Mark big and mach with ATTRIBUTE_UNUSED
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void overlay_auto_command (char *, int);
c906108c 97
a14ed312 98static void overlay_manual_command (char *, int);
c906108c 99
a14ed312 100static void overlay_off_command (char *, int);
c906108c 101
a14ed312 102static void overlay_load_command (char *, int);
c906108c 103
a14ed312 104static void overlay_command (char *, int);
c906108c 105
a14ed312 106static void simple_free_overlay_table (void);
c906108c 107
e17a4113
UW
108static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
c906108c 110
a14ed312 111static int simple_read_overlay_table (void);
c906108c 112
a14ed312 113static int simple_overlay_update_1 (struct obj_section *);
c906108c 114
a14ed312 115static void info_ext_lang_command (char *args, int from_tty);
392a587b 116
31d99776
DJ
117static void symfile_find_segment_sections (struct objfile *objfile);
118
a14ed312 119void _initialize_symfile (void);
c906108c
SS
120
121/* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
c378eb4e 123 prepared to read. */
c906108c 124
c256e171
DE
125typedef struct
126{
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132} registered_sym_fns;
00b5771c 133
c256e171
DE
134DEF_VEC_O (registered_sym_fns);
135
136static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 137
770e7fc7
DE
138/* Values for "set print symbol-loading". */
139
140const char print_symbol_loading_off[] = "off";
141const char print_symbol_loading_brief[] = "brief";
142const char print_symbol_loading_full[] = "full";
143static const char *print_symbol_loading_enums[] =
144{
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
148 NULL
149};
150static const char *print_symbol_loading = print_symbol_loading_full;
151
b7209cb4
FF
152/* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
c906108c 159 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 160 report all the functions that are actually present. */
c906108c
SS
161
162int auto_solib_add = 1;
c906108c 163\f
c5aa993b 164
770e7fc7
DE
165/* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
172
173int
174print_symbol_loading_p (int from_tty, int exec, int full)
175{
176 if (!from_tty && !info_verbose)
177 return 0;
178
179 if (exec)
180 {
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
184 }
185 if (full)
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
188}
189
0d14a781 190/* True if we are reading a symbol table. */
c906108c
SS
191
192int currently_reading_symtab = 0;
193
ccefe4c4
TT
194/* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
3b7bacac 196
c83dd867 197scoped_restore_tmpl<int>
ccefe4c4 198increment_reading_symtab (void)
c906108c 199{
c83dd867
TT
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (&currently_reading_symtab,
202 currently_reading_symtab + 1);
c906108c
SS
203}
204
5417f6dc
RM
205/* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
c906108c
SS
207
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
210
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
213
214void
4efb68b1 215find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 216{
c5aa993b 217 asection **lowest = (asection **) obj;
c906108c 218
eb73e134 219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
220 return;
221 if (!*lowest)
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
228 *lowest = sect;
229}
230
d76488d8
TT
231/* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
233 by the caller. */
a39a16c4
MM
234
235struct section_addr_info *
236alloc_section_addr_info (size_t num_sections)
237{
238 struct section_addr_info *sap;
239 size_t size;
240
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
a39a16c4
MM
245
246 return sap;
247}
62557bbc
KB
248
249/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 250 an existing section table. */
62557bbc
KB
251
252extern struct section_addr_info *
0542c86d
PA
253build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
62557bbc
KB
255{
256 struct section_addr_info *sap;
0542c86d 257 const struct target_section *stp;
62557bbc
KB
258 int oidx;
259
a39a16c4 260 sap = alloc_section_addr_info (end - start);
62557bbc
KB
261
262 for (stp = start, oidx = 0; stp != end; stp++)
263 {
2b2848e2
DE
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
266
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 268 && oidx < end - start)
62557bbc
KB
269 {
270 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
273 oidx++;
274 }
275 }
276
d76488d8
TT
277 sap->num_sections = oidx;
278
62557bbc
KB
279 return sap;
280}
281
82ccf5a5 282/* Create a section_addr_info from section offsets in ABFD. */
089b4803 283
82ccf5a5
JK
284static struct section_addr_info *
285build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
286{
287 struct section_addr_info *sap;
288 int i;
289 struct bfd_section *sec;
290
82ccf5a5
JK
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 294 {
82ccf5a5
JK
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
298 i++;
299 }
d76488d8
TT
300
301 sap->num_sections = i;
302
089b4803
TG
303 return sap;
304}
305
82ccf5a5
JK
306/* Create a section_addr_info from section offsets in OBJFILE. */
307
308struct section_addr_info *
309build_section_addr_info_from_objfile (const struct objfile *objfile)
310{
311 struct section_addr_info *sap;
312 int i;
313
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
316 */
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 318 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
319 {
320 int sectindex = sap->other[i].sectindex;
321
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
323 }
324 return sap;
325}
62557bbc 326
c378eb4e 327/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
328
329extern void
330free_section_addr_info (struct section_addr_info *sap)
331{
332 int idx;
333
a39a16c4 334 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 335 xfree (sap->other[idx].name);
b8c9b27d 336 xfree (sap);
62557bbc
KB
337}
338
e8289572 339/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 340
e8289572
JB
341static void
342init_objfile_sect_indices (struct objfile *objfile)
c906108c 343{
e8289572 344 asection *sect;
c906108c 345 int i;
5417f6dc 346
b8fbeb18 347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 348 if (sect)
b8fbeb18
EZ
349 objfile->sect_index_text = sect->index;
350
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 352 if (sect)
b8fbeb18
EZ
353 objfile->sect_index_data = sect->index;
354
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 356 if (sect)
b8fbeb18
EZ
357 objfile->sect_index_bss = sect->index;
358
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 360 if (sect)
b8fbeb18
EZ
361 objfile->sect_index_rodata = sect->index;
362
bbcd32ad
FF
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
31d99776
DJ
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
368
369 symfile_find_segment_sections (objfile);
370
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
bbcd32ad
FF
379
380 for (i = 0; i < objfile->num_sections; i++)
381 {
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
383 {
384 break;
385 }
386 }
387 if (i == objfile->num_sections)
388 {
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
397 }
b8fbeb18 398}
c906108c 399
c1bd25fd
DJ
400/* The arguments to place_section. */
401
402struct place_section_arg
403{
404 struct section_offsets *offsets;
405 CORE_ADDR lowest;
406};
407
408/* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
410
2c0b251b 411static void
c1bd25fd
DJ
412place_section (bfd *abfd, asection *sect, void *obj)
413{
19ba03f4 414 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
416 int done;
3bd72c6f 417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 418
2711e456
DJ
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 return;
422
423 /* If the user specified an offset, honor it. */
65cf3563 424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
425 return;
426
427 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
428 start_addr = (arg->lowest + align - 1) & -align;
429
c1bd25fd
DJ
430 do {
431 asection *cur_sec;
c1bd25fd 432
c1bd25fd
DJ
433 done = 1;
434
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
436 {
437 int indx = cur_sec->index;
c1bd25fd
DJ
438
439 /* We don't need to compare against ourself. */
440 if (cur_sec == sect)
441 continue;
442
2711e456
DJ
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
445 continue;
446
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
451 continue;
452
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
456 {
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
459 done = 0;
3bd72c6f 460 break;
c1bd25fd
DJ
461 }
462
463 /* Otherwise, we appear to be OK. So far. */
464 }
465 }
466 while (!done);
467
65cf3563 468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 469 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 470}
e8289572 471
75242ef4
JK
472/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
474 entries. */
e8289572
JB
475
476void
75242ef4
JK
477relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
478 int num_sections,
3189cb12 479 const struct section_addr_info *addrs)
e8289572
JB
480{
481 int i;
482
75242ef4 483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 484
c378eb4e 485 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 486 for (i = 0; i < addrs->num_sections; i++)
e8289572 487 {
3189cb12 488 const struct other_sections *osp;
e8289572 489
75242ef4 490 osp = &addrs->other[i];
5488dafb 491 if (osp->sectindex == -1)
e8289572
JB
492 continue;
493
c378eb4e 494 /* Record all sections in offsets. */
e8289572 495 /* The section_offsets in the objfile are here filled in using
c378eb4e 496 the BFD index. */
75242ef4
JK
497 section_offsets->offsets[osp->sectindex] = osp->addr;
498 }
499}
500
1276c759
JK
501/* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
506
507static const char *
508addr_section_name (const char *s)
509{
510 if (strcmp (s, ".dynbss") == 0)
511 return ".bss";
512 if (strcmp (s, ".sdynbss") == 0)
513 return ".sbss";
514
515 return s;
516}
517
82ccf5a5
JK
518/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
520
521static int
522addrs_section_compar (const void *ap, const void *bp)
523{
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 526 int retval;
82ccf5a5 527
1276c759 528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
529 if (retval)
530 return retval;
531
5488dafb 532 return a->sectindex - b->sectindex;
82ccf5a5
JK
533}
534
535/* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
537
538static struct other_sections **
539addrs_section_sort (struct section_addr_info *addrs)
540{
541 struct other_sections **array;
542 int i;
543
544 /* `+ 1' for the NULL terminator. */
8d749320 545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 546 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
547 array[i] = &addrs->other[i];
548 array[i] = NULL;
549
550 qsort (array, i, sizeof (*array), addrs_section_compar);
551
552 return array;
553}
554
75242ef4 555/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
558
559void
560addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
561{
562 asection *lower_sect;
75242ef4
JK
563 CORE_ADDR lower_offset;
564 int i;
82ccf5a5
JK
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
569
570 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
571 continguous sections. */
572 lower_sect = NULL;
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
574 if (lower_sect == NULL)
575 {
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
578 lower_offset = 0;
e8289572 579 }
75242ef4
JK
580 else
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
582
82ccf5a5
JK
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
588 order.
589
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
592
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
595
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
600
c378eb4e
MS
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
82ccf5a5 603
8d749320 604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
605 make_cleanup (xfree, addrs_to_abfd_addrs);
606
607 while (*addrs_sorted)
608 {
1276c759 609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
610
611 while (*abfd_addrs_sorted
1276c759
JK
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
613 sect_name) < 0)
82ccf5a5
JK
614 abfd_addrs_sorted++;
615
616 if (*abfd_addrs_sorted
1276c759
JK
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
618 sect_name) == 0)
82ccf5a5
JK
619 {
620 int index_in_addrs;
621
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
626
627 /* Never use the same ABFD entry twice. */
628 abfd_addrs_sorted++;
629 }
630
631 addrs_sorted++;
632 }
633
75242ef4
JK
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
637
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
643
d76488d8 644 for (i = 0; i < addrs->num_sections; i++)
75242ef4 645 {
82ccf5a5 646 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
647
648 if (sect)
75242ef4 649 {
c378eb4e 650 /* This is the index used by BFD. */
82ccf5a5 651 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
652
653 if (addrs->other[i].addr != 0)
75242ef4 654 {
82ccf5a5 655 addrs->other[i].addr -= sect->addr;
75242ef4 656 lower_offset = addrs->other[i].addr;
75242ef4
JK
657 }
658 else
672d9c23 659 addrs->other[i].addr = lower_offset;
75242ef4
JK
660 }
661 else
672d9c23 662 {
1276c759
JK
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
665
b0fcb67f
JK
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
668
4d9743af
JK
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
1276c759
JK
676 created by prelink have no special flags.
677
678 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
679
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 681 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
682 || (strcmp (sect_name, ".bss") == 0
683 && i > 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
687 && i > 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
692
672d9c23 693 addrs->other[i].addr = 0;
5488dafb 694 addrs->other[i].sectindex = -1;
672d9c23 695 }
75242ef4 696 }
82ccf5a5
JK
697
698 do_cleanups (my_cleanup);
75242ef4
JK
699}
700
701/* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
706
707void
708default_symfile_offsets (struct objfile *objfile,
3189cb12 709 const struct section_addr_info *addrs)
75242ef4 710{
d445b2f6 711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
e8289572 717
c1bd25fd
DJ
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
722 small. */
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
724 {
725 struct place_section_arg arg;
2711e456
DJ
726 bfd *abfd = objfile->obfd;
727 asection *cur_sec;
2711e456
DJ
728
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
733 break;
734
735 if (cur_sec == NULL)
736 {
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
738
739 /* Pick non-overlapping offsets for sections the user did not
740 place explicitly. */
741 arg.offsets = objfile->section_offsets;
742 arg.lowest = 0;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
744
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
748
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
751 be assumed.
752
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
756 at address zero.
757
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
764 correct sections.
765
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
769 be eliminated. */
770
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
773 {
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
775 continue;
776
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
778 exec_set_section_address (bfd_get_filename (abfd),
779 cur_sec->index,
30510692 780 offsets[cur_sec->index]);
2711e456
DJ
781 offsets[cur_sec->index] = 0;
782 }
783 }
c1bd25fd
DJ
784 }
785
e8289572 786 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 787 .rodata sections. */
e8289572
JB
788 init_objfile_sect_indices (objfile);
789}
790
31d99776
DJ
791/* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
796
797struct symfile_segment_data *
798default_symfile_segments (bfd *abfd)
799{
800 int num_sections, i;
801 asection *sect;
802 struct symfile_segment_data *data;
803 CORE_ADDR low, high;
804
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
807 in segments. */
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
809 return NULL;
810
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
813 {
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 break;
818 }
819 if (sect == NULL)
820 return NULL;
821
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
824
41bf6aca 825 data = XCNEW (struct symfile_segment_data);
31d99776 826 data->num_segments = 1;
fc270c35
TT
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
829
830 num_sections = bfd_count_sections (abfd);
fc270c35 831 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
832
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
834 {
835 CORE_ADDR vma;
836
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 vma = bfd_get_section_vma (abfd, sect);
841 if (vma < low)
842 low = vma;
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
845
846 data->segment_info[i] = 1;
847 }
848
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
851
852 return data;
853}
854
608e2dbb
TT
855/* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
857
858static void
b15cc25c 859read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
860{
861 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 862 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
863
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 869 {
192b62ce 870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
871
872 if (abfd != NULL)
24ba069a
JK
873 {
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
192b62ce
TT
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
879 add_flags, objfile);
24ba069a 880 }
608e2dbb
TT
881 }
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
884}
885
3d6e24f0
JB
886/* Initialize entry point information for this objfile. */
887
888static void
889init_entry_point_info (struct objfile *objfile)
890{
6ef55de7
TT
891 struct entry_info *ei = &objfile->per_bfd->ei;
892
893 if (ei->initialized)
894 return;
895 ei->initialized = 1;
896
3d6e24f0
JB
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
899
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
901 {
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
6ef55de7
TT
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
3d6e24f0
JB
906 }
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
909 {
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
6ef55de7
TT
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
3d6e24f0
JB
915 }
916 else
917 {
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 919 ei->entry_point_p = 0;
3d6e24f0
JB
920 }
921
6ef55de7 922 if (ei->entry_point_p)
3d6e24f0 923 {
53eddfa6 924 struct obj_section *osect;
6ef55de7 925 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 926 int found;
3d6e24f0
JB
927
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
930 entry_point
df6d5441 931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
932 entry_point,
933 &current_target);
934
935 /* Remove any ISA markers, so that this matches entries in the
936 symbol table. */
6ef55de7 937 ei->entry_point
df6d5441 938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
939
940 found = 0;
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
942 {
943 struct bfd_section *sect = osect->the_bfd_section;
944
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
948 {
6ef55de7 949 ei->the_bfd_section_index
53eddfa6
TT
950 = gdb_bfd_section_index (objfile->obfd, sect);
951 found = 1;
952 break;
953 }
954 }
955
956 if (!found)
6ef55de7 957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
958 }
959}
960
c906108c
SS
961/* Process a symbol file, as either the main file or as a dynamically
962 loaded file.
963
36e4d068
JB
964 This function does not set the OBJFILE's entry-point info.
965
96baa820
JM
966 OBJFILE is where the symbols are to be read from.
967
7e8580c1
JB
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
96baa820 977
7eedccfa
PP
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
c906108c 981
36e4d068
JB
982static void
983syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
b15cc25c 985 symfile_add_flags add_flags)
c906108c 986{
a39a16c4 987 struct section_addr_info *local_addr = NULL;
c906108c 988 struct cleanup *old_chain;
7eedccfa 989 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 990
8fb8eb5c 991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 992
75245b24 993 if (objfile->sf == NULL)
36e4d068
JB
994 {
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
d445b2f6 997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
999
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
224c3ddb
SM
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1003 size);
36e4d068
JB
1004 memset (objfile->section_offsets, 0, size);
1005 return;
1006 }
75245b24 1007
c906108c
SS
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
74b7792f 1010 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1011
6bf667bb
DE
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
c378eb4e 1014 no load address was specified. */
6bf667bb 1015 if (! addrs)
a39a16c4 1016 {
d445b2f6 1017 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1018 make_cleanup (xfree, local_addr);
1019 addrs = local_addr;
1020 }
1021
c5aa993b 1022 if (mainline)
c906108c
SS
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1025 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
adb7f338 1033 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
c906108c 1040
c5aa993b 1041 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
53a5351d 1046 and assume that <addr> is where that got loaded.
c906108c 1047
53a5351d
JM
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
6bf667bb 1050 if (addrs->num_sections > 0)
75242ef4 1051 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
c378eb4e 1055 initial symbol reading for this file. */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_init) (objfile);
7eedccfa 1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1059
6bf667bb 1060 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1061
608e2dbb 1062 read_symbols (objfile, add_flags);
b11896a5 1063
c906108c
SS
1064 /* Discard cleanups as symbol reading was successful. */
1065
1066 discard_cleanups (old_chain);
f7545552 1067 xfree (local_addr);
c906108c
SS
1068}
1069
36e4d068
JB
1070/* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1072
6bf667bb 1073static void
36e4d068
JB
1074syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
b15cc25c 1076 symfile_add_flags add_flags)
36e4d068 1077{
6bf667bb 1078 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1079 init_entry_point_info (objfile);
1080}
1081
c906108c
SS
1082/* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1085
e7d52ed3 1086static void
b15cc25c 1087finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1088{
c906108c 1089 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1090 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1091 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1092 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1093 {
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1096
c1e56572 1097 clear_symtab_users (add_flags);
c906108c 1098 }
7eedccfa 1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1100 {
69de3c6a 1101 breakpoint_re_set ();
c906108c
SS
1102 }
1103
1104 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1106}
1107
1108/* Process a symbol file, as either the main file or as a dynamically
1109 loaded file.
1110
5417f6dc 1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1112 A new reference is acquired by this function.
7904e09f 1113
24ba069a
JK
1114 For NAME description see allocate_objfile's definition.
1115
7eedccfa
PP
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1118
6bf667bb 1119 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1121
63524580
JK
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1124
c906108c 1125 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1126 Upon failure, jumps back to command level (never returns). */
7eedccfa 1127
7904e09f 1128static struct objfile *
b15cc25c
PA
1129symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
6bf667bb 1131 struct section_addr_info *addrs,
b15cc25c 1132 objfile_flags flags, struct objfile *parent)
c906108c
SS
1133{
1134 struct objfile *objfile;
7eedccfa 1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1136 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1140
9291a0cd 1141 if (readnow_symbol_files)
b11896a5
TT
1142 {
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1145 }
9291a0cd 1146
5417f6dc
RM
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
c906108c
SS
1149
1150 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1151 && mainline
c906108c 1152 && from_tty
9e2f0ad4 1153 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1154 error (_("Not confirmed."));
c906108c 1155
b15cc25c
PA
1156 if (mainline)
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
c906108c 1159
63524580
JK
1160 if (parent)
1161 add_separate_debug_objfile (objfile, parent);
1162
78a4a9b9
AC
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
c378eb4e 1165 performed, or need to read an unmapped symbol table. */
b11896a5 1166 if (should_print)
c906108c 1167 {
769d7dc4
AC
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1170 else
c906108c 1171 {
55333a84
DE
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1173 wrap_here ("");
1174 gdb_flush (gdb_stdout);
c906108c 1175 }
c906108c 1176 }
6bf667bb 1177 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1178
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1182 all partial symbol tables for this objfile if so. */
c906108c 1183
9291a0cd 1184 if ((flags & OBJF_READNOW))
c906108c 1185 {
b11896a5 1186 if (should_print)
c906108c 1187 {
a3f17187 1188 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192
ccefe4c4
TT
1193 if (objfile->sf)
1194 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1195 }
1196
b11896a5 1197 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1198 {
1199 wrap_here ("");
55333a84 1200 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1201 wrap_here ("");
1202 }
1203
b11896a5 1204 if (should_print)
c906108c 1205 {
769d7dc4
AC
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
c906108c 1208 else
55333a84 1209 printf_unfiltered (_("done.\n"));
c906108c
SS
1210 }
1211
481d0f41
JB
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1214 time. */
1215 gdb_flush (gdb_stdout);
1216
109f874e 1217 if (objfile->sf == NULL)
8caee43b
PP
1218 {
1219 observer_notify_new_objfile (objfile);
c378eb4e 1220 return objfile; /* No symbols. */
8caee43b 1221 }
109f874e 1222
e7d52ed3 1223 finish_new_objfile (objfile, add_flags);
c906108c 1224
06d3b283 1225 observer_notify_new_objfile (objfile);
c906108c 1226
ce7d4522 1227 bfd_cache_close_all ();
c906108c
SS
1228 return (objfile);
1229}
1230
24ba069a
JK
1231/* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
9cce227f
TG
1233
1234void
b15cc25c
PA
1235symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
24ba069a 1237 struct objfile *objfile)
9cce227f 1238{
089b4803
TG
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1241
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1247
870f88f7 1248 symbol_file_add_with_addrs
24ba069a 1249 (bfd, name, symfile_flags, sap,
9cce227f 1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1251 | OBJF_USERLOADED),
1252 objfile);
089b4803
TG
1253
1254 do_cleanups (my_cleanup);
9cce227f 1255}
7904e09f 1256
eb4556d7
JB
1257/* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
6bf667bb 1259 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1260
eb4556d7 1261struct objfile *
b15cc25c
PA
1262symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
eb4556d7 1264 struct section_addr_info *addrs,
b15cc25c 1265 objfile_flags flags, struct objfile *parent)
eb4556d7 1266{
24ba069a
JK
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1268 parent);
eb4556d7
JB
1269}
1270
7904e09f 1271/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
7904e09f 1274struct objfile *
b15cc25c
PA
1275symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1277{
192b62ce 1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1279
192b62ce
TT
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1281 flags, NULL);
7904e09f
JB
1282}
1283
d7db6da9
FN
1284/* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1290 command itself. */
5417f6dc 1291
1adeb98a 1292void
ecf45d2c 1293symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1294{
ecf45d2c 1295 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1296}
1297
1298static void
ecf45d2c
SL
1299symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
d7db6da9 1301{
ecf45d2c 1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1303
7eedccfa 1304 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1305
d7db6da9
FN
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1309
b15cc25c 1310 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1311 set_initial_language ();
1adeb98a
FN
1312}
1313
1314void
1315symbol_file_clear (int from_tty)
1316{
1317 if ((have_full_symbols () || have_partial_symbols ())
1318 && from_tty
0430b0d6
AS
1319 && (symfile_objfile
1320 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1321 objfile_name (symfile_objfile))
0430b0d6 1322 : !query (_("Discard symbol table? "))))
8a3fe4f8 1323 error (_("Not confirmed."));
1adeb98a 1324
0133421a
JK
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1327 no_shared_libraries (NULL, from_tty);
1328
0133421a
JK
1329 free_all_objfiles ();
1330
adb7f338 1331 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1332 if (from_tty)
1333 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1334}
1335
c4dcb155
SM
1336/* See symfile.h. */
1337
1338int separate_debug_file_debug = 0;
1339
5b5d99cf 1340static int
287ccc17 1341separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1342 struct objfile *parent_objfile)
5b5d99cf 1343{
904578ed
JK
1344 unsigned long file_crc;
1345 int file_crc_p;
32a0e547 1346 struct stat parent_stat, abfd_stat;
904578ed 1347 int verified_as_different;
32a0e547
JK
1348
1349 /* Find a separate debug info file as if symbols would be present in
1350 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1351 section can contain just the basename of PARENT_OBJFILE without any
1352 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1353 the separate debug infos with the same basename can exist. */
32a0e547 1354
4262abfb 1355 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1356 return 0;
5b5d99cf 1357
c4dcb155
SM
1358 if (separate_debug_file_debug)
1359 printf_unfiltered (_(" Trying %s\n"), name);
1360
192b62ce 1361 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1362
192b62ce 1363 if (abfd == NULL)
5b5d99cf
JB
1364 return 0;
1365
0ba1096a 1366 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1367
1368 Some operating systems, e.g. Windows, do not provide a meaningful
1369 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1370 meaningful st_dev.) Files accessed from gdbservers that do not
1371 support the vFile:fstat packet will also have st_ino set to zero.
1372 Do not indicate a duplicate library in either case. While there
1373 is no guarantee that a system that provides meaningful inode
1374 numbers will never set st_ino to zero, this is merely an
1375 optimization, so we do not need to worry about false negatives. */
32a0e547 1376
192b62ce 1377 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1378 && abfd_stat.st_ino != 0
1379 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1380 {
904578ed
JK
1381 if (abfd_stat.st_dev == parent_stat.st_dev
1382 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1383 return 0;
904578ed 1384 verified_as_different = 1;
32a0e547 1385 }
904578ed
JK
1386 else
1387 verified_as_different = 0;
32a0e547 1388
192b62ce 1389 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1390
904578ed
JK
1391 if (!file_crc_p)
1392 return 0;
1393
287ccc17
JK
1394 if (crc != file_crc)
1395 {
dccee2de
TT
1396 unsigned long parent_crc;
1397
0a93529c
GB
1398 /* If the files could not be verified as different with
1399 bfd_stat then we need to calculate the parent's CRC
1400 to verify whether the files are different or not. */
904578ed 1401
dccee2de 1402 if (!verified_as_different)
904578ed 1403 {
dccee2de 1404 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1405 return 0;
1406 }
1407
dccee2de 1408 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1409 warning (_("the debug information found in \"%s\""
1410 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1411 name, objfile_name (parent_objfile));
904578ed 1412
287ccc17
JK
1413 return 0;
1414 }
1415
1416 return 1;
5b5d99cf
JB
1417}
1418
aa28a74e 1419char *debug_file_directory = NULL;
920d2a44
AC
1420static void
1421show_debug_file_directory (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1423{
3e43a32a
MS
1424 fprintf_filtered (file,
1425 _("The directory where separate debug "
1426 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1427 value);
1428}
5b5d99cf
JB
1429
1430#if ! defined (DEBUG_SUBDIRECTORY)
1431#define DEBUG_SUBDIRECTORY ".debug"
1432#endif
1433
1db33378
PP
1434/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1435 where the original file resides (may not be the same as
1436 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1437 looking for. CANON_DIR is the "realpath" form of DIR.
1438 DIR must contain a trailing '/'.
1439 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1440
1441static char *
1442find_separate_debug_file (const char *dir,
1443 const char *canon_dir,
1444 const char *debuglink,
1445 unsigned long crc32, struct objfile *objfile)
9cce227f 1446{
1db33378
PP
1447 char *debugdir;
1448 char *debugfile;
9cce227f 1449 int i;
e4ab2fad
JK
1450 VEC (char_ptr) *debugdir_vec;
1451 struct cleanup *back_to;
1452 int ix;
5b5d99cf 1453
c4dcb155
SM
1454 if (separate_debug_file_debug)
1455 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1456 "%s\n"), objfile_name (objfile));
1457
325fac50 1458 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1459 i = strlen (dir);
1db33378
PP
1460 if (canon_dir != NULL && strlen (canon_dir) > i)
1461 i = strlen (canon_dir);
1ffa32ee 1462
224c3ddb
SM
1463 debugfile
1464 = (char *) xmalloc (strlen (debug_file_directory) + 1
1465 + i
1466 + strlen (DEBUG_SUBDIRECTORY)
1467 + strlen ("/")
1468 + strlen (debuglink)
1469 + 1);
5b5d99cf
JB
1470
1471 /* First try in the same directory as the original file. */
1472 strcpy (debugfile, dir);
1db33378 1473 strcat (debugfile, debuglink);
5b5d99cf 1474
32a0e547 1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1476 return debugfile;
5417f6dc 1477
5b5d99cf
JB
1478 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1479 strcpy (debugfile, dir);
1480 strcat (debugfile, DEBUG_SUBDIRECTORY);
1481 strcat (debugfile, "/");
1db33378 1482 strcat (debugfile, debuglink);
5b5d99cf 1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1485 return debugfile;
5417f6dc 1486
24ddea62 1487 /* Then try in the global debugfile directories.
f888f159 1488
24ddea62
JK
1489 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1490 cause "/..." lookups. */
5417f6dc 1491
e4ab2fad
JK
1492 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1493 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1494
e4ab2fad
JK
1495 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1496 {
1497 strcpy (debugfile, debugdir);
aa28a74e 1498 strcat (debugfile, "/");
24ddea62 1499 strcat (debugfile, dir);
1db33378 1500 strcat (debugfile, debuglink);
aa28a74e 1501
32a0e547 1502 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1503 {
1504 do_cleanups (back_to);
1505 return debugfile;
1506 }
24ddea62
JK
1507
1508 /* If the file is in the sysroot, try using its base path in the
1509 global debugfile directory. */
1db33378
PP
1510 if (canon_dir != NULL
1511 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1512 strlen (gdb_sysroot)) == 0
1db33378 1513 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1514 {
e4ab2fad 1515 strcpy (debugfile, debugdir);
1db33378 1516 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1517 strcat (debugfile, "/");
1db33378 1518 strcat (debugfile, debuglink);
24ddea62 1519
32a0e547 1520 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1521 {
1522 do_cleanups (back_to);
1523 return debugfile;
1524 }
24ddea62 1525 }
aa28a74e 1526 }
f888f159 1527
e4ab2fad 1528 do_cleanups (back_to);
25522fae 1529 xfree (debugfile);
1db33378
PP
1530 return NULL;
1531}
1532
7edbb660 1533/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1534 If there were no directory separators in PATH, PATH will be empty
1535 string on return. */
1536
1537static void
1538terminate_after_last_dir_separator (char *path)
1539{
1540 int i;
1541
1542 /* Strip off the final filename part, leaving the directory name,
1543 followed by a slash. The directory can be relative or absolute. */
1544 for (i = strlen(path) - 1; i >= 0; i--)
1545 if (IS_DIR_SEPARATOR (path[i]))
1546 break;
1547
1548 /* If I is -1 then no directory is present there and DIR will be "". */
1549 path[i + 1] = '\0';
1550}
1551
1552/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1553 Returns pathname, or NULL. */
1554
1555char *
1556find_separate_debug_file_by_debuglink (struct objfile *objfile)
1557{
1558 char *debuglink;
1559 char *dir, *canon_dir;
1560 char *debugfile;
1561 unsigned long crc32;
1562 struct cleanup *cleanups;
1563
cc0ea93c 1564 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1565
1566 if (debuglink == NULL)
1567 {
1568 /* There's no separate debug info, hence there's no way we could
1569 load it => no warning. */
1570 return NULL;
1571 }
1572
71bdabee 1573 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1574 dir = xstrdup (objfile_name (objfile));
71bdabee 1575 make_cleanup (xfree, dir);
1db33378
PP
1576 terminate_after_last_dir_separator (dir);
1577 canon_dir = lrealpath (dir);
1578
1579 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1580 crc32, objfile);
1581 xfree (canon_dir);
1582
1583 if (debugfile == NULL)
1584 {
1db33378
PP
1585 /* For PR gdb/9538, try again with realpath (if different from the
1586 original). */
1587
1588 struct stat st_buf;
1589
4262abfb
JK
1590 if (lstat (objfile_name (objfile), &st_buf) == 0
1591 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1592 {
1593 char *symlink_dir;
1594
4262abfb 1595 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1596 if (symlink_dir != NULL)
1597 {
1598 make_cleanup (xfree, symlink_dir);
1599 terminate_after_last_dir_separator (symlink_dir);
1600 if (strcmp (dir, symlink_dir) != 0)
1601 {
1602 /* Different directory, so try using it. */
1603 debugfile = find_separate_debug_file (symlink_dir,
1604 symlink_dir,
1605 debuglink,
1606 crc32,
1607 objfile);
1608 }
1609 }
1610 }
1db33378 1611 }
aa28a74e 1612
1db33378 1613 do_cleanups (cleanups);
25522fae 1614 return debugfile;
5b5d99cf
JB
1615}
1616
c906108c
SS
1617/* This is the symbol-file command. Read the file, analyze its
1618 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1619 the command is rather bizarre:
1620
1621 1. The function buildargv implements various quoting conventions
1622 which are undocumented and have little or nothing in common with
1623 the way things are quoted (or not quoted) elsewhere in GDB.
1624
1625 2. Options are used, which are not generally used in GDB (perhaps
1626 "set mapped on", "set readnow on" would be better)
1627
1628 3. The order of options matters, which is contrary to GNU
c906108c
SS
1629 conventions (because it is confusing and inconvenient). */
1630
1631void
fba45db2 1632symbol_file_command (char *args, int from_tty)
c906108c 1633{
c906108c
SS
1634 dont_repeat ();
1635
1636 if (args == NULL)
1637 {
1adeb98a 1638 symbol_file_clear (from_tty);
c906108c
SS
1639 }
1640 else
1641 {
b15cc25c 1642 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1643 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1644 struct cleanup *cleanups;
1645 char *name = NULL;
1646
ecf45d2c
SL
1647 if (from_tty)
1648 add_flags |= SYMFILE_VERBOSE;
1649
773a1edc
TT
1650 gdb_argv built_argv (args);
1651 for (char *arg : built_argv)
c906108c 1652 {
773a1edc 1653 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1654 flags |= OBJF_READNOW;
773a1edc
TT
1655 else if (*arg == '-')
1656 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1657 else
1658 {
773a1edc
TT
1659 symbol_file_add_main_1 (arg, add_flags, flags);
1660 name = arg;
78a4a9b9 1661 }
c906108c
SS
1662 }
1663
1664 if (name == NULL)
cb2f3a29 1665 error (_("no symbol file name was specified"));
c906108c
SS
1666 }
1667}
1668
1669/* Set the initial language.
1670
cb2f3a29
MK
1671 FIXME: A better solution would be to record the language in the
1672 psymtab when reading partial symbols, and then use it (if known) to
1673 set the language. This would be a win for formats that encode the
1674 language in an easily discoverable place, such as DWARF. For
1675 stabs, we can jump through hoops looking for specially named
1676 symbols or try to intuit the language from the specific type of
1677 stabs we find, but we can't do that until later when we read in
1678 full symbols. */
c906108c 1679
8b60591b 1680void
fba45db2 1681set_initial_language (void)
c906108c 1682{
9e6c82ad 1683 enum language lang = main_language ();
c906108c 1684
9e6c82ad 1685 if (lang == language_unknown)
01f8c46d 1686 {
bf6d8a91 1687 char *name = main_name ();
d12307c1 1688 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1689
bf6d8a91
TT
1690 if (sym != NULL)
1691 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1692 }
cb2f3a29 1693
ccefe4c4
TT
1694 if (lang == language_unknown)
1695 {
1696 /* Make C the default language */
1697 lang = language_c;
c906108c 1698 }
ccefe4c4
TT
1699
1700 set_language (lang);
1701 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1702}
1703
cb2f3a29
MK
1704/* Open the file specified by NAME and hand it off to BFD for
1705 preliminary analysis. Return a newly initialized bfd *, which
1706 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1707 absolute). In case of trouble, error() is called. */
c906108c 1708
192b62ce 1709gdb_bfd_ref_ptr
97a41605 1710symfile_bfd_open (const char *name)
c906108c 1711{
97a41605
GB
1712 int desc = -1;
1713 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1714
97a41605 1715 if (!is_target_filename (name))
f1838a98 1716 {
ee0c3293 1717 char *absolute_name;
f1838a98 1718
ee0c3293 1719 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1720
97a41605
GB
1721 /* Look down path for it, allocate 2nd new malloc'd copy. */
1722 desc = openp (getenv ("PATH"),
1723 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1724 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1725#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1726 if (desc < 0)
1727 {
ee0c3293 1728 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1729
ee0c3293 1730 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1731 desc = openp (getenv ("PATH"),
1732 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1733 exename, O_RDONLY | O_BINARY, &absolute_name);
1734 }
c906108c 1735#endif
97a41605 1736 if (desc < 0)
ee0c3293 1737 perror_with_name (expanded_name.get ());
cb2f3a29 1738
97a41605
GB
1739 make_cleanup (xfree, absolute_name);
1740 name = absolute_name;
1741 }
c906108c 1742
192b62ce
TT
1743 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1744 if (sym_bfd == NULL)
faab9922
JK
1745 error (_("`%s': can't open to read symbols: %s."), name,
1746 bfd_errmsg (bfd_get_error ()));
97a41605 1747
192b62ce
TT
1748 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1749 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1750
192b62ce
TT
1751 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1752 error (_("`%s': can't read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1754
faab9922
JK
1755 do_cleanups (back_to);
1756
cb2f3a29 1757 return sym_bfd;
c906108c
SS
1758}
1759
cb2f3a29
MK
1760/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1761 the section was not found. */
1762
0e931cf0 1763int
a121b7c1 1764get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1765{
1766 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1767
0e931cf0
JB
1768 if (sect)
1769 return sect->index;
1770 else
1771 return -1;
1772}
1773
c256e171
DE
1774/* Link SF into the global symtab_fns list.
1775 FLAVOUR is the file format that SF handles.
1776 Called on startup by the _initialize routine in each object file format
1777 reader, to register information about each format the reader is prepared
1778 to handle. */
c906108c
SS
1779
1780void
c256e171 1781add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1782{
c256e171
DE
1783 registered_sym_fns fns = { flavour, sf };
1784
1785 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1786}
1787
cb2f3a29
MK
1788/* Initialize OBJFILE to read symbols from its associated BFD. It
1789 either returns or calls error(). The result is an initialized
1790 struct sym_fns in the objfile structure, that contains cached
1791 information about the symbol file. */
c906108c 1792
00b5771c 1793static const struct sym_fns *
31d99776 1794find_sym_fns (bfd *abfd)
c906108c 1795{
c256e171 1796 registered_sym_fns *rsf;
31d99776 1797 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1798 int i;
c906108c 1799
75245b24
MS
1800 if (our_flavour == bfd_target_srec_flavour
1801 || our_flavour == bfd_target_ihex_flavour
1802 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1803 return NULL; /* No symbols. */
75245b24 1804
c256e171
DE
1805 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1806 if (our_flavour == rsf->sym_flavour)
1807 return rsf->sym_fns;
cb2f3a29 1808
8a3fe4f8 1809 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1810 bfd_get_target (abfd));
c906108c
SS
1811}
1812\f
cb2f3a29 1813
c906108c
SS
1814/* This function runs the load command of our current target. */
1815
1816static void
fba45db2 1817load_command (char *arg, int from_tty)
c906108c 1818{
5b3fca71
TT
1819 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1820
e5cc9f32
JB
1821 dont_repeat ();
1822
4487aabf
PA
1823 /* The user might be reloading because the binary has changed. Take
1824 this opportunity to check. */
1825 reopen_exec_file ();
1826 reread_symbols ();
1827
c906108c 1828 if (arg == NULL)
1986bccd
AS
1829 {
1830 char *parg;
1831 int count = 0;
1832
1833 parg = arg = get_exec_file (1);
1834
1835 /* Count how many \ " ' tab space there are in the name. */
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 parg++;
1839 count++;
1840 }
1841
1842 if (count)
1843 {
1844 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1845 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1846 char *ptemp = temp;
1847 char *prev;
1848
1849 make_cleanup (xfree, temp);
1850
1851 prev = parg = arg;
1852 while ((parg = strpbrk (parg, "\\\"'\t ")))
1853 {
1854 strncpy (ptemp, prev, parg - prev);
1855 ptemp += parg - prev;
1856 prev = parg++;
1857 *ptemp++ = '\\';
1858 }
1859 strcpy (ptemp, prev);
1860
1861 arg = temp;
1862 }
1863 }
1864
c906108c 1865 target_load (arg, from_tty);
2889e661
JB
1866
1867 /* After re-loading the executable, we don't really know which
1868 overlays are mapped any more. */
1869 overlay_cache_invalid = 1;
5b3fca71
TT
1870
1871 do_cleanups (cleanup);
c906108c
SS
1872}
1873
1874/* This version of "load" should be usable for any target. Currently
1875 it is just used for remote targets, not inftarg.c or core files,
1876 on the theory that only in that case is it useful.
1877
1878 Avoiding xmodem and the like seems like a win (a) because we don't have
1879 to worry about finding it, and (b) On VMS, fork() is very slow and so
1880 we don't want to run a subprocess. On the other hand, I'm not sure how
1881 performance compares. */
917317f4 1882
917317f4
JM
1883static int validate_download = 0;
1884
e4f9b4d5
MS
1885/* Callback service function for generic_load (bfd_map_over_sections). */
1886
1887static void
1888add_section_size_callback (bfd *abfd, asection *asec, void *data)
1889{
19ba03f4 1890 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1891
2c500098 1892 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1893}
1894
1895/* Opaque data for load_section_callback. */
1896struct load_section_data {
f698ca8e 1897 CORE_ADDR load_offset;
a76d924d
DJ
1898 struct load_progress_data *progress_data;
1899 VEC(memory_write_request_s) *requests;
1900};
1901
1902/* Opaque data for load_progress. */
1903struct load_progress_data {
1904 /* Cumulative data. */
e4f9b4d5
MS
1905 unsigned long write_count;
1906 unsigned long data_count;
1907 bfd_size_type total_size;
a76d924d
DJ
1908};
1909
1910/* Opaque data for load_progress for a single section. */
1911struct load_progress_section_data {
1912 struct load_progress_data *cumulative;
cf7a04e8 1913
a76d924d 1914 /* Per-section data. */
cf7a04e8
DJ
1915 const char *section_name;
1916 ULONGEST section_sent;
1917 ULONGEST section_size;
1918 CORE_ADDR lma;
1919 gdb_byte *buffer;
e4f9b4d5
MS
1920};
1921
a76d924d 1922/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1923
1924static void
1925load_progress (ULONGEST bytes, void *untyped_arg)
1926{
19ba03f4
SM
1927 struct load_progress_section_data *args
1928 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1929 struct load_progress_data *totals;
1930
1931 if (args == NULL)
1932 /* Writing padding data. No easy way to get at the cumulative
1933 stats, so just ignore this. */
1934 return;
1935
1936 totals = args->cumulative;
1937
1938 if (bytes == 0 && args->section_sent == 0)
1939 {
1940 /* The write is just starting. Let the user know we've started
1941 this section. */
112e8700
SM
1942 current_uiout->message ("Loading section %s, size %s lma %s\n",
1943 args->section_name,
1944 hex_string (args->section_size),
1945 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1946 return;
1947 }
cf7a04e8
DJ
1948
1949 if (validate_download)
1950 {
1951 /* Broken memories and broken monitors manifest themselves here
1952 when bring new computers to life. This doubles already slow
1953 downloads. */
1954 /* NOTE: cagney/1999-10-18: A more efficient implementation
1955 might add a verify_memory() method to the target vector and
1956 then use that. remote.c could implement that method using
1957 the ``qCRC'' packet. */
224c3ddb 1958 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1959 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1960
1961 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1962 error (_("Download verify read failed at %s"),
f5656ead 1963 paddress (target_gdbarch (), args->lma));
cf7a04e8 1964 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1965 error (_("Download verify compare failed at %s"),
f5656ead 1966 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1967 do_cleanups (verify_cleanups);
1968 }
a76d924d 1969 totals->data_count += bytes;
cf7a04e8
DJ
1970 args->lma += bytes;
1971 args->buffer += bytes;
a76d924d 1972 totals->write_count += 1;
cf7a04e8 1973 args->section_sent += bytes;
522002f9 1974 if (check_quit_flag ()
cf7a04e8
DJ
1975 || (deprecated_ui_load_progress_hook != NULL
1976 && deprecated_ui_load_progress_hook (args->section_name,
1977 args->section_sent)))
1978 error (_("Canceled the download"));
1979
1980 if (deprecated_show_load_progress != NULL)
1981 deprecated_show_load_progress (args->section_name,
1982 args->section_sent,
1983 args->section_size,
a76d924d
DJ
1984 totals->data_count,
1985 totals->total_size);
cf7a04e8
DJ
1986}
1987
e4f9b4d5
MS
1988/* Callback service function for generic_load (bfd_map_over_sections). */
1989
1990static void
1991load_section_callback (bfd *abfd, asection *asec, void *data)
1992{
a76d924d 1993 struct memory_write_request *new_request;
19ba03f4 1994 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1995 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1996 bfd_size_type size = bfd_get_section_size (asec);
1997 gdb_byte *buffer;
cf7a04e8 1998 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1999
cf7a04e8
DJ
2000 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2001 return;
e4f9b4d5 2002
cf7a04e8
DJ
2003 if (size == 0)
2004 return;
e4f9b4d5 2005
a76d924d
DJ
2006 new_request = VEC_safe_push (memory_write_request_s,
2007 args->requests, NULL);
2008 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2009 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2010 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2011 new_request->end = new_request->begin + size; /* FIXME Should size
2012 be in instead? */
224c3ddb 2013 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2014 new_request->baton = section_data;
cf7a04e8 2015
a76d924d 2016 buffer = new_request->data;
cf7a04e8 2017
a76d924d
DJ
2018 section_data->cumulative = args->progress_data;
2019 section_data->section_name = sect_name;
2020 section_data->section_size = size;
2021 section_data->lma = new_request->begin;
2022 section_data->buffer = buffer;
cf7a04e8
DJ
2023
2024 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2025}
2026
2027/* Clean up an entire memory request vector, including load
2028 data and progress records. */
cf7a04e8 2029
a76d924d
DJ
2030static void
2031clear_memory_write_data (void *arg)
2032{
19ba03f4 2033 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2034 VEC(memory_write_request_s) *vec = *vec_p;
2035 int i;
2036 struct memory_write_request *mr;
cf7a04e8 2037
a76d924d
DJ
2038 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2039 {
2040 xfree (mr->data);
2041 xfree (mr->baton);
2042 }
2043 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2044}
2045
dcb07cfa
PA
2046static void print_transfer_performance (struct ui_file *stream,
2047 unsigned long data_count,
2048 unsigned long write_count,
2049 std::chrono::steady_clock::duration d);
2050
c906108c 2051void
9cbe5fff 2052generic_load (const char *args, int from_tty)
c906108c 2053{
773a1edc 2054 struct cleanup *old_cleanups;
e4f9b4d5 2055 struct load_section_data cbdata;
a76d924d 2056 struct load_progress_data total_progress;
79a45e25 2057 struct ui_out *uiout = current_uiout;
a76d924d 2058
e4f9b4d5
MS
2059 CORE_ADDR entry;
2060
a76d924d
DJ
2061 memset (&cbdata, 0, sizeof (cbdata));
2062 memset (&total_progress, 0, sizeof (total_progress));
2063 cbdata.progress_data = &total_progress;
2064
773a1edc 2065 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2066
d1a41061
PP
2067 if (args == NULL)
2068 error_no_arg (_("file to load"));
1986bccd 2069
773a1edc 2070 gdb_argv argv (args);
1986bccd 2071
ee0c3293 2072 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2073
2074 if (argv[1] != NULL)
917317f4 2075 {
f698ca8e 2076 const char *endptr;
ba5f2f8a 2077
f698ca8e 2078 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2079
2080 /* If the last word was not a valid number then
2081 treat it as a file name with spaces in. */
2082 if (argv[1] == endptr)
2083 error (_("Invalid download offset:%s."), argv[1]);
2084
2085 if (argv[2] != NULL)
2086 error (_("Too many parameters."));
917317f4 2087 }
c906108c 2088
c378eb4e 2089 /* Open the file for loading. */
ee0c3293 2090 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2091 if (loadfile_bfd == NULL)
ee0c3293 2092 perror_with_name (filename.get ());
917317f4 2093
192b62ce 2094 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2095 {
ee0c3293 2096 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2097 bfd_errmsg (bfd_get_error ()));
2098 }
c5aa993b 2099
192b62ce 2100 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2101 (void *) &total_progress.total_size);
2102
192b62ce 2103 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2104
dcb07cfa
PA
2105 using namespace std::chrono;
2106
2107 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2108
a76d924d
DJ
2109 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2110 load_progress) != 0)
2111 error (_("Load failed"));
c906108c 2112
dcb07cfa 2113 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2114
192b62ce 2115 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2116 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2117 uiout->text ("Start address ");
2118 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2119 uiout->text (", load size ");
2120 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2121 uiout->text ("\n");
fb14de7b 2122 regcache_write_pc (get_current_regcache (), entry);
c906108c 2123
38963c97
DJ
2124 /* Reset breakpoints, now that we have changed the load image. For
2125 instance, breakpoints may have been set (or reset, by
2126 post_create_inferior) while connected to the target but before we
2127 loaded the program. In that case, the prologue analyzer could
2128 have read instructions from the target to find the right
2129 breakpoint locations. Loading has changed the contents of that
2130 memory. */
2131
2132 breakpoint_re_set ();
2133
a76d924d
DJ
2134 print_transfer_performance (gdb_stdout, total_progress.data_count,
2135 total_progress.write_count,
dcb07cfa 2136 end_time - start_time);
c906108c
SS
2137
2138 do_cleanups (old_cleanups);
2139}
2140
dcb07cfa
PA
2141/* Report on STREAM the performance of a memory transfer operation,
2142 such as 'load'. DATA_COUNT is the number of bytes transferred.
2143 WRITE_COUNT is the number of separate write operations, or 0, if
2144 that information is not available. TIME is how long the operation
2145 lasted. */
c906108c 2146
dcb07cfa 2147static void
d9fcf2fb 2148print_transfer_performance (struct ui_file *stream,
917317f4
JM
2149 unsigned long data_count,
2150 unsigned long write_count,
dcb07cfa 2151 std::chrono::steady_clock::duration time)
917317f4 2152{
dcb07cfa 2153 using namespace std::chrono;
79a45e25 2154 struct ui_out *uiout = current_uiout;
2b71414d 2155
dcb07cfa 2156 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2157
112e8700 2158 uiout->text ("Transfer rate: ");
dcb07cfa 2159 if (ms.count () > 0)
8b93c638 2160 {
dcb07cfa 2161 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2162
112e8700 2163 if (uiout->is_mi_like_p ())
9f43d28c 2164 {
112e8700
SM
2165 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2166 uiout->text (" bits/sec");
9f43d28c
DJ
2167 }
2168 else if (rate < 1024)
2169 {
112e8700
SM
2170 uiout->field_fmt ("transfer-rate", "%lu", rate);
2171 uiout->text (" bytes/sec");
9f43d28c
DJ
2172 }
2173 else
2174 {
112e8700
SM
2175 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2176 uiout->text (" KB/sec");
9f43d28c 2177 }
8b93c638
JM
2178 }
2179 else
2180 {
112e8700
SM
2181 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2182 uiout->text (" bits in <1 sec");
8b93c638
JM
2183 }
2184 if (write_count > 0)
2185 {
112e8700
SM
2186 uiout->text (", ");
2187 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2188 uiout->text (" bytes/write");
8b93c638 2189 }
112e8700 2190 uiout->text (".\n");
c906108c
SS
2191}
2192
2193/* This function allows the addition of incrementally linked object files.
2194 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2195/* Note: ezannoni 2000-04-13 This function/command used to have a
2196 special case syntax for the rombug target (Rombug is the boot
2197 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2198 rombug case, the user doesn't need to supply a text address,
2199 instead a call to target_link() (in target.c) would supply the
c378eb4e 2200 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2201
c906108c 2202static void
fba45db2 2203add_symbol_file_command (char *args, int from_tty)
c906108c 2204{
5af949e3 2205 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2206 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2207 char *arg;
db162d44 2208 int section_index = 0;
2acceee2
JM
2209 int argcnt = 0;
2210 int sec_num = 0;
2211 int i;
db162d44
EZ
2212 int expecting_sec_name = 0;
2213 int expecting_sec_addr = 0;
76ad5e1e 2214 struct objfile *objf;
b15cc25c
PA
2215 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2216 symfile_add_flags add_flags = 0;
2217
2218 if (from_tty)
2219 add_flags |= SYMFILE_VERBOSE;
db162d44 2220
a39a16c4 2221 struct sect_opt
2acceee2 2222 {
a121b7c1
PA
2223 const char *name;
2224 const char *value;
a39a16c4 2225 };
db162d44 2226
a39a16c4
MM
2227 struct section_addr_info *section_addrs;
2228 struct sect_opt *sect_opts = NULL;
2229 size_t num_sect_opts = 0;
3017564a 2230 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2231
a39a16c4 2232 num_sect_opts = 16;
8d749320 2233 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2234
c906108c
SS
2235 dont_repeat ();
2236
2237 if (args == NULL)
8a3fe4f8 2238 error (_("add-symbol-file takes a file name and an address"));
c906108c 2239
773a1edc 2240 gdb_argv argv (args);
db162d44 2241
5b96932b
AS
2242 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2243 {
c378eb4e 2244 /* Process the argument. */
db162d44 2245 if (argcnt == 0)
c906108c 2246 {
c378eb4e 2247 /* The first argument is the file name. */
ee0c3293 2248 filename.reset (tilde_expand (arg));
c906108c 2249 }
41dc8db8
MB
2250 else if (argcnt == 1)
2251 {
2252 /* The second argument is always the text address at which
2253 to load the program. */
2254 sect_opts[section_index].name = ".text";
2255 sect_opts[section_index].value = arg;
2256 if (++section_index >= num_sect_opts)
2257 {
2258 num_sect_opts *= 2;
2259 sect_opts = ((struct sect_opt *)
2260 xrealloc (sect_opts,
2261 num_sect_opts
2262 * sizeof (struct sect_opt)));
2263 }
2264 }
db162d44 2265 else
41dc8db8
MB
2266 {
2267 /* It's an option (starting with '-') or it's an argument
2268 to an option. */
41dc8db8
MB
2269 if (expecting_sec_name)
2270 {
2271 sect_opts[section_index].name = arg;
2272 expecting_sec_name = 0;
2273 }
2274 else if (expecting_sec_addr)
2275 {
2276 sect_opts[section_index].value = arg;
2277 expecting_sec_addr = 0;
2278 if (++section_index >= num_sect_opts)
2279 {
2280 num_sect_opts *= 2;
2281 sect_opts = ((struct sect_opt *)
2282 xrealloc (sect_opts,
2283 num_sect_opts
2284 * sizeof (struct sect_opt)));
2285 }
2286 }
2287 else if (strcmp (arg, "-readnow") == 0)
2288 flags |= OBJF_READNOW;
2289 else if (strcmp (arg, "-s") == 0)
2290 {
2291 expecting_sec_name = 1;
2292 expecting_sec_addr = 1;
2293 }
2294 else
2295 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2296 " [-readnow] [-s <secname> <addr>]*"));
2297 }
c906108c 2298 }
c906108c 2299
927890d0
JB
2300 /* This command takes at least two arguments. The first one is a
2301 filename, and the second is the address where this file has been
2302 loaded. Abort now if this address hasn't been provided by the
2303 user. */
2304 if (section_index < 1)
ee0c3293
TT
2305 error (_("The address where %s has been loaded is missing"),
2306 filename.get ());
927890d0 2307
c378eb4e 2308 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2309 a sect_addr_info structure to be passed around to other
2310 functions. We have to split this up into separate print
bb599908 2311 statements because hex_string returns a local static
c378eb4e 2312 string. */
5417f6dc 2313
ee0c3293
TT
2314 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2315 filename.get ());
a39a16c4
MM
2316 section_addrs = alloc_section_addr_info (section_index);
2317 make_cleanup (xfree, section_addrs);
db162d44 2318 for (i = 0; i < section_index; i++)
c906108c 2319 {
db162d44 2320 CORE_ADDR addr;
a121b7c1
PA
2321 const char *val = sect_opts[i].value;
2322 const char *sec = sect_opts[i].name;
5417f6dc 2323
ae822768 2324 addr = parse_and_eval_address (val);
db162d44 2325
db162d44 2326 /* Here we store the section offsets in the order they were
c378eb4e 2327 entered on the command line. */
a121b7c1 2328 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2329 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2330 printf_unfiltered ("\t%s_addr = %s\n", sec,
2331 paddress (gdbarch, addr));
db162d44
EZ
2332 sec_num++;
2333
5417f6dc 2334 /* The object's sections are initialized when a
db162d44 2335 call is made to build_objfile_section_table (objfile).
5417f6dc 2336 This happens in reread_symbols.
db162d44
EZ
2337 At this point, we don't know what file type this is,
2338 so we can't determine what section names are valid. */
2acceee2 2339 }
d76488d8 2340 section_addrs->num_sections = sec_num;
db162d44 2341
2acceee2 2342 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2343 error (_("Not confirmed."));
c906108c 2344
ee0c3293 2345 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2346
2347 add_target_sections_of_objfile (objf);
c906108c
SS
2348
2349 /* Getting new symbols may change our opinion about what is
2350 frameless. */
2351 reinit_frame_cache ();
db162d44 2352 do_cleanups (my_cleanups);
c906108c
SS
2353}
2354\f
70992597 2355
63644780
NB
2356/* This function removes a symbol file that was added via add-symbol-file. */
2357
2358static void
2359remove_symbol_file_command (char *args, int from_tty)
2360{
63644780 2361 struct objfile *objf = NULL;
63644780 2362 struct program_space *pspace = current_program_space;
63644780
NB
2363
2364 dont_repeat ();
2365
2366 if (args == NULL)
2367 error (_("remove-symbol-file: no symbol file provided"));
2368
773a1edc 2369 gdb_argv argv (args);
63644780
NB
2370
2371 if (strcmp (argv[0], "-a") == 0)
2372 {
2373 /* Interpret the next argument as an address. */
2374 CORE_ADDR addr;
2375
2376 if (argv[1] == NULL)
2377 error (_("Missing address argument"));
2378
2379 if (argv[2] != NULL)
2380 error (_("Junk after %s"), argv[1]);
2381
2382 addr = parse_and_eval_address (argv[1]);
2383
2384 ALL_OBJFILES (objf)
2385 {
d03de421
PA
2386 if ((objf->flags & OBJF_USERLOADED) != 0
2387 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2388 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2389 break;
2390 }
2391 }
2392 else if (argv[0] != NULL)
2393 {
2394 /* Interpret the current argument as a file name. */
63644780
NB
2395
2396 if (argv[1] != NULL)
2397 error (_("Junk after %s"), argv[0]);
2398
ee0c3293 2399 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2400
2401 ALL_OBJFILES (objf)
2402 {
d03de421
PA
2403 if ((objf->flags & OBJF_USERLOADED) != 0
2404 && (objf->flags & OBJF_SHARED) != 0
63644780 2405 && objf->pspace == pspace
ee0c3293 2406 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2407 break;
2408 }
2409 }
2410
2411 if (objf == NULL)
2412 error (_("No symbol file found"));
2413
2414 if (from_tty
2415 && !query (_("Remove symbol table from file \"%s\"? "),
2416 objfile_name (objf)))
2417 error (_("Not confirmed."));
2418
2419 free_objfile (objf);
2420 clear_symtab_users (0);
63644780
NB
2421}
2422
c906108c 2423/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2424
c906108c 2425void
fba45db2 2426reread_symbols (void)
c906108c
SS
2427{
2428 struct objfile *objfile;
2429 long new_modtime;
c906108c
SS
2430 struct stat new_statbuf;
2431 int res;
4c404b8b 2432 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2433
2434 /* With the addition of shared libraries, this should be modified,
2435 the load time should be saved in the partial symbol tables, since
2436 different tables may come from different source files. FIXME.
2437 This routine should then walk down each partial symbol table
c378eb4e 2438 and see if the symbol table that it originates from has been changed. */
c906108c 2439
c5aa993b
JM
2440 for (objfile = object_files; objfile; objfile = objfile->next)
2441 {
9cce227f
TG
2442 if (objfile->obfd == NULL)
2443 continue;
2444
2445 /* Separate debug objfiles are handled in the main objfile. */
2446 if (objfile->separate_debug_objfile_backlink)
2447 continue;
2448
02aeec7b
JB
2449 /* If this object is from an archive (what you usually create with
2450 `ar', often called a `static library' on most systems, though
2451 a `shared library' on AIX is also an archive), then you should
2452 stat on the archive name, not member name. */
9cce227f
TG
2453 if (objfile->obfd->my_archive)
2454 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2455 else
4262abfb 2456 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2457 if (res != 0)
2458 {
c378eb4e 2459 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2460 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2461 objfile_name (objfile));
9cce227f
TG
2462 continue;
2463 }
2464 new_modtime = new_statbuf.st_mtime;
2465 if (new_modtime != objfile->mtime)
2466 {
2467 struct cleanup *old_cleanups;
2468 struct section_offsets *offsets;
2469 int num_offsets;
24ba069a 2470 char *original_name;
9cce227f
TG
2471
2472 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2473 objfile_name (objfile));
9cce227f
TG
2474
2475 /* There are various functions like symbol_file_add,
2476 symfile_bfd_open, syms_from_objfile, etc., which might
2477 appear to do what we want. But they have various other
2478 effects which we *don't* want. So we just do stuff
2479 ourselves. We don't worry about mapped files (for one thing,
2480 any mapped file will be out of date). */
2481
2482 /* If we get an error, blow away this objfile (not sure if
2483 that is the correct response for things like shared
2484 libraries). */
2485 old_cleanups = make_cleanup_free_objfile (objfile);
2486 /* We need to do this whenever any symbols go away. */
2487 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2488
0ba1096a
KT
2489 if (exec_bfd != NULL
2490 && filename_cmp (bfd_get_filename (objfile->obfd),
2491 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2492 {
2493 /* Reload EXEC_BFD without asking anything. */
2494
2495 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2496 }
2497
f6eeced0
JK
2498 /* Keep the calls order approx. the same as in free_objfile. */
2499
2500 /* Free the separate debug objfiles. It will be
2501 automatically recreated by sym_read. */
2502 free_objfile_separate_debug (objfile);
2503
2504 /* Remove any references to this objfile in the global
2505 value lists. */
2506 preserve_values (objfile);
2507
2508 /* Nuke all the state that we will re-read. Much of the following
2509 code which sets things to NULL really is necessary to tell
2510 other parts of GDB that there is nothing currently there.
2511
2512 Try to keep the freeing order compatible with free_objfile. */
2513
2514 if (objfile->sf != NULL)
2515 {
2516 (*objfile->sf->sym_finish) (objfile);
2517 }
2518
2519 clear_objfile_data (objfile);
2520
e1507e95 2521 /* Clean up any state BFD has sitting around. */
a4453b7e 2522 {
192b62ce 2523 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2524 char *obfd_filename;
a4453b7e
TT
2525
2526 obfd_filename = bfd_get_filename (objfile->obfd);
2527 /* Open the new BFD before freeing the old one, so that
2528 the filename remains live. */
192b62ce
TT
2529 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2530 objfile->obfd = temp.release ();
e1507e95 2531 if (objfile->obfd == NULL)
192b62ce 2532 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2533 }
2534
24ba069a
JK
2535 original_name = xstrdup (objfile->original_name);
2536 make_cleanup (xfree, original_name);
2537
9cce227f
TG
2538 /* bfd_openr sets cacheable to true, which is what we want. */
2539 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2540 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2541 bfd_errmsg (bfd_get_error ()));
2542
2543 /* Save the offsets, we will nuke them with the rest of the
2544 objfile_obstack. */
2545 num_offsets = objfile->num_sections;
2546 offsets = ((struct section_offsets *)
2547 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2548 memcpy (offsets, objfile->section_offsets,
2549 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2550
9cce227f
TG
2551 /* FIXME: Do we have to free a whole linked list, or is this
2552 enough? */
2553 if (objfile->global_psymbols.list)
2554 xfree (objfile->global_psymbols.list);
2555 memset (&objfile->global_psymbols, 0,
2556 sizeof (objfile->global_psymbols));
2557 if (objfile->static_psymbols.list)
2558 xfree (objfile->static_psymbols.list);
2559 memset (&objfile->static_psymbols, 0,
2560 sizeof (objfile->static_psymbols));
2561
c378eb4e 2562 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2563 psymbol_bcache_free (objfile->psymbol_cache);
2564 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2565
2566 /* NB: after this call to obstack_free, objfiles_changed
2567 will need to be called (see discussion below). */
9cce227f
TG
2568 obstack_free (&objfile->objfile_obstack, 0);
2569 objfile->sections = NULL;
43f3e411 2570 objfile->compunit_symtabs = NULL;
9cce227f
TG
2571 objfile->psymtabs = NULL;
2572 objfile->psymtabs_addrmap = NULL;
2573 objfile->free_psymtabs = NULL;
34eaf542 2574 objfile->template_symbols = NULL;
9cce227f 2575
9cce227f
TG
2576 /* obstack_init also initializes the obstack so it is
2577 empty. We could use obstack_specify_allocation but
d82ea6a8 2578 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2579 obstack_init (&objfile->objfile_obstack);
779bd270 2580
846060df
JB
2581 /* set_objfile_per_bfd potentially allocates the per-bfd
2582 data on the objfile's obstack (if sharing data across
2583 multiple users is not possible), so it's important to
2584 do it *after* the obstack has been initialized. */
2585 set_objfile_per_bfd (objfile);
2586
224c3ddb
SM
2587 objfile->original_name
2588 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2589 strlen (original_name));
24ba069a 2590
779bd270
DE
2591 /* Reset the sym_fns pointer. The ELF reader can change it
2592 based on whether .gdb_index is present, and we need it to
2593 start over. PR symtab/15885 */
8fb8eb5c 2594 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2595
d82ea6a8 2596 build_objfile_section_table (objfile);
9cce227f
TG
2597 terminate_minimal_symbol_table (objfile);
2598
2599 /* We use the same section offsets as from last time. I'm not
2600 sure whether that is always correct for shared libraries. */
2601 objfile->section_offsets = (struct section_offsets *)
2602 obstack_alloc (&objfile->objfile_obstack,
2603 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2604 memcpy (objfile->section_offsets, offsets,
2605 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2606 objfile->num_sections = num_offsets;
2607
2608 /* What the hell is sym_new_init for, anyway? The concept of
2609 distinguishing between the main file and additional files
2610 in this way seems rather dubious. */
2611 if (objfile == symfile_objfile)
c906108c 2612 {
9cce227f 2613 (*objfile->sf->sym_new_init) (objfile);
c906108c 2614 }
9cce227f
TG
2615
2616 (*objfile->sf->sym_init) (objfile);
2617 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2618
2619 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2620
2621 /* We are about to read new symbols and potentially also
2622 DWARF information. Some targets may want to pass addresses
2623 read from DWARF DIE's through an adjustment function before
2624 saving them, like MIPS, which may call into
2625 "find_pc_section". When called, that function will make
2626 use of per-objfile program space data.
2627
2628 Since we discarded our section information above, we have
2629 dangling pointers in the per-objfile program space data
2630 structure. Force GDB to update the section mapping
2631 information by letting it know the objfile has changed,
2632 making the dangling pointers point to correct data
2633 again. */
2634
2635 objfiles_changed ();
2636
608e2dbb 2637 read_symbols (objfile, 0);
b11896a5 2638
9cce227f 2639 if (!objfile_has_symbols (objfile))
c906108c 2640 {
9cce227f
TG
2641 wrap_here ("");
2642 printf_unfiltered (_("(no debugging symbols found)\n"));
2643 wrap_here ("");
c5aa993b 2644 }
9cce227f
TG
2645
2646 /* We're done reading the symbol file; finish off complaints. */
2647 clear_complaints (&symfile_complaints, 0, 1);
2648
2649 /* Getting new symbols may change our opinion about what is
2650 frameless. */
2651
2652 reinit_frame_cache ();
2653
2654 /* Discard cleanups as symbol reading was successful. */
2655 discard_cleanups (old_cleanups);
2656
2657 /* If the mtime has changed between the time we set new_modtime
2658 and now, we *want* this to be out of date, so don't call stat
2659 again now. */
2660 objfile->mtime = new_modtime;
9cce227f 2661 init_entry_point_info (objfile);
4ac39b97 2662
4c404b8b 2663 new_objfiles.push_back (objfile);
c906108c
SS
2664 }
2665 }
c906108c 2666
4c404b8b 2667 if (!new_objfiles.empty ())
ea53e89f 2668 {
c1e56572 2669 clear_symtab_users (0);
4ac39b97
JK
2670
2671 /* clear_objfile_data for each objfile was called before freeing it and
2672 observer_notify_new_objfile (NULL) has been called by
2673 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2674 for (auto iter : new_objfiles)
2675 observer_notify_new_objfile (iter);
4ac39b97 2676
ea53e89f
JB
2677 /* At least one objfile has changed, so we can consider that
2678 the executable we're debugging has changed too. */
781b42b0 2679 observer_notify_executable_changed ();
ea53e89f 2680 }
c906108c 2681}
c906108c
SS
2682\f
2683
c5aa993b
JM
2684typedef struct
2685{
2686 char *ext;
c906108c 2687 enum language lang;
3fcf0b0d
TT
2688} filename_language;
2689
2690DEF_VEC_O (filename_language);
c906108c 2691
3fcf0b0d 2692static VEC (filename_language) *filename_language_table;
c906108c 2693
56618e20
TT
2694/* See symfile.h. */
2695
2696void
2697add_filename_language (const char *ext, enum language lang)
c906108c 2698{
3fcf0b0d
TT
2699 filename_language entry;
2700
2701 entry.ext = xstrdup (ext);
2702 entry.lang = lang;
c906108c 2703
3fcf0b0d 2704 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2705}
2706
2707static char *ext_args;
920d2a44
AC
2708static void
2709show_ext_args (struct ui_file *file, int from_tty,
2710 struct cmd_list_element *c, const char *value)
2711{
3e43a32a
MS
2712 fprintf_filtered (file,
2713 _("Mapping between filename extension "
2714 "and source language is \"%s\".\n"),
920d2a44
AC
2715 value);
2716}
c906108c
SS
2717
2718static void
26c41df3 2719set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2720{
2721 int i;
2722 char *cp = ext_args;
2723 enum language lang;
3fcf0b0d 2724 filename_language *entry;
c906108c 2725
c378eb4e 2726 /* First arg is filename extension, starting with '.' */
c906108c 2727 if (*cp != '.')
8a3fe4f8 2728 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2729
2730 /* Find end of first arg. */
c5aa993b 2731 while (*cp && !isspace (*cp))
c906108c
SS
2732 cp++;
2733
2734 if (*cp == '\0')
3e43a32a
MS
2735 error (_("'%s': two arguments required -- "
2736 "filename extension and language"),
c906108c
SS
2737 ext_args);
2738
c378eb4e 2739 /* Null-terminate first arg. */
c5aa993b 2740 *cp++ = '\0';
c906108c
SS
2741
2742 /* Find beginning of second arg, which should be a source language. */
529480d0 2743 cp = skip_spaces (cp);
c906108c
SS
2744
2745 if (*cp == '\0')
3e43a32a
MS
2746 error (_("'%s': two arguments required -- "
2747 "filename extension and language"),
c906108c
SS
2748 ext_args);
2749
2750 /* Lookup the language from among those we know. */
2751 lang = language_enum (cp);
2752
2753 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2754 for (i = 0;
2755 VEC_iterate (filename_language, filename_language_table, i, entry);
2756 ++i)
2757 {
2758 if (0 == strcmp (ext_args, entry->ext))
2759 break;
2760 }
c906108c 2761
3fcf0b0d 2762 if (entry == NULL)
c906108c 2763 {
c378eb4e 2764 /* New file extension. */
c906108c
SS
2765 add_filename_language (ext_args, lang);
2766 }
2767 else
2768 {
c378eb4e 2769 /* Redefining a previously known filename extension. */
c906108c
SS
2770
2771 /* if (from_tty) */
2772 /* query ("Really make files of type %s '%s'?", */
2773 /* ext_args, language_str (lang)); */
2774
3fcf0b0d
TT
2775 xfree (entry->ext);
2776 entry->ext = xstrdup (ext_args);
2777 entry->lang = lang;
c906108c
SS
2778 }
2779}
2780
2781static void
fba45db2 2782info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2783{
2784 int i;
3fcf0b0d 2785 filename_language *entry;
c906108c 2786
a3f17187 2787 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2788 printf_filtered ("\n\n");
3fcf0b0d
TT
2789 for (i = 0;
2790 VEC_iterate (filename_language, filename_language_table, i, entry);
2791 ++i)
2792 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2793}
2794
c906108c 2795enum language
dd786858 2796deduce_language_from_filename (const char *filename)
c906108c
SS
2797{
2798 int i;
e6a959d6 2799 const char *cp;
c906108c
SS
2800
2801 if (filename != NULL)
2802 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2803 {
2804 filename_language *entry;
2805
2806 for (i = 0;
2807 VEC_iterate (filename_language, filename_language_table, i, entry);
2808 ++i)
2809 if (strcmp (cp, entry->ext) == 0)
2810 return entry->lang;
2811 }
c906108c
SS
2812
2813 return language_unknown;
2814}
2815\f
43f3e411
DE
2816/* Allocate and initialize a new symbol table.
2817 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2818
2819struct symtab *
43f3e411 2820allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2821{
43f3e411
DE
2822 struct objfile *objfile = cust->objfile;
2823 struct symtab *symtab
2824 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2825
19ba03f4
SM
2826 symtab->filename
2827 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2828 objfile->per_bfd->filename_cache);
c5aa993b
JM
2829 symtab->fullname = NULL;
2830 symtab->language = deduce_language_from_filename (filename);
c906108c 2831
db0fec5c
DE
2832 /* This can be very verbose with lots of headers.
2833 Only print at higher debug levels. */
2834 if (symtab_create_debug >= 2)
45cfd468
DE
2835 {
2836 /* Be a bit clever with debugging messages, and don't print objfile
2837 every time, only when it changes. */
2838 static char *last_objfile_name = NULL;
2839
2840 if (last_objfile_name == NULL
4262abfb 2841 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2842 {
2843 xfree (last_objfile_name);
4262abfb 2844 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2845 fprintf_unfiltered (gdb_stdlog,
2846 "Creating one or more symtabs for objfile %s ...\n",
2847 last_objfile_name);
2848 }
2849 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2850 "Created symtab %s for module %s.\n",
2851 host_address_to_string (symtab), filename);
45cfd468
DE
2852 }
2853
43f3e411
DE
2854 /* Add it to CUST's list of symtabs. */
2855 if (cust->filetabs == NULL)
2856 {
2857 cust->filetabs = symtab;
2858 cust->last_filetab = symtab;
2859 }
2860 else
2861 {
2862 cust->last_filetab->next = symtab;
2863 cust->last_filetab = symtab;
2864 }
2865
2866 /* Backlink to the containing compunit symtab. */
2867 symtab->compunit_symtab = cust;
2868
2869 return symtab;
2870}
2871
2872/* Allocate and initialize a new compunit.
2873 NAME is the name of the main source file, if there is one, or some
2874 descriptive text if there are no source files. */
2875
2876struct compunit_symtab *
2877allocate_compunit_symtab (struct objfile *objfile, const char *name)
2878{
2879 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2880 struct compunit_symtab);
2881 const char *saved_name;
2882
2883 cu->objfile = objfile;
2884
2885 /* The name we record here is only for display/debugging purposes.
2886 Just save the basename to avoid path issues (too long for display,
2887 relative vs absolute, etc.). */
2888 saved_name = lbasename (name);
224c3ddb
SM
2889 cu->name
2890 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2891 strlen (saved_name));
43f3e411
DE
2892
2893 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2894
2895 if (symtab_create_debug)
2896 {
2897 fprintf_unfiltered (gdb_stdlog,
2898 "Created compunit symtab %s for %s.\n",
2899 host_address_to_string (cu),
2900 cu->name);
2901 }
2902
2903 return cu;
2904}
2905
2906/* Hook CU to the objfile it comes from. */
2907
2908void
2909add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2910{
2911 cu->next = cu->objfile->compunit_symtabs;
2912 cu->objfile->compunit_symtabs = cu;
c906108c 2913}
c906108c 2914\f
c5aa993b 2915
b15cc25c
PA
2916/* Reset all data structures in gdb which may contain references to
2917 symbol table data. */
c906108c
SS
2918
2919void
b15cc25c 2920clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2921{
2922 /* Someday, we should do better than this, by only blowing away
2923 the things that really need to be blown. */
c0501be5
DJ
2924
2925 /* Clear the "current" symtab first, because it is no longer valid.
2926 breakpoint_re_set may try to access the current symtab. */
2927 clear_current_source_symtab_and_line ();
2928
c906108c 2929 clear_displays ();
1bfeeb0f 2930 clear_last_displayed_sal ();
c906108c 2931 clear_pc_function_cache ();
06d3b283 2932 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2933
2934 /* Clear globals which might have pointed into a removed objfile.
2935 FIXME: It's not clear which of these are supposed to persist
2936 between expressions and which ought to be reset each time. */
2937 expression_context_block = NULL;
2938 innermost_block = NULL;
8756216b
DP
2939
2940 /* Varobj may refer to old symbols, perform a cleanup. */
2941 varobj_invalidate ();
2942
e700d1b2
JB
2943 /* Now that the various caches have been cleared, we can re_set
2944 our breakpoints without risking it using stale data. */
2945 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2946 breakpoint_re_set ();
c906108c
SS
2947}
2948
74b7792f
AC
2949static void
2950clear_symtab_users_cleanup (void *ignore)
2951{
c1e56572 2952 clear_symtab_users (0);
74b7792f 2953}
c906108c 2954\f
c906108c
SS
2955/* OVERLAYS:
2956 The following code implements an abstraction for debugging overlay sections.
2957
2958 The target model is as follows:
2959 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2960 same VMA, each with its own unique LMA (or load address).
c906108c 2961 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2962 sections, one by one, from the load address into the VMA address.
5417f6dc 2963 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2964 sections should be considered to be mapped from the VMA to the LMA.
2965 This information is used for symbol lookup, and memory read/write.
5417f6dc 2966 For instance, if a section has been mapped then its contents
c5aa993b 2967 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2968
2969 Two levels of debugger support for overlays are available. One is
2970 "manual", in which the debugger relies on the user to tell it which
2971 overlays are currently mapped. This level of support is
2972 implemented entirely in the core debugger, and the information about
2973 whether a section is mapped is kept in the objfile->obj_section table.
2974
2975 The second level of support is "automatic", and is only available if
2976 the target-specific code provides functionality to read the target's
2977 overlay mapping table, and translate its contents for the debugger
2978 (by updating the mapped state information in the obj_section tables).
2979
2980 The interface is as follows:
c5aa993b
JM
2981 User commands:
2982 overlay map <name> -- tell gdb to consider this section mapped
2983 overlay unmap <name> -- tell gdb to consider this section unmapped
2984 overlay list -- list the sections that GDB thinks are mapped
2985 overlay read-target -- get the target's state of what's mapped
2986 overlay off/manual/auto -- set overlay debugging state
2987 Functional interface:
2988 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2989 section, return that section.
5417f6dc 2990 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2991 the pc, either in its VMA or its LMA
714835d5 2992 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2993 section_is_overlay(sect): true if section's VMA != LMA
2994 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2995 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2996 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2997 overlay_mapped_address(...): map an address from section's LMA to VMA
2998 overlay_unmapped_address(...): map an address from section's VMA to LMA
2999 symbol_overlayed_address(...): Return a "current" address for symbol:
3000 either in VMA or LMA depending on whether
c378eb4e 3001 the symbol's section is currently mapped. */
c906108c
SS
3002
3003/* Overlay debugging state: */
3004
d874f1e2 3005enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3006int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3007
c906108c 3008/* Function: section_is_overlay (SECTION)
5417f6dc 3009 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3010 SECTION is loaded at an address different from where it will "run". */
3011
3012int
714835d5 3013section_is_overlay (struct obj_section *section)
c906108c 3014{
714835d5
UW
3015 if (overlay_debugging && section)
3016 {
3017 bfd *abfd = section->objfile->obfd;
3018 asection *bfd_section = section->the_bfd_section;
f888f159 3019
714835d5
UW
3020 if (bfd_section_lma (abfd, bfd_section) != 0
3021 && bfd_section_lma (abfd, bfd_section)
3022 != bfd_section_vma (abfd, bfd_section))
3023 return 1;
3024 }
c906108c
SS
3025
3026 return 0;
3027}
3028
3029/* Function: overlay_invalidate_all (void)
3030 Invalidate the mapped state of all overlay sections (mark it as stale). */
3031
3032static void
fba45db2 3033overlay_invalidate_all (void)
c906108c 3034{
c5aa993b 3035 struct objfile *objfile;
c906108c
SS
3036 struct obj_section *sect;
3037
3038 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3039 if (section_is_overlay (sect))
3040 sect->ovly_mapped = -1;
c906108c
SS
3041}
3042
714835d5 3043/* Function: section_is_mapped (SECTION)
5417f6dc 3044 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3045
3046 Access to the ovly_mapped flag is restricted to this function, so
3047 that we can do automatic update. If the global flag
3048 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3049 overlay_invalidate_all. If the mapped state of the particular
3050 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3051
714835d5
UW
3052int
3053section_is_mapped (struct obj_section *osect)
c906108c 3054{
9216df95
UW
3055 struct gdbarch *gdbarch;
3056
714835d5 3057 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3058 return 0;
3059
c5aa993b 3060 switch (overlay_debugging)
c906108c
SS
3061 {
3062 default:
d874f1e2 3063 case ovly_off:
c5aa993b 3064 return 0; /* overlay debugging off */
d874f1e2 3065 case ovly_auto: /* overlay debugging automatic */
1c772458 3066 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3067 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3068 gdbarch = get_objfile_arch (osect->objfile);
3069 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3070 {
3071 if (overlay_cache_invalid)
3072 {
3073 overlay_invalidate_all ();
3074 overlay_cache_invalid = 0;
3075 }
3076 if (osect->ovly_mapped == -1)
9216df95 3077 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3078 }
3079 /* fall thru to manual case */
d874f1e2 3080 case ovly_on: /* overlay debugging manual */
c906108c
SS
3081 return osect->ovly_mapped == 1;
3082 }
3083}
3084
c906108c
SS
3085/* Function: pc_in_unmapped_range
3086 If PC falls into the lma range of SECTION, return true, else false. */
3087
3088CORE_ADDR
714835d5 3089pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3090{
714835d5
UW
3091 if (section_is_overlay (section))
3092 {
3093 bfd *abfd = section->objfile->obfd;
3094 asection *bfd_section = section->the_bfd_section;
fbd35540 3095
714835d5
UW
3096 /* We assume the LMA is relocated by the same offset as the VMA. */
3097 bfd_vma size = bfd_get_section_size (bfd_section);
3098 CORE_ADDR offset = obj_section_offset (section);
3099
3100 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3101 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3102 return 1;
3103 }
c906108c 3104
c906108c
SS
3105 return 0;
3106}
3107
3108/* Function: pc_in_mapped_range
3109 If PC falls into the vma range of SECTION, return true, else false. */
3110
3111CORE_ADDR
714835d5 3112pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3113{
714835d5
UW
3114 if (section_is_overlay (section))
3115 {
3116 if (obj_section_addr (section) <= pc
3117 && pc < obj_section_endaddr (section))
3118 return 1;
3119 }
c906108c 3120
c906108c
SS
3121 return 0;
3122}
3123
9ec8e6a0
JB
3124/* Return true if the mapped ranges of sections A and B overlap, false
3125 otherwise. */
3b7bacac 3126
b9362cc7 3127static int
714835d5 3128sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3129{
714835d5
UW
3130 CORE_ADDR a_start = obj_section_addr (a);
3131 CORE_ADDR a_end = obj_section_endaddr (a);
3132 CORE_ADDR b_start = obj_section_addr (b);
3133 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3134
3135 return (a_start < b_end && b_start < a_end);
3136}
3137
c906108c
SS
3138/* Function: overlay_unmapped_address (PC, SECTION)
3139 Returns the address corresponding to PC in the unmapped (load) range.
3140 May be the same as PC. */
3141
3142CORE_ADDR
714835d5 3143overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3144{
714835d5
UW
3145 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3146 {
3147 bfd *abfd = section->objfile->obfd;
3148 asection *bfd_section = section->the_bfd_section;
fbd35540 3149
714835d5
UW
3150 return pc + bfd_section_lma (abfd, bfd_section)
3151 - bfd_section_vma (abfd, bfd_section);
3152 }
c906108c
SS
3153
3154 return pc;
3155}
3156
3157/* Function: overlay_mapped_address (PC, SECTION)
3158 Returns the address corresponding to PC in the mapped (runtime) range.
3159 May be the same as PC. */
3160
3161CORE_ADDR
714835d5 3162overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3163{
714835d5
UW
3164 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3165 {
3166 bfd *abfd = section->objfile->obfd;
3167 asection *bfd_section = section->the_bfd_section;
fbd35540 3168
714835d5
UW
3169 return pc + bfd_section_vma (abfd, bfd_section)
3170 - bfd_section_lma (abfd, bfd_section);
3171 }
c906108c
SS
3172
3173 return pc;
3174}
3175
5417f6dc 3176/* Function: symbol_overlayed_address
c906108c
SS
3177 Return one of two addresses (relative to the VMA or to the LMA),
3178 depending on whether the section is mapped or not. */
3179
c5aa993b 3180CORE_ADDR
714835d5 3181symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3182{
3183 if (overlay_debugging)
3184 {
c378eb4e 3185 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3186 if (section == 0)
3187 return address;
c378eb4e
MS
3188 /* If the symbol's section is not an overlay, just return its
3189 address. */
c906108c
SS
3190 if (!section_is_overlay (section))
3191 return address;
c378eb4e 3192 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3193 if (section_is_mapped (section))
3194 return address;
3195 /*
3196 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3197 * then return its LOADED address rather than its vma address!!
3198 */
3199 return overlay_unmapped_address (address, section);
3200 }
3201 return address;
3202}
3203
5417f6dc 3204/* Function: find_pc_overlay (PC)
c906108c
SS
3205 Return the best-match overlay section for PC:
3206 If PC matches a mapped overlay section's VMA, return that section.
3207 Else if PC matches an unmapped section's VMA, return that section.
3208 Else if PC matches an unmapped section's LMA, return that section. */
3209
714835d5 3210struct obj_section *
fba45db2 3211find_pc_overlay (CORE_ADDR pc)
c906108c 3212{
c5aa993b 3213 struct objfile *objfile;
c906108c
SS
3214 struct obj_section *osect, *best_match = NULL;
3215
3216 if (overlay_debugging)
b631e59b
KT
3217 {
3218 ALL_OBJSECTIONS (objfile, osect)
3219 if (section_is_overlay (osect))
c5aa993b 3220 {
b631e59b
KT
3221 if (pc_in_mapped_range (pc, osect))
3222 {
3223 if (section_is_mapped (osect))
3224 return osect;
3225 else
3226 best_match = osect;
3227 }
3228 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3229 best_match = osect;
3230 }
b631e59b 3231 }
714835d5 3232 return best_match;
c906108c
SS
3233}
3234
3235/* Function: find_pc_mapped_section (PC)
5417f6dc 3236 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3237 currently marked as MAPPED, return that section. Else return NULL. */
3238
714835d5 3239struct obj_section *
fba45db2 3240find_pc_mapped_section (CORE_ADDR pc)
c906108c 3241{
c5aa993b 3242 struct objfile *objfile;
c906108c
SS
3243 struct obj_section *osect;
3244
3245 if (overlay_debugging)
b631e59b
KT
3246 {
3247 ALL_OBJSECTIONS (objfile, osect)
3248 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3249 return osect;
3250 }
c906108c
SS
3251
3252 return NULL;
3253}
3254
3255/* Function: list_overlays_command
c378eb4e 3256 Print a list of mapped sections and their PC ranges. */
c906108c 3257
5d3055ad 3258static void
fba45db2 3259list_overlays_command (char *args, int from_tty)
c906108c 3260{
c5aa993b
JM
3261 int nmapped = 0;
3262 struct objfile *objfile;
c906108c
SS
3263 struct obj_section *osect;
3264
3265 if (overlay_debugging)
b631e59b
KT
3266 {
3267 ALL_OBJSECTIONS (objfile, osect)
714835d5 3268 if (section_is_mapped (osect))
b631e59b
KT
3269 {
3270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3271 const char *name;
3272 bfd_vma lma, vma;
3273 int size;
3274
3275 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3276 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3277 size = bfd_get_section_size (osect->the_bfd_section);
3278 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3279
3280 printf_filtered ("Section %s, loaded at ", name);
3281 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3282 puts_filtered (" - ");
3283 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3284 printf_filtered (", mapped at ");
3285 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3286 puts_filtered (" - ");
3287 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3288 puts_filtered ("\n");
3289
3290 nmapped++;
3291 }
3292 }
c906108c 3293 if (nmapped == 0)
a3f17187 3294 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3295}
3296
3297/* Function: map_overlay_command
3298 Mark the named section as mapped (ie. residing at its VMA address). */
3299
5d3055ad 3300static void
fba45db2 3301map_overlay_command (char *args, int from_tty)
c906108c 3302{
c5aa993b
JM
3303 struct objfile *objfile, *objfile2;
3304 struct obj_section *sec, *sec2;
c906108c
SS
3305
3306 if (!overlay_debugging)
3e43a32a
MS
3307 error (_("Overlay debugging not enabled. Use "
3308 "either the 'overlay auto' or\n"
3309 "the 'overlay manual' command."));
c906108c
SS
3310
3311 if (args == 0 || *args == 0)
8a3fe4f8 3312 error (_("Argument required: name of an overlay section"));
c906108c 3313
c378eb4e 3314 /* First, find a section matching the user supplied argument. */
c906108c
SS
3315 ALL_OBJSECTIONS (objfile, sec)
3316 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3317 {
c378eb4e 3318 /* Now, check to see if the section is an overlay. */
714835d5 3319 if (!section_is_overlay (sec))
c5aa993b
JM
3320 continue; /* not an overlay section */
3321
c378eb4e 3322 /* Mark the overlay as "mapped". */
c5aa993b
JM
3323 sec->ovly_mapped = 1;
3324
3325 /* Next, make a pass and unmap any sections that are
3326 overlapped by this new section: */
3327 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3328 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3329 {
3330 if (info_verbose)
a3f17187 3331 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3332 bfd_section_name (objfile->obfd,
3333 sec2->the_bfd_section));
c378eb4e 3334 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3335 }
3336 return;
3337 }
8a3fe4f8 3338 error (_("No overlay section called %s"), args);
c906108c
SS
3339}
3340
3341/* Function: unmap_overlay_command
5417f6dc 3342 Mark the overlay section as unmapped
c906108c
SS
3343 (ie. resident in its LMA address range, rather than the VMA range). */
3344
5d3055ad 3345static void
fba45db2 3346unmap_overlay_command (char *args, int from_tty)
c906108c 3347{
c5aa993b 3348 struct objfile *objfile;
7a270e0c 3349 struct obj_section *sec = NULL;
c906108c
SS
3350
3351 if (!overlay_debugging)
3e43a32a
MS
3352 error (_("Overlay debugging not enabled. "
3353 "Use either the 'overlay auto' or\n"
3354 "the 'overlay manual' command."));
c906108c
SS
3355
3356 if (args == 0 || *args == 0)
8a3fe4f8 3357 error (_("Argument required: name of an overlay section"));
c906108c 3358
c378eb4e 3359 /* First, find a section matching the user supplied argument. */
c906108c
SS
3360 ALL_OBJSECTIONS (objfile, sec)
3361 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3362 {
3363 if (!sec->ovly_mapped)
8a3fe4f8 3364 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3365 sec->ovly_mapped = 0;
3366 return;
3367 }
8a3fe4f8 3368 error (_("No overlay section called %s"), args);
c906108c
SS
3369}
3370
3371/* Function: overlay_auto_command
3372 A utility command to turn on overlay debugging.
c378eb4e 3373 Possibly this should be done via a set/show command. */
c906108c
SS
3374
3375static void
fba45db2 3376overlay_auto_command (char *args, int from_tty)
c906108c 3377{
d874f1e2 3378 overlay_debugging = ovly_auto;
1900040c 3379 enable_overlay_breakpoints ();
c906108c 3380 if (info_verbose)
a3f17187 3381 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3382}
3383
3384/* Function: overlay_manual_command
3385 A utility command to turn on overlay debugging.
c378eb4e 3386 Possibly this should be done via a set/show command. */
c906108c
SS
3387
3388static void
fba45db2 3389overlay_manual_command (char *args, int from_tty)
c906108c 3390{
d874f1e2 3391 overlay_debugging = ovly_on;
1900040c 3392 disable_overlay_breakpoints ();
c906108c 3393 if (info_verbose)
a3f17187 3394 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3395}
3396
3397/* Function: overlay_off_command
3398 A utility command to turn on overlay debugging.
c378eb4e 3399 Possibly this should be done via a set/show command. */
c906108c
SS
3400
3401static void
fba45db2 3402overlay_off_command (char *args, int from_tty)
c906108c 3403{
d874f1e2 3404 overlay_debugging = ovly_off;
1900040c 3405 disable_overlay_breakpoints ();
c906108c 3406 if (info_verbose)
a3f17187 3407 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3408}
3409
3410static void
fba45db2 3411overlay_load_command (char *args, int from_tty)
c906108c 3412{
e17c207e
UW
3413 struct gdbarch *gdbarch = get_current_arch ();
3414
3415 if (gdbarch_overlay_update_p (gdbarch))
3416 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3417 else
8a3fe4f8 3418 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3419}
3420
3421/* Function: overlay_command
c378eb4e 3422 A place-holder for a mis-typed command. */
c906108c 3423
c378eb4e 3424/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3425static struct cmd_list_element *overlaylist;
c906108c
SS
3426
3427static void
fba45db2 3428overlay_command (char *args, int from_tty)
c906108c 3429{
c5aa993b 3430 printf_unfiltered
c906108c 3431 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3432 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3433}
3434
c906108c
SS
3435/* Target Overlays for the "Simplest" overlay manager:
3436
5417f6dc
RM
3437 This is GDB's default target overlay layer. It works with the
3438 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3439 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3440 so targets that use a different runtime overlay manager can
c906108c
SS
3441 substitute their own overlay_update function and take over the
3442 function pointer.
3443
3444 The overlay_update function pokes around in the target's data structures
3445 to see what overlays are mapped, and updates GDB's overlay mapping with
3446 this information.
3447
3448 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3449 unsigned _novlys; /# number of overlay sections #/
3450 unsigned _ovly_table[_novlys][4] = {
438e1e42 3451 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3452 {..., ..., ..., ...},
3453 }
3454 unsigned _novly_regions; /# number of overlay regions #/
3455 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3456 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3457 {..., ..., ...},
3458 }
c906108c
SS
3459 These functions will attempt to update GDB's mappedness state in the
3460 symbol section table, based on the target's mappedness state.
3461
3462 To do this, we keep a cached copy of the target's _ovly_table, and
3463 attempt to detect when the cached copy is invalidated. The main
3464 entry point is "simple_overlay_update(SECT), which looks up SECT in
3465 the cached table and re-reads only the entry for that section from
c378eb4e 3466 the target (whenever possible). */
c906108c
SS
3467
3468/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3469static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3470static unsigned cache_novlys = 0;
c906108c 3471static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3472enum ovly_index
3473 {
438e1e42 3474 VMA, OSIZE, LMA, MAPPED
c5aa993b 3475 };
c906108c 3476
c378eb4e 3477/* Throw away the cached copy of _ovly_table. */
3b7bacac 3478
c906108c 3479static void
fba45db2 3480simple_free_overlay_table (void)
c906108c
SS
3481{
3482 if (cache_ovly_table)
b8c9b27d 3483 xfree (cache_ovly_table);
c5aa993b 3484 cache_novlys = 0;
c906108c
SS
3485 cache_ovly_table = NULL;
3486 cache_ovly_table_base = 0;
3487}
3488
9216df95 3489/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3490 Convert to host order. int LEN is number of ints. */
3b7bacac 3491
c906108c 3492static void
9216df95 3493read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3494 int len, int size, enum bfd_endian byte_order)
c906108c 3495{
c378eb4e 3496 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3497 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3498 int i;
c906108c 3499
9216df95 3500 read_memory (memaddr, buf, len * size);
c906108c 3501 for (i = 0; i < len; i++)
e17a4113 3502 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3503}
3504
3505/* Find and grab a copy of the target _ovly_table
c378eb4e 3506 (and _novlys, which is needed for the table's size). */
3b7bacac 3507
c5aa993b 3508static int
fba45db2 3509simple_read_overlay_table (void)
c906108c 3510{
3b7344d5 3511 struct bound_minimal_symbol novlys_msym;
7c7b6655 3512 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3513 struct gdbarch *gdbarch;
3514 int word_size;
e17a4113 3515 enum bfd_endian byte_order;
c906108c
SS
3516
3517 simple_free_overlay_table ();
9b27852e 3518 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3519 if (! novlys_msym.minsym)
c906108c 3520 {
8a3fe4f8 3521 error (_("Error reading inferior's overlay table: "
0d43edd1 3522 "couldn't find `_novlys' variable\n"
8a3fe4f8 3523 "in inferior. Use `overlay manual' mode."));
0d43edd1 3524 return 0;
c906108c 3525 }
0d43edd1 3526
7c7b6655
TT
3527 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3528 if (! ovly_table_msym.minsym)
0d43edd1 3529 {
8a3fe4f8 3530 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3531 "`_ovly_table' array\n"
8a3fe4f8 3532 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3533 return 0;
3534 }
3535
7c7b6655 3536 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3537 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3538 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3539
77e371c0
TT
3540 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3541 4, byte_order);
0d43edd1 3542 cache_ovly_table
224c3ddb 3543 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3544 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3545 read_target_long_array (cache_ovly_table_base,
777ea8f1 3546 (unsigned int *) cache_ovly_table,
e17a4113 3547 cache_novlys * 4, word_size, byte_order);
0d43edd1 3548
c5aa993b 3549 return 1; /* SUCCESS */
c906108c
SS
3550}
3551
5417f6dc 3552/* Function: simple_overlay_update_1
c906108c
SS
3553 A helper function for simple_overlay_update. Assuming a cached copy
3554 of _ovly_table exists, look through it to find an entry whose vma,
3555 lma and size match those of OSECT. Re-read the entry and make sure
3556 it still matches OSECT (else the table may no longer be valid).
3557 Set OSECT's mapped state to match the entry. Return: 1 for
3558 success, 0 for failure. */
3559
3560static int
fba45db2 3561simple_overlay_update_1 (struct obj_section *osect)
c906108c 3562{
764c99c1 3563 int i;
fbd35540
MS
3564 bfd *obfd = osect->objfile->obfd;
3565 asection *bsect = osect->the_bfd_section;
9216df95
UW
3566 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3567 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3569
c906108c 3570 for (i = 0; i < cache_novlys; i++)
fbd35540 3571 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3572 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3573 {
9216df95
UW
3574 read_target_long_array (cache_ovly_table_base + i * word_size,
3575 (unsigned int *) cache_ovly_table[i],
e17a4113 3576 4, word_size, byte_order);
fbd35540 3577 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3578 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3579 {
3580 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3581 return 1;
3582 }
c378eb4e 3583 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3584 return 0;
3585 }
3586 return 0;
3587}
3588
3589/* Function: simple_overlay_update
5417f6dc
RM
3590 If OSECT is NULL, then update all sections' mapped state
3591 (after re-reading the entire target _ovly_table).
3592 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3593 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3594 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3595 re-read the entire cache, and go ahead and update all sections. */
3596
1c772458 3597void
fba45db2 3598simple_overlay_update (struct obj_section *osect)
c906108c 3599{
c5aa993b 3600 struct objfile *objfile;
c906108c 3601
c378eb4e 3602 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3603 if (osect)
c378eb4e 3604 /* Have we got a cached copy of the target's overlay table? */
c906108c 3605 if (cache_ovly_table != NULL)
9cc89665
MS
3606 {
3607 /* Does its cached location match what's currently in the
3608 symtab? */
3b7344d5 3609 struct bound_minimal_symbol minsym
9cc89665
MS
3610 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3611
3b7344d5 3612 if (minsym.minsym == NULL)
9cc89665
MS
3613 error (_("Error reading inferior's overlay table: couldn't "
3614 "find `_ovly_table' array\n"
3615 "in inferior. Use `overlay manual' mode."));
3616
77e371c0 3617 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3618 /* Then go ahead and try to look up this single section in
3619 the cache. */
3620 if (simple_overlay_update_1 (osect))
3621 /* Found it! We're done. */
3622 return;
3623 }
c906108c
SS
3624
3625 /* Cached table no good: need to read the entire table anew.
3626 Or else we want all the sections, in which case it's actually
3627 more efficient to read the whole table in one block anyway. */
3628
0d43edd1
JB
3629 if (! simple_read_overlay_table ())
3630 return;
3631
c378eb4e 3632 /* Now may as well update all sections, even if only one was requested. */
c906108c 3633 ALL_OBJSECTIONS (objfile, osect)
714835d5 3634 if (section_is_overlay (osect))
c5aa993b 3635 {
764c99c1 3636 int i;
fbd35540
MS
3637 bfd *obfd = osect->objfile->obfd;
3638 asection *bsect = osect->the_bfd_section;
c5aa993b 3639
c5aa993b 3640 for (i = 0; i < cache_novlys; i++)
fbd35540 3641 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3642 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3643 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3644 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3645 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3646 }
3647 }
c906108c
SS
3648}
3649
086df311
DJ
3650/* Set the output sections and output offsets for section SECTP in
3651 ABFD. The relocation code in BFD will read these offsets, so we
3652 need to be sure they're initialized. We map each section to itself,
3653 with no offset; this means that SECTP->vma will be honored. */
3654
3655static void
3656symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3657{
3658 sectp->output_section = sectp;
3659 sectp->output_offset = 0;
3660}
3661
ac8035ab
TG
3662/* Default implementation for sym_relocate. */
3663
ac8035ab
TG
3664bfd_byte *
3665default_symfile_relocate (struct objfile *objfile, asection *sectp,
3666 bfd_byte *buf)
3667{
3019eac3
DE
3668 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3669 DWO file. */
3670 bfd *abfd = sectp->owner;
ac8035ab
TG
3671
3672 /* We're only interested in sections with relocation
3673 information. */
3674 if ((sectp->flags & SEC_RELOC) == 0)
3675 return NULL;
3676
3677 /* We will handle section offsets properly elsewhere, so relocate as if
3678 all sections begin at 0. */
3679 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3680
3681 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3682}
3683
086df311
DJ
3684/* Relocate the contents of a debug section SECTP in ABFD. The
3685 contents are stored in BUF if it is non-NULL, or returned in a
3686 malloc'd buffer otherwise.
3687
3688 For some platforms and debug info formats, shared libraries contain
3689 relocations against the debug sections (particularly for DWARF-2;
3690 one affected platform is PowerPC GNU/Linux, although it depends on
3691 the version of the linker in use). Also, ELF object files naturally
3692 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3693 the relocations in order to get the locations of symbols correct.
3694 Another example that may require relocation processing, is the
3695 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3696 debug section. */
086df311
DJ
3697
3698bfd_byte *
ac8035ab
TG
3699symfile_relocate_debug_section (struct objfile *objfile,
3700 asection *sectp, bfd_byte *buf)
086df311 3701{
ac8035ab 3702 gdb_assert (objfile->sf->sym_relocate);
086df311 3703
ac8035ab 3704 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3705}
c906108c 3706
31d99776
DJ
3707struct symfile_segment_data *
3708get_symfile_segment_data (bfd *abfd)
3709{
00b5771c 3710 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3711
3712 if (sf == NULL)
3713 return NULL;
3714
3715 return sf->sym_segments (abfd);
3716}
3717
3718void
3719free_symfile_segment_data (struct symfile_segment_data *data)
3720{
3721 xfree (data->segment_bases);
3722 xfree (data->segment_sizes);
3723 xfree (data->segment_info);
3724 xfree (data);
3725}
3726
28c32713
JB
3727/* Given:
3728 - DATA, containing segment addresses from the object file ABFD, and
3729 the mapping from ABFD's sections onto the segments that own them,
3730 and
3731 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3732 segment addresses reported by the target,
3733 store the appropriate offsets for each section in OFFSETS.
3734
3735 If there are fewer entries in SEGMENT_BASES than there are segments
3736 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3737
8d385431
DJ
3738 If there are more entries, then ignore the extra. The target may
3739 not be able to distinguish between an empty data segment and a
3740 missing data segment; a missing text segment is less plausible. */
3b7bacac 3741
31d99776 3742int
3189cb12
DE
3743symfile_map_offsets_to_segments (bfd *abfd,
3744 const struct symfile_segment_data *data,
31d99776
DJ
3745 struct section_offsets *offsets,
3746 int num_segment_bases,
3747 const CORE_ADDR *segment_bases)
3748{
3749 int i;
3750 asection *sect;
3751
28c32713
JB
3752 /* It doesn't make sense to call this function unless you have some
3753 segment base addresses. */
202b96c1 3754 gdb_assert (num_segment_bases > 0);
28c32713 3755
31d99776
DJ
3756 /* If we do not have segment mappings for the object file, we
3757 can not relocate it by segments. */
3758 gdb_assert (data != NULL);
3759 gdb_assert (data->num_segments > 0);
3760
31d99776
DJ
3761 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3762 {
31d99776
DJ
3763 int which = data->segment_info[i];
3764
28c32713
JB
3765 gdb_assert (0 <= which && which <= data->num_segments);
3766
3767 /* Don't bother computing offsets for sections that aren't
3768 loaded as part of any segment. */
3769 if (! which)
3770 continue;
3771
3772 /* Use the last SEGMENT_BASES entry as the address of any extra
3773 segments mentioned in DATA->segment_info. */
31d99776 3774 if (which > num_segment_bases)
28c32713 3775 which = num_segment_bases;
31d99776 3776
28c32713
JB
3777 offsets->offsets[i] = (segment_bases[which - 1]
3778 - data->segment_bases[which - 1]);
31d99776
DJ
3779 }
3780
3781 return 1;
3782}
3783
3784static void
3785symfile_find_segment_sections (struct objfile *objfile)
3786{
3787 bfd *abfd = objfile->obfd;
3788 int i;
3789 asection *sect;
3790 struct symfile_segment_data *data;
3791
3792 data = get_symfile_segment_data (objfile->obfd);
3793 if (data == NULL)
3794 return;
3795
3796 if (data->num_segments != 1 && data->num_segments != 2)
3797 {
3798 free_symfile_segment_data (data);
3799 return;
3800 }
3801
3802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3803 {
31d99776
DJ
3804 int which = data->segment_info[i];
3805
3806 if (which == 1)
3807 {
3808 if (objfile->sect_index_text == -1)
3809 objfile->sect_index_text = sect->index;
3810
3811 if (objfile->sect_index_rodata == -1)
3812 objfile->sect_index_rodata = sect->index;
3813 }
3814 else if (which == 2)
3815 {
3816 if (objfile->sect_index_data == -1)
3817 objfile->sect_index_data = sect->index;
3818
3819 if (objfile->sect_index_bss == -1)
3820 objfile->sect_index_bss = sect->index;
3821 }
3822 }
3823
3824 free_symfile_segment_data (data);
3825}
3826
76ad5e1e
NB
3827/* Listen for free_objfile events. */
3828
3829static void
3830symfile_free_objfile (struct objfile *objfile)
3831{
c33b2f12
MM
3832 /* Remove the target sections owned by this objfile. */
3833 if (objfile != NULL)
76ad5e1e
NB
3834 remove_target_sections ((void *) objfile);
3835}
3836
540c2971
DE
3837/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3838 Expand all symtabs that match the specified criteria.
3839 See quick_symbol_functions.expand_symtabs_matching for details. */
3840
3841void
14bc53a8
PA
3842expand_symtabs_matching
3843 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3844 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3845 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3846 enum search_domain kind)
540c2971
DE
3847{
3848 struct objfile *objfile;
3849
3850 ALL_OBJFILES (objfile)
3851 {
3852 if (objfile->sf)
bb4142cf 3853 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3854 symbol_matcher,
14bc53a8 3855 expansion_notify, kind);
540c2971
DE
3856 }
3857}
3858
3859/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3860 Map function FUN over every file.
3861 See quick_symbol_functions.map_symbol_filenames for details. */
3862
3863void
bb4142cf
DE
3864map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3865 int need_fullname)
540c2971
DE
3866{
3867 struct objfile *objfile;
3868
3869 ALL_OBJFILES (objfile)
3870 {
3871 if (objfile->sf)
3872 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3873 need_fullname);
3874 }
3875}
3876
c906108c 3877void
fba45db2 3878_initialize_symfile (void)
c906108c
SS
3879{
3880 struct cmd_list_element *c;
c5aa993b 3881
76ad5e1e
NB
3882 observer_attach_free_objfile (symfile_free_objfile);
3883
1a966eab
AC
3884 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3885Load symbol table from executable file FILE.\n\
c906108c 3886The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3887to execute."), &cmdlist);
5ba2abeb 3888 set_cmd_completer (c, filename_completer);
c906108c 3889
1a966eab 3890 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3891Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3892Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3893 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3894The optional arguments are section-name section-address pairs and\n\
3895should be specified if the data and bss segments are not contiguous\n\
1a966eab 3896with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3897 &cmdlist);
5ba2abeb 3898 set_cmd_completer (c, filename_completer);
c906108c 3899
63644780
NB
3900 c = add_cmd ("remove-symbol-file", class_files,
3901 remove_symbol_file_command, _("\
3902Remove a symbol file added via the add-symbol-file command.\n\
3903Usage: remove-symbol-file FILENAME\n\
3904 remove-symbol-file -a ADDRESS\n\
3905The file to remove can be identified by its filename or by an address\n\
3906that lies within the boundaries of this symbol file in memory."),
3907 &cmdlist);
3908
1a966eab
AC
3909 c = add_cmd ("load", class_files, load_command, _("\
3910Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3911for access from GDB.\n\
5cf30ebf
LM
3912An optional load OFFSET may also be given as a literal address.\n\
3913When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3914on its own.\n\
3915Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3916 set_cmd_completer (c, filename_completer);
c906108c 3917
c5aa993b 3918 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3919 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3920 "overlay ", 0, &cmdlist);
3921
3922 add_com_alias ("ovly", "overlay", class_alias, 1);
3923 add_com_alias ("ov", "overlay", class_alias, 1);
3924
c5aa993b 3925 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3926 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3927
c5aa993b 3928 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3929 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3930
c5aa993b 3931 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3932 _("List mappings of overlay sections."), &overlaylist);
c906108c 3933
c5aa993b 3934 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3935 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3936 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3937 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3938 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3939 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3940 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3941 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3942
3943 /* Filename extension to source language lookup table: */
26c41df3
AC
3944 add_setshow_string_noescape_cmd ("extension-language", class_files,
3945 &ext_args, _("\
3946Set mapping between filename extension and source language."), _("\
3947Show mapping between filename extension and source language."), _("\
3948Usage: set extension-language .foo bar"),
3949 set_ext_lang_command,
920d2a44 3950 show_ext_args,
26c41df3 3951 &setlist, &showlist);
c906108c 3952
c5aa993b 3953 add_info ("extensions", info_ext_lang_command,
1bedd215 3954 _("All filename extensions associated with a source language."));
917317f4 3955
525226b5
AC
3956 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3957 &debug_file_directory, _("\
24ddea62
JK
3958Set the directories where separate debug symbols are searched for."), _("\
3959Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3960Separate debug symbols are first searched for in the same\n\
3961directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3962and lastly at the path of the directory of the binary with\n\
24ddea62 3963each global debug-file-directory component prepended."),
525226b5 3964 NULL,
920d2a44 3965 show_debug_file_directory,
525226b5 3966 &setlist, &showlist);
770e7fc7
DE
3967
3968 add_setshow_enum_cmd ("symbol-loading", no_class,
3969 print_symbol_loading_enums, &print_symbol_loading,
3970 _("\
3971Set printing of symbol loading messages."), _("\
3972Show printing of symbol loading messages."), _("\
3973off == turn all messages off\n\
3974brief == print messages for the executable,\n\
3975 and brief messages for shared libraries\n\
3976full == print messages for the executable,\n\
3977 and messages for each shared library."),
3978 NULL,
3979 NULL,
3980 &setprintlist, &showprintlist);
c4dcb155
SM
3981
3982 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3983 &separate_debug_file_debug, _("\
3984Set printing of separate debug info file search debug."), _("\
3985Show printing of separate debug info file search debug."), _("\
3986When on, GDB prints the searched locations while looking for separate debug \
3987info files."), NULL, NULL, &setdebuglist, &showdebuglist);
c906108c 3988}
This page took 2.299055 seconds and 4 git commands to generate.