[ARC] Force the disassam to use the hexadecimal number for printing
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* Functions this file defines. */
c906108c 86
a14ed312 87static void load_command (char *, int);
c906108c 88
ecf45d2c 89static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 90 objfile_flags flags);
d7db6da9 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
a14ed312 105static void info_ext_lang_command (char *args, int from_tty);
392a587b 106
31d99776
DJ
107static void symfile_find_segment_sections (struct objfile *objfile);
108
c906108c
SS
109/* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
c378eb4e 111 prepared to read. */
c906108c 112
905014d7 113struct registered_sym_fns
c256e171 114{
905014d7
SM
115 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
116 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
117 {}
118
c256e171
DE
119 /* BFD flavour that we handle. */
120 enum bfd_flavour sym_flavour;
121
122 /* The "vtable" of symbol functions. */
123 const struct sym_fns *sym_fns;
905014d7 124};
c256e171 125
905014d7 126static std::vector<registered_sym_fns> symtab_fns;
c906108c 127
770e7fc7
DE
128/* Values for "set print symbol-loading". */
129
130const char print_symbol_loading_off[] = "off";
131const char print_symbol_loading_brief[] = "brief";
132const char print_symbol_loading_full[] = "full";
133static const char *print_symbol_loading_enums[] =
134{
135 print_symbol_loading_off,
136 print_symbol_loading_brief,
137 print_symbol_loading_full,
138 NULL
139};
140static const char *print_symbol_loading = print_symbol_loading_full;
141
b7209cb4
FF
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
c906108c 149 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 150 report all the functions that are actually present. */
c906108c
SS
151
152int auto_solib_add = 1;
c906108c 153\f
c5aa993b 154
770e7fc7
DE
155/* Return non-zero if symbol-loading messages should be printed.
156 FROM_TTY is the standard from_tty argument to gdb commands.
157 If EXEC is non-zero the messages are for the executable.
158 Otherwise, messages are for shared libraries.
159 If FULL is non-zero then the caller is printing a detailed message.
160 E.g., the message includes the shared library name.
161 Otherwise, the caller is printing a brief "summary" message. */
162
163int
164print_symbol_loading_p (int from_tty, int exec, int full)
165{
166 if (!from_tty && !info_verbose)
167 return 0;
168
169 if (exec)
170 {
171 /* We don't check FULL for executables, there are few such
172 messages, therefore brief == full. */
173 return print_symbol_loading != print_symbol_loading_off;
174 }
175 if (full)
176 return print_symbol_loading == print_symbol_loading_full;
177 return print_symbol_loading == print_symbol_loading_brief;
178}
179
0d14a781 180/* True if we are reading a symbol table. */
c906108c
SS
181
182int currently_reading_symtab = 0;
183
ccefe4c4
TT
184/* Increment currently_reading_symtab and return a cleanup that can be
185 used to decrement it. */
3b7bacac 186
c83dd867 187scoped_restore_tmpl<int>
ccefe4c4 188increment_reading_symtab (void)
c906108c 189{
c83dd867
TT
190 gdb_assert (currently_reading_symtab >= 0);
191 return make_scoped_restore (&currently_reading_symtab,
192 currently_reading_symtab + 1);
c906108c
SS
193}
194
5417f6dc
RM
195/* Remember the lowest-addressed loadable section we've seen.
196 This function is called via bfd_map_over_sections.
c906108c
SS
197
198 In case of equal vmas, the section with the largest size becomes the
199 lowest-addressed loadable section.
200
201 If the vmas and sizes are equal, the last section is considered the
202 lowest-addressed loadable section. */
203
204void
4efb68b1 205find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 206{
c5aa993b 207 asection **lowest = (asection **) obj;
c906108c 208
eb73e134 209 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
210 return;
211 if (!*lowest)
212 *lowest = sect; /* First loadable section */
213 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
214 *lowest = sect; /* A lower loadable section */
215 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
216 && (bfd_section_size (abfd, (*lowest))
217 <= bfd_section_size (abfd, sect)))
218 *lowest = sect;
219}
220
d76488d8
TT
221/* Create a new section_addr_info, with room for NUM_SECTIONS. The
222 new object's 'num_sections' field is set to 0; it must be updated
223 by the caller. */
a39a16c4
MM
224
225struct section_addr_info *
226alloc_section_addr_info (size_t num_sections)
227{
228 struct section_addr_info *sap;
229 size_t size;
230
231 size = (sizeof (struct section_addr_info)
232 + sizeof (struct other_sections) * (num_sections - 1));
233 sap = (struct section_addr_info *) xmalloc (size);
234 memset (sap, 0, size);
a39a16c4
MM
235
236 return sap;
237}
62557bbc
KB
238
239/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 240 an existing section table. */
62557bbc
KB
241
242extern struct section_addr_info *
0542c86d
PA
243build_section_addr_info_from_section_table (const struct target_section *start,
244 const struct target_section *end)
62557bbc
KB
245{
246 struct section_addr_info *sap;
0542c86d 247 const struct target_section *stp;
62557bbc
KB
248 int oidx;
249
a39a16c4 250 sap = alloc_section_addr_info (end - start);
62557bbc
KB
251
252 for (stp = start, oidx = 0; stp != end; stp++)
253 {
2b2848e2
DE
254 struct bfd_section *asect = stp->the_bfd_section;
255 bfd *abfd = asect->owner;
256
257 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 258 && oidx < end - start)
62557bbc
KB
259 {
260 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
261 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
262 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
263 oidx++;
264 }
265 }
266
d76488d8
TT
267 sap->num_sections = oidx;
268
62557bbc
KB
269 return sap;
270}
271
82ccf5a5 272/* Create a section_addr_info from section offsets in ABFD. */
089b4803 273
82ccf5a5
JK
274static struct section_addr_info *
275build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
276{
277 struct section_addr_info *sap;
278 int i;
279 struct bfd_section *sec;
280
82ccf5a5
JK
281 sap = alloc_section_addr_info (bfd_count_sections (abfd));
282 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
283 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 284 {
82ccf5a5
JK
285 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
286 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 287 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
288 i++;
289 }
d76488d8
TT
290
291 sap->num_sections = i;
292
089b4803
TG
293 return sap;
294}
295
82ccf5a5
JK
296/* Create a section_addr_info from section offsets in OBJFILE. */
297
298struct section_addr_info *
299build_section_addr_info_from_objfile (const struct objfile *objfile)
300{
301 struct section_addr_info *sap;
302 int i;
303
304 /* Before reread_symbols gets rewritten it is not safe to call:
305 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
306 */
307 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 308 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
309 {
310 int sectindex = sap->other[i].sectindex;
311
312 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
313 }
314 return sap;
315}
62557bbc 316
c378eb4e 317/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
318
319extern void
320free_section_addr_info (struct section_addr_info *sap)
321{
322 int idx;
323
a39a16c4 324 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 325 xfree (sap->other[idx].name);
b8c9b27d 326 xfree (sap);
62557bbc
KB
327}
328
e8289572 329/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 330
e8289572
JB
331static void
332init_objfile_sect_indices (struct objfile *objfile)
c906108c 333{
e8289572 334 asection *sect;
c906108c 335 int i;
5417f6dc 336
b8fbeb18 337 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 338 if (sect)
b8fbeb18
EZ
339 objfile->sect_index_text = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 342 if (sect)
b8fbeb18
EZ
343 objfile->sect_index_data = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 346 if (sect)
b8fbeb18
EZ
347 objfile->sect_index_bss = sect->index;
348
349 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 350 if (sect)
b8fbeb18
EZ
351 objfile->sect_index_rodata = sect->index;
352
bbcd32ad
FF
353 /* This is where things get really weird... We MUST have valid
354 indices for the various sect_index_* members or gdb will abort.
355 So if for example, there is no ".text" section, we have to
31d99776
DJ
356 accomodate that. First, check for a file with the standard
357 one or two segments. */
358
359 symfile_find_segment_sections (objfile);
360
361 /* Except when explicitly adding symbol files at some address,
362 section_offsets contains nothing but zeros, so it doesn't matter
363 which slot in section_offsets the individual sect_index_* members
364 index into. So if they are all zero, it is safe to just point
365 all the currently uninitialized indices to the first slot. But
366 beware: if this is the main executable, it may be relocated
367 later, e.g. by the remote qOffsets packet, and then this will
368 be wrong! That's why we try segments first. */
bbcd32ad
FF
369
370 for (i = 0; i < objfile->num_sections; i++)
371 {
372 if (ANOFFSET (objfile->section_offsets, i) != 0)
373 {
374 break;
375 }
376 }
377 if (i == objfile->num_sections)
378 {
379 if (objfile->sect_index_text == -1)
380 objfile->sect_index_text = 0;
381 if (objfile->sect_index_data == -1)
382 objfile->sect_index_data = 0;
383 if (objfile->sect_index_bss == -1)
384 objfile->sect_index_bss = 0;
385 if (objfile->sect_index_rodata == -1)
386 objfile->sect_index_rodata = 0;
387 }
b8fbeb18 388}
c906108c 389
c1bd25fd
DJ
390/* The arguments to place_section. */
391
392struct place_section_arg
393{
394 struct section_offsets *offsets;
395 CORE_ADDR lowest;
396};
397
398/* Find a unique offset to use for loadable section SECT if
399 the user did not provide an offset. */
400
2c0b251b 401static void
c1bd25fd
DJ
402place_section (bfd *abfd, asection *sect, void *obj)
403{
19ba03f4 404 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
405 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
406 int done;
3bd72c6f 407 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 408
2711e456
DJ
409 /* We are only interested in allocated sections. */
410 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
411 return;
412
413 /* If the user specified an offset, honor it. */
65cf3563 414 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
415 return;
416
417 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
418 start_addr = (arg->lowest + align - 1) & -align;
419
c1bd25fd
DJ
420 do {
421 asection *cur_sec;
c1bd25fd 422
c1bd25fd
DJ
423 done = 1;
424
425 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
426 {
427 int indx = cur_sec->index;
c1bd25fd
DJ
428
429 /* We don't need to compare against ourself. */
430 if (cur_sec == sect)
431 continue;
432
2711e456
DJ
433 /* We can only conflict with allocated sections. */
434 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
435 continue;
436
437 /* If the section offset is 0, either the section has not been placed
438 yet, or it was the lowest section placed (in which case LOWEST
439 will be past its end). */
440 if (offsets[indx] == 0)
441 continue;
442
443 /* If this section would overlap us, then we must move up. */
444 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
445 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
446 {
447 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
448 start_addr = (start_addr + align - 1) & -align;
449 done = 0;
3bd72c6f 450 break;
c1bd25fd
DJ
451 }
452
453 /* Otherwise, we appear to be OK. So far. */
454 }
455 }
456 while (!done);
457
65cf3563 458 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 459 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 460}
e8289572 461
75242ef4
JK
462/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
463 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
464 entries. */
e8289572
JB
465
466void
75242ef4
JK
467relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
468 int num_sections,
3189cb12 469 const struct section_addr_info *addrs)
e8289572
JB
470{
471 int i;
472
75242ef4 473 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 474
c378eb4e 475 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 476 for (i = 0; i < addrs->num_sections; i++)
e8289572 477 {
3189cb12 478 const struct other_sections *osp;
e8289572 479
75242ef4 480 osp = &addrs->other[i];
5488dafb 481 if (osp->sectindex == -1)
e8289572
JB
482 continue;
483
c378eb4e 484 /* Record all sections in offsets. */
e8289572 485 /* The section_offsets in the objfile are here filled in using
c378eb4e 486 the BFD index. */
75242ef4
JK
487 section_offsets->offsets[osp->sectindex] = osp->addr;
488 }
489}
490
1276c759
JK
491/* Transform section name S for a name comparison. prelink can split section
492 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
493 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
494 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
495 (`.sbss') section has invalid (increased) virtual address. */
496
497static const char *
498addr_section_name (const char *s)
499{
500 if (strcmp (s, ".dynbss") == 0)
501 return ".bss";
502 if (strcmp (s, ".sdynbss") == 0)
503 return ".sbss";
504
505 return s;
506}
507
82ccf5a5
JK
508/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
509 their (name, sectindex) pair. sectindex makes the sort by name stable. */
510
511static int
512addrs_section_compar (const void *ap, const void *bp)
513{
514 const struct other_sections *a = *((struct other_sections **) ap);
515 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 516 int retval;
82ccf5a5 517
1276c759 518 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
519 if (retval)
520 return retval;
521
5488dafb 522 return a->sectindex - b->sectindex;
82ccf5a5
JK
523}
524
525/* Provide sorted array of pointers to sections of ADDRS. The array is
526 terminated by NULL. Caller is responsible to call xfree for it. */
527
528static struct other_sections **
529addrs_section_sort (struct section_addr_info *addrs)
530{
531 struct other_sections **array;
532 int i;
533
534 /* `+ 1' for the NULL terminator. */
8d749320 535 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 536 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
537 array[i] = &addrs->other[i];
538 array[i] = NULL;
539
540 qsort (array, i, sizeof (*array), addrs_section_compar);
541
542 return array;
543}
544
75242ef4 545/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
546 also SECTINDEXes specific to ABFD there. This function can be used to
547 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
548
549void
550addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
551{
552 asection *lower_sect;
75242ef4
JK
553 CORE_ADDR lower_offset;
554 int i;
82ccf5a5
JK
555 struct cleanup *my_cleanup;
556 struct section_addr_info *abfd_addrs;
557 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
558 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
559
560 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
561 continguous sections. */
562 lower_sect = NULL;
563 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
564 if (lower_sect == NULL)
565 {
566 warning (_("no loadable sections found in added symbol-file %s"),
567 bfd_get_filename (abfd));
568 lower_offset = 0;
e8289572 569 }
75242ef4
JK
570 else
571 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
572
82ccf5a5
JK
573 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
574 in ABFD. Section names are not unique - there can be multiple sections of
575 the same name. Also the sections of the same name do not have to be
576 adjacent to each other. Some sections may be present only in one of the
577 files. Even sections present in both files do not have to be in the same
578 order.
579
580 Use stable sort by name for the sections in both files. Then linearly
581 scan both lists matching as most of the entries as possible. */
582
583 addrs_sorted = addrs_section_sort (addrs);
584 my_cleanup = make_cleanup (xfree, addrs_sorted);
585
586 abfd_addrs = build_section_addr_info_from_bfd (abfd);
587 make_cleanup_free_section_addr_info (abfd_addrs);
588 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
589 make_cleanup (xfree, abfd_addrs_sorted);
590
c378eb4e
MS
591 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
592 ABFD_ADDRS_SORTED. */
82ccf5a5 593
8d749320 594 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
595 make_cleanup (xfree, addrs_to_abfd_addrs);
596
597 while (*addrs_sorted)
598 {
1276c759 599 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
600
601 while (*abfd_addrs_sorted
1276c759
JK
602 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
603 sect_name) < 0)
82ccf5a5
JK
604 abfd_addrs_sorted++;
605
606 if (*abfd_addrs_sorted
1276c759
JK
607 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
608 sect_name) == 0)
82ccf5a5
JK
609 {
610 int index_in_addrs;
611
612 /* Make the found item directly addressable from ADDRS. */
613 index_in_addrs = *addrs_sorted - addrs->other;
614 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
615 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
616
617 /* Never use the same ABFD entry twice. */
618 abfd_addrs_sorted++;
619 }
620
621 addrs_sorted++;
622 }
623
75242ef4
JK
624 /* Calculate offsets for the loadable sections.
625 FIXME! Sections must be in order of increasing loadable section
626 so that contiguous sections can use the lower-offset!!!
627
628 Adjust offsets if the segments are not contiguous.
629 If the section is contiguous, its offset should be set to
630 the offset of the highest loadable section lower than it
631 (the loadable section directly below it in memory).
632 this_offset = lower_offset = lower_addr - lower_orig_addr */
633
d76488d8 634 for (i = 0; i < addrs->num_sections; i++)
75242ef4 635 {
82ccf5a5 636 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
637
638 if (sect)
75242ef4 639 {
c378eb4e 640 /* This is the index used by BFD. */
82ccf5a5 641 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
642
643 if (addrs->other[i].addr != 0)
75242ef4 644 {
82ccf5a5 645 addrs->other[i].addr -= sect->addr;
75242ef4 646 lower_offset = addrs->other[i].addr;
75242ef4
JK
647 }
648 else
672d9c23 649 addrs->other[i].addr = lower_offset;
75242ef4
JK
650 }
651 else
672d9c23 652 {
1276c759
JK
653 /* addr_section_name transformation is not used for SECT_NAME. */
654 const char *sect_name = addrs->other[i].name;
655
b0fcb67f
JK
656 /* This section does not exist in ABFD, which is normally
657 unexpected and we want to issue a warning.
658
4d9743af
JK
659 However, the ELF prelinker does create a few sections which are
660 marked in the main executable as loadable (they are loaded in
661 memory from the DYNAMIC segment) and yet are not present in
662 separate debug info files. This is fine, and should not cause
663 a warning. Shared libraries contain just the section
664 ".gnu.liblist" but it is not marked as loadable there. There is
665 no other way to identify them than by their name as the sections
1276c759
JK
666 created by prelink have no special flags.
667
668 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
669
670 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 671 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
672 || (strcmp (sect_name, ".bss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)
676 || (strcmp (sect_name, ".sbss") == 0
677 && i > 0
678 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
679 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
680 warning (_("section %s not found in %s"), sect_name,
681 bfd_get_filename (abfd));
682
672d9c23 683 addrs->other[i].addr = 0;
5488dafb 684 addrs->other[i].sectindex = -1;
672d9c23 685 }
75242ef4 686 }
82ccf5a5
JK
687
688 do_cleanups (my_cleanup);
75242ef4
JK
689}
690
691/* Parse the user's idea of an offset for dynamic linking, into our idea
692 of how to represent it for fast symbol reading. This is the default
693 version of the sym_fns.sym_offsets function for symbol readers that
694 don't need to do anything special. It allocates a section_offsets table
695 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
696
697void
698default_symfile_offsets (struct objfile *objfile,
3189cb12 699 const struct section_addr_info *addrs)
75242ef4 700{
d445b2f6 701 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
702 objfile->section_offsets = (struct section_offsets *)
703 obstack_alloc (&objfile->objfile_obstack,
704 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
705 relative_addr_info_to_section_offsets (objfile->section_offsets,
706 objfile->num_sections, addrs);
e8289572 707
c1bd25fd
DJ
708 /* For relocatable files, all loadable sections will start at zero.
709 The zero is meaningless, so try to pick arbitrary addresses such
710 that no loadable sections overlap. This algorithm is quadratic,
711 but the number of sections in a single object file is generally
712 small. */
713 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
714 {
715 struct place_section_arg arg;
2711e456
DJ
716 bfd *abfd = objfile->obfd;
717 asection *cur_sec;
2711e456
DJ
718
719 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
720 /* We do not expect this to happen; just skip this step if the
721 relocatable file has a section with an assigned VMA. */
722 if (bfd_section_vma (abfd, cur_sec) != 0)
723 break;
724
725 if (cur_sec == NULL)
726 {
727 CORE_ADDR *offsets = objfile->section_offsets->offsets;
728
729 /* Pick non-overlapping offsets for sections the user did not
730 place explicitly. */
731 arg.offsets = objfile->section_offsets;
732 arg.lowest = 0;
733 bfd_map_over_sections (objfile->obfd, place_section, &arg);
734
735 /* Correctly filling in the section offsets is not quite
736 enough. Relocatable files have two properties that
737 (most) shared objects do not:
738
739 - Their debug information will contain relocations. Some
740 shared libraries do also, but many do not, so this can not
741 be assumed.
742
743 - If there are multiple code sections they will be loaded
744 at different relative addresses in memory than they are
745 in the objfile, since all sections in the file will start
746 at address zero.
747
748 Because GDB has very limited ability to map from an
749 address in debug info to the correct code section,
750 it relies on adding SECT_OFF_TEXT to things which might be
751 code. If we clear all the section offsets, and set the
752 section VMAs instead, then symfile_relocate_debug_section
753 will return meaningful debug information pointing at the
754 correct sections.
755
756 GDB has too many different data structures for section
757 addresses - a bfd, objfile, and so_list all have section
758 tables, as does exec_ops. Some of these could probably
759 be eliminated. */
760
761 for (cur_sec = abfd->sections; cur_sec != NULL;
762 cur_sec = cur_sec->next)
763 {
764 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
765 continue;
766
767 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
768 exec_set_section_address (bfd_get_filename (abfd),
769 cur_sec->index,
30510692 770 offsets[cur_sec->index]);
2711e456
DJ
771 offsets[cur_sec->index] = 0;
772 }
773 }
c1bd25fd
DJ
774 }
775
e8289572 776 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 777 .rodata sections. */
e8289572
JB
778 init_objfile_sect_indices (objfile);
779}
780
31d99776
DJ
781/* Divide the file into segments, which are individual relocatable units.
782 This is the default version of the sym_fns.sym_segments function for
783 symbol readers that do not have an explicit representation of segments.
784 It assumes that object files do not have segments, and fully linked
785 files have a single segment. */
786
787struct symfile_segment_data *
788default_symfile_segments (bfd *abfd)
789{
790 int num_sections, i;
791 asection *sect;
792 struct symfile_segment_data *data;
793 CORE_ADDR low, high;
794
795 /* Relocatable files contain enough information to position each
796 loadable section independently; they should not be relocated
797 in segments. */
798 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
799 return NULL;
800
801 /* Make sure there is at least one loadable section in the file. */
802 for (sect = abfd->sections; sect != NULL; sect = sect->next)
803 {
804 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
805 continue;
806
807 break;
808 }
809 if (sect == NULL)
810 return NULL;
811
812 low = bfd_get_section_vma (abfd, sect);
813 high = low + bfd_get_section_size (sect);
814
41bf6aca 815 data = XCNEW (struct symfile_segment_data);
31d99776 816 data->num_segments = 1;
fc270c35
TT
817 data->segment_bases = XCNEW (CORE_ADDR);
818 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
819
820 num_sections = bfd_count_sections (abfd);
fc270c35 821 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
822
823 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
824 {
825 CORE_ADDR vma;
826
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 vma = bfd_get_section_vma (abfd, sect);
831 if (vma < low)
832 low = vma;
833 if (vma + bfd_get_section_size (sect) > high)
834 high = vma + bfd_get_section_size (sect);
835
836 data->segment_info[i] = 1;
837 }
838
839 data->segment_bases[0] = low;
840 data->segment_sizes[0] = high - low;
841
842 return data;
843}
844
608e2dbb
TT
845/* This is a convenience function to call sym_read for OBJFILE and
846 possibly force the partial symbols to be read. */
847
848static void
b15cc25c 849read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
850{
851 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 852 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
853
854 /* find_separate_debug_file_in_section should be called only if there is
855 single binary with no existing separate debug info file. */
856 if (!objfile_has_partial_symbols (objfile)
857 && objfile->separate_debug_objfile == NULL
858 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 859 {
192b62ce 860 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
861
862 if (abfd != NULL)
24ba069a
JK
863 {
864 /* find_separate_debug_file_in_section uses the same filename for the
865 virtual section-as-bfd like the bfd filename containing the
866 section. Therefore use also non-canonical name form for the same
867 file containing the section. */
192b62ce
TT
868 symbol_file_add_separate (abfd.get (), objfile->original_name,
869 add_flags, objfile);
24ba069a 870 }
608e2dbb
TT
871 }
872 if ((add_flags & SYMFILE_NO_READ) == 0)
873 require_partial_symbols (objfile, 0);
874}
875
3d6e24f0
JB
876/* Initialize entry point information for this objfile. */
877
878static void
879init_entry_point_info (struct objfile *objfile)
880{
6ef55de7
TT
881 struct entry_info *ei = &objfile->per_bfd->ei;
882
883 if (ei->initialized)
884 return;
885 ei->initialized = 1;
886
3d6e24f0
JB
887 /* Save startup file's range of PC addresses to help blockframe.c
888 decide where the bottom of the stack is. */
889
890 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
891 {
892 /* Executable file -- record its entry point so we'll recognize
893 the startup file because it contains the entry point. */
6ef55de7
TT
894 ei->entry_point = bfd_get_start_address (objfile->obfd);
895 ei->entry_point_p = 1;
3d6e24f0
JB
896 }
897 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
898 && bfd_get_start_address (objfile->obfd) != 0)
899 {
900 /* Some shared libraries may have entry points set and be
901 runnable. There's no clear way to indicate this, so just check
902 for values other than zero. */
6ef55de7
TT
903 ei->entry_point = bfd_get_start_address (objfile->obfd);
904 ei->entry_point_p = 1;
3d6e24f0
JB
905 }
906 else
907 {
908 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 909 ei->entry_point_p = 0;
3d6e24f0
JB
910 }
911
6ef55de7 912 if (ei->entry_point_p)
3d6e24f0 913 {
53eddfa6 914 struct obj_section *osect;
6ef55de7 915 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 916 int found;
3d6e24f0
JB
917
918 /* Make certain that the address points at real code, and not a
919 function descriptor. */
920 entry_point
df6d5441 921 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
922 entry_point,
923 &current_target);
924
925 /* Remove any ISA markers, so that this matches entries in the
926 symbol table. */
6ef55de7 927 ei->entry_point
df6d5441 928 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
929
930 found = 0;
931 ALL_OBJFILE_OSECTIONS (objfile, osect)
932 {
933 struct bfd_section *sect = osect->the_bfd_section;
934
935 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
936 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
937 + bfd_get_section_size (sect)))
938 {
6ef55de7 939 ei->the_bfd_section_index
53eddfa6
TT
940 = gdb_bfd_section_index (objfile->obfd, sect);
941 found = 1;
942 break;
943 }
944 }
945
946 if (!found)
6ef55de7 947 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
948 }
949}
950
c906108c
SS
951/* Process a symbol file, as either the main file or as a dynamically
952 loaded file.
953
36e4d068
JB
954 This function does not set the OBJFILE's entry-point info.
955
96baa820
JM
956 OBJFILE is where the symbols are to be read from.
957
7e8580c1
JB
958 ADDRS is the list of section load addresses. If the user has given
959 an 'add-symbol-file' command, then this is the list of offsets and
960 addresses he or she provided as arguments to the command; or, if
961 we're handling a shared library, these are the actual addresses the
962 sections are loaded at, according to the inferior's dynamic linker
963 (as gleaned by GDB's shared library code). We convert each address
964 into an offset from the section VMA's as it appears in the object
965 file, and then call the file's sym_offsets function to convert this
966 into a format-specific offset table --- a `struct section_offsets'.
96baa820 967
7eedccfa
PP
968 ADD_FLAGS encodes verbosity level, whether this is main symbol or
969 an extra symbol file such as dynamically loaded code, and wether
970 breakpoint reset should be deferred. */
c906108c 971
36e4d068
JB
972static void
973syms_from_objfile_1 (struct objfile *objfile,
974 struct section_addr_info *addrs,
b15cc25c 975 symfile_add_flags add_flags)
c906108c 976{
a39a16c4 977 struct section_addr_info *local_addr = NULL;
c906108c 978 struct cleanup *old_chain;
7eedccfa 979 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 980
8fb8eb5c 981 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 982
75245b24 983 if (objfile->sf == NULL)
36e4d068
JB
984 {
985 /* No symbols to load, but we still need to make sure
986 that the section_offsets table is allocated. */
d445b2f6 987 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 988 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
989
990 objfile->num_sections = num_sections;
991 objfile->section_offsets
224c3ddb
SM
992 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
993 size);
36e4d068
JB
994 memset (objfile->section_offsets, 0, size);
995 return;
996 }
75245b24 997
c906108c
SS
998 /* Make sure that partially constructed symbol tables will be cleaned up
999 if an error occurs during symbol reading. */
74b7792f 1000 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1001
6bf667bb
DE
1002 /* If ADDRS is NULL, put together a dummy address list.
1003 We now establish the convention that an addr of zero means
c378eb4e 1004 no load address was specified. */
6bf667bb 1005 if (! addrs)
a39a16c4 1006 {
d445b2f6 1007 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1008 make_cleanup (xfree, local_addr);
1009 addrs = local_addr;
1010 }
1011
c5aa993b 1012 if (mainline)
c906108c
SS
1013 {
1014 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1015 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1016 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1017
1018 /* Since no error yet, throw away the old symbol table. */
1019
1020 if (symfile_objfile != NULL)
1021 {
9e86da07 1022 delete symfile_objfile;
adb7f338 1023 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1024 }
1025
1026 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1027 If the user wants to get rid of them, they should do "symbol-file"
1028 without arguments first. Not sure this is the best behavior
1029 (PR 2207). */
c906108c 1030
c5aa993b 1031 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1032 }
1033
1034 /* Convert addr into an offset rather than an absolute address.
1035 We find the lowest address of a loaded segment in the objfile,
53a5351d 1036 and assume that <addr> is where that got loaded.
c906108c 1037
53a5351d
JM
1038 We no longer warn if the lowest section is not a text segment (as
1039 happens for the PA64 port. */
6bf667bb 1040 if (addrs->num_sections > 0)
75242ef4 1041 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1042
1043 /* Initialize symbol reading routines for this objfile, allow complaints to
1044 appear for this new file, and record how verbose to be, then do the
c378eb4e 1045 initial symbol reading for this file. */
c906108c 1046
c5aa993b 1047 (*objfile->sf->sym_init) (objfile);
7eedccfa 1048 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1049
6bf667bb 1050 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1051
608e2dbb 1052 read_symbols (objfile, add_flags);
b11896a5 1053
c906108c
SS
1054 /* Discard cleanups as symbol reading was successful. */
1055
1056 discard_cleanups (old_chain);
f7545552 1057 xfree (local_addr);
c906108c
SS
1058}
1059
36e4d068
JB
1060/* Same as syms_from_objfile_1, but also initializes the objfile
1061 entry-point info. */
1062
6bf667bb 1063static void
36e4d068
JB
1064syms_from_objfile (struct objfile *objfile,
1065 struct section_addr_info *addrs,
b15cc25c 1066 symfile_add_flags add_flags)
36e4d068 1067{
6bf667bb 1068 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1069 init_entry_point_info (objfile);
1070}
1071
c906108c
SS
1072/* Perform required actions after either reading in the initial
1073 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1074 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1075
e7d52ed3 1076static void
b15cc25c 1077finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1078{
c906108c 1079 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1080 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1081 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1082 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1083 {
1084 /* OK, make it the "real" symbol file. */
1085 symfile_objfile = objfile;
1086
c1e56572 1087 clear_symtab_users (add_flags);
c906108c 1088 }
7eedccfa 1089 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1090 {
69de3c6a 1091 breakpoint_re_set ();
c906108c
SS
1092 }
1093
1094 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1095 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1096}
1097
1098/* Process a symbol file, as either the main file or as a dynamically
1099 loaded file.
1100
5417f6dc 1101 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1102 A new reference is acquired by this function.
7904e09f 1103
9e86da07 1104 For NAME description see the objfile constructor.
24ba069a 1105
7eedccfa
PP
1106 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1107 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1108
6bf667bb 1109 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1110 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1111
63524580
JK
1112 PARENT is the original objfile if ABFD is a separate debug info file.
1113 Otherwise PARENT is NULL.
1114
c906108c 1115 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1116 Upon failure, jumps back to command level (never returns). */
7eedccfa 1117
7904e09f 1118static struct objfile *
b15cc25c
PA
1119symbol_file_add_with_addrs (bfd *abfd, const char *name,
1120 symfile_add_flags add_flags,
6bf667bb 1121 struct section_addr_info *addrs,
b15cc25c 1122 objfile_flags flags, struct objfile *parent)
c906108c
SS
1123{
1124 struct objfile *objfile;
7eedccfa 1125 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1126 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1127 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1128 && (readnow_symbol_files
1129 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1130
9291a0cd 1131 if (readnow_symbol_files)
b11896a5
TT
1132 {
1133 flags |= OBJF_READNOW;
1134 add_flags &= ~SYMFILE_NO_READ;
1135 }
9291a0cd 1136
5417f6dc
RM
1137 /* Give user a chance to burp if we'd be
1138 interactively wiping out any existing symbols. */
c906108c
SS
1139
1140 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1141 && mainline
c906108c 1142 && from_tty
9e2f0ad4 1143 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1144 error (_("Not confirmed."));
c906108c 1145
b15cc25c
PA
1146 if (mainline)
1147 flags |= OBJF_MAINLINE;
9e86da07 1148 objfile = new struct objfile (abfd, name, flags);
c906108c 1149
63524580
JK
1150 if (parent)
1151 add_separate_debug_objfile (objfile, parent);
1152
78a4a9b9
AC
1153 /* We either created a new mapped symbol table, mapped an existing
1154 symbol table file which has not had initial symbol reading
c378eb4e 1155 performed, or need to read an unmapped symbol table. */
b11896a5 1156 if (should_print)
c906108c 1157 {
769d7dc4
AC
1158 if (deprecated_pre_add_symbol_hook)
1159 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1160 else
c906108c 1161 {
55333a84
DE
1162 printf_unfiltered (_("Reading symbols from %s..."), name);
1163 wrap_here ("");
1164 gdb_flush (gdb_stdout);
c906108c 1165 }
c906108c 1166 }
6bf667bb 1167 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1168
1169 /* We now have at least a partial symbol table. Check to see if the
1170 user requested that all symbols be read on initial access via either
1171 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1172 all partial symbol tables for this objfile if so. */
c906108c 1173
9291a0cd 1174 if ((flags & OBJF_READNOW))
c906108c 1175 {
b11896a5 1176 if (should_print)
c906108c 1177 {
a3f17187 1178 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1179 wrap_here ("");
1180 gdb_flush (gdb_stdout);
1181 }
1182
ccefe4c4
TT
1183 if (objfile->sf)
1184 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1185 }
1186
b11896a5 1187 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1188 {
1189 wrap_here ("");
55333a84 1190 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1191 wrap_here ("");
1192 }
1193
b11896a5 1194 if (should_print)
c906108c 1195 {
769d7dc4
AC
1196 if (deprecated_post_add_symbol_hook)
1197 deprecated_post_add_symbol_hook ();
c906108c 1198 else
55333a84 1199 printf_unfiltered (_("done.\n"));
c906108c
SS
1200 }
1201
481d0f41
JB
1202 /* We print some messages regardless of whether 'from_tty ||
1203 info_verbose' is true, so make sure they go out at the right
1204 time. */
1205 gdb_flush (gdb_stdout);
1206
109f874e 1207 if (objfile->sf == NULL)
8caee43b
PP
1208 {
1209 observer_notify_new_objfile (objfile);
c378eb4e 1210 return objfile; /* No symbols. */
8caee43b 1211 }
109f874e 1212
e7d52ed3 1213 finish_new_objfile (objfile, add_flags);
c906108c 1214
06d3b283 1215 observer_notify_new_objfile (objfile);
c906108c 1216
ce7d4522 1217 bfd_cache_close_all ();
c906108c
SS
1218 return (objfile);
1219}
1220
24ba069a 1221/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1222 see the objfile constructor. */
9cce227f
TG
1223
1224void
b15cc25c
PA
1225symbol_file_add_separate (bfd *bfd, const char *name,
1226 symfile_add_flags symfile_flags,
24ba069a 1227 struct objfile *objfile)
9cce227f 1228{
089b4803
TG
1229 struct section_addr_info *sap;
1230 struct cleanup *my_cleanup;
1231
1232 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1233 because sections of BFD may not match sections of OBJFILE and because
1234 vma may have been modified by tools such as prelink. */
1235 sap = build_section_addr_info_from_objfile (objfile);
1236 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1237
870f88f7 1238 symbol_file_add_with_addrs
24ba069a 1239 (bfd, name, symfile_flags, sap,
9cce227f 1240 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1241 | OBJF_USERLOADED),
1242 objfile);
089b4803
TG
1243
1244 do_cleanups (my_cleanup);
9cce227f 1245}
7904e09f 1246
eb4556d7
JB
1247/* Process the symbol file ABFD, as either the main file or as a
1248 dynamically loaded file.
6bf667bb 1249 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1250
eb4556d7 1251struct objfile *
b15cc25c
PA
1252symbol_file_add_from_bfd (bfd *abfd, const char *name,
1253 symfile_add_flags add_flags,
eb4556d7 1254 struct section_addr_info *addrs,
b15cc25c 1255 objfile_flags flags, struct objfile *parent)
eb4556d7 1256{
24ba069a
JK
1257 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1258 parent);
eb4556d7
JB
1259}
1260
7904e09f 1261/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1262 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1263
7904e09f 1264struct objfile *
b15cc25c
PA
1265symbol_file_add (const char *name, symfile_add_flags add_flags,
1266 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1267{
192b62ce 1268 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1269
192b62ce
TT
1270 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1271 flags, NULL);
7904e09f
JB
1272}
1273
d7db6da9
FN
1274/* Call symbol_file_add() with default values and update whatever is
1275 affected by the loading of a new main().
1276 Used when the file is supplied in the gdb command line
1277 and by some targets with special loading requirements.
1278 The auxiliary function, symbol_file_add_main_1(), has the flags
1279 argument for the switches that can only be specified in the symbol_file
1280 command itself. */
5417f6dc 1281
1adeb98a 1282void
ecf45d2c 1283symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1284{
ecf45d2c 1285 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1286}
1287
1288static void
ecf45d2c
SL
1289symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1290 objfile_flags flags)
d7db6da9 1291{
ecf45d2c 1292 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1293
7eedccfa 1294 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1295
d7db6da9
FN
1296 /* Getting new symbols may change our opinion about
1297 what is frameless. */
1298 reinit_frame_cache ();
1299
b15cc25c 1300 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1301 set_initial_language ();
1adeb98a
FN
1302}
1303
1304void
1305symbol_file_clear (int from_tty)
1306{
1307 if ((have_full_symbols () || have_partial_symbols ())
1308 && from_tty
0430b0d6
AS
1309 && (symfile_objfile
1310 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1311 objfile_name (symfile_objfile))
0430b0d6 1312 : !query (_("Discard symbol table? "))))
8a3fe4f8 1313 error (_("Not confirmed."));
1adeb98a 1314
0133421a
JK
1315 /* solib descriptors may have handles to objfiles. Wipe them before their
1316 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1317 no_shared_libraries (NULL, from_tty);
1318
0133421a
JK
1319 free_all_objfiles ();
1320
adb7f338 1321 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1322 if (from_tty)
1323 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1324}
1325
c4dcb155
SM
1326/* See symfile.h. */
1327
1328int separate_debug_file_debug = 0;
1329
5b5d99cf 1330static int
287ccc17 1331separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1332 struct objfile *parent_objfile)
5b5d99cf 1333{
904578ed
JK
1334 unsigned long file_crc;
1335 int file_crc_p;
32a0e547 1336 struct stat parent_stat, abfd_stat;
904578ed 1337 int verified_as_different;
32a0e547
JK
1338
1339 /* Find a separate debug info file as if symbols would be present in
1340 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1341 section can contain just the basename of PARENT_OBJFILE without any
1342 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1343 the separate debug infos with the same basename can exist. */
32a0e547 1344
4262abfb 1345 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1346 return 0;
5b5d99cf 1347
c4dcb155
SM
1348 if (separate_debug_file_debug)
1349 printf_unfiltered (_(" Trying %s\n"), name);
1350
192b62ce 1351 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1352
192b62ce 1353 if (abfd == NULL)
5b5d99cf
JB
1354 return 0;
1355
0ba1096a 1356 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1357
1358 Some operating systems, e.g. Windows, do not provide a meaningful
1359 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1360 meaningful st_dev.) Files accessed from gdbservers that do not
1361 support the vFile:fstat packet will also have st_ino set to zero.
1362 Do not indicate a duplicate library in either case. While there
1363 is no guarantee that a system that provides meaningful inode
1364 numbers will never set st_ino to zero, this is merely an
1365 optimization, so we do not need to worry about false negatives. */
32a0e547 1366
192b62ce 1367 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1368 && abfd_stat.st_ino != 0
1369 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1370 {
904578ed
JK
1371 if (abfd_stat.st_dev == parent_stat.st_dev
1372 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1373 return 0;
904578ed 1374 verified_as_different = 1;
32a0e547 1375 }
904578ed
JK
1376 else
1377 verified_as_different = 0;
32a0e547 1378
192b62ce 1379 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1380
904578ed
JK
1381 if (!file_crc_p)
1382 return 0;
1383
287ccc17
JK
1384 if (crc != file_crc)
1385 {
dccee2de
TT
1386 unsigned long parent_crc;
1387
0a93529c
GB
1388 /* If the files could not be verified as different with
1389 bfd_stat then we need to calculate the parent's CRC
1390 to verify whether the files are different or not. */
904578ed 1391
dccee2de 1392 if (!verified_as_different)
904578ed 1393 {
dccee2de 1394 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1395 return 0;
1396 }
1397
dccee2de 1398 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1399 warning (_("the debug information found in \"%s\""
1400 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1401 name, objfile_name (parent_objfile));
904578ed 1402
287ccc17
JK
1403 return 0;
1404 }
1405
1406 return 1;
5b5d99cf
JB
1407}
1408
aa28a74e 1409char *debug_file_directory = NULL;
920d2a44
AC
1410static void
1411show_debug_file_directory (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413{
3e43a32a
MS
1414 fprintf_filtered (file,
1415 _("The directory where separate debug "
1416 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1417 value);
1418}
5b5d99cf
JB
1419
1420#if ! defined (DEBUG_SUBDIRECTORY)
1421#define DEBUG_SUBDIRECTORY ".debug"
1422#endif
1423
1db33378
PP
1424/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1425 where the original file resides (may not be the same as
1426 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1427 looking for. CANON_DIR is the "realpath" form of DIR.
1428 DIR must contain a trailing '/'.
1429 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1430
1431static char *
1432find_separate_debug_file (const char *dir,
1433 const char *canon_dir,
1434 const char *debuglink,
1435 unsigned long crc32, struct objfile *objfile)
9cce227f 1436{
1db33378
PP
1437 char *debugdir;
1438 char *debugfile;
9cce227f 1439 int i;
e4ab2fad
JK
1440 VEC (char_ptr) *debugdir_vec;
1441 struct cleanup *back_to;
1442 int ix;
5b5d99cf 1443
c4dcb155
SM
1444 if (separate_debug_file_debug)
1445 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1446 "%s\n"), objfile_name (objfile));
1447
325fac50 1448 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1449 i = strlen (dir);
1db33378
PP
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1ffa32ee 1452
224c3ddb
SM
1453 debugfile
1454 = (char *) xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
5b5d99cf
JB
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1db33378 1463 strcat (debugfile, debuglink);
5b5d99cf 1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1466 return debugfile;
5417f6dc 1467
5b5d99cf
JB
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1db33378 1472 strcat (debugfile, debuglink);
5b5d99cf 1473
32a0e547 1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1475 return debugfile;
5417f6dc 1476
24ddea62 1477 /* Then try in the global debugfile directories.
f888f159 1478
24ddea62
JK
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
5417f6dc 1481
e4ab2fad
JK
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1484
e4ab2fad
JK
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
aa28a74e 1488 strcat (debugfile, "/");
24ddea62 1489 strcat (debugfile, dir);
1db33378 1490 strcat (debugfile, debuglink);
aa28a74e 1491
32a0e547 1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1493 {
1494 do_cleanups (back_to);
1495 return debugfile;
1496 }
24ddea62
JK
1497
1498 /* If the file is in the sysroot, try using its base path in the
1499 global debugfile directory. */
1db33378
PP
1500 if (canon_dir != NULL
1501 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1502 strlen (gdb_sysroot)) == 0
1db33378 1503 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1504 {
e4ab2fad 1505 strcpy (debugfile, debugdir);
1db33378 1506 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1507 strcat (debugfile, "/");
1db33378 1508 strcat (debugfile, debuglink);
24ddea62 1509
32a0e547 1510 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1511 {
1512 do_cleanups (back_to);
1513 return debugfile;
1514 }
24ddea62 1515 }
aa28a74e 1516 }
f888f159 1517
e4ab2fad 1518 do_cleanups (back_to);
25522fae 1519 xfree (debugfile);
1db33378
PP
1520 return NULL;
1521}
1522
7edbb660 1523/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1524 If there were no directory separators in PATH, PATH will be empty
1525 string on return. */
1526
1527static void
1528terminate_after_last_dir_separator (char *path)
1529{
1530 int i;
1531
1532 /* Strip off the final filename part, leaving the directory name,
1533 followed by a slash. The directory can be relative or absolute. */
1534 for (i = strlen(path) - 1; i >= 0; i--)
1535 if (IS_DIR_SEPARATOR (path[i]))
1536 break;
1537
1538 /* If I is -1 then no directory is present there and DIR will be "". */
1539 path[i + 1] = '\0';
1540}
1541
1542/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1543 Returns pathname, or NULL. */
1544
1545char *
1546find_separate_debug_file_by_debuglink (struct objfile *objfile)
1547{
1548 char *debuglink;
1549 char *dir, *canon_dir;
1550 char *debugfile;
1551 unsigned long crc32;
1552 struct cleanup *cleanups;
1553
cc0ea93c 1554 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1555
1556 if (debuglink == NULL)
1557 {
1558 /* There's no separate debug info, hence there's no way we could
1559 load it => no warning. */
1560 return NULL;
1561 }
1562
71bdabee 1563 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1564 dir = xstrdup (objfile_name (objfile));
71bdabee 1565 make_cleanup (xfree, dir);
1db33378
PP
1566 terminate_after_last_dir_separator (dir);
1567 canon_dir = lrealpath (dir);
1568
1569 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1570 crc32, objfile);
1571 xfree (canon_dir);
1572
1573 if (debugfile == NULL)
1574 {
1db33378
PP
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
4262abfb
JK
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1582 {
1583 char *symlink_dir;
1584
4262abfb 1585 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1586 if (symlink_dir != NULL)
1587 {
1588 make_cleanup (xfree, symlink_dir);
1589 terminate_after_last_dir_separator (symlink_dir);
1590 if (strcmp (dir, symlink_dir) != 0)
1591 {
1592 /* Different directory, so try using it. */
1593 debugfile = find_separate_debug_file (symlink_dir,
1594 symlink_dir,
1595 debuglink,
1596 crc32,
1597 objfile);
1598 }
1599 }
1600 }
1db33378 1601 }
aa28a74e 1602
1db33378 1603 do_cleanups (cleanups);
25522fae 1604 return debugfile;
5b5d99cf
JB
1605}
1606
c906108c
SS
1607/* This is the symbol-file command. Read the file, analyze its
1608 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1609 the command is rather bizarre:
1610
1611 1. The function buildargv implements various quoting conventions
1612 which are undocumented and have little or nothing in common with
1613 the way things are quoted (or not quoted) elsewhere in GDB.
1614
1615 2. Options are used, which are not generally used in GDB (perhaps
1616 "set mapped on", "set readnow on" would be better)
1617
1618 3. The order of options matters, which is contrary to GNU
c906108c
SS
1619 conventions (because it is confusing and inconvenient). */
1620
1621void
1d8b34a7 1622symbol_file_command (const char *args, int from_tty)
c906108c 1623{
c906108c
SS
1624 dont_repeat ();
1625
1626 if (args == NULL)
1627 {
1adeb98a 1628 symbol_file_clear (from_tty);
c906108c
SS
1629 }
1630 else
1631 {
b15cc25c 1632 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1633 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1634 char *name = NULL;
1635
ecf45d2c
SL
1636 if (from_tty)
1637 add_flags |= SYMFILE_VERBOSE;
1638
773a1edc
TT
1639 gdb_argv built_argv (args);
1640 for (char *arg : built_argv)
c906108c 1641 {
773a1edc 1642 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1643 flags |= OBJF_READNOW;
773a1edc
TT
1644 else if (*arg == '-')
1645 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1646 else
1647 {
773a1edc
TT
1648 symbol_file_add_main_1 (arg, add_flags, flags);
1649 name = arg;
78a4a9b9 1650 }
c906108c
SS
1651 }
1652
1653 if (name == NULL)
cb2f3a29 1654 error (_("no symbol file name was specified"));
c906108c
SS
1655 }
1656}
1657
1658/* Set the initial language.
1659
cb2f3a29
MK
1660 FIXME: A better solution would be to record the language in the
1661 psymtab when reading partial symbols, and then use it (if known) to
1662 set the language. This would be a win for formats that encode the
1663 language in an easily discoverable place, such as DWARF. For
1664 stabs, we can jump through hoops looking for specially named
1665 symbols or try to intuit the language from the specific type of
1666 stabs we find, but we can't do that until later when we read in
1667 full symbols. */
c906108c 1668
8b60591b 1669void
fba45db2 1670set_initial_language (void)
c906108c 1671{
9e6c82ad 1672 enum language lang = main_language ();
c906108c 1673
9e6c82ad 1674 if (lang == language_unknown)
01f8c46d 1675 {
bf6d8a91 1676 char *name = main_name ();
d12307c1 1677 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1678
bf6d8a91
TT
1679 if (sym != NULL)
1680 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1681 }
cb2f3a29 1682
ccefe4c4
TT
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
c906108c 1687 }
ccefe4c4
TT
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1691}
1692
cb2f3a29
MK
1693/* Open the file specified by NAME and hand it off to BFD for
1694 preliminary analysis. Return a newly initialized bfd *, which
1695 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1696 absolute). In case of trouble, error() is called. */
c906108c 1697
192b62ce 1698gdb_bfd_ref_ptr
97a41605 1699symfile_bfd_open (const char *name)
c906108c 1700{
97a41605
GB
1701 int desc = -1;
1702 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1703
97a41605 1704 if (!is_target_filename (name))
f1838a98 1705 {
ee0c3293 1706 char *absolute_name;
f1838a98 1707
ee0c3293 1708 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1709
97a41605
GB
1710 /* Look down path for it, allocate 2nd new malloc'd copy. */
1711 desc = openp (getenv ("PATH"),
1712 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1713 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1714#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1715 if (desc < 0)
1716 {
ee0c3293 1717 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1718
ee0c3293 1719 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1720 desc = openp (getenv ("PATH"),
1721 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1722 exename, O_RDONLY | O_BINARY, &absolute_name);
1723 }
c906108c 1724#endif
97a41605 1725 if (desc < 0)
ee0c3293 1726 perror_with_name (expanded_name.get ());
cb2f3a29 1727
97a41605
GB
1728 make_cleanup (xfree, absolute_name);
1729 name = absolute_name;
1730 }
c906108c 1731
192b62ce
TT
1732 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1733 if (sym_bfd == NULL)
faab9922
JK
1734 error (_("`%s': can't open to read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
97a41605 1736
192b62ce
TT
1737 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1738 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1739
192b62ce
TT
1740 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1741 error (_("`%s': can't read symbols: %s."), name,
1742 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1743
faab9922
JK
1744 do_cleanups (back_to);
1745
cb2f3a29 1746 return sym_bfd;
c906108c
SS
1747}
1748
cb2f3a29
MK
1749/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1750 the section was not found. */
1751
0e931cf0 1752int
a121b7c1 1753get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1754{
1755 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1756
0e931cf0
JB
1757 if (sect)
1758 return sect->index;
1759 else
1760 return -1;
1761}
1762
c256e171
DE
1763/* Link SF into the global symtab_fns list.
1764 FLAVOUR is the file format that SF handles.
1765 Called on startup by the _initialize routine in each object file format
1766 reader, to register information about each format the reader is prepared
1767 to handle. */
c906108c
SS
1768
1769void
c256e171 1770add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1771{
905014d7 1772 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1773}
1774
cb2f3a29
MK
1775/* Initialize OBJFILE to read symbols from its associated BFD. It
1776 either returns or calls error(). The result is an initialized
1777 struct sym_fns in the objfile structure, that contains cached
1778 information about the symbol file. */
c906108c 1779
00b5771c 1780static const struct sym_fns *
31d99776 1781find_sym_fns (bfd *abfd)
c906108c 1782{
31d99776 1783 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1784
75245b24
MS
1785 if (our_flavour == bfd_target_srec_flavour
1786 || our_flavour == bfd_target_ihex_flavour
1787 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1788 return NULL; /* No symbols. */
75245b24 1789
905014d7
SM
1790 for (const registered_sym_fns &rsf : symtab_fns)
1791 if (our_flavour == rsf.sym_flavour)
1792 return rsf.sym_fns;
cb2f3a29 1793
8a3fe4f8 1794 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1795 bfd_get_target (abfd));
c906108c
SS
1796}
1797\f
cb2f3a29 1798
c906108c
SS
1799/* This function runs the load command of our current target. */
1800
1801static void
fba45db2 1802load_command (char *arg, int from_tty)
c906108c 1803{
5b3fca71
TT
1804 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1805
e5cc9f32
JB
1806 dont_repeat ();
1807
4487aabf
PA
1808 /* The user might be reloading because the binary has changed. Take
1809 this opportunity to check. */
1810 reopen_exec_file ();
1811 reread_symbols ();
1812
c906108c 1813 if (arg == NULL)
1986bccd
AS
1814 {
1815 char *parg;
1816 int count = 0;
1817
1818 parg = arg = get_exec_file (1);
1819
1820 /* Count how many \ " ' tab space there are in the name. */
1821 while ((parg = strpbrk (parg, "\\\"'\t ")))
1822 {
1823 parg++;
1824 count++;
1825 }
1826
1827 if (count)
1828 {
1829 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1830 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1831 char *ptemp = temp;
1832 char *prev;
1833
1834 make_cleanup (xfree, temp);
1835
1836 prev = parg = arg;
1837 while ((parg = strpbrk (parg, "\\\"'\t ")))
1838 {
1839 strncpy (ptemp, prev, parg - prev);
1840 ptemp += parg - prev;
1841 prev = parg++;
1842 *ptemp++ = '\\';
1843 }
1844 strcpy (ptemp, prev);
1845
1846 arg = temp;
1847 }
1848 }
1849
c906108c 1850 target_load (arg, from_tty);
2889e661
JB
1851
1852 /* After re-loading the executable, we don't really know which
1853 overlays are mapped any more. */
1854 overlay_cache_invalid = 1;
5b3fca71
TT
1855
1856 do_cleanups (cleanup);
c906108c
SS
1857}
1858
1859/* This version of "load" should be usable for any target. Currently
1860 it is just used for remote targets, not inftarg.c or core files,
1861 on the theory that only in that case is it useful.
1862
1863 Avoiding xmodem and the like seems like a win (a) because we don't have
1864 to worry about finding it, and (b) On VMS, fork() is very slow and so
1865 we don't want to run a subprocess. On the other hand, I'm not sure how
1866 performance compares. */
917317f4 1867
917317f4
JM
1868static int validate_download = 0;
1869
e4f9b4d5
MS
1870/* Callback service function for generic_load (bfd_map_over_sections). */
1871
1872static void
1873add_section_size_callback (bfd *abfd, asection *asec, void *data)
1874{
19ba03f4 1875 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1876
2c500098 1877 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1878}
1879
1880/* Opaque data for load_section_callback. */
1881struct load_section_data {
f698ca8e 1882 CORE_ADDR load_offset;
a76d924d
DJ
1883 struct load_progress_data *progress_data;
1884 VEC(memory_write_request_s) *requests;
1885};
1886
1887/* Opaque data for load_progress. */
1888struct load_progress_data {
1889 /* Cumulative data. */
e4f9b4d5
MS
1890 unsigned long write_count;
1891 unsigned long data_count;
1892 bfd_size_type total_size;
a76d924d
DJ
1893};
1894
1895/* Opaque data for load_progress for a single section. */
1896struct load_progress_section_data {
1897 struct load_progress_data *cumulative;
cf7a04e8 1898
a76d924d 1899 /* Per-section data. */
cf7a04e8
DJ
1900 const char *section_name;
1901 ULONGEST section_sent;
1902 ULONGEST section_size;
1903 CORE_ADDR lma;
1904 gdb_byte *buffer;
e4f9b4d5
MS
1905};
1906
a76d924d 1907/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1908
1909static void
1910load_progress (ULONGEST bytes, void *untyped_arg)
1911{
19ba03f4
SM
1912 struct load_progress_section_data *args
1913 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1914 struct load_progress_data *totals;
1915
1916 if (args == NULL)
1917 /* Writing padding data. No easy way to get at the cumulative
1918 stats, so just ignore this. */
1919 return;
1920
1921 totals = args->cumulative;
1922
1923 if (bytes == 0 && args->section_sent == 0)
1924 {
1925 /* The write is just starting. Let the user know we've started
1926 this section. */
112e8700
SM
1927 current_uiout->message ("Loading section %s, size %s lma %s\n",
1928 args->section_name,
1929 hex_string (args->section_size),
1930 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1931 return;
1932 }
cf7a04e8
DJ
1933
1934 if (validate_download)
1935 {
1936 /* Broken memories and broken monitors manifest themselves here
1937 when bring new computers to life. This doubles already slow
1938 downloads. */
1939 /* NOTE: cagney/1999-10-18: A more efficient implementation
1940 might add a verify_memory() method to the target vector and
1941 then use that. remote.c could implement that method using
1942 the ``qCRC'' packet. */
0efef640 1943 gdb::byte_vector check (bytes);
cf7a04e8 1944
0efef640 1945 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1946 error (_("Download verify read failed at %s"),
f5656ead 1947 paddress (target_gdbarch (), args->lma));
0efef640 1948 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1949 error (_("Download verify compare failed at %s"),
f5656ead 1950 paddress (target_gdbarch (), args->lma));
cf7a04e8 1951 }
a76d924d 1952 totals->data_count += bytes;
cf7a04e8
DJ
1953 args->lma += bytes;
1954 args->buffer += bytes;
a76d924d 1955 totals->write_count += 1;
cf7a04e8 1956 args->section_sent += bytes;
522002f9 1957 if (check_quit_flag ()
cf7a04e8
DJ
1958 || (deprecated_ui_load_progress_hook != NULL
1959 && deprecated_ui_load_progress_hook (args->section_name,
1960 args->section_sent)))
1961 error (_("Canceled the download"));
1962
1963 if (deprecated_show_load_progress != NULL)
1964 deprecated_show_load_progress (args->section_name,
1965 args->section_sent,
1966 args->section_size,
a76d924d
DJ
1967 totals->data_count,
1968 totals->total_size);
cf7a04e8
DJ
1969}
1970
e4f9b4d5
MS
1971/* Callback service function for generic_load (bfd_map_over_sections). */
1972
1973static void
1974load_section_callback (bfd *abfd, asection *asec, void *data)
1975{
a76d924d 1976 struct memory_write_request *new_request;
19ba03f4 1977 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1978 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1979 bfd_size_type size = bfd_get_section_size (asec);
1980 gdb_byte *buffer;
cf7a04e8 1981 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1982
cf7a04e8
DJ
1983 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1984 return;
e4f9b4d5 1985
cf7a04e8
DJ
1986 if (size == 0)
1987 return;
e4f9b4d5 1988
a76d924d
DJ
1989 new_request = VEC_safe_push (memory_write_request_s,
1990 args->requests, NULL);
1991 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 1992 section_data = XCNEW (struct load_progress_section_data);
a76d924d 1993 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1994 new_request->end = new_request->begin + size; /* FIXME Should size
1995 be in instead? */
224c3ddb 1996 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 1997 new_request->baton = section_data;
cf7a04e8 1998
a76d924d 1999 buffer = new_request->data;
cf7a04e8 2000
a76d924d
DJ
2001 section_data->cumulative = args->progress_data;
2002 section_data->section_name = sect_name;
2003 section_data->section_size = size;
2004 section_data->lma = new_request->begin;
2005 section_data->buffer = buffer;
cf7a04e8
DJ
2006
2007 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2008}
2009
2010/* Clean up an entire memory request vector, including load
2011 data and progress records. */
cf7a04e8 2012
a76d924d
DJ
2013static void
2014clear_memory_write_data (void *arg)
2015{
19ba03f4 2016 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2017 VEC(memory_write_request_s) *vec = *vec_p;
2018 int i;
2019 struct memory_write_request *mr;
cf7a04e8 2020
a76d924d
DJ
2021 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2022 {
2023 xfree (mr->data);
2024 xfree (mr->baton);
2025 }
2026 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2027}
2028
dcb07cfa
PA
2029static void print_transfer_performance (struct ui_file *stream,
2030 unsigned long data_count,
2031 unsigned long write_count,
2032 std::chrono::steady_clock::duration d);
2033
c906108c 2034void
9cbe5fff 2035generic_load (const char *args, int from_tty)
c906108c 2036{
773a1edc 2037 struct cleanup *old_cleanups;
e4f9b4d5 2038 struct load_section_data cbdata;
a76d924d 2039 struct load_progress_data total_progress;
79a45e25 2040 struct ui_out *uiout = current_uiout;
a76d924d 2041
e4f9b4d5
MS
2042 CORE_ADDR entry;
2043
a76d924d
DJ
2044 memset (&cbdata, 0, sizeof (cbdata));
2045 memset (&total_progress, 0, sizeof (total_progress));
2046 cbdata.progress_data = &total_progress;
2047
773a1edc 2048 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2049
d1a41061
PP
2050 if (args == NULL)
2051 error_no_arg (_("file to load"));
1986bccd 2052
773a1edc 2053 gdb_argv argv (args);
1986bccd 2054
ee0c3293 2055 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2056
2057 if (argv[1] != NULL)
917317f4 2058 {
f698ca8e 2059 const char *endptr;
ba5f2f8a 2060
f698ca8e 2061 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2062
2063 /* If the last word was not a valid number then
2064 treat it as a file name with spaces in. */
2065 if (argv[1] == endptr)
2066 error (_("Invalid download offset:%s."), argv[1]);
2067
2068 if (argv[2] != NULL)
2069 error (_("Too many parameters."));
917317f4 2070 }
c906108c 2071
c378eb4e 2072 /* Open the file for loading. */
ee0c3293 2073 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2074 if (loadfile_bfd == NULL)
ee0c3293 2075 perror_with_name (filename.get ());
917317f4 2076
192b62ce 2077 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2078 {
ee0c3293 2079 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2080 bfd_errmsg (bfd_get_error ()));
2081 }
c5aa993b 2082
192b62ce 2083 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2084 (void *) &total_progress.total_size);
2085
192b62ce 2086 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2087
dcb07cfa
PA
2088 using namespace std::chrono;
2089
2090 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2091
a76d924d
DJ
2092 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2093 load_progress) != 0)
2094 error (_("Load failed"));
c906108c 2095
dcb07cfa 2096 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2097
192b62ce 2098 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2099 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2100 uiout->text ("Start address ");
2101 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2102 uiout->text (", load size ");
2103 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2104 uiout->text ("\n");
fb14de7b 2105 regcache_write_pc (get_current_regcache (), entry);
c906108c 2106
38963c97
DJ
2107 /* Reset breakpoints, now that we have changed the load image. For
2108 instance, breakpoints may have been set (or reset, by
2109 post_create_inferior) while connected to the target but before we
2110 loaded the program. In that case, the prologue analyzer could
2111 have read instructions from the target to find the right
2112 breakpoint locations. Loading has changed the contents of that
2113 memory. */
2114
2115 breakpoint_re_set ();
2116
a76d924d
DJ
2117 print_transfer_performance (gdb_stdout, total_progress.data_count,
2118 total_progress.write_count,
dcb07cfa 2119 end_time - start_time);
c906108c
SS
2120
2121 do_cleanups (old_cleanups);
2122}
2123
dcb07cfa
PA
2124/* Report on STREAM the performance of a memory transfer operation,
2125 such as 'load'. DATA_COUNT is the number of bytes transferred.
2126 WRITE_COUNT is the number of separate write operations, or 0, if
2127 that information is not available. TIME is how long the operation
2128 lasted. */
c906108c 2129
dcb07cfa 2130static void
d9fcf2fb 2131print_transfer_performance (struct ui_file *stream,
917317f4
JM
2132 unsigned long data_count,
2133 unsigned long write_count,
dcb07cfa 2134 std::chrono::steady_clock::duration time)
917317f4 2135{
dcb07cfa 2136 using namespace std::chrono;
79a45e25 2137 struct ui_out *uiout = current_uiout;
2b71414d 2138
dcb07cfa 2139 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2140
112e8700 2141 uiout->text ("Transfer rate: ");
dcb07cfa 2142 if (ms.count () > 0)
8b93c638 2143 {
dcb07cfa 2144 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2145
112e8700 2146 if (uiout->is_mi_like_p ())
9f43d28c 2147 {
112e8700
SM
2148 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2149 uiout->text (" bits/sec");
9f43d28c
DJ
2150 }
2151 else if (rate < 1024)
2152 {
112e8700
SM
2153 uiout->field_fmt ("transfer-rate", "%lu", rate);
2154 uiout->text (" bytes/sec");
9f43d28c
DJ
2155 }
2156 else
2157 {
112e8700
SM
2158 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2159 uiout->text (" KB/sec");
9f43d28c 2160 }
8b93c638
JM
2161 }
2162 else
2163 {
112e8700
SM
2164 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2165 uiout->text (" bits in <1 sec");
8b93c638
JM
2166 }
2167 if (write_count > 0)
2168 {
112e8700
SM
2169 uiout->text (", ");
2170 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2171 uiout->text (" bytes/write");
8b93c638 2172 }
112e8700 2173 uiout->text (".\n");
c906108c
SS
2174}
2175
2176/* This function allows the addition of incrementally linked object files.
2177 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2178/* Note: ezannoni 2000-04-13 This function/command used to have a
2179 special case syntax for the rombug target (Rombug is the boot
2180 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2181 rombug case, the user doesn't need to supply a text address,
2182 instead a call to target_link() (in target.c) would supply the
c378eb4e 2183 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2184
c906108c 2185static void
2cf311eb 2186add_symbol_file_command (const char *args, int from_tty)
c906108c 2187{
5af949e3 2188 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2189 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2190 char *arg;
2acceee2
JM
2191 int argcnt = 0;
2192 int sec_num = 0;
db162d44
EZ
2193 int expecting_sec_name = 0;
2194 int expecting_sec_addr = 0;
76ad5e1e 2195 struct objfile *objf;
b15cc25c
PA
2196 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2197 symfile_add_flags add_flags = 0;
2198
2199 if (from_tty)
2200 add_flags |= SYMFILE_VERBOSE;
db162d44 2201
a39a16c4 2202 struct sect_opt
2acceee2 2203 {
a121b7c1
PA
2204 const char *name;
2205 const char *value;
a39a16c4 2206 };
db162d44 2207
a39a16c4 2208 struct section_addr_info *section_addrs;
f978cb06 2209 std::vector<sect_opt> sect_opts;
3017564a 2210 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2211
c906108c
SS
2212 dont_repeat ();
2213
2214 if (args == NULL)
8a3fe4f8 2215 error (_("add-symbol-file takes a file name and an address"));
c906108c 2216
773a1edc 2217 gdb_argv argv (args);
db162d44 2218
5b96932b
AS
2219 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2220 {
c378eb4e 2221 /* Process the argument. */
db162d44 2222 if (argcnt == 0)
c906108c 2223 {
c378eb4e 2224 /* The first argument is the file name. */
ee0c3293 2225 filename.reset (tilde_expand (arg));
c906108c 2226 }
41dc8db8
MB
2227 else if (argcnt == 1)
2228 {
2229 /* The second argument is always the text address at which
2230 to load the program. */
f978cb06
TT
2231 sect_opt sect = { ".text", arg };
2232 sect_opts.push_back (sect);
41dc8db8 2233 }
db162d44 2234 else
41dc8db8
MB
2235 {
2236 /* It's an option (starting with '-') or it's an argument
2237 to an option. */
41dc8db8
MB
2238 if (expecting_sec_name)
2239 {
f978cb06
TT
2240 sect_opt sect = { arg, NULL };
2241 sect_opts.push_back (sect);
41dc8db8
MB
2242 expecting_sec_name = 0;
2243 }
2244 else if (expecting_sec_addr)
2245 {
f978cb06 2246 sect_opts.back ().value = arg;
41dc8db8 2247 expecting_sec_addr = 0;
41dc8db8
MB
2248 }
2249 else if (strcmp (arg, "-readnow") == 0)
2250 flags |= OBJF_READNOW;
2251 else if (strcmp (arg, "-s") == 0)
2252 {
2253 expecting_sec_name = 1;
2254 expecting_sec_addr = 1;
2255 }
2256 else
2257 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2258 " [-readnow] [-s <secname> <addr>]*"));
2259 }
c906108c 2260 }
c906108c 2261
927890d0
JB
2262 /* This command takes at least two arguments. The first one is a
2263 filename, and the second is the address where this file has been
2264 loaded. Abort now if this address hasn't been provided by the
2265 user. */
f978cb06 2266 if (sect_opts.empty ())
ee0c3293
TT
2267 error (_("The address where %s has been loaded is missing"),
2268 filename.get ());
927890d0 2269
c378eb4e 2270 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2271 a sect_addr_info structure to be passed around to other
2272 functions. We have to split this up into separate print
bb599908 2273 statements because hex_string returns a local static
c378eb4e 2274 string. */
5417f6dc 2275
ee0c3293
TT
2276 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2277 filename.get ());
f978cb06 2278 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2279 make_cleanup (xfree, section_addrs);
f978cb06 2280 for (sect_opt &sect : sect_opts)
c906108c 2281 {
db162d44 2282 CORE_ADDR addr;
f978cb06
TT
2283 const char *val = sect.value;
2284 const char *sec = sect.name;
5417f6dc 2285
ae822768 2286 addr = parse_and_eval_address (val);
db162d44 2287
db162d44 2288 /* Here we store the section offsets in the order they were
c378eb4e 2289 entered on the command line. */
a121b7c1 2290 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2291 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2292 printf_unfiltered ("\t%s_addr = %s\n", sec,
2293 paddress (gdbarch, addr));
db162d44
EZ
2294 sec_num++;
2295
5417f6dc 2296 /* The object's sections are initialized when a
db162d44 2297 call is made to build_objfile_section_table (objfile).
5417f6dc 2298 This happens in reread_symbols.
db162d44
EZ
2299 At this point, we don't know what file type this is,
2300 so we can't determine what section names are valid. */
2acceee2 2301 }
d76488d8 2302 section_addrs->num_sections = sec_num;
db162d44 2303
2acceee2 2304 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2305 error (_("Not confirmed."));
c906108c 2306
ee0c3293 2307 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2308
2309 add_target_sections_of_objfile (objf);
c906108c
SS
2310
2311 /* Getting new symbols may change our opinion about what is
2312 frameless. */
2313 reinit_frame_cache ();
db162d44 2314 do_cleanups (my_cleanups);
c906108c
SS
2315}
2316\f
70992597 2317
63644780
NB
2318/* This function removes a symbol file that was added via add-symbol-file. */
2319
2320static void
2cf311eb 2321remove_symbol_file_command (const char *args, int from_tty)
63644780 2322{
63644780 2323 struct objfile *objf = NULL;
63644780 2324 struct program_space *pspace = current_program_space;
63644780
NB
2325
2326 dont_repeat ();
2327
2328 if (args == NULL)
2329 error (_("remove-symbol-file: no symbol file provided"));
2330
773a1edc 2331 gdb_argv argv (args);
63644780
NB
2332
2333 if (strcmp (argv[0], "-a") == 0)
2334 {
2335 /* Interpret the next argument as an address. */
2336 CORE_ADDR addr;
2337
2338 if (argv[1] == NULL)
2339 error (_("Missing address argument"));
2340
2341 if (argv[2] != NULL)
2342 error (_("Junk after %s"), argv[1]);
2343
2344 addr = parse_and_eval_address (argv[1]);
2345
2346 ALL_OBJFILES (objf)
2347 {
d03de421
PA
2348 if ((objf->flags & OBJF_USERLOADED) != 0
2349 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2350 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2351 break;
2352 }
2353 }
2354 else if (argv[0] != NULL)
2355 {
2356 /* Interpret the current argument as a file name. */
63644780
NB
2357
2358 if (argv[1] != NULL)
2359 error (_("Junk after %s"), argv[0]);
2360
ee0c3293 2361 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2362
2363 ALL_OBJFILES (objf)
2364 {
d03de421
PA
2365 if ((objf->flags & OBJF_USERLOADED) != 0
2366 && (objf->flags & OBJF_SHARED) != 0
63644780 2367 && objf->pspace == pspace
ee0c3293 2368 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2369 break;
2370 }
2371 }
2372
2373 if (objf == NULL)
2374 error (_("No symbol file found"));
2375
2376 if (from_tty
2377 && !query (_("Remove symbol table from file \"%s\"? "),
2378 objfile_name (objf)))
2379 error (_("Not confirmed."));
2380
9e86da07 2381 delete objf;
63644780 2382 clear_symtab_users (0);
63644780
NB
2383}
2384
c906108c 2385/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2386
c906108c 2387void
fba45db2 2388reread_symbols (void)
c906108c
SS
2389{
2390 struct objfile *objfile;
2391 long new_modtime;
c906108c
SS
2392 struct stat new_statbuf;
2393 int res;
4c404b8b 2394 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2395
2396 /* With the addition of shared libraries, this should be modified,
2397 the load time should be saved in the partial symbol tables, since
2398 different tables may come from different source files. FIXME.
2399 This routine should then walk down each partial symbol table
c378eb4e 2400 and see if the symbol table that it originates from has been changed. */
c906108c 2401
c5aa993b
JM
2402 for (objfile = object_files; objfile; objfile = objfile->next)
2403 {
9cce227f
TG
2404 if (objfile->obfd == NULL)
2405 continue;
2406
2407 /* Separate debug objfiles are handled in the main objfile. */
2408 if (objfile->separate_debug_objfile_backlink)
2409 continue;
2410
02aeec7b
JB
2411 /* If this object is from an archive (what you usually create with
2412 `ar', often called a `static library' on most systems, though
2413 a `shared library' on AIX is also an archive), then you should
2414 stat on the archive name, not member name. */
9cce227f
TG
2415 if (objfile->obfd->my_archive)
2416 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2417 else
4262abfb 2418 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2419 if (res != 0)
2420 {
c378eb4e 2421 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2422 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2423 objfile_name (objfile));
9cce227f
TG
2424 continue;
2425 }
2426 new_modtime = new_statbuf.st_mtime;
2427 if (new_modtime != objfile->mtime)
2428 {
2429 struct cleanup *old_cleanups;
2430 struct section_offsets *offsets;
2431 int num_offsets;
24ba069a 2432 char *original_name;
9cce227f
TG
2433
2434 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2435 objfile_name (objfile));
9cce227f
TG
2436
2437 /* There are various functions like symbol_file_add,
2438 symfile_bfd_open, syms_from_objfile, etc., which might
2439 appear to do what we want. But they have various other
2440 effects which we *don't* want. So we just do stuff
2441 ourselves. We don't worry about mapped files (for one thing,
2442 any mapped file will be out of date). */
2443
2444 /* If we get an error, blow away this objfile (not sure if
2445 that is the correct response for things like shared
2446 libraries). */
2447 old_cleanups = make_cleanup_free_objfile (objfile);
2448 /* We need to do this whenever any symbols go away. */
2449 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2450
0ba1096a
KT
2451 if (exec_bfd != NULL
2452 && filename_cmp (bfd_get_filename (objfile->obfd),
2453 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2454 {
2455 /* Reload EXEC_BFD without asking anything. */
2456
2457 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2458 }
2459
f6eeced0
JK
2460 /* Keep the calls order approx. the same as in free_objfile. */
2461
2462 /* Free the separate debug objfiles. It will be
2463 automatically recreated by sym_read. */
2464 free_objfile_separate_debug (objfile);
2465
2466 /* Remove any references to this objfile in the global
2467 value lists. */
2468 preserve_values (objfile);
2469
2470 /* Nuke all the state that we will re-read. Much of the following
2471 code which sets things to NULL really is necessary to tell
2472 other parts of GDB that there is nothing currently there.
2473
2474 Try to keep the freeing order compatible with free_objfile. */
2475
2476 if (objfile->sf != NULL)
2477 {
2478 (*objfile->sf->sym_finish) (objfile);
2479 }
2480
2481 clear_objfile_data (objfile);
2482
e1507e95 2483 /* Clean up any state BFD has sitting around. */
a4453b7e 2484 {
192b62ce 2485 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2486 char *obfd_filename;
a4453b7e
TT
2487
2488 obfd_filename = bfd_get_filename (objfile->obfd);
2489 /* Open the new BFD before freeing the old one, so that
2490 the filename remains live. */
192b62ce
TT
2491 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2492 objfile->obfd = temp.release ();
e1507e95 2493 if (objfile->obfd == NULL)
192b62ce 2494 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2495 }
2496
24ba069a
JK
2497 original_name = xstrdup (objfile->original_name);
2498 make_cleanup (xfree, original_name);
2499
9cce227f
TG
2500 /* bfd_openr sets cacheable to true, which is what we want. */
2501 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2502 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2503 bfd_errmsg (bfd_get_error ()));
2504
2505 /* Save the offsets, we will nuke them with the rest of the
2506 objfile_obstack. */
2507 num_offsets = objfile->num_sections;
2508 offsets = ((struct section_offsets *)
2509 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2510 memcpy (offsets, objfile->section_offsets,
2511 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2512
9cce227f
TG
2513 /* FIXME: Do we have to free a whole linked list, or is this
2514 enough? */
af5bf4ad
SM
2515 objfile->global_psymbols.clear ();
2516 objfile->static_psymbols.clear ();
9cce227f 2517
c378eb4e 2518 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2519 psymbol_bcache_free (objfile->psymbol_cache);
2520 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2521
2522 /* NB: after this call to obstack_free, objfiles_changed
2523 will need to be called (see discussion below). */
9cce227f
TG
2524 obstack_free (&objfile->objfile_obstack, 0);
2525 objfile->sections = NULL;
43f3e411 2526 objfile->compunit_symtabs = NULL;
9cce227f
TG
2527 objfile->psymtabs = NULL;
2528 objfile->psymtabs_addrmap = NULL;
2529 objfile->free_psymtabs = NULL;
34eaf542 2530 objfile->template_symbols = NULL;
9cce227f 2531
9cce227f
TG
2532 /* obstack_init also initializes the obstack so it is
2533 empty. We could use obstack_specify_allocation but
d82ea6a8 2534 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2535 obstack_init (&objfile->objfile_obstack);
779bd270 2536
846060df
JB
2537 /* set_objfile_per_bfd potentially allocates the per-bfd
2538 data on the objfile's obstack (if sharing data across
2539 multiple users is not possible), so it's important to
2540 do it *after* the obstack has been initialized. */
2541 set_objfile_per_bfd (objfile);
2542
224c3ddb
SM
2543 objfile->original_name
2544 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2545 strlen (original_name));
24ba069a 2546
779bd270
DE
2547 /* Reset the sym_fns pointer. The ELF reader can change it
2548 based on whether .gdb_index is present, and we need it to
2549 start over. PR symtab/15885 */
8fb8eb5c 2550 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2551
d82ea6a8 2552 build_objfile_section_table (objfile);
9cce227f
TG
2553 terminate_minimal_symbol_table (objfile);
2554
2555 /* We use the same section offsets as from last time. I'm not
2556 sure whether that is always correct for shared libraries. */
2557 objfile->section_offsets = (struct section_offsets *)
2558 obstack_alloc (&objfile->objfile_obstack,
2559 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2560 memcpy (objfile->section_offsets, offsets,
2561 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2562 objfile->num_sections = num_offsets;
2563
2564 /* What the hell is sym_new_init for, anyway? The concept of
2565 distinguishing between the main file and additional files
2566 in this way seems rather dubious. */
2567 if (objfile == symfile_objfile)
c906108c 2568 {
9cce227f 2569 (*objfile->sf->sym_new_init) (objfile);
c906108c 2570 }
9cce227f
TG
2571
2572 (*objfile->sf->sym_init) (objfile);
2573 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2574
2575 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2576
2577 /* We are about to read new symbols and potentially also
2578 DWARF information. Some targets may want to pass addresses
2579 read from DWARF DIE's through an adjustment function before
2580 saving them, like MIPS, which may call into
2581 "find_pc_section". When called, that function will make
2582 use of per-objfile program space data.
2583
2584 Since we discarded our section information above, we have
2585 dangling pointers in the per-objfile program space data
2586 structure. Force GDB to update the section mapping
2587 information by letting it know the objfile has changed,
2588 making the dangling pointers point to correct data
2589 again. */
2590
2591 objfiles_changed ();
2592
608e2dbb 2593 read_symbols (objfile, 0);
b11896a5 2594
9cce227f 2595 if (!objfile_has_symbols (objfile))
c906108c 2596 {
9cce227f
TG
2597 wrap_here ("");
2598 printf_unfiltered (_("(no debugging symbols found)\n"));
2599 wrap_here ("");
c5aa993b 2600 }
9cce227f
TG
2601
2602 /* We're done reading the symbol file; finish off complaints. */
2603 clear_complaints (&symfile_complaints, 0, 1);
2604
2605 /* Getting new symbols may change our opinion about what is
2606 frameless. */
2607
2608 reinit_frame_cache ();
2609
2610 /* Discard cleanups as symbol reading was successful. */
2611 discard_cleanups (old_cleanups);
2612
2613 /* If the mtime has changed between the time we set new_modtime
2614 and now, we *want* this to be out of date, so don't call stat
2615 again now. */
2616 objfile->mtime = new_modtime;
9cce227f 2617 init_entry_point_info (objfile);
4ac39b97 2618
4c404b8b 2619 new_objfiles.push_back (objfile);
c906108c
SS
2620 }
2621 }
c906108c 2622
4c404b8b 2623 if (!new_objfiles.empty ())
ea53e89f 2624 {
c1e56572 2625 clear_symtab_users (0);
4ac39b97
JK
2626
2627 /* clear_objfile_data for each objfile was called before freeing it and
2628 observer_notify_new_objfile (NULL) has been called by
2629 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2630 for (auto iter : new_objfiles)
2631 observer_notify_new_objfile (iter);
4ac39b97 2632
ea53e89f
JB
2633 /* At least one objfile has changed, so we can consider that
2634 the executable we're debugging has changed too. */
781b42b0 2635 observer_notify_executable_changed ();
ea53e89f 2636 }
c906108c 2637}
c906108c
SS
2638\f
2639
593e3209 2640struct filename_language
c5aa993b 2641{
593e3209
SM
2642 filename_language (const std::string &ext_, enum language lang_)
2643 : ext (ext_), lang (lang_)
2644 {}
3fcf0b0d 2645
593e3209
SM
2646 std::string ext;
2647 enum language lang;
2648};
c906108c 2649
593e3209 2650static std::vector<filename_language> filename_language_table;
c906108c 2651
56618e20
TT
2652/* See symfile.h. */
2653
2654void
2655add_filename_language (const char *ext, enum language lang)
c906108c 2656{
593e3209 2657 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2658}
2659
2660static char *ext_args;
920d2a44
AC
2661static void
2662show_ext_args (struct ui_file *file, int from_tty,
2663 struct cmd_list_element *c, const char *value)
2664{
3e43a32a
MS
2665 fprintf_filtered (file,
2666 _("Mapping between filename extension "
2667 "and source language is \"%s\".\n"),
920d2a44
AC
2668 value);
2669}
c906108c
SS
2670
2671static void
26c41df3 2672set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c 2673{
c906108c
SS
2674 char *cp = ext_args;
2675 enum language lang;
2676
c378eb4e 2677 /* First arg is filename extension, starting with '.' */
c906108c 2678 if (*cp != '.')
8a3fe4f8 2679 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2680
2681 /* Find end of first arg. */
c5aa993b 2682 while (*cp && !isspace (*cp))
c906108c
SS
2683 cp++;
2684
2685 if (*cp == '\0')
3e43a32a
MS
2686 error (_("'%s': two arguments required -- "
2687 "filename extension and language"),
c906108c
SS
2688 ext_args);
2689
c378eb4e 2690 /* Null-terminate first arg. */
c5aa993b 2691 *cp++ = '\0';
c906108c
SS
2692
2693 /* Find beginning of second arg, which should be a source language. */
529480d0 2694 cp = skip_spaces (cp);
c906108c
SS
2695
2696 if (*cp == '\0')
3e43a32a
MS
2697 error (_("'%s': two arguments required -- "
2698 "filename extension and language"),
c906108c
SS
2699 ext_args);
2700
2701 /* Lookup the language from among those we know. */
2702 lang = language_enum (cp);
2703
593e3209 2704 auto it = filename_language_table.begin ();
c906108c 2705 /* Now lookup the filename extension: do we already know it? */
593e3209 2706 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2707 {
593e3209 2708 if (it->ext == ext_args)
3fcf0b0d
TT
2709 break;
2710 }
c906108c 2711
593e3209 2712 if (it == filename_language_table.end ())
c906108c 2713 {
c378eb4e 2714 /* New file extension. */
c906108c
SS
2715 add_filename_language (ext_args, lang);
2716 }
2717 else
2718 {
c378eb4e 2719 /* Redefining a previously known filename extension. */
c906108c
SS
2720
2721 /* if (from_tty) */
2722 /* query ("Really make files of type %s '%s'?", */
2723 /* ext_args, language_str (lang)); */
2724
593e3209 2725 it->lang = lang;
c906108c
SS
2726 }
2727}
2728
2729static void
fba45db2 2730info_ext_lang_command (char *args, int from_tty)
c906108c 2731{
a3f17187 2732 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2733 printf_filtered ("\n\n");
593e3209
SM
2734 for (const filename_language &entry : filename_language_table)
2735 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2736 language_str (entry.lang));
c906108c
SS
2737}
2738
c906108c 2739enum language
dd786858 2740deduce_language_from_filename (const char *filename)
c906108c 2741{
e6a959d6 2742 const char *cp;
c906108c
SS
2743
2744 if (filename != NULL)
2745 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2746 {
593e3209
SM
2747 for (const filename_language &entry : filename_language_table)
2748 if (entry.ext == cp)
2749 return entry.lang;
3fcf0b0d 2750 }
c906108c
SS
2751
2752 return language_unknown;
2753}
2754\f
43f3e411
DE
2755/* Allocate and initialize a new symbol table.
2756 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2757
2758struct symtab *
43f3e411 2759allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2760{
43f3e411
DE
2761 struct objfile *objfile = cust->objfile;
2762 struct symtab *symtab
2763 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2764
19ba03f4
SM
2765 symtab->filename
2766 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2767 objfile->per_bfd->filename_cache);
c5aa993b
JM
2768 symtab->fullname = NULL;
2769 symtab->language = deduce_language_from_filename (filename);
c906108c 2770
db0fec5c
DE
2771 /* This can be very verbose with lots of headers.
2772 Only print at higher debug levels. */
2773 if (symtab_create_debug >= 2)
45cfd468
DE
2774 {
2775 /* Be a bit clever with debugging messages, and don't print objfile
2776 every time, only when it changes. */
2777 static char *last_objfile_name = NULL;
2778
2779 if (last_objfile_name == NULL
4262abfb 2780 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2781 {
2782 xfree (last_objfile_name);
4262abfb 2783 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2784 fprintf_unfiltered (gdb_stdlog,
2785 "Creating one or more symtabs for objfile %s ...\n",
2786 last_objfile_name);
2787 }
2788 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2789 "Created symtab %s for module %s.\n",
2790 host_address_to_string (symtab), filename);
45cfd468
DE
2791 }
2792
43f3e411
DE
2793 /* Add it to CUST's list of symtabs. */
2794 if (cust->filetabs == NULL)
2795 {
2796 cust->filetabs = symtab;
2797 cust->last_filetab = symtab;
2798 }
2799 else
2800 {
2801 cust->last_filetab->next = symtab;
2802 cust->last_filetab = symtab;
2803 }
2804
2805 /* Backlink to the containing compunit symtab. */
2806 symtab->compunit_symtab = cust;
2807
2808 return symtab;
2809}
2810
2811/* Allocate and initialize a new compunit.
2812 NAME is the name of the main source file, if there is one, or some
2813 descriptive text if there are no source files. */
2814
2815struct compunit_symtab *
2816allocate_compunit_symtab (struct objfile *objfile, const char *name)
2817{
2818 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2819 struct compunit_symtab);
2820 const char *saved_name;
2821
2822 cu->objfile = objfile;
2823
2824 /* The name we record here is only for display/debugging purposes.
2825 Just save the basename to avoid path issues (too long for display,
2826 relative vs absolute, etc.). */
2827 saved_name = lbasename (name);
224c3ddb
SM
2828 cu->name
2829 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2830 strlen (saved_name));
43f3e411
DE
2831
2832 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2833
2834 if (symtab_create_debug)
2835 {
2836 fprintf_unfiltered (gdb_stdlog,
2837 "Created compunit symtab %s for %s.\n",
2838 host_address_to_string (cu),
2839 cu->name);
2840 }
2841
2842 return cu;
2843}
2844
2845/* Hook CU to the objfile it comes from. */
2846
2847void
2848add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2849{
2850 cu->next = cu->objfile->compunit_symtabs;
2851 cu->objfile->compunit_symtabs = cu;
c906108c 2852}
c906108c 2853\f
c5aa993b 2854
b15cc25c
PA
2855/* Reset all data structures in gdb which may contain references to
2856 symbol table data. */
c906108c
SS
2857
2858void
b15cc25c 2859clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2860{
2861 /* Someday, we should do better than this, by only blowing away
2862 the things that really need to be blown. */
c0501be5
DJ
2863
2864 /* Clear the "current" symtab first, because it is no longer valid.
2865 breakpoint_re_set may try to access the current symtab. */
2866 clear_current_source_symtab_and_line ();
2867
c906108c 2868 clear_displays ();
1bfeeb0f 2869 clear_last_displayed_sal ();
c906108c 2870 clear_pc_function_cache ();
06d3b283 2871 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2872
2873 /* Clear globals which might have pointed into a removed objfile.
2874 FIXME: It's not clear which of these are supposed to persist
2875 between expressions and which ought to be reset each time. */
2876 expression_context_block = NULL;
2877 innermost_block = NULL;
8756216b
DP
2878
2879 /* Varobj may refer to old symbols, perform a cleanup. */
2880 varobj_invalidate ();
2881
e700d1b2
JB
2882 /* Now that the various caches have been cleared, we can re_set
2883 our breakpoints without risking it using stale data. */
2884 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2885 breakpoint_re_set ();
c906108c
SS
2886}
2887
74b7792f
AC
2888static void
2889clear_symtab_users_cleanup (void *ignore)
2890{
c1e56572 2891 clear_symtab_users (0);
74b7792f 2892}
c906108c 2893\f
c906108c
SS
2894/* OVERLAYS:
2895 The following code implements an abstraction for debugging overlay sections.
2896
2897 The target model is as follows:
2898 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2899 same VMA, each with its own unique LMA (or load address).
c906108c 2900 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2901 sections, one by one, from the load address into the VMA address.
5417f6dc 2902 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2903 sections should be considered to be mapped from the VMA to the LMA.
2904 This information is used for symbol lookup, and memory read/write.
5417f6dc 2905 For instance, if a section has been mapped then its contents
c5aa993b 2906 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2907
2908 Two levels of debugger support for overlays are available. One is
2909 "manual", in which the debugger relies on the user to tell it which
2910 overlays are currently mapped. This level of support is
2911 implemented entirely in the core debugger, and the information about
2912 whether a section is mapped is kept in the objfile->obj_section table.
2913
2914 The second level of support is "automatic", and is only available if
2915 the target-specific code provides functionality to read the target's
2916 overlay mapping table, and translate its contents for the debugger
2917 (by updating the mapped state information in the obj_section tables).
2918
2919 The interface is as follows:
c5aa993b
JM
2920 User commands:
2921 overlay map <name> -- tell gdb to consider this section mapped
2922 overlay unmap <name> -- tell gdb to consider this section unmapped
2923 overlay list -- list the sections that GDB thinks are mapped
2924 overlay read-target -- get the target's state of what's mapped
2925 overlay off/manual/auto -- set overlay debugging state
2926 Functional interface:
2927 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2928 section, return that section.
5417f6dc 2929 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2930 the pc, either in its VMA or its LMA
714835d5 2931 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2932 section_is_overlay(sect): true if section's VMA != LMA
2933 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2934 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2935 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2936 overlay_mapped_address(...): map an address from section's LMA to VMA
2937 overlay_unmapped_address(...): map an address from section's VMA to LMA
2938 symbol_overlayed_address(...): Return a "current" address for symbol:
2939 either in VMA or LMA depending on whether
c378eb4e 2940 the symbol's section is currently mapped. */
c906108c
SS
2941
2942/* Overlay debugging state: */
2943
d874f1e2 2944enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2945int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2946
c906108c 2947/* Function: section_is_overlay (SECTION)
5417f6dc 2948 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2949 SECTION is loaded at an address different from where it will "run". */
2950
2951int
714835d5 2952section_is_overlay (struct obj_section *section)
c906108c 2953{
714835d5
UW
2954 if (overlay_debugging && section)
2955 {
2956 bfd *abfd = section->objfile->obfd;
2957 asection *bfd_section = section->the_bfd_section;
f888f159 2958
714835d5
UW
2959 if (bfd_section_lma (abfd, bfd_section) != 0
2960 && bfd_section_lma (abfd, bfd_section)
2961 != bfd_section_vma (abfd, bfd_section))
2962 return 1;
2963 }
c906108c
SS
2964
2965 return 0;
2966}
2967
2968/* Function: overlay_invalidate_all (void)
2969 Invalidate the mapped state of all overlay sections (mark it as stale). */
2970
2971static void
fba45db2 2972overlay_invalidate_all (void)
c906108c 2973{
c5aa993b 2974 struct objfile *objfile;
c906108c
SS
2975 struct obj_section *sect;
2976
2977 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2978 if (section_is_overlay (sect))
2979 sect->ovly_mapped = -1;
c906108c
SS
2980}
2981
714835d5 2982/* Function: section_is_mapped (SECTION)
5417f6dc 2983 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2984
2985 Access to the ovly_mapped flag is restricted to this function, so
2986 that we can do automatic update. If the global flag
2987 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2988 overlay_invalidate_all. If the mapped state of the particular
2989 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2990
714835d5
UW
2991int
2992section_is_mapped (struct obj_section *osect)
c906108c 2993{
9216df95
UW
2994 struct gdbarch *gdbarch;
2995
714835d5 2996 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2997 return 0;
2998
c5aa993b 2999 switch (overlay_debugging)
c906108c
SS
3000 {
3001 default:
d874f1e2 3002 case ovly_off:
c5aa993b 3003 return 0; /* overlay debugging off */
d874f1e2 3004 case ovly_auto: /* overlay debugging automatic */
1c772458 3005 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3006 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3007 gdbarch = get_objfile_arch (osect->objfile);
3008 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3009 {
3010 if (overlay_cache_invalid)
3011 {
3012 overlay_invalidate_all ();
3013 overlay_cache_invalid = 0;
3014 }
3015 if (osect->ovly_mapped == -1)
9216df95 3016 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3017 }
3018 /* fall thru to manual case */
d874f1e2 3019 case ovly_on: /* overlay debugging manual */
c906108c
SS
3020 return osect->ovly_mapped == 1;
3021 }
3022}
3023
c906108c
SS
3024/* Function: pc_in_unmapped_range
3025 If PC falls into the lma range of SECTION, return true, else false. */
3026
3027CORE_ADDR
714835d5 3028pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3029{
714835d5
UW
3030 if (section_is_overlay (section))
3031 {
3032 bfd *abfd = section->objfile->obfd;
3033 asection *bfd_section = section->the_bfd_section;
fbd35540 3034
714835d5
UW
3035 /* We assume the LMA is relocated by the same offset as the VMA. */
3036 bfd_vma size = bfd_get_section_size (bfd_section);
3037 CORE_ADDR offset = obj_section_offset (section);
3038
3039 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3040 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3041 return 1;
3042 }
c906108c 3043
c906108c
SS
3044 return 0;
3045}
3046
3047/* Function: pc_in_mapped_range
3048 If PC falls into the vma range of SECTION, return true, else false. */
3049
3050CORE_ADDR
714835d5 3051pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3052{
714835d5
UW
3053 if (section_is_overlay (section))
3054 {
3055 if (obj_section_addr (section) <= pc
3056 && pc < obj_section_endaddr (section))
3057 return 1;
3058 }
c906108c 3059
c906108c
SS
3060 return 0;
3061}
3062
9ec8e6a0
JB
3063/* Return true if the mapped ranges of sections A and B overlap, false
3064 otherwise. */
3b7bacac 3065
b9362cc7 3066static int
714835d5 3067sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3068{
714835d5
UW
3069 CORE_ADDR a_start = obj_section_addr (a);
3070 CORE_ADDR a_end = obj_section_endaddr (a);
3071 CORE_ADDR b_start = obj_section_addr (b);
3072 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3073
3074 return (a_start < b_end && b_start < a_end);
3075}
3076
c906108c
SS
3077/* Function: overlay_unmapped_address (PC, SECTION)
3078 Returns the address corresponding to PC in the unmapped (load) range.
3079 May be the same as PC. */
3080
3081CORE_ADDR
714835d5 3082overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3083{
714835d5
UW
3084 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3085 {
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
fbd35540 3088
714835d5
UW
3089 return pc + bfd_section_lma (abfd, bfd_section)
3090 - bfd_section_vma (abfd, bfd_section);
3091 }
c906108c
SS
3092
3093 return pc;
3094}
3095
3096/* Function: overlay_mapped_address (PC, SECTION)
3097 Returns the address corresponding to PC in the mapped (runtime) range.
3098 May be the same as PC. */
3099
3100CORE_ADDR
714835d5 3101overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3102{
714835d5
UW
3103 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3104 {
3105 bfd *abfd = section->objfile->obfd;
3106 asection *bfd_section = section->the_bfd_section;
fbd35540 3107
714835d5
UW
3108 return pc + bfd_section_vma (abfd, bfd_section)
3109 - bfd_section_lma (abfd, bfd_section);
3110 }
c906108c
SS
3111
3112 return pc;
3113}
3114
5417f6dc 3115/* Function: symbol_overlayed_address
c906108c
SS
3116 Return one of two addresses (relative to the VMA or to the LMA),
3117 depending on whether the section is mapped or not. */
3118
c5aa993b 3119CORE_ADDR
714835d5 3120symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3121{
3122 if (overlay_debugging)
3123 {
c378eb4e 3124 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3125 if (section == 0)
3126 return address;
c378eb4e
MS
3127 /* If the symbol's section is not an overlay, just return its
3128 address. */
c906108c
SS
3129 if (!section_is_overlay (section))
3130 return address;
c378eb4e 3131 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3132 if (section_is_mapped (section))
3133 return address;
3134 /*
3135 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3136 * then return its LOADED address rather than its vma address!!
3137 */
3138 return overlay_unmapped_address (address, section);
3139 }
3140 return address;
3141}
3142
5417f6dc 3143/* Function: find_pc_overlay (PC)
c906108c
SS
3144 Return the best-match overlay section for PC:
3145 If PC matches a mapped overlay section's VMA, return that section.
3146 Else if PC matches an unmapped section's VMA, return that section.
3147 Else if PC matches an unmapped section's LMA, return that section. */
3148
714835d5 3149struct obj_section *
fba45db2 3150find_pc_overlay (CORE_ADDR pc)
c906108c 3151{
c5aa993b 3152 struct objfile *objfile;
c906108c
SS
3153 struct obj_section *osect, *best_match = NULL;
3154
3155 if (overlay_debugging)
b631e59b
KT
3156 {
3157 ALL_OBJSECTIONS (objfile, osect)
3158 if (section_is_overlay (osect))
c5aa993b 3159 {
b631e59b
KT
3160 if (pc_in_mapped_range (pc, osect))
3161 {
3162 if (section_is_mapped (osect))
3163 return osect;
3164 else
3165 best_match = osect;
3166 }
3167 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3168 best_match = osect;
3169 }
b631e59b 3170 }
714835d5 3171 return best_match;
c906108c
SS
3172}
3173
3174/* Function: find_pc_mapped_section (PC)
5417f6dc 3175 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3176 currently marked as MAPPED, return that section. Else return NULL. */
3177
714835d5 3178struct obj_section *
fba45db2 3179find_pc_mapped_section (CORE_ADDR pc)
c906108c 3180{
c5aa993b 3181 struct objfile *objfile;
c906108c
SS
3182 struct obj_section *osect;
3183
3184 if (overlay_debugging)
b631e59b
KT
3185 {
3186 ALL_OBJSECTIONS (objfile, osect)
3187 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3188 return osect;
3189 }
c906108c
SS
3190
3191 return NULL;
3192}
3193
3194/* Function: list_overlays_command
c378eb4e 3195 Print a list of mapped sections and their PC ranges. */
c906108c 3196
5d3055ad 3197static void
2cf311eb 3198list_overlays_command (const char *args, int from_tty)
c906108c 3199{
c5aa993b
JM
3200 int nmapped = 0;
3201 struct objfile *objfile;
c906108c
SS
3202 struct obj_section *osect;
3203
3204 if (overlay_debugging)
b631e59b
KT
3205 {
3206 ALL_OBJSECTIONS (objfile, osect)
714835d5 3207 if (section_is_mapped (osect))
b631e59b
KT
3208 {
3209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3210 const char *name;
3211 bfd_vma lma, vma;
3212 int size;
3213
3214 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3215 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3216 size = bfd_get_section_size (osect->the_bfd_section);
3217 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3218
3219 printf_filtered ("Section %s, loaded at ", name);
3220 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3221 puts_filtered (" - ");
3222 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3223 printf_filtered (", mapped at ");
3224 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3225 puts_filtered (" - ");
3226 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3227 puts_filtered ("\n");
3228
3229 nmapped++;
3230 }
3231 }
c906108c 3232 if (nmapped == 0)
a3f17187 3233 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3234}
3235
3236/* Function: map_overlay_command
3237 Mark the named section as mapped (ie. residing at its VMA address). */
3238
5d3055ad 3239static void
2cf311eb 3240map_overlay_command (const char *args, int from_tty)
c906108c 3241{
c5aa993b
JM
3242 struct objfile *objfile, *objfile2;
3243 struct obj_section *sec, *sec2;
c906108c
SS
3244
3245 if (!overlay_debugging)
3e43a32a
MS
3246 error (_("Overlay debugging not enabled. Use "
3247 "either the 'overlay auto' or\n"
3248 "the 'overlay manual' command."));
c906108c
SS
3249
3250 if (args == 0 || *args == 0)
8a3fe4f8 3251 error (_("Argument required: name of an overlay section"));
c906108c 3252
c378eb4e 3253 /* First, find a section matching the user supplied argument. */
c906108c
SS
3254 ALL_OBJSECTIONS (objfile, sec)
3255 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3256 {
c378eb4e 3257 /* Now, check to see if the section is an overlay. */
714835d5 3258 if (!section_is_overlay (sec))
c5aa993b
JM
3259 continue; /* not an overlay section */
3260
c378eb4e 3261 /* Mark the overlay as "mapped". */
c5aa993b
JM
3262 sec->ovly_mapped = 1;
3263
3264 /* Next, make a pass and unmap any sections that are
3265 overlapped by this new section: */
3266 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3267 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3268 {
3269 if (info_verbose)
a3f17187 3270 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3271 bfd_section_name (objfile->obfd,
3272 sec2->the_bfd_section));
c378eb4e 3273 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3274 }
3275 return;
3276 }
8a3fe4f8 3277 error (_("No overlay section called %s"), args);
c906108c
SS
3278}
3279
3280/* Function: unmap_overlay_command
5417f6dc 3281 Mark the overlay section as unmapped
c906108c
SS
3282 (ie. resident in its LMA address range, rather than the VMA range). */
3283
5d3055ad 3284static void
2cf311eb 3285unmap_overlay_command (const char *args, int from_tty)
c906108c 3286{
c5aa993b 3287 struct objfile *objfile;
7a270e0c 3288 struct obj_section *sec = NULL;
c906108c
SS
3289
3290 if (!overlay_debugging)
3e43a32a
MS
3291 error (_("Overlay debugging not enabled. "
3292 "Use either the 'overlay auto' or\n"
3293 "the 'overlay manual' command."));
c906108c
SS
3294
3295 if (args == 0 || *args == 0)
8a3fe4f8 3296 error (_("Argument required: name of an overlay section"));
c906108c 3297
c378eb4e 3298 /* First, find a section matching the user supplied argument. */
c906108c
SS
3299 ALL_OBJSECTIONS (objfile, sec)
3300 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3301 {
3302 if (!sec->ovly_mapped)
8a3fe4f8 3303 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3304 sec->ovly_mapped = 0;
3305 return;
3306 }
8a3fe4f8 3307 error (_("No overlay section called %s"), args);
c906108c
SS
3308}
3309
3310/* Function: overlay_auto_command
3311 A utility command to turn on overlay debugging.
c378eb4e 3312 Possibly this should be done via a set/show command. */
c906108c
SS
3313
3314static void
2cf311eb 3315overlay_auto_command (const char *args, int from_tty)
c906108c 3316{
d874f1e2 3317 overlay_debugging = ovly_auto;
1900040c 3318 enable_overlay_breakpoints ();
c906108c 3319 if (info_verbose)
a3f17187 3320 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3321}
3322
3323/* Function: overlay_manual_command
3324 A utility command to turn on overlay debugging.
c378eb4e 3325 Possibly this should be done via a set/show command. */
c906108c
SS
3326
3327static void
2cf311eb 3328overlay_manual_command (const char *args, int from_tty)
c906108c 3329{
d874f1e2 3330 overlay_debugging = ovly_on;
1900040c 3331 disable_overlay_breakpoints ();
c906108c 3332 if (info_verbose)
a3f17187 3333 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3334}
3335
3336/* Function: overlay_off_command
3337 A utility command to turn on overlay debugging.
c378eb4e 3338 Possibly this should be done via a set/show command. */
c906108c
SS
3339
3340static void
2cf311eb 3341overlay_off_command (const char *args, int from_tty)
c906108c 3342{
d874f1e2 3343 overlay_debugging = ovly_off;
1900040c 3344 disable_overlay_breakpoints ();
c906108c 3345 if (info_verbose)
a3f17187 3346 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3347}
3348
3349static void
2cf311eb 3350overlay_load_command (const char *args, int from_tty)
c906108c 3351{
e17c207e
UW
3352 struct gdbarch *gdbarch = get_current_arch ();
3353
3354 if (gdbarch_overlay_update_p (gdbarch))
3355 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3356 else
8a3fe4f8 3357 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3358}
3359
3360/* Function: overlay_command
c378eb4e 3361 A place-holder for a mis-typed command. */
c906108c 3362
c378eb4e 3363/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3364static struct cmd_list_element *overlaylist;
c906108c
SS
3365
3366static void
981a3fb3 3367overlay_command (const char *args, int from_tty)
c906108c 3368{
c5aa993b 3369 printf_unfiltered
c906108c 3370 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3371 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3372}
3373
c906108c
SS
3374/* Target Overlays for the "Simplest" overlay manager:
3375
5417f6dc
RM
3376 This is GDB's default target overlay layer. It works with the
3377 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3378 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3379 so targets that use a different runtime overlay manager can
c906108c
SS
3380 substitute their own overlay_update function and take over the
3381 function pointer.
3382
3383 The overlay_update function pokes around in the target's data structures
3384 to see what overlays are mapped, and updates GDB's overlay mapping with
3385 this information.
3386
3387 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3388 unsigned _novlys; /# number of overlay sections #/
3389 unsigned _ovly_table[_novlys][4] = {
438e1e42 3390 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3391 {..., ..., ..., ...},
3392 }
3393 unsigned _novly_regions; /# number of overlay regions #/
3394 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3395 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3396 {..., ..., ...},
3397 }
c906108c
SS
3398 These functions will attempt to update GDB's mappedness state in the
3399 symbol section table, based on the target's mappedness state.
3400
3401 To do this, we keep a cached copy of the target's _ovly_table, and
3402 attempt to detect when the cached copy is invalidated. The main
3403 entry point is "simple_overlay_update(SECT), which looks up SECT in
3404 the cached table and re-reads only the entry for that section from
c378eb4e 3405 the target (whenever possible). */
c906108c
SS
3406
3407/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3408static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3409static unsigned cache_novlys = 0;
c906108c 3410static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3411enum ovly_index
3412 {
438e1e42 3413 VMA, OSIZE, LMA, MAPPED
c5aa993b 3414 };
c906108c 3415
c378eb4e 3416/* Throw away the cached copy of _ovly_table. */
3b7bacac 3417
c906108c 3418static void
fba45db2 3419simple_free_overlay_table (void)
c906108c
SS
3420{
3421 if (cache_ovly_table)
b8c9b27d 3422 xfree (cache_ovly_table);
c5aa993b 3423 cache_novlys = 0;
c906108c
SS
3424 cache_ovly_table = NULL;
3425 cache_ovly_table_base = 0;
3426}
3427
9216df95 3428/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3429 Convert to host order. int LEN is number of ints. */
3b7bacac 3430
c906108c 3431static void
9216df95 3432read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3433 int len, int size, enum bfd_endian byte_order)
c906108c 3434{
c378eb4e 3435 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3436 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3437 int i;
c906108c 3438
9216df95 3439 read_memory (memaddr, buf, len * size);
c906108c 3440 for (i = 0; i < len; i++)
e17a4113 3441 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3442}
3443
3444/* Find and grab a copy of the target _ovly_table
c378eb4e 3445 (and _novlys, which is needed for the table's size). */
3b7bacac 3446
c5aa993b 3447static int
fba45db2 3448simple_read_overlay_table (void)
c906108c 3449{
3b7344d5 3450 struct bound_minimal_symbol novlys_msym;
7c7b6655 3451 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3452 struct gdbarch *gdbarch;
3453 int word_size;
e17a4113 3454 enum bfd_endian byte_order;
c906108c
SS
3455
3456 simple_free_overlay_table ();
9b27852e 3457 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3458 if (! novlys_msym.minsym)
c906108c 3459 {
8a3fe4f8 3460 error (_("Error reading inferior's overlay table: "
0d43edd1 3461 "couldn't find `_novlys' variable\n"
8a3fe4f8 3462 "in inferior. Use `overlay manual' mode."));
0d43edd1 3463 return 0;
c906108c 3464 }
0d43edd1 3465
7c7b6655
TT
3466 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3467 if (! ovly_table_msym.minsym)
0d43edd1 3468 {
8a3fe4f8 3469 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3470 "`_ovly_table' array\n"
8a3fe4f8 3471 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3472 return 0;
3473 }
3474
7c7b6655 3475 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3476 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3477 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3478
77e371c0
TT
3479 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3480 4, byte_order);
0d43edd1 3481 cache_ovly_table
224c3ddb 3482 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3483 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3484 read_target_long_array (cache_ovly_table_base,
777ea8f1 3485 (unsigned int *) cache_ovly_table,
e17a4113 3486 cache_novlys * 4, word_size, byte_order);
0d43edd1 3487
c5aa993b 3488 return 1; /* SUCCESS */
c906108c
SS
3489}
3490
5417f6dc 3491/* Function: simple_overlay_update_1
c906108c
SS
3492 A helper function for simple_overlay_update. Assuming a cached copy
3493 of _ovly_table exists, look through it to find an entry whose vma,
3494 lma and size match those of OSECT. Re-read the entry and make sure
3495 it still matches OSECT (else the table may no longer be valid).
3496 Set OSECT's mapped state to match the entry. Return: 1 for
3497 success, 0 for failure. */
3498
3499static int
fba45db2 3500simple_overlay_update_1 (struct obj_section *osect)
c906108c 3501{
764c99c1 3502 int i;
fbd35540
MS
3503 bfd *obfd = osect->objfile->obfd;
3504 asection *bsect = osect->the_bfd_section;
9216df95
UW
3505 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3506 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3507 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3508
c906108c 3509 for (i = 0; i < cache_novlys; i++)
fbd35540 3510 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3511 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3512 {
9216df95
UW
3513 read_target_long_array (cache_ovly_table_base + i * word_size,
3514 (unsigned int *) cache_ovly_table[i],
e17a4113 3515 4, word_size, byte_order);
fbd35540 3516 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3517 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3518 {
3519 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3520 return 1;
3521 }
c378eb4e 3522 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3523 return 0;
3524 }
3525 return 0;
3526}
3527
3528/* Function: simple_overlay_update
5417f6dc
RM
3529 If OSECT is NULL, then update all sections' mapped state
3530 (after re-reading the entire target _ovly_table).
3531 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3532 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3533 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3534 re-read the entire cache, and go ahead and update all sections. */
3535
1c772458 3536void
fba45db2 3537simple_overlay_update (struct obj_section *osect)
c906108c 3538{
c5aa993b 3539 struct objfile *objfile;
c906108c 3540
c378eb4e 3541 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3542 if (osect)
c378eb4e 3543 /* Have we got a cached copy of the target's overlay table? */
c906108c 3544 if (cache_ovly_table != NULL)
9cc89665
MS
3545 {
3546 /* Does its cached location match what's currently in the
3547 symtab? */
3b7344d5 3548 struct bound_minimal_symbol minsym
9cc89665
MS
3549 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3550
3b7344d5 3551 if (minsym.minsym == NULL)
9cc89665
MS
3552 error (_("Error reading inferior's overlay table: couldn't "
3553 "find `_ovly_table' array\n"
3554 "in inferior. Use `overlay manual' mode."));
3555
77e371c0 3556 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3557 /* Then go ahead and try to look up this single section in
3558 the cache. */
3559 if (simple_overlay_update_1 (osect))
3560 /* Found it! We're done. */
3561 return;
3562 }
c906108c
SS
3563
3564 /* Cached table no good: need to read the entire table anew.
3565 Or else we want all the sections, in which case it's actually
3566 more efficient to read the whole table in one block anyway. */
3567
0d43edd1
JB
3568 if (! simple_read_overlay_table ())
3569 return;
3570
c378eb4e 3571 /* Now may as well update all sections, even if only one was requested. */
c906108c 3572 ALL_OBJSECTIONS (objfile, osect)
714835d5 3573 if (section_is_overlay (osect))
c5aa993b 3574 {
764c99c1 3575 int i;
fbd35540
MS
3576 bfd *obfd = osect->objfile->obfd;
3577 asection *bsect = osect->the_bfd_section;
c5aa993b 3578
c5aa993b 3579 for (i = 0; i < cache_novlys; i++)
fbd35540 3580 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3581 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3582 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3583 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3584 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3585 }
3586 }
c906108c
SS
3587}
3588
086df311
DJ
3589/* Set the output sections and output offsets for section SECTP in
3590 ABFD. The relocation code in BFD will read these offsets, so we
3591 need to be sure they're initialized. We map each section to itself,
3592 with no offset; this means that SECTP->vma will be honored. */
3593
3594static void
3595symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3596{
3597 sectp->output_section = sectp;
3598 sectp->output_offset = 0;
3599}
3600
ac8035ab
TG
3601/* Default implementation for sym_relocate. */
3602
ac8035ab
TG
3603bfd_byte *
3604default_symfile_relocate (struct objfile *objfile, asection *sectp,
3605 bfd_byte *buf)
3606{
3019eac3
DE
3607 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3608 DWO file. */
3609 bfd *abfd = sectp->owner;
ac8035ab
TG
3610
3611 /* We're only interested in sections with relocation
3612 information. */
3613 if ((sectp->flags & SEC_RELOC) == 0)
3614 return NULL;
3615
3616 /* We will handle section offsets properly elsewhere, so relocate as if
3617 all sections begin at 0. */
3618 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3619
3620 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3621}
3622
086df311
DJ
3623/* Relocate the contents of a debug section SECTP in ABFD. The
3624 contents are stored in BUF if it is non-NULL, or returned in a
3625 malloc'd buffer otherwise.
3626
3627 For some platforms and debug info formats, shared libraries contain
3628 relocations against the debug sections (particularly for DWARF-2;
3629 one affected platform is PowerPC GNU/Linux, although it depends on
3630 the version of the linker in use). Also, ELF object files naturally
3631 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3632 the relocations in order to get the locations of symbols correct.
3633 Another example that may require relocation processing, is the
3634 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3635 debug section. */
086df311
DJ
3636
3637bfd_byte *
ac8035ab
TG
3638symfile_relocate_debug_section (struct objfile *objfile,
3639 asection *sectp, bfd_byte *buf)
086df311 3640{
ac8035ab 3641 gdb_assert (objfile->sf->sym_relocate);
086df311 3642
ac8035ab 3643 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3644}
c906108c 3645
31d99776
DJ
3646struct symfile_segment_data *
3647get_symfile_segment_data (bfd *abfd)
3648{
00b5771c 3649 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3650
3651 if (sf == NULL)
3652 return NULL;
3653
3654 return sf->sym_segments (abfd);
3655}
3656
3657void
3658free_symfile_segment_data (struct symfile_segment_data *data)
3659{
3660 xfree (data->segment_bases);
3661 xfree (data->segment_sizes);
3662 xfree (data->segment_info);
3663 xfree (data);
3664}
3665
28c32713
JB
3666/* Given:
3667 - DATA, containing segment addresses from the object file ABFD, and
3668 the mapping from ABFD's sections onto the segments that own them,
3669 and
3670 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3671 segment addresses reported by the target,
3672 store the appropriate offsets for each section in OFFSETS.
3673
3674 If there are fewer entries in SEGMENT_BASES than there are segments
3675 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3676
8d385431
DJ
3677 If there are more entries, then ignore the extra. The target may
3678 not be able to distinguish between an empty data segment and a
3679 missing data segment; a missing text segment is less plausible. */
3b7bacac 3680
31d99776 3681int
3189cb12
DE
3682symfile_map_offsets_to_segments (bfd *abfd,
3683 const struct symfile_segment_data *data,
31d99776
DJ
3684 struct section_offsets *offsets,
3685 int num_segment_bases,
3686 const CORE_ADDR *segment_bases)
3687{
3688 int i;
3689 asection *sect;
3690
28c32713
JB
3691 /* It doesn't make sense to call this function unless you have some
3692 segment base addresses. */
202b96c1 3693 gdb_assert (num_segment_bases > 0);
28c32713 3694
31d99776
DJ
3695 /* If we do not have segment mappings for the object file, we
3696 can not relocate it by segments. */
3697 gdb_assert (data != NULL);
3698 gdb_assert (data->num_segments > 0);
3699
31d99776
DJ
3700 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3701 {
31d99776
DJ
3702 int which = data->segment_info[i];
3703
28c32713
JB
3704 gdb_assert (0 <= which && which <= data->num_segments);
3705
3706 /* Don't bother computing offsets for sections that aren't
3707 loaded as part of any segment. */
3708 if (! which)
3709 continue;
3710
3711 /* Use the last SEGMENT_BASES entry as the address of any extra
3712 segments mentioned in DATA->segment_info. */
31d99776 3713 if (which > num_segment_bases)
28c32713 3714 which = num_segment_bases;
31d99776 3715
28c32713
JB
3716 offsets->offsets[i] = (segment_bases[which - 1]
3717 - data->segment_bases[which - 1]);
31d99776
DJ
3718 }
3719
3720 return 1;
3721}
3722
3723static void
3724symfile_find_segment_sections (struct objfile *objfile)
3725{
3726 bfd *abfd = objfile->obfd;
3727 int i;
3728 asection *sect;
3729 struct symfile_segment_data *data;
3730
3731 data = get_symfile_segment_data (objfile->obfd);
3732 if (data == NULL)
3733 return;
3734
3735 if (data->num_segments != 1 && data->num_segments != 2)
3736 {
3737 free_symfile_segment_data (data);
3738 return;
3739 }
3740
3741 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3742 {
31d99776
DJ
3743 int which = data->segment_info[i];
3744
3745 if (which == 1)
3746 {
3747 if (objfile->sect_index_text == -1)
3748 objfile->sect_index_text = sect->index;
3749
3750 if (objfile->sect_index_rodata == -1)
3751 objfile->sect_index_rodata = sect->index;
3752 }
3753 else if (which == 2)
3754 {
3755 if (objfile->sect_index_data == -1)
3756 objfile->sect_index_data = sect->index;
3757
3758 if (objfile->sect_index_bss == -1)
3759 objfile->sect_index_bss = sect->index;
3760 }
3761 }
3762
3763 free_symfile_segment_data (data);
3764}
3765
76ad5e1e
NB
3766/* Listen for free_objfile events. */
3767
3768static void
3769symfile_free_objfile (struct objfile *objfile)
3770{
c33b2f12
MM
3771 /* Remove the target sections owned by this objfile. */
3772 if (objfile != NULL)
76ad5e1e
NB
3773 remove_target_sections ((void *) objfile);
3774}
3775
540c2971
DE
3776/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3777 Expand all symtabs that match the specified criteria.
3778 See quick_symbol_functions.expand_symtabs_matching for details. */
3779
3780void
14bc53a8
PA
3781expand_symtabs_matching
3782 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3783 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3784 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3785 enum search_domain kind)
540c2971
DE
3786{
3787 struct objfile *objfile;
3788
3789 ALL_OBJFILES (objfile)
3790 {
3791 if (objfile->sf)
bb4142cf 3792 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3793 symbol_matcher,
14bc53a8 3794 expansion_notify, kind);
540c2971
DE
3795 }
3796}
3797
3798/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3799 Map function FUN over every file.
3800 See quick_symbol_functions.map_symbol_filenames for details. */
3801
3802void
bb4142cf
DE
3803map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3804 int need_fullname)
540c2971
DE
3805{
3806 struct objfile *objfile;
3807
3808 ALL_OBJFILES (objfile)
3809 {
3810 if (objfile->sf)
3811 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3812 need_fullname);
3813 }
3814}
3815
32fa66eb
SM
3816#if GDB_SELF_TEST
3817
3818namespace selftests {
3819namespace filename_language {
3820
32fa66eb
SM
3821static void test_filename_language ()
3822{
3823 /* This test messes up the filename_language_table global. */
593e3209 3824 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3825
3826 /* Test deducing an unknown extension. */
3827 language lang = deduce_language_from_filename ("myfile.blah");
3828 SELF_CHECK (lang == language_unknown);
3829
3830 /* Test deducing a known extension. */
3831 lang = deduce_language_from_filename ("myfile.c");
3832 SELF_CHECK (lang == language_c);
3833
3834 /* Test adding a new extension using the internal API. */
3835 add_filename_language (".blah", language_pascal);
3836 lang = deduce_language_from_filename ("myfile.blah");
3837 SELF_CHECK (lang == language_pascal);
3838}
3839
3840static void
3841test_set_ext_lang_command ()
3842{
3843 /* This test messes up the filename_language_table global. */
593e3209 3844 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3845
3846 /* Confirm that the .hello extension is not known. */
3847 language lang = deduce_language_from_filename ("cake.hello");
3848 SELF_CHECK (lang == language_unknown);
3849
3850 /* Test adding a new extension using the CLI command. */
3851 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3852 ext_args = args_holder.get ();
3853 set_ext_lang_command (NULL, 1, NULL);
3854
3855 lang = deduce_language_from_filename ("cake.hello");
3856 SELF_CHECK (lang == language_rust);
3857
3858 /* Test overriding an existing extension using the CLI command. */
593e3209 3859 int size_before = filename_language_table.size ();
32fa66eb
SM
3860 args_holder.reset (xstrdup (".hello pascal"));
3861 ext_args = args_holder.get ();
3862 set_ext_lang_command (NULL, 1, NULL);
593e3209 3863 int size_after = filename_language_table.size ();
32fa66eb
SM
3864
3865 lang = deduce_language_from_filename ("cake.hello");
3866 SELF_CHECK (lang == language_pascal);
3867 SELF_CHECK (size_before == size_after);
3868}
3869
3870} /* namespace filename_language */
3871} /* namespace selftests */
3872
3873#endif /* GDB_SELF_TEST */
3874
c906108c 3875void
fba45db2 3876_initialize_symfile (void)
c906108c
SS
3877{
3878 struct cmd_list_element *c;
c5aa993b 3879
76ad5e1e
NB
3880 observer_attach_free_objfile (symfile_free_objfile);
3881
1a966eab
AC
3882 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3883Load symbol table from executable file FILE.\n\
c906108c 3884The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3885to execute."), &cmdlist);
5ba2abeb 3886 set_cmd_completer (c, filename_completer);
c906108c 3887
1a966eab 3888 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3889Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3890Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3891 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3892The optional arguments are section-name section-address pairs and\n\
3893should be specified if the data and bss segments are not contiguous\n\
1a966eab 3894with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3895 &cmdlist);
5ba2abeb 3896 set_cmd_completer (c, filename_completer);
c906108c 3897
63644780
NB
3898 c = add_cmd ("remove-symbol-file", class_files,
3899 remove_symbol_file_command, _("\
3900Remove a symbol file added via the add-symbol-file command.\n\
3901Usage: remove-symbol-file FILENAME\n\
3902 remove-symbol-file -a ADDRESS\n\
3903The file to remove can be identified by its filename or by an address\n\
3904that lies within the boundaries of this symbol file in memory."),
3905 &cmdlist);
3906
1a966eab
AC
3907 c = add_cmd ("load", class_files, load_command, _("\
3908Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3909for access from GDB.\n\
5cf30ebf
LM
3910An optional load OFFSET may also be given as a literal address.\n\
3911When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3912on its own.\n\
3913Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3914 set_cmd_completer (c, filename_completer);
c906108c 3915
c5aa993b 3916 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3917 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3918 "overlay ", 0, &cmdlist);
3919
3920 add_com_alias ("ovly", "overlay", class_alias, 1);
3921 add_com_alias ("ov", "overlay", class_alias, 1);
3922
c5aa993b 3923 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3924 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3925
c5aa993b 3926 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3927 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3928
c5aa993b 3929 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3930 _("List mappings of overlay sections."), &overlaylist);
c906108c 3931
c5aa993b 3932 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3933 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3934 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3935 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3936 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3937 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3938 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3939 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3940
3941 /* Filename extension to source language lookup table: */
26c41df3
AC
3942 add_setshow_string_noescape_cmd ("extension-language", class_files,
3943 &ext_args, _("\
3944Set mapping between filename extension and source language."), _("\
3945Show mapping between filename extension and source language."), _("\
3946Usage: set extension-language .foo bar"),
3947 set_ext_lang_command,
920d2a44 3948 show_ext_args,
26c41df3 3949 &setlist, &showlist);
c906108c 3950
c5aa993b 3951 add_info ("extensions", info_ext_lang_command,
1bedd215 3952 _("All filename extensions associated with a source language."));
917317f4 3953
525226b5
AC
3954 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3955 &debug_file_directory, _("\
24ddea62
JK
3956Set the directories where separate debug symbols are searched for."), _("\
3957Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3958Separate debug symbols are first searched for in the same\n\
3959directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3960and lastly at the path of the directory of the binary with\n\
24ddea62 3961each global debug-file-directory component prepended."),
525226b5 3962 NULL,
920d2a44 3963 show_debug_file_directory,
525226b5 3964 &setlist, &showlist);
770e7fc7
DE
3965
3966 add_setshow_enum_cmd ("symbol-loading", no_class,
3967 print_symbol_loading_enums, &print_symbol_loading,
3968 _("\
3969Set printing of symbol loading messages."), _("\
3970Show printing of symbol loading messages."), _("\
3971off == turn all messages off\n\
3972brief == print messages for the executable,\n\
3973 and brief messages for shared libraries\n\
3974full == print messages for the executable,\n\
3975 and messages for each shared library."),
3976 NULL,
3977 NULL,
3978 &setprintlist, &showprintlist);
c4dcb155
SM
3979
3980 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3981 &separate_debug_file_debug, _("\
3982Set printing of separate debug info file search debug."), _("\
3983Show printing of separate debug info file search debug."), _("\
3984When on, GDB prints the searched locations while looking for separate debug \
3985info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3986
3987#if GDB_SELF_TEST
3988 selftests::register_test
3989 ("filename_language", selftests::filename_language::test_filename_language);
3990 selftests::register_test
3991 ("set_ext_lang_command",
3992 selftests::filename_language::test_set_ext_lang_command);
3993#endif
c906108c 3994}
This page took 2.271874 seconds and 4 git commands to generate.