gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
b7209cb4
FF
174/* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
c906108c 181 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 182 report all the functions that are actually present. */
c906108c
SS
183
184int auto_solib_add = 1;
b7209cb4
FF
185
186/* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194int auto_solib_limit;
c906108c 195\f
c5aa993b 196
0fe19209
DC
197/* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
c906108c
SS
199
200static int
0cd64fe2 201compare_psymbols (const void *s1p, const void *s2p)
c906108c 202{
0fe19209
DC
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
4725b721
PH
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
208}
209
210void
fba45db2 211sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
212{
213 /* Sort the global list; don't sort the static list */
214
c5aa993b
JM
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
217 compare_psymbols);
218}
219
c906108c
SS
220/* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225char *
63ca651f 226obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 227{
52f0bd74 228 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
aa1ee363
AC
233 const char *p1 = ptr;
234 char *p2 = p;
63ca651f 235 const char *end = ptr + size;
c906108c
SS
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241}
242
243/* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246char *
fba45db2
KB
247obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
c906108c 249{
52f0bd74
AC
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256}
257
258/* True if we are nested inside psymtab_to_symtab. */
259
260int currently_reading_symtab = 0;
261
262static void
fba45db2 263decrement_reading_symtab (void *dummy)
c906108c
SS
264{
265 currently_reading_symtab--;
266}
267
268/* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273struct symtab *
aa1ee363 274psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
275{
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
c5aa993b 282 {
c906108c
SS
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290}
291
5417f6dc
RM
292/* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
c906108c
SS
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301void
4efb68b1 302find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 303{
c5aa993b 304 asection **lowest = (asection **) obj;
c906108c
SS
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316}
317
a39a16c4
MM
318/* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320struct section_addr_info *
321alloc_section_addr_info (size_t num_sections)
322{
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333}
62557bbc 334
7b90c3f9
JB
335
336/* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338struct section_addr_info *
339copy_section_addr_info (struct section_addr_info *addrs)
340{
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357}
358
359
360
62557bbc
KB
361/* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364extern struct section_addr_info *
0542c86d
PA
365build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
62557bbc
KB
367{
368 struct section_addr_info *sap;
0542c86d 369 const struct target_section *stp;
62557bbc
KB
370 int oidx;
371
a39a16c4 372 sap = alloc_section_addr_info (end - start);
62557bbc
KB
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
5417f6dc 376 if (bfd_get_section_flags (stp->bfd,
fbd35540 377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 378 && oidx < end - start)
62557bbc
KB
379 {
380 sap->other[oidx].addr = stp->addr;
5417f6dc 381 sap->other[oidx].name
fbd35540 382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389}
390
391
392/* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394extern void
395free_section_addr_info (struct section_addr_info *sap)
396{
397 int idx;
398
a39a16c4 399 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 400 if (sap->other[idx].name)
b8c9b27d
KB
401 xfree (sap->other[idx].name);
402 xfree (sap);
62557bbc
KB
403}
404
405
e8289572
JB
406/* Initialize OBJFILE's sect_index_* members. */
407static void
408init_objfile_sect_indices (struct objfile *objfile)
c906108c 409{
e8289572 410 asection *sect;
c906108c 411 int i;
5417f6dc 412
b8fbeb18 413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 426 if (sect)
b8fbeb18
EZ
427 objfile->sect_index_rodata = sect->index;
428
bbcd32ad
FF
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
31d99776
DJ
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
bbcd32ad
FF
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
b8fbeb18 464}
c906108c 465
c1bd25fd
DJ
466/* The arguments to place_section. */
467
468struct place_section_arg
469{
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472};
473
474/* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
2c0b251b 477static void
c1bd25fd
DJ
478place_section (bfd *abfd, asection *sect, void *obj)
479{
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
3bd72c6f 483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 484
2711e456
DJ
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
494 start_addr = (arg->lowest + align - 1) & -align;
495
c1bd25fd
DJ
496 do {
497 asection *cur_sec;
c1bd25fd 498
c1bd25fd
DJ
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
2711e456
DJ
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
3bd72c6f 527 break;
c1bd25fd
DJ
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 537}
e8289572
JB
538
539/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 540 of how to represent it for fast symbol reading. This is the default
e8289572
JB
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545void
546default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548{
549 int i;
550
a39a16c4 551 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 552 objfile->section_offsets = (struct section_offsets *)
5417f6dc 553 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 555 memset (objfile->section_offsets, 0,
a39a16c4 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
a39a16c4 560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
c1bd25fd
DJ
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
2711e456
DJ
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
2711e456
DJ
637 offsets[cur_sec->index] = 0;
638 }
639 }
c1bd25fd
DJ
640 }
641
e8289572
JB
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645}
646
647
31d99776
DJ
648/* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654struct symfile_segment_data *
655default_symfile_segments (bfd *abfd)
656{
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710}
711
c906108c
SS
712/* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
96baa820
JM
715 OBJFILE is where the symbols are to be read from.
716
7e8580c1
JB
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
96baa820 737
7eedccfa
PP
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
c906108c
SS
741
742void
7e8580c1
JB
743syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
7eedccfa 747 int add_flags)
c906108c 748{
a39a16c4 749 struct section_addr_info *local_addr = NULL;
c906108c 750 struct cleanup *old_chain;
7eedccfa 751 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 752
7e8580c1 753 gdb_assert (! (addrs && offsets));
2acceee2 754
c906108c 755 init_entry_point_info (objfile);
31d99776 756 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 757
75245b24
MS
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
c906108c
SS
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
74b7792f 763 old_chain = make_cleanup_free_objfile (objfile);
c906108c 764
a39a16c4
MM
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
5417f6dc 770 local_addr
a39a16c4
MM
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
c5aa993b 778 if (mainline)
c906108c
SS
779 {
780 /* We will modify the main symbol table, make sure that all its users
c5aa993b 781 will be cleaned up if an error occurs during symbol reading. */
74b7792f 782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
adb7f338 789 gdb_assert (symfile_objfile == NULL);
c906108c
SS
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
c906108c 796
c5aa993b 797 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
53a5351d 802 and assume that <addr> is where that got loaded.
c906108c 803
53a5351d
JM
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
1549f619 806 if (!mainline && addrs && addrs->other[0].name)
c906108c 807 {
1549f619
EZ
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
5417f6dc 813 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
c906108c 818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 819 &lower_sect);
2acceee2 820 if (lower_sect == NULL)
ff8e85c3
PA
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
2acceee2 826 else
ff8e85c3 827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 828
13de58df 829 /* Calculate offsets for the loadable sections.
2acceee2
JM
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
5417f6dc 832
13de58df
JB
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
2acceee2
JM
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
1549f619 839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
8a3fe4f8 855 warning (_("section %s not found in %s"),
5417f6dc 856 addrs->other[i].name,
7e8580c1
JB
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
c906108c
SS
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
c5aa993b 870 (*objfile->sf->sym_init) (objfile);
7eedccfa 871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 872
7e8580c1
JB
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
8b92e4d5 883 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
c906108c 888
96baa820 889 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 890
c906108c
SS
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
f7545552 894 xfree (local_addr);
c906108c
SS
895}
896
897/* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
c5aa993b 900
c906108c 901void
7eedccfa 902new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
903{
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
7eedccfa 908 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
7eedccfa 915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 916 {
69de3c6a 917 breakpoint_re_set ();
c906108c
SS
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
922}
923
924/* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
5417f6dc
RM
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
7904e09f 929
7eedccfa
PP
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 936
c906108c
SS
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
7eedccfa 939
7904e09f 940static struct objfile *
7eedccfa
PP
941symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
7904e09f
JB
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
7eedccfa 946 int flags)
c906108c
SS
947{
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
77069918 950 char *debugfile = NULL;
7b90c3f9 951 struct section_addr_info *orig_addrs = NULL;
a39a16c4 952 struct cleanup *my_cleanups;
5417f6dc 953 const char *name = bfd_get_filename (abfd);
7eedccfa 954 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 955
5417f6dc 956 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 957
5417f6dc
RM
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
c906108c
SS
960
961 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 962 && (add_flags & SYMFILE_MAINLINE)
c906108c 963 && from_tty
9e2f0ad4 964 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 965 error (_("Not confirmed."));
c906108c 966
2df3850c 967 objfile = allocate_objfile (abfd, flags);
5417f6dc 968 discard_cleanups (my_cleanups);
c906108c 969
a39a16c4 970 if (addrs)
63cd24fe 971 {
7b90c3f9
JB
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 974 }
a39a16c4 975
78a4a9b9
AC
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
c906108c 980 {
769d7dc4
AC
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
78a4a9b9 983 else
c906108c 984 {
55333a84
DE
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
c906108c 988 }
c906108c 989 }
78a4a9b9 990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 991 add_flags);
c906108c
SS
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
2acceee2 998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 999 {
55333a84 1000 if (from_tty || info_verbose)
c906108c 1001 {
a3f17187 1002 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
c5aa993b 1007 for (psymtab = objfile->psymtabs;
c906108c 1008 psymtab != NULL;
c5aa993b 1009 psymtab = psymtab->next)
c906108c
SS
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
77069918
JK
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1020 if (debugfile)
1021 {
5b5d99cf
JB
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
7eedccfa 1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
7eedccfa 1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
5417f6dc 1034
5b5d99cf
JB
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1038
5b5d99cf
JB
1039 xfree (debugfile);
1040 }
5417f6dc 1041
55333a84 1042 if ((from_tty || info_verbose)
e361b228 1043 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1044 {
1045 wrap_here ("");
55333a84 1046 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1047 wrap_here ("");
1048 }
1049
c906108c
SS
1050 if (from_tty || info_verbose)
1051 {
769d7dc4
AC
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
c906108c 1054 else
55333a84 1055 printf_unfiltered (_("done.\n"));
c906108c
SS
1056 }
1057
481d0f41
JB
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
a39a16c4
MM
1063 do_cleanups (my_cleanups);
1064
109f874e 1065 if (objfile->sf == NULL)
8caee43b
PP
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
109f874e 1070
7eedccfa 1071 new_symfile_objfile (objfile, add_flags);
c906108c 1072
06d3b283 1073 observer_notify_new_objfile (objfile);
c906108c 1074
ce7d4522 1075 bfd_cache_close_all ();
c906108c
SS
1076 return (objfile);
1077}
1078
7904e09f 1079
eb4556d7
JB
1080/* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085struct objfile *
7eedccfa 1086symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1087 struct section_addr_info *addrs,
7eedccfa 1088 int flags)
eb4556d7 1089{
7eedccfa
PP
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
eb4556d7
JB
1092}
1093
1094
7904e09f
JB
1095/* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098struct objfile *
7eedccfa
PP
1099symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
7904e09f 1101{
7eedccfa
PP
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
7904e09f
JB
1104}
1105
1106
d7db6da9
FN
1107/* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
5417f6dc 1114
1adeb98a
FN
1115void
1116symbol_file_add_main (char *args, int from_tty)
1117{
d7db6da9
FN
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119}
1120
1121static void
1122symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123{
7eedccfa
PP
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1126
d7db6da9
FN
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1adeb98a
FN
1132}
1133
1134void
1135symbol_file_clear (int from_tty)
1136{
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
0430b0d6
AS
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
8a3fe4f8 1143 error (_("Not confirmed."));
1adeb98a 1144
d10c338d 1145 free_all_objfiles ();
1adeb98a 1146
d10c338d
DE
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
adb7f338 1152 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1155}
1156
77069918
JK
1157struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165static struct build_id *
1166build_id_bfd_get (bfd *abfd)
1167{
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180}
1181
1182/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184static int
1185build_id_verify (const char *filename, struct build_id *check)
1186{
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1212
1213 xfree (found);
1214
77069918
JK
1215 return retval;
1216}
1217
1218static char *
1219build_id_to_debug_filename (struct build_id *build_id)
1220{
1221 char *link, *s, *retval = NULL;
1222 gdb_byte *data = build_id->data;
1223 size_t size = build_id->size;
1224
1225 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1226 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1227 + 2 * size + (sizeof ".debug" - 1) + 1);
1228 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1229 if (size > 0)
1230 {
1231 size--;
1232 s += sprintf (s, "%02x", (unsigned) *data++);
1233 }
1234 if (size > 0)
1235 *s++ = '/';
1236 while (size-- > 0)
1237 s += sprintf (s, "%02x", (unsigned) *data++);
1238 strcpy (s, ".debug");
1239
1240 /* lrealpath() is expensive even for the usually non-existent files. */
1241 if (access (link, F_OK) == 0)
1242 retval = lrealpath (link);
1243 xfree (link);
1244
1245 if (retval != NULL && !build_id_verify (retval, build_id))
1246 {
1247 xfree (retval);
1248 retval = NULL;
1249 }
1250
1251 return retval;
1252}
1253
5b5d99cf
JB
1254static char *
1255get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1256{
1257 asection *sect;
1258 bfd_size_type debuglink_size;
1259 unsigned long crc32;
1260 char *contents;
1261 int crc_offset;
1262 unsigned char *p;
5417f6dc 1263
5b5d99cf
JB
1264 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1265
1266 if (sect == NULL)
1267 return NULL;
1268
1269 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1270
5b5d99cf
JB
1271 contents = xmalloc (debuglink_size);
1272 bfd_get_section_contents (objfile->obfd, sect, contents,
1273 (file_ptr)0, (bfd_size_type)debuglink_size);
1274
1275 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1276 crc_offset = strlen (contents) + 1;
1277 crc_offset = (crc_offset + 3) & ~3;
1278
1279 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1280
5b5d99cf
JB
1281 *crc32_out = crc32;
1282 return contents;
1283}
1284
1285static int
287ccc17
JK
1286separate_debug_file_exists (const char *name, unsigned long crc,
1287 const char *parent_name)
5b5d99cf
JB
1288{
1289 unsigned long file_crc = 0;
f1838a98 1290 bfd *abfd;
777ea8f1 1291 gdb_byte buffer[8*1024];
5b5d99cf
JB
1292 int count;
1293
f1838a98
UW
1294 if (remote_filename_p (name))
1295 abfd = remote_bfd_open (name, gnutarget);
1296 else
1297 abfd = bfd_openr (name, gnutarget);
1298
1299 if (!abfd)
5b5d99cf
JB
1300 return 0;
1301
f1838a98 1302 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1303 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1304
f1838a98 1305 bfd_close (abfd);
5b5d99cf 1306
287ccc17
JK
1307 if (crc != file_crc)
1308 {
1309 warning (_("the debug information found in \"%s\""
1310 " does not match \"%s\" (CRC mismatch).\n"),
1311 name, parent_name);
1312 return 0;
1313 }
1314
1315 return 1;
5b5d99cf
JB
1316}
1317
aa28a74e 1318char *debug_file_directory = NULL;
920d2a44
AC
1319static void
1320show_debug_file_directory (struct ui_file *file, int from_tty,
1321 struct cmd_list_element *c, const char *value)
1322{
1323 fprintf_filtered (file, _("\
1324The directory where separate debug symbols are searched for is \"%s\".\n"),
1325 value);
1326}
5b5d99cf
JB
1327
1328#if ! defined (DEBUG_SUBDIRECTORY)
1329#define DEBUG_SUBDIRECTORY ".debug"
1330#endif
1331
1332static char *
1333find_separate_debug_file (struct objfile *objfile)
1334{
1335 asection *sect;
1336 char *basename;
1337 char *dir;
1338 char *debugfile;
1339 char *name_copy;
aa28a74e 1340 char *canon_name;
5b5d99cf
JB
1341 bfd_size_type debuglink_size;
1342 unsigned long crc32;
1343 int i;
77069918
JK
1344 struct build_id *build_id;
1345
1346 build_id = build_id_bfd_get (objfile->obfd);
1347 if (build_id != NULL)
1348 {
1349 char *build_id_name;
1350
1351 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1352 xfree (build_id);
77069918
JK
1353 /* Prevent looping on a stripped .debug file. */
1354 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1355 {
1356 warning (_("\"%s\": separate debug info file has no debug info"),
1357 build_id_name);
1358 xfree (build_id_name);
1359 }
1360 else if (build_id_name != NULL)
1361 return build_id_name;
1362 }
5b5d99cf
JB
1363
1364 basename = get_debug_link_info (objfile, &crc32);
1365
1366 if (basename == NULL)
287ccc17
JK
1367 /* There's no separate debug info, hence there's no way we could
1368 load it => no warning. */
5b5d99cf 1369 return NULL;
5417f6dc 1370
5b5d99cf
JB
1371 dir = xstrdup (objfile->name);
1372
fe36c4f4
JB
1373 /* Strip off the final filename part, leaving the directory name,
1374 followed by a slash. Objfile names should always be absolute and
1375 tilde-expanded, so there should always be a slash in there
1376 somewhere. */
5b5d99cf
JB
1377 for (i = strlen(dir) - 1; i >= 0; i--)
1378 {
1379 if (IS_DIR_SEPARATOR (dir[i]))
1380 break;
1381 }
fe36c4f4 1382 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1383 dir[i+1] = '\0';
5417f6dc 1384
1ffa32ee
JK
1385 /* Set I to max (strlen (canon_name), strlen (dir)). */
1386 canon_name = lrealpath (dir);
1387 i = strlen (dir);
1388 if (canon_name && strlen (canon_name) > i)
1389 i = strlen (canon_name);
1390
5b5d99cf 1391 debugfile = alloca (strlen (debug_file_directory) + 1
1ffa32ee 1392 + i
5b5d99cf
JB
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
5417f6dc 1395 + strlen (basename)
5b5d99cf
JB
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
287ccc17 1402 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
5b5d99cf
JB
1403 {
1404 xfree (basename);
1405 xfree (dir);
1ffa32ee 1406 xfree (canon_name);
5b5d99cf
JB
1407 return xstrdup (debugfile);
1408 }
5417f6dc 1409
5b5d99cf
JB
1410 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1411 strcpy (debugfile, dir);
1412 strcat (debugfile, DEBUG_SUBDIRECTORY);
1413 strcat (debugfile, "/");
1414 strcat (debugfile, basename);
1415
287ccc17 1416 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
5b5d99cf
JB
1417 {
1418 xfree (basename);
1419 xfree (dir);
1ffa32ee 1420 xfree (canon_name);
5b5d99cf
JB
1421 return xstrdup (debugfile);
1422 }
5417f6dc 1423
5b5d99cf
JB
1424 /* Then try in the global debugfile directory. */
1425 strcpy (debugfile, debug_file_directory);
1426 strcat (debugfile, "/");
1427 strcat (debugfile, dir);
5b5d99cf
JB
1428 strcat (debugfile, basename);
1429
287ccc17 1430 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
5b5d99cf
JB
1431 {
1432 xfree (basename);
1433 xfree (dir);
1ffa32ee 1434 xfree (canon_name);
5b5d99cf
JB
1435 return xstrdup (debugfile);
1436 }
5417f6dc 1437
aa28a74e
DJ
1438 /* If the file is in the sysroot, try using its base path in the
1439 global debugfile directory. */
aa28a74e
DJ
1440 if (canon_name
1441 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1442 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1443 {
1444 strcpy (debugfile, debug_file_directory);
1445 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1446 strcat (debugfile, "/");
1447 strcat (debugfile, basename);
1448
287ccc17 1449 if (separate_debug_file_exists (debugfile, crc32, objfile->name))
aa28a74e
DJ
1450 {
1451 xfree (canon_name);
1452 xfree (basename);
1453 xfree (dir);
1454 return xstrdup (debugfile);
1455 }
1456 }
1457
1458 if (canon_name)
1459 xfree (canon_name);
1460
5b5d99cf
JB
1461 xfree (basename);
1462 xfree (dir);
1463 return NULL;
1464}
1465
1466
c906108c
SS
1467/* This is the symbol-file command. Read the file, analyze its
1468 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1469 the command is rather bizarre:
1470
1471 1. The function buildargv implements various quoting conventions
1472 which are undocumented and have little or nothing in common with
1473 the way things are quoted (or not quoted) elsewhere in GDB.
1474
1475 2. Options are used, which are not generally used in GDB (perhaps
1476 "set mapped on", "set readnow on" would be better)
1477
1478 3. The order of options matters, which is contrary to GNU
c906108c
SS
1479 conventions (because it is confusing and inconvenient). */
1480
1481void
fba45db2 1482symbol_file_command (char *args, int from_tty)
c906108c 1483{
c906108c
SS
1484 dont_repeat ();
1485
1486 if (args == NULL)
1487 {
1adeb98a 1488 symbol_file_clear (from_tty);
c906108c
SS
1489 }
1490 else
1491 {
d1a41061 1492 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1493 int flags = OBJF_USERLOADED;
1494 struct cleanup *cleanups;
1495 char *name = NULL;
1496
7a292a7a 1497 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1498 while (*argv != NULL)
1499 {
78a4a9b9
AC
1500 if (strcmp (*argv, "-readnow") == 0)
1501 flags |= OBJF_READNOW;
1502 else if (**argv == '-')
8a3fe4f8 1503 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1504 else
1505 {
cb2f3a29 1506 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1507 name = *argv;
78a4a9b9 1508 }
cb2f3a29 1509
c906108c
SS
1510 argv++;
1511 }
1512
1513 if (name == NULL)
cb2f3a29
MK
1514 error (_("no symbol file name was specified"));
1515
c906108c
SS
1516 do_cleanups (cleanups);
1517 }
1518}
1519
1520/* Set the initial language.
1521
cb2f3a29
MK
1522 FIXME: A better solution would be to record the language in the
1523 psymtab when reading partial symbols, and then use it (if known) to
1524 set the language. This would be a win for formats that encode the
1525 language in an easily discoverable place, such as DWARF. For
1526 stabs, we can jump through hoops looking for specially named
1527 symbols or try to intuit the language from the specific type of
1528 stabs we find, but we can't do that until later when we read in
1529 full symbols. */
c906108c 1530
8b60591b 1531void
fba45db2 1532set_initial_language (void)
c906108c
SS
1533{
1534 struct partial_symtab *pst;
c5aa993b 1535 enum language lang = language_unknown;
c906108c
SS
1536
1537 pst = find_main_psymtab ();
1538 if (pst != NULL)
1539 {
c5aa993b 1540 if (pst->filename != NULL)
cb2f3a29
MK
1541 lang = deduce_language_from_filename (pst->filename);
1542
c906108c
SS
1543 if (lang == language_unknown)
1544 {
c5aa993b
JM
1545 /* Make C the default language */
1546 lang = language_c;
c906108c 1547 }
cb2f3a29 1548
c906108c 1549 set_language (lang);
cb2f3a29 1550 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1551 }
1552}
1553
cb2f3a29
MK
1554/* Open the file specified by NAME and hand it off to BFD for
1555 preliminary analysis. Return a newly initialized bfd *, which
1556 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1557 absolute). In case of trouble, error() is called. */
c906108c
SS
1558
1559bfd *
fba45db2 1560symfile_bfd_open (char *name)
c906108c
SS
1561{
1562 bfd *sym_bfd;
1563 int desc;
1564 char *absolute_name;
1565
f1838a98
UW
1566 if (remote_filename_p (name))
1567 {
1568 name = xstrdup (name);
1569 sym_bfd = remote_bfd_open (name, gnutarget);
1570 if (!sym_bfd)
1571 {
1572 make_cleanup (xfree, name);
1573 error (_("`%s': can't open to read symbols: %s."), name,
1574 bfd_errmsg (bfd_get_error ()));
1575 }
1576
1577 if (!bfd_check_format (sym_bfd, bfd_object))
1578 {
1579 bfd_close (sym_bfd);
1580 make_cleanup (xfree, name);
1581 error (_("`%s': can't read symbols: %s."), name,
1582 bfd_errmsg (bfd_get_error ()));
1583 }
1584
1585 return sym_bfd;
1586 }
1587
cb2f3a29 1588 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1589
1590 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1591 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1592 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1593#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1594 if (desc < 0)
1595 {
1596 char *exename = alloca (strlen (name) + 5);
1597 strcat (strcpy (exename, name), ".exe");
014d698b 1598 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1599 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1600 }
1601#endif
1602 if (desc < 0)
1603 {
b8c9b27d 1604 make_cleanup (xfree, name);
c906108c
SS
1605 perror_with_name (name);
1606 }
cb2f3a29
MK
1607
1608 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1609 bfd. It'll be freed in free_objfile(). */
1610 xfree (name);
1611 name = absolute_name;
c906108c 1612
9f76c2cd 1613 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1614 if (!sym_bfd)
1615 {
1616 close (desc);
b8c9b27d 1617 make_cleanup (xfree, name);
f1838a98 1618 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1619 bfd_errmsg (bfd_get_error ()));
1620 }
549c1eea 1621 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1622
1623 if (!bfd_check_format (sym_bfd, bfd_object))
1624 {
cb2f3a29
MK
1625 /* FIXME: should be checking for errors from bfd_close (for one
1626 thing, on error it does not free all the storage associated
1627 with the bfd). */
1628 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1629 make_cleanup (xfree, name);
f1838a98 1630 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1631 bfd_errmsg (bfd_get_error ()));
1632 }
cb2f3a29 1633
4f6f9936
JK
1634 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1635 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1636
cb2f3a29 1637 return sym_bfd;
c906108c
SS
1638}
1639
cb2f3a29
MK
1640/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1641 the section was not found. */
1642
0e931cf0
JB
1643int
1644get_section_index (struct objfile *objfile, char *section_name)
1645{
1646 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1647
0e931cf0
JB
1648 if (sect)
1649 return sect->index;
1650 else
1651 return -1;
1652}
1653
cb2f3a29
MK
1654/* Link SF into the global symtab_fns list. Called on startup by the
1655 _initialize routine in each object file format reader, to register
1656 information about each format the the reader is prepared to
1657 handle. */
c906108c
SS
1658
1659void
fba45db2 1660add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1661{
1662 sf->next = symtab_fns;
1663 symtab_fns = sf;
1664}
1665
cb2f3a29
MK
1666/* Initialize OBJFILE to read symbols from its associated BFD. It
1667 either returns or calls error(). The result is an initialized
1668 struct sym_fns in the objfile structure, that contains cached
1669 information about the symbol file. */
c906108c 1670
31d99776
DJ
1671static struct sym_fns *
1672find_sym_fns (bfd *abfd)
c906108c
SS
1673{
1674 struct sym_fns *sf;
31d99776 1675 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1676
75245b24
MS
1677 if (our_flavour == bfd_target_srec_flavour
1678 || our_flavour == bfd_target_ihex_flavour
1679 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1680 return NULL; /* No symbols. */
75245b24 1681
c5aa993b 1682 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1683 if (our_flavour == sf->sym_flavour)
1684 return sf;
cb2f3a29 1685
8a3fe4f8 1686 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1687 bfd_get_target (abfd));
c906108c
SS
1688}
1689\f
cb2f3a29 1690
c906108c
SS
1691/* This function runs the load command of our current target. */
1692
1693static void
fba45db2 1694load_command (char *arg, int from_tty)
c906108c 1695{
4487aabf
PA
1696 /* The user might be reloading because the binary has changed. Take
1697 this opportunity to check. */
1698 reopen_exec_file ();
1699 reread_symbols ();
1700
c906108c 1701 if (arg == NULL)
1986bccd
AS
1702 {
1703 char *parg;
1704 int count = 0;
1705
1706 parg = arg = get_exec_file (1);
1707
1708 /* Count how many \ " ' tab space there are in the name. */
1709 while ((parg = strpbrk (parg, "\\\"'\t ")))
1710 {
1711 parg++;
1712 count++;
1713 }
1714
1715 if (count)
1716 {
1717 /* We need to quote this string so buildargv can pull it apart. */
1718 char *temp = xmalloc (strlen (arg) + count + 1 );
1719 char *ptemp = temp;
1720 char *prev;
1721
1722 make_cleanup (xfree, temp);
1723
1724 prev = parg = arg;
1725 while ((parg = strpbrk (parg, "\\\"'\t ")))
1726 {
1727 strncpy (ptemp, prev, parg - prev);
1728 ptemp += parg - prev;
1729 prev = parg++;
1730 *ptemp++ = '\\';
1731 }
1732 strcpy (ptemp, prev);
1733
1734 arg = temp;
1735 }
1736 }
1737
c906108c 1738 target_load (arg, from_tty);
2889e661
JB
1739
1740 /* After re-loading the executable, we don't really know which
1741 overlays are mapped any more. */
1742 overlay_cache_invalid = 1;
c906108c
SS
1743}
1744
1745/* This version of "load" should be usable for any target. Currently
1746 it is just used for remote targets, not inftarg.c or core files,
1747 on the theory that only in that case is it useful.
1748
1749 Avoiding xmodem and the like seems like a win (a) because we don't have
1750 to worry about finding it, and (b) On VMS, fork() is very slow and so
1751 we don't want to run a subprocess. On the other hand, I'm not sure how
1752 performance compares. */
917317f4 1753
917317f4
JM
1754static int validate_download = 0;
1755
e4f9b4d5
MS
1756/* Callback service function for generic_load (bfd_map_over_sections). */
1757
1758static void
1759add_section_size_callback (bfd *abfd, asection *asec, void *data)
1760{
1761 bfd_size_type *sum = data;
1762
2c500098 1763 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1764}
1765
1766/* Opaque data for load_section_callback. */
1767struct load_section_data {
1768 unsigned long load_offset;
a76d924d
DJ
1769 struct load_progress_data *progress_data;
1770 VEC(memory_write_request_s) *requests;
1771};
1772
1773/* Opaque data for load_progress. */
1774struct load_progress_data {
1775 /* Cumulative data. */
e4f9b4d5
MS
1776 unsigned long write_count;
1777 unsigned long data_count;
1778 bfd_size_type total_size;
a76d924d
DJ
1779};
1780
1781/* Opaque data for load_progress for a single section. */
1782struct load_progress_section_data {
1783 struct load_progress_data *cumulative;
cf7a04e8 1784
a76d924d 1785 /* Per-section data. */
cf7a04e8
DJ
1786 const char *section_name;
1787 ULONGEST section_sent;
1788 ULONGEST section_size;
1789 CORE_ADDR lma;
1790 gdb_byte *buffer;
e4f9b4d5
MS
1791};
1792
a76d924d 1793/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1794
1795static void
1796load_progress (ULONGEST bytes, void *untyped_arg)
1797{
a76d924d
DJ
1798 struct load_progress_section_data *args = untyped_arg;
1799 struct load_progress_data *totals;
1800
1801 if (args == NULL)
1802 /* Writing padding data. No easy way to get at the cumulative
1803 stats, so just ignore this. */
1804 return;
1805
1806 totals = args->cumulative;
1807
1808 if (bytes == 0 && args->section_sent == 0)
1809 {
1810 /* The write is just starting. Let the user know we've started
1811 this section. */
5af949e3
UW
1812 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1813 args->section_name, hex_string (args->section_size),
1814 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1815 return;
1816 }
cf7a04e8
DJ
1817
1818 if (validate_download)
1819 {
1820 /* Broken memories and broken monitors manifest themselves here
1821 when bring new computers to life. This doubles already slow
1822 downloads. */
1823 /* NOTE: cagney/1999-10-18: A more efficient implementation
1824 might add a verify_memory() method to the target vector and
1825 then use that. remote.c could implement that method using
1826 the ``qCRC'' packet. */
1827 gdb_byte *check = xmalloc (bytes);
1828 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1829
1830 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1831 error (_("Download verify read failed at %s"),
1832 paddress (target_gdbarch, args->lma));
cf7a04e8 1833 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1834 error (_("Download verify compare failed at %s"),
1835 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1836 do_cleanups (verify_cleanups);
1837 }
a76d924d 1838 totals->data_count += bytes;
cf7a04e8
DJ
1839 args->lma += bytes;
1840 args->buffer += bytes;
a76d924d 1841 totals->write_count += 1;
cf7a04e8
DJ
1842 args->section_sent += bytes;
1843 if (quit_flag
1844 || (deprecated_ui_load_progress_hook != NULL
1845 && deprecated_ui_load_progress_hook (args->section_name,
1846 args->section_sent)))
1847 error (_("Canceled the download"));
1848
1849 if (deprecated_show_load_progress != NULL)
1850 deprecated_show_load_progress (args->section_name,
1851 args->section_sent,
1852 args->section_size,
a76d924d
DJ
1853 totals->data_count,
1854 totals->total_size);
cf7a04e8
DJ
1855}
1856
e4f9b4d5
MS
1857/* Callback service function for generic_load (bfd_map_over_sections). */
1858
1859static void
1860load_section_callback (bfd *abfd, asection *asec, void *data)
1861{
a76d924d 1862 struct memory_write_request *new_request;
e4f9b4d5 1863 struct load_section_data *args = data;
a76d924d 1864 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1865 bfd_size_type size = bfd_get_section_size (asec);
1866 gdb_byte *buffer;
cf7a04e8 1867 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1868
cf7a04e8
DJ
1869 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1870 return;
e4f9b4d5 1871
cf7a04e8
DJ
1872 if (size == 0)
1873 return;
e4f9b4d5 1874
a76d924d
DJ
1875 new_request = VEC_safe_push (memory_write_request_s,
1876 args->requests, NULL);
1877 memset (new_request, 0, sizeof (struct memory_write_request));
1878 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1879 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1880 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1881 new_request->data = xmalloc (size);
1882 new_request->baton = section_data;
cf7a04e8 1883
a76d924d 1884 buffer = new_request->data;
cf7a04e8 1885
a76d924d
DJ
1886 section_data->cumulative = args->progress_data;
1887 section_data->section_name = sect_name;
1888 section_data->section_size = size;
1889 section_data->lma = new_request->begin;
1890 section_data->buffer = buffer;
cf7a04e8
DJ
1891
1892 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1893}
1894
1895/* Clean up an entire memory request vector, including load
1896 data and progress records. */
cf7a04e8 1897
a76d924d
DJ
1898static void
1899clear_memory_write_data (void *arg)
1900{
1901 VEC(memory_write_request_s) **vec_p = arg;
1902 VEC(memory_write_request_s) *vec = *vec_p;
1903 int i;
1904 struct memory_write_request *mr;
cf7a04e8 1905
a76d924d
DJ
1906 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1907 {
1908 xfree (mr->data);
1909 xfree (mr->baton);
1910 }
1911 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1912}
1913
c906108c 1914void
917317f4 1915generic_load (char *args, int from_tty)
c906108c 1916{
c906108c 1917 bfd *loadfile_bfd;
2b71414d 1918 struct timeval start_time, end_time;
917317f4 1919 char *filename;
1986bccd 1920 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1921 struct load_section_data cbdata;
a76d924d
DJ
1922 struct load_progress_data total_progress;
1923
e4f9b4d5 1924 CORE_ADDR entry;
1986bccd 1925 char **argv;
e4f9b4d5 1926
a76d924d
DJ
1927 memset (&cbdata, 0, sizeof (cbdata));
1928 memset (&total_progress, 0, sizeof (total_progress));
1929 cbdata.progress_data = &total_progress;
1930
1931 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1932
d1a41061
PP
1933 if (args == NULL)
1934 error_no_arg (_("file to load"));
1986bccd 1935
d1a41061 1936 argv = gdb_buildargv (args);
1986bccd
AS
1937 make_cleanup_freeargv (argv);
1938
1939 filename = tilde_expand (argv[0]);
1940 make_cleanup (xfree, filename);
1941
1942 if (argv[1] != NULL)
917317f4
JM
1943 {
1944 char *endptr;
ba5f2f8a 1945
1986bccd
AS
1946 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1947
1948 /* If the last word was not a valid number then
1949 treat it as a file name with spaces in. */
1950 if (argv[1] == endptr)
1951 error (_("Invalid download offset:%s."), argv[1]);
1952
1953 if (argv[2] != NULL)
1954 error (_("Too many parameters."));
917317f4 1955 }
c906108c 1956
917317f4 1957 /* Open the file for loading. */
c906108c
SS
1958 loadfile_bfd = bfd_openr (filename, gnutarget);
1959 if (loadfile_bfd == NULL)
1960 {
1961 perror_with_name (filename);
1962 return;
1963 }
917317f4 1964
c906108c
SS
1965 /* FIXME: should be checking for errors from bfd_close (for one thing,
1966 on error it does not free all the storage associated with the
1967 bfd). */
5c65bbb6 1968 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1969
c5aa993b 1970 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1971 {
8a3fe4f8 1972 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1973 bfd_errmsg (bfd_get_error ()));
1974 }
c5aa993b 1975
5417f6dc 1976 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1977 (void *) &total_progress.total_size);
1978
1979 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1980
2b71414d 1981 gettimeofday (&start_time, NULL);
c906108c 1982
a76d924d
DJ
1983 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1984 load_progress) != 0)
1985 error (_("Load failed"));
c906108c 1986
2b71414d 1987 gettimeofday (&end_time, NULL);
ba5f2f8a 1988
e4f9b4d5 1989 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1990 ui_out_text (uiout, "Start address ");
5af949e3 1991 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1992 ui_out_text (uiout, ", load size ");
a76d924d 1993 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1994 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1995 /* We were doing this in remote-mips.c, I suspect it is right
1996 for other targets too. */
fb14de7b 1997 regcache_write_pc (get_current_regcache (), entry);
c906108c 1998
7ca9f392
AC
1999 /* FIXME: are we supposed to call symbol_file_add or not? According
2000 to a comment from remote-mips.c (where a call to symbol_file_add
2001 was commented out), making the call confuses GDB if more than one
2002 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2003 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2004
a76d924d
DJ
2005 print_transfer_performance (gdb_stdout, total_progress.data_count,
2006 total_progress.write_count,
2007 &start_time, &end_time);
c906108c
SS
2008
2009 do_cleanups (old_cleanups);
2010}
2011
2012/* Report how fast the transfer went. */
2013
917317f4
JM
2014/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2015 replaced by print_transfer_performance (with a very different
2016 function signature). */
2017
c906108c 2018void
fba45db2
KB
2019report_transfer_performance (unsigned long data_count, time_t start_time,
2020 time_t end_time)
c906108c 2021{
2b71414d
DJ
2022 struct timeval start, end;
2023
2024 start.tv_sec = start_time;
2025 start.tv_usec = 0;
2026 end.tv_sec = end_time;
2027 end.tv_usec = 0;
2028
2029 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2030}
2031
2032void
d9fcf2fb 2033print_transfer_performance (struct ui_file *stream,
917317f4
JM
2034 unsigned long data_count,
2035 unsigned long write_count,
2b71414d
DJ
2036 const struct timeval *start_time,
2037 const struct timeval *end_time)
917317f4 2038{
9f43d28c 2039 ULONGEST time_count;
2b71414d
DJ
2040
2041 /* Compute the elapsed time in milliseconds, as a tradeoff between
2042 accuracy and overflow. */
2043 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2044 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2045
8b93c638
JM
2046 ui_out_text (uiout, "Transfer rate: ");
2047 if (time_count > 0)
2048 {
9f43d28c
DJ
2049 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2050
2051 if (ui_out_is_mi_like_p (uiout))
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2054 ui_out_text (uiout, " bits/sec");
2055 }
2056 else if (rate < 1024)
2057 {
2058 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2059 ui_out_text (uiout, " bytes/sec");
2060 }
2061 else
2062 {
2063 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2064 ui_out_text (uiout, " KB/sec");
2065 }
8b93c638
JM
2066 }
2067 else
2068 {
ba5f2f8a 2069 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2070 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2071 }
2072 if (write_count > 0)
2073 {
2074 ui_out_text (uiout, ", ");
ba5f2f8a 2075 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2076 ui_out_text (uiout, " bytes/write");
2077 }
2078 ui_out_text (uiout, ".\n");
c906108c
SS
2079}
2080
2081/* This function allows the addition of incrementally linked object files.
2082 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2083/* Note: ezannoni 2000-04-13 This function/command used to have a
2084 special case syntax for the rombug target (Rombug is the boot
2085 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2086 rombug case, the user doesn't need to supply a text address,
2087 instead a call to target_link() (in target.c) would supply the
2088 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2089
c906108c 2090static void
fba45db2 2091add_symbol_file_command (char *args, int from_tty)
c906108c 2092{
5af949e3 2093 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2094 char *filename = NULL;
2df3850c 2095 int flags = OBJF_USERLOADED;
c906108c 2096 char *arg;
2acceee2 2097 int expecting_option = 0;
db162d44 2098 int section_index = 0;
2acceee2
JM
2099 int argcnt = 0;
2100 int sec_num = 0;
2101 int i;
db162d44
EZ
2102 int expecting_sec_name = 0;
2103 int expecting_sec_addr = 0;
5b96932b 2104 char **argv;
db162d44 2105
a39a16c4 2106 struct sect_opt
2acceee2 2107 {
2acceee2
JM
2108 char *name;
2109 char *value;
a39a16c4 2110 };
db162d44 2111
a39a16c4
MM
2112 struct section_addr_info *section_addrs;
2113 struct sect_opt *sect_opts = NULL;
2114 size_t num_sect_opts = 0;
3017564a 2115 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2116
a39a16c4 2117 num_sect_opts = 16;
5417f6dc 2118 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2119 * sizeof (struct sect_opt));
2120
c906108c
SS
2121 dont_repeat ();
2122
2123 if (args == NULL)
8a3fe4f8 2124 error (_("add-symbol-file takes a file name and an address"));
c906108c 2125
d1a41061 2126 argv = gdb_buildargv (args);
5b96932b 2127 make_cleanup_freeargv (argv);
db162d44 2128
5b96932b
AS
2129 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2130 {
2131 /* Process the argument. */
db162d44 2132 if (argcnt == 0)
c906108c 2133 {
db162d44
EZ
2134 /* The first argument is the file name. */
2135 filename = tilde_expand (arg);
3017564a 2136 make_cleanup (xfree, filename);
c906108c 2137 }
db162d44 2138 else
7a78ae4e
ND
2139 if (argcnt == 1)
2140 {
2141 /* The second argument is always the text address at which
2142 to load the program. */
2143 sect_opts[section_index].name = ".text";
2144 sect_opts[section_index].value = arg;
f414f22f 2145 if (++section_index >= num_sect_opts)
a39a16c4
MM
2146 {
2147 num_sect_opts *= 2;
5417f6dc 2148 sect_opts = ((struct sect_opt *)
a39a16c4 2149 xrealloc (sect_opts,
5417f6dc 2150 num_sect_opts
a39a16c4
MM
2151 * sizeof (struct sect_opt)));
2152 }
7a78ae4e
ND
2153 }
2154 else
2155 {
2156 /* It's an option (starting with '-') or it's an argument
2157 to an option */
2158
2159 if (*arg == '-')
2160 {
78a4a9b9
AC
2161 if (strcmp (arg, "-readnow") == 0)
2162 flags |= OBJF_READNOW;
2163 else if (strcmp (arg, "-s") == 0)
2164 {
2165 expecting_sec_name = 1;
2166 expecting_sec_addr = 1;
2167 }
7a78ae4e
ND
2168 }
2169 else
2170 {
2171 if (expecting_sec_name)
db162d44 2172 {
7a78ae4e
ND
2173 sect_opts[section_index].name = arg;
2174 expecting_sec_name = 0;
db162d44
EZ
2175 }
2176 else
7a78ae4e
ND
2177 if (expecting_sec_addr)
2178 {
2179 sect_opts[section_index].value = arg;
2180 expecting_sec_addr = 0;
f414f22f 2181 if (++section_index >= num_sect_opts)
a39a16c4
MM
2182 {
2183 num_sect_opts *= 2;
5417f6dc 2184 sect_opts = ((struct sect_opt *)
a39a16c4 2185 xrealloc (sect_opts,
5417f6dc 2186 num_sect_opts
a39a16c4
MM
2187 * sizeof (struct sect_opt)));
2188 }
7a78ae4e
ND
2189 }
2190 else
8a3fe4f8 2191 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2192 }
2193 }
c906108c 2194 }
c906108c 2195
927890d0
JB
2196 /* This command takes at least two arguments. The first one is a
2197 filename, and the second is the address where this file has been
2198 loaded. Abort now if this address hasn't been provided by the
2199 user. */
2200 if (section_index < 1)
2201 error (_("The address where %s has been loaded is missing"), filename);
2202
db162d44
EZ
2203 /* Print the prompt for the query below. And save the arguments into
2204 a sect_addr_info structure to be passed around to other
2205 functions. We have to split this up into separate print
bb599908 2206 statements because hex_string returns a local static
db162d44 2207 string. */
5417f6dc 2208
a3f17187 2209 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2210 section_addrs = alloc_section_addr_info (section_index);
2211 make_cleanup (xfree, section_addrs);
db162d44 2212 for (i = 0; i < section_index; i++)
c906108c 2213 {
db162d44
EZ
2214 CORE_ADDR addr;
2215 char *val = sect_opts[i].value;
2216 char *sec = sect_opts[i].name;
5417f6dc 2217
ae822768 2218 addr = parse_and_eval_address (val);
db162d44 2219
db162d44
EZ
2220 /* Here we store the section offsets in the order they were
2221 entered on the command line. */
a39a16c4
MM
2222 section_addrs->other[sec_num].name = sec;
2223 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2224 printf_unfiltered ("\t%s_addr = %s\n", sec,
2225 paddress (gdbarch, addr));
db162d44
EZ
2226 sec_num++;
2227
5417f6dc 2228 /* The object's sections are initialized when a
db162d44 2229 call is made to build_objfile_section_table (objfile).
5417f6dc 2230 This happens in reread_symbols.
db162d44
EZ
2231 At this point, we don't know what file type this is,
2232 so we can't determine what section names are valid. */
2acceee2 2233 }
db162d44 2234
2acceee2 2235 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2236 error (_("Not confirmed."));
c906108c 2237
7eedccfa
PP
2238 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2239 section_addrs, flags);
c906108c
SS
2240
2241 /* Getting new symbols may change our opinion about what is
2242 frameless. */
2243 reinit_frame_cache ();
db162d44 2244 do_cleanups (my_cleanups);
c906108c
SS
2245}
2246\f
70992597 2247
c906108c
SS
2248/* Re-read symbols if a symbol-file has changed. */
2249void
fba45db2 2250reread_symbols (void)
c906108c
SS
2251{
2252 struct objfile *objfile;
2253 long new_modtime;
2254 int reread_one = 0;
2255 struct stat new_statbuf;
2256 int res;
2257
2258 /* With the addition of shared libraries, this should be modified,
2259 the load time should be saved in the partial symbol tables, since
2260 different tables may come from different source files. FIXME.
2261 This routine should then walk down each partial symbol table
2262 and see if the symbol table that it originates from has been changed */
2263
c5aa993b
JM
2264 for (objfile = object_files; objfile; objfile = objfile->next)
2265 {
2266 if (objfile->obfd)
2267 {
52d16ba8 2268#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2269 /* If this object is from a shared library, then you should
2270 stat on the library name, not member name. */
c906108c 2271
c5aa993b
JM
2272 if (objfile->obfd->my_archive)
2273 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2274 else
c906108c 2275#endif
c5aa993b
JM
2276 res = stat (objfile->name, &new_statbuf);
2277 if (res != 0)
c906108c 2278 {
c5aa993b 2279 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2280 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2281 objfile->name);
2282 continue;
c906108c 2283 }
c5aa993b
JM
2284 new_modtime = new_statbuf.st_mtime;
2285 if (new_modtime != objfile->mtime)
c906108c 2286 {
c5aa993b
JM
2287 struct cleanup *old_cleanups;
2288 struct section_offsets *offsets;
2289 int num_offsets;
c5aa993b
JM
2290 char *obfd_filename;
2291
a3f17187 2292 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2293 objfile->name);
2294
2295 /* There are various functions like symbol_file_add,
2296 symfile_bfd_open, syms_from_objfile, etc., which might
2297 appear to do what we want. But they have various other
2298 effects which we *don't* want. So we just do stuff
2299 ourselves. We don't worry about mapped files (for one thing,
2300 any mapped file will be out of date). */
2301
2302 /* If we get an error, blow away this objfile (not sure if
2303 that is the correct response for things like shared
2304 libraries). */
74b7792f 2305 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2306 /* We need to do this whenever any symbols go away. */
74b7792f 2307 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2308
b2de52bb
JK
2309 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2310 bfd_get_filename (exec_bfd)) == 0)
2311 {
2312 /* Reload EXEC_BFD without asking anything. */
2313
2314 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2315 }
2316
c5aa993b
JM
2317 /* Clean up any state BFD has sitting around. We don't need
2318 to close the descriptor but BFD lacks a way of closing the
2319 BFD without closing the descriptor. */
2320 obfd_filename = bfd_get_filename (objfile->obfd);
2321 if (!bfd_close (objfile->obfd))
8a3fe4f8 2322 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2323 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2324 if (remote_filename_p (obfd_filename))
2325 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2326 else
2327 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2328 if (objfile->obfd == NULL)
8a3fe4f8 2329 error (_("Can't open %s to read symbols."), objfile->name);
3db741ef
PP
2330 else
2331 objfile->obfd = gdb_bfd_ref (objfile->obfd);
c5aa993b
JM
2332 /* bfd_openr sets cacheable to true, which is what we want. */
2333 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2334 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2335 bfd_errmsg (bfd_get_error ()));
2336
2337 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2338 objfile_obstack. */
c5aa993b 2339 num_offsets = objfile->num_sections;
5417f6dc 2340 offsets = ((struct section_offsets *)
a39a16c4 2341 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2342 memcpy (offsets, objfile->section_offsets,
a39a16c4 2343 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2344
ae5a43e0
DJ
2345 /* Remove any references to this objfile in the global
2346 value lists. */
2347 preserve_values (objfile);
2348
c5aa993b
JM
2349 /* Nuke all the state that we will re-read. Much of the following
2350 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2351 other parts of GDB that there is nothing currently there.
2352
2353 Try to keep the freeing order compatible with free_objfile. */
2354
2355 if (objfile->sf != NULL)
2356 {
2357 (*objfile->sf->sym_finish) (objfile);
2358 }
2359
2360 clear_objfile_data (objfile);
c5aa993b
JM
2361
2362 /* FIXME: Do we have to free a whole linked list, or is this
2363 enough? */
2364 if (objfile->global_psymbols.list)
2dc74dc1 2365 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2366 memset (&objfile->global_psymbols, 0,
2367 sizeof (objfile->global_psymbols));
2368 if (objfile->static_psymbols.list)
2dc74dc1 2369 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2370 memset (&objfile->static_psymbols, 0,
2371 sizeof (objfile->static_psymbols));
2372
2373 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2374 bcache_xfree (objfile->psymbol_cache);
2375 objfile->psymbol_cache = bcache_xmalloc ();
2376 bcache_xfree (objfile->macro_cache);
2377 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2378 if (objfile->demangled_names_hash != NULL)
2379 {
2380 htab_delete (objfile->demangled_names_hash);
2381 objfile->demangled_names_hash = NULL;
2382 }
b99607ea 2383 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2384 objfile->sections = NULL;
2385 objfile->symtabs = NULL;
2386 objfile->psymtabs = NULL;
930123b7 2387 objfile->psymtabs_addrmap = NULL;
c5aa993b 2388 objfile->free_psymtabs = NULL;
a1b8c067 2389 objfile->cp_namespace_symtab = NULL;
c5aa993b 2390 objfile->msymbols = NULL;
0a6ddd08 2391 objfile->deprecated_sym_private = NULL;
c5aa993b 2392 objfile->minimal_symbol_count = 0;
0a83117a
MS
2393 memset (&objfile->msymbol_hash, 0,
2394 sizeof (objfile->msymbol_hash));
2395 memset (&objfile->msymbol_demangled_hash, 0,
2396 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2397
af5f3db6
AC
2398 objfile->psymbol_cache = bcache_xmalloc ();
2399 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2400 /* obstack_init also initializes the obstack so it is
2401 empty. We could use obstack_specify_allocation but
2402 gdb_obstack.h specifies the alloc/dealloc
2403 functions. */
2404 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2405 if (build_objfile_section_table (objfile))
2406 {
8a3fe4f8 2407 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2408 objfile->name, bfd_errmsg (bfd_get_error ()));
2409 }
15831452 2410 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2411
2412 /* We use the same section offsets as from last time. I'm not
2413 sure whether that is always correct for shared libraries. */
2414 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2415 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2416 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2417 memcpy (objfile->section_offsets, offsets,
a39a16c4 2418 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2419 objfile->num_sections = num_offsets;
2420
2421 /* What the hell is sym_new_init for, anyway? The concept of
2422 distinguishing between the main file and additional files
2423 in this way seems rather dubious. */
2424 if (objfile == symfile_objfile)
2425 {
2426 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2427 }
2428
2429 (*objfile->sf->sym_init) (objfile);
b9caf505 2430 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2431 /* The "mainline" parameter is a hideous hack; I think leaving it
2432 zero is OK since dbxread.c also does what it needs to do if
2433 objfile->global_psymbols.size is 0. */
96baa820 2434 (*objfile->sf->sym_read) (objfile, 0);
e361b228 2435 if (!objfile_has_symbols (objfile))
c5aa993b
JM
2436 {
2437 wrap_here ("");
a3f17187 2438 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2439 wrap_here ("");
2440 }
c5aa993b
JM
2441
2442 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2443 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2444
c5aa993b
JM
2445 /* Getting new symbols may change our opinion about what is
2446 frameless. */
c906108c 2447
c5aa993b 2448 reinit_frame_cache ();
c906108c 2449
c5aa993b
JM
2450 /* Discard cleanups as symbol reading was successful. */
2451 discard_cleanups (old_cleanups);
c906108c 2452
c5aa993b
JM
2453 /* If the mtime has changed between the time we set new_modtime
2454 and now, we *want* this to be out of date, so don't call stat
2455 again now. */
2456 objfile->mtime = new_modtime;
2457 reread_one = 1;
5b5d99cf 2458 reread_separate_symbols (objfile);
6528a9ea 2459 init_entry_point_info (objfile);
c5aa993b 2460 }
c906108c
SS
2461 }
2462 }
c906108c
SS
2463
2464 if (reread_one)
ea53e89f 2465 {
ff3536bc
UW
2466 /* Notify objfiles that we've modified objfile sections. */
2467 objfiles_changed ();
2468
ea53e89f
JB
2469 clear_symtab_users ();
2470 /* At least one objfile has changed, so we can consider that
2471 the executable we're debugging has changed too. */
781b42b0 2472 observer_notify_executable_changed ();
ea53e89f 2473 }
c906108c 2474}
5b5d99cf
JB
2475
2476
2477/* Handle separate debug info for OBJFILE, which has just been
2478 re-read:
2479 - If we had separate debug info before, but now we don't, get rid
2480 of the separated objfile.
2481 - If we didn't have separated debug info before, but now we do,
2482 read in the new separated debug info file.
2483 - If the debug link points to a different file, toss the old one
2484 and read the new one.
2485 This function does *not* handle the case where objfile is still
2486 using the same separate debug info file, but that file's timestamp
2487 has changed. That case should be handled by the loop in
2488 reread_symbols already. */
2489static void
2490reread_separate_symbols (struct objfile *objfile)
2491{
2492 char *debug_file;
2493 unsigned long crc32;
2494
2495 /* Does the updated objfile's debug info live in a
2496 separate file? */
2497 debug_file = find_separate_debug_file (objfile);
2498
2499 if (objfile->separate_debug_objfile)
2500 {
2501 /* There are two cases where we need to get rid of
2502 the old separated debug info objfile:
2503 - if the new primary objfile doesn't have
2504 separated debug info, or
2505 - if the new primary objfile has separate debug
2506 info, but it's under a different filename.
5417f6dc 2507
5b5d99cf
JB
2508 If the old and new objfiles both have separate
2509 debug info, under the same filename, then we're
2510 okay --- if the separated file's contents have
2511 changed, we will have caught that when we
2512 visited it in this function's outermost
2513 loop. */
2514 if (! debug_file
2515 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2516 free_objfile (objfile->separate_debug_objfile);
2517 }
2518
2519 /* If the new objfile has separate debug info, and we
2520 haven't loaded it already, do so now. */
2521 if (debug_file
2522 && ! objfile->separate_debug_objfile)
2523 {
2524 /* Use the same section offset table as objfile itself.
2525 Preserve the flags from objfile that make sense. */
2526 objfile->separate_debug_objfile
2527 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2528 (symfile_bfd_open (debug_file),
7eedccfa 2529 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2530 0, /* No addr table. */
2531 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2532 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2533 | OBJF_USERLOADED)));
2534 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2535 = objfile;
2536 }
73780b3c
MS
2537 if (debug_file)
2538 xfree (debug_file);
5b5d99cf
JB
2539}
2540
2541
c906108c
SS
2542\f
2543
c5aa993b
JM
2544
2545typedef struct
2546{
2547 char *ext;
c906108c 2548 enum language lang;
c5aa993b
JM
2549}
2550filename_language;
c906108c 2551
c5aa993b 2552static filename_language *filename_language_table;
c906108c
SS
2553static int fl_table_size, fl_table_next;
2554
2555static void
fba45db2 2556add_filename_language (char *ext, enum language lang)
c906108c
SS
2557{
2558 if (fl_table_next >= fl_table_size)
2559 {
2560 fl_table_size += 10;
5417f6dc 2561 filename_language_table =
25bf3106
PM
2562 xrealloc (filename_language_table,
2563 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2564 }
2565
4fcf66da 2566 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2567 filename_language_table[fl_table_next].lang = lang;
2568 fl_table_next++;
2569}
2570
2571static char *ext_args;
920d2a44
AC
2572static void
2573show_ext_args (struct ui_file *file, int from_tty,
2574 struct cmd_list_element *c, const char *value)
2575{
2576 fprintf_filtered (file, _("\
2577Mapping between filename extension and source language is \"%s\".\n"),
2578 value);
2579}
c906108c
SS
2580
2581static void
26c41df3 2582set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2583{
2584 int i;
2585 char *cp = ext_args;
2586 enum language lang;
2587
2588 /* First arg is filename extension, starting with '.' */
2589 if (*cp != '.')
8a3fe4f8 2590 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2591
2592 /* Find end of first arg. */
c5aa993b 2593 while (*cp && !isspace (*cp))
c906108c
SS
2594 cp++;
2595
2596 if (*cp == '\0')
8a3fe4f8 2597 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2598 ext_args);
2599
2600 /* Null-terminate first arg */
c5aa993b 2601 *cp++ = '\0';
c906108c
SS
2602
2603 /* Find beginning of second arg, which should be a source language. */
2604 while (*cp && isspace (*cp))
2605 cp++;
2606
2607 if (*cp == '\0')
8a3fe4f8 2608 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2609 ext_args);
2610
2611 /* Lookup the language from among those we know. */
2612 lang = language_enum (cp);
2613
2614 /* Now lookup the filename extension: do we already know it? */
2615 for (i = 0; i < fl_table_next; i++)
2616 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2617 break;
2618
2619 if (i >= fl_table_next)
2620 {
2621 /* new file extension */
2622 add_filename_language (ext_args, lang);
2623 }
2624 else
2625 {
2626 /* redefining a previously known filename extension */
2627
2628 /* if (from_tty) */
2629 /* query ("Really make files of type %s '%s'?", */
2630 /* ext_args, language_str (lang)); */
2631
b8c9b27d 2632 xfree (filename_language_table[i].ext);
4fcf66da 2633 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2634 filename_language_table[i].lang = lang;
2635 }
2636}
2637
2638static void
fba45db2 2639info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2640{
2641 int i;
2642
a3f17187 2643 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2644 printf_filtered ("\n\n");
2645 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2646 printf_filtered ("\t%s\t- %s\n",
2647 filename_language_table[i].ext,
c906108c
SS
2648 language_str (filename_language_table[i].lang));
2649}
2650
2651static void
fba45db2 2652init_filename_language_table (void)
c906108c
SS
2653{
2654 if (fl_table_size == 0) /* protect against repetition */
2655 {
2656 fl_table_size = 20;
2657 fl_table_next = 0;
c5aa993b 2658 filename_language_table =
c906108c 2659 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2660 add_filename_language (".c", language_c);
2661 add_filename_language (".C", language_cplus);
2662 add_filename_language (".cc", language_cplus);
2663 add_filename_language (".cp", language_cplus);
2664 add_filename_language (".cpp", language_cplus);
2665 add_filename_language (".cxx", language_cplus);
2666 add_filename_language (".c++", language_cplus);
2667 add_filename_language (".java", language_java);
c906108c 2668 add_filename_language (".class", language_java);
da2cf7e0 2669 add_filename_language (".m", language_objc);
c5aa993b
JM
2670 add_filename_language (".f", language_fortran);
2671 add_filename_language (".F", language_fortran);
2672 add_filename_language (".s", language_asm);
aa707ed0 2673 add_filename_language (".sx", language_asm);
c5aa993b 2674 add_filename_language (".S", language_asm);
c6fd39cd
PM
2675 add_filename_language (".pas", language_pascal);
2676 add_filename_language (".p", language_pascal);
2677 add_filename_language (".pp", language_pascal);
963a6417
PH
2678 add_filename_language (".adb", language_ada);
2679 add_filename_language (".ads", language_ada);
2680 add_filename_language (".a", language_ada);
2681 add_filename_language (".ada", language_ada);
c906108c
SS
2682 }
2683}
2684
2685enum language
fba45db2 2686deduce_language_from_filename (char *filename)
c906108c
SS
2687{
2688 int i;
2689 char *cp;
2690
2691 if (filename != NULL)
2692 if ((cp = strrchr (filename, '.')) != NULL)
2693 for (i = 0; i < fl_table_next; i++)
2694 if (strcmp (cp, filename_language_table[i].ext) == 0)
2695 return filename_language_table[i].lang;
2696
2697 return language_unknown;
2698}
2699\f
2700/* allocate_symtab:
2701
2702 Allocate and partly initialize a new symbol table. Return a pointer
2703 to it. error() if no space.
2704
2705 Caller must set these fields:
c5aa993b
JM
2706 LINETABLE(symtab)
2707 symtab->blockvector
2708 symtab->dirname
2709 symtab->free_code
2710 symtab->free_ptr
2711 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2712 */
2713
2714struct symtab *
fba45db2 2715allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2716{
52f0bd74 2717 struct symtab *symtab;
c906108c
SS
2718
2719 symtab = (struct symtab *)
4a146b47 2720 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2721 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2722 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2723 &objfile->objfile_obstack);
c5aa993b
JM
2724 symtab->fullname = NULL;
2725 symtab->language = deduce_language_from_filename (filename);
2726 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2727 &objfile->objfile_obstack);
c906108c
SS
2728
2729 /* Hook it to the objfile it comes from */
2730
c5aa993b
JM
2731 symtab->objfile = objfile;
2732 symtab->next = objfile->symtabs;
2733 objfile->symtabs = symtab;
c906108c 2734
c906108c
SS
2735 return (symtab);
2736}
2737
2738struct partial_symtab *
fba45db2 2739allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2740{
2741 struct partial_symtab *psymtab;
2742
c5aa993b 2743 if (objfile->free_psymtabs)
c906108c 2744 {
c5aa993b
JM
2745 psymtab = objfile->free_psymtabs;
2746 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2747 }
2748 else
2749 psymtab = (struct partial_symtab *)
8b92e4d5 2750 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2751 sizeof (struct partial_symtab));
2752
2753 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2754 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2755 &objfile->objfile_obstack);
c5aa993b 2756 psymtab->symtab = NULL;
c906108c
SS
2757
2758 /* Prepend it to the psymtab list for the objfile it belongs to.
2759 Psymtabs are searched in most recent inserted -> least recent
2760 inserted order. */
2761
c5aa993b
JM
2762 psymtab->objfile = objfile;
2763 psymtab->next = objfile->psymtabs;
2764 objfile->psymtabs = psymtab;
c906108c
SS
2765#if 0
2766 {
2767 struct partial_symtab **prev_pst;
c5aa993b
JM
2768 psymtab->objfile = objfile;
2769 psymtab->next = NULL;
2770 prev_pst = &(objfile->psymtabs);
c906108c 2771 while ((*prev_pst) != NULL)
c5aa993b 2772 prev_pst = &((*prev_pst)->next);
c906108c 2773 (*prev_pst) = psymtab;
c5aa993b 2774 }
c906108c 2775#endif
c5aa993b 2776
c906108c
SS
2777 return (psymtab);
2778}
2779
2780void
fba45db2 2781discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2782{
2783 struct partial_symtab **prev_pst;
2784
2785 /* From dbxread.c:
2786 Empty psymtabs happen as a result of header files which don't
2787 have any symbols in them. There can be a lot of them. But this
2788 check is wrong, in that a psymtab with N_SLINE entries but
2789 nothing else is not empty, but we don't realize that. Fixing
2790 that without slowing things down might be tricky. */
2791
2792 /* First, snip it out of the psymtab chain */
2793
2794 prev_pst = &(pst->objfile->psymtabs);
2795 while ((*prev_pst) != pst)
2796 prev_pst = &((*prev_pst)->next);
2797 (*prev_pst) = pst->next;
2798
2799 /* Next, put it on a free list for recycling */
2800
2801 pst->next = pst->objfile->free_psymtabs;
2802 pst->objfile->free_psymtabs = pst;
2803}
c906108c 2804\f
c5aa993b 2805
c906108c
SS
2806/* Reset all data structures in gdb which may contain references to symbol
2807 table data. */
2808
2809void
fba45db2 2810clear_symtab_users (void)
c906108c
SS
2811{
2812 /* Someday, we should do better than this, by only blowing away
2813 the things that really need to be blown. */
c0501be5
DJ
2814
2815 /* Clear the "current" symtab first, because it is no longer valid.
2816 breakpoint_re_set may try to access the current symtab. */
2817 clear_current_source_symtab_and_line ();
2818
c906108c 2819 clear_displays ();
c906108c 2820 breakpoint_re_set ();
6c95b8df 2821 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2822 clear_pc_function_cache ();
06d3b283 2823 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2824
2825 /* Clear globals which might have pointed into a removed objfile.
2826 FIXME: It's not clear which of these are supposed to persist
2827 between expressions and which ought to be reset each time. */
2828 expression_context_block = NULL;
2829 innermost_block = NULL;
8756216b
DP
2830
2831 /* Varobj may refer to old symbols, perform a cleanup. */
2832 varobj_invalidate ();
2833
c906108c
SS
2834}
2835
74b7792f
AC
2836static void
2837clear_symtab_users_cleanup (void *ignore)
2838{
2839 clear_symtab_users ();
2840}
2841
c906108c
SS
2842/* clear_symtab_users_once:
2843
2844 This function is run after symbol reading, or from a cleanup.
2845 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2846 has been blown away, but the other GDB data structures that may
c906108c
SS
2847 reference it have not yet been cleared or re-directed. (The old
2848 symtab was zapped, and the cleanup queued, in free_named_symtab()
2849 below.)
2850
2851 This function can be queued N times as a cleanup, or called
2852 directly; it will do all the work the first time, and then will be a
2853 no-op until the next time it is queued. This works by bumping a
2854 counter at queueing time. Much later when the cleanup is run, or at
2855 the end of symbol processing (in case the cleanup is discarded), if
2856 the queued count is greater than the "done-count", we do the work
2857 and set the done-count to the queued count. If the queued count is
2858 less than or equal to the done-count, we just ignore the call. This
2859 is needed because reading a single .o file will often replace many
2860 symtabs (one per .h file, for example), and we don't want to reset
2861 the breakpoints N times in the user's face.
2862
2863 The reason we both queue a cleanup, and call it directly after symbol
2864 reading, is because the cleanup protects us in case of errors, but is
2865 discarded if symbol reading is successful. */
2866
2867#if 0
2868/* FIXME: As free_named_symtabs is currently a big noop this function
2869 is no longer needed. */
a14ed312 2870static void clear_symtab_users_once (void);
c906108c
SS
2871
2872static int clear_symtab_users_queued;
2873static int clear_symtab_users_done;
2874
2875static void
fba45db2 2876clear_symtab_users_once (void)
c906108c
SS
2877{
2878 /* Enforce once-per-`do_cleanups'-semantics */
2879 if (clear_symtab_users_queued <= clear_symtab_users_done)
2880 return;
2881 clear_symtab_users_done = clear_symtab_users_queued;
2882
2883 clear_symtab_users ();
2884}
2885#endif
2886
2887/* Delete the specified psymtab, and any others that reference it. */
2888
2889static void
fba45db2 2890cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2891{
2892 struct partial_symtab *ps, *pprev = NULL;
2893 int i;
2894
2895 /* Find its previous psymtab in the chain */
c5aa993b
JM
2896 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2897 {
2898 if (ps == pst)
2899 break;
2900 pprev = ps;
2901 }
c906108c 2902
c5aa993b
JM
2903 if (ps)
2904 {
2905 /* Unhook it from the chain. */
2906 if (ps == pst->objfile->psymtabs)
2907 pst->objfile->psymtabs = ps->next;
2908 else
2909 pprev->next = ps->next;
2910
2911 /* FIXME, we can't conveniently deallocate the entries in the
2912 partial_symbol lists (global_psymbols/static_psymbols) that
2913 this psymtab points to. These just take up space until all
2914 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2915 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2916
2917 /* We need to cashier any psymtab that has this one as a dependency... */
2918 again:
2919 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2920 {
2921 for (i = 0; i < ps->number_of_dependencies; i++)
2922 {
2923 if (ps->dependencies[i] == pst)
2924 {
2925 cashier_psymtab (ps);
2926 goto again; /* Must restart, chain has been munged. */
2927 }
2928 }
c906108c 2929 }
c906108c 2930 }
c906108c
SS
2931}
2932
2933/* If a symtab or psymtab for filename NAME is found, free it along
2934 with any dependent breakpoints, displays, etc.
2935 Used when loading new versions of object modules with the "add-file"
2936 command. This is only called on the top-level symtab or psymtab's name;
2937 it is not called for subsidiary files such as .h files.
2938
2939 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2940 FIXME. The return value appears to never be used.
c906108c
SS
2941
2942 FIXME. I think this is not the best way to do this. We should
2943 work on being gentler to the environment while still cleaning up
2944 all stray pointers into the freed symtab. */
2945
2946int
fba45db2 2947free_named_symtabs (char *name)
c906108c
SS
2948{
2949#if 0
2950 /* FIXME: With the new method of each objfile having it's own
2951 psymtab list, this function needs serious rethinking. In particular,
2952 why was it ever necessary to toss psymtabs with specific compilation
2953 unit filenames, as opposed to all psymtabs from a particular symbol
2954 file? -- fnf
2955 Well, the answer is that some systems permit reloading of particular
2956 compilation units. We want to blow away any old info about these
2957 compilation units, regardless of which objfiles they arrived in. --gnu. */
2958
52f0bd74
AC
2959 struct symtab *s;
2960 struct symtab *prev;
2961 struct partial_symtab *ps;
c906108c
SS
2962 struct blockvector *bv;
2963 int blewit = 0;
2964
2965 /* We only wack things if the symbol-reload switch is set. */
2966 if (!symbol_reloading)
2967 return 0;
2968
2969 /* Some symbol formats have trouble providing file names... */
2970 if (name == 0 || *name == '\0')
2971 return 0;
2972
2973 /* Look for a psymtab with the specified name. */
2974
2975again2:
c5aa993b
JM
2976 for (ps = partial_symtab_list; ps; ps = ps->next)
2977 {
6314a349 2978 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2979 {
2980 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2981 goto again2; /* Must restart, chain has been munged */
2982 }
c906108c 2983 }
c906108c
SS
2984
2985 /* Look for a symtab with the specified name. */
2986
2987 for (s = symtab_list; s; s = s->next)
2988 {
6314a349 2989 if (strcmp (name, s->filename) == 0)
c906108c
SS
2990 break;
2991 prev = s;
2992 }
2993
2994 if (s)
2995 {
2996 if (s == symtab_list)
2997 symtab_list = s->next;
2998 else
2999 prev->next = s->next;
3000
3001 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3002 or not they depend on the symtab being freed. This should be
3003 changed so that only those data structures affected are deleted. */
c906108c
SS
3004
3005 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3006 This test is necessary due to a bug in "dbxread.c" that
3007 causes empty symtabs to be created for N_SO symbols that
3008 contain the pathname of the object file. (This problem
3009 has been fixed in GDB 3.9x). */
c906108c
SS
3010
3011 bv = BLOCKVECTOR (s);
3012 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3013 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3014 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3015 {
e2e0b3e5 3016 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3017 name);
c906108c
SS
3018 clear_symtab_users_queued++;
3019 make_cleanup (clear_symtab_users_once, 0);
3020 blewit = 1;
c5aa993b
JM
3021 }
3022 else
e2e0b3e5
AC
3023 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3024 name);
c906108c
SS
3025
3026 free_symtab (s);
3027 }
3028 else
3029 {
3030 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3031 even though no symtab was found, since the file might have
3032 been compiled without debugging, and hence not be associated
3033 with a symtab. In order to handle this correctly, we would need
3034 to keep a list of text address ranges for undebuggable files.
3035 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3036 ;
3037 }
3038
3039 /* FIXME, what about the minimal symbol table? */
3040 return blewit;
3041#else
3042 return (0);
3043#endif
3044}
3045\f
3046/* Allocate and partially fill a partial symtab. It will be
3047 completely filled at the end of the symbol list.
3048
d4f3574e 3049 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3050
3051struct partial_symtab *
fba45db2
KB
3052start_psymtab_common (struct objfile *objfile,
3053 struct section_offsets *section_offsets, char *filename,
3054 CORE_ADDR textlow, struct partial_symbol **global_syms,
3055 struct partial_symbol **static_syms)
c906108c
SS
3056{
3057 struct partial_symtab *psymtab;
3058
3059 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3060 psymtab->section_offsets = section_offsets;
3061 psymtab->textlow = textlow;
3062 psymtab->texthigh = psymtab->textlow; /* default */
3063 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3064 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3065 return (psymtab);
3066}
3067\f
2e618c13
AR
3068/* Helper function, initialises partial symbol structure and stashes
3069 it into objfile's bcache. Note that our caching mechanism will
3070 use all fields of struct partial_symbol to determine hash value of the
3071 structure. In other words, having two symbols with the same name but
3072 different domain (or address) is possible and correct. */
3073
11d31d94 3074static const struct partial_symbol *
2e618c13
AR
3075add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3076 enum address_class class,
3077 long val, /* Value as a long */
3078 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3079 enum language language, struct objfile *objfile,
3080 int *added)
3081{
3082 char *buf = name;
3083 /* psymbol is static so that there will be no uninitialized gaps in the
3084 structure which might contain random data, causing cache misses in
3085 bcache. */
3086 static struct partial_symbol psymbol;
3087
3088 if (name[namelength] != '\0')
3089 {
3090 buf = alloca (namelength + 1);
3091 /* Create local copy of the partial symbol */
3092 memcpy (buf, name, namelength);
3093 buf[namelength] = '\0';
3094 }
3095 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3096 if (val != 0)
3097 {
3098 SYMBOL_VALUE (&psymbol) = val;
3099 }
3100 else
3101 {
3102 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3103 }
3104 SYMBOL_SECTION (&psymbol) = 0;
3105 SYMBOL_LANGUAGE (&psymbol) = language;
3106 PSYMBOL_DOMAIN (&psymbol) = domain;
3107 PSYMBOL_CLASS (&psymbol) = class;
3108
3109 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3110
3111 /* Stash the partial symbol away in the cache */
11d31d94
TT
3112 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3113 objfile->psymbol_cache, added);
2e618c13
AR
3114}
3115
3116/* Helper function, adds partial symbol to the given partial symbol
3117 list. */
3118
3119static void
3120append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3121 const struct partial_symbol *psym,
2e618c13
AR
3122 struct objfile *objfile)
3123{
3124 if (list->next >= list->list + list->size)
3125 extend_psymbol_list (list, objfile);
11d31d94 3126 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3127 OBJSTAT (objfile, n_psyms++);
3128}
3129
c906108c 3130/* Add a symbol with a long value to a psymtab.
5417f6dc 3131 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3132 Return the partial symbol that has been added. */
3133
3134/* NOTE: carlton/2003-09-11: The reason why we return the partial
3135 symbol is so that callers can get access to the symbol's demangled
3136 name, which they don't have any cheap way to determine otherwise.
3137 (Currenly, dwarf2read.c is the only file who uses that information,
3138 though it's possible that other readers might in the future.)
3139 Elena wasn't thrilled about that, and I don't blame her, but we
3140 couldn't come up with a better way to get that information. If
3141 it's needed in other situations, we could consider breaking up
3142 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3143 cache. */
3144
3145const struct partial_symbol *
176620f1 3146add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3147 enum address_class class,
2e618c13
AR
3148 struct psymbol_allocation_list *list,
3149 long val, /* Value as a long */
fba45db2
KB
3150 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3151 enum language language, struct objfile *objfile)
c906108c 3152{
11d31d94 3153 const struct partial_symbol *psym;
2de7ced7 3154
2e618c13 3155 int added;
c906108c
SS
3156
3157 /* Stash the partial symbol away in the cache */
2e618c13
AR
3158 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3159 val, coreaddr, language, objfile, &added);
c906108c 3160
2e618c13
AR
3161 /* Do not duplicate global partial symbols. */
3162 if (list == &objfile->global_psymbols
3163 && !added)
3164 return psym;
5c4e30ca 3165
2e618c13
AR
3166 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3167 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3168 return psym;
c906108c
SS
3169}
3170
c906108c
SS
3171/* Initialize storage for partial symbols. */
3172
3173void
fba45db2 3174init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3175{
3176 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3177
3178 if (objfile->global_psymbols.list)
c906108c 3179 {
2dc74dc1 3180 xfree (objfile->global_psymbols.list);
c906108c 3181 }
c5aa993b 3182 if (objfile->static_psymbols.list)
c906108c 3183 {
2dc74dc1 3184 xfree (objfile->static_psymbols.list);
c906108c 3185 }
c5aa993b 3186
c906108c
SS
3187 /* Current best guess is that approximately a twentieth
3188 of the total symbols (in a debugging file) are global or static
3189 oriented symbols */
c906108c 3190
c5aa993b
JM
3191 objfile->global_psymbols.size = total_symbols / 10;
3192 objfile->static_psymbols.size = total_symbols / 10;
3193
3194 if (objfile->global_psymbols.size > 0)
c906108c 3195 {
c5aa993b
JM
3196 objfile->global_psymbols.next =
3197 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3198 xmalloc ((objfile->global_psymbols.size
3199 * sizeof (struct partial_symbol *)));
c906108c 3200 }
c5aa993b 3201 if (objfile->static_psymbols.size > 0)
c906108c 3202 {
c5aa993b
JM
3203 objfile->static_psymbols.next =
3204 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3205 xmalloc ((objfile->static_psymbols.size
3206 * sizeof (struct partial_symbol *)));
c906108c
SS
3207 }
3208}
3209
3210/* OVERLAYS:
3211 The following code implements an abstraction for debugging overlay sections.
3212
3213 The target model is as follows:
3214 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3215 same VMA, each with its own unique LMA (or load address).
c906108c 3216 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3217 sections, one by one, from the load address into the VMA address.
5417f6dc 3218 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3219 sections should be considered to be mapped from the VMA to the LMA.
3220 This information is used for symbol lookup, and memory read/write.
5417f6dc 3221 For instance, if a section has been mapped then its contents
c5aa993b 3222 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3223
3224 Two levels of debugger support for overlays are available. One is
3225 "manual", in which the debugger relies on the user to tell it which
3226 overlays are currently mapped. This level of support is
3227 implemented entirely in the core debugger, and the information about
3228 whether a section is mapped is kept in the objfile->obj_section table.
3229
3230 The second level of support is "automatic", and is only available if
3231 the target-specific code provides functionality to read the target's
3232 overlay mapping table, and translate its contents for the debugger
3233 (by updating the mapped state information in the obj_section tables).
3234
3235 The interface is as follows:
c5aa993b
JM
3236 User commands:
3237 overlay map <name> -- tell gdb to consider this section mapped
3238 overlay unmap <name> -- tell gdb to consider this section unmapped
3239 overlay list -- list the sections that GDB thinks are mapped
3240 overlay read-target -- get the target's state of what's mapped
3241 overlay off/manual/auto -- set overlay debugging state
3242 Functional interface:
3243 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3244 section, return that section.
5417f6dc 3245 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3246 the pc, either in its VMA or its LMA
714835d5 3247 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3248 section_is_overlay(sect): true if section's VMA != LMA
3249 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3250 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3251 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3252 overlay_mapped_address(...): map an address from section's LMA to VMA
3253 overlay_unmapped_address(...): map an address from section's VMA to LMA
3254 symbol_overlayed_address(...): Return a "current" address for symbol:
3255 either in VMA or LMA depending on whether
3256 the symbol's section is currently mapped
c906108c
SS
3257 */
3258
3259/* Overlay debugging state: */
3260
d874f1e2 3261enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3262int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3263
c906108c 3264/* Function: section_is_overlay (SECTION)
5417f6dc 3265 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3266 SECTION is loaded at an address different from where it will "run". */
3267
3268int
714835d5 3269section_is_overlay (struct obj_section *section)
c906108c 3270{
714835d5
UW
3271 if (overlay_debugging && section)
3272 {
3273 bfd *abfd = section->objfile->obfd;
3274 asection *bfd_section = section->the_bfd_section;
3275
3276 if (bfd_section_lma (abfd, bfd_section) != 0
3277 && bfd_section_lma (abfd, bfd_section)
3278 != bfd_section_vma (abfd, bfd_section))
3279 return 1;
3280 }
c906108c
SS
3281
3282 return 0;
3283}
3284
3285/* Function: overlay_invalidate_all (void)
3286 Invalidate the mapped state of all overlay sections (mark it as stale). */
3287
3288static void
fba45db2 3289overlay_invalidate_all (void)
c906108c 3290{
c5aa993b 3291 struct objfile *objfile;
c906108c
SS
3292 struct obj_section *sect;
3293
3294 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3295 if (section_is_overlay (sect))
3296 sect->ovly_mapped = -1;
c906108c
SS
3297}
3298
714835d5 3299/* Function: section_is_mapped (SECTION)
5417f6dc 3300 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3301
3302 Access to the ovly_mapped flag is restricted to this function, so
3303 that we can do automatic update. If the global flag
3304 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3305 overlay_invalidate_all. If the mapped state of the particular
3306 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3307
714835d5
UW
3308int
3309section_is_mapped (struct obj_section *osect)
c906108c 3310{
9216df95
UW
3311 struct gdbarch *gdbarch;
3312
714835d5 3313 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3314 return 0;
3315
c5aa993b 3316 switch (overlay_debugging)
c906108c
SS
3317 {
3318 default:
d874f1e2 3319 case ovly_off:
c5aa993b 3320 return 0; /* overlay debugging off */
d874f1e2 3321 case ovly_auto: /* overlay debugging automatic */
1c772458 3322 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3323 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3324 gdbarch = get_objfile_arch (osect->objfile);
3325 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3326 {
3327 if (overlay_cache_invalid)
3328 {
3329 overlay_invalidate_all ();
3330 overlay_cache_invalid = 0;
3331 }
3332 if (osect->ovly_mapped == -1)
9216df95 3333 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3334 }
3335 /* fall thru to manual case */
d874f1e2 3336 case ovly_on: /* overlay debugging manual */
c906108c
SS
3337 return osect->ovly_mapped == 1;
3338 }
3339}
3340
c906108c
SS
3341/* Function: pc_in_unmapped_range
3342 If PC falls into the lma range of SECTION, return true, else false. */
3343
3344CORE_ADDR
714835d5 3345pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3346{
714835d5
UW
3347 if (section_is_overlay (section))
3348 {
3349 bfd *abfd = section->objfile->obfd;
3350 asection *bfd_section = section->the_bfd_section;
fbd35540 3351
714835d5
UW
3352 /* We assume the LMA is relocated by the same offset as the VMA. */
3353 bfd_vma size = bfd_get_section_size (bfd_section);
3354 CORE_ADDR offset = obj_section_offset (section);
3355
3356 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3357 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3358 return 1;
3359 }
c906108c 3360
c906108c
SS
3361 return 0;
3362}
3363
3364/* Function: pc_in_mapped_range
3365 If PC falls into the vma range of SECTION, return true, else false. */
3366
3367CORE_ADDR
714835d5 3368pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3369{
714835d5
UW
3370 if (section_is_overlay (section))
3371 {
3372 if (obj_section_addr (section) <= pc
3373 && pc < obj_section_endaddr (section))
3374 return 1;
3375 }
c906108c 3376
c906108c
SS
3377 return 0;
3378}
3379
9ec8e6a0
JB
3380
3381/* Return true if the mapped ranges of sections A and B overlap, false
3382 otherwise. */
b9362cc7 3383static int
714835d5 3384sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3385{
714835d5
UW
3386 CORE_ADDR a_start = obj_section_addr (a);
3387 CORE_ADDR a_end = obj_section_endaddr (a);
3388 CORE_ADDR b_start = obj_section_addr (b);
3389 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3390
3391 return (a_start < b_end && b_start < a_end);
3392}
3393
c906108c
SS
3394/* Function: overlay_unmapped_address (PC, SECTION)
3395 Returns the address corresponding to PC in the unmapped (load) range.
3396 May be the same as PC. */
3397
3398CORE_ADDR
714835d5 3399overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3400{
714835d5
UW
3401 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3402 {
3403 bfd *abfd = section->objfile->obfd;
3404 asection *bfd_section = section->the_bfd_section;
fbd35540 3405
714835d5
UW
3406 return pc + bfd_section_lma (abfd, bfd_section)
3407 - bfd_section_vma (abfd, bfd_section);
3408 }
c906108c
SS
3409
3410 return pc;
3411}
3412
3413/* Function: overlay_mapped_address (PC, SECTION)
3414 Returns the address corresponding to PC in the mapped (runtime) range.
3415 May be the same as PC. */
3416
3417CORE_ADDR
714835d5 3418overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3419{
714835d5
UW
3420 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3421 {
3422 bfd *abfd = section->objfile->obfd;
3423 asection *bfd_section = section->the_bfd_section;
fbd35540 3424
714835d5
UW
3425 return pc + bfd_section_vma (abfd, bfd_section)
3426 - bfd_section_lma (abfd, bfd_section);
3427 }
c906108c
SS
3428
3429 return pc;
3430}
3431
3432
5417f6dc 3433/* Function: symbol_overlayed_address
c906108c
SS
3434 Return one of two addresses (relative to the VMA or to the LMA),
3435 depending on whether the section is mapped or not. */
3436
c5aa993b 3437CORE_ADDR
714835d5 3438symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3439{
3440 if (overlay_debugging)
3441 {
3442 /* If the symbol has no section, just return its regular address. */
3443 if (section == 0)
3444 return address;
3445 /* If the symbol's section is not an overlay, just return its address */
3446 if (!section_is_overlay (section))
3447 return address;
3448 /* If the symbol's section is mapped, just return its address */
3449 if (section_is_mapped (section))
3450 return address;
3451 /*
3452 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3453 * then return its LOADED address rather than its vma address!!
3454 */
3455 return overlay_unmapped_address (address, section);
3456 }
3457 return address;
3458}
3459
5417f6dc 3460/* Function: find_pc_overlay (PC)
c906108c
SS
3461 Return the best-match overlay section for PC:
3462 If PC matches a mapped overlay section's VMA, return that section.
3463 Else if PC matches an unmapped section's VMA, return that section.
3464 Else if PC matches an unmapped section's LMA, return that section. */
3465
714835d5 3466struct obj_section *
fba45db2 3467find_pc_overlay (CORE_ADDR pc)
c906108c 3468{
c5aa993b 3469 struct objfile *objfile;
c906108c
SS
3470 struct obj_section *osect, *best_match = NULL;
3471
3472 if (overlay_debugging)
3473 ALL_OBJSECTIONS (objfile, osect)
714835d5 3474 if (section_is_overlay (osect))
c5aa993b 3475 {
714835d5 3476 if (pc_in_mapped_range (pc, osect))
c5aa993b 3477 {
714835d5
UW
3478 if (section_is_mapped (osect))
3479 return osect;
c5aa993b
JM
3480 else
3481 best_match = osect;
3482 }
714835d5 3483 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3484 best_match = osect;
3485 }
714835d5 3486 return best_match;
c906108c
SS
3487}
3488
3489/* Function: find_pc_mapped_section (PC)
5417f6dc 3490 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3491 currently marked as MAPPED, return that section. Else return NULL. */
3492
714835d5 3493struct obj_section *
fba45db2 3494find_pc_mapped_section (CORE_ADDR pc)
c906108c 3495{
c5aa993b 3496 struct objfile *objfile;
c906108c
SS
3497 struct obj_section *osect;
3498
3499 if (overlay_debugging)
3500 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3501 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3502 return osect;
c906108c
SS
3503
3504 return NULL;
3505}
3506
3507/* Function: list_overlays_command
3508 Print a list of mapped sections and their PC ranges */
3509
3510void
fba45db2 3511list_overlays_command (char *args, int from_tty)
c906108c 3512{
c5aa993b
JM
3513 int nmapped = 0;
3514 struct objfile *objfile;
c906108c
SS
3515 struct obj_section *osect;
3516
3517 if (overlay_debugging)
3518 ALL_OBJSECTIONS (objfile, osect)
714835d5 3519 if (section_is_mapped (osect))
c5aa993b 3520 {
5af949e3 3521 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3522 const char *name;
3523 bfd_vma lma, vma;
3524 int size;
3525
3526 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3527 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3528 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3529 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3530
3531 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3532 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3533 puts_filtered (" - ");
5af949e3 3534 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3535 printf_filtered (", mapped at ");
5af949e3 3536 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3537 puts_filtered (" - ");
5af949e3 3538 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3539 puts_filtered ("\n");
3540
3541 nmapped++;
3542 }
c906108c 3543 if (nmapped == 0)
a3f17187 3544 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3545}
3546
3547/* Function: map_overlay_command
3548 Mark the named section as mapped (ie. residing at its VMA address). */
3549
3550void
fba45db2 3551map_overlay_command (char *args, int from_tty)
c906108c 3552{
c5aa993b
JM
3553 struct objfile *objfile, *objfile2;
3554 struct obj_section *sec, *sec2;
c906108c
SS
3555
3556 if (!overlay_debugging)
8a3fe4f8 3557 error (_("\
515ad16c 3558Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3559the 'overlay manual' command."));
c906108c
SS
3560
3561 if (args == 0 || *args == 0)
8a3fe4f8 3562 error (_("Argument required: name of an overlay section"));
c906108c
SS
3563
3564 /* First, find a section matching the user supplied argument */
3565 ALL_OBJSECTIONS (objfile, sec)
3566 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3567 {
3568 /* Now, check to see if the section is an overlay. */
714835d5 3569 if (!section_is_overlay (sec))
c5aa993b
JM
3570 continue; /* not an overlay section */
3571
3572 /* Mark the overlay as "mapped" */
3573 sec->ovly_mapped = 1;
3574
3575 /* Next, make a pass and unmap any sections that are
3576 overlapped by this new section: */
3577 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3578 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3579 {
3580 if (info_verbose)
a3f17187 3581 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3582 bfd_section_name (objfile->obfd,
3583 sec2->the_bfd_section));
3584 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3585 }
3586 return;
3587 }
8a3fe4f8 3588 error (_("No overlay section called %s"), args);
c906108c
SS
3589}
3590
3591/* Function: unmap_overlay_command
5417f6dc 3592 Mark the overlay section as unmapped
c906108c
SS
3593 (ie. resident in its LMA address range, rather than the VMA range). */
3594
3595void
fba45db2 3596unmap_overlay_command (char *args, int from_tty)
c906108c 3597{
c5aa993b 3598 struct objfile *objfile;
c906108c
SS
3599 struct obj_section *sec;
3600
3601 if (!overlay_debugging)
8a3fe4f8 3602 error (_("\
515ad16c 3603Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3604the 'overlay manual' command."));
c906108c
SS
3605
3606 if (args == 0 || *args == 0)
8a3fe4f8 3607 error (_("Argument required: name of an overlay section"));
c906108c
SS
3608
3609 /* First, find a section matching the user supplied argument */
3610 ALL_OBJSECTIONS (objfile, sec)
3611 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3612 {
3613 if (!sec->ovly_mapped)
8a3fe4f8 3614 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3615 sec->ovly_mapped = 0;
3616 return;
3617 }
8a3fe4f8 3618 error (_("No overlay section called %s"), args);
c906108c
SS
3619}
3620
3621/* Function: overlay_auto_command
3622 A utility command to turn on overlay debugging.
3623 Possibly this should be done via a set/show command. */
3624
3625static void
fba45db2 3626overlay_auto_command (char *args, int from_tty)
c906108c 3627{
d874f1e2 3628 overlay_debugging = ovly_auto;
1900040c 3629 enable_overlay_breakpoints ();
c906108c 3630 if (info_verbose)
a3f17187 3631 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3632}
3633
3634/* Function: overlay_manual_command
3635 A utility command to turn on overlay debugging.
3636 Possibly this should be done via a set/show command. */
3637
3638static void
fba45db2 3639overlay_manual_command (char *args, int from_tty)
c906108c 3640{
d874f1e2 3641 overlay_debugging = ovly_on;
1900040c 3642 disable_overlay_breakpoints ();
c906108c 3643 if (info_verbose)
a3f17187 3644 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3645}
3646
3647/* Function: overlay_off_command
3648 A utility command to turn on overlay debugging.
3649 Possibly this should be done via a set/show command. */
3650
3651static void
fba45db2 3652overlay_off_command (char *args, int from_tty)
c906108c 3653{
d874f1e2 3654 overlay_debugging = ovly_off;
1900040c 3655 disable_overlay_breakpoints ();
c906108c 3656 if (info_verbose)
a3f17187 3657 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3658}
3659
3660static void
fba45db2 3661overlay_load_command (char *args, int from_tty)
c906108c 3662{
e17c207e
UW
3663 struct gdbarch *gdbarch = get_current_arch ();
3664
3665 if (gdbarch_overlay_update_p (gdbarch))
3666 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3667 else
8a3fe4f8 3668 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3669}
3670
3671/* Function: overlay_command
3672 A place-holder for a mis-typed command */
3673
3674/* Command list chain containing all defined "overlay" subcommands. */
3675struct cmd_list_element *overlaylist;
3676
3677static void
fba45db2 3678overlay_command (char *args, int from_tty)
c906108c 3679{
c5aa993b 3680 printf_unfiltered
c906108c
SS
3681 ("\"overlay\" must be followed by the name of an overlay command.\n");
3682 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3683}
3684
3685
3686/* Target Overlays for the "Simplest" overlay manager:
3687
5417f6dc
RM
3688 This is GDB's default target overlay layer. It works with the
3689 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3690 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3691 so targets that use a different runtime overlay manager can
c906108c
SS
3692 substitute their own overlay_update function and take over the
3693 function pointer.
3694
3695 The overlay_update function pokes around in the target's data structures
3696 to see what overlays are mapped, and updates GDB's overlay mapping with
3697 this information.
3698
3699 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3700 unsigned _novlys; /# number of overlay sections #/
3701 unsigned _ovly_table[_novlys][4] = {
3702 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3703 {..., ..., ..., ...},
3704 }
3705 unsigned _novly_regions; /# number of overlay regions #/
3706 unsigned _ovly_region_table[_novly_regions][3] = {
3707 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3708 {..., ..., ...},
3709 }
c906108c
SS
3710 These functions will attempt to update GDB's mappedness state in the
3711 symbol section table, based on the target's mappedness state.
3712
3713 To do this, we keep a cached copy of the target's _ovly_table, and
3714 attempt to detect when the cached copy is invalidated. The main
3715 entry point is "simple_overlay_update(SECT), which looks up SECT in
3716 the cached table and re-reads only the entry for that section from
3717 the target (whenever possible).
3718 */
3719
3720/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3721static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3722#if 0
c5aa993b 3723static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3724#endif
c5aa993b 3725static unsigned cache_novlys = 0;
c906108c 3726#if 0
c5aa993b 3727static unsigned cache_novly_regions = 0;
c906108c
SS
3728#endif
3729static CORE_ADDR cache_ovly_table_base = 0;
3730#if 0
3731static CORE_ADDR cache_ovly_region_table_base = 0;
3732#endif
c5aa993b
JM
3733enum ovly_index
3734 {
3735 VMA, SIZE, LMA, MAPPED
3736 };
c906108c
SS
3737
3738/* Throw away the cached copy of _ovly_table */
3739static void
fba45db2 3740simple_free_overlay_table (void)
c906108c
SS
3741{
3742 if (cache_ovly_table)
b8c9b27d 3743 xfree (cache_ovly_table);
c5aa993b 3744 cache_novlys = 0;
c906108c
SS
3745 cache_ovly_table = NULL;
3746 cache_ovly_table_base = 0;
3747}
3748
3749#if 0
3750/* Throw away the cached copy of _ovly_region_table */
3751static void
fba45db2 3752simple_free_overlay_region_table (void)
c906108c
SS
3753{
3754 if (cache_ovly_region_table)
b8c9b27d 3755 xfree (cache_ovly_region_table);
c5aa993b 3756 cache_novly_regions = 0;
c906108c
SS
3757 cache_ovly_region_table = NULL;
3758 cache_ovly_region_table_base = 0;
3759}
3760#endif
3761
9216df95 3762/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3763 Convert to host order. int LEN is number of ints */
3764static void
9216df95 3765read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3766 int len, int size, enum bfd_endian byte_order)
c906108c 3767{
34c0bd93 3768 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3769 gdb_byte *buf = alloca (len * size);
c5aa993b 3770 int i;
c906108c 3771
9216df95 3772 read_memory (memaddr, buf, len * size);
c906108c 3773 for (i = 0; i < len; i++)
e17a4113 3774 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3775}
3776
3777/* Find and grab a copy of the target _ovly_table
3778 (and _novlys, which is needed for the table's size) */
c5aa993b 3779static int
fba45db2 3780simple_read_overlay_table (void)
c906108c 3781{
0d43edd1 3782 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3783 struct gdbarch *gdbarch;
3784 int word_size;
e17a4113 3785 enum bfd_endian byte_order;
c906108c
SS
3786
3787 simple_free_overlay_table ();
9b27852e 3788 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3789 if (! novlys_msym)
c906108c 3790 {
8a3fe4f8 3791 error (_("Error reading inferior's overlay table: "
0d43edd1 3792 "couldn't find `_novlys' variable\n"
8a3fe4f8 3793 "in inferior. Use `overlay manual' mode."));
0d43edd1 3794 return 0;
c906108c 3795 }
0d43edd1 3796
9b27852e 3797 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3798 if (! ovly_table_msym)
3799 {
8a3fe4f8 3800 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3801 "`_ovly_table' array\n"
8a3fe4f8 3802 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3803 return 0;
3804 }
3805
9216df95
UW
3806 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3807 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3808 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3809
e17a4113
UW
3810 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3811 4, byte_order);
0d43edd1
JB
3812 cache_ovly_table
3813 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3814 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3815 read_target_long_array (cache_ovly_table_base,
777ea8f1 3816 (unsigned int *) cache_ovly_table,
e17a4113 3817 cache_novlys * 4, word_size, byte_order);
0d43edd1 3818
c5aa993b 3819 return 1; /* SUCCESS */
c906108c
SS
3820}
3821
3822#if 0
3823/* Find and grab a copy of the target _ovly_region_table
3824 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3825static int
fba45db2 3826simple_read_overlay_region_table (void)
c906108c
SS
3827{
3828 struct minimal_symbol *msym;
e17a4113
UW
3829 struct gdbarch *gdbarch;
3830 int word_size;
3831 enum bfd_endian byte_order;
c906108c
SS
3832
3833 simple_free_overlay_region_table ();
9b27852e 3834 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3835 if (msym == NULL)
c5aa993b 3836 return 0; /* failure */
e17a4113
UW
3837
3838 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3839 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3840 byte_order = gdbarch_byte_order (gdbarch);
3841
3842 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3843 4, byte_order);
3844
c906108c
SS
3845 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3846 if (cache_ovly_region_table != NULL)
3847 {
9b27852e 3848 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3849 if (msym != NULL)
3850 {
3851 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3852 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3853 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3854 cache_novly_regions * 3,
3855 word_size, byte_order);
c906108c 3856 }
c5aa993b
JM
3857 else
3858 return 0; /* failure */
c906108c 3859 }
c5aa993b
JM
3860 else
3861 return 0; /* failure */
3862 return 1; /* SUCCESS */
c906108c
SS
3863}
3864#endif
3865
5417f6dc 3866/* Function: simple_overlay_update_1
c906108c
SS
3867 A helper function for simple_overlay_update. Assuming a cached copy
3868 of _ovly_table exists, look through it to find an entry whose vma,
3869 lma and size match those of OSECT. Re-read the entry and make sure
3870 it still matches OSECT (else the table may no longer be valid).
3871 Set OSECT's mapped state to match the entry. Return: 1 for
3872 success, 0 for failure. */
3873
3874static int
fba45db2 3875simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3876{
3877 int i, size;
fbd35540
MS
3878 bfd *obfd = osect->objfile->obfd;
3879 asection *bsect = osect->the_bfd_section;
9216df95
UW
3880 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3881 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3883
2c500098 3884 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3885 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3886 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3887 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3888 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3889 {
9216df95
UW
3890 read_target_long_array (cache_ovly_table_base + i * word_size,
3891 (unsigned int *) cache_ovly_table[i],
e17a4113 3892 4, word_size, byte_order);
fbd35540
MS
3893 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3894 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3895 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3896 {
3897 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3898 return 1;
3899 }
fbd35540 3900 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3901 return 0;
3902 }
3903 return 0;
3904}
3905
3906/* Function: simple_overlay_update
5417f6dc
RM
3907 If OSECT is NULL, then update all sections' mapped state
3908 (after re-reading the entire target _ovly_table).
3909 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3910 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3911 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3912 re-read the entire cache, and go ahead and update all sections. */
3913
1c772458 3914void
fba45db2 3915simple_overlay_update (struct obj_section *osect)
c906108c 3916{
c5aa993b 3917 struct objfile *objfile;
c906108c
SS
3918
3919 /* Were we given an osect to look up? NULL means do all of them. */
3920 if (osect)
3921 /* Have we got a cached copy of the target's overlay table? */
3922 if (cache_ovly_table != NULL)
3923 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3924 if (cache_ovly_table_base ==
9b27852e 3925 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3926 /* Then go ahead and try to look up this single section in the cache */
3927 if (simple_overlay_update_1 (osect))
3928 /* Found it! We're done. */
3929 return;
3930
3931 /* Cached table no good: need to read the entire table anew.
3932 Or else we want all the sections, in which case it's actually
3933 more efficient to read the whole table in one block anyway. */
3934
0d43edd1
JB
3935 if (! simple_read_overlay_table ())
3936 return;
3937
c906108c
SS
3938 /* Now may as well update all sections, even if only one was requested. */
3939 ALL_OBJSECTIONS (objfile, osect)
714835d5 3940 if (section_is_overlay (osect))
c5aa993b
JM
3941 {
3942 int i, size;
fbd35540
MS
3943 bfd *obfd = osect->objfile->obfd;
3944 asection *bsect = osect->the_bfd_section;
c5aa993b 3945
2c500098 3946 size = bfd_get_section_size (bsect);
c5aa993b 3947 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3948 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3949 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3950 /* && cache_ovly_table[i][SIZE] == size */ )
3951 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3952 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3953 break; /* finished with inner for loop: break out */
3954 }
3955 }
c906108c
SS
3956}
3957
086df311
DJ
3958/* Set the output sections and output offsets for section SECTP in
3959 ABFD. The relocation code in BFD will read these offsets, so we
3960 need to be sure they're initialized. We map each section to itself,
3961 with no offset; this means that SECTP->vma will be honored. */
3962
3963static void
3964symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3965{
3966 sectp->output_section = sectp;
3967 sectp->output_offset = 0;
3968}
3969
3970/* Relocate the contents of a debug section SECTP in ABFD. The
3971 contents are stored in BUF if it is non-NULL, or returned in a
3972 malloc'd buffer otherwise.
3973
3974 For some platforms and debug info formats, shared libraries contain
3975 relocations against the debug sections (particularly for DWARF-2;
3976 one affected platform is PowerPC GNU/Linux, although it depends on
3977 the version of the linker in use). Also, ELF object files naturally
3978 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3979 the relocations in order to get the locations of symbols correct.
3980 Another example that may require relocation processing, is the
3981 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3982 debug section. */
086df311
DJ
3983
3984bfd_byte *
3985symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3986{
065a2c74 3987 /* We're only interested in sections with relocation
086df311
DJ
3988 information. */
3989 if ((sectp->flags & SEC_RELOC) == 0)
3990 return NULL;
086df311
DJ
3991
3992 /* We will handle section offsets properly elsewhere, so relocate as if
3993 all sections begin at 0. */
3994 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3995
97606a13 3996 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3997}
c906108c 3998
31d99776
DJ
3999struct symfile_segment_data *
4000get_symfile_segment_data (bfd *abfd)
4001{
4002 struct sym_fns *sf = find_sym_fns (abfd);
4003
4004 if (sf == NULL)
4005 return NULL;
4006
4007 return sf->sym_segments (abfd);
4008}
4009
4010void
4011free_symfile_segment_data (struct symfile_segment_data *data)
4012{
4013 xfree (data->segment_bases);
4014 xfree (data->segment_sizes);
4015 xfree (data->segment_info);
4016 xfree (data);
4017}
4018
28c32713
JB
4019
4020/* Given:
4021 - DATA, containing segment addresses from the object file ABFD, and
4022 the mapping from ABFD's sections onto the segments that own them,
4023 and
4024 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4025 segment addresses reported by the target,
4026 store the appropriate offsets for each section in OFFSETS.
4027
4028 If there are fewer entries in SEGMENT_BASES than there are segments
4029 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4030
8d385431
DJ
4031 If there are more entries, then ignore the extra. The target may
4032 not be able to distinguish between an empty data segment and a
4033 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4034int
4035symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4036 struct section_offsets *offsets,
4037 int num_segment_bases,
4038 const CORE_ADDR *segment_bases)
4039{
4040 int i;
4041 asection *sect;
4042
28c32713
JB
4043 /* It doesn't make sense to call this function unless you have some
4044 segment base addresses. */
4045 gdb_assert (segment_bases > 0);
4046
31d99776
DJ
4047 /* If we do not have segment mappings for the object file, we
4048 can not relocate it by segments. */
4049 gdb_assert (data != NULL);
4050 gdb_assert (data->num_segments > 0);
4051
31d99776
DJ
4052 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4053 {
31d99776
DJ
4054 int which = data->segment_info[i];
4055
28c32713
JB
4056 gdb_assert (0 <= which && which <= data->num_segments);
4057
4058 /* Don't bother computing offsets for sections that aren't
4059 loaded as part of any segment. */
4060 if (! which)
4061 continue;
4062
4063 /* Use the last SEGMENT_BASES entry as the address of any extra
4064 segments mentioned in DATA->segment_info. */
31d99776 4065 if (which > num_segment_bases)
28c32713 4066 which = num_segment_bases;
31d99776 4067
28c32713
JB
4068 offsets->offsets[i] = (segment_bases[which - 1]
4069 - data->segment_bases[which - 1]);
31d99776
DJ
4070 }
4071
4072 return 1;
4073}
4074
4075static void
4076symfile_find_segment_sections (struct objfile *objfile)
4077{
4078 bfd *abfd = objfile->obfd;
4079 int i;
4080 asection *sect;
4081 struct symfile_segment_data *data;
4082
4083 data = get_symfile_segment_data (objfile->obfd);
4084 if (data == NULL)
4085 return;
4086
4087 if (data->num_segments != 1 && data->num_segments != 2)
4088 {
4089 free_symfile_segment_data (data);
4090 return;
4091 }
4092
4093 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4094 {
4095 CORE_ADDR vma;
4096 int which = data->segment_info[i];
4097
4098 if (which == 1)
4099 {
4100 if (objfile->sect_index_text == -1)
4101 objfile->sect_index_text = sect->index;
4102
4103 if (objfile->sect_index_rodata == -1)
4104 objfile->sect_index_rodata = sect->index;
4105 }
4106 else if (which == 2)
4107 {
4108 if (objfile->sect_index_data == -1)
4109 objfile->sect_index_data = sect->index;
4110
4111 if (objfile->sect_index_bss == -1)
4112 objfile->sect_index_bss = sect->index;
4113 }
4114 }
4115
4116 free_symfile_segment_data (data);
4117}
4118
c906108c 4119void
fba45db2 4120_initialize_symfile (void)
c906108c
SS
4121{
4122 struct cmd_list_element *c;
c5aa993b 4123
1a966eab
AC
4124 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4125Load symbol table from executable file FILE.\n\
c906108c 4126The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4127to execute."), &cmdlist);
5ba2abeb 4128 set_cmd_completer (c, filename_completer);
c906108c 4129
1a966eab 4130 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4131Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4132Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4133ADDR is the starting address of the file's text.\n\
db162d44
EZ
4134The optional arguments are section-name section-address pairs and\n\
4135should be specified if the data and bss segments are not contiguous\n\
1a966eab 4136with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4137 &cmdlist);
5ba2abeb 4138 set_cmd_completer (c, filename_completer);
c906108c 4139
1a966eab
AC
4140 c = add_cmd ("load", class_files, load_command, _("\
4141Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4142for access from GDB.\n\
4143A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4144 set_cmd_completer (c, filename_completer);
c906108c 4145
5bf193a2
AC
4146 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4147 &symbol_reloading, _("\
4148Set dynamic symbol table reloading multiple times in one run."), _("\
4149Show dynamic symbol table reloading multiple times in one run."), NULL,
4150 NULL,
920d2a44 4151 show_symbol_reloading,
5bf193a2 4152 &setlist, &showlist);
c906108c 4153
c5aa993b 4154 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4155 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4156 "overlay ", 0, &cmdlist);
4157
4158 add_com_alias ("ovly", "overlay", class_alias, 1);
4159 add_com_alias ("ov", "overlay", class_alias, 1);
4160
c5aa993b 4161 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4162 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4163
c5aa993b 4164 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4165 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4166
c5aa993b 4167 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4168 _("List mappings of overlay sections."), &overlaylist);
c906108c 4169
c5aa993b 4170 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4171 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4172 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4173 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4174 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4175 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4176 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4177 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4178
4179 /* Filename extension to source language lookup table: */
4180 init_filename_language_table ();
26c41df3
AC
4181 add_setshow_string_noescape_cmd ("extension-language", class_files,
4182 &ext_args, _("\
4183Set mapping between filename extension and source language."), _("\
4184Show mapping between filename extension and source language."), _("\
4185Usage: set extension-language .foo bar"),
4186 set_ext_lang_command,
920d2a44 4187 show_ext_args,
26c41df3 4188 &setlist, &showlist);
c906108c 4189
c5aa993b 4190 add_info ("extensions", info_ext_lang_command,
1bedd215 4191 _("All filename extensions associated with a source language."));
917317f4 4192
525226b5
AC
4193 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4194 &debug_file_directory, _("\
4195Set the directory where separate debug symbols are searched for."), _("\
4196Show the directory where separate debug symbols are searched for."), _("\
4197Separate debug symbols are first searched for in the same\n\
4198directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4199and lastly at the path of the directory of the binary with\n\
4200the global debug-file directory prepended."),
4201 NULL,
920d2a44 4202 show_debug_file_directory,
525226b5 4203 &setlist, &showlist);
c906108c 4204}
This page took 1.283077 seconds and 4 git commands to generate.