2012-12-14 Yufeng Zhang <yufeng.zhang@arm.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* Functions this file defines. */
c906108c 86
a14ed312 87static void load_command (char *, int);
c906108c 88
d7db6da9
FN
89static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
a14ed312 91static void add_symbol_file_command (char *, int);
c906108c 92
a14ed312 93bfd *symfile_bfd_open (char *);
c906108c 94
0e931cf0
JB
95int get_section_index (struct objfile *, char *);
96
00b5771c 97static const struct sym_fns *find_sym_fns (bfd *);
c906108c 98
a14ed312 99static void decrement_reading_symtab (void *);
c906108c 100
a14ed312 101static void overlay_invalidate_all (void);
c906108c 102
a14ed312 103void list_overlays_command (char *, int);
c906108c 104
a14ed312 105void map_overlay_command (char *, int);
c906108c 106
a14ed312 107void unmap_overlay_command (char *, int);
c906108c 108
a14ed312 109static void overlay_auto_command (char *, int);
c906108c 110
a14ed312 111static void overlay_manual_command (char *, int);
c906108c 112
a14ed312 113static void overlay_off_command (char *, int);
c906108c 114
a14ed312 115static void overlay_load_command (char *, int);
c906108c 116
a14ed312 117static void overlay_command (char *, int);
c906108c 118
a14ed312 119static void simple_free_overlay_table (void);
c906108c 120
e17a4113
UW
121static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
122 enum bfd_endian);
c906108c 123
a14ed312 124static int simple_read_overlay_table (void);
c906108c 125
a14ed312 126static int simple_overlay_update_1 (struct obj_section *);
c906108c 127
a14ed312 128static void add_filename_language (char *ext, enum language lang);
392a587b 129
a14ed312 130static void info_ext_lang_command (char *args, int from_tty);
392a587b 131
a14ed312 132static void init_filename_language_table (void);
392a587b 133
31d99776
DJ
134static void symfile_find_segment_sections (struct objfile *objfile);
135
a14ed312 136void _initialize_symfile (void);
c906108c
SS
137
138/* List of all available sym_fns. On gdb startup, each object file reader
139 calls add_symtab_fns() to register information on each format it is
c378eb4e 140 prepared to read. */
c906108c 141
00b5771c
TT
142typedef const struct sym_fns *sym_fns_ptr;
143DEF_VEC_P (sym_fns_ptr);
144
145static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 146
b7209cb4
FF
147/* If non-zero, shared library symbols will be added automatically
148 when the inferior is created, new libraries are loaded, or when
149 attaching to the inferior. This is almost always what users will
150 want to have happen; but for very large programs, the startup time
151 will be excessive, and so if this is a problem, the user can clear
152 this flag and then add the shared library symbols as needed. Note
153 that there is a potential for confusion, since if the shared
c906108c 154 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 155 report all the functions that are actually present. */
c906108c
SS
156
157int auto_solib_add = 1;
c906108c 158\f
c5aa993b 159
c906108c
SS
160/* Make a null terminated copy of the string at PTR with SIZE characters in
161 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 162 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 163 may be part of a larger string and we are only saving a substring. */
c906108c
SS
164
165char *
63ca651f 166obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 167{
52f0bd74 168 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
169 /* Open-coded memcpy--saves function call time. These strings are usually
170 short. FIXME: Is this really still true with a compiler that can
c378eb4e 171 inline memcpy? */
c906108c 172 {
aa1ee363
AC
173 const char *p1 = ptr;
174 char *p2 = p;
63ca651f 175 const char *end = ptr + size;
433759f7 176
c906108c
SS
177 while (p1 != end)
178 *p2++ = *p1++;
179 }
180 p[size] = 0;
181 return p;
182}
183
3e43a32a
MS
184/* Concatenate NULL terminated variable argument list of `const char *'
185 strings; return the new string. Space is found in the OBSTACKP.
186 Argument list must be terminated by a sentinel expression `(char *)
187 NULL'. */
c906108c
SS
188
189char *
48cb83fd 190obconcat (struct obstack *obstackp, ...)
c906108c 191{
48cb83fd
JK
192 va_list ap;
193
194 va_start (ap, obstackp);
195 for (;;)
196 {
197 const char *s = va_arg (ap, const char *);
198
199 if (s == NULL)
200 break;
201
202 obstack_grow_str (obstackp, s);
203 }
204 va_end (ap);
205 obstack_1grow (obstackp, 0);
206
207 return obstack_finish (obstackp);
c906108c
SS
208}
209
0d14a781 210/* True if we are reading a symbol table. */
c906108c
SS
211
212int currently_reading_symtab = 0;
213
214static void
fba45db2 215decrement_reading_symtab (void *dummy)
c906108c
SS
216{
217 currently_reading_symtab--;
218}
219
ccefe4c4
TT
220/* Increment currently_reading_symtab and return a cleanup that can be
221 used to decrement it. */
222struct cleanup *
223increment_reading_symtab (void)
c906108c 224{
ccefe4c4
TT
225 ++currently_reading_symtab;
226 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
227}
228
5417f6dc
RM
229/* Remember the lowest-addressed loadable section we've seen.
230 This function is called via bfd_map_over_sections.
c906108c
SS
231
232 In case of equal vmas, the section with the largest size becomes the
233 lowest-addressed loadable section.
234
235 If the vmas and sizes are equal, the last section is considered the
236 lowest-addressed loadable section. */
237
238void
4efb68b1 239find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 240{
c5aa993b 241 asection **lowest = (asection **) obj;
c906108c 242
eb73e134 243 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
244 return;
245 if (!*lowest)
246 *lowest = sect; /* First loadable section */
247 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
248 *lowest = sect; /* A lower loadable section */
249 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
250 && (bfd_section_size (abfd, (*lowest))
251 <= bfd_section_size (abfd, sect)))
252 *lowest = sect;
253}
254
a39a16c4
MM
255/* Create a new section_addr_info, with room for NUM_SECTIONS. */
256
257struct section_addr_info *
258alloc_section_addr_info (size_t num_sections)
259{
260 struct section_addr_info *sap;
261 size_t size;
262
263 size = (sizeof (struct section_addr_info)
264 + sizeof (struct other_sections) * (num_sections - 1));
265 sap = (struct section_addr_info *) xmalloc (size);
266 memset (sap, 0, size);
267 sap->num_sections = num_sections;
268
269 return sap;
270}
62557bbc
KB
271
272/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 273 an existing section table. */
62557bbc
KB
274
275extern struct section_addr_info *
0542c86d
PA
276build_section_addr_info_from_section_table (const struct target_section *start,
277 const struct target_section *end)
62557bbc
KB
278{
279 struct section_addr_info *sap;
0542c86d 280 const struct target_section *stp;
62557bbc
KB
281 int oidx;
282
a39a16c4 283 sap = alloc_section_addr_info (end - start);
62557bbc
KB
284
285 for (stp = start, oidx = 0; stp != end; stp++)
286 {
5417f6dc 287 if (bfd_get_section_flags (stp->bfd,
fbd35540 288 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 289 && oidx < end - start)
62557bbc
KB
290 {
291 sap->other[oidx].addr = stp->addr;
5417f6dc 292 sap->other[oidx].name
fbd35540 293 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
294 sap->other[oidx].sectindex = stp->the_bfd_section->index;
295 oidx++;
296 }
297 }
298
299 return sap;
300}
301
82ccf5a5 302/* Create a section_addr_info from section offsets in ABFD. */
089b4803 303
82ccf5a5
JK
304static struct section_addr_info *
305build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
306{
307 struct section_addr_info *sap;
308 int i;
309 struct bfd_section *sec;
310
82ccf5a5
JK
311 sap = alloc_section_addr_info (bfd_count_sections (abfd));
312 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
313 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 314 {
82ccf5a5
JK
315 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
316 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
317 sap->other[i].sectindex = sec->index;
318 i++;
319 }
089b4803
TG
320 return sap;
321}
322
82ccf5a5
JK
323/* Create a section_addr_info from section offsets in OBJFILE. */
324
325struct section_addr_info *
326build_section_addr_info_from_objfile (const struct objfile *objfile)
327{
328 struct section_addr_info *sap;
329 int i;
330
331 /* Before reread_symbols gets rewritten it is not safe to call:
332 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
333 */
334 sap = build_section_addr_info_from_bfd (objfile->obfd);
335 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
336 {
337 int sectindex = sap->other[i].sectindex;
338
339 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
340 }
341 return sap;
342}
62557bbc 343
c378eb4e 344/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
345
346extern void
347free_section_addr_info (struct section_addr_info *sap)
348{
349 int idx;
350
a39a16c4 351 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 352 if (sap->other[idx].name)
b8c9b27d
KB
353 xfree (sap->other[idx].name);
354 xfree (sap);
62557bbc
KB
355}
356
357
e8289572
JB
358/* Initialize OBJFILE's sect_index_* members. */
359static void
360init_objfile_sect_indices (struct objfile *objfile)
c906108c 361{
e8289572 362 asection *sect;
c906108c 363 int i;
5417f6dc 364
b8fbeb18 365 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 366 if (sect)
b8fbeb18
EZ
367 objfile->sect_index_text = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_data = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_bss = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_rodata = sect->index;
380
bbcd32ad
FF
381 /* This is where things get really weird... We MUST have valid
382 indices for the various sect_index_* members or gdb will abort.
383 So if for example, there is no ".text" section, we have to
31d99776
DJ
384 accomodate that. First, check for a file with the standard
385 one or two segments. */
386
387 symfile_find_segment_sections (objfile);
388
389 /* Except when explicitly adding symbol files at some address,
390 section_offsets contains nothing but zeros, so it doesn't matter
391 which slot in section_offsets the individual sect_index_* members
392 index into. So if they are all zero, it is safe to just point
393 all the currently uninitialized indices to the first slot. But
394 beware: if this is the main executable, it may be relocated
395 later, e.g. by the remote qOffsets packet, and then this will
396 be wrong! That's why we try segments first. */
bbcd32ad
FF
397
398 for (i = 0; i < objfile->num_sections; i++)
399 {
400 if (ANOFFSET (objfile->section_offsets, i) != 0)
401 {
402 break;
403 }
404 }
405 if (i == objfile->num_sections)
406 {
407 if (objfile->sect_index_text == -1)
408 objfile->sect_index_text = 0;
409 if (objfile->sect_index_data == -1)
410 objfile->sect_index_data = 0;
411 if (objfile->sect_index_bss == -1)
412 objfile->sect_index_bss = 0;
413 if (objfile->sect_index_rodata == -1)
414 objfile->sect_index_rodata = 0;
415 }
b8fbeb18 416}
c906108c 417
c1bd25fd
DJ
418/* The arguments to place_section. */
419
420struct place_section_arg
421{
422 struct section_offsets *offsets;
423 CORE_ADDR lowest;
424};
425
426/* Find a unique offset to use for loadable section SECT if
427 the user did not provide an offset. */
428
2c0b251b 429static void
c1bd25fd
DJ
430place_section (bfd *abfd, asection *sect, void *obj)
431{
432 struct place_section_arg *arg = obj;
433 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
434 int done;
3bd72c6f 435 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 436
2711e456
DJ
437 /* We are only interested in allocated sections. */
438 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
439 return;
440
441 /* If the user specified an offset, honor it. */
442 if (offsets[sect->index] != 0)
443 return;
444
445 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
446 start_addr = (arg->lowest + align - 1) & -align;
447
c1bd25fd
DJ
448 do {
449 asection *cur_sec;
c1bd25fd 450
c1bd25fd
DJ
451 done = 1;
452
453 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
454 {
455 int indx = cur_sec->index;
c1bd25fd
DJ
456
457 /* We don't need to compare against ourself. */
458 if (cur_sec == sect)
459 continue;
460
2711e456
DJ
461 /* We can only conflict with allocated sections. */
462 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
463 continue;
464
465 /* If the section offset is 0, either the section has not been placed
466 yet, or it was the lowest section placed (in which case LOWEST
467 will be past its end). */
468 if (offsets[indx] == 0)
469 continue;
470
471 /* If this section would overlap us, then we must move up. */
472 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
473 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
474 {
475 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
476 start_addr = (start_addr + align - 1) & -align;
477 done = 0;
3bd72c6f 478 break;
c1bd25fd
DJ
479 }
480
481 /* Otherwise, we appear to be OK. So far. */
482 }
483 }
484 while (!done);
485
486 offsets[sect->index] = start_addr;
487 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 488}
e8289572 489
75242ef4
JK
490/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
491 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
492 entries. */
e8289572
JB
493
494void
75242ef4
JK
495relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
496 int num_sections,
497 struct section_addr_info *addrs)
e8289572
JB
498{
499 int i;
500
75242ef4 501 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 502
c378eb4e 503 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 504 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 505 {
75242ef4 506 struct other_sections *osp;
e8289572 507
75242ef4 508 osp = &addrs->other[i];
5488dafb 509 if (osp->sectindex == -1)
e8289572
JB
510 continue;
511
c378eb4e 512 /* Record all sections in offsets. */
e8289572 513 /* The section_offsets in the objfile are here filled in using
c378eb4e 514 the BFD index. */
75242ef4
JK
515 section_offsets->offsets[osp->sectindex] = osp->addr;
516 }
517}
518
1276c759
JK
519/* Transform section name S for a name comparison. prelink can split section
520 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
521 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
522 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
523 (`.sbss') section has invalid (increased) virtual address. */
524
525static const char *
526addr_section_name (const char *s)
527{
528 if (strcmp (s, ".dynbss") == 0)
529 return ".bss";
530 if (strcmp (s, ".sdynbss") == 0)
531 return ".sbss";
532
533 return s;
534}
535
82ccf5a5
JK
536/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
537 their (name, sectindex) pair. sectindex makes the sort by name stable. */
538
539static int
540addrs_section_compar (const void *ap, const void *bp)
541{
542 const struct other_sections *a = *((struct other_sections **) ap);
543 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 544 int retval;
82ccf5a5 545
1276c759 546 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
547 if (retval)
548 return retval;
549
5488dafb 550 return a->sectindex - b->sectindex;
82ccf5a5
JK
551}
552
553/* Provide sorted array of pointers to sections of ADDRS. The array is
554 terminated by NULL. Caller is responsible to call xfree for it. */
555
556static struct other_sections **
557addrs_section_sort (struct section_addr_info *addrs)
558{
559 struct other_sections **array;
560 int i;
561
562 /* `+ 1' for the NULL terminator. */
563 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
564 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565 array[i] = &addrs->other[i];
566 array[i] = NULL;
567
568 qsort (array, i, sizeof (*array), addrs_section_compar);
569
570 return array;
571}
572
75242ef4 573/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
574 also SECTINDEXes specific to ABFD there. This function can be used to
575 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
576
577void
578addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
579{
580 asection *lower_sect;
75242ef4
JK
581 CORE_ADDR lower_offset;
582 int i;
82ccf5a5
JK
583 struct cleanup *my_cleanup;
584 struct section_addr_info *abfd_addrs;
585 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
586 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
587
588 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
589 continguous sections. */
590 lower_sect = NULL;
591 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
592 if (lower_sect == NULL)
593 {
594 warning (_("no loadable sections found in added symbol-file %s"),
595 bfd_get_filename (abfd));
596 lower_offset = 0;
e8289572 597 }
75242ef4
JK
598 else
599 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
600
82ccf5a5
JK
601 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
602 in ABFD. Section names are not unique - there can be multiple sections of
603 the same name. Also the sections of the same name do not have to be
604 adjacent to each other. Some sections may be present only in one of the
605 files. Even sections present in both files do not have to be in the same
606 order.
607
608 Use stable sort by name for the sections in both files. Then linearly
609 scan both lists matching as most of the entries as possible. */
610
611 addrs_sorted = addrs_section_sort (addrs);
612 my_cleanup = make_cleanup (xfree, addrs_sorted);
613
614 abfd_addrs = build_section_addr_info_from_bfd (abfd);
615 make_cleanup_free_section_addr_info (abfd_addrs);
616 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
617 make_cleanup (xfree, abfd_addrs_sorted);
618
c378eb4e
MS
619 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
620 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
621
622 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
623 * addrs->num_sections);
624 make_cleanup (xfree, addrs_to_abfd_addrs);
625
626 while (*addrs_sorted)
627 {
1276c759 628 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
629
630 while (*abfd_addrs_sorted
1276c759
JK
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) < 0)
82ccf5a5
JK
633 abfd_addrs_sorted++;
634
635 if (*abfd_addrs_sorted
1276c759
JK
636 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
637 sect_name) == 0)
82ccf5a5
JK
638 {
639 int index_in_addrs;
640
641 /* Make the found item directly addressable from ADDRS. */
642 index_in_addrs = *addrs_sorted - addrs->other;
643 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
644 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
645
646 /* Never use the same ABFD entry twice. */
647 abfd_addrs_sorted++;
648 }
649
650 addrs_sorted++;
651 }
652
75242ef4
JK
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
82ccf5a5 665 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
666
667 if (sect)
75242ef4 668 {
c378eb4e 669 /* This is the index used by BFD. */
82ccf5a5 670 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
671
672 if (addrs->other[i].addr != 0)
75242ef4 673 {
82ccf5a5 674 addrs->other[i].addr -= sect->addr;
75242ef4 675 lower_offset = addrs->other[i].addr;
75242ef4
JK
676 }
677 else
672d9c23 678 addrs->other[i].addr = lower_offset;
75242ef4
JK
679 }
680 else
672d9c23 681 {
1276c759
JK
682 /* addr_section_name transformation is not used for SECT_NAME. */
683 const char *sect_name = addrs->other[i].name;
684
b0fcb67f
JK
685 /* This section does not exist in ABFD, which is normally
686 unexpected and we want to issue a warning.
687
4d9743af
JK
688 However, the ELF prelinker does create a few sections which are
689 marked in the main executable as loadable (they are loaded in
690 memory from the DYNAMIC segment) and yet are not present in
691 separate debug info files. This is fine, and should not cause
692 a warning. Shared libraries contain just the section
693 ".gnu.liblist" but it is not marked as loadable there. There is
694 no other way to identify them than by their name as the sections
1276c759
JK
695 created by prelink have no special flags.
696
697 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
698
699 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 700 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
701 || (strcmp (sect_name, ".bss") == 0
702 && i > 0
703 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
704 && addrs_to_abfd_addrs[i - 1] != NULL)
705 || (strcmp (sect_name, ".sbss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
709 warning (_("section %s not found in %s"), sect_name,
710 bfd_get_filename (abfd));
711
672d9c23 712 addrs->other[i].addr = 0;
5488dafb 713 addrs->other[i].sectindex = -1;
672d9c23 714 }
75242ef4 715 }
82ccf5a5
JK
716
717 do_cleanups (my_cleanup);
75242ef4
JK
718}
719
720/* Parse the user's idea of an offset for dynamic linking, into our idea
721 of how to represent it for fast symbol reading. This is the default
722 version of the sym_fns.sym_offsets function for symbol readers that
723 don't need to do anything special. It allocates a section_offsets table
724 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
725
726void
727default_symfile_offsets (struct objfile *objfile,
728 struct section_addr_info *addrs)
729{
730 objfile->num_sections = bfd_count_sections (objfile->obfd);
731 objfile->section_offsets = (struct section_offsets *)
732 obstack_alloc (&objfile->objfile_obstack,
733 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
734 relative_addr_info_to_section_offsets (objfile->section_offsets,
735 objfile->num_sections, addrs);
e8289572 736
c1bd25fd
DJ
737 /* For relocatable files, all loadable sections will start at zero.
738 The zero is meaningless, so try to pick arbitrary addresses such
739 that no loadable sections overlap. This algorithm is quadratic,
740 but the number of sections in a single object file is generally
741 small. */
742 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
743 {
744 struct place_section_arg arg;
2711e456
DJ
745 bfd *abfd = objfile->obfd;
746 asection *cur_sec;
2711e456
DJ
747
748 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
749 /* We do not expect this to happen; just skip this step if the
750 relocatable file has a section with an assigned VMA. */
751 if (bfd_section_vma (abfd, cur_sec) != 0)
752 break;
753
754 if (cur_sec == NULL)
755 {
756 CORE_ADDR *offsets = objfile->section_offsets->offsets;
757
758 /* Pick non-overlapping offsets for sections the user did not
759 place explicitly. */
760 arg.offsets = objfile->section_offsets;
761 arg.lowest = 0;
762 bfd_map_over_sections (objfile->obfd, place_section, &arg);
763
764 /* Correctly filling in the section offsets is not quite
765 enough. Relocatable files have two properties that
766 (most) shared objects do not:
767
768 - Their debug information will contain relocations. Some
769 shared libraries do also, but many do not, so this can not
770 be assumed.
771
772 - If there are multiple code sections they will be loaded
773 at different relative addresses in memory than they are
774 in the objfile, since all sections in the file will start
775 at address zero.
776
777 Because GDB has very limited ability to map from an
778 address in debug info to the correct code section,
779 it relies on adding SECT_OFF_TEXT to things which might be
780 code. If we clear all the section offsets, and set the
781 section VMAs instead, then symfile_relocate_debug_section
782 will return meaningful debug information pointing at the
783 correct sections.
784
785 GDB has too many different data structures for section
786 addresses - a bfd, objfile, and so_list all have section
787 tables, as does exec_ops. Some of these could probably
788 be eliminated. */
789
790 for (cur_sec = abfd->sections; cur_sec != NULL;
791 cur_sec = cur_sec->next)
792 {
793 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
794 continue;
795
796 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
797 exec_set_section_address (bfd_get_filename (abfd),
798 cur_sec->index,
30510692 799 offsets[cur_sec->index]);
2711e456
DJ
800 offsets[cur_sec->index] = 0;
801 }
802 }
c1bd25fd
DJ
803 }
804
e8289572 805 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 806 .rodata sections. */
e8289572
JB
807 init_objfile_sect_indices (objfile);
808}
809
810
31d99776
DJ
811/* Divide the file into segments, which are individual relocatable units.
812 This is the default version of the sym_fns.sym_segments function for
813 symbol readers that do not have an explicit representation of segments.
814 It assumes that object files do not have segments, and fully linked
815 files have a single segment. */
816
817struct symfile_segment_data *
818default_symfile_segments (bfd *abfd)
819{
820 int num_sections, i;
821 asection *sect;
822 struct symfile_segment_data *data;
823 CORE_ADDR low, high;
824
825 /* Relocatable files contain enough information to position each
826 loadable section independently; they should not be relocated
827 in segments. */
828 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
829 return NULL;
830
831 /* Make sure there is at least one loadable section in the file. */
832 for (sect = abfd->sections; sect != NULL; sect = sect->next)
833 {
834 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
835 continue;
836
837 break;
838 }
839 if (sect == NULL)
840 return NULL;
841
842 low = bfd_get_section_vma (abfd, sect);
843 high = low + bfd_get_section_size (sect);
844
845 data = XZALLOC (struct symfile_segment_data);
846 data->num_segments = 1;
847 data->segment_bases = XCALLOC (1, CORE_ADDR);
848 data->segment_sizes = XCALLOC (1, CORE_ADDR);
849
850 num_sections = bfd_count_sections (abfd);
851 data->segment_info = XCALLOC (num_sections, int);
852
853 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
854 {
855 CORE_ADDR vma;
856
857 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
858 continue;
859
860 vma = bfd_get_section_vma (abfd, sect);
861 if (vma < low)
862 low = vma;
863 if (vma + bfd_get_section_size (sect) > high)
864 high = vma + bfd_get_section_size (sect);
865
866 data->segment_info[i] = 1;
867 }
868
869 data->segment_bases[0] = low;
870 data->segment_sizes[0] = high - low;
871
872 return data;
873}
874
608e2dbb
TT
875/* This is a convenience function to call sym_read for OBJFILE and
876 possibly force the partial symbols to be read. */
877
878static void
879read_symbols (struct objfile *objfile, int add_flags)
880{
881 (*objfile->sf->sym_read) (objfile, add_flags);
882 if (!objfile_has_partial_symbols (objfile))
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 symbol_file_add_separate (abfd, add_flags, objfile);
889
890 do_cleanups (cleanup);
891 }
892 if ((add_flags & SYMFILE_NO_READ) == 0)
893 require_partial_symbols (objfile, 0);
894}
895
c906108c
SS
896/* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
96baa820
JM
899 OBJFILE is where the symbols are to be read from.
900
7e8580c1
JB
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
96baa820 921
7eedccfa
PP
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
c906108c
SS
925
926void
7e8580c1
JB
927syms_from_objfile (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
7eedccfa 931 int add_flags)
c906108c 932{
a39a16c4 933 struct section_addr_info *local_addr = NULL;
c906108c 934 struct cleanup *old_chain;
7eedccfa 935 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 936
7e8580c1 937 gdb_assert (! (addrs && offsets));
2acceee2 938
c906108c 939 init_entry_point_info (objfile);
31d99776 940 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 941
75245b24 942 if (objfile->sf == NULL)
c378eb4e 943 return; /* No symbols. */
75245b24 944
c906108c
SS
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
74b7792f 947 old_chain = make_cleanup_free_objfile (objfile);
c906108c 948
a39a16c4
MM
949 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
950 list. We now establish the convention that an addr of zero means
c378eb4e 951 no load address was specified. */
a39a16c4
MM
952 if (! addrs && ! offsets)
953 {
5417f6dc 954 local_addr
a39a16c4
MM
955 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
956 make_cleanup (xfree, local_addr);
957 addrs = local_addr;
958 }
959
960 /* Now either addrs or offsets is non-zero. */
961
c5aa993b 962 if (mainline)
c906108c
SS
963 {
964 /* We will modify the main symbol table, make sure that all its users
c5aa993b 965 will be cleaned up if an error occurs during symbol reading. */
74b7792f 966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
adb7f338 973 gdb_assert (symfile_objfile == NULL);
c906108c
SS
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
c906108c 980
c5aa993b 981 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
53a5351d 986 and assume that <addr> is where that got loaded.
c906108c 987
53a5351d
JM
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
0d15807d 990 if (addrs && addrs->other[0].name)
75242ef4 991 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
c378eb4e 995 initial symbol reading for this file. */
c906108c 996
c5aa993b 997 (*objfile->sf->sym_init) (objfile);
7eedccfa 998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 999
7e8580c1
JB
1000 if (addrs)
1001 (*objfile->sf->sym_offsets) (objfile, addrs);
1002 else
1003 {
1004 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1005
1006 /* Just copy in the offset table directly as given to us. */
1007 objfile->num_sections = num_offsets;
1008 objfile->section_offsets
1009 = ((struct section_offsets *)
8b92e4d5 1010 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1011 memcpy (objfile->section_offsets, offsets, size);
1012
1013 init_objfile_sect_indices (objfile);
1014 }
c906108c 1015
608e2dbb 1016 read_symbols (objfile, add_flags);
b11896a5 1017
c906108c
SS
1018 /* Discard cleanups as symbol reading was successful. */
1019
1020 discard_cleanups (old_chain);
f7545552 1021 xfree (local_addr);
c906108c
SS
1022}
1023
1024/* Perform required actions after either reading in the initial
1025 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1026 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1027
c906108c 1028void
7eedccfa 1029new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1030{
c906108c 1031 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1032 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1033 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1034 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1035 {
1036 /* OK, make it the "real" symbol file. */
1037 symfile_objfile = objfile;
1038
c1e56572 1039 clear_symtab_users (add_flags);
c906108c 1040 }
7eedccfa 1041 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1042 {
69de3c6a 1043 breakpoint_re_set ();
c906108c
SS
1044 }
1045
1046 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1047 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1048}
1049
1050/* Process a symbol file, as either the main file or as a dynamically
1051 loaded file.
1052
5417f6dc 1053 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1054 A new reference is acquired by this function.
7904e09f 1055
7eedccfa
PP
1056 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1057 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1058
1059 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1060 syms_from_objfile, above.
1061 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1062
63524580
JK
1063 PARENT is the original objfile if ABFD is a separate debug info file.
1064 Otherwise PARENT is NULL.
1065
c906108c 1066 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1067 Upon failure, jumps back to command level (never returns). */
7eedccfa 1068
7904e09f 1069static struct objfile *
7eedccfa
PP
1070symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1071 int add_flags,
7904e09f
JB
1072 struct section_addr_info *addrs,
1073 struct section_offsets *offsets,
1074 int num_offsets,
63524580 1075 int flags, struct objfile *parent)
c906108c
SS
1076{
1077 struct objfile *objfile;
5417f6dc 1078 const char *name = bfd_get_filename (abfd);
7eedccfa 1079 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1080 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1081 const int should_print = ((from_tty || info_verbose)
1082 && (readnow_symbol_files
1083 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1084
9291a0cd 1085 if (readnow_symbol_files)
b11896a5
TT
1086 {
1087 flags |= OBJF_READNOW;
1088 add_flags &= ~SYMFILE_NO_READ;
1089 }
9291a0cd 1090
5417f6dc
RM
1091 /* Give user a chance to burp if we'd be
1092 interactively wiping out any existing symbols. */
c906108c
SS
1093
1094 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1095 && mainline
c906108c 1096 && from_tty
9e2f0ad4 1097 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1098 error (_("Not confirmed."));
c906108c 1099
0838fb57 1100 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1101
63524580
JK
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
78a4a9b9
AC
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
c378eb4e 1107 performed, or need to read an unmapped symbol table. */
b11896a5 1108 if (should_print)
c906108c 1109 {
769d7dc4
AC
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1112 else
c906108c 1113 {
55333a84
DE
1114 printf_unfiltered (_("Reading symbols from %s..."), name);
1115 wrap_here ("");
1116 gdb_flush (gdb_stdout);
c906108c 1117 }
c906108c 1118 }
78a4a9b9 1119 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1120 add_flags);
c906108c
SS
1121
1122 /* We now have at least a partial symbol table. Check to see if the
1123 user requested that all symbols be read on initial access via either
1124 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1125 all partial symbol tables for this objfile if so. */
c906108c 1126
9291a0cd 1127 if ((flags & OBJF_READNOW))
c906108c 1128 {
b11896a5 1129 if (should_print)
c906108c 1130 {
a3f17187 1131 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1132 wrap_here ("");
1133 gdb_flush (gdb_stdout);
1134 }
1135
ccefe4c4
TT
1136 if (objfile->sf)
1137 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1138 }
1139
b11896a5 1140 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1141 {
1142 wrap_here ("");
55333a84 1143 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1144 wrap_here ("");
1145 }
1146
b11896a5 1147 if (should_print)
c906108c 1148 {
769d7dc4
AC
1149 if (deprecated_post_add_symbol_hook)
1150 deprecated_post_add_symbol_hook ();
c906108c 1151 else
55333a84 1152 printf_unfiltered (_("done.\n"));
c906108c
SS
1153 }
1154
481d0f41
JB
1155 /* We print some messages regardless of whether 'from_tty ||
1156 info_verbose' is true, so make sure they go out at the right
1157 time. */
1158 gdb_flush (gdb_stdout);
1159
109f874e 1160 if (objfile->sf == NULL)
8caee43b
PP
1161 {
1162 observer_notify_new_objfile (objfile);
c378eb4e 1163 return objfile; /* No symbols. */
8caee43b 1164 }
109f874e 1165
7eedccfa 1166 new_symfile_objfile (objfile, add_flags);
c906108c 1167
06d3b283 1168 observer_notify_new_objfile (objfile);
c906108c 1169
ce7d4522 1170 bfd_cache_close_all ();
c906108c
SS
1171 return (objfile);
1172}
1173
9cce227f
TG
1174/* Add BFD as a separate debug file for OBJFILE. */
1175
1176void
1177symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1178{
15d123c9 1179 struct objfile *new_objfile;
089b4803
TG
1180 struct section_addr_info *sap;
1181 struct cleanup *my_cleanup;
1182
1183 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1184 because sections of BFD may not match sections of OBJFILE and because
1185 vma may have been modified by tools such as prelink. */
1186 sap = build_section_addr_info_from_objfile (objfile);
1187 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1188
15d123c9 1189 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1190 (bfd, symfile_flags,
089b4803 1191 sap, NULL, 0,
9cce227f 1192 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1193 | OBJF_USERLOADED),
1194 objfile);
089b4803
TG
1195
1196 do_cleanups (my_cleanup);
9cce227f 1197}
7904e09f 1198
eb4556d7
JB
1199/* Process the symbol file ABFD, as either the main file or as a
1200 dynamically loaded file.
1201
1202 See symbol_file_add_with_addrs_or_offsets's comments for
1203 details. */
1204struct objfile *
7eedccfa 1205symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1206 struct section_addr_info *addrs,
63524580 1207 int flags, struct objfile *parent)
eb4556d7 1208{
7eedccfa 1209 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1210 flags, parent);
eb4556d7
JB
1211}
1212
1213
7904e09f
JB
1214/* Process a symbol file, as either the main file or as a dynamically
1215 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1216 for details. */
1217struct objfile *
7eedccfa
PP
1218symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1219 int flags)
7904e09f 1220{
8ac244b4
TT
1221 bfd *bfd = symfile_bfd_open (name);
1222 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1223 struct objfile *objf;
1224
882f447f 1225 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1226 do_cleanups (cleanup);
1227 return objf;
7904e09f
JB
1228}
1229
1230
d7db6da9
FN
1231/* Call symbol_file_add() with default values and update whatever is
1232 affected by the loading of a new main().
1233 Used when the file is supplied in the gdb command line
1234 and by some targets with special loading requirements.
1235 The auxiliary function, symbol_file_add_main_1(), has the flags
1236 argument for the switches that can only be specified in the symbol_file
1237 command itself. */
5417f6dc 1238
1adeb98a
FN
1239void
1240symbol_file_add_main (char *args, int from_tty)
1241{
d7db6da9
FN
1242 symbol_file_add_main_1 (args, from_tty, 0);
1243}
1244
1245static void
1246symbol_file_add_main_1 (char *args, int from_tty, int flags)
1247{
7dcd53a0
TT
1248 const int add_flags = (current_inferior ()->symfile_flags
1249 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1250
7eedccfa 1251 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1252
d7db6da9
FN
1253 /* Getting new symbols may change our opinion about
1254 what is frameless. */
1255 reinit_frame_cache ();
1256
7dcd53a0
TT
1257 if ((flags & SYMFILE_NO_READ) == 0)
1258 set_initial_language ();
1adeb98a
FN
1259}
1260
1261void
1262symbol_file_clear (int from_tty)
1263{
1264 if ((have_full_symbols () || have_partial_symbols ())
1265 && from_tty
0430b0d6
AS
1266 && (symfile_objfile
1267 ? !query (_("Discard symbol table from `%s'? "),
1268 symfile_objfile->name)
1269 : !query (_("Discard symbol table? "))))
8a3fe4f8 1270 error (_("Not confirmed."));
1adeb98a 1271
0133421a
JK
1272 /* solib descriptors may have handles to objfiles. Wipe them before their
1273 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1274 no_shared_libraries (NULL, from_tty);
1275
0133421a
JK
1276 free_all_objfiles ();
1277
adb7f338 1278 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1279 if (from_tty)
1280 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1281}
1282
5b5d99cf
JB
1283static char *
1284get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1285{
1286 asection *sect;
1287 bfd_size_type debuglink_size;
1288 unsigned long crc32;
1289 char *contents;
1290 int crc_offset;
5417f6dc 1291
5b5d99cf
JB
1292 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1293
1294 if (sect == NULL)
1295 return NULL;
1296
1297 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1298
5b5d99cf
JB
1299 contents = xmalloc (debuglink_size);
1300 bfd_get_section_contents (objfile->obfd, sect, contents,
1301 (file_ptr)0, (bfd_size_type)debuglink_size);
1302
c378eb4e 1303 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1304 crc_offset = strlen (contents) + 1;
1305 crc_offset = (crc_offset + 3) & ~3;
1306
1307 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1308
5b5d99cf
JB
1309 *crc32_out = crc32;
1310 return contents;
1311}
1312
904578ed
JK
1313/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1314 return 1. Otherwise print a warning and return 0. ABFD seek position is
1315 not preserved. */
1316
1317static int
1318get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1319{
1320 unsigned long file_crc = 0;
1321
1322 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1323 {
1324 warning (_("Problem reading \"%s\" for CRC: %s"),
1325 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1326 return 0;
1327 }
1328
1329 for (;;)
1330 {
1331 gdb_byte buffer[8 * 1024];
1332 bfd_size_type count;
1333
1334 count = bfd_bread (buffer, sizeof (buffer), abfd);
1335 if (count == (bfd_size_type) -1)
1336 {
1337 warning (_("Problem reading \"%s\" for CRC: %s"),
1338 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1339 return 0;
1340 }
1341 if (count == 0)
1342 break;
1343 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1344 }
1345
1346 *file_crc_return = file_crc;
1347 return 1;
1348}
1349
5b5d99cf 1350static int
287ccc17 1351separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1352 struct objfile *parent_objfile)
5b5d99cf 1353{
904578ed
JK
1354 unsigned long file_crc;
1355 int file_crc_p;
f1838a98 1356 bfd *abfd;
32a0e547 1357 struct stat parent_stat, abfd_stat;
904578ed 1358 int verified_as_different;
32a0e547
JK
1359
1360 /* Find a separate debug info file as if symbols would be present in
1361 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1362 section can contain just the basename of PARENT_OBJFILE without any
1363 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1364 the separate debug infos with the same basename can exist. */
32a0e547 1365
0ba1096a 1366 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1367 return 0;
5b5d99cf 1368
08d2cd74 1369 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1370
1371 if (!abfd)
5b5d99cf
JB
1372 return 0;
1373
0ba1096a 1374 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1375
1376 Some operating systems, e.g. Windows, do not provide a meaningful
1377 st_ino; they always set it to zero. (Windows does provide a
1378 meaningful st_dev.) Do not indicate a duplicate library in that
1379 case. While there is no guarantee that a system that provides
1380 meaningful inode numbers will never set st_ino to zero, this is
1381 merely an optimization, so we do not need to worry about false
1382 negatives. */
1383
1384 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1385 && abfd_stat.st_ino != 0
1386 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1387 {
904578ed
JK
1388 if (abfd_stat.st_dev == parent_stat.st_dev
1389 && abfd_stat.st_ino == parent_stat.st_ino)
1390 {
cbb099e8 1391 gdb_bfd_unref (abfd);
904578ed
JK
1392 return 0;
1393 }
1394 verified_as_different = 1;
32a0e547 1395 }
904578ed
JK
1396 else
1397 verified_as_different = 0;
32a0e547 1398
904578ed 1399 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1400
cbb099e8 1401 gdb_bfd_unref (abfd);
5b5d99cf 1402
904578ed
JK
1403 if (!file_crc_p)
1404 return 0;
1405
287ccc17
JK
1406 if (crc != file_crc)
1407 {
904578ed
JK
1408 /* If one (or both) the files are accessed for example the via "remote:"
1409 gdbserver way it does not support the bfd_stat operation. Verify
1410 whether those two files are not the same manually. */
1411
1412 if (!verified_as_different && !parent_objfile->crc32_p)
1413 {
1414 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1415 &parent_objfile->crc32);
1416 if (!parent_objfile->crc32_p)
1417 return 0;
1418 }
1419
0e8aefe7 1420 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1421 warning (_("the debug information found in \"%s\""
1422 " does not match \"%s\" (CRC mismatch).\n"),
1423 name, parent_objfile->name);
1424
287ccc17
JK
1425 return 0;
1426 }
1427
1428 return 1;
5b5d99cf
JB
1429}
1430
aa28a74e 1431char *debug_file_directory = NULL;
920d2a44
AC
1432static void
1433show_debug_file_directory (struct ui_file *file, int from_tty,
1434 struct cmd_list_element *c, const char *value)
1435{
3e43a32a
MS
1436 fprintf_filtered (file,
1437 _("The directory where separate debug "
1438 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1439 value);
1440}
5b5d99cf
JB
1441
1442#if ! defined (DEBUG_SUBDIRECTORY)
1443#define DEBUG_SUBDIRECTORY ".debug"
1444#endif
1445
1db33378
PP
1446/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1447 where the original file resides (may not be the same as
1448 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1449 looking for. Returns the name of the debuginfo, of NULL. */
1450
1451static char *
1452find_separate_debug_file (const char *dir,
1453 const char *canon_dir,
1454 const char *debuglink,
1455 unsigned long crc32, struct objfile *objfile)
9cce227f 1456{
1db33378
PP
1457 char *debugdir;
1458 char *debugfile;
9cce227f 1459 int i;
e4ab2fad
JK
1460 VEC (char_ptr) *debugdir_vec;
1461 struct cleanup *back_to;
1462 int ix;
5b5d99cf 1463
1db33378 1464 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1465 i = strlen (dir);
1db33378
PP
1466 if (canon_dir != NULL && strlen (canon_dir) > i)
1467 i = strlen (canon_dir);
1ffa32ee 1468
25522fae
JK
1469 debugfile = xmalloc (strlen (debug_file_directory) + 1
1470 + i
1471 + strlen (DEBUG_SUBDIRECTORY)
1472 + strlen ("/")
1db33378 1473 + strlen (debuglink)
25522fae 1474 + 1);
5b5d99cf
JB
1475
1476 /* First try in the same directory as the original file. */
1477 strcpy (debugfile, dir);
1db33378 1478 strcat (debugfile, debuglink);
5b5d99cf 1479
32a0e547 1480 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1481 return debugfile;
5417f6dc 1482
5b5d99cf
JB
1483 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1484 strcpy (debugfile, dir);
1485 strcat (debugfile, DEBUG_SUBDIRECTORY);
1486 strcat (debugfile, "/");
1db33378 1487 strcat (debugfile, debuglink);
5b5d99cf 1488
32a0e547 1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1490 return debugfile;
5417f6dc 1491
24ddea62 1492 /* Then try in the global debugfile directories.
f888f159 1493
24ddea62
JK
1494 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1495 cause "/..." lookups. */
5417f6dc 1496
e4ab2fad
JK
1497 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1498 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1499
e4ab2fad
JK
1500 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1501 {
1502 strcpy (debugfile, debugdir);
aa28a74e 1503 strcat (debugfile, "/");
24ddea62 1504 strcat (debugfile, dir);
1db33378 1505 strcat (debugfile, debuglink);
aa28a74e 1506
32a0e547 1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1508 return debugfile;
24ddea62
JK
1509
1510 /* If the file is in the sysroot, try using its base path in the
1511 global debugfile directory. */
1db33378
PP
1512 if (canon_dir != NULL
1513 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1514 strlen (gdb_sysroot)) == 0
1db33378 1515 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1516 {
e4ab2fad 1517 strcpy (debugfile, debugdir);
1db33378 1518 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1519 strcat (debugfile, "/");
1db33378 1520 strcat (debugfile, debuglink);
24ddea62 1521
32a0e547 1522 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1523 return debugfile;
24ddea62 1524 }
aa28a74e 1525 }
f888f159 1526
e4ab2fad 1527 do_cleanups (back_to);
25522fae 1528 xfree (debugfile);
1db33378
PP
1529 return NULL;
1530}
1531
1532/* Modify PATH to contain only "directory/" part of PATH.
1533 If there were no directory separators in PATH, PATH will be empty
1534 string on return. */
1535
1536static void
1537terminate_after_last_dir_separator (char *path)
1538{
1539 int i;
1540
1541 /* Strip off the final filename part, leaving the directory name,
1542 followed by a slash. The directory can be relative or absolute. */
1543 for (i = strlen(path) - 1; i >= 0; i--)
1544 if (IS_DIR_SEPARATOR (path[i]))
1545 break;
1546
1547 /* If I is -1 then no directory is present there and DIR will be "". */
1548 path[i + 1] = '\0';
1549}
1550
1551/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1552 Returns pathname, or NULL. */
1553
1554char *
1555find_separate_debug_file_by_debuglink (struct objfile *objfile)
1556{
1557 char *debuglink;
1558 char *dir, *canon_dir;
1559 char *debugfile;
1560 unsigned long crc32;
1561 struct cleanup *cleanups;
1562
1563 debuglink = get_debug_link_info (objfile, &crc32);
1564
1565 if (debuglink == NULL)
1566 {
1567 /* There's no separate debug info, hence there's no way we could
1568 load it => no warning. */
1569 return NULL;
1570 }
1571
71bdabee 1572 cleanups = make_cleanup (xfree, debuglink);
1db33378 1573 dir = xstrdup (objfile->name);
71bdabee 1574 make_cleanup (xfree, dir);
1db33378
PP
1575 terminate_after_last_dir_separator (dir);
1576 canon_dir = lrealpath (dir);
1577
1578 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1579 crc32, objfile);
1580 xfree (canon_dir);
1581
1582 if (debugfile == NULL)
1583 {
1584#ifdef HAVE_LSTAT
1585 /* For PR gdb/9538, try again with realpath (if different from the
1586 original). */
1587
1588 struct stat st_buf;
1589
1590 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1591 {
1592 char *symlink_dir;
1593
1594 symlink_dir = lrealpath (objfile->name);
1595 if (symlink_dir != NULL)
1596 {
1597 make_cleanup (xfree, symlink_dir);
1598 terminate_after_last_dir_separator (symlink_dir);
1599 if (strcmp (dir, symlink_dir) != 0)
1600 {
1601 /* Different directory, so try using it. */
1602 debugfile = find_separate_debug_file (symlink_dir,
1603 symlink_dir,
1604 debuglink,
1605 crc32,
1606 objfile);
1607 }
1608 }
1609 }
1610#endif /* HAVE_LSTAT */
1611 }
aa28a74e 1612
1db33378 1613 do_cleanups (cleanups);
25522fae 1614 return debugfile;
5b5d99cf
JB
1615}
1616
1617
c906108c
SS
1618/* This is the symbol-file command. Read the file, analyze its
1619 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1620 the command is rather bizarre:
1621
1622 1. The function buildargv implements various quoting conventions
1623 which are undocumented and have little or nothing in common with
1624 the way things are quoted (or not quoted) elsewhere in GDB.
1625
1626 2. Options are used, which are not generally used in GDB (perhaps
1627 "set mapped on", "set readnow on" would be better)
1628
1629 3. The order of options matters, which is contrary to GNU
c906108c
SS
1630 conventions (because it is confusing and inconvenient). */
1631
1632void
fba45db2 1633symbol_file_command (char *args, int from_tty)
c906108c 1634{
c906108c
SS
1635 dont_repeat ();
1636
1637 if (args == NULL)
1638 {
1adeb98a 1639 symbol_file_clear (from_tty);
c906108c
SS
1640 }
1641 else
1642 {
d1a41061 1643 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1644 int flags = OBJF_USERLOADED;
1645 struct cleanup *cleanups;
1646 char *name = NULL;
1647
7a292a7a 1648 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1649 while (*argv != NULL)
1650 {
78a4a9b9
AC
1651 if (strcmp (*argv, "-readnow") == 0)
1652 flags |= OBJF_READNOW;
1653 else if (**argv == '-')
8a3fe4f8 1654 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1655 else
1656 {
cb2f3a29 1657 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1658 name = *argv;
78a4a9b9 1659 }
cb2f3a29 1660
c906108c
SS
1661 argv++;
1662 }
1663
1664 if (name == NULL)
cb2f3a29
MK
1665 error (_("no symbol file name was specified"));
1666
c906108c
SS
1667 do_cleanups (cleanups);
1668 }
1669}
1670
1671/* Set the initial language.
1672
cb2f3a29
MK
1673 FIXME: A better solution would be to record the language in the
1674 psymtab when reading partial symbols, and then use it (if known) to
1675 set the language. This would be a win for formats that encode the
1676 language in an easily discoverable place, such as DWARF. For
1677 stabs, we can jump through hoops looking for specially named
1678 symbols or try to intuit the language from the specific type of
1679 stabs we find, but we can't do that until later when we read in
1680 full symbols. */
c906108c 1681
8b60591b 1682void
fba45db2 1683set_initial_language (void)
c906108c 1684{
c5aa993b 1685 enum language lang = language_unknown;
c906108c 1686
01f8c46d
JK
1687 if (language_of_main != language_unknown)
1688 lang = language_of_main;
1689 else
1690 {
1691 const char *filename;
f888f159 1692
01f8c46d
JK
1693 filename = find_main_filename ();
1694 if (filename != NULL)
1695 lang = deduce_language_from_filename (filename);
1696 }
cb2f3a29 1697
ccefe4c4
TT
1698 if (lang == language_unknown)
1699 {
1700 /* Make C the default language */
1701 lang = language_c;
c906108c 1702 }
ccefe4c4
TT
1703
1704 set_language (lang);
1705 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1706}
1707
874f5765 1708/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1709 open it normally. Returns a new reference to the BFD. On error,
1710 returns NULL with the BFD error set. */
874f5765
TG
1711
1712bfd *
08d2cd74 1713gdb_bfd_open_maybe_remote (const char *name)
874f5765 1714{
520b0001
TT
1715 bfd *result;
1716
874f5765 1717 if (remote_filename_p (name))
520b0001 1718 result = remote_bfd_open (name, gnutarget);
874f5765 1719 else
1c00ec6b 1720 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1721
520b0001 1722 return result;
874f5765
TG
1723}
1724
1725
cb2f3a29
MK
1726/* Open the file specified by NAME and hand it off to BFD for
1727 preliminary analysis. Return a newly initialized bfd *, which
1728 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1729 absolute). In case of trouble, error() is called. */
c906108c
SS
1730
1731bfd *
fba45db2 1732symfile_bfd_open (char *name)
c906108c
SS
1733{
1734 bfd *sym_bfd;
1735 int desc;
1736 char *absolute_name;
1737
f1838a98
UW
1738 if (remote_filename_p (name))
1739 {
520b0001 1740 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1741 if (!sym_bfd)
a4453b7e
TT
1742 error (_("`%s': can't open to read symbols: %s."), name,
1743 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1744
1745 if (!bfd_check_format (sym_bfd, bfd_object))
1746 {
f9a062ff 1747 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1748 error (_("`%s': can't read symbols: %s."), name,
1749 bfd_errmsg (bfd_get_error ()));
1750 }
1751
1752 return sym_bfd;
1753 }
1754
cb2f3a29 1755 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1756
1757 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1758 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1759 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1760#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1761 if (desc < 0)
1762 {
1763 char *exename = alloca (strlen (name) + 5);
433759f7 1764
c906108c 1765 strcat (strcpy (exename, name), ".exe");
014d698b 1766 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1767 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1768 }
1769#endif
1770 if (desc < 0)
1771 {
b8c9b27d 1772 make_cleanup (xfree, name);
c906108c
SS
1773 perror_with_name (name);
1774 }
cb2f3a29 1775
cb2f3a29
MK
1776 xfree (name);
1777 name = absolute_name;
a4453b7e 1778 make_cleanup (xfree, name);
c906108c 1779
1c00ec6b 1780 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c
SS
1781 if (!sym_bfd)
1782 {
b8c9b27d 1783 make_cleanup (xfree, name);
f1838a98 1784 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1785 bfd_errmsg (bfd_get_error ()));
1786 }
549c1eea 1787 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1788
1789 if (!bfd_check_format (sym_bfd, bfd_object))
1790 {
f9a062ff 1791 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1792 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1793 bfd_errmsg (bfd_get_error ()));
1794 }
cb2f3a29
MK
1795
1796 return sym_bfd;
c906108c
SS
1797}
1798
cb2f3a29
MK
1799/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1800 the section was not found. */
1801
0e931cf0
JB
1802int
1803get_section_index (struct objfile *objfile, char *section_name)
1804{
1805 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1806
0e931cf0
JB
1807 if (sect)
1808 return sect->index;
1809 else
1810 return -1;
1811}
1812
cb2f3a29
MK
1813/* Link SF into the global symtab_fns list. Called on startup by the
1814 _initialize routine in each object file format reader, to register
b021a221 1815 information about each format the reader is prepared to handle. */
c906108c
SS
1816
1817void
00b5771c 1818add_symtab_fns (const struct sym_fns *sf)
c906108c 1819{
00b5771c 1820 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1821}
1822
cb2f3a29
MK
1823/* Initialize OBJFILE to read symbols from its associated BFD. It
1824 either returns or calls error(). The result is an initialized
1825 struct sym_fns in the objfile structure, that contains cached
1826 information about the symbol file. */
c906108c 1827
00b5771c 1828static const struct sym_fns *
31d99776 1829find_sym_fns (bfd *abfd)
c906108c 1830{
00b5771c 1831 const struct sym_fns *sf;
31d99776 1832 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1833 int i;
c906108c 1834
75245b24
MS
1835 if (our_flavour == bfd_target_srec_flavour
1836 || our_flavour == bfd_target_ihex_flavour
1837 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1838 return NULL; /* No symbols. */
75245b24 1839
00b5771c 1840 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1841 if (our_flavour == sf->sym_flavour)
1842 return sf;
cb2f3a29 1843
8a3fe4f8 1844 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1845 bfd_get_target (abfd));
c906108c
SS
1846}
1847\f
cb2f3a29 1848
c906108c
SS
1849/* This function runs the load command of our current target. */
1850
1851static void
fba45db2 1852load_command (char *arg, int from_tty)
c906108c 1853{
e5cc9f32
JB
1854 dont_repeat ();
1855
4487aabf
PA
1856 /* The user might be reloading because the binary has changed. Take
1857 this opportunity to check. */
1858 reopen_exec_file ();
1859 reread_symbols ();
1860
c906108c 1861 if (arg == NULL)
1986bccd
AS
1862 {
1863 char *parg;
1864 int count = 0;
1865
1866 parg = arg = get_exec_file (1);
1867
1868 /* Count how many \ " ' tab space there are in the name. */
1869 while ((parg = strpbrk (parg, "\\\"'\t ")))
1870 {
1871 parg++;
1872 count++;
1873 }
1874
1875 if (count)
1876 {
1877 /* We need to quote this string so buildargv can pull it apart. */
1878 char *temp = xmalloc (strlen (arg) + count + 1 );
1879 char *ptemp = temp;
1880 char *prev;
1881
1882 make_cleanup (xfree, temp);
1883
1884 prev = parg = arg;
1885 while ((parg = strpbrk (parg, "\\\"'\t ")))
1886 {
1887 strncpy (ptemp, prev, parg - prev);
1888 ptemp += parg - prev;
1889 prev = parg++;
1890 *ptemp++ = '\\';
1891 }
1892 strcpy (ptemp, prev);
1893
1894 arg = temp;
1895 }
1896 }
1897
c906108c 1898 target_load (arg, from_tty);
2889e661
JB
1899
1900 /* After re-loading the executable, we don't really know which
1901 overlays are mapped any more. */
1902 overlay_cache_invalid = 1;
c906108c
SS
1903}
1904
1905/* This version of "load" should be usable for any target. Currently
1906 it is just used for remote targets, not inftarg.c or core files,
1907 on the theory that only in that case is it useful.
1908
1909 Avoiding xmodem and the like seems like a win (a) because we don't have
1910 to worry about finding it, and (b) On VMS, fork() is very slow and so
1911 we don't want to run a subprocess. On the other hand, I'm not sure how
1912 performance compares. */
917317f4 1913
917317f4
JM
1914static int validate_download = 0;
1915
e4f9b4d5
MS
1916/* Callback service function for generic_load (bfd_map_over_sections). */
1917
1918static void
1919add_section_size_callback (bfd *abfd, asection *asec, void *data)
1920{
1921 bfd_size_type *sum = data;
1922
2c500098 1923 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1924}
1925
1926/* Opaque data for load_section_callback. */
1927struct load_section_data {
1928 unsigned long load_offset;
a76d924d
DJ
1929 struct load_progress_data *progress_data;
1930 VEC(memory_write_request_s) *requests;
1931};
1932
1933/* Opaque data for load_progress. */
1934struct load_progress_data {
1935 /* Cumulative data. */
e4f9b4d5
MS
1936 unsigned long write_count;
1937 unsigned long data_count;
1938 bfd_size_type total_size;
a76d924d
DJ
1939};
1940
1941/* Opaque data for load_progress for a single section. */
1942struct load_progress_section_data {
1943 struct load_progress_data *cumulative;
cf7a04e8 1944
a76d924d 1945 /* Per-section data. */
cf7a04e8
DJ
1946 const char *section_name;
1947 ULONGEST section_sent;
1948 ULONGEST section_size;
1949 CORE_ADDR lma;
1950 gdb_byte *buffer;
e4f9b4d5
MS
1951};
1952
a76d924d 1953/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1954
1955static void
1956load_progress (ULONGEST bytes, void *untyped_arg)
1957{
a76d924d
DJ
1958 struct load_progress_section_data *args = untyped_arg;
1959 struct load_progress_data *totals;
1960
1961 if (args == NULL)
1962 /* Writing padding data. No easy way to get at the cumulative
1963 stats, so just ignore this. */
1964 return;
1965
1966 totals = args->cumulative;
1967
1968 if (bytes == 0 && args->section_sent == 0)
1969 {
1970 /* The write is just starting. Let the user know we've started
1971 this section. */
79a45e25 1972 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1973 args->section_name, hex_string (args->section_size),
f5656ead 1974 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1975 return;
1976 }
cf7a04e8
DJ
1977
1978 if (validate_download)
1979 {
1980 /* Broken memories and broken monitors manifest themselves here
1981 when bring new computers to life. This doubles already slow
1982 downloads. */
1983 /* NOTE: cagney/1999-10-18: A more efficient implementation
1984 might add a verify_memory() method to the target vector and
1985 then use that. remote.c could implement that method using
1986 the ``qCRC'' packet. */
1987 gdb_byte *check = xmalloc (bytes);
1988 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1989
1990 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1991 error (_("Download verify read failed at %s"),
f5656ead 1992 paddress (target_gdbarch (), args->lma));
cf7a04e8 1993 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1994 error (_("Download verify compare failed at %s"),
f5656ead 1995 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1996 do_cleanups (verify_cleanups);
1997 }
a76d924d 1998 totals->data_count += bytes;
cf7a04e8
DJ
1999 args->lma += bytes;
2000 args->buffer += bytes;
a76d924d 2001 totals->write_count += 1;
cf7a04e8 2002 args->section_sent += bytes;
522002f9 2003 if (check_quit_flag ()
cf7a04e8
DJ
2004 || (deprecated_ui_load_progress_hook != NULL
2005 && deprecated_ui_load_progress_hook (args->section_name,
2006 args->section_sent)))
2007 error (_("Canceled the download"));
2008
2009 if (deprecated_show_load_progress != NULL)
2010 deprecated_show_load_progress (args->section_name,
2011 args->section_sent,
2012 args->section_size,
a76d924d
DJ
2013 totals->data_count,
2014 totals->total_size);
cf7a04e8
DJ
2015}
2016
e4f9b4d5
MS
2017/* Callback service function for generic_load (bfd_map_over_sections). */
2018
2019static void
2020load_section_callback (bfd *abfd, asection *asec, void *data)
2021{
a76d924d 2022 struct memory_write_request *new_request;
e4f9b4d5 2023 struct load_section_data *args = data;
a76d924d 2024 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2025 bfd_size_type size = bfd_get_section_size (asec);
2026 gdb_byte *buffer;
cf7a04e8 2027 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2028
cf7a04e8
DJ
2029 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2030 return;
e4f9b4d5 2031
cf7a04e8
DJ
2032 if (size == 0)
2033 return;
e4f9b4d5 2034
a76d924d
DJ
2035 new_request = VEC_safe_push (memory_write_request_s,
2036 args->requests, NULL);
2037 memset (new_request, 0, sizeof (struct memory_write_request));
2038 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2039 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2040 new_request->end = new_request->begin + size; /* FIXME Should size
2041 be in instead? */
a76d924d
DJ
2042 new_request->data = xmalloc (size);
2043 new_request->baton = section_data;
cf7a04e8 2044
a76d924d 2045 buffer = new_request->data;
cf7a04e8 2046
a76d924d
DJ
2047 section_data->cumulative = args->progress_data;
2048 section_data->section_name = sect_name;
2049 section_data->section_size = size;
2050 section_data->lma = new_request->begin;
2051 section_data->buffer = buffer;
cf7a04e8
DJ
2052
2053 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2054}
2055
2056/* Clean up an entire memory request vector, including load
2057 data and progress records. */
cf7a04e8 2058
a76d924d
DJ
2059static void
2060clear_memory_write_data (void *arg)
2061{
2062 VEC(memory_write_request_s) **vec_p = arg;
2063 VEC(memory_write_request_s) *vec = *vec_p;
2064 int i;
2065 struct memory_write_request *mr;
cf7a04e8 2066
a76d924d
DJ
2067 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2068 {
2069 xfree (mr->data);
2070 xfree (mr->baton);
2071 }
2072 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2073}
2074
c906108c 2075void
917317f4 2076generic_load (char *args, int from_tty)
c906108c 2077{
c906108c 2078 bfd *loadfile_bfd;
2b71414d 2079 struct timeval start_time, end_time;
917317f4 2080 char *filename;
1986bccd 2081 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2082 struct load_section_data cbdata;
a76d924d 2083 struct load_progress_data total_progress;
79a45e25 2084 struct ui_out *uiout = current_uiout;
a76d924d 2085
e4f9b4d5 2086 CORE_ADDR entry;
1986bccd 2087 char **argv;
e4f9b4d5 2088
a76d924d
DJ
2089 memset (&cbdata, 0, sizeof (cbdata));
2090 memset (&total_progress, 0, sizeof (total_progress));
2091 cbdata.progress_data = &total_progress;
2092
2093 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2094
d1a41061
PP
2095 if (args == NULL)
2096 error_no_arg (_("file to load"));
1986bccd 2097
d1a41061 2098 argv = gdb_buildargv (args);
1986bccd
AS
2099 make_cleanup_freeargv (argv);
2100
2101 filename = tilde_expand (argv[0]);
2102 make_cleanup (xfree, filename);
2103
2104 if (argv[1] != NULL)
917317f4
JM
2105 {
2106 char *endptr;
ba5f2f8a 2107
1986bccd
AS
2108 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2109
2110 /* If the last word was not a valid number then
2111 treat it as a file name with spaces in. */
2112 if (argv[1] == endptr)
2113 error (_("Invalid download offset:%s."), argv[1]);
2114
2115 if (argv[2] != NULL)
2116 error (_("Too many parameters."));
917317f4 2117 }
c906108c 2118
c378eb4e 2119 /* Open the file for loading. */
1c00ec6b 2120 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2121 if (loadfile_bfd == NULL)
2122 {
2123 perror_with_name (filename);
2124 return;
2125 }
917317f4 2126
f9a062ff 2127 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2128
c5aa993b 2129 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2130 {
8a3fe4f8 2131 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2132 bfd_errmsg (bfd_get_error ()));
2133 }
c5aa993b 2134
5417f6dc 2135 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2136 (void *) &total_progress.total_size);
2137
2138 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2139
2b71414d 2140 gettimeofday (&start_time, NULL);
c906108c 2141
a76d924d
DJ
2142 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2143 load_progress) != 0)
2144 error (_("Load failed"));
c906108c 2145
2b71414d 2146 gettimeofday (&end_time, NULL);
ba5f2f8a 2147
e4f9b4d5 2148 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2149 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2150 ui_out_text (uiout, "Start address ");
f5656ead 2151 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2152 ui_out_text (uiout, ", load size ");
a76d924d 2153 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2154 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2155 /* We were doing this in remote-mips.c, I suspect it is right
2156 for other targets too. */
fb14de7b 2157 regcache_write_pc (get_current_regcache (), entry);
c906108c 2158
38963c97
DJ
2159 /* Reset breakpoints, now that we have changed the load image. For
2160 instance, breakpoints may have been set (or reset, by
2161 post_create_inferior) while connected to the target but before we
2162 loaded the program. In that case, the prologue analyzer could
2163 have read instructions from the target to find the right
2164 breakpoint locations. Loading has changed the contents of that
2165 memory. */
2166
2167 breakpoint_re_set ();
2168
7ca9f392
AC
2169 /* FIXME: are we supposed to call symbol_file_add or not? According
2170 to a comment from remote-mips.c (where a call to symbol_file_add
2171 was commented out), making the call confuses GDB if more than one
2172 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2173 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2174
a76d924d
DJ
2175 print_transfer_performance (gdb_stdout, total_progress.data_count,
2176 total_progress.write_count,
2177 &start_time, &end_time);
c906108c
SS
2178
2179 do_cleanups (old_cleanups);
2180}
2181
c378eb4e 2182/* Report how fast the transfer went. */
c906108c 2183
917317f4 2184void
d9fcf2fb 2185print_transfer_performance (struct ui_file *stream,
917317f4
JM
2186 unsigned long data_count,
2187 unsigned long write_count,
2b71414d
DJ
2188 const struct timeval *start_time,
2189 const struct timeval *end_time)
917317f4 2190{
9f43d28c 2191 ULONGEST time_count;
79a45e25 2192 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2193
2194 /* Compute the elapsed time in milliseconds, as a tradeoff between
2195 accuracy and overflow. */
2196 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2197 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2198
8b93c638
JM
2199 ui_out_text (uiout, "Transfer rate: ");
2200 if (time_count > 0)
2201 {
9f43d28c
DJ
2202 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2203
2204 if (ui_out_is_mi_like_p (uiout))
2205 {
2206 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2207 ui_out_text (uiout, " bits/sec");
2208 }
2209 else if (rate < 1024)
2210 {
2211 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2212 ui_out_text (uiout, " bytes/sec");
2213 }
2214 else
2215 {
2216 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2217 ui_out_text (uiout, " KB/sec");
2218 }
8b93c638
JM
2219 }
2220 else
2221 {
ba5f2f8a 2222 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2223 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2224 }
2225 if (write_count > 0)
2226 {
2227 ui_out_text (uiout, ", ");
ba5f2f8a 2228 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2229 ui_out_text (uiout, " bytes/write");
2230 }
2231 ui_out_text (uiout, ".\n");
c906108c
SS
2232}
2233
2234/* This function allows the addition of incrementally linked object files.
2235 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2236/* Note: ezannoni 2000-04-13 This function/command used to have a
2237 special case syntax for the rombug target (Rombug is the boot
2238 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2239 rombug case, the user doesn't need to supply a text address,
2240 instead a call to target_link() (in target.c) would supply the
c378eb4e 2241 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2242
c906108c 2243static void
fba45db2 2244add_symbol_file_command (char *args, int from_tty)
c906108c 2245{
5af949e3 2246 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2247 char *filename = NULL;
2df3850c 2248 int flags = OBJF_USERLOADED;
c906108c 2249 char *arg;
db162d44 2250 int section_index = 0;
2acceee2
JM
2251 int argcnt = 0;
2252 int sec_num = 0;
2253 int i;
db162d44
EZ
2254 int expecting_sec_name = 0;
2255 int expecting_sec_addr = 0;
5b96932b 2256 char **argv;
db162d44 2257
a39a16c4 2258 struct sect_opt
2acceee2 2259 {
2acceee2
JM
2260 char *name;
2261 char *value;
a39a16c4 2262 };
db162d44 2263
a39a16c4
MM
2264 struct section_addr_info *section_addrs;
2265 struct sect_opt *sect_opts = NULL;
2266 size_t num_sect_opts = 0;
3017564a 2267 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2268
a39a16c4 2269 num_sect_opts = 16;
5417f6dc 2270 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2271 * sizeof (struct sect_opt));
2272
c906108c
SS
2273 dont_repeat ();
2274
2275 if (args == NULL)
8a3fe4f8 2276 error (_("add-symbol-file takes a file name and an address"));
c906108c 2277
d1a41061 2278 argv = gdb_buildargv (args);
5b96932b 2279 make_cleanup_freeargv (argv);
db162d44 2280
5b96932b
AS
2281 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2282 {
c378eb4e 2283 /* Process the argument. */
db162d44 2284 if (argcnt == 0)
c906108c 2285 {
c378eb4e 2286 /* The first argument is the file name. */
db162d44 2287 filename = tilde_expand (arg);
3017564a 2288 make_cleanup (xfree, filename);
c906108c 2289 }
db162d44 2290 else
7a78ae4e
ND
2291 if (argcnt == 1)
2292 {
2293 /* The second argument is always the text address at which
c378eb4e 2294 to load the program. */
7a78ae4e
ND
2295 sect_opts[section_index].name = ".text";
2296 sect_opts[section_index].value = arg;
f414f22f 2297 if (++section_index >= num_sect_opts)
a39a16c4
MM
2298 {
2299 num_sect_opts *= 2;
5417f6dc 2300 sect_opts = ((struct sect_opt *)
a39a16c4 2301 xrealloc (sect_opts,
5417f6dc 2302 num_sect_opts
a39a16c4
MM
2303 * sizeof (struct sect_opt)));
2304 }
7a78ae4e
ND
2305 }
2306 else
2307 {
2308 /* It's an option (starting with '-') or it's an argument
c378eb4e 2309 to an option. */
7a78ae4e
ND
2310
2311 if (*arg == '-')
2312 {
78a4a9b9
AC
2313 if (strcmp (arg, "-readnow") == 0)
2314 flags |= OBJF_READNOW;
2315 else if (strcmp (arg, "-s") == 0)
2316 {
2317 expecting_sec_name = 1;
2318 expecting_sec_addr = 1;
2319 }
7a78ae4e
ND
2320 }
2321 else
2322 {
2323 if (expecting_sec_name)
db162d44 2324 {
7a78ae4e
ND
2325 sect_opts[section_index].name = arg;
2326 expecting_sec_name = 0;
db162d44
EZ
2327 }
2328 else
7a78ae4e
ND
2329 if (expecting_sec_addr)
2330 {
2331 sect_opts[section_index].value = arg;
2332 expecting_sec_addr = 0;
f414f22f 2333 if (++section_index >= num_sect_opts)
a39a16c4
MM
2334 {
2335 num_sect_opts *= 2;
5417f6dc 2336 sect_opts = ((struct sect_opt *)
a39a16c4 2337 xrealloc (sect_opts,
5417f6dc 2338 num_sect_opts
a39a16c4
MM
2339 * sizeof (struct sect_opt)));
2340 }
7a78ae4e
ND
2341 }
2342 else
3e43a32a 2343 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2344 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2345 }
2346 }
c906108c 2347 }
c906108c 2348
927890d0
JB
2349 /* This command takes at least two arguments. The first one is a
2350 filename, and the second is the address where this file has been
2351 loaded. Abort now if this address hasn't been provided by the
2352 user. */
2353 if (section_index < 1)
2354 error (_("The address where %s has been loaded is missing"), filename);
2355
c378eb4e 2356 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2357 a sect_addr_info structure to be passed around to other
2358 functions. We have to split this up into separate print
bb599908 2359 statements because hex_string returns a local static
c378eb4e 2360 string. */
5417f6dc 2361
a3f17187 2362 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2363 section_addrs = alloc_section_addr_info (section_index);
2364 make_cleanup (xfree, section_addrs);
db162d44 2365 for (i = 0; i < section_index; i++)
c906108c 2366 {
db162d44
EZ
2367 CORE_ADDR addr;
2368 char *val = sect_opts[i].value;
2369 char *sec = sect_opts[i].name;
5417f6dc 2370
ae822768 2371 addr = parse_and_eval_address (val);
db162d44 2372
db162d44 2373 /* Here we store the section offsets in the order they were
c378eb4e 2374 entered on the command line. */
a39a16c4
MM
2375 section_addrs->other[sec_num].name = sec;
2376 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2377 printf_unfiltered ("\t%s_addr = %s\n", sec,
2378 paddress (gdbarch, addr));
db162d44
EZ
2379 sec_num++;
2380
5417f6dc 2381 /* The object's sections are initialized when a
db162d44 2382 call is made to build_objfile_section_table (objfile).
5417f6dc 2383 This happens in reread_symbols.
db162d44
EZ
2384 At this point, we don't know what file type this is,
2385 so we can't determine what section names are valid. */
2acceee2 2386 }
db162d44 2387
2acceee2 2388 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2389 error (_("Not confirmed."));
c906108c 2390
7eedccfa
PP
2391 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2392 section_addrs, flags);
c906108c
SS
2393
2394 /* Getting new symbols may change our opinion about what is
2395 frameless. */
2396 reinit_frame_cache ();
db162d44 2397 do_cleanups (my_cleanups);
c906108c
SS
2398}
2399\f
70992597 2400
4ac39b97
JK
2401typedef struct objfile *objfilep;
2402
2403DEF_VEC_P (objfilep);
2404
c906108c
SS
2405/* Re-read symbols if a symbol-file has changed. */
2406void
fba45db2 2407reread_symbols (void)
c906108c
SS
2408{
2409 struct objfile *objfile;
2410 long new_modtime;
c906108c
SS
2411 struct stat new_statbuf;
2412 int res;
4ac39b97
JK
2413 VEC (objfilep) *new_objfiles = NULL;
2414 struct cleanup *all_cleanups;
2415
2416 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2417
2418 /* With the addition of shared libraries, this should be modified,
2419 the load time should be saved in the partial symbol tables, since
2420 different tables may come from different source files. FIXME.
2421 This routine should then walk down each partial symbol table
c378eb4e 2422 and see if the symbol table that it originates from has been changed. */
c906108c 2423
c5aa993b
JM
2424 for (objfile = object_files; objfile; objfile = objfile->next)
2425 {
9cce227f
TG
2426 /* solib-sunos.c creates one objfile with obfd. */
2427 if (objfile->obfd == NULL)
2428 continue;
2429
2430 /* Separate debug objfiles are handled in the main objfile. */
2431 if (objfile->separate_debug_objfile_backlink)
2432 continue;
2433
02aeec7b
JB
2434 /* If this object is from an archive (what you usually create with
2435 `ar', often called a `static library' on most systems, though
2436 a `shared library' on AIX is also an archive), then you should
2437 stat on the archive name, not member name. */
9cce227f
TG
2438 if (objfile->obfd->my_archive)
2439 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2440 else
9cce227f
TG
2441 res = stat (objfile->name, &new_statbuf);
2442 if (res != 0)
2443 {
c378eb4e 2444 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2445 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2446 objfile->name);
2447 continue;
2448 }
2449 new_modtime = new_statbuf.st_mtime;
2450 if (new_modtime != objfile->mtime)
2451 {
2452 struct cleanup *old_cleanups;
2453 struct section_offsets *offsets;
2454 int num_offsets;
2455 char *obfd_filename;
2456
2457 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2458 objfile->name);
2459
2460 /* There are various functions like symbol_file_add,
2461 symfile_bfd_open, syms_from_objfile, etc., which might
2462 appear to do what we want. But they have various other
2463 effects which we *don't* want. So we just do stuff
2464 ourselves. We don't worry about mapped files (for one thing,
2465 any mapped file will be out of date). */
2466
2467 /* If we get an error, blow away this objfile (not sure if
2468 that is the correct response for things like shared
2469 libraries). */
2470 old_cleanups = make_cleanup_free_objfile (objfile);
2471 /* We need to do this whenever any symbols go away. */
2472 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2473
0ba1096a
KT
2474 if (exec_bfd != NULL
2475 && filename_cmp (bfd_get_filename (objfile->obfd),
2476 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2477 {
2478 /* Reload EXEC_BFD without asking anything. */
2479
2480 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2481 }
2482
f6eeced0
JK
2483 /* Keep the calls order approx. the same as in free_objfile. */
2484
2485 /* Free the separate debug objfiles. It will be
2486 automatically recreated by sym_read. */
2487 free_objfile_separate_debug (objfile);
2488
2489 /* Remove any references to this objfile in the global
2490 value lists. */
2491 preserve_values (objfile);
2492
2493 /* Nuke all the state that we will re-read. Much of the following
2494 code which sets things to NULL really is necessary to tell
2495 other parts of GDB that there is nothing currently there.
2496
2497 Try to keep the freeing order compatible with free_objfile. */
2498
2499 if (objfile->sf != NULL)
2500 {
2501 (*objfile->sf->sym_finish) (objfile);
2502 }
2503
2504 clear_objfile_data (objfile);
2505
e1507e95 2506 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2507 {
2508 struct bfd *obfd = objfile->obfd;
2509
2510 obfd_filename = bfd_get_filename (objfile->obfd);
2511 /* Open the new BFD before freeing the old one, so that
2512 the filename remains live. */
08d2cd74 2513 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2514 if (objfile->obfd == NULL)
2515 {
2516 /* We have to make a cleanup and error here, rather
2517 than erroring later, because once we unref OBFD,
2518 OBFD_FILENAME will be freed. */
2519 make_cleanup_bfd_unref (obfd);
2520 error (_("Can't open %s to read symbols."), obfd_filename);
2521 }
a4453b7e
TT
2522 gdb_bfd_unref (obfd);
2523 }
2524
e1507e95 2525 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2526 /* bfd_openr sets cacheable to true, which is what we want. */
2527 if (!bfd_check_format (objfile->obfd, bfd_object))
2528 error (_("Can't read symbols from %s: %s."), objfile->name,
2529 bfd_errmsg (bfd_get_error ()));
2530
2531 /* Save the offsets, we will nuke them with the rest of the
2532 objfile_obstack. */
2533 num_offsets = objfile->num_sections;
2534 offsets = ((struct section_offsets *)
2535 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2536 memcpy (offsets, objfile->section_offsets,
2537 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2538
9cce227f
TG
2539 /* FIXME: Do we have to free a whole linked list, or is this
2540 enough? */
2541 if (objfile->global_psymbols.list)
2542 xfree (objfile->global_psymbols.list);
2543 memset (&objfile->global_psymbols, 0,
2544 sizeof (objfile->global_psymbols));
2545 if (objfile->static_psymbols.list)
2546 xfree (objfile->static_psymbols.list);
2547 memset (&objfile->static_psymbols, 0,
2548 sizeof (objfile->static_psymbols));
2549
c378eb4e 2550 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2551 psymbol_bcache_free (objfile->psymbol_cache);
2552 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2553 if (objfile->demangled_names_hash != NULL)
2554 {
2555 htab_delete (objfile->demangled_names_hash);
2556 objfile->demangled_names_hash = NULL;
2557 }
2558 obstack_free (&objfile->objfile_obstack, 0);
2559 objfile->sections = NULL;
2560 objfile->symtabs = NULL;
2561 objfile->psymtabs = NULL;
2562 objfile->psymtabs_addrmap = NULL;
2563 objfile->free_psymtabs = NULL;
34eaf542 2564 objfile->template_symbols = NULL;
9cce227f 2565 objfile->msymbols = NULL;
9cce227f
TG
2566 objfile->minimal_symbol_count = 0;
2567 memset (&objfile->msymbol_hash, 0,
2568 sizeof (objfile->msymbol_hash));
2569 memset (&objfile->msymbol_demangled_hash, 0,
2570 sizeof (objfile->msymbol_demangled_hash));
2571
706e3705
TT
2572 set_objfile_per_bfd (objfile);
2573
9cce227f
TG
2574 /* obstack_init also initializes the obstack so it is
2575 empty. We could use obstack_specify_allocation but
d82ea6a8 2576 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2577 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2578 build_objfile_section_table (objfile);
9cce227f
TG
2579 terminate_minimal_symbol_table (objfile);
2580
2581 /* We use the same section offsets as from last time. I'm not
2582 sure whether that is always correct for shared libraries. */
2583 objfile->section_offsets = (struct section_offsets *)
2584 obstack_alloc (&objfile->objfile_obstack,
2585 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2586 memcpy (objfile->section_offsets, offsets,
2587 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2588 objfile->num_sections = num_offsets;
2589
2590 /* What the hell is sym_new_init for, anyway? The concept of
2591 distinguishing between the main file and additional files
2592 in this way seems rather dubious. */
2593 if (objfile == symfile_objfile)
c906108c 2594 {
9cce227f 2595 (*objfile->sf->sym_new_init) (objfile);
c906108c 2596 }
9cce227f
TG
2597
2598 (*objfile->sf->sym_init) (objfile);
2599 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2600
2601 objfile->flags &= ~OBJF_PSYMTABS_READ;
2602 read_symbols (objfile, 0);
b11896a5 2603
9cce227f 2604 if (!objfile_has_symbols (objfile))
c906108c 2605 {
9cce227f
TG
2606 wrap_here ("");
2607 printf_unfiltered (_("(no debugging symbols found)\n"));
2608 wrap_here ("");
c5aa993b 2609 }
9cce227f
TG
2610
2611 /* We're done reading the symbol file; finish off complaints. */
2612 clear_complaints (&symfile_complaints, 0, 1);
2613
2614 /* Getting new symbols may change our opinion about what is
2615 frameless. */
2616
2617 reinit_frame_cache ();
2618
2619 /* Discard cleanups as symbol reading was successful. */
2620 discard_cleanups (old_cleanups);
2621
2622 /* If the mtime has changed between the time we set new_modtime
2623 and now, we *want* this to be out of date, so don't call stat
2624 again now. */
2625 objfile->mtime = new_modtime;
9cce227f 2626 init_entry_point_info (objfile);
4ac39b97
JK
2627
2628 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2629 }
2630 }
c906108c 2631
4ac39b97 2632 if (new_objfiles)
ea53e89f 2633 {
4ac39b97
JK
2634 int ix;
2635
ff3536bc
UW
2636 /* Notify objfiles that we've modified objfile sections. */
2637 objfiles_changed ();
2638
c1e56572 2639 clear_symtab_users (0);
4ac39b97
JK
2640
2641 /* clear_objfile_data for each objfile was called before freeing it and
2642 observer_notify_new_objfile (NULL) has been called by
2643 clear_symtab_users above. Notify the new files now. */
2644 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2645 observer_notify_new_objfile (objfile);
2646
ea53e89f
JB
2647 /* At least one objfile has changed, so we can consider that
2648 the executable we're debugging has changed too. */
781b42b0 2649 observer_notify_executable_changed ();
ea53e89f 2650 }
4ac39b97
JK
2651
2652 do_cleanups (all_cleanups);
c906108c 2653}
c906108c
SS
2654\f
2655
c5aa993b
JM
2656
2657typedef struct
2658{
2659 char *ext;
c906108c 2660 enum language lang;
c5aa993b
JM
2661}
2662filename_language;
c906108c 2663
c5aa993b 2664static filename_language *filename_language_table;
c906108c
SS
2665static int fl_table_size, fl_table_next;
2666
2667static void
fba45db2 2668add_filename_language (char *ext, enum language lang)
c906108c
SS
2669{
2670 if (fl_table_next >= fl_table_size)
2671 {
2672 fl_table_size += 10;
5417f6dc 2673 filename_language_table =
25bf3106
PM
2674 xrealloc (filename_language_table,
2675 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2676 }
2677
4fcf66da 2678 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2679 filename_language_table[fl_table_next].lang = lang;
2680 fl_table_next++;
2681}
2682
2683static char *ext_args;
920d2a44
AC
2684static void
2685show_ext_args (struct ui_file *file, int from_tty,
2686 struct cmd_list_element *c, const char *value)
2687{
3e43a32a
MS
2688 fprintf_filtered (file,
2689 _("Mapping between filename extension "
2690 "and source language is \"%s\".\n"),
920d2a44
AC
2691 value);
2692}
c906108c
SS
2693
2694static void
26c41df3 2695set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2696{
2697 int i;
2698 char *cp = ext_args;
2699 enum language lang;
2700
c378eb4e 2701 /* First arg is filename extension, starting with '.' */
c906108c 2702 if (*cp != '.')
8a3fe4f8 2703 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2704
2705 /* Find end of first arg. */
c5aa993b 2706 while (*cp && !isspace (*cp))
c906108c
SS
2707 cp++;
2708
2709 if (*cp == '\0')
3e43a32a
MS
2710 error (_("'%s': two arguments required -- "
2711 "filename extension and language"),
c906108c
SS
2712 ext_args);
2713
c378eb4e 2714 /* Null-terminate first arg. */
c5aa993b 2715 *cp++ = '\0';
c906108c
SS
2716
2717 /* Find beginning of second arg, which should be a source language. */
2718 while (*cp && isspace (*cp))
2719 cp++;
2720
2721 if (*cp == '\0')
3e43a32a
MS
2722 error (_("'%s': two arguments required -- "
2723 "filename extension and language"),
c906108c
SS
2724 ext_args);
2725
2726 /* Lookup the language from among those we know. */
2727 lang = language_enum (cp);
2728
2729 /* Now lookup the filename extension: do we already know it? */
2730 for (i = 0; i < fl_table_next; i++)
2731 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2732 break;
2733
2734 if (i >= fl_table_next)
2735 {
c378eb4e 2736 /* New file extension. */
c906108c
SS
2737 add_filename_language (ext_args, lang);
2738 }
2739 else
2740 {
c378eb4e 2741 /* Redefining a previously known filename extension. */
c906108c
SS
2742
2743 /* if (from_tty) */
2744 /* query ("Really make files of type %s '%s'?", */
2745 /* ext_args, language_str (lang)); */
2746
b8c9b27d 2747 xfree (filename_language_table[i].ext);
4fcf66da 2748 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2749 filename_language_table[i].lang = lang;
2750 }
2751}
2752
2753static void
fba45db2 2754info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2755{
2756 int i;
2757
a3f17187 2758 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2759 printf_filtered ("\n\n");
2760 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2761 printf_filtered ("\t%s\t- %s\n",
2762 filename_language_table[i].ext,
c906108c
SS
2763 language_str (filename_language_table[i].lang));
2764}
2765
2766static void
fba45db2 2767init_filename_language_table (void)
c906108c 2768{
c378eb4e 2769 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2770 {
2771 fl_table_size = 20;
2772 fl_table_next = 0;
c5aa993b 2773 filename_language_table =
c906108c 2774 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2775 add_filename_language (".c", language_c);
6aecb9c2 2776 add_filename_language (".d", language_d);
c5aa993b
JM
2777 add_filename_language (".C", language_cplus);
2778 add_filename_language (".cc", language_cplus);
2779 add_filename_language (".cp", language_cplus);
2780 add_filename_language (".cpp", language_cplus);
2781 add_filename_language (".cxx", language_cplus);
2782 add_filename_language (".c++", language_cplus);
2783 add_filename_language (".java", language_java);
c906108c 2784 add_filename_language (".class", language_java);
da2cf7e0 2785 add_filename_language (".m", language_objc);
c5aa993b
JM
2786 add_filename_language (".f", language_fortran);
2787 add_filename_language (".F", language_fortran);
fd5700c7
JK
2788 add_filename_language (".for", language_fortran);
2789 add_filename_language (".FOR", language_fortran);
2790 add_filename_language (".ftn", language_fortran);
2791 add_filename_language (".FTN", language_fortran);
2792 add_filename_language (".fpp", language_fortran);
2793 add_filename_language (".FPP", language_fortran);
2794 add_filename_language (".f90", language_fortran);
2795 add_filename_language (".F90", language_fortran);
2796 add_filename_language (".f95", language_fortran);
2797 add_filename_language (".F95", language_fortran);
2798 add_filename_language (".f03", language_fortran);
2799 add_filename_language (".F03", language_fortran);
2800 add_filename_language (".f08", language_fortran);
2801 add_filename_language (".F08", language_fortran);
c5aa993b 2802 add_filename_language (".s", language_asm);
aa707ed0 2803 add_filename_language (".sx", language_asm);
c5aa993b 2804 add_filename_language (".S", language_asm);
c6fd39cd
PM
2805 add_filename_language (".pas", language_pascal);
2806 add_filename_language (".p", language_pascal);
2807 add_filename_language (".pp", language_pascal);
963a6417
PH
2808 add_filename_language (".adb", language_ada);
2809 add_filename_language (".ads", language_ada);
2810 add_filename_language (".a", language_ada);
2811 add_filename_language (".ada", language_ada);
dde59185 2812 add_filename_language (".dg", language_ada);
c906108c
SS
2813 }
2814}
2815
2816enum language
dd786858 2817deduce_language_from_filename (const char *filename)
c906108c
SS
2818{
2819 int i;
2820 char *cp;
2821
2822 if (filename != NULL)
2823 if ((cp = strrchr (filename, '.')) != NULL)
2824 for (i = 0; i < fl_table_next; i++)
2825 if (strcmp (cp, filename_language_table[i].ext) == 0)
2826 return filename_language_table[i].lang;
2827
2828 return language_unknown;
2829}
2830\f
2831/* allocate_symtab:
2832
2833 Allocate and partly initialize a new symbol table. Return a pointer
2834 to it. error() if no space.
2835
2836 Caller must set these fields:
c5aa993b
JM
2837 LINETABLE(symtab)
2838 symtab->blockvector
2839 symtab->dirname
2840 symtab->free_code
2841 symtab->free_ptr
c906108c
SS
2842 */
2843
2844struct symtab *
72b9f47f 2845allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2846{
52f0bd74 2847 struct symtab *symtab;
c906108c
SS
2848
2849 symtab = (struct symtab *)
4a146b47 2850 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2851 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2852 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2853 objfile->per_bfd->filename_cache);
c5aa993b
JM
2854 symtab->fullname = NULL;
2855 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2856 symtab->debugformat = "unknown";
c906108c 2857
c378eb4e 2858 /* Hook it to the objfile it comes from. */
c906108c 2859
c5aa993b
JM
2860 symtab->objfile = objfile;
2861 symtab->next = objfile->symtabs;
2862 objfile->symtabs = symtab;
c906108c 2863
45cfd468
DE
2864 if (symtab_create_debug)
2865 {
2866 /* Be a bit clever with debugging messages, and don't print objfile
2867 every time, only when it changes. */
2868 static char *last_objfile_name = NULL;
2869
2870 if (last_objfile_name == NULL
2871 || strcmp (last_objfile_name, objfile->name) != 0)
2872 {
2873 xfree (last_objfile_name);
2874 last_objfile_name = xstrdup (objfile->name);
2875 fprintf_unfiltered (gdb_stdlog,
2876 "Creating one or more symtabs for objfile %s ...\n",
2877 last_objfile_name);
2878 }
2879 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2880 "Created symtab %s for module %s.\n",
2881 host_address_to_string (symtab), filename);
45cfd468
DE
2882 }
2883
c906108c
SS
2884 return (symtab);
2885}
c906108c 2886\f
c5aa993b 2887
c906108c 2888/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2889 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2890
2891void
c1e56572 2892clear_symtab_users (int add_flags)
c906108c
SS
2893{
2894 /* Someday, we should do better than this, by only blowing away
2895 the things that really need to be blown. */
c0501be5
DJ
2896
2897 /* Clear the "current" symtab first, because it is no longer valid.
2898 breakpoint_re_set may try to access the current symtab. */
2899 clear_current_source_symtab_and_line ();
2900
c906108c 2901 clear_displays ();
c1e56572
JK
2902 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2903 breakpoint_re_set ();
1bfeeb0f 2904 clear_last_displayed_sal ();
c906108c 2905 clear_pc_function_cache ();
06d3b283 2906 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2907
2908 /* Clear globals which might have pointed into a removed objfile.
2909 FIXME: It's not clear which of these are supposed to persist
2910 between expressions and which ought to be reset each time. */
2911 expression_context_block = NULL;
2912 innermost_block = NULL;
8756216b
DP
2913
2914 /* Varobj may refer to old symbols, perform a cleanup. */
2915 varobj_invalidate ();
2916
c906108c
SS
2917}
2918
74b7792f
AC
2919static void
2920clear_symtab_users_cleanup (void *ignore)
2921{
c1e56572 2922 clear_symtab_users (0);
74b7792f 2923}
c906108c 2924\f
c906108c
SS
2925/* OVERLAYS:
2926 The following code implements an abstraction for debugging overlay sections.
2927
2928 The target model is as follows:
2929 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2930 same VMA, each with its own unique LMA (or load address).
c906108c 2931 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2932 sections, one by one, from the load address into the VMA address.
5417f6dc 2933 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2934 sections should be considered to be mapped from the VMA to the LMA.
2935 This information is used for symbol lookup, and memory read/write.
5417f6dc 2936 For instance, if a section has been mapped then its contents
c5aa993b 2937 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2938
2939 Two levels of debugger support for overlays are available. One is
2940 "manual", in which the debugger relies on the user to tell it which
2941 overlays are currently mapped. This level of support is
2942 implemented entirely in the core debugger, and the information about
2943 whether a section is mapped is kept in the objfile->obj_section table.
2944
2945 The second level of support is "automatic", and is only available if
2946 the target-specific code provides functionality to read the target's
2947 overlay mapping table, and translate its contents for the debugger
2948 (by updating the mapped state information in the obj_section tables).
2949
2950 The interface is as follows:
c5aa993b
JM
2951 User commands:
2952 overlay map <name> -- tell gdb to consider this section mapped
2953 overlay unmap <name> -- tell gdb to consider this section unmapped
2954 overlay list -- list the sections that GDB thinks are mapped
2955 overlay read-target -- get the target's state of what's mapped
2956 overlay off/manual/auto -- set overlay debugging state
2957 Functional interface:
2958 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2959 section, return that section.
5417f6dc 2960 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2961 the pc, either in its VMA or its LMA
714835d5 2962 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2963 section_is_overlay(sect): true if section's VMA != LMA
2964 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2965 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2966 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2967 overlay_mapped_address(...): map an address from section's LMA to VMA
2968 overlay_unmapped_address(...): map an address from section's VMA to LMA
2969 symbol_overlayed_address(...): Return a "current" address for symbol:
2970 either in VMA or LMA depending on whether
c378eb4e 2971 the symbol's section is currently mapped. */
c906108c
SS
2972
2973/* Overlay debugging state: */
2974
d874f1e2 2975enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2976int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2977
c906108c 2978/* Function: section_is_overlay (SECTION)
5417f6dc 2979 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2980 SECTION is loaded at an address different from where it will "run". */
2981
2982int
714835d5 2983section_is_overlay (struct obj_section *section)
c906108c 2984{
714835d5
UW
2985 if (overlay_debugging && section)
2986 {
2987 bfd *abfd = section->objfile->obfd;
2988 asection *bfd_section = section->the_bfd_section;
f888f159 2989
714835d5
UW
2990 if (bfd_section_lma (abfd, bfd_section) != 0
2991 && bfd_section_lma (abfd, bfd_section)
2992 != bfd_section_vma (abfd, bfd_section))
2993 return 1;
2994 }
c906108c
SS
2995
2996 return 0;
2997}
2998
2999/* Function: overlay_invalidate_all (void)
3000 Invalidate the mapped state of all overlay sections (mark it as stale). */
3001
3002static void
fba45db2 3003overlay_invalidate_all (void)
c906108c 3004{
c5aa993b 3005 struct objfile *objfile;
c906108c
SS
3006 struct obj_section *sect;
3007
3008 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3009 if (section_is_overlay (sect))
3010 sect->ovly_mapped = -1;
c906108c
SS
3011}
3012
714835d5 3013/* Function: section_is_mapped (SECTION)
5417f6dc 3014 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3015
3016 Access to the ovly_mapped flag is restricted to this function, so
3017 that we can do automatic update. If the global flag
3018 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3019 overlay_invalidate_all. If the mapped state of the particular
3020 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3021
714835d5
UW
3022int
3023section_is_mapped (struct obj_section *osect)
c906108c 3024{
9216df95
UW
3025 struct gdbarch *gdbarch;
3026
714835d5 3027 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3028 return 0;
3029
c5aa993b 3030 switch (overlay_debugging)
c906108c
SS
3031 {
3032 default:
d874f1e2 3033 case ovly_off:
c5aa993b 3034 return 0; /* overlay debugging off */
d874f1e2 3035 case ovly_auto: /* overlay debugging automatic */
1c772458 3036 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3037 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3038 gdbarch = get_objfile_arch (osect->objfile);
3039 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3040 {
3041 if (overlay_cache_invalid)
3042 {
3043 overlay_invalidate_all ();
3044 overlay_cache_invalid = 0;
3045 }
3046 if (osect->ovly_mapped == -1)
9216df95 3047 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3048 }
3049 /* fall thru to manual case */
d874f1e2 3050 case ovly_on: /* overlay debugging manual */
c906108c
SS
3051 return osect->ovly_mapped == 1;
3052 }
3053}
3054
c906108c
SS
3055/* Function: pc_in_unmapped_range
3056 If PC falls into the lma range of SECTION, return true, else false. */
3057
3058CORE_ADDR
714835d5 3059pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3060{
714835d5
UW
3061 if (section_is_overlay (section))
3062 {
3063 bfd *abfd = section->objfile->obfd;
3064 asection *bfd_section = section->the_bfd_section;
fbd35540 3065
714835d5
UW
3066 /* We assume the LMA is relocated by the same offset as the VMA. */
3067 bfd_vma size = bfd_get_section_size (bfd_section);
3068 CORE_ADDR offset = obj_section_offset (section);
3069
3070 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3071 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3072 return 1;
3073 }
c906108c 3074
c906108c
SS
3075 return 0;
3076}
3077
3078/* Function: pc_in_mapped_range
3079 If PC falls into the vma range of SECTION, return true, else false. */
3080
3081CORE_ADDR
714835d5 3082pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3083{
714835d5
UW
3084 if (section_is_overlay (section))
3085 {
3086 if (obj_section_addr (section) <= pc
3087 && pc < obj_section_endaddr (section))
3088 return 1;
3089 }
c906108c 3090
c906108c
SS
3091 return 0;
3092}
3093
9ec8e6a0
JB
3094
3095/* Return true if the mapped ranges of sections A and B overlap, false
3096 otherwise. */
b9362cc7 3097static int
714835d5 3098sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3099{
714835d5
UW
3100 CORE_ADDR a_start = obj_section_addr (a);
3101 CORE_ADDR a_end = obj_section_endaddr (a);
3102 CORE_ADDR b_start = obj_section_addr (b);
3103 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3104
3105 return (a_start < b_end && b_start < a_end);
3106}
3107
c906108c
SS
3108/* Function: overlay_unmapped_address (PC, SECTION)
3109 Returns the address corresponding to PC in the unmapped (load) range.
3110 May be the same as PC. */
3111
3112CORE_ADDR
714835d5 3113overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3114{
714835d5
UW
3115 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3116 {
3117 bfd *abfd = section->objfile->obfd;
3118 asection *bfd_section = section->the_bfd_section;
fbd35540 3119
714835d5
UW
3120 return pc + bfd_section_lma (abfd, bfd_section)
3121 - bfd_section_vma (abfd, bfd_section);
3122 }
c906108c
SS
3123
3124 return pc;
3125}
3126
3127/* Function: overlay_mapped_address (PC, SECTION)
3128 Returns the address corresponding to PC in the mapped (runtime) range.
3129 May be the same as PC. */
3130
3131CORE_ADDR
714835d5 3132overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3133{
714835d5
UW
3134 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3135 {
3136 bfd *abfd = section->objfile->obfd;
3137 asection *bfd_section = section->the_bfd_section;
fbd35540 3138
714835d5
UW
3139 return pc + bfd_section_vma (abfd, bfd_section)
3140 - bfd_section_lma (abfd, bfd_section);
3141 }
c906108c
SS
3142
3143 return pc;
3144}
3145
3146
5417f6dc 3147/* Function: symbol_overlayed_address
c906108c
SS
3148 Return one of two addresses (relative to the VMA or to the LMA),
3149 depending on whether the section is mapped or not. */
3150
c5aa993b 3151CORE_ADDR
714835d5 3152symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3153{
3154 if (overlay_debugging)
3155 {
c378eb4e 3156 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3157 if (section == 0)
3158 return address;
c378eb4e
MS
3159 /* If the symbol's section is not an overlay, just return its
3160 address. */
c906108c
SS
3161 if (!section_is_overlay (section))
3162 return address;
c378eb4e 3163 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3164 if (section_is_mapped (section))
3165 return address;
3166 /*
3167 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3168 * then return its LOADED address rather than its vma address!!
3169 */
3170 return overlay_unmapped_address (address, section);
3171 }
3172 return address;
3173}
3174
5417f6dc 3175/* Function: find_pc_overlay (PC)
c906108c
SS
3176 Return the best-match overlay section for PC:
3177 If PC matches a mapped overlay section's VMA, return that section.
3178 Else if PC matches an unmapped section's VMA, return that section.
3179 Else if PC matches an unmapped section's LMA, return that section. */
3180
714835d5 3181struct obj_section *
fba45db2 3182find_pc_overlay (CORE_ADDR pc)
c906108c 3183{
c5aa993b 3184 struct objfile *objfile;
c906108c
SS
3185 struct obj_section *osect, *best_match = NULL;
3186
3187 if (overlay_debugging)
3188 ALL_OBJSECTIONS (objfile, osect)
714835d5 3189 if (section_is_overlay (osect))
c5aa993b 3190 {
714835d5 3191 if (pc_in_mapped_range (pc, osect))
c5aa993b 3192 {
714835d5
UW
3193 if (section_is_mapped (osect))
3194 return osect;
c5aa993b
JM
3195 else
3196 best_match = osect;
3197 }
714835d5 3198 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3199 best_match = osect;
3200 }
714835d5 3201 return best_match;
c906108c
SS
3202}
3203
3204/* Function: find_pc_mapped_section (PC)
5417f6dc 3205 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3206 currently marked as MAPPED, return that section. Else return NULL. */
3207
714835d5 3208struct obj_section *
fba45db2 3209find_pc_mapped_section (CORE_ADDR pc)
c906108c 3210{
c5aa993b 3211 struct objfile *objfile;
c906108c
SS
3212 struct obj_section *osect;
3213
3214 if (overlay_debugging)
3215 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3216 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3217 return osect;
c906108c
SS
3218
3219 return NULL;
3220}
3221
3222/* Function: list_overlays_command
c378eb4e 3223 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3224
3225void
fba45db2 3226list_overlays_command (char *args, int from_tty)
c906108c 3227{
c5aa993b
JM
3228 int nmapped = 0;
3229 struct objfile *objfile;
c906108c
SS
3230 struct obj_section *osect;
3231
3232 if (overlay_debugging)
3233 ALL_OBJSECTIONS (objfile, osect)
714835d5 3234 if (section_is_mapped (osect))
c5aa993b 3235 {
5af949e3 3236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3242 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3243 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3244 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3245
3246 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3247 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3248 puts_filtered (" - ");
5af949e3 3249 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3250 printf_filtered (", mapped at ");
5af949e3 3251 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3252 puts_filtered (" - ");
5af949e3 3253 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3254 puts_filtered ("\n");
3255
3256 nmapped++;
3257 }
c906108c 3258 if (nmapped == 0)
a3f17187 3259 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3260}
3261
3262/* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265void
fba45db2 3266map_overlay_command (char *args, int from_tty)
c906108c 3267{
c5aa993b
JM
3268 struct objfile *objfile, *objfile2;
3269 struct obj_section *sec, *sec2;
c906108c
SS
3270
3271 if (!overlay_debugging)
3e43a32a
MS
3272 error (_("Overlay debugging not enabled. Use "
3273 "either the 'overlay auto' or\n"
3274 "the 'overlay manual' command."));
c906108c
SS
3275
3276 if (args == 0 || *args == 0)
8a3fe4f8 3277 error (_("Argument required: name of an overlay section"));
c906108c 3278
c378eb4e 3279 /* First, find a section matching the user supplied argument. */
c906108c
SS
3280 ALL_OBJSECTIONS (objfile, sec)
3281 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3282 {
c378eb4e 3283 /* Now, check to see if the section is an overlay. */
714835d5 3284 if (!section_is_overlay (sec))
c5aa993b
JM
3285 continue; /* not an overlay section */
3286
c378eb4e 3287 /* Mark the overlay as "mapped". */
c5aa993b
JM
3288 sec->ovly_mapped = 1;
3289
3290 /* Next, make a pass and unmap any sections that are
3291 overlapped by this new section: */
3292 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3293 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3294 {
3295 if (info_verbose)
a3f17187 3296 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3297 bfd_section_name (objfile->obfd,
3298 sec2->the_bfd_section));
c378eb4e 3299 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3300 }
3301 return;
3302 }
8a3fe4f8 3303 error (_("No overlay section called %s"), args);
c906108c
SS
3304}
3305
3306/* Function: unmap_overlay_command
5417f6dc 3307 Mark the overlay section as unmapped
c906108c
SS
3308 (ie. resident in its LMA address range, rather than the VMA range). */
3309
3310void
fba45db2 3311unmap_overlay_command (char *args, int from_tty)
c906108c 3312{
c5aa993b 3313 struct objfile *objfile;
c906108c
SS
3314 struct obj_section *sec;
3315
3316 if (!overlay_debugging)
3e43a32a
MS
3317 error (_("Overlay debugging not enabled. "
3318 "Use either the 'overlay auto' or\n"
3319 "the 'overlay manual' command."));
c906108c
SS
3320
3321 if (args == 0 || *args == 0)
8a3fe4f8 3322 error (_("Argument required: name of an overlay section"));
c906108c 3323
c378eb4e 3324 /* First, find a section matching the user supplied argument. */
c906108c
SS
3325 ALL_OBJSECTIONS (objfile, sec)
3326 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3327 {
3328 if (!sec->ovly_mapped)
8a3fe4f8 3329 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3330 sec->ovly_mapped = 0;
3331 return;
3332 }
8a3fe4f8 3333 error (_("No overlay section called %s"), args);
c906108c
SS
3334}
3335
3336/* Function: overlay_auto_command
3337 A utility command to turn on overlay debugging.
c378eb4e 3338 Possibly this should be done via a set/show command. */
c906108c
SS
3339
3340static void
fba45db2 3341overlay_auto_command (char *args, int from_tty)
c906108c 3342{
d874f1e2 3343 overlay_debugging = ovly_auto;
1900040c 3344 enable_overlay_breakpoints ();
c906108c 3345 if (info_verbose)
a3f17187 3346 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3347}
3348
3349/* Function: overlay_manual_command
3350 A utility command to turn on overlay debugging.
c378eb4e 3351 Possibly this should be done via a set/show command. */
c906108c
SS
3352
3353static void
fba45db2 3354overlay_manual_command (char *args, int from_tty)
c906108c 3355{
d874f1e2 3356 overlay_debugging = ovly_on;
1900040c 3357 disable_overlay_breakpoints ();
c906108c 3358 if (info_verbose)
a3f17187 3359 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3360}
3361
3362/* Function: overlay_off_command
3363 A utility command to turn on overlay debugging.
c378eb4e 3364 Possibly this should be done via a set/show command. */
c906108c
SS
3365
3366static void
fba45db2 3367overlay_off_command (char *args, int from_tty)
c906108c 3368{
d874f1e2 3369 overlay_debugging = ovly_off;
1900040c 3370 disable_overlay_breakpoints ();
c906108c 3371 if (info_verbose)
a3f17187 3372 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3373}
3374
3375static void
fba45db2 3376overlay_load_command (char *args, int from_tty)
c906108c 3377{
e17c207e
UW
3378 struct gdbarch *gdbarch = get_current_arch ();
3379
3380 if (gdbarch_overlay_update_p (gdbarch))
3381 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3382 else
8a3fe4f8 3383 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3384}
3385
3386/* Function: overlay_command
c378eb4e 3387 A place-holder for a mis-typed command. */
c906108c 3388
c378eb4e 3389/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3390static struct cmd_list_element *overlaylist;
c906108c
SS
3391
3392static void
fba45db2 3393overlay_command (char *args, int from_tty)
c906108c 3394{
c5aa993b 3395 printf_unfiltered
c906108c
SS
3396 ("\"overlay\" must be followed by the name of an overlay command.\n");
3397 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3398}
3399
3400
3401/* Target Overlays for the "Simplest" overlay manager:
3402
5417f6dc
RM
3403 This is GDB's default target overlay layer. It works with the
3404 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3405 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3406 so targets that use a different runtime overlay manager can
c906108c
SS
3407 substitute their own overlay_update function and take over the
3408 function pointer.
3409
3410 The overlay_update function pokes around in the target's data structures
3411 to see what overlays are mapped, and updates GDB's overlay mapping with
3412 this information.
3413
3414 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3415 unsigned _novlys; /# number of overlay sections #/
3416 unsigned _ovly_table[_novlys][4] = {
3417 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3418 {..., ..., ..., ...},
3419 }
3420 unsigned _novly_regions; /# number of overlay regions #/
3421 unsigned _ovly_region_table[_novly_regions][3] = {
3422 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3423 {..., ..., ...},
3424 }
c906108c
SS
3425 These functions will attempt to update GDB's mappedness state in the
3426 symbol section table, based on the target's mappedness state.
3427
3428 To do this, we keep a cached copy of the target's _ovly_table, and
3429 attempt to detect when the cached copy is invalidated. The main
3430 entry point is "simple_overlay_update(SECT), which looks up SECT in
3431 the cached table and re-reads only the entry for that section from
c378eb4e 3432 the target (whenever possible). */
c906108c
SS
3433
3434/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3435static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3436static unsigned cache_novlys = 0;
c906108c 3437static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3438enum ovly_index
3439 {
3440 VMA, SIZE, LMA, MAPPED
3441 };
c906108c 3442
c378eb4e 3443/* Throw away the cached copy of _ovly_table. */
c906108c 3444static void
fba45db2 3445simple_free_overlay_table (void)
c906108c
SS
3446{
3447 if (cache_ovly_table)
b8c9b27d 3448 xfree (cache_ovly_table);
c5aa993b 3449 cache_novlys = 0;
c906108c
SS
3450 cache_ovly_table = NULL;
3451 cache_ovly_table_base = 0;
3452}
3453
9216df95 3454/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3455 Convert to host order. int LEN is number of ints. */
c906108c 3456static void
9216df95 3457read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3458 int len, int size, enum bfd_endian byte_order)
c906108c 3459{
c378eb4e 3460 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3461 gdb_byte *buf = alloca (len * size);
c5aa993b 3462 int i;
c906108c 3463
9216df95 3464 read_memory (memaddr, buf, len * size);
c906108c 3465 for (i = 0; i < len; i++)
e17a4113 3466 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3467}
3468
3469/* Find and grab a copy of the target _ovly_table
c378eb4e 3470 (and _novlys, which is needed for the table's size). */
c5aa993b 3471static int
fba45db2 3472simple_read_overlay_table (void)
c906108c 3473{
0d43edd1 3474 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3475 struct gdbarch *gdbarch;
3476 int word_size;
e17a4113 3477 enum bfd_endian byte_order;
c906108c
SS
3478
3479 simple_free_overlay_table ();
9b27852e 3480 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3481 if (! novlys_msym)
c906108c 3482 {
8a3fe4f8 3483 error (_("Error reading inferior's overlay table: "
0d43edd1 3484 "couldn't find `_novlys' variable\n"
8a3fe4f8 3485 "in inferior. Use `overlay manual' mode."));
0d43edd1 3486 return 0;
c906108c 3487 }
0d43edd1 3488
9b27852e 3489 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3490 if (! ovly_table_msym)
3491 {
8a3fe4f8 3492 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3493 "`_ovly_table' array\n"
8a3fe4f8 3494 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3495 return 0;
3496 }
3497
9216df95
UW
3498 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3499 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3500 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3501
e17a4113
UW
3502 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3503 4, byte_order);
0d43edd1
JB
3504 cache_ovly_table
3505 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3506 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3507 read_target_long_array (cache_ovly_table_base,
777ea8f1 3508 (unsigned int *) cache_ovly_table,
e17a4113 3509 cache_novlys * 4, word_size, byte_order);
0d43edd1 3510
c5aa993b 3511 return 1; /* SUCCESS */
c906108c
SS
3512}
3513
5417f6dc 3514/* Function: simple_overlay_update_1
c906108c
SS
3515 A helper function for simple_overlay_update. Assuming a cached copy
3516 of _ovly_table exists, look through it to find an entry whose vma,
3517 lma and size match those of OSECT. Re-read the entry and make sure
3518 it still matches OSECT (else the table may no longer be valid).
3519 Set OSECT's mapped state to match the entry. Return: 1 for
3520 success, 0 for failure. */
3521
3522static int
fba45db2 3523simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3524{
3525 int i, size;
fbd35540
MS
3526 bfd *obfd = osect->objfile->obfd;
3527 asection *bsect = osect->the_bfd_section;
9216df95
UW
3528 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3529 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3531
2c500098 3532 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3533 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3536 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3537 {
9216df95
UW
3538 read_target_long_array (cache_ovly_table_base + i * word_size,
3539 (unsigned int *) cache_ovly_table[i],
e17a4113 3540 4, word_size, byte_order);
fbd35540
MS
3541 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3542 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3543 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3544 {
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 return 1;
3547 }
c378eb4e 3548 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3549 return 0;
3550 }
3551 return 0;
3552}
3553
3554/* Function: simple_overlay_update
5417f6dc
RM
3555 If OSECT is NULL, then update all sections' mapped state
3556 (after re-reading the entire target _ovly_table).
3557 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3558 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3559 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3560 re-read the entire cache, and go ahead and update all sections. */
3561
1c772458 3562void
fba45db2 3563simple_overlay_update (struct obj_section *osect)
c906108c 3564{
c5aa993b 3565 struct objfile *objfile;
c906108c 3566
c378eb4e 3567 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3568 if (osect)
c378eb4e 3569 /* Have we got a cached copy of the target's overlay table? */
c906108c 3570 if (cache_ovly_table != NULL)
9cc89665
MS
3571 {
3572 /* Does its cached location match what's currently in the
3573 symtab? */
3574 struct minimal_symbol *minsym
3575 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3576
3577 if (minsym == NULL)
3578 error (_("Error reading inferior's overlay table: couldn't "
3579 "find `_ovly_table' array\n"
3580 "in inferior. Use `overlay manual' mode."));
3581
3582 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3583 /* Then go ahead and try to look up this single section in
3584 the cache. */
3585 if (simple_overlay_update_1 (osect))
3586 /* Found it! We're done. */
3587 return;
3588 }
c906108c
SS
3589
3590 /* Cached table no good: need to read the entire table anew.
3591 Or else we want all the sections, in which case it's actually
3592 more efficient to read the whole table in one block anyway. */
3593
0d43edd1
JB
3594 if (! simple_read_overlay_table ())
3595 return;
3596
c378eb4e 3597 /* Now may as well update all sections, even if only one was requested. */
c906108c 3598 ALL_OBJSECTIONS (objfile, osect)
714835d5 3599 if (section_is_overlay (osect))
c5aa993b
JM
3600 {
3601 int i, size;
fbd35540
MS
3602 bfd *obfd = osect->objfile->obfd;
3603 asection *bsect = osect->the_bfd_section;
c5aa993b 3604
2c500098 3605 size = bfd_get_section_size (bsect);
c5aa993b 3606 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3609 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3610 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3611 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3612 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3613 }
3614 }
c906108c
SS
3615}
3616
086df311
DJ
3617/* Set the output sections and output offsets for section SECTP in
3618 ABFD. The relocation code in BFD will read these offsets, so we
3619 need to be sure they're initialized. We map each section to itself,
3620 with no offset; this means that SECTP->vma will be honored. */
3621
3622static void
3623symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3624{
3625 sectp->output_section = sectp;
3626 sectp->output_offset = 0;
3627}
3628
ac8035ab
TG
3629/* Default implementation for sym_relocate. */
3630
3631
3632bfd_byte *
3633default_symfile_relocate (struct objfile *objfile, asection *sectp,
3634 bfd_byte *buf)
3635{
3019eac3
DE
3636 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3637 DWO file. */
3638 bfd *abfd = sectp->owner;
ac8035ab
TG
3639
3640 /* We're only interested in sections with relocation
3641 information. */
3642 if ((sectp->flags & SEC_RELOC) == 0)
3643 return NULL;
3644
3645 /* We will handle section offsets properly elsewhere, so relocate as if
3646 all sections begin at 0. */
3647 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3648
3649 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3650}
3651
086df311
DJ
3652/* Relocate the contents of a debug section SECTP in ABFD. The
3653 contents are stored in BUF if it is non-NULL, or returned in a
3654 malloc'd buffer otherwise.
3655
3656 For some platforms and debug info formats, shared libraries contain
3657 relocations against the debug sections (particularly for DWARF-2;
3658 one affected platform is PowerPC GNU/Linux, although it depends on
3659 the version of the linker in use). Also, ELF object files naturally
3660 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3661 the relocations in order to get the locations of symbols correct.
3662 Another example that may require relocation processing, is the
3663 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3664 debug section. */
086df311
DJ
3665
3666bfd_byte *
ac8035ab
TG
3667symfile_relocate_debug_section (struct objfile *objfile,
3668 asection *sectp, bfd_byte *buf)
086df311 3669{
ac8035ab 3670 gdb_assert (objfile->sf->sym_relocate);
086df311 3671
ac8035ab 3672 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3673}
c906108c 3674
31d99776
DJ
3675struct symfile_segment_data *
3676get_symfile_segment_data (bfd *abfd)
3677{
00b5771c 3678 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3679
3680 if (sf == NULL)
3681 return NULL;
3682
3683 return sf->sym_segments (abfd);
3684}
3685
3686void
3687free_symfile_segment_data (struct symfile_segment_data *data)
3688{
3689 xfree (data->segment_bases);
3690 xfree (data->segment_sizes);
3691 xfree (data->segment_info);
3692 xfree (data);
3693}
3694
28c32713
JB
3695
3696/* Given:
3697 - DATA, containing segment addresses from the object file ABFD, and
3698 the mapping from ABFD's sections onto the segments that own them,
3699 and
3700 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3701 segment addresses reported by the target,
3702 store the appropriate offsets for each section in OFFSETS.
3703
3704 If there are fewer entries in SEGMENT_BASES than there are segments
3705 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3706
8d385431
DJ
3707 If there are more entries, then ignore the extra. The target may
3708 not be able to distinguish between an empty data segment and a
3709 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3710int
3711symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3712 struct section_offsets *offsets,
3713 int num_segment_bases,
3714 const CORE_ADDR *segment_bases)
3715{
3716 int i;
3717 asection *sect;
3718
28c32713
JB
3719 /* It doesn't make sense to call this function unless you have some
3720 segment base addresses. */
202b96c1 3721 gdb_assert (num_segment_bases > 0);
28c32713 3722
31d99776
DJ
3723 /* If we do not have segment mappings for the object file, we
3724 can not relocate it by segments. */
3725 gdb_assert (data != NULL);
3726 gdb_assert (data->num_segments > 0);
3727
31d99776
DJ
3728 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3729 {
31d99776
DJ
3730 int which = data->segment_info[i];
3731
28c32713
JB
3732 gdb_assert (0 <= which && which <= data->num_segments);
3733
3734 /* Don't bother computing offsets for sections that aren't
3735 loaded as part of any segment. */
3736 if (! which)
3737 continue;
3738
3739 /* Use the last SEGMENT_BASES entry as the address of any extra
3740 segments mentioned in DATA->segment_info. */
31d99776 3741 if (which > num_segment_bases)
28c32713 3742 which = num_segment_bases;
31d99776 3743
28c32713
JB
3744 offsets->offsets[i] = (segment_bases[which - 1]
3745 - data->segment_bases[which - 1]);
31d99776
DJ
3746 }
3747
3748 return 1;
3749}
3750
3751static void
3752symfile_find_segment_sections (struct objfile *objfile)
3753{
3754 bfd *abfd = objfile->obfd;
3755 int i;
3756 asection *sect;
3757 struct symfile_segment_data *data;
3758
3759 data = get_symfile_segment_data (objfile->obfd);
3760 if (data == NULL)
3761 return;
3762
3763 if (data->num_segments != 1 && data->num_segments != 2)
3764 {
3765 free_symfile_segment_data (data);
3766 return;
3767 }
3768
3769 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3770 {
31d99776
DJ
3771 int which = data->segment_info[i];
3772
3773 if (which == 1)
3774 {
3775 if (objfile->sect_index_text == -1)
3776 objfile->sect_index_text = sect->index;
3777
3778 if (objfile->sect_index_rodata == -1)
3779 objfile->sect_index_rodata = sect->index;
3780 }
3781 else if (which == 2)
3782 {
3783 if (objfile->sect_index_data == -1)
3784 objfile->sect_index_data = sect->index;
3785
3786 if (objfile->sect_index_bss == -1)
3787 objfile->sect_index_bss = sect->index;
3788 }
3789 }
3790
3791 free_symfile_segment_data (data);
3792}
3793
c906108c 3794void
fba45db2 3795_initialize_symfile (void)
c906108c
SS
3796{
3797 struct cmd_list_element *c;
c5aa993b 3798
1a966eab
AC
3799 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3800Load symbol table from executable file FILE.\n\
c906108c 3801The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3802to execute."), &cmdlist);
5ba2abeb 3803 set_cmd_completer (c, filename_completer);
c906108c 3804
1a966eab 3805 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3806Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3807Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3808 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3809The optional arguments are section-name section-address pairs and\n\
3810should be specified if the data and bss segments are not contiguous\n\
1a966eab 3811with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3812 &cmdlist);
5ba2abeb 3813 set_cmd_completer (c, filename_completer);
c906108c 3814
1a966eab
AC
3815 c = add_cmd ("load", class_files, load_command, _("\
3816Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3817for access from GDB.\n\
3818A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3819 set_cmd_completer (c, filename_completer);
c906108c 3820
c5aa993b 3821 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3822 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3823 "overlay ", 0, &cmdlist);
3824
3825 add_com_alias ("ovly", "overlay", class_alias, 1);
3826 add_com_alias ("ov", "overlay", class_alias, 1);
3827
c5aa993b 3828 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3829 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3830
c5aa993b 3831 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3832 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3833
c5aa993b 3834 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3835 _("List mappings of overlay sections."), &overlaylist);
c906108c 3836
c5aa993b 3837 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3838 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3839 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3840 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3841 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3842 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3843 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3844 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3845
3846 /* Filename extension to source language lookup table: */
3847 init_filename_language_table ();
26c41df3
AC
3848 add_setshow_string_noescape_cmd ("extension-language", class_files,
3849 &ext_args, _("\
3850Set mapping between filename extension and source language."), _("\
3851Show mapping between filename extension and source language."), _("\
3852Usage: set extension-language .foo bar"),
3853 set_ext_lang_command,
920d2a44 3854 show_ext_args,
26c41df3 3855 &setlist, &showlist);
c906108c 3856
c5aa993b 3857 add_info ("extensions", info_ext_lang_command,
1bedd215 3858 _("All filename extensions associated with a source language."));
917317f4 3859
525226b5
AC
3860 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3861 &debug_file_directory, _("\
24ddea62
JK
3862Set the directories where separate debug symbols are searched for."), _("\
3863Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3864Separate debug symbols are first searched for in the same\n\
3865directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3866and lastly at the path of the directory of the binary with\n\
24ddea62 3867each global debug-file-directory component prepended."),
525226b5 3868 NULL,
920d2a44 3869 show_debug_file_directory,
525226b5 3870 &setlist, &showlist);
c906108c 3871}
This page took 1.788669 seconds and 4 git commands to generate.