787get_section_index (struct objfile *objfile, char *section_name)
1788{
1789 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1790
0e931cf0
JB
1791 if (sect)
1792 return sect->index;
1793 else
1794 return -1;
1795}
1796
c256e171
DE
1797/* Link SF into the global symtab_fns list.
1798 FLAVOUR is the file format that SF handles.
1799 Called on startup by the _initialize routine in each object file format
1800 reader, to register information about each format the reader is prepared
1801 to handle. */
c906108c
SS
1802
1803void
c256e171 1804add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1805{
c256e171
DE
1806 registered_sym_fns fns = { flavour, sf };
1807
1808 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1809}
1810
cb2f3a29
MK
1811/* Initialize OBJFILE to read symbols from its associated BFD. It
1812 either returns or calls error(). The result is an initialized
1813 struct sym_fns in the objfile structure, that contains cached
1814 information about the symbol file. */
c906108c 1815
00b5771c 1816static const struct sym_fns *
31d99776 1817find_sym_fns (bfd *abfd)
c906108c 1818{
c256e171 1819 registered_sym_fns *rsf;
31d99776 1820 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1821 int i;
c906108c 1822
75245b24
MS
1823 if (our_flavour == bfd_target_srec_flavour
1824 || our_flavour == bfd_target_ihex_flavour
1825 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1826 return NULL; /* No symbols. */
75245b24 1827
c256e171
DE
1828 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1829 if (our_flavour == rsf->sym_flavour)
1830 return rsf->sym_fns;
cb2f3a29 1831
8a3fe4f8 1832 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1833 bfd_get_target (abfd));
c906108c
SS
1834}
1835\f
cb2f3a29 1836
c906108c
SS
1837/* This function runs the load command of our current target. */
1838
1839static void
fba45db2 1840load_command (char *arg, int from_tty)
c906108c 1841{
5b3fca71
TT
1842 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1843
e5cc9f32
JB
1844 dont_repeat ();
1845
4487aabf
PA
1846 /* The user might be reloading because the binary has changed. Take
1847 this opportunity to check. */
1848 reopen_exec_file ();
1849 reread_symbols ();
1850
c906108c 1851 if (arg == NULL)
1986bccd
AS
1852 {
1853 char *parg;
1854 int count = 0;
1855
1856 parg = arg = get_exec_file (1);
1857
1858 /* Count how many \ " ' tab space there are in the name. */
1859 while ((parg = strpbrk (parg, "\\\"'\t ")))
1860 {
1861 parg++;
1862 count++;
1863 }
1864
1865 if (count)
1866 {
1867 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1868 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1869 char *ptemp = temp;
1870 char *prev;
1871
1872 make_cleanup (xfree, temp);
1873
1874 prev = parg = arg;
1875 while ((parg = strpbrk (parg, "\\\"'\t ")))
1876 {
1877 strncpy (ptemp, prev, parg - prev);
1878 ptemp += parg - prev;
1879 prev = parg++;
1880 *ptemp++ = '\\';
1881 }
1882 strcpy (ptemp, prev);
1883
1884 arg = temp;
1885 }
1886 }
1887
c906108c 1888 target_load (arg, from_tty);
2889e661
JB
1889
1890 /* After re-loading the executable, we don't really know which
1891 overlays are mapped any more. */
1892 overlay_cache_invalid = 1;
5b3fca71
TT
1893
1894 do_cleanups (cleanup);
c906108c
SS
1895}
1896
1897/* This version of "load" should be usable for any target. Currently
1898 it is just used for remote targets, not inftarg.c or core files,
1899 on the theory that only in that case is it useful.
1900
1901 Avoiding xmodem and the like seems like a win (a) because we don't have
1902 to worry about finding it, and (b) On VMS, fork() is very slow and so
1903 we don't want to run a subprocess. On the other hand, I'm not sure how
1904 performance compares. */
917317f4 1905
917317f4
JM
1906static int validate_download = 0;
1907
e4f9b4d5
MS
1908/* Callback service function for generic_load (bfd_map_over_sections). */
1909
1910static void
1911add_section_size_callback (bfd *abfd, asection *asec, void *data)
1912{
19ba03f4 1913 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1914
2c500098 1915 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1916}
1917
1918/* Opaque data for load_section_callback. */
1919struct load_section_data {
f698ca8e 1920 CORE_ADDR load_offset;
a76d924d
DJ
1921 struct load_progress_data *progress_data;
1922 VEC(memory_write_request_s) *requests;
1923};
1924
1925/* Opaque data for load_progress. */
1926struct load_progress_data {
1927 /* Cumulative data. */
e4f9b4d5
MS
1928 unsigned long write_count;
1929 unsigned long data_count;
1930 bfd_size_type total_size;
a76d924d
DJ
1931};
1932
1933/* Opaque data for load_progress for a single section. */
1934struct load_progress_section_data {
1935 struct load_progress_data *cumulative;
cf7a04e8 1936
a76d924d 1937 /* Per-section data. */
cf7a04e8
DJ
1938 const char *section_name;
1939 ULONGEST section_sent;
1940 ULONGEST section_size;
1941 CORE_ADDR lma;
1942 gdb_byte *buffer;
e4f9b4d5
MS
1943};
1944
a76d924d 1945/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1946
1947static void
1948load_progress (ULONGEST bytes, void *untyped_arg)
1949{
19ba03f4
SM
1950 struct load_progress_section_data *args
1951 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1952 struct load_progress_data *totals;
1953
1954 if (args == NULL)
1955 /* Writing padding data. No easy way to get at the cumulative
1956 stats, so just ignore this. */
1957 return;
1958
1959 totals = args->cumulative;
1960
1961 if (bytes == 0 && args->section_sent == 0)
1962 {
1963 /* The write is just starting. Let the user know we've started
1964 this section. */
112e8700
SM
1965 current_uiout->message ("Loading section %s, size %s lma %s\n",
1966 args->section_name,
1967 hex_string (args->section_size),
1968 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1969 return;
1970 }
cf7a04e8
DJ
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
224c3ddb 1981 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1982 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1983
1984 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1985 error (_("Download verify read failed at %s"),
f5656ead 1986 paddress (target_gdbarch (), args->lma));
cf7a04e8 1987 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1988 error (_("Download verify compare failed at %s"),
f5656ead 1989 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1990 do_cleanups (verify_cleanups);
1991 }
a76d924d 1992 totals->data_count += bytes;
cf7a04e8
DJ
1993 args->lma += bytes;
1994 args->buffer += bytes;
a76d924d 1995 totals->write_count += 1;
cf7a04e8 1996 args->section_sent += bytes;
522002f9 1997 if (check_quit_flag ()
cf7a04e8
DJ
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
a76d924d
DJ
2007 totals->data_count,
2008 totals->total_size);
cf7a04e8
DJ
2009}
2010
e4f9b4d5
MS
2011/* Callback service function for generic_load (bfd_map_over_sections). */
2012
2013static void
2014load_section_callback (bfd *abfd, asection *asec, void *data)
2015{
a76d924d 2016 struct memory_write_request *new_request;
19ba03f4 2017 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2018 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2019 bfd_size_type size = bfd_get_section_size (asec);
2020 gdb_byte *buffer;
cf7a04e8 2021 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2022
cf7a04e8
DJ
2023 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 return;
e4f9b4d5 2025
cf7a04e8
DJ
2026 if (size == 0)
2027 return;
e4f9b4d5 2028
a76d924d
DJ
2029 new_request = VEC_safe_push (memory_write_request_s,
2030 args->requests, NULL);
2031 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2032 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2033 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2034 new_request->end = new_request->begin + size; /* FIXME Should size
2035 be in instead? */
224c3ddb 2036 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2037 new_request->baton = section_data;
cf7a04e8 2038
a76d924d 2039 buffer = new_request->data;
cf7a04e8 2040
a76d924d
DJ
2041 section_data->cumulative = args->progress_data;
2042 section_data->section_name = sect_name;
2043 section_data->section_size = size;
2044 section_data->lma = new_request->begin;
2045 section_data->buffer = buffer;
cf7a04e8
DJ
2046
2047 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2048}
2049
2050/* Clean up an entire memory request vector, including load
2051 data and progress records. */
cf7a04e8 2052
a76d924d
DJ
2053static void
2054clear_memory_write_data (void *arg)
2055{
19ba03f4 2056 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2057 VEC(memory_write_request_s) *vec = *vec_p;
2058 int i;
2059 struct memory_write_request *mr;
cf7a04e8 2060
a76d924d
DJ
2061 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2062 {
2063 xfree (mr->data);
2064 xfree (mr->baton);
2065 }
2066 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2067}
2068
dcb07cfa
PA
2069static void print_transfer_performance (struct ui_file *stream,
2070 unsigned long data_count,
2071 unsigned long write_count,
2072 std::chrono::steady_clock::duration d);
2073
c906108c 2074void
9cbe5fff 2075generic_load (const char *args, int from_tty)
c906108c 2076{
c906108c 2077 bfd *loadfile_bfd;
917317f4 2078 char *filename;
1986bccd 2079 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2080 struct load_section_data cbdata;
a76d924d 2081 struct load_progress_data total_progress;
79a45e25 2082 struct ui_out *uiout = current_uiout;
a76d924d 2083
e4f9b4d5 2084 CORE_ADDR entry;
1986bccd 2085 char **argv;
e4f9b4d5 2086
a76d924d
DJ
2087 memset (&cbdata, 0, sizeof (cbdata));
2088 memset (&total_progress, 0, sizeof (total_progress));
2089 cbdata.progress_data = &total_progress;
2090
2091 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2092
d1a41061
PP
2093 if (args == NULL)
2094 error_no_arg (_("file to load"));
1986bccd 2095
d1a41061 2096 argv = gdb_buildargv (args);
1986bccd
AS
2097 make_cleanup_freeargv (argv);
2098
2099 filename = tilde_expand (argv[0]);
2100 make_cleanup (xfree, filename);
2101
2102 if (argv[1] != NULL)
917317f4 2103 {
f698ca8e 2104 const char *endptr;
ba5f2f8a 2105
f698ca8e 2106 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2107
2108 /* If the last word was not a valid number then
2109 treat it as a file name with spaces in. */
2110 if (argv[1] == endptr)
2111 error (_("Invalid download offset:%s."), argv[1]);
2112
2113 if (argv[2] != NULL)
2114 error (_("Too many parameters."));
917317f4 2115 }
c906108c 2116
c378eb4e 2117 /* Open the file for loading. */
1c00ec6b 2118 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2119 if (loadfile_bfd == NULL)
2120 {
2121 perror_with_name (filename);
2122 return;
2123 }
917317f4 2124
f9a062ff 2125 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2126
c5aa993b 2127 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2128 {
8a3fe4f8 2129 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2130 bfd_errmsg (bfd_get_error ()));
2131 }
c5aa993b 2132
5417f6dc 2133 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2134 (void *) &total_progress.total_size);
2135
2136 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2137
dcb07cfa
PA
2138 using namespace std::chrono;
2139
2140 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2141
a76d924d
DJ
2142 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2143 load_progress) != 0)
2144 error (_("Load failed"));
c906108c 2145
dcb07cfa 2146 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2147
e4f9b4d5 2148 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2149 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2150 uiout->text ("Start address ");
2151 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2152 uiout->text (", load size ");
2153 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2154 uiout->text ("\n");
fb14de7b 2155 regcache_write_pc (get_current_regcache (), entry);
c906108c 2156
38963c97
DJ
2157 /* Reset breakpoints, now that we have changed the load image. For
2158 instance, breakpoints may have been set (or reset, by
2159 post_create_inferior) while connected to the target but before we
2160 loaded the program. In that case, the prologue analyzer could
2161 have read instructions from the target to find the right
2162 breakpoint locations. Loading has changed the contents of that
2163 memory. */
2164
2165 breakpoint_re_set ();
2166
a76d924d
DJ
2167 print_transfer_performance (gdb_stdout, total_progress.data_count,
2168 total_progress.write_count,
dcb07cfa 2169 end_time - start_time);
c906108c
SS
2170
2171 do_cleanups (old_cleanups);
2172}
2173
dcb07cfa
PA
2174/* Report on STREAM the performance of a memory transfer operation,
2175 such as 'load'. DATA_COUNT is the number of bytes transferred.
2176 WRITE_COUNT is the number of separate write operations, or 0, if
2177 that information is not available. TIME is how long the operation
2178 lasted. */
c906108c 2179
dcb07cfa 2180static void
d9fcf2fb 2181print_transfer_performance (struct ui_file *stream,
917317f4
JM
2182 unsigned long data_count,
2183 unsigned long write_count,
dcb07cfa 2184 std::chrono::steady_clock::duration time)
917317f4 2185{
dcb07cfa 2186 using namespace std::chrono;
79a45e25 2187 struct ui_out *uiout = current_uiout;
2b71414d 2188
dcb07cfa 2189 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2190
112e8700 2191 uiout->text ("Transfer rate: ");
dcb07cfa 2192 if (ms.count () > 0)
8b93c638 2193 {
dcb07cfa 2194 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2195
112e8700 2196 if (uiout->is_mi_like_p ())
9f43d28c 2197 {
112e8700
SM
2198 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2199 uiout->text (" bits/sec");
9f43d28c
DJ
2200 }
2201 else if (rate < 1024)
2202 {
112e8700
SM
2203 uiout->field_fmt ("transfer-rate", "%lu", rate);
2204 uiout->text (" bytes/sec");
9f43d28c
DJ
2205 }
2206 else
2207 {
112e8700
SM
2208 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2209 uiout->text (" KB/sec");
9f43d28c 2210 }
8b93c638
JM
2211 }
2212 else
2213 {
112e8700
SM
2214 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2215 uiout->text (" bits in <1 sec");
8b93c638
JM
2216 }
2217 if (write_count > 0)
2218 {
112e8700
SM
2219 uiout->text (", ");
2220 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2221 uiout->text (" bytes/write");
8b93c638 2222 }
112e8700 2223 uiout->text (".\n");
c906108c
SS
2224}
2225
2226/* This function allows the addition of incrementally linked object files.
2227 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2228/* Note: ezannoni 2000-04-13 This function/command used to have a
2229 special case syntax for the rombug target (Rombug is the boot
2230 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2231 rombug case, the user doesn't need to supply a text address,
2232 instead a call to target_link() (in target.c) would supply the
c378eb4e 2233 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2234
c906108c 2235static void
fba45db2 2236add_symbol_file_command (char *args, int from_tty)
c906108c 2237{
5af949e3 2238 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2239 char *filename = NULL;
c906108c 2240 char *arg;
db162d44 2241 int section_index = 0;
2acceee2
JM
2242 int argcnt = 0;
2243 int sec_num = 0;
2244 int i;
db162d44
EZ
2245 int expecting_sec_name = 0;
2246 int expecting_sec_addr = 0;
5b96932b 2247 char **argv;
76ad5e1e 2248 struct objfile *objf;
b15cc25c
PA
2249 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2250 symfile_add_flags add_flags = 0;
2251
2252 if (from_tty)
2253 add_flags |= SYMFILE_VERBOSE;
db162d44 2254
a39a16c4 2255 struct sect_opt
2acceee2 2256 {
2acceee2
JM
2257 char *name;
2258 char *value;
a39a16c4 2259 };
db162d44 2260
a39a16c4
MM
2261 struct section_addr_info *section_addrs;
2262 struct sect_opt *sect_opts = NULL;
2263 size_t num_sect_opts = 0;
3017564a 2264 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2265
a39a16c4 2266 num_sect_opts = 16;
8d749320 2267 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2268
c906108c
SS
2269 dont_repeat ();
2270
2271 if (args == NULL)
8a3fe4f8 2272 error (_("add-symbol-file takes a file name and an address"));
c906108c 2273
d1a41061 2274 argv = gdb_buildargv (args);
5b96932b 2275 make_cleanup_freeargv (argv);
db162d44 2276
5b96932b
AS
2277 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2278 {
c378eb4e 2279 /* Process the argument. */
db162d44 2280 if (argcnt == 0)
c906108c 2281 {
c378eb4e 2282 /* The first argument is the file name. */
db162d44 2283 filename = tilde_expand (arg);
3017564a 2284 make_cleanup (xfree, filename);
c906108c 2285 }
41dc8db8
MB
2286 else if (argcnt == 1)
2287 {
2288 /* The second argument is always the text address at which
2289 to load the program. */
2290 sect_opts[section_index].name = ".text";
2291 sect_opts[section_index].value = arg;
2292 if (++section_index >= num_sect_opts)
2293 {
2294 num_sect_opts *= 2;
2295 sect_opts = ((struct sect_opt *)
2296 xrealloc (sect_opts,
2297 num_sect_opts
2298 * sizeof (struct sect_opt)));
2299 }
2300 }
db162d44 2301 else
41dc8db8
MB
2302 {
2303 /* It's an option (starting with '-') or it's an argument
2304 to an option. */
41dc8db8
MB
2305 if (expecting_sec_name)
2306 {
2307 sect_opts[section_index].name = arg;
2308 expecting_sec_name = 0;
2309 }
2310 else if (expecting_sec_addr)
2311 {
2312 sect_opts[section_index].value = arg;
2313 expecting_sec_addr = 0;
2314 if (++section_index >= num_sect_opts)
2315 {
2316 num_sect_opts *= 2;
2317 sect_opts = ((struct sect_opt *)
2318 xrealloc (sect_opts,
2319 num_sect_opts
2320 * sizeof (struct sect_opt)));
2321 }
2322 }
2323 else if (strcmp (arg, "-readnow") == 0)
2324 flags |= OBJF_READNOW;
2325 else if (strcmp (arg, "-s") == 0)
2326 {
2327 expecting_sec_name = 1;
2328 expecting_sec_addr = 1;
2329 }
2330 else
2331 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2332 " [-readnow] [-s <secname> <addr>]*"));
2333 }
c906108c 2334 }
c906108c 2335
927890d0
JB
2336 /* This command takes at least two arguments. The first one is a
2337 filename, and the second is the address where this file has been
2338 loaded. Abort now if this address hasn't been provided by the
2339 user. */
2340 if (section_index < 1)
2341 error (_("The address where %s has been loaded is missing"), filename);
2342
c378eb4e 2343 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2344 a sect_addr_info structure to be passed around to other
2345 functions. We have to split this up into separate print
bb599908 2346 statements because hex_string returns a local static
c378eb4e 2347 string. */
5417f6dc 2348
a3f17187 2349 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2350 section_addrs = alloc_section_addr_info (section_index);
2351 make_cleanup (xfree, section_addrs);
db162d44 2352 for (i = 0; i < section_index; i++)
c906108c 2353 {
db162d44
EZ
2354 CORE_ADDR addr;
2355 char *val = sect_opts[i].value;
2356 char *sec = sect_opts[i].name;
5417f6dc 2357
ae822768 2358 addr = parse_and_eval_address (val);
db162d44 2359
db162d44 2360 /* Here we store the section offsets in the order they were
c378eb4e 2361 entered on the command line. */
a39a16c4
MM
2362 section_addrs->other[sec_num].name = sec;
2363 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2364 printf_unfiltered ("\t%s_addr = %s\n", sec,
2365 paddress (gdbarch, addr));
db162d44
EZ
2366 sec_num++;
2367
5417f6dc 2368 /* The object's sections are initialized when a
db162d44 2369 call is made to build_objfile_section_table (objfile).
5417f6dc 2370 This happens in reread_symbols.
db162d44
EZ
2371 At this point, we don't know what file type this is,
2372 so we can't determine what section names are valid. */
2acceee2 2373 }
d76488d8 2374 section_addrs->num_sections = sec_num;
db162d44 2375
2acceee2 2376 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2377 error (_("Not confirmed."));
c906108c 2378
b15cc25c 2379 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2380
2381 add_target_sections_of_objfile (objf);
c906108c
SS
2382
2383 /* Getting new symbols may change our opinion about what is
2384 frameless. */
2385 reinit_frame_cache ();
db162d44 2386 do_cleanups (my_cleanups);
c906108c
SS
2387}
2388\f
70992597 2389
63644780
NB
2390/* This function removes a symbol file that was added via add-symbol-file. */
2391
2392static void
2393remove_symbol_file_command (char *args, int from_tty)
2394{
2395 char **argv;
2396 struct objfile *objf = NULL;
2397 struct cleanup *my_cleanups;
2398 struct program_space *pspace = current_program_space;
63644780
NB
2399
2400 dont_repeat ();
2401
2402 if (args == NULL)
2403 error (_("remove-symbol-file: no symbol file provided"));
2404
2405 my_cleanups = make_cleanup (null_cleanup, NULL);
2406
2407 argv = gdb_buildargv (args);
2408
2409 if (strcmp (argv[0], "-a") == 0)
2410 {
2411 /* Interpret the next argument as an address. */
2412 CORE_ADDR addr;
2413
2414 if (argv[1] == NULL)
2415 error (_("Missing address argument"));
2416
2417 if (argv[2] != NULL)
2418 error (_("Junk after %s"), argv[1]);
2419
2420 addr = parse_and_eval_address (argv[1]);
2421
2422 ALL_OBJFILES (objf)
2423 {
d03de421
PA
2424 if ((objf->flags & OBJF_USERLOADED) != 0
2425 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2426 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2427 break;
2428 }
2429 }
2430 else if (argv[0] != NULL)
2431 {
2432 /* Interpret the current argument as a file name. */
2433 char *filename;
2434
2435 if (argv[1] != NULL)
2436 error (_("Junk after %s"), argv[0]);
2437
2438 filename = tilde_expand (argv[0]);
2439 make_cleanup (xfree, filename);
2440
2441 ALL_OBJFILES (objf)
2442 {
d03de421
PA
2443 if ((objf->flags & OBJF_USERLOADED) != 0
2444 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2445 && objf->pspace == pspace
2446 && filename_cmp (filename, objfile_name (objf)) == 0)
2447 break;
2448 }
2449 }
2450
2451 if (objf == NULL)
2452 error (_("No symbol file found"));
2453
2454 if (from_tty
2455 && !query (_("Remove symbol table from file \"%s\"? "),
2456 objfile_name (objf)))
2457 error (_("Not confirmed."));
2458
2459 free_objfile (objf);
2460 clear_symtab_users (0);
2461
2462 do_cleanups (my_cleanups);
2463}
2464
4ac39b97
JK
2465typedef struct objfile *objfilep;
2466
2467DEF_VEC_P (objfilep);
2468
c906108c 2469/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2470
c906108c 2471void
fba45db2 2472reread_symbols (void)
c906108c
SS
2473{
2474 struct objfile *objfile;
2475 long new_modtime;
c906108c
SS
2476 struct stat new_statbuf;
2477 int res;
4ac39b97
JK
2478 VEC (objfilep) *new_objfiles = NULL;
2479 struct cleanup *all_cleanups;
2480
2481 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2482
2483 /* With the addition of shared libraries, this should be modified,
2484 the load time should be saved in the partial symbol tables, since
2485 different tables may come from different source files. FIXME.
2486 This routine should then walk down each partial symbol table
c378eb4e 2487 and see if the symbol table that it originates from has been changed. */
c906108c 2488
c5aa993b
JM
2489 for (objfile = object_files; objfile; objfile = objfile->next)
2490 {
9cce227f
TG
2491 if (objfile->obfd == NULL)
2492 continue;
2493
2494 /* Separate debug objfiles are handled in the main objfile. */
2495 if (objfile->separate_debug_objfile_backlink)
2496 continue;
2497
02aeec7b
JB
2498 /* If this object is from an archive (what you usually create with
2499 `ar', often called a `static library' on most systems, though
2500 a `shared library' on AIX is also an archive), then you should
2501 stat on the archive name, not member name. */
9cce227f
TG
2502 if (objfile->obfd->my_archive)
2503 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2504 else
4262abfb 2505 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2506 if (res != 0)
2507 {
c378eb4e 2508 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2509 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2510 objfile_name (objfile));
9cce227f
TG
2511 continue;
2512 }
2513 new_modtime = new_statbuf.st_mtime;
2514 if (new_modtime != objfile->mtime)
2515 {
2516 struct cleanup *old_cleanups;
2517 struct section_offsets *offsets;
2518 int num_offsets;
24ba069a 2519 char *original_name;
9cce227f
TG
2520
2521 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2522 objfile_name (objfile));
9cce227f
TG
2523
2524 /* There are various functions like symbol_file_add,
2525 symfile_bfd_open, syms_from_objfile, etc., which might
2526 appear to do what we want. But they have various other
2527 effects which we *don't* want. So we just do stuff
2528 ourselves. We don't worry about mapped files (for one thing,
2529 any mapped file will be out of date). */
2530
2531 /* If we get an error, blow away this objfile (not sure if
2532 that is the correct response for things like shared
2533 libraries). */
2534 old_cleanups = make_cleanup_free_objfile (objfile);
2535 /* We need to do this whenever any symbols go away. */
2536 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2537
0ba1096a
KT
2538 if (exec_bfd != NULL
2539 && filename_cmp (bfd_get_filename (objfile->obfd),
2540 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2541 {
2542 /* Reload EXEC_BFD without asking anything. */
2543
2544 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2545 }
2546
f6eeced0
JK
2547 /* Keep the calls order approx. the same as in free_objfile. */
2548
2549 /* Free the separate debug objfiles. It will be
2550 automatically recreated by sym_read. */
2551 free_objfile_separate_debug (objfile);
2552
2553 /* Remove any references to this objfile in the global
2554 value lists. */
2555 preserve_values (objfile);
2556
2557 /* Nuke all the state that we will re-read. Much of the following
2558 code which sets things to NULL really is necessary to tell
2559 other parts of GDB that there is nothing currently there.
2560
2561 Try to keep the freeing order compatible with free_objfile. */
2562
2563 if (objfile->sf != NULL)
2564 {
2565 (*objfile->sf->sym_finish) (objfile);
2566 }
2567
2568 clear_objfile_data (objfile);
2569
e1507e95 2570 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2571 {
2572 struct bfd *obfd = objfile->obfd;
d3846e71 2573 char *obfd_filename;
a4453b7e
TT
2574
2575 obfd_filename = bfd_get_filename (objfile->obfd);
2576 /* Open the new BFD before freeing the old one, so that
2577 the filename remains live. */
2938e6cf 2578 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2579 if (objfile->obfd == NULL)
2580 {
2581 /* We have to make a cleanup and error here, rather
2582 than erroring later, because once we unref OBFD,
2583 OBFD_FILENAME will be freed. */
2584 make_cleanup_bfd_unref (obfd);
2585 error (_("Can't open %s to read symbols."), obfd_filename);
2586 }
a4453b7e
TT
2587 gdb_bfd_unref (obfd);
2588 }
2589
24ba069a
JK
2590 original_name = xstrdup (objfile->original_name);
2591 make_cleanup (xfree, original_name);
2592
9cce227f
TG
2593 /* bfd_openr sets cacheable to true, which is what we want. */
2594 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2595 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2596 bfd_errmsg (bfd_get_error ()));
2597
2598 /* Save the offsets, we will nuke them with the rest of the
2599 objfile_obstack. */
2600 num_offsets = objfile->num_sections;
2601 offsets = ((struct section_offsets *)
2602 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2603 memcpy (offsets, objfile->section_offsets,
2604 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2605
9cce227f
TG
2606 /* FIXME: Do we have to free a whole linked list, or is this
2607 enough? */
2608 if (objfile->global_psymbols.list)
2609 xfree (objfile->global_psymbols.list);
2610 memset (&objfile->global_psymbols, 0,
2611 sizeof (objfile->global_psymbols));
2612 if (objfile->static_psymbols.list)
2613 xfree (objfile->static_psymbols.list);
2614 memset (&objfile->static_psymbols, 0,
2615 sizeof (objfile->static_psymbols));
2616
c378eb4e 2617 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2618 psymbol_bcache_free (objfile->psymbol_cache);
2619 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2620 obstack_free (&objfile->objfile_obstack, 0);
2621 objfile->sections = NULL;
43f3e411 2622 objfile->compunit_symtabs = NULL;
9cce227f
TG
2623 objfile->psymtabs = NULL;
2624 objfile->psymtabs_addrmap = NULL;
2625 objfile->free_psymtabs = NULL;
34eaf542 2626 objfile->template_symbols = NULL;
9cce227f 2627
9cce227f
TG
2628 /* obstack_init also initializes the obstack so it is
2629 empty. We could use obstack_specify_allocation but
d82ea6a8 2630 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2631 obstack_init (&objfile->objfile_obstack);
779bd270 2632
846060df
JB
2633 /* set_objfile_per_bfd potentially allocates the per-bfd
2634 data on the objfile's obstack (if sharing data across
2635 multiple users is not possible), so it's important to
2636 do it *after* the obstack has been initialized. */
2637 set_objfile_per_bfd (objfile);
2638
224c3ddb
SM
2639 objfile->original_name
2640 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2641 strlen (original_name));
24ba069a 2642
779bd270
DE
2643 /* Reset the sym_fns pointer. The ELF reader can change it
2644 based on whether .gdb_index is present, and we need it to
2645 start over. PR symtab/15885 */
8fb8eb5c 2646 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2647
d82ea6a8 2648 build_objfile_section_table (objfile);
9cce227f
TG
2649 terminate_minimal_symbol_table (objfile);
2650
2651 /* We use the same section offsets as from last time. I'm not
2652 sure whether that is always correct for shared libraries. */
2653 objfile->section_offsets = (struct section_offsets *)
2654 obstack_alloc (&objfile->objfile_obstack,
2655 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2656 memcpy (objfile->section_offsets, offsets,
2657 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2658 objfile->num_sections = num_offsets;
2659
2660 /* What the hell is sym_new_init for, anyway? The concept of
2661 distinguishing between the main file and additional files
2662 in this way seems rather dubious. */
2663 if (objfile == symfile_objfile)
c906108c 2664 {
9cce227f 2665 (*objfile->sf->sym_new_init) (objfile);
c906108c 2666 }
9cce227f
TG
2667
2668 (*objfile->sf->sym_init) (objfile);
2669 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2670
2671 objfile->flags &= ~OBJF_PSYMTABS_READ;
2672 read_symbols (objfile, 0);
b11896a5 2673
9cce227f 2674 if (!objfile_has_symbols (objfile))
c906108c 2675 {
9cce227f
TG
2676 wrap_here ("");
2677 printf_unfiltered (_("(no debugging symbols found)\n"));
2678 wrap_here ("");
c5aa993b 2679 }
9cce227f
TG
2680
2681 /* We're done reading the symbol file; finish off complaints. */
2682 clear_complaints (&symfile_complaints, 0, 1);
2683
2684 /* Getting new symbols may change our opinion about what is
2685 frameless. */
2686
2687 reinit_frame_cache ();
2688
2689 /* Discard cleanups as symbol reading was successful. */
2690 discard_cleanups (old_cleanups);
2691
2692 /* If the mtime has changed between the time we set new_modtime
2693 and now, we *want* this to be out of date, so don't call stat
2694 again now. */
2695 objfile->mtime = new_modtime;
9cce227f 2696 init_entry_point_info (objfile);
4ac39b97
JK
2697
2698 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2699 }
2700 }
c906108c 2701
4ac39b97 2702 if (new_objfiles)
ea53e89f 2703 {
4ac39b97
JK
2704 int ix;
2705
ff3536bc
UW
2706 /* Notify objfiles that we've modified objfile sections. */
2707 objfiles_changed ();
2708
c1e56572 2709 clear_symtab_users (0);
4ac39b97
JK
2710
2711 /* clear_objfile_data for each objfile was called before freeing it and
2712 observer_notify_new_objfile (NULL) has been called by
2713 clear_symtab_users above. Notify the new files now. */
2714 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2715 observer_notify_new_objfile (objfile);
2716
ea53e89f
JB
2717 /* At least one objfile has changed, so we can consider that
2718 the executable we're debugging has changed too. */
781b42b0 2719 observer_notify_executable_changed ();
ea53e89f 2720 }
4ac39b97
JK
2721
2722 do_cleanups (all_cleanups);
c906108c 2723}
c906108c
SS
2724\f
2725
c5aa993b
JM
2726typedef struct
2727{
2728 char *ext;
c906108c 2729 enum language lang;
3fcf0b0d
TT
2730} filename_language;
2731
2732DEF_VEC_O (filename_language);
c906108c 2733
3fcf0b0d 2734static VEC (filename_language) *filename_language_table;
c906108c 2735
56618e20
TT
2736/* See symfile.h. */
2737
2738void
2739add_filename_language (const char *ext, enum language lang)
c906108c 2740{
3fcf0b0d
TT
2741 filename_language entry;
2742
2743 entry.ext = xstrdup (ext);
2744 entry.lang = lang;
c906108c 2745
3fcf0b0d 2746 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2747}
2748
2749static char *ext_args;
920d2a44
AC
2750static void
2751show_ext_args (struct ui_file *file, int from_tty,
2752 struct cmd_list_element *c, const char *value)
2753{
3e43a32a
MS
2754 fprintf_filtered (file,
2755 _("Mapping between filename extension "
2756 "and source language is \"%s\".\n"),
920d2a44
AC
2757 value);
2758}
c906108c
SS
2759
2760static void
26c41df3 2761set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2762{
2763 int i;
2764 char *cp = ext_args;
2765 enum language lang;
3fcf0b0d 2766 filename_language *entry;
c906108c 2767
c378eb4e 2768 /* First arg is filename extension, starting with '.' */
c906108c 2769 if (*cp != '.')
8a3fe4f8 2770 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2771
2772 /* Find end of first arg. */
c5aa993b 2773 while (*cp && !isspace (*cp))
c906108c
SS
2774 cp++;
2775
2776 if (*cp == '\0')
3e43a32a
MS
2777 error (_("'%s': two arguments required -- "
2778 "filename extension and language"),
c906108c
SS
2779 ext_args);
2780
c378eb4e 2781 /* Null-terminate first arg. */
c5aa993b 2782 *cp++ = '\0';
c906108c
SS
2783
2784 /* Find beginning of second arg, which should be a source language. */
529480d0 2785 cp = skip_spaces (cp);
c906108c
SS
2786
2787 if (*cp == '\0')
3e43a32a
MS
2788 error (_("'%s': two arguments required -- "
2789 "filename extension and language"),
c906108c
SS
2790 ext_args);
2791
2792 /* Lookup the language from among those we know. */
2793 lang = language_enum (cp);
2794
2795 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2796 for (i = 0;
2797 VEC_iterate (filename_language, filename_language_table, i, entry);
2798 ++i)
2799 {
2800 if (0 == strcmp (ext_args, entry->ext))
2801 break;
2802 }
c906108c 2803
3fcf0b0d 2804 if (entry == NULL)
c906108c 2805 {
c378eb4e 2806 /* New file extension. */
c906108c
SS
2807 add_filename_language (ext_args, lang);
2808 }
2809 else
2810 {
c378eb4e 2811 /* Redefining a previously known filename extension. */
c906108c
SS
2812
2813 /* if (from_tty) */
2814 /* query ("Really make files of type %s '%s'?", */
2815 /* ext_args, language_str (lang)); */
2816
3fcf0b0d
TT
2817 xfree (entry->ext);
2818 entry->ext = xstrdup (ext_args);
2819 entry->lang = lang;
c906108c
SS
2820 }
2821}
2822
2823static void
fba45db2 2824info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2825{
2826 int i;
3fcf0b0d 2827 filename_language *entry;
c906108c 2828
a3f17187 2829 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2830 printf_filtered ("\n\n");
3fcf0b0d
TT
2831 for (i = 0;
2832 VEC_iterate (filename_language, filename_language_table, i, entry);
2833 ++i)
2834 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2835}
2836
c906108c 2837enum language
dd786858 2838deduce_language_from_filename (const char *filename)
c906108c
SS
2839{
2840 int i;
e6a959d6 2841 const char *cp;
c906108c
SS
2842
2843 if (filename != NULL)
2844 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2845 {
2846 filename_language *entry;
2847
2848 for (i = 0;
2849 VEC_iterate (filename_language, filename_language_table, i, entry);
2850 ++i)
2851 if (strcmp (cp, entry->ext) == 0)
2852 return entry->lang;
2853 }
c906108c
SS
2854
2855 return language_unknown;
2856}
2857\f
43f3e411
DE
2858/* Allocate and initialize a new symbol table.
2859 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2860
2861struct symtab *
43f3e411 2862allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2863{
43f3e411
DE
2864 struct objfile *objfile = cust->objfile;
2865 struct symtab *symtab
2866 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2867
19ba03f4
SM
2868 symtab->filename
2869 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2870 objfile->per_bfd->filename_cache);
c5aa993b
JM
2871 symtab->fullname = NULL;
2872 symtab->language = deduce_language_from_filename (filename);
c906108c 2873
db0fec5c
DE
2874 /* This can be very verbose with lots of headers.
2875 Only print at higher debug levels. */
2876 if (symtab_create_debug >= 2)
45cfd468
DE
2877 {
2878 /* Be a bit clever with debugging messages, and don't print objfile
2879 every time, only when it changes. */
2880 static char *last_objfile_name = NULL;
2881
2882 if (last_objfile_name == NULL
4262abfb 2883 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2884 {
2885 xfree (last_objfile_name);
4262abfb 2886 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2887 fprintf_unfiltered (gdb_stdlog,
2888 "Creating one or more symtabs for objfile %s ...\n",
2889 last_objfile_name);
2890 }
2891 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2892 "Created symtab %s for module %s.\n",
2893 host_address_to_string (symtab), filename);
45cfd468
DE
2894 }
2895
43f3e411
DE
2896 /* Add it to CUST's list of symtabs. */
2897 if (cust->filetabs == NULL)
2898 {
2899 cust->filetabs = symtab;
2900 cust->last_filetab = symtab;
2901 }
2902 else
2903 {
2904 cust->last_filetab->next = symtab;
2905 cust->last_filetab = symtab;
2906 }
2907
2908 /* Backlink to the containing compunit symtab. */
2909 symtab->compunit_symtab = cust;
2910
2911 return symtab;
2912}
2913
2914/* Allocate and initialize a new compunit.
2915 NAME is the name of the main source file, if there is one, or some
2916 descriptive text if there are no source files. */
2917
2918struct compunit_symtab *
2919allocate_compunit_symtab (struct objfile *objfile, const char *name)
2920{
2921 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2922 struct compunit_symtab);
2923 const char *saved_name;
2924
2925 cu->objfile = objfile;
2926
2927 /* The name we record here is only for display/debugging purposes.
2928 Just save the basename to avoid path issues (too long for display,
2929 relative vs absolute, etc.). */
2930 saved_name = lbasename (name);
224c3ddb
SM
2931 cu->name
2932 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2933 strlen (saved_name));
43f3e411
DE
2934
2935 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2936
2937 if (symtab_create_debug)
2938 {
2939 fprintf_unfiltered (gdb_stdlog,
2940 "Created compunit symtab %s for %s.\n",
2941 host_address_to_string (cu),
2942 cu->name);
2943 }
2944
2945 return cu;
2946}
2947
2948/* Hook CU to the objfile it comes from. */
2949
2950void
2951add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2952{
2953 cu->next = cu->objfile->compunit_symtabs;
2954 cu->objfile->compunit_symtabs = cu;
c906108c 2955}
c906108c 2956\f
c5aa993b 2957
b15cc25c
PA
2958/* Reset all data structures in gdb which may contain references to
2959 symbol table data. */
c906108c
SS
2960
2961void
b15cc25c 2962clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2963{
2964 /* Someday, we should do better than this, by only blowing away
2965 the things that really need to be blown. */
c0501be5
DJ
2966
2967 /* Clear the "current" symtab first, because it is no longer valid.
2968 breakpoint_re_set may try to access the current symtab. */
2969 clear_current_source_symtab_and_line ();
2970
c906108c 2971 clear_displays ();
1bfeeb0f 2972 clear_last_displayed_sal ();
c906108c 2973 clear_pc_function_cache ();
06d3b283 2974 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2975
2976 /* Clear globals which might have pointed into a removed objfile.
2977 FIXME: It's not clear which of these are supposed to persist
2978 between expressions and which ought to be reset each time. */
2979 expression_context_block = NULL;
2980 innermost_block = NULL;
8756216b
DP
2981
2982 /* Varobj may refer to old symbols, perform a cleanup. */
2983 varobj_invalidate ();
2984
e700d1b2
JB
2985 /* Now that the various caches have been cleared, we can re_set
2986 our breakpoints without risking it using stale data. */
2987 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2988 breakpoint_re_set ();
c906108c
SS
2989}
2990
74b7792f
AC
2991static void
2992clear_symtab_users_cleanup (void *ignore)
2993{
c1e56572 2994 clear_symtab_users (0);
74b7792f 2995}
c906108c 2996\f
c906108c
SS
2997/* OVERLAYS:
2998 The following code implements an abstraction for debugging overlay sections.
2999
3000 The target model is as follows:
3001 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3002 same VMA, each with its own unique LMA (or load address).
c906108c 3003 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3004 sections, one by one, from the load address into the VMA address.
5417f6dc 3005 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3006 sections should be considered to be mapped from the VMA to the LMA.
3007 This information is used for symbol lookup, and memory read/write.
5417f6dc 3008 For instance, if a section has been mapped then its contents
c5aa993b 3009 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3010
3011 Two levels of debugger support for overlays are available. One is
3012 "manual", in which the debugger relies on the user to tell it which
3013 overlays are currently mapped. This level of support is
3014 implemented entirely in the core debugger, and the information about
3015 whether a section is mapped is kept in the objfile->obj_section table.
3016
3017 The second level of support is "automatic", and is only available if
3018 the target-specific code provides functionality to read the target's
3019 overlay mapping table, and translate its contents for the debugger
3020 (by updating the mapped state information in the obj_section tables).
3021
3022 The interface is as follows:
c5aa993b
JM
3023 User commands:
3024 overlay map <name> -- tell gdb to consider this section mapped
3025 overlay unmap <name> -- tell gdb to consider this section unmapped
3026 overlay list -- list the sections that GDB thinks are mapped
3027 overlay read-target -- get the target's state of what's mapped
3028 overlay off/manual/auto -- set overlay debugging state
3029 Functional interface:
3030 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3031 section, return that section.
5417f6dc 3032 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3033 the pc, either in its VMA or its LMA
714835d5 3034 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3035 section_is_overlay(sect): true if section's VMA != LMA
3036 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3037 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3038 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3039 overlay_mapped_address(...): map an address from section's LMA to VMA
3040 overlay_unmapped_address(...): map an address from section's VMA to LMA
3041 symbol_overlayed_address(...): Return a "current" address for symbol:
3042 either in VMA or LMA depending on whether
c378eb4e 3043 the symbol's section is currently mapped. */
c906108c
SS
3044
3045/* Overlay debugging state: */
3046
d874f1e2 3047enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3048int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3049
c906108c 3050/* Function: section_is_overlay (SECTION)
5417f6dc 3051 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3052 SECTION is loaded at an address different from where it will "run". */
3053
3054int
714835d5 3055section_is_overlay (struct obj_section *section)
c906108c 3056{
714835d5
UW
3057 if (overlay_debugging && section)
3058 {
3059 bfd *abfd = section->objfile->obfd;
3060 asection *bfd_section = section->the_bfd_section;
f888f159 3061
714835d5
UW
3062 if (bfd_section_lma (abfd, bfd_section) != 0
3063 && bfd_section_lma (abfd, bfd_section)
3064 != bfd_section_vma (abfd, bfd_section))
3065 return 1;
3066 }
c906108c
SS
3067
3068 return 0;
3069}
3070
3071/* Function: overlay_invalidate_all (void)
3072 Invalidate the mapped state of all overlay sections (mark it as stale). */
3073
3074static void
fba45db2 3075overlay_invalidate_all (void)
c906108c 3076{
c5aa993b 3077 struct objfile *objfile;
c906108c
SS
3078 struct obj_section *sect;
3079
3080 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3081 if (section_is_overlay (sect))
3082 sect->ovly_mapped = -1;
c906108c
SS
3083}
3084
714835d5 3085/* Function: section_is_mapped (SECTION)
5417f6dc 3086 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3087
3088 Access to the ovly_mapped flag is restricted to this function, so
3089 that we can do automatic update. If the global flag
3090 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3091 overlay_invalidate_all. If the mapped state of the particular
3092 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3093
714835d5
UW
3094int
3095section_is_mapped (struct obj_section *osect)
c906108c 3096{
9216df95
UW
3097 struct gdbarch *gdbarch;
3098
714835d5 3099 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3100 return 0;
3101
c5aa993b 3102 switch (overlay_debugging)
c906108c
SS
3103 {
3104 default:
d874f1e2 3105 case ovly_off:
c5aa993b 3106 return 0; /* overlay debugging off */
d874f1e2 3107 case ovly_auto: /* overlay debugging automatic */
1c772458 3108 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3109 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3110 gdbarch = get_objfile_arch (osect->objfile);
3111 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3112 {
3113 if (overlay_cache_invalid)
3114 {
3115 overlay_invalidate_all ();
3116 overlay_cache_invalid = 0;
3117 }
3118 if (osect->ovly_mapped == -1)
9216df95 3119 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3120 }
3121 /* fall thru to manual case */
d874f1e2 3122 case ovly_on: /* overlay debugging manual */
c906108c
SS
3123 return osect->ovly_mapped == 1;
3124 }
3125}
3126
c906108c
SS
3127/* Function: pc_in_unmapped_range
3128 If PC falls into the lma range of SECTION, return true, else false. */
3129
3130CORE_ADDR
714835d5 3131pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3132{
714835d5
UW
3133 if (section_is_overlay (section))
3134 {
3135 bfd *abfd = section->objfile->obfd;
3136 asection *bfd_section = section->the_bfd_section;
fbd35540 3137
714835d5
UW
3138 /* We assume the LMA is relocated by the same offset as the VMA. */
3139 bfd_vma size = bfd_get_section_size (bfd_section);
3140 CORE_ADDR offset = obj_section_offset (section);
3141
3142 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3143 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3144 return 1;
3145 }
c906108c 3146
c906108c
SS
3147 return 0;
3148}
3149
3150/* Function: pc_in_mapped_range
3151 If PC falls into the vma range of SECTION, return true, else false. */
3152
3153CORE_ADDR
714835d5 3154pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3155{
714835d5
UW
3156 if (section_is_overlay (section))
3157 {
3158 if (obj_section_addr (section) <= pc
3159 && pc < obj_section_endaddr (section))
3160 return 1;
3161 }
c906108c 3162
c906108c
SS
3163 return 0;
3164}
3165
9ec8e6a0
JB
3166/* Return true if the mapped ranges of sections A and B overlap, false
3167 otherwise. */
3b7bacac 3168
b9362cc7 3169static int
714835d5 3170sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3171{
714835d5
UW
3172 CORE_ADDR a_start = obj_section_addr (a);
3173 CORE_ADDR a_end = obj_section_endaddr (a);
3174 CORE_ADDR b_start = obj_section_addr (b);
3175 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3176
3177 return (a_start < b_end && b_start < a_end);
3178}
3179
c906108c
SS
3180/* Function: overlay_unmapped_address (PC, SECTION)
3181 Returns the address corresponding to PC in the unmapped (load) range.
3182 May be the same as PC. */
3183
3184CORE_ADDR
714835d5 3185overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3186{
714835d5
UW
3187 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3188 {
3189 bfd *abfd = section->objfile->obfd;
3190 asection *bfd_section = section->the_bfd_section;
fbd35540 3191
714835d5
UW
3192 return pc + bfd_section_lma (abfd, bfd_section)
3193 - bfd_section_vma (abfd, bfd_section);
3194 }
c906108c
SS
3195
3196 return pc;
3197}
3198
3199/* Function: overlay_mapped_address (PC, SECTION)
3200 Returns the address corresponding to PC in the mapped (runtime) range.
3201 May be the same as PC. */
3202
3203CORE_ADDR
714835d5 3204overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3205{
714835d5
UW
3206 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3207 {
3208 bfd *abfd = section->objfile->obfd;
3209 asection *bfd_section = section->the_bfd_section;
fbd35540 3210
714835d5
UW
3211 return pc + bfd_section_vma (abfd, bfd_section)
3212 - bfd_section_lma (abfd, bfd_section);
3213 }
c906108c
SS
3214
3215 return pc;
3216}
3217
5417f6dc 3218/* Function: symbol_overlayed_address
c906108c
SS
3219 Return one of two addresses (relative to the VMA or to the LMA),
3220 depending on whether the section is mapped or not. */
3221
c5aa993b 3222CORE_ADDR
714835d5 3223symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3224{
3225 if (overlay_debugging)
3226 {
c378eb4e 3227 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3228 if (section == 0)
3229 return address;
c378eb4e
MS
3230 /* If the symbol's section is not an overlay, just return its
3231 address. */
c906108c
SS
3232 if (!section_is_overlay (section))
3233 return address;
c378eb4e 3234 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3235 if (section_is_mapped (section))
3236 return address;
3237 /*
3238 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3239 * then return its LOADED address rather than its vma address!!
3240 */
3241 return overlay_unmapped_address (address, section);
3242 }
3243 return address;
3244}
3245
5417f6dc 3246/* Function: find_pc_overlay (PC)
c906108c
SS
3247 Return the best-match overlay section for PC:
3248 If PC matches a mapped overlay section's VMA, return that section.
3249 Else if PC matches an unmapped section's VMA, return that section.
3250 Else if PC matches an unmapped section's LMA, return that section. */
3251
714835d5 3252struct obj_section *
fba45db2 3253find_pc_overlay (CORE_ADDR pc)
c906108c 3254{
c5aa993b 3255 struct objfile *objfile;
c906108c
SS
3256 struct obj_section *osect, *best_match = NULL;
3257
3258 if (overlay_debugging)
b631e59b
KT
3259 {
3260 ALL_OBJSECTIONS (objfile, osect)
3261 if (section_is_overlay (osect))
c5aa993b 3262 {
b631e59b
KT
3263 if (pc_in_mapped_range (pc, osect))
3264 {
3265 if (section_is_mapped (osect))
3266 return osect;
3267 else
3268 best_match = osect;
3269 }
3270 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3271 best_match = osect;
3272 }
b631e59b 3273 }
714835d5 3274 return best_match;
c906108c
SS
3275}
3276
3277/* Function: find_pc_mapped_section (PC)
5417f6dc 3278 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3279 currently marked as MAPPED, return that section. Else return NULL. */
3280
714835d5 3281struct obj_section *
fba45db2 3282find_pc_mapped_section (CORE_ADDR pc)
c906108c 3283{
c5aa993b 3284 struct objfile *objfile;
c906108c
SS
3285 struct obj_section *osect;
3286
3287 if (overlay_debugging)
b631e59b
KT
3288 {
3289 ALL_OBJSECTIONS (objfile, osect)
3290 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3291 return osect;
3292 }
c906108c
SS
3293
3294 return NULL;
3295}
3296
3297/* Function: list_overlays_command
c378eb4e 3298 Print a list of mapped sections and their PC ranges. */
c906108c 3299
5d3055ad 3300static void
fba45db2 3301list_overlays_command (char *args, int from_tty)
c906108c 3302{
c5aa993b
JM
3303 int nmapped = 0;
3304 struct objfile *objfile;
c906108c
SS
3305 struct obj_section *osect;
3306
3307 if (overlay_debugging)
b631e59b
KT
3308 {
3309 ALL_OBJSECTIONS (objfile, osect)
714835d5 3310 if (section_is_mapped (osect))
b631e59b
KT
3311 {
3312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3313 const char *name;
3314 bfd_vma lma, vma;
3315 int size;
3316
3317 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3318 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3319 size = bfd_get_section_size (osect->the_bfd_section);
3320 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3321
3322 printf_filtered ("Section %s, loaded at ", name);
3323 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3324 puts_filtered (" - ");
3325 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3326 printf_filtered (", mapped at ");
3327 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3328 puts_filtered (" - ");
3329 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3330 puts_filtered ("\n");
3331
3332 nmapped++;
3333 }
3334 }
c906108c 3335 if (nmapped == 0)
a3f17187 3336 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3337}
3338
3339/* Function: map_overlay_command
3340 Mark the named section as mapped (ie. residing at its VMA address). */
3341
5d3055ad 3342static void
fba45db2 3343map_overlay_command (char *args, int from_tty)
c906108c 3344{
c5aa993b
JM
3345 struct objfile *objfile, *objfile2;
3346 struct obj_section *sec, *sec2;
c906108c
SS
3347
3348 if (!overlay_debugging)
3e43a32a
MS
3349 error (_("Overlay debugging not enabled. Use "
3350 "either the 'overlay auto' or\n"
3351 "the 'overlay manual' command."));
c906108c
SS
3352
3353 if (args == 0 || *args == 0)
8a3fe4f8 3354 error (_("Argument required: name of an overlay section"));
c906108c 3355
c378eb4e 3356 /* First, find a section matching the user supplied argument. */
c906108c
SS
3357 ALL_OBJSECTIONS (objfile, sec)
3358 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3359 {
c378eb4e 3360 /* Now, check to see if the section is an overlay. */
714835d5 3361 if (!section_is_overlay (sec))
c5aa993b
JM
3362 continue; /* not an overlay section */
3363
c378eb4e 3364 /* Mark the overlay as "mapped". */
c5aa993b
JM
3365 sec->ovly_mapped = 1;
3366
3367 /* Next, make a pass and unmap any sections that are
3368 overlapped by this new section: */
3369 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3370 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3371 {
3372 if (info_verbose)
a3f17187 3373 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3374 bfd_section_name (objfile->obfd,
3375 sec2->the_bfd_section));
c378eb4e 3376 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3377 }
3378 return;
3379 }
8a3fe4f8 3380 error (_("No overlay section called %s"), args);
c906108c
SS
3381}
3382
3383/* Function: unmap_overlay_command
5417f6dc 3384 Mark the overlay section as unmapped
c906108c
SS
3385 (ie. resident in its LMA address range, rather than the VMA range). */
3386
5d3055ad 3387static void
fba45db2 3388unmap_overlay_command (char *args, int from_tty)
c906108c 3389{
c5aa993b 3390 struct objfile *objfile;
7a270e0c 3391 struct obj_section *sec = NULL;
c906108c
SS
3392
3393 if (!overlay_debugging)
3e43a32a
MS
3394 error (_("Overlay debugging not enabled. "
3395 "Use either the 'overlay auto' or\n"
3396 "the 'overlay manual' command."));
c906108c
SS
3397
3398 if (args == 0 || *args == 0)
8a3fe4f8 3399 error (_("Argument required: name of an overlay section"));
c906108c 3400
c378eb4e 3401 /* First, find a section matching the user supplied argument. */
c906108c
SS
3402 ALL_OBJSECTIONS (objfile, sec)
3403 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3404 {
3405 if (!sec->ovly_mapped)
8a3fe4f8 3406 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3407 sec->ovly_mapped = 0;
3408 return;
3409 }
8a3fe4f8 3410 error (_("No overlay section called %s"), args);
c906108c
SS
3411}
3412
3413/* Function: overlay_auto_command
3414 A utility command to turn on overlay debugging.
c378eb4e 3415 Possibly this should be done via a set/show command. */
c906108c
SS
3416
3417static void
fba45db2 3418overlay_auto_command (char *args, int from_tty)
c906108c 3419{
d874f1e2 3420 overlay_debugging = ovly_auto;
1900040c 3421 enable_overlay_breakpoints ();
c906108c 3422 if (info_verbose)
a3f17187 3423 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3424}
3425
3426/* Function: overlay_manual_command
3427 A utility command to turn on overlay debugging.
c378eb4e 3428 Possibly this should be done via a set/show command. */
c906108c
SS
3429
3430static void
fba45db2 3431overlay_manual_command (char *args, int from_tty)
c906108c 3432{
d874f1e2 3433 overlay_debugging = ovly_on;
1900040c 3434 disable_overlay_breakpoints ();
c906108c 3435 if (info_verbose)
a3f17187 3436 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3437}
3438
3439/* Function: overlay_off_command
3440 A utility command to turn on overlay debugging.
c378eb4e 3441 Possibly this should be done via a set/show command. */
c906108c
SS
3442
3443static void
fba45db2 3444overlay_off_command (char *args, int from_tty)
c906108c 3445{
d874f1e2 3446 overlay_debugging = ovly_off;
1900040c 3447 disable_overlay_breakpoints ();
c906108c 3448 if (info_verbose)
a3f17187 3449 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3450}
3451
3452static void
fba45db2 3453overlay_load_command (char *args, int from_tty)
c906108c 3454{
e17c207e
UW
3455 struct gdbarch *gdbarch = get_current_arch ();
3456
3457 if (gdbarch_overlay_update_p (gdbarch))
3458 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3459 else
8a3fe4f8 3460 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3461}
3462
3463/* Function: overlay_command
c378eb4e 3464 A place-holder for a mis-typed command. */
c906108c 3465
c378eb4e 3466/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3467static struct cmd_list_element *overlaylist;
c906108c
SS
3468
3469static void
fba45db2 3470overlay_command (char *args, int from_tty)
c906108c 3471{
c5aa993b 3472 printf_unfiltered
c906108c 3473 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3474 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3475}
3476
c906108c
SS
3477/* Target Overlays for the "Simplest" overlay manager:
3478
5417f6dc
RM
3479 This is GDB's default target overlay layer. It works with the
3480 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3481 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3482 so targets that use a different runtime overlay manager can
c906108c
SS
3483 substitute their own overlay_update function and take over the
3484 function pointer.
3485
3486 The overlay_update function pokes around in the target's data structures
3487 to see what overlays are mapped, and updates GDB's overlay mapping with
3488 this information.
3489
3490 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3491 unsigned _novlys; /# number of overlay sections #/
3492 unsigned _ovly_table[_novlys][4] = {
438e1e42 3493 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3494 {..., ..., ..., ...},
3495 }
3496 unsigned _novly_regions; /# number of overlay regions #/
3497 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3498 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3499 {..., ..., ...},
3500 }
c906108c
SS
3501 These functions will attempt to update GDB's mappedness state in the
3502 symbol section table, based on the target's mappedness state.
3503
3504 To do this, we keep a cached copy of the target's _ovly_table, and
3505 attempt to detect when the cached copy is invalidated. The main
3506 entry point is "simple_overlay_update(SECT), which looks up SECT in
3507 the cached table and re-reads only the entry for that section from
c378eb4e 3508 the target (whenever possible). */
c906108c
SS
3509
3510/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3511static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3512static unsigned cache_novlys = 0;
c906108c 3513static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3514enum ovly_index
3515 {
438e1e42 3516 VMA, OSIZE, LMA, MAPPED
c5aa993b 3517 };
c906108c 3518
c378eb4e 3519/* Throw away the cached copy of _ovly_table. */
3b7bacac 3520
c906108c 3521static void
fba45db2 3522simple_free_overlay_table (void)
c906108c
SS
3523{
3524 if (cache_ovly_table)
b8c9b27d 3525 xfree (cache_ovly_table);
c5aa993b 3526 cache_novlys = 0;
c906108c
SS
3527 cache_ovly_table = NULL;
3528 cache_ovly_table_base = 0;
3529}
3530
9216df95 3531/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3532 Convert to host order. int LEN is number of ints. */
3b7bacac 3533
c906108c 3534static void
9216df95 3535read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3536 int len, int size, enum bfd_endian byte_order)
c906108c 3537{
c378eb4e 3538 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3539 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3540 int i;
c906108c 3541
9216df95 3542 read_memory (memaddr, buf, len * size);
c906108c 3543 for (i = 0; i < len; i++)
e17a4113 3544 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3545}
3546
3547/* Find and grab a copy of the target _ovly_table
c378eb4e 3548 (and _novlys, which is needed for the table's size). */
3b7bacac 3549
c5aa993b 3550static int
fba45db2 3551simple_read_overlay_table (void)
c906108c 3552{
3b7344d5 3553 struct bound_minimal_symbol novlys_msym;
7c7b6655 3554 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3555 struct gdbarch *gdbarch;
3556 int word_size;
e17a4113 3557 enum bfd_endian byte_order;
c906108c
SS
3558
3559 simple_free_overlay_table ();
9b27852e 3560 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3561 if (! novlys_msym.minsym)
c906108c 3562 {
8a3fe4f8 3563 error (_("Error reading inferior's overlay table: "
0d43edd1 3564 "couldn't find `_novlys' variable\n"
8a3fe4f8 3565 "in inferior. Use `overlay manual' mode."));
0d43edd1 3566 return 0;
c906108c 3567 }
0d43edd1 3568
7c7b6655
TT
3569 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3570 if (! ovly_table_msym.minsym)
0d43edd1 3571 {
8a3fe4f8 3572 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3573 "`_ovly_table' array\n"
8a3fe4f8 3574 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3575 return 0;
3576 }
3577
7c7b6655 3578 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3579 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3580 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3581
77e371c0
TT
3582 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3583 4, byte_order);
0d43edd1 3584 cache_ovly_table
224c3ddb 3585 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3586 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3587 read_target_long_array (cache_ovly_table_base,
777ea8f1 3588 (unsigned int *) cache_ovly_table,
e17a4113 3589 cache_novlys * 4, word_size, byte_order);
0d43edd1 3590
c5aa993b 3591 return 1; /* SUCCESS */
c906108c
SS
3592}
3593
5417f6dc 3594/* Function: simple_overlay_update_1
c906108c
SS
3595 A helper function for simple_overlay_update. Assuming a cached copy
3596 of _ovly_table exists, look through it to find an entry whose vma,
3597 lma and size match those of OSECT. Re-read the entry and make sure
3598 it still matches OSECT (else the table may no longer be valid).
3599 Set OSECT's mapped state to match the entry. Return: 1 for
3600 success, 0 for failure. */
3601
3602static int
fba45db2 3603simple_overlay_update_1 (struct obj_section *osect)
c906108c 3604{
764c99c1 3605 int i;
fbd35540
MS
3606 bfd *obfd = osect->objfile->obfd;
3607 asection *bsect = osect->the_bfd_section;
9216df95
UW
3608 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3609 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3611
c906108c 3612 for (i = 0; i < cache_novlys; i++)
fbd35540 3613 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3614 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3615 {
9216df95
UW
3616 read_target_long_array (cache_ovly_table_base + i * word_size,
3617 (unsigned int *) cache_ovly_table[i],
e17a4113 3618 4, word_size, byte_order);
fbd35540 3619 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3620 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3621 {
3622 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3623 return 1;
3624 }
c378eb4e 3625 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3626 return 0;
3627 }
3628 return 0;
3629}
3630
3631/* Function: simple_overlay_update
5417f6dc
RM
3632 If OSECT is NULL, then update all sections' mapped state
3633 (after re-reading the entire target _ovly_table).
3634 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3635 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3636 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3637 re-read the entire cache, and go ahead and update all sections. */
3638
1c772458 3639void
fba45db2 3640simple_overlay_update (struct obj_section *osect)
c906108c 3641{
c5aa993b 3642 struct objfile *objfile;
c906108c 3643
c378eb4e 3644 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3645 if (osect)
c378eb4e 3646 /* Have we got a cached copy of the target's overlay table? */
c906108c 3647 if (cache_ovly_table != NULL)
9cc89665
MS
3648 {
3649 /* Does its cached location match what's currently in the
3650 symtab? */
3b7344d5 3651 struct bound_minimal_symbol minsym
9cc89665
MS
3652 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3653
3b7344d5 3654 if (minsym.minsym == NULL)
9cc89665
MS
3655 error (_("Error reading inferior's overlay table: couldn't "
3656 "find `_ovly_table' array\n"
3657 "in inferior. Use `overlay manual' mode."));
3658
77e371c0 3659 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3660 /* Then go ahead and try to look up this single section in
3661 the cache. */
3662 if (simple_overlay_update_1 (osect))
3663 /* Found it! We're done. */
3664 return;
3665 }
c906108c
SS
3666
3667 /* Cached table no good: need to read the entire table anew.
3668 Or else we want all the sections, in which case it's actually
3669 more efficient to read the whole table in one block anyway. */
3670
0d43edd1
JB
3671 if (! simple_read_overlay_table ())
3672 return;
3673
c378eb4e 3674 /* Now may as well update all sections, even if only one was requested. */
c906108c 3675 ALL_OBJSECTIONS (objfile, osect)
714835d5 3676 if (section_is_overlay (osect))
c5aa993b 3677 {
764c99c1 3678 int i;
fbd35540
MS
3679 bfd *obfd = osect->objfile->obfd;
3680 asection *bsect = osect->the_bfd_section;
c5aa993b 3681
c5aa993b 3682 for (i = 0; i < cache_novlys; i++)
fbd35540 3683 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3684 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3685 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3686 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3687 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3688 }
3689 }
c906108c
SS
3690}
3691
086df311
DJ
3692/* Set the output sections and output offsets for section SECTP in
3693 ABFD. The relocation code in BFD will read these offsets, so we
3694 need to be sure they're initialized. We map each section to itself,
3695 with no offset; this means that SECTP->vma will be honored. */
3696
3697static void
3698symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3699{
3700 sectp->output_section = sectp;
3701 sectp->output_offset = 0;
3702}
3703
ac8035ab
TG
3704/* Default implementation for sym_relocate. */
3705
ac8035ab
TG
3706bfd_byte *
3707default_symfile_relocate (struct objfile *objfile, asection *sectp,
3708 bfd_byte *buf)
3709{
3019eac3
DE
3710 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3711 DWO file. */
3712 bfd *abfd = sectp->owner;
ac8035ab
TG
3713
3714 /* We're only interested in sections with relocation
3715 information. */
3716 if ((sectp->flags & SEC_RELOC) == 0)
3717 return NULL;
3718
3719 /* We will handle section offsets properly elsewhere, so relocate as if
3720 all sections begin at 0. */
3721 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3722
3723 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3724}
3725
086df311
DJ
3726/* Relocate the contents of a debug section SECTP in ABFD. The
3727 contents are stored in BUF if it is non-NULL, or returned in a
3728 malloc'd buffer otherwise.
3729
3730 For some platforms and debug info formats, shared libraries contain
3731 relocations against the debug sections (particularly for DWARF-2;
3732 one affected platform is PowerPC GNU/Linux, although it depends on
3733 the version of the linker in use). Also, ELF object files naturally
3734 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3735 the relocations in order to get the locations of symbols correct.
3736 Another example that may require relocation processing, is the
3737 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3738 debug section. */
086df311
DJ
3739
3740bfd_byte *
ac8035ab
TG
3741symfile_relocate_debug_section (struct objfile *objfile,
3742 asection *sectp, bfd_byte *buf)
086df311 3743{
ac8035ab 3744 gdb_assert (objfile->sf->sym_relocate);
086df311 3745
ac8035ab 3746 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3747}
c906108c 3748
31d99776
DJ
3749struct symfile_segment_data *
3750get_symfile_segment_data (bfd *abfd)
3751{
00b5771c 3752 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3753
3754 if (sf == NULL)
3755 return NULL;
3756
3757 return sf->sym_segments (abfd);
3758}
3759
3760void
3761free_symfile_segment_data (struct symfile_segment_data *data)
3762{
3763 xfree (data->segment_bases);
3764 xfree (data->segment_sizes);
3765 xfree (data->segment_info);
3766 xfree (data);
3767}
3768
28c32713
JB
3769/* Given:
3770 - DATA, containing segment addresses from the object file ABFD, and
3771 the mapping from ABFD's sections onto the segments that own them,
3772 and
3773 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3774 segment addresses reported by the target,
3775 store the appropriate offsets for each section in OFFSETS.
3776
3777 If there are fewer entries in SEGMENT_BASES than there are segments
3778 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3779
8d385431
DJ
3780 If there are more entries, then ignore the extra. The target may
3781 not be able to distinguish between an empty data segment and a
3782 missing data segment; a missing text segment is less plausible. */
3b7bacac 3783
31d99776 3784int
3189cb12
DE
3785symfile_map_offsets_to_segments (bfd *abfd,
3786 const struct symfile_segment_data *data,
31d99776
DJ
3787 struct section_offsets *offsets,
3788 int num_segment_bases,
3789 const CORE_ADDR *segment_bases)
3790{
3791 int i;
3792 asection *sect;
3793
28c32713
JB
3794 /* It doesn't make sense to call this function unless you have some
3795 segment base addresses. */
202b96c1 3796 gdb_assert (num_segment_bases > 0);
28c32713 3797
31d99776
DJ
3798 /* If we do not have segment mappings for the object file, we
3799 can not relocate it by segments. */
3800 gdb_assert (data != NULL);
3801 gdb_assert (data->num_segments > 0);
3802
31d99776
DJ
3803 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3804 {
31d99776
DJ
3805 int which = data->segment_info[i];
3806
28c32713
JB
3807 gdb_assert (0 <= which && which <= data->num_segments);
3808
3809 /* Don't bother computing offsets for sections that aren't
3810 loaded as part of any segment. */
3811 if (! which)
3812 continue;
3813
3814 /* Use the last SEGMENT_BASES entry as the address of any extra
3815 segments mentioned in DATA->segment_info. */
31d99776 3816 if (which > num_segment_bases)
28c32713 3817 which = num_segment_bases;
31d99776 3818
28c32713
JB
3819 offsets->offsets[i] = (segment_bases[which - 1]
3820 - data->segment_bases[which - 1]);
31d99776
DJ
3821 }
3822
3823 return 1;
3824}
3825
3826static void
3827symfile_find_segment_sections (struct objfile *objfile)
3828{
3829 bfd *abfd = objfile->obfd;
3830 int i;
3831 asection *sect;
3832 struct symfile_segment_data *data;
3833
3834 data = get_symfile_segment_data (objfile->obfd);
3835 if (data == NULL)
3836 return;
3837
3838 if (data->num_segments != 1 && data->num_segments != 2)
3839 {
3840 free_symfile_segment_data (data);
3841 return;
3842 }
3843
3844 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3845 {
31d99776
DJ
3846 int which = data->segment_info[i];
3847
3848 if (which == 1)
3849 {
3850 if (objfile->sect_index_text == -1)
3851 objfile->sect_index_text = sect->index;
3852
3853 if (objfile->sect_index_rodata == -1)
3854 objfile->sect_index_rodata = sect->index;
3855 }
3856 else if (which == 2)
3857 {
3858 if (objfile->sect_index_data == -1)
3859 objfile->sect_index_data = sect->index;
3860
3861 if (objfile->sect_index_bss == -1)
3862 objfile->sect_index_bss = sect->index;
3863 }
3864 }
3865
3866 free_symfile_segment_data (data);
3867}
3868
76ad5e1e
NB
3869/* Listen for free_objfile events. */
3870
3871static void
3872symfile_free_objfile (struct objfile *objfile)
3873{
c33b2f12
MM
3874 /* Remove the target sections owned by this objfile. */
3875 if (objfile != NULL)
76ad5e1e
NB
3876 remove_target_sections ((void *) objfile);
3877}
3878
540c2971
DE
3879/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3880 Expand all symtabs that match the specified criteria.
3881 See quick_symbol_functions.expand_symtabs_matching for details. */
3882
3883void
bb4142cf
DE
3884expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3885 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3886 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3887 enum search_domain kind,
3888 void *data)
540c2971
DE
3889{
3890 struct objfile *objfile;
3891
3892 ALL_OBJFILES (objfile)
3893 {
3894 if (objfile->sf)
bb4142cf 3895 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3896 symbol_matcher,
3897 expansion_notify, kind,
bb4142cf 3898 data);
540c2971
DE
3899 }
3900}
3901
3902/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3903 Map function FUN over every file.
3904 See quick_symbol_functions.map_symbol_filenames for details. */
3905
3906void
bb4142cf
DE
3907map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3908 int need_fullname)
540c2971
DE
3909{
3910 struct objfile *objfile;
3911
3912 ALL_OBJFILES (objfile)
3913 {
3914 if (objfile->sf)
3915 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3916 need_fullname);
3917 }
3918}
3919
c906108c 3920void
fba45db2 3921_initialize_symfile (void)
c906108c
SS
3922{
3923 struct cmd_list_element *c;
c5aa993b 3924
76ad5e1e
NB
3925 observer_attach_free_objfile (symfile_free_objfile);
3926
1a966eab
AC
3927 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3928Load symbol table from executable file FILE.\n\
c906108c 3929The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3930to execute."), &cmdlist);
5ba2abeb 3931 set_cmd_completer (c, filename_completer);
c906108c 3932
1a966eab 3933 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3934Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3935Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3936 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3937The optional arguments are section-name section-address pairs and\n\
3938should be specified if the data and bss segments are not contiguous\n\
1a966eab 3939with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3940 &cmdlist);
5ba2abeb 3941 set_cmd_completer (c, filename_completer);
c906108c 3942
63644780
NB
3943 c = add_cmd ("remove-symbol-file", class_files,
3944 remove_symbol_file_command, _("\
3945Remove a symbol file added via the add-symbol-file command.\n\
3946Usage: remove-symbol-file FILENAME\n\
3947 remove-symbol-file -a ADDRESS\n\
3948The file to remove can be identified by its filename or by an address\n\
3949that lies within the boundaries of this symbol file in memory."),
3950 &cmdlist);
3951
1a966eab
AC
3952 c = add_cmd ("load", class_files, load_command, _("\
3953Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3954for access from GDB.\n\
3955A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3956 set_cmd_completer (c, filename_completer);
c906108c 3957
c5aa993b 3958 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3959 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3960 "overlay ", 0, &cmdlist);
3961
3962 add_com_alias ("ovly", "overlay", class_alias, 1);
3963 add_com_alias ("ov", "overlay", class_alias, 1);
3964
c5aa993b 3965 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3966 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3967
c5aa993b 3968 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3969 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3970
c5aa993b 3971 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3972 _("List mappings of overlay sections."), &overlaylist);
c906108c 3973
c5aa993b 3974 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3975 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3976 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3977 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3978 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3979 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3980 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3981 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3982
3983 /* Filename extension to source language lookup table: */
26c41df3
AC
3984 add_setshow_string_noescape_cmd ("extension-language", class_files,
3985 &ext_args, _("\
3986Set mapping between filename extension and source language."), _("\
3987Show mapping between filename extension and source language."), _("\
3988Usage: set extension-language .foo bar"),
3989 set_ext_lang_command,
920d2a44 3990 show_ext_args,
26c41df3 3991 &setlist, &showlist);
c906108c 3992
c5aa993b 3993 add_info ("extensions", info_ext_lang_command,
1bedd215 3994 _("All filename extensions associated with a source language."));
917317f4 3995
525226b5
AC
3996 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3997 &debug_file_directory, _("\
24ddea62
JK
3998Set the directories where separate debug symbols are searched for."), _("\
3999Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4000Separate debug symbols are first searched for in the same\n\
4001directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4002and lastly at the path of the directory of the binary with\n\
24ddea62 4003each global debug-file-directory component prepended."),
525226b5 4004 NULL,
920d2a44 4005 show_debug_file_directory,
525226b5 4006 &setlist, &showlist);
770e7fc7
DE
4007
4008 add_setshow_enum_cmd ("symbol-loading", no_class,
4009 print_symbol_loading_enums, &print_symbol_loading,
4010 _("\
4011Set printing of symbol loading messages."), _("\
4012Show printing of symbol loading messages."), _("\
4013off == turn all messages off\n\
4014brief == print messages for the executable,\n\
4015 and brief messages for shared libraries\n\
4016full == print messages for the executable,\n\
4017 and messages for each shared library."),
4018 NULL,
4019 NULL,
4020 &setprintlist, &showprintlist);
c906108c 4021}
This page took 2.597754 seconds and 4 git commands to generate.