* armnbsd-tdep.c: Don't include "nbsd-tdep.h".
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
777ea8f1
DJ
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
c906108c 54
c906108c
SS
55#include <sys/types.h>
56#include <fcntl.h>
57#include "gdb_string.h"
58#include "gdb_stat.h"
59#include <ctype.h>
60#include <time.h>
2b71414d 61#include <sys/time.h>
c906108c 62
c906108c 63
9a4105ab
AC
64int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
65void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
66 unsigned long section_sent,
67 unsigned long section_size,
68 unsigned long total_sent,
c2d11a7d 69 unsigned long total_size);
769d7dc4
AC
70void (*deprecated_pre_add_symbol_hook) (const char *);
71void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 72void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 73
74b7792f
AC
74static void clear_symtab_users_cleanup (void *ignore);
75
c906108c 76/* Global variables owned by this file */
c5aa993b 77int readnow_symbol_files; /* Read full symbols immediately */
c906108c 78
c906108c
SS
79/* External variables and functions referenced. */
80
a14ed312 81extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
82
83/* Functions this file defines */
84
85#if 0
a14ed312
KB
86static int simple_read_overlay_region_table (void);
87static void simple_free_overlay_region_table (void);
c906108c
SS
88#endif
89
a14ed312 90static void set_initial_language (void);
c906108c 91
a14ed312 92static void load_command (char *, int);
c906108c 93
d7db6da9
FN
94static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
a14ed312 96static void add_symbol_file_command (char *, int);
c906108c 97
a14ed312 98static void add_shared_symbol_files_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
a14ed312 108static void find_sym_fns (struct objfile *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114static int overlay_is_mapped (struct obj_section *);
c906108c 115
a14ed312 116void list_overlays_command (char *, int);
c906108c 117
a14ed312 118void map_overlay_command (char *, int);
c906108c 119
a14ed312 120void unmap_overlay_command (char *, int);
c906108c 121
a14ed312 122static void overlay_auto_command (char *, int);
c906108c 123
a14ed312 124static void overlay_manual_command (char *, int);
c906108c 125
a14ed312 126static void overlay_off_command (char *, int);
c906108c 127
a14ed312 128static void overlay_load_command (char *, int);
c906108c 129
a14ed312 130static void overlay_command (char *, int);
c906108c 131
a14ed312 132static void simple_free_overlay_table (void);
c906108c 133
a14ed312 134static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 135
a14ed312 136static int simple_read_overlay_table (void);
c906108c 137
a14ed312 138static int simple_overlay_update_1 (struct obj_section *);
c906108c 139
a14ed312 140static void add_filename_language (char *ext, enum language lang);
392a587b 141
a14ed312 142static void info_ext_lang_command (char *args, int from_tty);
392a587b 143
5b5d99cf
JB
144static char *find_separate_debug_file (struct objfile *objfile);
145
a14ed312 146static void init_filename_language_table (void);
392a587b 147
a14ed312 148void _initialize_symfile (void);
c906108c
SS
149
150/* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154static struct sym_fns *symtab_fns = NULL;
155
156/* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159#ifdef SYMBOL_RELOADING_DEFAULT
160int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161#else
162int symbol_reloading = 0;
163#endif
920d2a44
AC
164static void
165show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("\
169Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171}
172
c906108c 173
b7209cb4
FF
174/* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
c906108c 181 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 182 report all the functions that are actually present. */
c906108c
SS
183
184int auto_solib_add = 1;
b7209cb4
FF
185
186/* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194int auto_solib_limit;
c906108c 195\f
c5aa993b 196
0fe19209
DC
197/* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
c906108c
SS
199
200static int
0cd64fe2 201compare_psymbols (const void *s1p, const void *s2p)
c906108c 202{
0fe19209
DC
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
4725b721
PH
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
208}
209
210void
fba45db2 211sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
212{
213 /* Sort the global list; don't sort the static list */
214
c5aa993b
JM
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
217 compare_psymbols);
218}
219
c906108c
SS
220/* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225char *
63ca651f 226obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 227{
52f0bd74 228 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
aa1ee363
AC
233 const char *p1 = ptr;
234 char *p2 = p;
63ca651f 235 const char *end = ptr + size;
c906108c
SS
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241}
242
243/* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246char *
fba45db2
KB
247obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
c906108c 249{
52f0bd74
AC
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256}
257
258/* True if we are nested inside psymtab_to_symtab. */
259
260int currently_reading_symtab = 0;
261
262static void
fba45db2 263decrement_reading_symtab (void *dummy)
c906108c
SS
264{
265 currently_reading_symtab--;
266}
267
268/* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273struct symtab *
aa1ee363 274psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
275{
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
c5aa993b 282 {
c906108c
SS
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290}
291
5417f6dc
RM
292/* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
c906108c
SS
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301void
4efb68b1 302find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 303{
c5aa993b 304 asection **lowest = (asection **) obj;
c906108c
SS
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316}
317
a39a16c4
MM
318/* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320struct section_addr_info *
321alloc_section_addr_info (size_t num_sections)
322{
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333}
62557bbc 334
7b90c3f9
JB
335
336/* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338struct section_addr_info *
339copy_section_addr_info (struct section_addr_info *addrs)
340{
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357}
358
359
360
62557bbc
KB
361/* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364extern struct section_addr_info *
365build_section_addr_info_from_section_table (const struct section_table *start,
366 const struct section_table *end)
367{
368 struct section_addr_info *sap;
369 const struct section_table *stp;
370 int oidx;
371
a39a16c4 372 sap = alloc_section_addr_info (end - start);
62557bbc
KB
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
5417f6dc 376 if (bfd_get_section_flags (stp->bfd,
fbd35540 377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 378 && oidx < end - start)
62557bbc
KB
379 {
380 sap->other[oidx].addr = stp->addr;
5417f6dc 381 sap->other[oidx].name
fbd35540 382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389}
390
391
392/* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394extern void
395free_section_addr_info (struct section_addr_info *sap)
396{
397 int idx;
398
a39a16c4 399 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 400 if (sap->other[idx].name)
b8c9b27d
KB
401 xfree (sap->other[idx].name);
402 xfree (sap);
62557bbc
KB
403}
404
405
e8289572
JB
406/* Initialize OBJFILE's sect_index_* members. */
407static void
408init_objfile_sect_indices (struct objfile *objfile)
c906108c 409{
e8289572 410 asection *sect;
c906108c 411 int i;
5417f6dc 412
b8fbeb18 413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 426 if (sect)
b8fbeb18
EZ
427 objfile->sect_index_rodata = sect->index;
428
bbcd32ad
FF
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. Except when explicitly adding symbol files at
433 some address, section_offsets contains nothing but zeros, so it
434 doesn't matter which slot in section_offsets the individual
435 sect_index_* members index into. So if they are all zero, it is
436 safe to just point all the currently uninitialized indices to the
437 first slot. */
438
439 for (i = 0; i < objfile->num_sections; i++)
440 {
441 if (ANOFFSET (objfile->section_offsets, i) != 0)
442 {
443 break;
444 }
445 }
446 if (i == objfile->num_sections)
447 {
448 if (objfile->sect_index_text == -1)
449 objfile->sect_index_text = 0;
450 if (objfile->sect_index_data == -1)
451 objfile->sect_index_data = 0;
452 if (objfile->sect_index_bss == -1)
453 objfile->sect_index_bss = 0;
454 if (objfile->sect_index_rodata == -1)
455 objfile->sect_index_rodata = 0;
456 }
b8fbeb18 457}
c906108c 458
c1bd25fd
DJ
459/* The arguments to place_section. */
460
461struct place_section_arg
462{
463 struct section_offsets *offsets;
464 CORE_ADDR lowest;
465};
466
467/* Find a unique offset to use for loadable section SECT if
468 the user did not provide an offset. */
469
470void
471place_section (bfd *abfd, asection *sect, void *obj)
472{
473 struct place_section_arg *arg = obj;
474 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
475 int done;
3bd72c6f 476 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd
DJ
477
478 /* We are only interested in loadable sections. */
479 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
480 return;
481
482 /* If the user specified an offset, honor it. */
483 if (offsets[sect->index] != 0)
484 return;
485
486 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
487 start_addr = (arg->lowest + align - 1) & -align;
488
c1bd25fd
DJ
489 do {
490 asection *cur_sec;
c1bd25fd 491
c1bd25fd
DJ
492 done = 1;
493
494 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
495 {
496 int indx = cur_sec->index;
497 CORE_ADDR cur_offset;
498
499 /* We don't need to compare against ourself. */
500 if (cur_sec == sect)
501 continue;
502
503 /* We can only conflict with loadable sections. */
504 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
505 continue;
506
507 /* We do not expect this to happen; just ignore sections in a
508 relocatable file with an assigned VMA. */
509 if (bfd_section_vma (abfd, cur_sec) != 0)
510 continue;
511
512 /* If the section offset is 0, either the section has not been placed
513 yet, or it was the lowest section placed (in which case LOWEST
514 will be past its end). */
515 if (offsets[indx] == 0)
516 continue;
517
518 /* If this section would overlap us, then we must move up. */
519 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
520 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
521 {
522 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
523 start_addr = (start_addr + align - 1) & -align;
524 done = 0;
3bd72c6f 525 break;
c1bd25fd
DJ
526 }
527
528 /* Otherwise, we appear to be OK. So far. */
529 }
530 }
531 while (!done);
532
533 offsets[sect->index] = start_addr;
534 arg->lowest = start_addr + bfd_get_section_size (sect);
535
536 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
537}
e8289572
JB
538
539/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 540 of how to represent it for fast symbol reading. This is the default
e8289572
JB
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545void
546default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548{
549 int i;
550
a39a16c4 551 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 552 objfile->section_offsets = (struct section_offsets *)
5417f6dc 553 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 555 memset (objfile->section_offsets, 0,
a39a16c4 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
a39a16c4 560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
c1bd25fd
DJ
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
582 arg.offsets = objfile->section_offsets;
583 arg.lowest = 0;
584 bfd_map_over_sections (objfile->obfd, place_section, &arg);
585 }
586
e8289572
JB
587 /* Remember the bfd indexes for the .text, .data, .bss and
588 .rodata sections. */
589 init_objfile_sect_indices (objfile);
590}
591
592
c906108c
SS
593/* Process a symbol file, as either the main file or as a dynamically
594 loaded file.
595
96baa820
JM
596 OBJFILE is where the symbols are to be read from.
597
7e8580c1
JB
598 ADDRS is the list of section load addresses. If the user has given
599 an 'add-symbol-file' command, then this is the list of offsets and
600 addresses he or she provided as arguments to the command; or, if
601 we're handling a shared library, these are the actual addresses the
602 sections are loaded at, according to the inferior's dynamic linker
603 (as gleaned by GDB's shared library code). We convert each address
604 into an offset from the section VMA's as it appears in the object
605 file, and then call the file's sym_offsets function to convert this
606 into a format-specific offset table --- a `struct section_offsets'.
607 If ADDRS is non-zero, OFFSETS must be zero.
608
609 OFFSETS is a table of section offsets already in the right
610 format-specific representation. NUM_OFFSETS is the number of
611 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
612 assume this is the proper table the call to sym_offsets described
613 above would produce. Instead of calling sym_offsets, we just dump
614 it right into objfile->section_offsets. (When we're re-reading
615 symbols from an objfile, we don't have the original load address
616 list any more; all we have is the section offset table.) If
617 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
618
619 MAINLINE is nonzero if this is the main symbol file, or zero if
620 it's an extra symbol file such as dynamically loaded code.
621
622 VERBO is nonzero if the caller has printed a verbose message about
623 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
624
625void
7e8580c1
JB
626syms_from_objfile (struct objfile *objfile,
627 struct section_addr_info *addrs,
628 struct section_offsets *offsets,
629 int num_offsets,
630 int mainline,
631 int verbo)
c906108c 632{
a39a16c4 633 struct section_addr_info *local_addr = NULL;
c906108c 634 struct cleanup *old_chain;
2acceee2 635
7e8580c1 636 gdb_assert (! (addrs && offsets));
2acceee2 637
c906108c
SS
638 init_entry_point_info (objfile);
639 find_sym_fns (objfile);
640
75245b24
MS
641 if (objfile->sf == NULL)
642 return; /* No symbols. */
643
c906108c
SS
644 /* Make sure that partially constructed symbol tables will be cleaned up
645 if an error occurs during symbol reading. */
74b7792f 646 old_chain = make_cleanup_free_objfile (objfile);
c906108c 647
a39a16c4
MM
648 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
649 list. We now establish the convention that an addr of zero means
650 no load address was specified. */
651 if (! addrs && ! offsets)
652 {
5417f6dc 653 local_addr
a39a16c4
MM
654 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
655 make_cleanup (xfree, local_addr);
656 addrs = local_addr;
657 }
658
659 /* Now either addrs or offsets is non-zero. */
660
c5aa993b 661 if (mainline)
c906108c
SS
662 {
663 /* We will modify the main symbol table, make sure that all its users
c5aa993b 664 will be cleaned up if an error occurs during symbol reading. */
74b7792f 665 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
666
667 /* Since no error yet, throw away the old symbol table. */
668
669 if (symfile_objfile != NULL)
670 {
671 free_objfile (symfile_objfile);
672 symfile_objfile = NULL;
673 }
674
675 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
676 If the user wants to get rid of them, they should do "symbol-file"
677 without arguments first. Not sure this is the best behavior
678 (PR 2207). */
c906108c 679
c5aa993b 680 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
681 }
682
683 /* Convert addr into an offset rather than an absolute address.
684 We find the lowest address of a loaded segment in the objfile,
53a5351d 685 and assume that <addr> is where that got loaded.
c906108c 686
53a5351d
JM
687 We no longer warn if the lowest section is not a text segment (as
688 happens for the PA64 port. */
1549f619 689 if (!mainline && addrs && addrs->other[0].name)
c906108c 690 {
1549f619
EZ
691 asection *lower_sect;
692 asection *sect;
693 CORE_ADDR lower_offset;
694 int i;
695
5417f6dc 696 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
697 continguous sections. FIXME!! won't work without call to find
698 .text first, but this assumes text is lowest section. */
699 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
700 if (lower_sect == NULL)
c906108c 701 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 702 &lower_sect);
2acceee2 703 if (lower_sect == NULL)
8a3fe4f8 704 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 705 objfile->name);
5417f6dc 706 else
b8fbeb18 707 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 708 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
709 objfile->name,
710 bfd_section_name (objfile->obfd, lower_sect),
711 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
712 if (lower_sect != NULL)
713 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
714 else
715 lower_offset = 0;
5417f6dc 716
13de58df 717 /* Calculate offsets for the loadable sections.
2acceee2
JM
718 FIXME! Sections must be in order of increasing loadable section
719 so that contiguous sections can use the lower-offset!!!
5417f6dc 720
13de58df
JB
721 Adjust offsets if the segments are not contiguous.
722 If the section is contiguous, its offset should be set to
2acceee2
JM
723 the offset of the highest loadable section lower than it
724 (the loadable section directly below it in memory).
725 this_offset = lower_offset = lower_addr - lower_orig_addr */
726
1549f619 727 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
728 {
729 if (addrs->other[i].addr != 0)
730 {
731 sect = bfd_get_section_by_name (objfile->obfd,
732 addrs->other[i].name);
733 if (sect)
734 {
735 addrs->other[i].addr
736 -= bfd_section_vma (objfile->obfd, sect);
737 lower_offset = addrs->other[i].addr;
738 /* This is the index used by BFD. */
739 addrs->other[i].sectindex = sect->index ;
740 }
741 else
742 {
8a3fe4f8 743 warning (_("section %s not found in %s"),
5417f6dc 744 addrs->other[i].name,
7e8580c1
JB
745 objfile->name);
746 addrs->other[i].addr = 0;
747 }
748 }
749 else
750 addrs->other[i].addr = lower_offset;
751 }
c906108c
SS
752 }
753
754 /* Initialize symbol reading routines for this objfile, allow complaints to
755 appear for this new file, and record how verbose to be, then do the
756 initial symbol reading for this file. */
757
c5aa993b 758 (*objfile->sf->sym_init) (objfile);
b9caf505 759 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 760
7e8580c1
JB
761 if (addrs)
762 (*objfile->sf->sym_offsets) (objfile, addrs);
763 else
764 {
765 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
766
767 /* Just copy in the offset table directly as given to us. */
768 objfile->num_sections = num_offsets;
769 objfile->section_offsets
770 = ((struct section_offsets *)
8b92e4d5 771 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
772 memcpy (objfile->section_offsets, offsets, size);
773
774 init_objfile_sect_indices (objfile);
775 }
c906108c 776
52d16ba8 777#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
778 /* This is a SVR4/SunOS specific hack, I think. In any event, it
779 screws RS/6000. sym_offsets should be doing this sort of thing,
780 because it knows the mapping between bfd sections and
781 section_offsets. */
782 /* This is a hack. As far as I can tell, section offsets are not
783 target dependent. They are all set to addr with a couple of
784 exceptions. The exceptions are sysvr4 shared libraries, whose
785 offsets are kept in solib structures anyway and rs6000 xcoff
786 which handles shared libraries in a completely unique way.
787
788 Section offsets are built similarly, except that they are built
789 by adding addr in all cases because there is no clear mapping
790 from section_offsets into actual sections. Note that solib.c
96baa820 791 has a different algorithm for finding section offsets.
c906108c
SS
792
793 These should probably all be collapsed into some target
794 independent form of shared library support. FIXME. */
795
2acceee2 796 if (addrs)
c906108c
SS
797 {
798 struct obj_section *s;
799
5417f6dc
RM
800 /* Map section offsets in "addr" back to the object's
801 sections by comparing the section names with bfd's
2acceee2
JM
802 section names. Then adjust the section address by
803 the offset. */ /* for gdb/13815 */
5417f6dc 804
96baa820 805 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 806 {
2acceee2
JM
807 CORE_ADDR s_addr = 0;
808 int i;
809
5417f6dc 810 for (i = 0;
a39a16c4 811 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 812 i++)
5417f6dc
RM
813 if (strcmp (bfd_section_name (s->objfile->obfd,
814 s->the_bfd_section),
fbd35540 815 addrs->other[i].name) == 0)
2acceee2 816 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 817
c906108c 818 s->addr -= s->offset;
2acceee2 819 s->addr += s_addr;
c906108c 820 s->endaddr -= s->offset;
2acceee2
JM
821 s->endaddr += s_addr;
822 s->offset += s_addr;
c906108c
SS
823 }
824 }
52d16ba8 825#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 826
96baa820 827 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 828
c906108c
SS
829 /* Don't allow char * to have a typename (else would get caddr_t).
830 Ditto void *. FIXME: Check whether this is now done by all the
831 symbol readers themselves (many of them now do), and if so remove
832 it from here. */
833
834 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
835 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
836
837 /* Mark the objfile has having had initial symbol read attempted. Note
838 that this does not mean we found any symbols... */
839
c5aa993b 840 objfile->flags |= OBJF_SYMS;
c906108c
SS
841
842 /* Discard cleanups as symbol reading was successful. */
843
844 discard_cleanups (old_chain);
c906108c
SS
845}
846
847/* Perform required actions after either reading in the initial
848 symbols for a new objfile, or mapping in the symbols from a reusable
849 objfile. */
c5aa993b 850
c906108c 851void
fba45db2 852new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
853{
854
855 /* If this is the main symbol file we have to clean up all users of the
856 old main symbol file. Otherwise it is sufficient to fixup all the
857 breakpoints that may have been redefined by this symbol file. */
858 if (mainline)
859 {
860 /* OK, make it the "real" symbol file. */
861 symfile_objfile = objfile;
862
863 clear_symtab_users ();
864 }
865 else
866 {
867 breakpoint_re_set ();
868 }
869
870 /* We're done reading the symbol file; finish off complaints. */
b9caf505 871 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
872}
873
874/* Process a symbol file, as either the main file or as a dynamically
875 loaded file.
876
5417f6dc
RM
877 ABFD is a BFD already open on the file, as from symfile_bfd_open.
878 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
879
880 FROM_TTY says how verbose to be.
881
882 MAINLINE specifies whether this is the main symbol file, or whether
883 it's an extra symbol file such as dynamically loaded code.
884
885 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
886 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
887 non-zero.
c906108c 888
c906108c
SS
889 Upon success, returns a pointer to the objfile that was added.
890 Upon failure, jumps back to command level (never returns). */
7904e09f 891static struct objfile *
5417f6dc 892symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
893 struct section_addr_info *addrs,
894 struct section_offsets *offsets,
895 int num_offsets,
896 int mainline, int flags)
c906108c
SS
897{
898 struct objfile *objfile;
899 struct partial_symtab *psymtab;
5b5d99cf 900 char *debugfile;
7b90c3f9 901 struct section_addr_info *orig_addrs = NULL;
a39a16c4 902 struct cleanup *my_cleanups;
5417f6dc 903 const char *name = bfd_get_filename (abfd);
c906108c 904
5417f6dc 905 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 906
5417f6dc
RM
907 /* Give user a chance to burp if we'd be
908 interactively wiping out any existing symbols. */
c906108c
SS
909
910 if ((have_full_symbols () || have_partial_symbols ())
911 && mainline
912 && from_tty
913 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 914 error (_("Not confirmed."));
c906108c 915
2df3850c 916 objfile = allocate_objfile (abfd, flags);
5417f6dc 917 discard_cleanups (my_cleanups);
c906108c 918
a39a16c4 919 if (addrs)
63cd24fe 920 {
7b90c3f9
JB
921 orig_addrs = copy_section_addr_info (addrs);
922 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 923 }
a39a16c4 924
78a4a9b9
AC
925 /* We either created a new mapped symbol table, mapped an existing
926 symbol table file which has not had initial symbol reading
927 performed, or need to read an unmapped symbol table. */
928 if (from_tty || info_verbose)
c906108c 929 {
769d7dc4
AC
930 if (deprecated_pre_add_symbol_hook)
931 deprecated_pre_add_symbol_hook (name);
78a4a9b9 932 else
c906108c 933 {
a3f17187 934 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
935 wrap_here ("");
936 gdb_flush (gdb_stdout);
937 }
c906108c 938 }
78a4a9b9
AC
939 syms_from_objfile (objfile, addrs, offsets, num_offsets,
940 mainline, from_tty);
c906108c
SS
941
942 /* We now have at least a partial symbol table. Check to see if the
943 user requested that all symbols be read on initial access via either
944 the gdb startup command line or on a per symbol file basis. Expand
945 all partial symbol tables for this objfile if so. */
946
2acceee2 947 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
948 {
949 if (from_tty || info_verbose)
950 {
a3f17187 951 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
952 wrap_here ("");
953 gdb_flush (gdb_stdout);
954 }
955
c5aa993b 956 for (psymtab = objfile->psymtabs;
c906108c 957 psymtab != NULL;
c5aa993b 958 psymtab = psymtab->next)
c906108c
SS
959 {
960 psymtab_to_symtab (psymtab);
961 }
962 }
963
5b5d99cf
JB
964 debugfile = find_separate_debug_file (objfile);
965 if (debugfile)
966 {
5b5d99cf
JB
967 if (addrs != NULL)
968 {
969 objfile->separate_debug_objfile
a39a16c4 970 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
971 }
972 else
973 {
974 objfile->separate_debug_objfile
975 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
976 }
977 objfile->separate_debug_objfile->separate_debug_objfile_backlink
978 = objfile;
5417f6dc 979
5b5d99cf
JB
980 /* Put the separate debug object before the normal one, this is so that
981 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
982 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 983
5b5d99cf
JB
984 xfree (debugfile);
985 }
5417f6dc 986
cb3c37b2
JB
987 if (!have_partial_symbols () && !have_full_symbols ())
988 {
989 wrap_here ("");
a3f17187 990 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
991 if (from_tty || info_verbose)
992 printf_filtered ("...");
993 else
994 printf_filtered ("\n");
cb3c37b2
JB
995 wrap_here ("");
996 }
997
c906108c
SS
998 if (from_tty || info_verbose)
999 {
769d7dc4
AC
1000 if (deprecated_post_add_symbol_hook)
1001 deprecated_post_add_symbol_hook ();
c906108c 1002 else
c5aa993b 1003 {
a3f17187 1004 printf_unfiltered (_("done.\n"));
c5aa993b 1005 }
c906108c
SS
1006 }
1007
481d0f41
JB
1008 /* We print some messages regardless of whether 'from_tty ||
1009 info_verbose' is true, so make sure they go out at the right
1010 time. */
1011 gdb_flush (gdb_stdout);
1012
a39a16c4
MM
1013 do_cleanups (my_cleanups);
1014
109f874e
MS
1015 if (objfile->sf == NULL)
1016 return objfile; /* No symbols. */
1017
c906108c
SS
1018 new_symfile_objfile (objfile, mainline, from_tty);
1019
9a4105ab
AC
1020 if (deprecated_target_new_objfile_hook)
1021 deprecated_target_new_objfile_hook (objfile);
c906108c 1022
ce7d4522 1023 bfd_cache_close_all ();
c906108c
SS
1024 return (objfile);
1025}
1026
7904e09f 1027
eb4556d7
JB
1028/* Process the symbol file ABFD, as either the main file or as a
1029 dynamically loaded file.
1030
1031 See symbol_file_add_with_addrs_or_offsets's comments for
1032 details. */
1033struct objfile *
1034symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1035 struct section_addr_info *addrs,
1036 int mainline, int flags)
1037{
1038 return symbol_file_add_with_addrs_or_offsets (abfd,
1039 from_tty, addrs, 0, 0,
1040 mainline, flags);
1041}
1042
1043
7904e09f
JB
1044/* Process a symbol file, as either the main file or as a dynamically
1045 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1046 for details. */
1047struct objfile *
1048symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1049 int mainline, int flags)
1050{
eb4556d7
JB
1051 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1052 addrs, mainline, flags);
7904e09f
JB
1053}
1054
1055
d7db6da9
FN
1056/* Call symbol_file_add() with default values and update whatever is
1057 affected by the loading of a new main().
1058 Used when the file is supplied in the gdb command line
1059 and by some targets with special loading requirements.
1060 The auxiliary function, symbol_file_add_main_1(), has the flags
1061 argument for the switches that can only be specified in the symbol_file
1062 command itself. */
5417f6dc 1063
1adeb98a
FN
1064void
1065symbol_file_add_main (char *args, int from_tty)
1066{
d7db6da9
FN
1067 symbol_file_add_main_1 (args, from_tty, 0);
1068}
1069
1070static void
1071symbol_file_add_main_1 (char *args, int from_tty, int flags)
1072{
1073 symbol_file_add (args, from_tty, NULL, 1, flags);
1074
d7db6da9
FN
1075 /* Getting new symbols may change our opinion about
1076 what is frameless. */
1077 reinit_frame_cache ();
1078
1079 set_initial_language ();
1adeb98a
FN
1080}
1081
1082void
1083symbol_file_clear (int from_tty)
1084{
1085 if ((have_full_symbols () || have_partial_symbols ())
1086 && from_tty
0430b0d6
AS
1087 && (symfile_objfile
1088 ? !query (_("Discard symbol table from `%s'? "),
1089 symfile_objfile->name)
1090 : !query (_("Discard symbol table? "))))
8a3fe4f8 1091 error (_("Not confirmed."));
1adeb98a
FN
1092 free_all_objfiles ();
1093
1094 /* solib descriptors may have handles to objfiles. Since their
1095 storage has just been released, we'd better wipe the solib
1096 descriptors as well.
1097 */
1098#if defined(SOLIB_RESTART)
1099 SOLIB_RESTART ();
1100#endif
1101
1102 symfile_objfile = NULL;
1103 if (from_tty)
a3f17187 1104 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1105}
1106
5b5d99cf
JB
1107static char *
1108get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1109{
1110 asection *sect;
1111 bfd_size_type debuglink_size;
1112 unsigned long crc32;
1113 char *contents;
1114 int crc_offset;
1115 unsigned char *p;
5417f6dc 1116
5b5d99cf
JB
1117 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1118
1119 if (sect == NULL)
1120 return NULL;
1121
1122 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1123
5b5d99cf
JB
1124 contents = xmalloc (debuglink_size);
1125 bfd_get_section_contents (objfile->obfd, sect, contents,
1126 (file_ptr)0, (bfd_size_type)debuglink_size);
1127
1128 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1129 crc_offset = strlen (contents) + 1;
1130 crc_offset = (crc_offset + 3) & ~3;
1131
1132 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1133
5b5d99cf
JB
1134 *crc32_out = crc32;
1135 return contents;
1136}
1137
1138static int
1139separate_debug_file_exists (const char *name, unsigned long crc)
1140{
1141 unsigned long file_crc = 0;
1142 int fd;
777ea8f1 1143 gdb_byte buffer[8*1024];
5b5d99cf
JB
1144 int count;
1145
1146 fd = open (name, O_RDONLY | O_BINARY);
1147 if (fd < 0)
1148 return 0;
1149
1150 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1151 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1152
1153 close (fd);
1154
1155 return crc == file_crc;
1156}
1157
1158static char *debug_file_directory = NULL;
920d2a44
AC
1159static void
1160show_debug_file_directory (struct ui_file *file, int from_tty,
1161 struct cmd_list_element *c, const char *value)
1162{
1163 fprintf_filtered (file, _("\
1164The directory where separate debug symbols are searched for is \"%s\".\n"),
1165 value);
1166}
5b5d99cf
JB
1167
1168#if ! defined (DEBUG_SUBDIRECTORY)
1169#define DEBUG_SUBDIRECTORY ".debug"
1170#endif
1171
1172static char *
1173find_separate_debug_file (struct objfile *objfile)
1174{
1175 asection *sect;
1176 char *basename;
1177 char *dir;
1178 char *debugfile;
1179 char *name_copy;
1180 bfd_size_type debuglink_size;
1181 unsigned long crc32;
1182 int i;
1183
1184 basename = get_debug_link_info (objfile, &crc32);
1185
1186 if (basename == NULL)
1187 return NULL;
5417f6dc 1188
5b5d99cf
JB
1189 dir = xstrdup (objfile->name);
1190
fe36c4f4
JB
1191 /* Strip off the final filename part, leaving the directory name,
1192 followed by a slash. Objfile names should always be absolute and
1193 tilde-expanded, so there should always be a slash in there
1194 somewhere. */
5b5d99cf
JB
1195 for (i = strlen(dir) - 1; i >= 0; i--)
1196 {
1197 if (IS_DIR_SEPARATOR (dir[i]))
1198 break;
1199 }
fe36c4f4 1200 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1201 dir[i+1] = '\0';
5417f6dc 1202
5b5d99cf
JB
1203 debugfile = alloca (strlen (debug_file_directory) + 1
1204 + strlen (dir)
1205 + strlen (DEBUG_SUBDIRECTORY)
1206 + strlen ("/")
5417f6dc 1207 + strlen (basename)
5b5d99cf
JB
1208 + 1);
1209
1210 /* First try in the same directory as the original file. */
1211 strcpy (debugfile, dir);
1212 strcat (debugfile, basename);
1213
1214 if (separate_debug_file_exists (debugfile, crc32))
1215 {
1216 xfree (basename);
1217 xfree (dir);
1218 return xstrdup (debugfile);
1219 }
5417f6dc 1220
5b5d99cf
JB
1221 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1222 strcpy (debugfile, dir);
1223 strcat (debugfile, DEBUG_SUBDIRECTORY);
1224 strcat (debugfile, "/");
1225 strcat (debugfile, basename);
1226
1227 if (separate_debug_file_exists (debugfile, crc32))
1228 {
1229 xfree (basename);
1230 xfree (dir);
1231 return xstrdup (debugfile);
1232 }
5417f6dc 1233
5b5d99cf
JB
1234 /* Then try in the global debugfile directory. */
1235 strcpy (debugfile, debug_file_directory);
1236 strcat (debugfile, "/");
1237 strcat (debugfile, dir);
5b5d99cf
JB
1238 strcat (debugfile, basename);
1239
1240 if (separate_debug_file_exists (debugfile, crc32))
1241 {
1242 xfree (basename);
1243 xfree (dir);
1244 return xstrdup (debugfile);
1245 }
5417f6dc 1246
5b5d99cf
JB
1247 xfree (basename);
1248 xfree (dir);
1249 return NULL;
1250}
1251
1252
c906108c
SS
1253/* This is the symbol-file command. Read the file, analyze its
1254 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1255 the command is rather bizarre:
1256
1257 1. The function buildargv implements various quoting conventions
1258 which are undocumented and have little or nothing in common with
1259 the way things are quoted (or not quoted) elsewhere in GDB.
1260
1261 2. Options are used, which are not generally used in GDB (perhaps
1262 "set mapped on", "set readnow on" would be better)
1263
1264 3. The order of options matters, which is contrary to GNU
c906108c
SS
1265 conventions (because it is confusing and inconvenient). */
1266
1267void
fba45db2 1268symbol_file_command (char *args, int from_tty)
c906108c 1269{
c906108c
SS
1270 dont_repeat ();
1271
1272 if (args == NULL)
1273 {
1adeb98a 1274 symbol_file_clear (from_tty);
c906108c
SS
1275 }
1276 else
1277 {
cb2f3a29
MK
1278 char **argv = buildargv (args);
1279 int flags = OBJF_USERLOADED;
1280 struct cleanup *cleanups;
1281 char *name = NULL;
1282
1283 if (argv == NULL)
1284 nomem (0);
1285
7a292a7a 1286 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1287 while (*argv != NULL)
1288 {
78a4a9b9
AC
1289 if (strcmp (*argv, "-readnow") == 0)
1290 flags |= OBJF_READNOW;
1291 else if (**argv == '-')
8a3fe4f8 1292 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1293 else
1294 {
cb2f3a29 1295 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1296 name = *argv;
78a4a9b9 1297 }
cb2f3a29 1298
c906108c
SS
1299 argv++;
1300 }
1301
1302 if (name == NULL)
cb2f3a29
MK
1303 error (_("no symbol file name was specified"));
1304
c906108c
SS
1305 do_cleanups (cleanups);
1306 }
1307}
1308
1309/* Set the initial language.
1310
cb2f3a29
MK
1311 FIXME: A better solution would be to record the language in the
1312 psymtab when reading partial symbols, and then use it (if known) to
1313 set the language. This would be a win for formats that encode the
1314 language in an easily discoverable place, such as DWARF. For
1315 stabs, we can jump through hoops looking for specially named
1316 symbols or try to intuit the language from the specific type of
1317 stabs we find, but we can't do that until later when we read in
1318 full symbols. */
c906108c
SS
1319
1320static void
fba45db2 1321set_initial_language (void)
c906108c
SS
1322{
1323 struct partial_symtab *pst;
c5aa993b 1324 enum language lang = language_unknown;
c906108c
SS
1325
1326 pst = find_main_psymtab ();
1327 if (pst != NULL)
1328 {
c5aa993b 1329 if (pst->filename != NULL)
cb2f3a29
MK
1330 lang = deduce_language_from_filename (pst->filename);
1331
c906108c
SS
1332 if (lang == language_unknown)
1333 {
c5aa993b
JM
1334 /* Make C the default language */
1335 lang = language_c;
c906108c 1336 }
cb2f3a29 1337
c906108c 1338 set_language (lang);
cb2f3a29 1339 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1340 }
1341}
1342
cb2f3a29
MK
1343/* Open the file specified by NAME and hand it off to BFD for
1344 preliminary analysis. Return a newly initialized bfd *, which
1345 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1346 absolute). In case of trouble, error() is called. */
c906108c
SS
1347
1348bfd *
fba45db2 1349symfile_bfd_open (char *name)
c906108c
SS
1350{
1351 bfd *sym_bfd;
1352 int desc;
1353 char *absolute_name;
1354
cb2f3a29 1355 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1356
1357 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1358 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1359 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1360#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1361 if (desc < 0)
1362 {
1363 char *exename = alloca (strlen (name) + 5);
1364 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1365 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1366 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1367 }
1368#endif
1369 if (desc < 0)
1370 {
b8c9b27d 1371 make_cleanup (xfree, name);
c906108c
SS
1372 perror_with_name (name);
1373 }
cb2f3a29
MK
1374
1375 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1376 bfd. It'll be freed in free_objfile(). */
1377 xfree (name);
1378 name = absolute_name;
c906108c 1379
9f76c2cd 1380 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1381 if (!sym_bfd)
1382 {
1383 close (desc);
b8c9b27d 1384 make_cleanup (xfree, name);
8a3fe4f8 1385 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1386 bfd_errmsg (bfd_get_error ()));
1387 }
549c1eea 1388 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1389
1390 if (!bfd_check_format (sym_bfd, bfd_object))
1391 {
cb2f3a29
MK
1392 /* FIXME: should be checking for errors from bfd_close (for one
1393 thing, on error it does not free all the storage associated
1394 with the bfd). */
1395 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1396 make_cleanup (xfree, name);
8a3fe4f8 1397 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1398 bfd_errmsg (bfd_get_error ()));
1399 }
cb2f3a29
MK
1400
1401 return sym_bfd;
c906108c
SS
1402}
1403
cb2f3a29
MK
1404/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1405 the section was not found. */
1406
0e931cf0
JB
1407int
1408get_section_index (struct objfile *objfile, char *section_name)
1409{
1410 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1411
0e931cf0
JB
1412 if (sect)
1413 return sect->index;
1414 else
1415 return -1;
1416}
1417
cb2f3a29
MK
1418/* Link SF into the global symtab_fns list. Called on startup by the
1419 _initialize routine in each object file format reader, to register
1420 information about each format the the reader is prepared to
1421 handle. */
c906108c
SS
1422
1423void
fba45db2 1424add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1425{
1426 sf->next = symtab_fns;
1427 symtab_fns = sf;
1428}
1429
cb2f3a29
MK
1430/* Initialize OBJFILE to read symbols from its associated BFD. It
1431 either returns or calls error(). The result is an initialized
1432 struct sym_fns in the objfile structure, that contains cached
1433 information about the symbol file. */
c906108c
SS
1434
1435static void
fba45db2 1436find_sym_fns (struct objfile *objfile)
c906108c
SS
1437{
1438 struct sym_fns *sf;
c5aa993b
JM
1439 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1440 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1441
75245b24
MS
1442 if (our_flavour == bfd_target_srec_flavour
1443 || our_flavour == bfd_target_ihex_flavour
1444 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1445 return; /* No symbols. */
75245b24 1446
c5aa993b 1447 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1448 {
c5aa993b 1449 if (our_flavour == sf->sym_flavour)
c906108c 1450 {
c5aa993b 1451 objfile->sf = sf;
c906108c
SS
1452 return;
1453 }
1454 }
cb2f3a29 1455
8a3fe4f8 1456 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1457 bfd_get_target (objfile->obfd));
c906108c
SS
1458}
1459\f
cb2f3a29 1460
c906108c
SS
1461/* This function runs the load command of our current target. */
1462
1463static void
fba45db2 1464load_command (char *arg, int from_tty)
c906108c
SS
1465{
1466 if (arg == NULL)
1986bccd
AS
1467 {
1468 char *parg;
1469 int count = 0;
1470
1471 parg = arg = get_exec_file (1);
1472
1473 /* Count how many \ " ' tab space there are in the name. */
1474 while ((parg = strpbrk (parg, "\\\"'\t ")))
1475 {
1476 parg++;
1477 count++;
1478 }
1479
1480 if (count)
1481 {
1482 /* We need to quote this string so buildargv can pull it apart. */
1483 char *temp = xmalloc (strlen (arg) + count + 1 );
1484 char *ptemp = temp;
1485 char *prev;
1486
1487 make_cleanup (xfree, temp);
1488
1489 prev = parg = arg;
1490 while ((parg = strpbrk (parg, "\\\"'\t ")))
1491 {
1492 strncpy (ptemp, prev, parg - prev);
1493 ptemp += parg - prev;
1494 prev = parg++;
1495 *ptemp++ = '\\';
1496 }
1497 strcpy (ptemp, prev);
1498
1499 arg = temp;
1500 }
1501 }
1502
6490cafe
DJ
1503 /* The user might be reloading because the binary has changed. Take
1504 this opportunity to check. */
1505 reopen_exec_file ();
1506 reread_symbols ();
1507
c906108c 1508 target_load (arg, from_tty);
2889e661
JB
1509
1510 /* After re-loading the executable, we don't really know which
1511 overlays are mapped any more. */
1512 overlay_cache_invalid = 1;
c906108c
SS
1513}
1514
1515/* This version of "load" should be usable for any target. Currently
1516 it is just used for remote targets, not inftarg.c or core files,
1517 on the theory that only in that case is it useful.
1518
1519 Avoiding xmodem and the like seems like a win (a) because we don't have
1520 to worry about finding it, and (b) On VMS, fork() is very slow and so
1521 we don't want to run a subprocess. On the other hand, I'm not sure how
1522 performance compares. */
917317f4
JM
1523
1524static int download_write_size = 512;
920d2a44
AC
1525static void
1526show_download_write_size (struct ui_file *file, int from_tty,
1527 struct cmd_list_element *c, const char *value)
1528{
1529 fprintf_filtered (file, _("\
1530The write size used when downloading a program is %s.\n"),
1531 value);
1532}
917317f4
JM
1533static int validate_download = 0;
1534
e4f9b4d5
MS
1535/* Callback service function for generic_load (bfd_map_over_sections). */
1536
1537static void
1538add_section_size_callback (bfd *abfd, asection *asec, void *data)
1539{
1540 bfd_size_type *sum = data;
1541
2c500098 1542 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1543}
1544
1545/* Opaque data for load_section_callback. */
1546struct load_section_data {
1547 unsigned long load_offset;
1548 unsigned long write_count;
1549 unsigned long data_count;
1550 bfd_size_type total_size;
1551};
1552
1553/* Callback service function for generic_load (bfd_map_over_sections). */
1554
1555static void
1556load_section_callback (bfd *abfd, asection *asec, void *data)
1557{
1558 struct load_section_data *args = data;
1559
1560 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1561 {
2c500098 1562 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1563 if (size > 0)
1564 {
777ea8f1 1565 gdb_byte *buffer;
e4f9b4d5
MS
1566 struct cleanup *old_chain;
1567 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1568 bfd_size_type block_size;
1569 int err;
1570 const char *sect_name = bfd_get_section_name (abfd, asec);
1571 bfd_size_type sent;
1572
1573 if (download_write_size > 0 && size > download_write_size)
1574 block_size = download_write_size;
1575 else
1576 block_size = size;
1577
1578 buffer = xmalloc (size);
1579 old_chain = make_cleanup (xfree, buffer);
1580
1581 /* Is this really necessary? I guess it gives the user something
1582 to look at during a long download. */
e4f9b4d5
MS
1583 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1584 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1585
1586 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1587
1588 sent = 0;
1589 do
1590 {
1591 int len;
1592 bfd_size_type this_transfer = size - sent;
1593
1594 if (this_transfer >= block_size)
1595 this_transfer = block_size;
1596 len = target_write_memory_partial (lma, buffer,
1597 this_transfer, &err);
1598 if (err)
1599 break;
1600 if (validate_download)
1601 {
1602 /* Broken memories and broken monitors manifest
1603 themselves here when bring new computers to
1604 life. This doubles already slow downloads. */
1605 /* NOTE: cagney/1999-10-18: A more efficient
1606 implementation might add a verify_memory()
1607 method to the target vector and then use
1608 that. remote.c could implement that method
1609 using the ``qCRC'' packet. */
777ea8f1 1610 gdb_byte *check = xmalloc (len);
5417f6dc 1611 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1612 make_cleanup (xfree, check);
1613
1614 if (target_read_memory (lma, check, len) != 0)
8a3fe4f8 1615 error (_("Download verify read failed at 0x%s"),
e4f9b4d5
MS
1616 paddr (lma));
1617 if (memcmp (buffer, check, len) != 0)
8a3fe4f8 1618 error (_("Download verify compare failed at 0x%s"),
e4f9b4d5
MS
1619 paddr (lma));
1620 do_cleanups (verify_cleanups);
1621 }
1622 args->data_count += len;
1623 lma += len;
1624 buffer += len;
1625 args->write_count += 1;
1626 sent += len;
1627 if (quit_flag
9a4105ab
AC
1628 || (deprecated_ui_load_progress_hook != NULL
1629 && deprecated_ui_load_progress_hook (sect_name, sent)))
8a3fe4f8 1630 error (_("Canceled the download"));
e4f9b4d5 1631
9a4105ab
AC
1632 if (deprecated_show_load_progress != NULL)
1633 deprecated_show_load_progress (sect_name, sent, size,
1634 args->data_count,
1635 args->total_size);
e4f9b4d5
MS
1636 }
1637 while (sent < size);
1638
1639 if (err != 0)
8a3fe4f8 1640 error (_("Memory access error while loading section %s."), sect_name);
e4f9b4d5
MS
1641
1642 do_cleanups (old_chain);
1643 }
1644 }
1645}
1646
c906108c 1647void
917317f4 1648generic_load (char *args, int from_tty)
c906108c 1649{
c906108c
SS
1650 asection *s;
1651 bfd *loadfile_bfd;
2b71414d 1652 struct timeval start_time, end_time;
917317f4 1653 char *filename;
1986bccd 1654 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5
MS
1655 struct load_section_data cbdata;
1656 CORE_ADDR entry;
1986bccd 1657 char **argv;
e4f9b4d5
MS
1658
1659 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1660 cbdata.write_count = 0; /* Number of writes needed. */
1661 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1662 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4 1663
1986bccd
AS
1664 argv = buildargv (args);
1665
1666 if (argv == NULL)
1667 nomem(0);
1668
1669 make_cleanup_freeargv (argv);
1670
1671 filename = tilde_expand (argv[0]);
1672 make_cleanup (xfree, filename);
1673
1674 if (argv[1] != NULL)
917317f4
JM
1675 {
1676 char *endptr;
ba5f2f8a 1677
1986bccd
AS
1678 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1679
1680 /* If the last word was not a valid number then
1681 treat it as a file name with spaces in. */
1682 if (argv[1] == endptr)
1683 error (_("Invalid download offset:%s."), argv[1]);
1684
1685 if (argv[2] != NULL)
1686 error (_("Too many parameters."));
917317f4 1687 }
c906108c 1688
917317f4 1689 /* Open the file for loading. */
c906108c
SS
1690 loadfile_bfd = bfd_openr (filename, gnutarget);
1691 if (loadfile_bfd == NULL)
1692 {
1693 perror_with_name (filename);
1694 return;
1695 }
917317f4 1696
c906108c
SS
1697 /* FIXME: should be checking for errors from bfd_close (for one thing,
1698 on error it does not free all the storage associated with the
1699 bfd). */
5c65bbb6 1700 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1701
c5aa993b 1702 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1703 {
8a3fe4f8 1704 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1705 bfd_errmsg (bfd_get_error ()));
1706 }
c5aa993b 1707
5417f6dc 1708 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1709 (void *) &cbdata.total_size);
c2d11a7d 1710
2b71414d 1711 gettimeofday (&start_time, NULL);
c906108c 1712
e4f9b4d5 1713 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c 1714
2b71414d 1715 gettimeofday (&end_time, NULL);
ba5f2f8a 1716
e4f9b4d5 1717 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1718 ui_out_text (uiout, "Start address ");
1719 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1720 ui_out_text (uiout, ", load size ");
1721 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1722 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1723 /* We were doing this in remote-mips.c, I suspect it is right
1724 for other targets too. */
1725 write_pc (entry);
c906108c 1726
7ca9f392
AC
1727 /* FIXME: are we supposed to call symbol_file_add or not? According
1728 to a comment from remote-mips.c (where a call to symbol_file_add
1729 was commented out), making the call confuses GDB if more than one
1730 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1731 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1732
5417f6dc 1733 print_transfer_performance (gdb_stdout, cbdata.data_count,
2b71414d 1734 cbdata.write_count, &start_time, &end_time);
c906108c
SS
1735
1736 do_cleanups (old_cleanups);
1737}
1738
1739/* Report how fast the transfer went. */
1740
917317f4
JM
1741/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1742 replaced by print_transfer_performance (with a very different
1743 function signature). */
1744
c906108c 1745void
fba45db2
KB
1746report_transfer_performance (unsigned long data_count, time_t start_time,
1747 time_t end_time)
c906108c 1748{
2b71414d
DJ
1749 struct timeval start, end;
1750
1751 start.tv_sec = start_time;
1752 start.tv_usec = 0;
1753 end.tv_sec = end_time;
1754 end.tv_usec = 0;
1755
1756 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1757}
1758
1759void
d9fcf2fb 1760print_transfer_performance (struct ui_file *stream,
917317f4
JM
1761 unsigned long data_count,
1762 unsigned long write_count,
2b71414d
DJ
1763 const struct timeval *start_time,
1764 const struct timeval *end_time)
917317f4 1765{
2b71414d
DJ
1766 unsigned long time_count;
1767
1768 /* Compute the elapsed time in milliseconds, as a tradeoff between
1769 accuracy and overflow. */
1770 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1771 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1772
8b93c638
JM
1773 ui_out_text (uiout, "Transfer rate: ");
1774 if (time_count > 0)
1775 {
5417f6dc 1776 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1777 1000 * (data_count * 8) / time_count);
8b93c638
JM
1778 ui_out_text (uiout, " bits/sec");
1779 }
1780 else
1781 {
ba5f2f8a 1782 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1783 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1784 }
1785 if (write_count > 0)
1786 {
1787 ui_out_text (uiout, ", ");
ba5f2f8a 1788 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1789 ui_out_text (uiout, " bytes/write");
1790 }
1791 ui_out_text (uiout, ".\n");
c906108c
SS
1792}
1793
1794/* This function allows the addition of incrementally linked object files.
1795 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1796/* Note: ezannoni 2000-04-13 This function/command used to have a
1797 special case syntax for the rombug target (Rombug is the boot
1798 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1799 rombug case, the user doesn't need to supply a text address,
1800 instead a call to target_link() (in target.c) would supply the
1801 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1802
c906108c 1803static void
fba45db2 1804add_symbol_file_command (char *args, int from_tty)
c906108c 1805{
db162d44 1806 char *filename = NULL;
2df3850c 1807 int flags = OBJF_USERLOADED;
c906108c 1808 char *arg;
2acceee2 1809 int expecting_option = 0;
db162d44 1810 int section_index = 0;
2acceee2
JM
1811 int argcnt = 0;
1812 int sec_num = 0;
1813 int i;
db162d44
EZ
1814 int expecting_sec_name = 0;
1815 int expecting_sec_addr = 0;
5b96932b 1816 char **argv;
db162d44 1817
a39a16c4 1818 struct sect_opt
2acceee2 1819 {
2acceee2
JM
1820 char *name;
1821 char *value;
a39a16c4 1822 };
db162d44 1823
a39a16c4
MM
1824 struct section_addr_info *section_addrs;
1825 struct sect_opt *sect_opts = NULL;
1826 size_t num_sect_opts = 0;
3017564a 1827 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1828
a39a16c4 1829 num_sect_opts = 16;
5417f6dc 1830 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1831 * sizeof (struct sect_opt));
1832
c906108c
SS
1833 dont_repeat ();
1834
1835 if (args == NULL)
8a3fe4f8 1836 error (_("add-symbol-file takes a file name and an address"));
c906108c 1837
5b96932b
AS
1838 argv = buildargv (args);
1839 make_cleanup_freeargv (argv);
db162d44 1840
5b96932b
AS
1841 if (argv == NULL)
1842 nomem (0);
db162d44 1843
5b96932b
AS
1844 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1845 {
1846 /* Process the argument. */
db162d44 1847 if (argcnt == 0)
c906108c 1848 {
db162d44
EZ
1849 /* The first argument is the file name. */
1850 filename = tilde_expand (arg);
3017564a 1851 make_cleanup (xfree, filename);
c906108c 1852 }
db162d44 1853 else
7a78ae4e
ND
1854 if (argcnt == 1)
1855 {
1856 /* The second argument is always the text address at which
1857 to load the program. */
1858 sect_opts[section_index].name = ".text";
1859 sect_opts[section_index].value = arg;
5417f6dc 1860 if (++section_index > num_sect_opts)
a39a16c4
MM
1861 {
1862 num_sect_opts *= 2;
5417f6dc 1863 sect_opts = ((struct sect_opt *)
a39a16c4 1864 xrealloc (sect_opts,
5417f6dc 1865 num_sect_opts
a39a16c4
MM
1866 * sizeof (struct sect_opt)));
1867 }
7a78ae4e
ND
1868 }
1869 else
1870 {
1871 /* It's an option (starting with '-') or it's an argument
1872 to an option */
1873
1874 if (*arg == '-')
1875 {
78a4a9b9
AC
1876 if (strcmp (arg, "-readnow") == 0)
1877 flags |= OBJF_READNOW;
1878 else if (strcmp (arg, "-s") == 0)
1879 {
1880 expecting_sec_name = 1;
1881 expecting_sec_addr = 1;
1882 }
7a78ae4e
ND
1883 }
1884 else
1885 {
1886 if (expecting_sec_name)
db162d44 1887 {
7a78ae4e
ND
1888 sect_opts[section_index].name = arg;
1889 expecting_sec_name = 0;
db162d44
EZ
1890 }
1891 else
7a78ae4e
ND
1892 if (expecting_sec_addr)
1893 {
1894 sect_opts[section_index].value = arg;
1895 expecting_sec_addr = 0;
5417f6dc 1896 if (++section_index > num_sect_opts)
a39a16c4
MM
1897 {
1898 num_sect_opts *= 2;
5417f6dc 1899 sect_opts = ((struct sect_opt *)
a39a16c4 1900 xrealloc (sect_opts,
5417f6dc 1901 num_sect_opts
a39a16c4
MM
1902 * sizeof (struct sect_opt)));
1903 }
7a78ae4e
ND
1904 }
1905 else
8a3fe4f8 1906 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1907 }
1908 }
c906108c 1909 }
c906108c 1910
927890d0
JB
1911 /* This command takes at least two arguments. The first one is a
1912 filename, and the second is the address where this file has been
1913 loaded. Abort now if this address hasn't been provided by the
1914 user. */
1915 if (section_index < 1)
1916 error (_("The address where %s has been loaded is missing"), filename);
1917
db162d44
EZ
1918 /* Print the prompt for the query below. And save the arguments into
1919 a sect_addr_info structure to be passed around to other
1920 functions. We have to split this up into separate print
bb599908 1921 statements because hex_string returns a local static
db162d44 1922 string. */
5417f6dc 1923
a3f17187 1924 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1925 section_addrs = alloc_section_addr_info (section_index);
1926 make_cleanup (xfree, section_addrs);
db162d44 1927 for (i = 0; i < section_index; i++)
c906108c 1928 {
db162d44
EZ
1929 CORE_ADDR addr;
1930 char *val = sect_opts[i].value;
1931 char *sec = sect_opts[i].name;
5417f6dc 1932
ae822768 1933 addr = parse_and_eval_address (val);
db162d44 1934
db162d44
EZ
1935 /* Here we store the section offsets in the order they were
1936 entered on the command line. */
a39a16c4
MM
1937 section_addrs->other[sec_num].name = sec;
1938 section_addrs->other[sec_num].addr = addr;
46f45a4a 1939 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1940 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1941 sec_num++;
1942
5417f6dc 1943 /* The object's sections are initialized when a
db162d44 1944 call is made to build_objfile_section_table (objfile).
5417f6dc 1945 This happens in reread_symbols.
db162d44
EZ
1946 At this point, we don't know what file type this is,
1947 so we can't determine what section names are valid. */
2acceee2 1948 }
db162d44 1949
2acceee2 1950 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1951 error (_("Not confirmed."));
c906108c 1952
a39a16c4 1953 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1954
1955 /* Getting new symbols may change our opinion about what is
1956 frameless. */
1957 reinit_frame_cache ();
db162d44 1958 do_cleanups (my_cleanups);
c906108c
SS
1959}
1960\f
1961static void
fba45db2 1962add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1963{
1964#ifdef ADD_SHARED_SYMBOL_FILES
1965 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1966#else
8a3fe4f8 1967 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1968#endif
c906108c
SS
1969}
1970\f
1971/* Re-read symbols if a symbol-file has changed. */
1972void
fba45db2 1973reread_symbols (void)
c906108c
SS
1974{
1975 struct objfile *objfile;
1976 long new_modtime;
1977 int reread_one = 0;
1978 struct stat new_statbuf;
1979 int res;
1980
1981 /* With the addition of shared libraries, this should be modified,
1982 the load time should be saved in the partial symbol tables, since
1983 different tables may come from different source files. FIXME.
1984 This routine should then walk down each partial symbol table
1985 and see if the symbol table that it originates from has been changed */
1986
c5aa993b
JM
1987 for (objfile = object_files; objfile; objfile = objfile->next)
1988 {
1989 if (objfile->obfd)
1990 {
52d16ba8 1991#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1992 /* If this object is from a shared library, then you should
1993 stat on the library name, not member name. */
c906108c 1994
c5aa993b
JM
1995 if (objfile->obfd->my_archive)
1996 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1997 else
c906108c 1998#endif
c5aa993b
JM
1999 res = stat (objfile->name, &new_statbuf);
2000 if (res != 0)
c906108c 2001 {
c5aa993b 2002 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2003 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2004 objfile->name);
2005 continue;
c906108c 2006 }
c5aa993b
JM
2007 new_modtime = new_statbuf.st_mtime;
2008 if (new_modtime != objfile->mtime)
c906108c 2009 {
c5aa993b
JM
2010 struct cleanup *old_cleanups;
2011 struct section_offsets *offsets;
2012 int num_offsets;
c5aa993b
JM
2013 char *obfd_filename;
2014
a3f17187 2015 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2016 objfile->name);
2017
2018 /* There are various functions like symbol_file_add,
2019 symfile_bfd_open, syms_from_objfile, etc., which might
2020 appear to do what we want. But they have various other
2021 effects which we *don't* want. So we just do stuff
2022 ourselves. We don't worry about mapped files (for one thing,
2023 any mapped file will be out of date). */
2024
2025 /* If we get an error, blow away this objfile (not sure if
2026 that is the correct response for things like shared
2027 libraries). */
74b7792f 2028 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2029 /* We need to do this whenever any symbols go away. */
74b7792f 2030 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2031
2032 /* Clean up any state BFD has sitting around. We don't need
2033 to close the descriptor but BFD lacks a way of closing the
2034 BFD without closing the descriptor. */
2035 obfd_filename = bfd_get_filename (objfile->obfd);
2036 if (!bfd_close (objfile->obfd))
8a3fe4f8 2037 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2038 bfd_errmsg (bfd_get_error ()));
2039 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2040 if (objfile->obfd == NULL)
8a3fe4f8 2041 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2042 /* bfd_openr sets cacheable to true, which is what we want. */
2043 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2044 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2045 bfd_errmsg (bfd_get_error ()));
2046
2047 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2048 objfile_obstack. */
c5aa993b 2049 num_offsets = objfile->num_sections;
5417f6dc 2050 offsets = ((struct section_offsets *)
a39a16c4 2051 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2052 memcpy (offsets, objfile->section_offsets,
a39a16c4 2053 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2054
ae5a43e0
DJ
2055 /* Remove any references to this objfile in the global
2056 value lists. */
2057 preserve_values (objfile);
2058
c5aa993b
JM
2059 /* Nuke all the state that we will re-read. Much of the following
2060 code which sets things to NULL really is necessary to tell
2061 other parts of GDB that there is nothing currently there. */
2062
2063 /* FIXME: Do we have to free a whole linked list, or is this
2064 enough? */
2065 if (objfile->global_psymbols.list)
2dc74dc1 2066 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2067 memset (&objfile->global_psymbols, 0,
2068 sizeof (objfile->global_psymbols));
2069 if (objfile->static_psymbols.list)
2dc74dc1 2070 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2071 memset (&objfile->static_psymbols, 0,
2072 sizeof (objfile->static_psymbols));
2073
2074 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2075 bcache_xfree (objfile->psymbol_cache);
2076 objfile->psymbol_cache = bcache_xmalloc ();
2077 bcache_xfree (objfile->macro_cache);
2078 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2079 if (objfile->demangled_names_hash != NULL)
2080 {
2081 htab_delete (objfile->demangled_names_hash);
2082 objfile->demangled_names_hash = NULL;
2083 }
b99607ea 2084 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2085 objfile->sections = NULL;
2086 objfile->symtabs = NULL;
2087 objfile->psymtabs = NULL;
2088 objfile->free_psymtabs = NULL;
a1b8c067 2089 objfile->cp_namespace_symtab = NULL;
c5aa993b 2090 objfile->msymbols = NULL;
0a6ddd08 2091 objfile->deprecated_sym_private = NULL;
c5aa993b 2092 objfile->minimal_symbol_count = 0;
0a83117a
MS
2093 memset (&objfile->msymbol_hash, 0,
2094 sizeof (objfile->msymbol_hash));
2095 memset (&objfile->msymbol_demangled_hash, 0,
2096 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2097 objfile->fundamental_types = NULL;
7b097ae3 2098 clear_objfile_data (objfile);
c5aa993b
JM
2099 if (objfile->sf != NULL)
2100 {
2101 (*objfile->sf->sym_finish) (objfile);
2102 }
2103
2104 /* We never make this a mapped file. */
2105 objfile->md = NULL;
af5f3db6
AC
2106 objfile->psymbol_cache = bcache_xmalloc ();
2107 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2108 /* obstack_init also initializes the obstack so it is
2109 empty. We could use obstack_specify_allocation but
2110 gdb_obstack.h specifies the alloc/dealloc
2111 functions. */
2112 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2113 if (build_objfile_section_table (objfile))
2114 {
8a3fe4f8 2115 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2116 objfile->name, bfd_errmsg (bfd_get_error ()));
2117 }
15831452 2118 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2119
2120 /* We use the same section offsets as from last time. I'm not
2121 sure whether that is always correct for shared libraries. */
2122 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2123 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2124 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2125 memcpy (objfile->section_offsets, offsets,
a39a16c4 2126 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2127 objfile->num_sections = num_offsets;
2128
2129 /* What the hell is sym_new_init for, anyway? The concept of
2130 distinguishing between the main file and additional files
2131 in this way seems rather dubious. */
2132 if (objfile == symfile_objfile)
2133 {
2134 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2135 }
2136
2137 (*objfile->sf->sym_init) (objfile);
b9caf505 2138 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2139 /* The "mainline" parameter is a hideous hack; I think leaving it
2140 zero is OK since dbxread.c also does what it needs to do if
2141 objfile->global_psymbols.size is 0. */
96baa820 2142 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2143 if (!have_partial_symbols () && !have_full_symbols ())
2144 {
2145 wrap_here ("");
a3f17187 2146 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2147 wrap_here ("");
2148 }
2149 objfile->flags |= OBJF_SYMS;
2150
2151 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2152 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2153
c5aa993b
JM
2154 /* Getting new symbols may change our opinion about what is
2155 frameless. */
c906108c 2156
c5aa993b 2157 reinit_frame_cache ();
c906108c 2158
c5aa993b
JM
2159 /* Discard cleanups as symbol reading was successful. */
2160 discard_cleanups (old_cleanups);
c906108c 2161
c5aa993b
JM
2162 /* If the mtime has changed between the time we set new_modtime
2163 and now, we *want* this to be out of date, so don't call stat
2164 again now. */
2165 objfile->mtime = new_modtime;
2166 reread_one = 1;
5b5d99cf 2167 reread_separate_symbols (objfile);
c5aa993b 2168 }
c906108c
SS
2169 }
2170 }
c906108c
SS
2171
2172 if (reread_one)
ea53e89f
JB
2173 {
2174 clear_symtab_users ();
2175 /* At least one objfile has changed, so we can consider that
2176 the executable we're debugging has changed too. */
2177 observer_notify_executable_changed (NULL);
2178 }
2179
c906108c 2180}
5b5d99cf
JB
2181
2182
2183/* Handle separate debug info for OBJFILE, which has just been
2184 re-read:
2185 - If we had separate debug info before, but now we don't, get rid
2186 of the separated objfile.
2187 - If we didn't have separated debug info before, but now we do,
2188 read in the new separated debug info file.
2189 - If the debug link points to a different file, toss the old one
2190 and read the new one.
2191 This function does *not* handle the case where objfile is still
2192 using the same separate debug info file, but that file's timestamp
2193 has changed. That case should be handled by the loop in
2194 reread_symbols already. */
2195static void
2196reread_separate_symbols (struct objfile *objfile)
2197{
2198 char *debug_file;
2199 unsigned long crc32;
2200
2201 /* Does the updated objfile's debug info live in a
2202 separate file? */
2203 debug_file = find_separate_debug_file (objfile);
2204
2205 if (objfile->separate_debug_objfile)
2206 {
2207 /* There are two cases where we need to get rid of
2208 the old separated debug info objfile:
2209 - if the new primary objfile doesn't have
2210 separated debug info, or
2211 - if the new primary objfile has separate debug
2212 info, but it's under a different filename.
5417f6dc 2213
5b5d99cf
JB
2214 If the old and new objfiles both have separate
2215 debug info, under the same filename, then we're
2216 okay --- if the separated file's contents have
2217 changed, we will have caught that when we
2218 visited it in this function's outermost
2219 loop. */
2220 if (! debug_file
2221 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2222 free_objfile (objfile->separate_debug_objfile);
2223 }
2224
2225 /* If the new objfile has separate debug info, and we
2226 haven't loaded it already, do so now. */
2227 if (debug_file
2228 && ! objfile->separate_debug_objfile)
2229 {
2230 /* Use the same section offset table as objfile itself.
2231 Preserve the flags from objfile that make sense. */
2232 objfile->separate_debug_objfile
2233 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2234 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2235 info_verbose, /* from_tty: Don't override the default. */
2236 0, /* No addr table. */
2237 objfile->section_offsets, objfile->num_sections,
2238 0, /* Not mainline. See comments about this above. */
78a4a9b9 2239 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2240 | OBJF_USERLOADED)));
2241 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2242 = objfile;
2243 }
2244}
2245
2246
c906108c
SS
2247\f
2248
c5aa993b
JM
2249
2250typedef struct
2251{
2252 char *ext;
c906108c 2253 enum language lang;
c5aa993b
JM
2254}
2255filename_language;
c906108c 2256
c5aa993b 2257static filename_language *filename_language_table;
c906108c
SS
2258static int fl_table_size, fl_table_next;
2259
2260static void
fba45db2 2261add_filename_language (char *ext, enum language lang)
c906108c
SS
2262{
2263 if (fl_table_next >= fl_table_size)
2264 {
2265 fl_table_size += 10;
5417f6dc 2266 filename_language_table =
25bf3106
PM
2267 xrealloc (filename_language_table,
2268 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2269 }
2270
4fcf66da 2271 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2272 filename_language_table[fl_table_next].lang = lang;
2273 fl_table_next++;
2274}
2275
2276static char *ext_args;
920d2a44
AC
2277static void
2278show_ext_args (struct ui_file *file, int from_tty,
2279 struct cmd_list_element *c, const char *value)
2280{
2281 fprintf_filtered (file, _("\
2282Mapping between filename extension and source language is \"%s\".\n"),
2283 value);
2284}
c906108c
SS
2285
2286static void
26c41df3 2287set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2288{
2289 int i;
2290 char *cp = ext_args;
2291 enum language lang;
2292
2293 /* First arg is filename extension, starting with '.' */
2294 if (*cp != '.')
8a3fe4f8 2295 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2296
2297 /* Find end of first arg. */
c5aa993b 2298 while (*cp && !isspace (*cp))
c906108c
SS
2299 cp++;
2300
2301 if (*cp == '\0')
8a3fe4f8 2302 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2303 ext_args);
2304
2305 /* Null-terminate first arg */
c5aa993b 2306 *cp++ = '\0';
c906108c
SS
2307
2308 /* Find beginning of second arg, which should be a source language. */
2309 while (*cp && isspace (*cp))
2310 cp++;
2311
2312 if (*cp == '\0')
8a3fe4f8 2313 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2314 ext_args);
2315
2316 /* Lookup the language from among those we know. */
2317 lang = language_enum (cp);
2318
2319 /* Now lookup the filename extension: do we already know it? */
2320 for (i = 0; i < fl_table_next; i++)
2321 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2322 break;
2323
2324 if (i >= fl_table_next)
2325 {
2326 /* new file extension */
2327 add_filename_language (ext_args, lang);
2328 }
2329 else
2330 {
2331 /* redefining a previously known filename extension */
2332
2333 /* if (from_tty) */
2334 /* query ("Really make files of type %s '%s'?", */
2335 /* ext_args, language_str (lang)); */
2336
b8c9b27d 2337 xfree (filename_language_table[i].ext);
4fcf66da 2338 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2339 filename_language_table[i].lang = lang;
2340 }
2341}
2342
2343static void
fba45db2 2344info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2345{
2346 int i;
2347
a3f17187 2348 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2349 printf_filtered ("\n\n");
2350 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2351 printf_filtered ("\t%s\t- %s\n",
2352 filename_language_table[i].ext,
c906108c
SS
2353 language_str (filename_language_table[i].lang));
2354}
2355
2356static void
fba45db2 2357init_filename_language_table (void)
c906108c
SS
2358{
2359 if (fl_table_size == 0) /* protect against repetition */
2360 {
2361 fl_table_size = 20;
2362 fl_table_next = 0;
c5aa993b 2363 filename_language_table =
c906108c 2364 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2365 add_filename_language (".c", language_c);
2366 add_filename_language (".C", language_cplus);
2367 add_filename_language (".cc", language_cplus);
2368 add_filename_language (".cp", language_cplus);
2369 add_filename_language (".cpp", language_cplus);
2370 add_filename_language (".cxx", language_cplus);
2371 add_filename_language (".c++", language_cplus);
2372 add_filename_language (".java", language_java);
c906108c 2373 add_filename_language (".class", language_java);
da2cf7e0 2374 add_filename_language (".m", language_objc);
c5aa993b
JM
2375 add_filename_language (".f", language_fortran);
2376 add_filename_language (".F", language_fortran);
2377 add_filename_language (".s", language_asm);
2378 add_filename_language (".S", language_asm);
c6fd39cd
PM
2379 add_filename_language (".pas", language_pascal);
2380 add_filename_language (".p", language_pascal);
2381 add_filename_language (".pp", language_pascal);
963a6417
PH
2382 add_filename_language (".adb", language_ada);
2383 add_filename_language (".ads", language_ada);
2384 add_filename_language (".a", language_ada);
2385 add_filename_language (".ada", language_ada);
c906108c
SS
2386 }
2387}
2388
2389enum language
fba45db2 2390deduce_language_from_filename (char *filename)
c906108c
SS
2391{
2392 int i;
2393 char *cp;
2394
2395 if (filename != NULL)
2396 if ((cp = strrchr (filename, '.')) != NULL)
2397 for (i = 0; i < fl_table_next; i++)
2398 if (strcmp (cp, filename_language_table[i].ext) == 0)
2399 return filename_language_table[i].lang;
2400
2401 return language_unknown;
2402}
2403\f
2404/* allocate_symtab:
2405
2406 Allocate and partly initialize a new symbol table. Return a pointer
2407 to it. error() if no space.
2408
2409 Caller must set these fields:
c5aa993b
JM
2410 LINETABLE(symtab)
2411 symtab->blockvector
2412 symtab->dirname
2413 symtab->free_code
2414 symtab->free_ptr
2415 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2416 */
2417
2418struct symtab *
fba45db2 2419allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2420{
52f0bd74 2421 struct symtab *symtab;
c906108c
SS
2422
2423 symtab = (struct symtab *)
4a146b47 2424 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2425 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2426 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2427 &objfile->objfile_obstack);
c5aa993b
JM
2428 symtab->fullname = NULL;
2429 symtab->language = deduce_language_from_filename (filename);
2430 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2431 &objfile->objfile_obstack);
c906108c
SS
2432
2433 /* Hook it to the objfile it comes from */
2434
c5aa993b
JM
2435 symtab->objfile = objfile;
2436 symtab->next = objfile->symtabs;
2437 objfile->symtabs = symtab;
c906108c
SS
2438
2439 /* FIXME: This should go away. It is only defined for the Z8000,
2440 and the Z8000 definition of this macro doesn't have anything to
2441 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2442 here for convenience. */
2443#ifdef INIT_EXTRA_SYMTAB_INFO
2444 INIT_EXTRA_SYMTAB_INFO (symtab);
2445#endif
2446
2447 return (symtab);
2448}
2449
2450struct partial_symtab *
fba45db2 2451allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2452{
2453 struct partial_symtab *psymtab;
2454
c5aa993b 2455 if (objfile->free_psymtabs)
c906108c 2456 {
c5aa993b
JM
2457 psymtab = objfile->free_psymtabs;
2458 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2459 }
2460 else
2461 psymtab = (struct partial_symtab *)
8b92e4d5 2462 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2463 sizeof (struct partial_symtab));
2464
2465 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2466 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2467 &objfile->objfile_obstack);
c5aa993b 2468 psymtab->symtab = NULL;
c906108c
SS
2469
2470 /* Prepend it to the psymtab list for the objfile it belongs to.
2471 Psymtabs are searched in most recent inserted -> least recent
2472 inserted order. */
2473
c5aa993b
JM
2474 psymtab->objfile = objfile;
2475 psymtab->next = objfile->psymtabs;
2476 objfile->psymtabs = psymtab;
c906108c
SS
2477#if 0
2478 {
2479 struct partial_symtab **prev_pst;
c5aa993b
JM
2480 psymtab->objfile = objfile;
2481 psymtab->next = NULL;
2482 prev_pst = &(objfile->psymtabs);
c906108c 2483 while ((*prev_pst) != NULL)
c5aa993b 2484 prev_pst = &((*prev_pst)->next);
c906108c 2485 (*prev_pst) = psymtab;
c5aa993b 2486 }
c906108c 2487#endif
c5aa993b 2488
c906108c
SS
2489 return (psymtab);
2490}
2491
2492void
fba45db2 2493discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2494{
2495 struct partial_symtab **prev_pst;
2496
2497 /* From dbxread.c:
2498 Empty psymtabs happen as a result of header files which don't
2499 have any symbols in them. There can be a lot of them. But this
2500 check is wrong, in that a psymtab with N_SLINE entries but
2501 nothing else is not empty, but we don't realize that. Fixing
2502 that without slowing things down might be tricky. */
2503
2504 /* First, snip it out of the psymtab chain */
2505
2506 prev_pst = &(pst->objfile->psymtabs);
2507 while ((*prev_pst) != pst)
2508 prev_pst = &((*prev_pst)->next);
2509 (*prev_pst) = pst->next;
2510
2511 /* Next, put it on a free list for recycling */
2512
2513 pst->next = pst->objfile->free_psymtabs;
2514 pst->objfile->free_psymtabs = pst;
2515}
c906108c 2516\f
c5aa993b 2517
c906108c
SS
2518/* Reset all data structures in gdb which may contain references to symbol
2519 table data. */
2520
2521void
fba45db2 2522clear_symtab_users (void)
c906108c
SS
2523{
2524 /* Someday, we should do better than this, by only blowing away
2525 the things that really need to be blown. */
c0501be5
DJ
2526
2527 /* Clear the "current" symtab first, because it is no longer valid.
2528 breakpoint_re_set may try to access the current symtab. */
2529 clear_current_source_symtab_and_line ();
2530
c906108c 2531 clear_displays ();
c906108c
SS
2532 breakpoint_re_set ();
2533 set_default_breakpoint (0, 0, 0, 0);
c906108c 2534 clear_pc_function_cache ();
9a4105ab
AC
2535 if (deprecated_target_new_objfile_hook)
2536 deprecated_target_new_objfile_hook (NULL);
c906108c
SS
2537}
2538
74b7792f
AC
2539static void
2540clear_symtab_users_cleanup (void *ignore)
2541{
2542 clear_symtab_users ();
2543}
2544
c906108c
SS
2545/* clear_symtab_users_once:
2546
2547 This function is run after symbol reading, or from a cleanup.
2548 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2549 has been blown away, but the other GDB data structures that may
c906108c
SS
2550 reference it have not yet been cleared or re-directed. (The old
2551 symtab was zapped, and the cleanup queued, in free_named_symtab()
2552 below.)
2553
2554 This function can be queued N times as a cleanup, or called
2555 directly; it will do all the work the first time, and then will be a
2556 no-op until the next time it is queued. This works by bumping a
2557 counter at queueing time. Much later when the cleanup is run, or at
2558 the end of symbol processing (in case the cleanup is discarded), if
2559 the queued count is greater than the "done-count", we do the work
2560 and set the done-count to the queued count. If the queued count is
2561 less than or equal to the done-count, we just ignore the call. This
2562 is needed because reading a single .o file will often replace many
2563 symtabs (one per .h file, for example), and we don't want to reset
2564 the breakpoints N times in the user's face.
2565
2566 The reason we both queue a cleanup, and call it directly after symbol
2567 reading, is because the cleanup protects us in case of errors, but is
2568 discarded if symbol reading is successful. */
2569
2570#if 0
2571/* FIXME: As free_named_symtabs is currently a big noop this function
2572 is no longer needed. */
a14ed312 2573static void clear_symtab_users_once (void);
c906108c
SS
2574
2575static int clear_symtab_users_queued;
2576static int clear_symtab_users_done;
2577
2578static void
fba45db2 2579clear_symtab_users_once (void)
c906108c
SS
2580{
2581 /* Enforce once-per-`do_cleanups'-semantics */
2582 if (clear_symtab_users_queued <= clear_symtab_users_done)
2583 return;
2584 clear_symtab_users_done = clear_symtab_users_queued;
2585
2586 clear_symtab_users ();
2587}
2588#endif
2589
2590/* Delete the specified psymtab, and any others that reference it. */
2591
2592static void
fba45db2 2593cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2594{
2595 struct partial_symtab *ps, *pprev = NULL;
2596 int i;
2597
2598 /* Find its previous psymtab in the chain */
c5aa993b
JM
2599 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2600 {
2601 if (ps == pst)
2602 break;
2603 pprev = ps;
2604 }
c906108c 2605
c5aa993b
JM
2606 if (ps)
2607 {
2608 /* Unhook it from the chain. */
2609 if (ps == pst->objfile->psymtabs)
2610 pst->objfile->psymtabs = ps->next;
2611 else
2612 pprev->next = ps->next;
2613
2614 /* FIXME, we can't conveniently deallocate the entries in the
2615 partial_symbol lists (global_psymbols/static_psymbols) that
2616 this psymtab points to. These just take up space until all
2617 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2618 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2619
2620 /* We need to cashier any psymtab that has this one as a dependency... */
2621 again:
2622 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2623 {
2624 for (i = 0; i < ps->number_of_dependencies; i++)
2625 {
2626 if (ps->dependencies[i] == pst)
2627 {
2628 cashier_psymtab (ps);
2629 goto again; /* Must restart, chain has been munged. */
2630 }
2631 }
c906108c 2632 }
c906108c 2633 }
c906108c
SS
2634}
2635
2636/* If a symtab or psymtab for filename NAME is found, free it along
2637 with any dependent breakpoints, displays, etc.
2638 Used when loading new versions of object modules with the "add-file"
2639 command. This is only called on the top-level symtab or psymtab's name;
2640 it is not called for subsidiary files such as .h files.
2641
2642 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2643 FIXME. The return value appears to never be used.
c906108c
SS
2644
2645 FIXME. I think this is not the best way to do this. We should
2646 work on being gentler to the environment while still cleaning up
2647 all stray pointers into the freed symtab. */
2648
2649int
fba45db2 2650free_named_symtabs (char *name)
c906108c
SS
2651{
2652#if 0
2653 /* FIXME: With the new method of each objfile having it's own
2654 psymtab list, this function needs serious rethinking. In particular,
2655 why was it ever necessary to toss psymtabs with specific compilation
2656 unit filenames, as opposed to all psymtabs from a particular symbol
2657 file? -- fnf
2658 Well, the answer is that some systems permit reloading of particular
2659 compilation units. We want to blow away any old info about these
2660 compilation units, regardless of which objfiles they arrived in. --gnu. */
2661
52f0bd74
AC
2662 struct symtab *s;
2663 struct symtab *prev;
2664 struct partial_symtab *ps;
c906108c
SS
2665 struct blockvector *bv;
2666 int blewit = 0;
2667
2668 /* We only wack things if the symbol-reload switch is set. */
2669 if (!symbol_reloading)
2670 return 0;
2671
2672 /* Some symbol formats have trouble providing file names... */
2673 if (name == 0 || *name == '\0')
2674 return 0;
2675
2676 /* Look for a psymtab with the specified name. */
2677
2678again2:
c5aa993b
JM
2679 for (ps = partial_symtab_list; ps; ps = ps->next)
2680 {
6314a349 2681 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2682 {
2683 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2684 goto again2; /* Must restart, chain has been munged */
2685 }
c906108c 2686 }
c906108c
SS
2687
2688 /* Look for a symtab with the specified name. */
2689
2690 for (s = symtab_list; s; s = s->next)
2691 {
6314a349 2692 if (strcmp (name, s->filename) == 0)
c906108c
SS
2693 break;
2694 prev = s;
2695 }
2696
2697 if (s)
2698 {
2699 if (s == symtab_list)
2700 symtab_list = s->next;
2701 else
2702 prev->next = s->next;
2703
2704 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2705 or not they depend on the symtab being freed. This should be
2706 changed so that only those data structures affected are deleted. */
c906108c
SS
2707
2708 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2709 This test is necessary due to a bug in "dbxread.c" that
2710 causes empty symtabs to be created for N_SO symbols that
2711 contain the pathname of the object file. (This problem
2712 has been fixed in GDB 3.9x). */
c906108c
SS
2713
2714 bv = BLOCKVECTOR (s);
2715 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2716 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2717 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2718 {
e2e0b3e5 2719 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2720 name);
c906108c
SS
2721 clear_symtab_users_queued++;
2722 make_cleanup (clear_symtab_users_once, 0);
2723 blewit = 1;
c5aa993b
JM
2724 }
2725 else
e2e0b3e5
AC
2726 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2727 name);
c906108c
SS
2728
2729 free_symtab (s);
2730 }
2731 else
2732 {
2733 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2734 even though no symtab was found, since the file might have
2735 been compiled without debugging, and hence not be associated
2736 with a symtab. In order to handle this correctly, we would need
2737 to keep a list of text address ranges for undebuggable files.
2738 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2739 ;
2740 }
2741
2742 /* FIXME, what about the minimal symbol table? */
2743 return blewit;
2744#else
2745 return (0);
2746#endif
2747}
2748\f
2749/* Allocate and partially fill a partial symtab. It will be
2750 completely filled at the end of the symbol list.
2751
d4f3574e 2752 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2753
2754struct partial_symtab *
fba45db2
KB
2755start_psymtab_common (struct objfile *objfile,
2756 struct section_offsets *section_offsets, char *filename,
2757 CORE_ADDR textlow, struct partial_symbol **global_syms,
2758 struct partial_symbol **static_syms)
c906108c
SS
2759{
2760 struct partial_symtab *psymtab;
2761
2762 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2763 psymtab->section_offsets = section_offsets;
2764 psymtab->textlow = textlow;
2765 psymtab->texthigh = psymtab->textlow; /* default */
2766 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2767 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2768 return (psymtab);
2769}
2770\f
2771/* Add a symbol with a long value to a psymtab.
5417f6dc 2772 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2773 Return the partial symbol that has been added. */
2774
2775/* NOTE: carlton/2003-09-11: The reason why we return the partial
2776 symbol is so that callers can get access to the symbol's demangled
2777 name, which they don't have any cheap way to determine otherwise.
2778 (Currenly, dwarf2read.c is the only file who uses that information,
2779 though it's possible that other readers might in the future.)
2780 Elena wasn't thrilled about that, and I don't blame her, but we
2781 couldn't come up with a better way to get that information. If
2782 it's needed in other situations, we could consider breaking up
2783 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2784 cache. */
2785
2786const struct partial_symbol *
176620f1 2787add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2788 enum address_class class,
2789 struct psymbol_allocation_list *list, long val, /* Value as a long */
2790 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2791 enum language language, struct objfile *objfile)
c906108c 2792{
52f0bd74 2793 struct partial_symbol *psym;
c906108c
SS
2794 char *buf = alloca (namelength + 1);
2795 /* psymbol is static so that there will be no uninitialized gaps in the
2796 structure which might contain random data, causing cache misses in
2797 bcache. */
2798 static struct partial_symbol psymbol;
2799
2800 /* Create local copy of the partial symbol */
2801 memcpy (buf, name, namelength);
2802 buf[namelength] = '\0';
c906108c
SS
2803 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2804 if (val != 0)
2805 {
2806 SYMBOL_VALUE (&psymbol) = val;
2807 }
2808 else
2809 {
2810 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2811 }
2812 SYMBOL_SECTION (&psymbol) = 0;
2813 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2814 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2815 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2816
2817 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2818
2819 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2820 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2821 objfile->psymbol_cache);
c906108c
SS
2822
2823 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2824 if (list->next >= list->list + list->size)
2825 {
2826 extend_psymbol_list (list, objfile);
2827 }
2828 *list->next++ = psym;
2829 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2830
2831 return psym;
c906108c
SS
2832}
2833
2834/* Add a symbol with a long value to a psymtab. This differs from
2835 * add_psymbol_to_list above in taking both a mangled and a demangled
2836 * name. */
2837
2838void
fba45db2 2839add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2840 int dem_namelength, domain_enum domain,
fba45db2
KB
2841 enum address_class class,
2842 struct psymbol_allocation_list *list, long val, /* Value as a long */
2843 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2844 enum language language,
2845 struct objfile *objfile)
c906108c 2846{
52f0bd74 2847 struct partial_symbol *psym;
c906108c
SS
2848 char *buf = alloca (namelength + 1);
2849 /* psymbol is static so that there will be no uninitialized gaps in the
2850 structure which might contain random data, causing cache misses in
2851 bcache. */
2852 static struct partial_symbol psymbol;
2853
2854 /* Create local copy of the partial symbol */
2855
2856 memcpy (buf, name, namelength);
2857 buf[namelength] = '\0';
3a16a68c
AC
2858 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2859 objfile->psymbol_cache);
c906108c
SS
2860
2861 buf = alloca (dem_namelength + 1);
2862 memcpy (buf, dem_name, dem_namelength);
2863 buf[dem_namelength] = '\0';
c5aa993b 2864
c906108c
SS
2865 switch (language)
2866 {
c5aa993b
JM
2867 case language_c:
2868 case language_cplus:
2869 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2870 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2871 break;
c906108c
SS
2872 /* FIXME What should be done for the default case? Ignoring for now. */
2873 }
2874
2875 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2876 if (val != 0)
2877 {
2878 SYMBOL_VALUE (&psymbol) = val;
2879 }
2880 else
2881 {
2882 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2883 }
2884 SYMBOL_SECTION (&psymbol) = 0;
2885 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2886 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2887 PSYMBOL_CLASS (&psymbol) = class;
2888 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2889
2890 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2891 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2892 objfile->psymbol_cache);
c906108c
SS
2893
2894 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2895 if (list->next >= list->list + list->size)
2896 {
2897 extend_psymbol_list (list, objfile);
2898 }
2899 *list->next++ = psym;
2900 OBJSTAT (objfile, n_psyms++);
2901}
2902
2903/* Initialize storage for partial symbols. */
2904
2905void
fba45db2 2906init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2907{
2908 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2909
2910 if (objfile->global_psymbols.list)
c906108c 2911 {
2dc74dc1 2912 xfree (objfile->global_psymbols.list);
c906108c 2913 }
c5aa993b 2914 if (objfile->static_psymbols.list)
c906108c 2915 {
2dc74dc1 2916 xfree (objfile->static_psymbols.list);
c906108c 2917 }
c5aa993b 2918
c906108c
SS
2919 /* Current best guess is that approximately a twentieth
2920 of the total symbols (in a debugging file) are global or static
2921 oriented symbols */
c906108c 2922
c5aa993b
JM
2923 objfile->global_psymbols.size = total_symbols / 10;
2924 objfile->static_psymbols.size = total_symbols / 10;
2925
2926 if (objfile->global_psymbols.size > 0)
c906108c 2927 {
c5aa993b
JM
2928 objfile->global_psymbols.next =
2929 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2930 xmalloc ((objfile->global_psymbols.size
2931 * sizeof (struct partial_symbol *)));
c906108c 2932 }
c5aa993b 2933 if (objfile->static_psymbols.size > 0)
c906108c 2934 {
c5aa993b
JM
2935 objfile->static_psymbols.next =
2936 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2937 xmalloc ((objfile->static_psymbols.size
2938 * sizeof (struct partial_symbol *)));
c906108c
SS
2939 }
2940}
2941
2942/* OVERLAYS:
2943 The following code implements an abstraction for debugging overlay sections.
2944
2945 The target model is as follows:
2946 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2947 same VMA, each with its own unique LMA (or load address).
c906108c 2948 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2949 sections, one by one, from the load address into the VMA address.
5417f6dc 2950 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2951 sections should be considered to be mapped from the VMA to the LMA.
2952 This information is used for symbol lookup, and memory read/write.
5417f6dc 2953 For instance, if a section has been mapped then its contents
c5aa993b 2954 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2955
2956 Two levels of debugger support for overlays are available. One is
2957 "manual", in which the debugger relies on the user to tell it which
2958 overlays are currently mapped. This level of support is
2959 implemented entirely in the core debugger, and the information about
2960 whether a section is mapped is kept in the objfile->obj_section table.
2961
2962 The second level of support is "automatic", and is only available if
2963 the target-specific code provides functionality to read the target's
2964 overlay mapping table, and translate its contents for the debugger
2965 (by updating the mapped state information in the obj_section tables).
2966
2967 The interface is as follows:
c5aa993b
JM
2968 User commands:
2969 overlay map <name> -- tell gdb to consider this section mapped
2970 overlay unmap <name> -- tell gdb to consider this section unmapped
2971 overlay list -- list the sections that GDB thinks are mapped
2972 overlay read-target -- get the target's state of what's mapped
2973 overlay off/manual/auto -- set overlay debugging state
2974 Functional interface:
2975 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2976 section, return that section.
5417f6dc 2977 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2978 the pc, either in its VMA or its LMA
2979 overlay_is_mapped(sect): true if overlay is marked as mapped
2980 section_is_overlay(sect): true if section's VMA != LMA
2981 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2982 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2983 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2984 overlay_mapped_address(...): map an address from section's LMA to VMA
2985 overlay_unmapped_address(...): map an address from section's VMA to LMA
2986 symbol_overlayed_address(...): Return a "current" address for symbol:
2987 either in VMA or LMA depending on whether
2988 the symbol's section is currently mapped
c906108c
SS
2989 */
2990
2991/* Overlay debugging state: */
2992
d874f1e2 2993enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2994int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2995
2996/* Target vector for refreshing overlay mapped state */
a14ed312 2997static void simple_overlay_update (struct obj_section *);
507f3c78 2998void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2999
3000/* Function: section_is_overlay (SECTION)
5417f6dc 3001 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3002 SECTION is loaded at an address different from where it will "run". */
3003
3004int
fba45db2 3005section_is_overlay (asection *section)
c906108c 3006{
fbd35540
MS
3007 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3008
c906108c
SS
3009 if (overlay_debugging)
3010 if (section && section->lma != 0 &&
3011 section->vma != section->lma)
3012 return 1;
3013
3014 return 0;
3015}
3016
3017/* Function: overlay_invalidate_all (void)
3018 Invalidate the mapped state of all overlay sections (mark it as stale). */
3019
3020static void
fba45db2 3021overlay_invalidate_all (void)
c906108c 3022{
c5aa993b 3023 struct objfile *objfile;
c906108c
SS
3024 struct obj_section *sect;
3025
3026 ALL_OBJSECTIONS (objfile, sect)
3027 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3028 sect->ovly_mapped = -1;
c906108c
SS
3029}
3030
3031/* Function: overlay_is_mapped (SECTION)
5417f6dc 3032 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3033 Private: public access is thru function section_is_mapped.
3034
3035 Access to the ovly_mapped flag is restricted to this function, so
3036 that we can do automatic update. If the global flag
3037 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3038 overlay_invalidate_all. If the mapped state of the particular
3039 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3040
c5aa993b 3041static int
fba45db2 3042overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3043{
3044 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3045 return 0;
3046
c5aa993b 3047 switch (overlay_debugging)
c906108c
SS
3048 {
3049 default:
d874f1e2 3050 case ovly_off:
c5aa993b 3051 return 0; /* overlay debugging off */
d874f1e2 3052 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3053 /* Unles there is a target_overlay_update function,
c5aa993b 3054 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3055 if (target_overlay_update)
3056 {
3057 if (overlay_cache_invalid)
3058 {
3059 overlay_invalidate_all ();
3060 overlay_cache_invalid = 0;
3061 }
3062 if (osect->ovly_mapped == -1)
3063 (*target_overlay_update) (osect);
3064 }
3065 /* fall thru to manual case */
d874f1e2 3066 case ovly_on: /* overlay debugging manual */
c906108c
SS
3067 return osect->ovly_mapped == 1;
3068 }
3069}
3070
3071/* Function: section_is_mapped
3072 Returns true if section is an overlay, and is currently mapped. */
3073
3074int
fba45db2 3075section_is_mapped (asection *section)
c906108c 3076{
c5aa993b 3077 struct objfile *objfile;
c906108c
SS
3078 struct obj_section *osect;
3079
3080 if (overlay_debugging)
3081 if (section && section_is_overlay (section))
3082 ALL_OBJSECTIONS (objfile, osect)
3083 if (osect->the_bfd_section == section)
c5aa993b 3084 return overlay_is_mapped (osect);
c906108c
SS
3085
3086 return 0;
3087}
3088
3089/* Function: pc_in_unmapped_range
3090 If PC falls into the lma range of SECTION, return true, else false. */
3091
3092CORE_ADDR
fba45db2 3093pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3094{
fbd35540
MS
3095 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3096
c906108c
SS
3097 int size;
3098
3099 if (overlay_debugging)
3100 if (section && section_is_overlay (section))
3101 {
2c500098 3102 size = bfd_get_section_size (section);
c906108c
SS
3103 if (section->lma <= pc && pc < section->lma + size)
3104 return 1;
3105 }
3106 return 0;
3107}
3108
3109/* Function: pc_in_mapped_range
3110 If PC falls into the vma range of SECTION, return true, else false. */
3111
3112CORE_ADDR
fba45db2 3113pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3114{
fbd35540
MS
3115 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3116
c906108c
SS
3117 int size;
3118
3119 if (overlay_debugging)
3120 if (section && section_is_overlay (section))
3121 {
2c500098 3122 size = bfd_get_section_size (section);
c906108c
SS
3123 if (section->vma <= pc && pc < section->vma + size)
3124 return 1;
3125 }
3126 return 0;
3127}
3128
9ec8e6a0
JB
3129
3130/* Return true if the mapped ranges of sections A and B overlap, false
3131 otherwise. */
b9362cc7 3132static int
9ec8e6a0
JB
3133sections_overlap (asection *a, asection *b)
3134{
fbd35540
MS
3135 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3136
9ec8e6a0 3137 CORE_ADDR a_start = a->vma;
2c500098 3138 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3139 CORE_ADDR b_start = b->vma;
2c500098 3140 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3141
3142 return (a_start < b_end && b_start < a_end);
3143}
3144
c906108c
SS
3145/* Function: overlay_unmapped_address (PC, SECTION)
3146 Returns the address corresponding to PC in the unmapped (load) range.
3147 May be the same as PC. */
3148
3149CORE_ADDR
fba45db2 3150overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3151{
fbd35540
MS
3152 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3153
c906108c
SS
3154 if (overlay_debugging)
3155 if (section && section_is_overlay (section) &&
3156 pc_in_mapped_range (pc, section))
3157 return pc + section->lma - section->vma;
3158
3159 return pc;
3160}
3161
3162/* Function: overlay_mapped_address (PC, SECTION)
3163 Returns the address corresponding to PC in the mapped (runtime) range.
3164 May be the same as PC. */
3165
3166CORE_ADDR
fba45db2 3167overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3168{
fbd35540
MS
3169 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3170
c906108c
SS
3171 if (overlay_debugging)
3172 if (section && section_is_overlay (section) &&
3173 pc_in_unmapped_range (pc, section))
3174 return pc + section->vma - section->lma;
3175
3176 return pc;
3177}
3178
3179
5417f6dc 3180/* Function: symbol_overlayed_address
c906108c
SS
3181 Return one of two addresses (relative to the VMA or to the LMA),
3182 depending on whether the section is mapped or not. */
3183
c5aa993b 3184CORE_ADDR
fba45db2 3185symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3186{
3187 if (overlay_debugging)
3188 {
3189 /* If the symbol has no section, just return its regular address. */
3190 if (section == 0)
3191 return address;
3192 /* If the symbol's section is not an overlay, just return its address */
3193 if (!section_is_overlay (section))
3194 return address;
3195 /* If the symbol's section is mapped, just return its address */
3196 if (section_is_mapped (section))
3197 return address;
3198 /*
3199 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3200 * then return its LOADED address rather than its vma address!!
3201 */
3202 return overlay_unmapped_address (address, section);
3203 }
3204 return address;
3205}
3206
5417f6dc 3207/* Function: find_pc_overlay (PC)
c906108c
SS
3208 Return the best-match overlay section for PC:
3209 If PC matches a mapped overlay section's VMA, return that section.
3210 Else if PC matches an unmapped section's VMA, return that section.
3211 Else if PC matches an unmapped section's LMA, return that section. */
3212
3213asection *
fba45db2 3214find_pc_overlay (CORE_ADDR pc)
c906108c 3215{
c5aa993b 3216 struct objfile *objfile;
c906108c
SS
3217 struct obj_section *osect, *best_match = NULL;
3218
3219 if (overlay_debugging)
3220 ALL_OBJSECTIONS (objfile, osect)
3221 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3222 {
3223 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3224 {
3225 if (overlay_is_mapped (osect))
3226 return osect->the_bfd_section;
3227 else
3228 best_match = osect;
3229 }
3230 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3231 best_match = osect;
3232 }
c906108c
SS
3233 return best_match ? best_match->the_bfd_section : NULL;
3234}
3235
3236/* Function: find_pc_mapped_section (PC)
5417f6dc 3237 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3238 currently marked as MAPPED, return that section. Else return NULL. */
3239
3240asection *
fba45db2 3241find_pc_mapped_section (CORE_ADDR pc)
c906108c 3242{
c5aa993b 3243 struct objfile *objfile;
c906108c
SS
3244 struct obj_section *osect;
3245
3246 if (overlay_debugging)
3247 ALL_OBJSECTIONS (objfile, osect)
3248 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3249 overlay_is_mapped (osect))
c5aa993b 3250 return osect->the_bfd_section;
c906108c
SS
3251
3252 return NULL;
3253}
3254
3255/* Function: list_overlays_command
3256 Print a list of mapped sections and their PC ranges */
3257
3258void
fba45db2 3259list_overlays_command (char *args, int from_tty)
c906108c 3260{
c5aa993b
JM
3261 int nmapped = 0;
3262 struct objfile *objfile;
c906108c
SS
3263 struct obj_section *osect;
3264
3265 if (overlay_debugging)
3266 ALL_OBJSECTIONS (objfile, osect)
3267 if (overlay_is_mapped (osect))
c5aa993b
JM
3268 {
3269 const char *name;
3270 bfd_vma lma, vma;
3271 int size;
3272
3273 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3274 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3275 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3276 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3277
3278 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3279 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3280 puts_filtered (" - ");
66bf4b3a 3281 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3282 printf_filtered (", mapped at ");
66bf4b3a 3283 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3284 puts_filtered (" - ");
66bf4b3a 3285 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3286 puts_filtered ("\n");
3287
3288 nmapped++;
3289 }
c906108c 3290 if (nmapped == 0)
a3f17187 3291 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3292}
3293
3294/* Function: map_overlay_command
3295 Mark the named section as mapped (ie. residing at its VMA address). */
3296
3297void
fba45db2 3298map_overlay_command (char *args, int from_tty)
c906108c 3299{
c5aa993b
JM
3300 struct objfile *objfile, *objfile2;
3301 struct obj_section *sec, *sec2;
3302 asection *bfdsec;
c906108c
SS
3303
3304 if (!overlay_debugging)
8a3fe4f8 3305 error (_("\
515ad16c 3306Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3307the 'overlay manual' command."));
c906108c
SS
3308
3309 if (args == 0 || *args == 0)
8a3fe4f8 3310 error (_("Argument required: name of an overlay section"));
c906108c
SS
3311
3312 /* First, find a section matching the user supplied argument */
3313 ALL_OBJSECTIONS (objfile, sec)
3314 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3315 {
3316 /* Now, check to see if the section is an overlay. */
3317 bfdsec = sec->the_bfd_section;
3318 if (!section_is_overlay (bfdsec))
3319 continue; /* not an overlay section */
3320
3321 /* Mark the overlay as "mapped" */
3322 sec->ovly_mapped = 1;
3323
3324 /* Next, make a pass and unmap any sections that are
3325 overlapped by this new section: */
3326 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3327 if (sec2->ovly_mapped
3328 && sec != sec2
3329 && sec->the_bfd_section != sec2->the_bfd_section
3330 && sections_overlap (sec->the_bfd_section,
3331 sec2->the_bfd_section))
c5aa993b
JM
3332 {
3333 if (info_verbose)
a3f17187 3334 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3335 bfd_section_name (objfile->obfd,
3336 sec2->the_bfd_section));
3337 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3338 }
3339 return;
3340 }
8a3fe4f8 3341 error (_("No overlay section called %s"), args);
c906108c
SS
3342}
3343
3344/* Function: unmap_overlay_command
5417f6dc 3345 Mark the overlay section as unmapped
c906108c
SS
3346 (ie. resident in its LMA address range, rather than the VMA range). */
3347
3348void
fba45db2 3349unmap_overlay_command (char *args, int from_tty)
c906108c 3350{
c5aa993b 3351 struct objfile *objfile;
c906108c
SS
3352 struct obj_section *sec;
3353
3354 if (!overlay_debugging)
8a3fe4f8 3355 error (_("\
515ad16c 3356Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3357the 'overlay manual' command."));
c906108c
SS
3358
3359 if (args == 0 || *args == 0)
8a3fe4f8 3360 error (_("Argument required: name of an overlay section"));
c906108c
SS
3361
3362 /* First, find a section matching the user supplied argument */
3363 ALL_OBJSECTIONS (objfile, sec)
3364 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3365 {
3366 if (!sec->ovly_mapped)
8a3fe4f8 3367 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3368 sec->ovly_mapped = 0;
3369 return;
3370 }
8a3fe4f8 3371 error (_("No overlay section called %s"), args);
c906108c
SS
3372}
3373
3374/* Function: overlay_auto_command
3375 A utility command to turn on overlay debugging.
3376 Possibly this should be done via a set/show command. */
3377
3378static void
fba45db2 3379overlay_auto_command (char *args, int from_tty)
c906108c 3380{
d874f1e2 3381 overlay_debugging = ovly_auto;
1900040c 3382 enable_overlay_breakpoints ();
c906108c 3383 if (info_verbose)
a3f17187 3384 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3385}
3386
3387/* Function: overlay_manual_command
3388 A utility command to turn on overlay debugging.
3389 Possibly this should be done via a set/show command. */
3390
3391static void
fba45db2 3392overlay_manual_command (char *args, int from_tty)
c906108c 3393{
d874f1e2 3394 overlay_debugging = ovly_on;
1900040c 3395 disable_overlay_breakpoints ();
c906108c 3396 if (info_verbose)
a3f17187 3397 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3398}
3399
3400/* Function: overlay_off_command
3401 A utility command to turn on overlay debugging.
3402 Possibly this should be done via a set/show command. */
3403
3404static void
fba45db2 3405overlay_off_command (char *args, int from_tty)
c906108c 3406{
d874f1e2 3407 overlay_debugging = ovly_off;
1900040c 3408 disable_overlay_breakpoints ();
c906108c 3409 if (info_verbose)
a3f17187 3410 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3411}
3412
3413static void
fba45db2 3414overlay_load_command (char *args, int from_tty)
c906108c
SS
3415{
3416 if (target_overlay_update)
3417 (*target_overlay_update) (NULL);
3418 else
8a3fe4f8 3419 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3420}
3421
3422/* Function: overlay_command
3423 A place-holder for a mis-typed command */
3424
3425/* Command list chain containing all defined "overlay" subcommands. */
3426struct cmd_list_element *overlaylist;
3427
3428static void
fba45db2 3429overlay_command (char *args, int from_tty)
c906108c 3430{
c5aa993b 3431 printf_unfiltered
c906108c
SS
3432 ("\"overlay\" must be followed by the name of an overlay command.\n");
3433 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3434}
3435
3436
3437/* Target Overlays for the "Simplest" overlay manager:
3438
5417f6dc
RM
3439 This is GDB's default target overlay layer. It works with the
3440 minimal overlay manager supplied as an example by Cygnus. The
3441 entry point is via a function pointer "target_overlay_update",
3442 so targets that use a different runtime overlay manager can
c906108c
SS
3443 substitute their own overlay_update function and take over the
3444 function pointer.
3445
3446 The overlay_update function pokes around in the target's data structures
3447 to see what overlays are mapped, and updates GDB's overlay mapping with
3448 this information.
3449
3450 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3451 unsigned _novlys; /# number of overlay sections #/
3452 unsigned _ovly_table[_novlys][4] = {
3453 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3454 {..., ..., ..., ...},
3455 }
3456 unsigned _novly_regions; /# number of overlay regions #/
3457 unsigned _ovly_region_table[_novly_regions][3] = {
3458 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3459 {..., ..., ...},
3460 }
c906108c
SS
3461 These functions will attempt to update GDB's mappedness state in the
3462 symbol section table, based on the target's mappedness state.
3463
3464 To do this, we keep a cached copy of the target's _ovly_table, and
3465 attempt to detect when the cached copy is invalidated. The main
3466 entry point is "simple_overlay_update(SECT), which looks up SECT in
3467 the cached table and re-reads only the entry for that section from
3468 the target (whenever possible).
3469 */
3470
3471/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3472static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3473#if 0
c5aa993b 3474static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3475#endif
c5aa993b 3476static unsigned cache_novlys = 0;
c906108c 3477#if 0
c5aa993b 3478static unsigned cache_novly_regions = 0;
c906108c
SS
3479#endif
3480static CORE_ADDR cache_ovly_table_base = 0;
3481#if 0
3482static CORE_ADDR cache_ovly_region_table_base = 0;
3483#endif
c5aa993b
JM
3484enum ovly_index
3485 {
3486 VMA, SIZE, LMA, MAPPED
3487 };
c906108c
SS
3488#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3489
3490/* Throw away the cached copy of _ovly_table */
3491static void
fba45db2 3492simple_free_overlay_table (void)
c906108c
SS
3493{
3494 if (cache_ovly_table)
b8c9b27d 3495 xfree (cache_ovly_table);
c5aa993b 3496 cache_novlys = 0;
c906108c
SS
3497 cache_ovly_table = NULL;
3498 cache_ovly_table_base = 0;
3499}
3500
3501#if 0
3502/* Throw away the cached copy of _ovly_region_table */
3503static void
fba45db2 3504simple_free_overlay_region_table (void)
c906108c
SS
3505{
3506 if (cache_ovly_region_table)
b8c9b27d 3507 xfree (cache_ovly_region_table);
c5aa993b 3508 cache_novly_regions = 0;
c906108c
SS
3509 cache_ovly_region_table = NULL;
3510 cache_ovly_region_table_base = 0;
3511}
3512#endif
3513
3514/* Read an array of ints from the target into a local buffer.
3515 Convert to host order. int LEN is number of ints */
3516static void
fba45db2 3517read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3518{
34c0bd93 3519 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3520 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3521 int i;
c906108c
SS
3522
3523 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3524 for (i = 0; i < len; i++)
c5aa993b 3525 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3526 TARGET_LONG_BYTES);
3527}
3528
3529/* Find and grab a copy of the target _ovly_table
3530 (and _novlys, which is needed for the table's size) */
c5aa993b 3531static int
fba45db2 3532simple_read_overlay_table (void)
c906108c 3533{
0d43edd1 3534 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3535
3536 simple_free_overlay_table ();
9b27852e 3537 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3538 if (! novlys_msym)
c906108c 3539 {
8a3fe4f8 3540 error (_("Error reading inferior's overlay table: "
0d43edd1 3541 "couldn't find `_novlys' variable\n"
8a3fe4f8 3542 "in inferior. Use `overlay manual' mode."));
0d43edd1 3543 return 0;
c906108c 3544 }
0d43edd1 3545
9b27852e 3546 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3547 if (! ovly_table_msym)
3548 {
8a3fe4f8 3549 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3550 "`_ovly_table' array\n"
8a3fe4f8 3551 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3552 return 0;
3553 }
3554
3555 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3556 cache_ovly_table
3557 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3558 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3559 read_target_long_array (cache_ovly_table_base,
777ea8f1 3560 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3561 cache_novlys * 4);
3562
c5aa993b 3563 return 1; /* SUCCESS */
c906108c
SS
3564}
3565
3566#if 0
3567/* Find and grab a copy of the target _ovly_region_table
3568 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3569static int
fba45db2 3570simple_read_overlay_region_table (void)
c906108c
SS
3571{
3572 struct minimal_symbol *msym;
3573
3574 simple_free_overlay_region_table ();
9b27852e 3575 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3576 if (msym != NULL)
3577 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3578 else
3579 return 0; /* failure */
c906108c
SS
3580 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3581 if (cache_ovly_region_table != NULL)
3582 {
9b27852e 3583 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3584 if (msym != NULL)
3585 {
3586 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3587 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3588 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3589 cache_novly_regions * 3);
3590 }
c5aa993b
JM
3591 else
3592 return 0; /* failure */
c906108c 3593 }
c5aa993b
JM
3594 else
3595 return 0; /* failure */
3596 return 1; /* SUCCESS */
c906108c
SS
3597}
3598#endif
3599
5417f6dc 3600/* Function: simple_overlay_update_1
c906108c
SS
3601 A helper function for simple_overlay_update. Assuming a cached copy
3602 of _ovly_table exists, look through it to find an entry whose vma,
3603 lma and size match those of OSECT. Re-read the entry and make sure
3604 it still matches OSECT (else the table may no longer be valid).
3605 Set OSECT's mapped state to match the entry. Return: 1 for
3606 success, 0 for failure. */
3607
3608static int
fba45db2 3609simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3610{
3611 int i, size;
fbd35540
MS
3612 bfd *obfd = osect->objfile->obfd;
3613 asection *bsect = osect->the_bfd_section;
c906108c 3614
2c500098 3615 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3616 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3617 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3618 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3619 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3620 {
3621 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3622 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3623 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3624 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3625 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3626 {
3627 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3628 return 1;
3629 }
fbd35540 3630 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3631 return 0;
3632 }
3633 return 0;
3634}
3635
3636/* Function: simple_overlay_update
5417f6dc
RM
3637 If OSECT is NULL, then update all sections' mapped state
3638 (after re-reading the entire target _ovly_table).
3639 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3640 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3641 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3642 re-read the entire cache, and go ahead and update all sections. */
3643
3644static void
fba45db2 3645simple_overlay_update (struct obj_section *osect)
c906108c 3646{
c5aa993b 3647 struct objfile *objfile;
c906108c
SS
3648
3649 /* Were we given an osect to look up? NULL means do all of them. */
3650 if (osect)
3651 /* Have we got a cached copy of the target's overlay table? */
3652 if (cache_ovly_table != NULL)
3653 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3654 if (cache_ovly_table_base ==
9b27852e 3655 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3656 /* Then go ahead and try to look up this single section in the cache */
3657 if (simple_overlay_update_1 (osect))
3658 /* Found it! We're done. */
3659 return;
3660
3661 /* Cached table no good: need to read the entire table anew.
3662 Or else we want all the sections, in which case it's actually
3663 more efficient to read the whole table in one block anyway. */
3664
0d43edd1
JB
3665 if (! simple_read_overlay_table ())
3666 return;
3667
c906108c
SS
3668 /* Now may as well update all sections, even if only one was requested. */
3669 ALL_OBJSECTIONS (objfile, osect)
3670 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3671 {
3672 int i, size;
fbd35540
MS
3673 bfd *obfd = osect->objfile->obfd;
3674 asection *bsect = osect->the_bfd_section;
c5aa993b 3675
2c500098 3676 size = bfd_get_section_size (bsect);
c5aa993b 3677 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3678 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3679 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3680 /* && cache_ovly_table[i][SIZE] == size */ )
3681 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3682 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3683 break; /* finished with inner for loop: break out */
3684 }
3685 }
c906108c
SS
3686}
3687
086df311
DJ
3688/* Set the output sections and output offsets for section SECTP in
3689 ABFD. The relocation code in BFD will read these offsets, so we
3690 need to be sure they're initialized. We map each section to itself,
3691 with no offset; this means that SECTP->vma will be honored. */
3692
3693static void
3694symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3695{
3696 sectp->output_section = sectp;
3697 sectp->output_offset = 0;
3698}
3699
3700/* Relocate the contents of a debug section SECTP in ABFD. The
3701 contents are stored in BUF if it is non-NULL, or returned in a
3702 malloc'd buffer otherwise.
3703
3704 For some platforms and debug info formats, shared libraries contain
3705 relocations against the debug sections (particularly for DWARF-2;
3706 one affected platform is PowerPC GNU/Linux, although it depends on
3707 the version of the linker in use). Also, ELF object files naturally
3708 have unresolved relocations for their debug sections. We need to apply
3709 the relocations in order to get the locations of symbols correct. */
3710
3711bfd_byte *
3712symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3713{
3714 /* We're only interested in debugging sections with relocation
3715 information. */
3716 if ((sectp->flags & SEC_RELOC) == 0)
3717 return NULL;
3718 if ((sectp->flags & SEC_DEBUGGING) == 0)
3719 return NULL;
3720
3721 /* We will handle section offsets properly elsewhere, so relocate as if
3722 all sections begin at 0. */
3723 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3724
97606a13 3725 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3726}
c906108c
SS
3727
3728void
fba45db2 3729_initialize_symfile (void)
c906108c
SS
3730{
3731 struct cmd_list_element *c;
c5aa993b 3732
1a966eab
AC
3733 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3734Load symbol table from executable file FILE.\n\
c906108c 3735The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3736to execute."), &cmdlist);
5ba2abeb 3737 set_cmd_completer (c, filename_completer);
c906108c 3738
1a966eab 3739 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3740Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3741Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3742ADDR is the starting address of the file's text.\n\
db162d44
EZ
3743The optional arguments are section-name section-address pairs and\n\
3744should be specified if the data and bss segments are not contiguous\n\
1a966eab 3745with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3746 &cmdlist);
5ba2abeb 3747 set_cmd_completer (c, filename_completer);
c906108c
SS
3748
3749 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3750 add_shared_symbol_files_command, _("\
3751Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3752 &cmdlist);
c906108c
SS
3753 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3754 &cmdlist);
3755
1a966eab
AC
3756 c = add_cmd ("load", class_files, load_command, _("\
3757Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3758for access from GDB.\n\
3759A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3760 set_cmd_completer (c, filename_completer);
c906108c 3761
5bf193a2
AC
3762 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3763 &symbol_reloading, _("\
3764Set dynamic symbol table reloading multiple times in one run."), _("\
3765Show dynamic symbol table reloading multiple times in one run."), NULL,
3766 NULL,
920d2a44 3767 show_symbol_reloading,
5bf193a2 3768 &setlist, &showlist);
c906108c 3769
c5aa993b 3770 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3771 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3772 "overlay ", 0, &cmdlist);
3773
3774 add_com_alias ("ovly", "overlay", class_alias, 1);
3775 add_com_alias ("ov", "overlay", class_alias, 1);
3776
c5aa993b 3777 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3778 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3779
c5aa993b 3780 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3781 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3782
c5aa993b 3783 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3784 _("List mappings of overlay sections."), &overlaylist);
c906108c 3785
c5aa993b 3786 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3787 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3788 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3789 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3790 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3791 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3792 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3793 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3794
3795 /* Filename extension to source language lookup table: */
3796 init_filename_language_table ();
26c41df3
AC
3797 add_setshow_string_noescape_cmd ("extension-language", class_files,
3798 &ext_args, _("\
3799Set mapping between filename extension and source language."), _("\
3800Show mapping between filename extension and source language."), _("\
3801Usage: set extension-language .foo bar"),
3802 set_ext_lang_command,
920d2a44 3803 show_ext_args,
26c41df3 3804 &setlist, &showlist);
c906108c 3805
c5aa993b 3806 add_info ("extensions", info_ext_lang_command,
1bedd215 3807 _("All filename extensions associated with a source language."));
917317f4 3808
4d28ad1e
AC
3809 add_setshow_integer_cmd ("download-write-size", class_obscure,
3810 &download_write_size, _("\
3811Set the write size used when downloading a program."), _("\
3812Show the write size used when downloading a program."), _("\
3813Only used when downloading a program onto a remote\n\
3814target. Specify zero, or a negative value, to disable\n\
3815blocked writes. The actual size of each transfer is also\n\
3816limited by the size of the target packet and the memory\n\
3817cache."),
3818 NULL,
920d2a44 3819 show_download_write_size,
4d28ad1e 3820 &setlist, &showlist);
5b5d99cf
JB
3821
3822 debug_file_directory = xstrdup (DEBUGDIR);
525226b5
AC
3823 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3824 &debug_file_directory, _("\
3825Set the directory where separate debug symbols are searched for."), _("\
3826Show the directory where separate debug symbols are searched for."), _("\
3827Separate debug symbols are first searched for in the same\n\
3828directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3829and lastly at the path of the directory of the binary with\n\
3830the global debug-file directory prepended."),
3831 NULL,
920d2a44 3832 show_debug_file_directory,
525226b5 3833 &setlist, &showlist);
c906108c 3834}
This page took 0.863541 seconds and 4 git commands to generate.