btrace: Remove struct btrace_thread_info::{begin,end}.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void overlay_auto_command (char *, int);
c906108c 97
a14ed312 98static void overlay_manual_command (char *, int);
c906108c 99
a14ed312 100static void overlay_off_command (char *, int);
c906108c 101
a14ed312 102static void overlay_load_command (char *, int);
c906108c 103
a14ed312 104static void overlay_command (char *, int);
c906108c 105
a14ed312 106static void simple_free_overlay_table (void);
c906108c 107
e17a4113
UW
108static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
c906108c 110
a14ed312 111static int simple_read_overlay_table (void);
c906108c 112
a14ed312 113static int simple_overlay_update_1 (struct obj_section *);
c906108c 114
a14ed312 115static void info_ext_lang_command (char *args, int from_tty);
392a587b 116
31d99776
DJ
117static void symfile_find_segment_sections (struct objfile *objfile);
118
a14ed312 119void _initialize_symfile (void);
c906108c
SS
120
121/* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
c378eb4e 123 prepared to read. */
c906108c 124
c256e171
DE
125typedef struct
126{
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132} registered_sym_fns;
00b5771c 133
c256e171
DE
134DEF_VEC_O (registered_sym_fns);
135
136static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 137
770e7fc7
DE
138/* Values for "set print symbol-loading". */
139
140const char print_symbol_loading_off[] = "off";
141const char print_symbol_loading_brief[] = "brief";
142const char print_symbol_loading_full[] = "full";
143static const char *print_symbol_loading_enums[] =
144{
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
148 NULL
149};
150static const char *print_symbol_loading = print_symbol_loading_full;
151
b7209cb4
FF
152/* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
c906108c 159 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 160 report all the functions that are actually present. */
c906108c
SS
161
162int auto_solib_add = 1;
c906108c 163\f
c5aa993b 164
770e7fc7
DE
165/* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
172
173int
174print_symbol_loading_p (int from_tty, int exec, int full)
175{
176 if (!from_tty && !info_verbose)
177 return 0;
178
179 if (exec)
180 {
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
184 }
185 if (full)
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
188}
189
0d14a781 190/* True if we are reading a symbol table. */
c906108c
SS
191
192int currently_reading_symtab = 0;
193
ccefe4c4
TT
194/* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
3b7bacac 196
c83dd867 197scoped_restore_tmpl<int>
ccefe4c4 198increment_reading_symtab (void)
c906108c 199{
c83dd867
TT
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (&currently_reading_symtab,
202 currently_reading_symtab + 1);
c906108c
SS
203}
204
5417f6dc
RM
205/* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
c906108c
SS
207
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
210
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
213
214void
4efb68b1 215find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 216{
c5aa993b 217 asection **lowest = (asection **) obj;
c906108c 218
eb73e134 219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
220 return;
221 if (!*lowest)
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
228 *lowest = sect;
229}
230
d76488d8
TT
231/* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
233 by the caller. */
a39a16c4
MM
234
235struct section_addr_info *
236alloc_section_addr_info (size_t num_sections)
237{
238 struct section_addr_info *sap;
239 size_t size;
240
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
a39a16c4
MM
245
246 return sap;
247}
62557bbc
KB
248
249/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 250 an existing section table. */
62557bbc
KB
251
252extern struct section_addr_info *
0542c86d
PA
253build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
62557bbc
KB
255{
256 struct section_addr_info *sap;
0542c86d 257 const struct target_section *stp;
62557bbc
KB
258 int oidx;
259
a39a16c4 260 sap = alloc_section_addr_info (end - start);
62557bbc
KB
261
262 for (stp = start, oidx = 0; stp != end; stp++)
263 {
2b2848e2
DE
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
266
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 268 && oidx < end - start)
62557bbc
KB
269 {
270 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
273 oidx++;
274 }
275 }
276
d76488d8
TT
277 sap->num_sections = oidx;
278
62557bbc
KB
279 return sap;
280}
281
82ccf5a5 282/* Create a section_addr_info from section offsets in ABFD. */
089b4803 283
82ccf5a5
JK
284static struct section_addr_info *
285build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
286{
287 struct section_addr_info *sap;
288 int i;
289 struct bfd_section *sec;
290
82ccf5a5
JK
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 294 {
82ccf5a5
JK
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
298 i++;
299 }
d76488d8
TT
300
301 sap->num_sections = i;
302
089b4803
TG
303 return sap;
304}
305
82ccf5a5
JK
306/* Create a section_addr_info from section offsets in OBJFILE. */
307
308struct section_addr_info *
309build_section_addr_info_from_objfile (const struct objfile *objfile)
310{
311 struct section_addr_info *sap;
312 int i;
313
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
316 */
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 318 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
319 {
320 int sectindex = sap->other[i].sectindex;
321
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
323 }
324 return sap;
325}
62557bbc 326
c378eb4e 327/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
328
329extern void
330free_section_addr_info (struct section_addr_info *sap)
331{
332 int idx;
333
a39a16c4 334 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 335 xfree (sap->other[idx].name);
b8c9b27d 336 xfree (sap);
62557bbc
KB
337}
338
e8289572 339/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 340
e8289572
JB
341static void
342init_objfile_sect_indices (struct objfile *objfile)
c906108c 343{
e8289572 344 asection *sect;
c906108c 345 int i;
5417f6dc 346
b8fbeb18 347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 348 if (sect)
b8fbeb18
EZ
349 objfile->sect_index_text = sect->index;
350
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 352 if (sect)
b8fbeb18
EZ
353 objfile->sect_index_data = sect->index;
354
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 356 if (sect)
b8fbeb18
EZ
357 objfile->sect_index_bss = sect->index;
358
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 360 if (sect)
b8fbeb18
EZ
361 objfile->sect_index_rodata = sect->index;
362
bbcd32ad
FF
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
31d99776
DJ
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
368
369 symfile_find_segment_sections (objfile);
370
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
bbcd32ad
FF
379
380 for (i = 0; i < objfile->num_sections; i++)
381 {
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
383 {
384 break;
385 }
386 }
387 if (i == objfile->num_sections)
388 {
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
397 }
b8fbeb18 398}
c906108c 399
c1bd25fd
DJ
400/* The arguments to place_section. */
401
402struct place_section_arg
403{
404 struct section_offsets *offsets;
405 CORE_ADDR lowest;
406};
407
408/* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
410
2c0b251b 411static void
c1bd25fd
DJ
412place_section (bfd *abfd, asection *sect, void *obj)
413{
19ba03f4 414 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
416 int done;
3bd72c6f 417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 418
2711e456
DJ
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 return;
422
423 /* If the user specified an offset, honor it. */
65cf3563 424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
425 return;
426
427 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
428 start_addr = (arg->lowest + align - 1) & -align;
429
c1bd25fd
DJ
430 do {
431 asection *cur_sec;
c1bd25fd 432
c1bd25fd
DJ
433 done = 1;
434
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
436 {
437 int indx = cur_sec->index;
c1bd25fd
DJ
438
439 /* We don't need to compare against ourself. */
440 if (cur_sec == sect)
441 continue;
442
2711e456
DJ
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
445 continue;
446
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
451 continue;
452
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
456 {
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
459 done = 0;
3bd72c6f 460 break;
c1bd25fd
DJ
461 }
462
463 /* Otherwise, we appear to be OK. So far. */
464 }
465 }
466 while (!done);
467
65cf3563 468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 469 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 470}
e8289572 471
75242ef4
JK
472/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
474 entries. */
e8289572
JB
475
476void
75242ef4
JK
477relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
478 int num_sections,
3189cb12 479 const struct section_addr_info *addrs)
e8289572
JB
480{
481 int i;
482
75242ef4 483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 484
c378eb4e 485 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 486 for (i = 0; i < addrs->num_sections; i++)
e8289572 487 {
3189cb12 488 const struct other_sections *osp;
e8289572 489
75242ef4 490 osp = &addrs->other[i];
5488dafb 491 if (osp->sectindex == -1)
e8289572
JB
492 continue;
493
c378eb4e 494 /* Record all sections in offsets. */
e8289572 495 /* The section_offsets in the objfile are here filled in using
c378eb4e 496 the BFD index. */
75242ef4
JK
497 section_offsets->offsets[osp->sectindex] = osp->addr;
498 }
499}
500
1276c759
JK
501/* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
506
507static const char *
508addr_section_name (const char *s)
509{
510 if (strcmp (s, ".dynbss") == 0)
511 return ".bss";
512 if (strcmp (s, ".sdynbss") == 0)
513 return ".sbss";
514
515 return s;
516}
517
82ccf5a5
JK
518/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
520
521static int
522addrs_section_compar (const void *ap, const void *bp)
523{
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 526 int retval;
82ccf5a5 527
1276c759 528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
529 if (retval)
530 return retval;
531
5488dafb 532 return a->sectindex - b->sectindex;
82ccf5a5
JK
533}
534
535/* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
537
538static struct other_sections **
539addrs_section_sort (struct section_addr_info *addrs)
540{
541 struct other_sections **array;
542 int i;
543
544 /* `+ 1' for the NULL terminator. */
8d749320 545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 546 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
547 array[i] = &addrs->other[i];
548 array[i] = NULL;
549
550 qsort (array, i, sizeof (*array), addrs_section_compar);
551
552 return array;
553}
554
75242ef4 555/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
558
559void
560addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
561{
562 asection *lower_sect;
75242ef4
JK
563 CORE_ADDR lower_offset;
564 int i;
82ccf5a5
JK
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
569
570 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
571 continguous sections. */
572 lower_sect = NULL;
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
574 if (lower_sect == NULL)
575 {
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
578 lower_offset = 0;
e8289572 579 }
75242ef4
JK
580 else
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
582
82ccf5a5
JK
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
588 order.
589
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
592
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
595
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
600
c378eb4e
MS
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
82ccf5a5 603
8d749320 604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
605 make_cleanup (xfree, addrs_to_abfd_addrs);
606
607 while (*addrs_sorted)
608 {
1276c759 609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
610
611 while (*abfd_addrs_sorted
1276c759
JK
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
613 sect_name) < 0)
82ccf5a5
JK
614 abfd_addrs_sorted++;
615
616 if (*abfd_addrs_sorted
1276c759
JK
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
618 sect_name) == 0)
82ccf5a5
JK
619 {
620 int index_in_addrs;
621
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
626
627 /* Never use the same ABFD entry twice. */
628 abfd_addrs_sorted++;
629 }
630
631 addrs_sorted++;
632 }
633
75242ef4
JK
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
637
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
643
d76488d8 644 for (i = 0; i < addrs->num_sections; i++)
75242ef4 645 {
82ccf5a5 646 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
647
648 if (sect)
75242ef4 649 {
c378eb4e 650 /* This is the index used by BFD. */
82ccf5a5 651 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
652
653 if (addrs->other[i].addr != 0)
75242ef4 654 {
82ccf5a5 655 addrs->other[i].addr -= sect->addr;
75242ef4 656 lower_offset = addrs->other[i].addr;
75242ef4
JK
657 }
658 else
672d9c23 659 addrs->other[i].addr = lower_offset;
75242ef4
JK
660 }
661 else
672d9c23 662 {
1276c759
JK
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
665
b0fcb67f
JK
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
668
4d9743af
JK
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
1276c759
JK
676 created by prelink have no special flags.
677
678 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
679
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 681 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
682 || (strcmp (sect_name, ".bss") == 0
683 && i > 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
687 && i > 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
692
672d9c23 693 addrs->other[i].addr = 0;
5488dafb 694 addrs->other[i].sectindex = -1;
672d9c23 695 }
75242ef4 696 }
82ccf5a5
JK
697
698 do_cleanups (my_cleanup);
75242ef4
JK
699}
700
701/* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
706
707void
708default_symfile_offsets (struct objfile *objfile,
3189cb12 709 const struct section_addr_info *addrs)
75242ef4 710{
d445b2f6 711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
e8289572 717
c1bd25fd
DJ
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
722 small. */
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
724 {
725 struct place_section_arg arg;
2711e456
DJ
726 bfd *abfd = objfile->obfd;
727 asection *cur_sec;
2711e456
DJ
728
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
733 break;
734
735 if (cur_sec == NULL)
736 {
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
738
739 /* Pick non-overlapping offsets for sections the user did not
740 place explicitly. */
741 arg.offsets = objfile->section_offsets;
742 arg.lowest = 0;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
744
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
748
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
751 be assumed.
752
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
756 at address zero.
757
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
764 correct sections.
765
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
769 be eliminated. */
770
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
773 {
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
775 continue;
776
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
778 exec_set_section_address (bfd_get_filename (abfd),
779 cur_sec->index,
30510692 780 offsets[cur_sec->index]);
2711e456
DJ
781 offsets[cur_sec->index] = 0;
782 }
783 }
c1bd25fd
DJ
784 }
785
e8289572 786 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 787 .rodata sections. */
e8289572
JB
788 init_objfile_sect_indices (objfile);
789}
790
31d99776
DJ
791/* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
796
797struct symfile_segment_data *
798default_symfile_segments (bfd *abfd)
799{
800 int num_sections, i;
801 asection *sect;
802 struct symfile_segment_data *data;
803 CORE_ADDR low, high;
804
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
807 in segments. */
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
809 return NULL;
810
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
813 {
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 break;
818 }
819 if (sect == NULL)
820 return NULL;
821
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
824
41bf6aca 825 data = XCNEW (struct symfile_segment_data);
31d99776 826 data->num_segments = 1;
fc270c35
TT
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
829
830 num_sections = bfd_count_sections (abfd);
fc270c35 831 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
832
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
834 {
835 CORE_ADDR vma;
836
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 vma = bfd_get_section_vma (abfd, sect);
841 if (vma < low)
842 low = vma;
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
845
846 data->segment_info[i] = 1;
847 }
848
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
851
852 return data;
853}
854
608e2dbb
TT
855/* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
857
858static void
b15cc25c 859read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
860{
861 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 862 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
863
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 869 {
192b62ce 870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
871
872 if (abfd != NULL)
24ba069a
JK
873 {
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
192b62ce
TT
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
879 add_flags, objfile);
24ba069a 880 }
608e2dbb
TT
881 }
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
884}
885
3d6e24f0
JB
886/* Initialize entry point information for this objfile. */
887
888static void
889init_entry_point_info (struct objfile *objfile)
890{
6ef55de7
TT
891 struct entry_info *ei = &objfile->per_bfd->ei;
892
893 if (ei->initialized)
894 return;
895 ei->initialized = 1;
896
3d6e24f0
JB
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
899
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
901 {
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
6ef55de7
TT
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
3d6e24f0
JB
906 }
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
909 {
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
6ef55de7
TT
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
3d6e24f0
JB
915 }
916 else
917 {
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 919 ei->entry_point_p = 0;
3d6e24f0
JB
920 }
921
6ef55de7 922 if (ei->entry_point_p)
3d6e24f0 923 {
53eddfa6 924 struct obj_section *osect;
6ef55de7 925 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 926 int found;
3d6e24f0
JB
927
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
930 entry_point
df6d5441 931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
932 entry_point,
933 &current_target);
934
935 /* Remove any ISA markers, so that this matches entries in the
936 symbol table. */
6ef55de7 937 ei->entry_point
df6d5441 938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
939
940 found = 0;
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
942 {
943 struct bfd_section *sect = osect->the_bfd_section;
944
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
948 {
6ef55de7 949 ei->the_bfd_section_index
53eddfa6
TT
950 = gdb_bfd_section_index (objfile->obfd, sect);
951 found = 1;
952 break;
953 }
954 }
955
956 if (!found)
6ef55de7 957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
958 }
959}
960
c906108c
SS
961/* Process a symbol file, as either the main file or as a dynamically
962 loaded file.
963
36e4d068
JB
964 This function does not set the OBJFILE's entry-point info.
965
96baa820
JM
966 OBJFILE is where the symbols are to be read from.
967
7e8580c1
JB
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
96baa820 977
7eedccfa
PP
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
c906108c 981
36e4d068
JB
982static void
983syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
b15cc25c 985 symfile_add_flags add_flags)
c906108c 986{
a39a16c4 987 struct section_addr_info *local_addr = NULL;
c906108c 988 struct cleanup *old_chain;
7eedccfa 989 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 990
8fb8eb5c 991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 992
75245b24 993 if (objfile->sf == NULL)
36e4d068
JB
994 {
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
d445b2f6 997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
999
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
224c3ddb
SM
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1003 size);
36e4d068
JB
1004 memset (objfile->section_offsets, 0, size);
1005 return;
1006 }
75245b24 1007
c906108c
SS
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
74b7792f 1010 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1011
6bf667bb
DE
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
c378eb4e 1014 no load address was specified. */
6bf667bb 1015 if (! addrs)
a39a16c4 1016 {
d445b2f6 1017 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1018 make_cleanup (xfree, local_addr);
1019 addrs = local_addr;
1020 }
1021
c5aa993b 1022 if (mainline)
c906108c
SS
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1025 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
adb7f338 1033 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
c906108c 1040
c5aa993b 1041 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
53a5351d 1046 and assume that <addr> is where that got loaded.
c906108c 1047
53a5351d
JM
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
6bf667bb 1050 if (addrs->num_sections > 0)
75242ef4 1051 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
c378eb4e 1055 initial symbol reading for this file. */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_init) (objfile);
7eedccfa 1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1059
6bf667bb 1060 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1061
608e2dbb 1062 read_symbols (objfile, add_flags);
b11896a5 1063
c906108c
SS
1064 /* Discard cleanups as symbol reading was successful. */
1065
1066 discard_cleanups (old_chain);
f7545552 1067 xfree (local_addr);
c906108c
SS
1068}
1069
36e4d068
JB
1070/* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1072
6bf667bb 1073static void
36e4d068
JB
1074syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
b15cc25c 1076 symfile_add_flags add_flags)
36e4d068 1077{
6bf667bb 1078 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1079 init_entry_point_info (objfile);
1080}
1081
c906108c
SS
1082/* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1085
e7d52ed3 1086static void
b15cc25c 1087finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1088{
c906108c 1089 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1090 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1091 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1092 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1093 {
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1096
c1e56572 1097 clear_symtab_users (add_flags);
c906108c 1098 }
7eedccfa 1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1100 {
69de3c6a 1101 breakpoint_re_set ();
c906108c
SS
1102 }
1103
1104 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1106}
1107
1108/* Process a symbol file, as either the main file or as a dynamically
1109 loaded file.
1110
5417f6dc 1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1112 A new reference is acquired by this function.
7904e09f 1113
24ba069a
JK
1114 For NAME description see allocate_objfile's definition.
1115
7eedccfa
PP
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1118
6bf667bb 1119 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1121
63524580
JK
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1124
c906108c 1125 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1126 Upon failure, jumps back to command level (never returns). */
7eedccfa 1127
7904e09f 1128static struct objfile *
b15cc25c
PA
1129symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
6bf667bb 1131 struct section_addr_info *addrs,
b15cc25c 1132 objfile_flags flags, struct objfile *parent)
c906108c
SS
1133{
1134 struct objfile *objfile;
7eedccfa 1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1136 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1140
9291a0cd 1141 if (readnow_symbol_files)
b11896a5
TT
1142 {
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1145 }
9291a0cd 1146
5417f6dc
RM
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
c906108c
SS
1149
1150 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1151 && mainline
c906108c 1152 && from_tty
9e2f0ad4 1153 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1154 error (_("Not confirmed."));
c906108c 1155
b15cc25c
PA
1156 if (mainline)
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
c906108c 1159
63524580
JK
1160 if (parent)
1161 add_separate_debug_objfile (objfile, parent);
1162
78a4a9b9
AC
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
c378eb4e 1165 performed, or need to read an unmapped symbol table. */
b11896a5 1166 if (should_print)
c906108c 1167 {
769d7dc4
AC
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1170 else
c906108c 1171 {
55333a84
DE
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1173 wrap_here ("");
1174 gdb_flush (gdb_stdout);
c906108c 1175 }
c906108c 1176 }
6bf667bb 1177 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1178
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1182 all partial symbol tables for this objfile if so. */
c906108c 1183
9291a0cd 1184 if ((flags & OBJF_READNOW))
c906108c 1185 {
b11896a5 1186 if (should_print)
c906108c 1187 {
a3f17187 1188 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192
ccefe4c4
TT
1193 if (objfile->sf)
1194 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1195 }
1196
b11896a5 1197 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1198 {
1199 wrap_here ("");
55333a84 1200 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1201 wrap_here ("");
1202 }
1203
b11896a5 1204 if (should_print)
c906108c 1205 {
769d7dc4
AC
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
c906108c 1208 else
55333a84 1209 printf_unfiltered (_("done.\n"));
c906108c
SS
1210 }
1211
481d0f41
JB
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1214 time. */
1215 gdb_flush (gdb_stdout);
1216
109f874e 1217 if (objfile->sf == NULL)
8caee43b
PP
1218 {
1219 observer_notify_new_objfile (objfile);
c378eb4e 1220 return objfile; /* No symbols. */
8caee43b 1221 }
109f874e 1222
e7d52ed3 1223 finish_new_objfile (objfile, add_flags);
c906108c 1224
06d3b283 1225 observer_notify_new_objfile (objfile);
c906108c 1226
ce7d4522 1227 bfd_cache_close_all ();
c906108c
SS
1228 return (objfile);
1229}
1230
24ba069a
JK
1231/* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
9cce227f
TG
1233
1234void
b15cc25c
PA
1235symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
24ba069a 1237 struct objfile *objfile)
9cce227f 1238{
089b4803
TG
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1241
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1247
870f88f7 1248 symbol_file_add_with_addrs
24ba069a 1249 (bfd, name, symfile_flags, sap,
9cce227f 1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1251 | OBJF_USERLOADED),
1252 objfile);
089b4803
TG
1253
1254 do_cleanups (my_cleanup);
9cce227f 1255}
7904e09f 1256
eb4556d7
JB
1257/* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
6bf667bb 1259 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1260
eb4556d7 1261struct objfile *
b15cc25c
PA
1262symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
eb4556d7 1264 struct section_addr_info *addrs,
b15cc25c 1265 objfile_flags flags, struct objfile *parent)
eb4556d7 1266{
24ba069a
JK
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1268 parent);
eb4556d7
JB
1269}
1270
7904e09f 1271/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
7904e09f 1274struct objfile *
b15cc25c
PA
1275symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1277{
192b62ce 1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1279
192b62ce
TT
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1281 flags, NULL);
7904e09f
JB
1282}
1283
d7db6da9
FN
1284/* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1290 command itself. */
5417f6dc 1291
1adeb98a 1292void
ecf45d2c 1293symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1294{
ecf45d2c 1295 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1296}
1297
1298static void
ecf45d2c
SL
1299symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
d7db6da9 1301{
ecf45d2c 1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1303
7eedccfa 1304 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1305
d7db6da9
FN
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1309
b15cc25c 1310 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1311 set_initial_language ();
1adeb98a
FN
1312}
1313
1314void
1315symbol_file_clear (int from_tty)
1316{
1317 if ((have_full_symbols () || have_partial_symbols ())
1318 && from_tty
0430b0d6
AS
1319 && (symfile_objfile
1320 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1321 objfile_name (symfile_objfile))
0430b0d6 1322 : !query (_("Discard symbol table? "))))
8a3fe4f8 1323 error (_("Not confirmed."));
1adeb98a 1324
0133421a
JK
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1327 no_shared_libraries (NULL, from_tty);
1328
0133421a
JK
1329 free_all_objfiles ();
1330
adb7f338 1331 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1332 if (from_tty)
1333 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1334}
1335
5b5d99cf 1336static int
287ccc17 1337separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1338 struct objfile *parent_objfile)
5b5d99cf 1339{
904578ed
JK
1340 unsigned long file_crc;
1341 int file_crc_p;
32a0e547 1342 struct stat parent_stat, abfd_stat;
904578ed 1343 int verified_as_different;
32a0e547
JK
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1349 the separate debug infos with the same basename can exist. */
32a0e547 1350
4262abfb 1351 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1352 return 0;
5b5d99cf 1353
192b62ce 1354 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1355
192b62ce 1356 if (abfd == NULL)
5b5d99cf
JB
1357 return 0;
1358
0ba1096a 1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1363 meaningful st_dev.) Files accessed from gdbservers that do not
1364 support the vFile:fstat packet will also have st_ino set to zero.
1365 Do not indicate a duplicate library in either case. While there
1366 is no guarantee that a system that provides meaningful inode
1367 numbers will never set st_ino to zero, this is merely an
1368 optimization, so we do not need to worry about false negatives. */
32a0e547 1369
192b62ce 1370 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1371 && abfd_stat.st_ino != 0
1372 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1373 {
904578ed
JK
1374 if (abfd_stat.st_dev == parent_stat.st_dev
1375 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1376 return 0;
904578ed 1377 verified_as_different = 1;
32a0e547 1378 }
904578ed
JK
1379 else
1380 verified_as_different = 0;
32a0e547 1381
192b62ce 1382 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1383
904578ed
JK
1384 if (!file_crc_p)
1385 return 0;
1386
287ccc17
JK
1387 if (crc != file_crc)
1388 {
dccee2de
TT
1389 unsigned long parent_crc;
1390
0a93529c
GB
1391 /* If the files could not be verified as different with
1392 bfd_stat then we need to calculate the parent's CRC
1393 to verify whether the files are different or not. */
904578ed 1394
dccee2de 1395 if (!verified_as_different)
904578ed 1396 {
dccee2de 1397 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1398 return 0;
1399 }
1400
dccee2de 1401 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1402 warning (_("the debug information found in \"%s\""
1403 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1404 name, objfile_name (parent_objfile));
904578ed 1405
287ccc17
JK
1406 return 0;
1407 }
1408
1409 return 1;
5b5d99cf
JB
1410}
1411
aa28a74e 1412char *debug_file_directory = NULL;
920d2a44
AC
1413static void
1414show_debug_file_directory (struct ui_file *file, int from_tty,
1415 struct cmd_list_element *c, const char *value)
1416{
3e43a32a
MS
1417 fprintf_filtered (file,
1418 _("The directory where separate debug "
1419 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1420 value);
1421}
5b5d99cf
JB
1422
1423#if ! defined (DEBUG_SUBDIRECTORY)
1424#define DEBUG_SUBDIRECTORY ".debug"
1425#endif
1426
1db33378
PP
1427/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1428 where the original file resides (may not be the same as
1429 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1430 looking for. CANON_DIR is the "realpath" form of DIR.
1431 DIR must contain a trailing '/'.
1432 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1433
1434static char *
1435find_separate_debug_file (const char *dir,
1436 const char *canon_dir,
1437 const char *debuglink,
1438 unsigned long crc32, struct objfile *objfile)
9cce227f 1439{
1db33378
PP
1440 char *debugdir;
1441 char *debugfile;
9cce227f 1442 int i;
e4ab2fad
JK
1443 VEC (char_ptr) *debugdir_vec;
1444 struct cleanup *back_to;
1445 int ix;
5b5d99cf 1446
325fac50 1447 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1448 i = strlen (dir);
1db33378
PP
1449 if (canon_dir != NULL && strlen (canon_dir) > i)
1450 i = strlen (canon_dir);
1ffa32ee 1451
224c3ddb
SM
1452 debugfile
1453 = (char *) xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1457 + strlen (debuglink)
1458 + 1);
5b5d99cf
JB
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1db33378 1462 strcat (debugfile, debuglink);
5b5d99cf 1463
32a0e547 1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1465 return debugfile;
5417f6dc 1466
5b5d99cf
JB
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1db33378 1471 strcat (debugfile, debuglink);
5b5d99cf 1472
32a0e547 1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1474 return debugfile;
5417f6dc 1475
24ddea62 1476 /* Then try in the global debugfile directories.
f888f159 1477
24ddea62
JK
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
5417f6dc 1480
e4ab2fad
JK
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1483
e4ab2fad
JK
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
aa28a74e 1487 strcat (debugfile, "/");
24ddea62 1488 strcat (debugfile, dir);
1db33378 1489 strcat (debugfile, debuglink);
aa28a74e 1490
32a0e547 1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
24ddea62
JK
1496
1497 /* If the file is in the sysroot, try using its base path in the
1498 global debugfile directory. */
1db33378
PP
1499 if (canon_dir != NULL
1500 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1501 strlen (gdb_sysroot)) == 0
1db33378 1502 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1503 {
e4ab2fad 1504 strcpy (debugfile, debugdir);
1db33378 1505 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1506 strcat (debugfile, "/");
1db33378 1507 strcat (debugfile, debuglink);
24ddea62 1508
32a0e547 1509 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1510 {
1511 do_cleanups (back_to);
1512 return debugfile;
1513 }
24ddea62 1514 }
aa28a74e 1515 }
f888f159 1516
e4ab2fad 1517 do_cleanups (back_to);
25522fae 1518 xfree (debugfile);
1db33378
PP
1519 return NULL;
1520}
1521
7edbb660 1522/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1523 If there were no directory separators in PATH, PATH will be empty
1524 string on return. */
1525
1526static void
1527terminate_after_last_dir_separator (char *path)
1528{
1529 int i;
1530
1531 /* Strip off the final filename part, leaving the directory name,
1532 followed by a slash. The directory can be relative or absolute. */
1533 for (i = strlen(path) - 1; i >= 0; i--)
1534 if (IS_DIR_SEPARATOR (path[i]))
1535 break;
1536
1537 /* If I is -1 then no directory is present there and DIR will be "". */
1538 path[i + 1] = '\0';
1539}
1540
1541/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1542 Returns pathname, or NULL. */
1543
1544char *
1545find_separate_debug_file_by_debuglink (struct objfile *objfile)
1546{
1547 char *debuglink;
1548 char *dir, *canon_dir;
1549 char *debugfile;
1550 unsigned long crc32;
1551 struct cleanup *cleanups;
1552
cc0ea93c 1553 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1554
1555 if (debuglink == NULL)
1556 {
1557 /* There's no separate debug info, hence there's no way we could
1558 load it => no warning. */
1559 return NULL;
1560 }
1561
71bdabee 1562 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1563 dir = xstrdup (objfile_name (objfile));
71bdabee 1564 make_cleanup (xfree, dir);
1db33378
PP
1565 terminate_after_last_dir_separator (dir);
1566 canon_dir = lrealpath (dir);
1567
1568 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1569 crc32, objfile);
1570 xfree (canon_dir);
1571
1572 if (debugfile == NULL)
1573 {
1db33378
PP
1574 /* For PR gdb/9538, try again with realpath (if different from the
1575 original). */
1576
1577 struct stat st_buf;
1578
4262abfb
JK
1579 if (lstat (objfile_name (objfile), &st_buf) == 0
1580 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1581 {
1582 char *symlink_dir;
1583
4262abfb 1584 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1585 if (symlink_dir != NULL)
1586 {
1587 make_cleanup (xfree, symlink_dir);
1588 terminate_after_last_dir_separator (symlink_dir);
1589 if (strcmp (dir, symlink_dir) != 0)
1590 {
1591 /* Different directory, so try using it. */
1592 debugfile = find_separate_debug_file (symlink_dir,
1593 symlink_dir,
1594 debuglink,
1595 crc32,
1596 objfile);
1597 }
1598 }
1599 }
1db33378 1600 }
aa28a74e 1601
1db33378 1602 do_cleanups (cleanups);
25522fae 1603 return debugfile;
5b5d99cf
JB
1604}
1605
c906108c
SS
1606/* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
c906108c
SS
1618 conventions (because it is confusing and inconvenient). */
1619
1620void
fba45db2 1621symbol_file_command (char *args, int from_tty)
c906108c 1622{
c906108c
SS
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1adeb98a 1627 symbol_file_clear (from_tty);
c906108c
SS
1628 }
1629 else
1630 {
d1a41061 1631 char **argv = gdb_buildargv (args);
b15cc25c 1632 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1633 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1634 struct cleanup *cleanups;
1635 char *name = NULL;
1636
ecf45d2c
SL
1637 if (from_tty)
1638 add_flags |= SYMFILE_VERBOSE;
1639
7a292a7a 1640 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1641 while (*argv != NULL)
1642 {
78a4a9b9
AC
1643 if (strcmp (*argv, "-readnow") == 0)
1644 flags |= OBJF_READNOW;
1645 else if (**argv == '-')
8a3fe4f8 1646 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1647 else
1648 {
ecf45d2c 1649 symbol_file_add_main_1 (*argv, add_flags, flags);
78a4a9b9 1650 name = *argv;
78a4a9b9 1651 }
cb2f3a29 1652
c906108c
SS
1653 argv++;
1654 }
1655
1656 if (name == NULL)
cb2f3a29
MK
1657 error (_("no symbol file name was specified"));
1658
c906108c
SS
1659 do_cleanups (cleanups);
1660 }
1661}
1662
1663/* Set the initial language.
1664
cb2f3a29
MK
1665 FIXME: A better solution would be to record the language in the
1666 psymtab when reading partial symbols, and then use it (if known) to
1667 set the language. This would be a win for formats that encode the
1668 language in an easily discoverable place, such as DWARF. For
1669 stabs, we can jump through hoops looking for specially named
1670 symbols or try to intuit the language from the specific type of
1671 stabs we find, but we can't do that until later when we read in
1672 full symbols. */
c906108c 1673
8b60591b 1674void
fba45db2 1675set_initial_language (void)
c906108c 1676{
9e6c82ad 1677 enum language lang = main_language ();
c906108c 1678
9e6c82ad 1679 if (lang == language_unknown)
01f8c46d 1680 {
bf6d8a91 1681 char *name = main_name ();
d12307c1 1682 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1683
bf6d8a91
TT
1684 if (sym != NULL)
1685 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1686 }
cb2f3a29 1687
ccefe4c4
TT
1688 if (lang == language_unknown)
1689 {
1690 /* Make C the default language */
1691 lang = language_c;
c906108c 1692 }
ccefe4c4
TT
1693
1694 set_language (lang);
1695 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1696}
1697
cb2f3a29
MK
1698/* Open the file specified by NAME and hand it off to BFD for
1699 preliminary analysis. Return a newly initialized bfd *, which
1700 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1701 absolute). In case of trouble, error() is called. */
c906108c 1702
192b62ce 1703gdb_bfd_ref_ptr
97a41605 1704symfile_bfd_open (const char *name)
c906108c 1705{
97a41605
GB
1706 int desc = -1;
1707 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1708
97a41605 1709 if (!is_target_filename (name))
f1838a98 1710 {
97a41605 1711 char *expanded_name, *absolute_name;
f1838a98 1712
97a41605 1713 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1714
97a41605
GB
1715 /* Look down path for it, allocate 2nd new malloc'd copy. */
1716 desc = openp (getenv ("PATH"),
1717 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1718 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1719#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1720 if (desc < 0)
1721 {
0ae1c716 1722 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1723
97a41605
GB
1724 strcat (strcpy (exename, expanded_name), ".exe");
1725 desc = openp (getenv ("PATH"),
1726 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1727 exename, O_RDONLY | O_BINARY, &absolute_name);
1728 }
c906108c 1729#endif
97a41605
GB
1730 if (desc < 0)
1731 {
1732 make_cleanup (xfree, expanded_name);
1733 perror_with_name (expanded_name);
1734 }
cb2f3a29 1735
97a41605
GB
1736 xfree (expanded_name);
1737 make_cleanup (xfree, absolute_name);
1738 name = absolute_name;
1739 }
c906108c 1740
192b62ce
TT
1741 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1742 if (sym_bfd == NULL)
faab9922
JK
1743 error (_("`%s': can't open to read symbols: %s."), name,
1744 bfd_errmsg (bfd_get_error ()));
97a41605 1745
192b62ce
TT
1746 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1747 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1748
192b62ce
TT
1749 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1750 error (_("`%s': can't read symbols: %s."), name,
1751 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1752
faab9922
JK
1753 do_cleanups (back_to);
1754
cb2f3a29 1755 return sym_bfd;
c906108c
SS
1756}
1757
cb2f3a29
MK
1758/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1759 the section was not found. */
1760
0e931cf0 1761int
a121b7c1 1762get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1763{
1764 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1765
0e931cf0
JB
1766 if (sect)
1767 return sect->index;
1768 else
1769 return -1;
1770}
1771
c256e171
DE
1772/* Link SF into the global symtab_fns list.
1773 FLAVOUR is the file format that SF handles.
1774 Called on startup by the _initialize routine in each object file format
1775 reader, to register information about each format the reader is prepared
1776 to handle. */
c906108c
SS
1777
1778void
c256e171 1779add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1780{
c256e171
DE
1781 registered_sym_fns fns = { flavour, sf };
1782
1783 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1784}
1785
cb2f3a29
MK
1786/* Initialize OBJFILE to read symbols from its associated BFD. It
1787 either returns or calls error(). The result is an initialized
1788 struct sym_fns in the objfile structure, that contains cached
1789 information about the symbol file. */
c906108c 1790
00b5771c 1791static const struct sym_fns *
31d99776 1792find_sym_fns (bfd *abfd)
c906108c 1793{
c256e171 1794 registered_sym_fns *rsf;
31d99776 1795 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1796 int i;
c906108c 1797
75245b24
MS
1798 if (our_flavour == bfd_target_srec_flavour
1799 || our_flavour == bfd_target_ihex_flavour
1800 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1801 return NULL; /* No symbols. */
75245b24 1802
c256e171
DE
1803 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1804 if (our_flavour == rsf->sym_flavour)
1805 return rsf->sym_fns;
cb2f3a29 1806
8a3fe4f8 1807 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1808 bfd_get_target (abfd));
c906108c
SS
1809}
1810\f
cb2f3a29 1811
c906108c
SS
1812/* This function runs the load command of our current target. */
1813
1814static void
fba45db2 1815load_command (char *arg, int from_tty)
c906108c 1816{
5b3fca71
TT
1817 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1818
e5cc9f32
JB
1819 dont_repeat ();
1820
4487aabf
PA
1821 /* The user might be reloading because the binary has changed. Take
1822 this opportunity to check. */
1823 reopen_exec_file ();
1824 reread_symbols ();
1825
c906108c 1826 if (arg == NULL)
1986bccd
AS
1827 {
1828 char *parg;
1829 int count = 0;
1830
1831 parg = arg = get_exec_file (1);
1832
1833 /* Count how many \ " ' tab space there are in the name. */
1834 while ((parg = strpbrk (parg, "\\\"'\t ")))
1835 {
1836 parg++;
1837 count++;
1838 }
1839
1840 if (count)
1841 {
1842 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1843 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1844 char *ptemp = temp;
1845 char *prev;
1846
1847 make_cleanup (xfree, temp);
1848
1849 prev = parg = arg;
1850 while ((parg = strpbrk (parg, "\\\"'\t ")))
1851 {
1852 strncpy (ptemp, prev, parg - prev);
1853 ptemp += parg - prev;
1854 prev = parg++;
1855 *ptemp++ = '\\';
1856 }
1857 strcpy (ptemp, prev);
1858
1859 arg = temp;
1860 }
1861 }
1862
c906108c 1863 target_load (arg, from_tty);
2889e661
JB
1864
1865 /* After re-loading the executable, we don't really know which
1866 overlays are mapped any more. */
1867 overlay_cache_invalid = 1;
5b3fca71
TT
1868
1869 do_cleanups (cleanup);
c906108c
SS
1870}
1871
1872/* This version of "load" should be usable for any target. Currently
1873 it is just used for remote targets, not inftarg.c or core files,
1874 on the theory that only in that case is it useful.
1875
1876 Avoiding xmodem and the like seems like a win (a) because we don't have
1877 to worry about finding it, and (b) On VMS, fork() is very slow and so
1878 we don't want to run a subprocess. On the other hand, I'm not sure how
1879 performance compares. */
917317f4 1880
917317f4
JM
1881static int validate_download = 0;
1882
e4f9b4d5
MS
1883/* Callback service function for generic_load (bfd_map_over_sections). */
1884
1885static void
1886add_section_size_callback (bfd *abfd, asection *asec, void *data)
1887{
19ba03f4 1888 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1889
2c500098 1890 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1891}
1892
1893/* Opaque data for load_section_callback. */
1894struct load_section_data {
f698ca8e 1895 CORE_ADDR load_offset;
a76d924d
DJ
1896 struct load_progress_data *progress_data;
1897 VEC(memory_write_request_s) *requests;
1898};
1899
1900/* Opaque data for load_progress. */
1901struct load_progress_data {
1902 /* Cumulative data. */
e4f9b4d5
MS
1903 unsigned long write_count;
1904 unsigned long data_count;
1905 bfd_size_type total_size;
a76d924d
DJ
1906};
1907
1908/* Opaque data for load_progress for a single section. */
1909struct load_progress_section_data {
1910 struct load_progress_data *cumulative;
cf7a04e8 1911
a76d924d 1912 /* Per-section data. */
cf7a04e8
DJ
1913 const char *section_name;
1914 ULONGEST section_sent;
1915 ULONGEST section_size;
1916 CORE_ADDR lma;
1917 gdb_byte *buffer;
e4f9b4d5
MS
1918};
1919
a76d924d 1920/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1921
1922static void
1923load_progress (ULONGEST bytes, void *untyped_arg)
1924{
19ba03f4
SM
1925 struct load_progress_section_data *args
1926 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1927 struct load_progress_data *totals;
1928
1929 if (args == NULL)
1930 /* Writing padding data. No easy way to get at the cumulative
1931 stats, so just ignore this. */
1932 return;
1933
1934 totals = args->cumulative;
1935
1936 if (bytes == 0 && args->section_sent == 0)
1937 {
1938 /* The write is just starting. Let the user know we've started
1939 this section. */
112e8700
SM
1940 current_uiout->message ("Loading section %s, size %s lma %s\n",
1941 args->section_name,
1942 hex_string (args->section_size),
1943 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1944 return;
1945 }
cf7a04e8
DJ
1946
1947 if (validate_download)
1948 {
1949 /* Broken memories and broken monitors manifest themselves here
1950 when bring new computers to life. This doubles already slow
1951 downloads. */
1952 /* NOTE: cagney/1999-10-18: A more efficient implementation
1953 might add a verify_memory() method to the target vector and
1954 then use that. remote.c could implement that method using
1955 the ``qCRC'' packet. */
224c3ddb 1956 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1957 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1958
1959 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1960 error (_("Download verify read failed at %s"),
f5656ead 1961 paddress (target_gdbarch (), args->lma));
cf7a04e8 1962 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1963 error (_("Download verify compare failed at %s"),
f5656ead 1964 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1965 do_cleanups (verify_cleanups);
1966 }
a76d924d 1967 totals->data_count += bytes;
cf7a04e8
DJ
1968 args->lma += bytes;
1969 args->buffer += bytes;
a76d924d 1970 totals->write_count += 1;
cf7a04e8 1971 args->section_sent += bytes;
522002f9 1972 if (check_quit_flag ()
cf7a04e8
DJ
1973 || (deprecated_ui_load_progress_hook != NULL
1974 && deprecated_ui_load_progress_hook (args->section_name,
1975 args->section_sent)))
1976 error (_("Canceled the download"));
1977
1978 if (deprecated_show_load_progress != NULL)
1979 deprecated_show_load_progress (args->section_name,
1980 args->section_sent,
1981 args->section_size,
a76d924d
DJ
1982 totals->data_count,
1983 totals->total_size);
cf7a04e8
DJ
1984}
1985
e4f9b4d5
MS
1986/* Callback service function for generic_load (bfd_map_over_sections). */
1987
1988static void
1989load_section_callback (bfd *abfd, asection *asec, void *data)
1990{
a76d924d 1991 struct memory_write_request *new_request;
19ba03f4 1992 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1993 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1994 bfd_size_type size = bfd_get_section_size (asec);
1995 gdb_byte *buffer;
cf7a04e8 1996 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1997
cf7a04e8
DJ
1998 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1999 return;
e4f9b4d5 2000
cf7a04e8
DJ
2001 if (size == 0)
2002 return;
e4f9b4d5 2003
a76d924d
DJ
2004 new_request = VEC_safe_push (memory_write_request_s,
2005 args->requests, NULL);
2006 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2007 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2008 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2009 new_request->end = new_request->begin + size; /* FIXME Should size
2010 be in instead? */
224c3ddb 2011 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2012 new_request->baton = section_data;
cf7a04e8 2013
a76d924d 2014 buffer = new_request->data;
cf7a04e8 2015
a76d924d
DJ
2016 section_data->cumulative = args->progress_data;
2017 section_data->section_name = sect_name;
2018 section_data->section_size = size;
2019 section_data->lma = new_request->begin;
2020 section_data->buffer = buffer;
cf7a04e8
DJ
2021
2022 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2023}
2024
2025/* Clean up an entire memory request vector, including load
2026 data and progress records. */
cf7a04e8 2027
a76d924d
DJ
2028static void
2029clear_memory_write_data (void *arg)
2030{
19ba03f4 2031 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2032 VEC(memory_write_request_s) *vec = *vec_p;
2033 int i;
2034 struct memory_write_request *mr;
cf7a04e8 2035
a76d924d
DJ
2036 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2037 {
2038 xfree (mr->data);
2039 xfree (mr->baton);
2040 }
2041 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2042}
2043
dcb07cfa
PA
2044static void print_transfer_performance (struct ui_file *stream,
2045 unsigned long data_count,
2046 unsigned long write_count,
2047 std::chrono::steady_clock::duration d);
2048
c906108c 2049void
9cbe5fff 2050generic_load (const char *args, int from_tty)
c906108c 2051{
917317f4 2052 char *filename;
1986bccd 2053 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2054 struct load_section_data cbdata;
a76d924d 2055 struct load_progress_data total_progress;
79a45e25 2056 struct ui_out *uiout = current_uiout;
a76d924d 2057
e4f9b4d5 2058 CORE_ADDR entry;
1986bccd 2059 char **argv;
e4f9b4d5 2060
a76d924d
DJ
2061 memset (&cbdata, 0, sizeof (cbdata));
2062 memset (&total_progress, 0, sizeof (total_progress));
2063 cbdata.progress_data = &total_progress;
2064
2065 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2066
d1a41061
PP
2067 if (args == NULL)
2068 error_no_arg (_("file to load"));
1986bccd 2069
d1a41061 2070 argv = gdb_buildargv (args);
1986bccd
AS
2071 make_cleanup_freeargv (argv);
2072
2073 filename = tilde_expand (argv[0]);
2074 make_cleanup (xfree, filename);
2075
2076 if (argv[1] != NULL)
917317f4 2077 {
f698ca8e 2078 const char *endptr;
ba5f2f8a 2079
f698ca8e 2080 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2081
2082 /* If the last word was not a valid number then
2083 treat it as a file name with spaces in. */
2084 if (argv[1] == endptr)
2085 error (_("Invalid download offset:%s."), argv[1]);
2086
2087 if (argv[2] != NULL)
2088 error (_("Too many parameters."));
917317f4 2089 }
c906108c 2090
c378eb4e 2091 /* Open the file for loading. */
192b62ce 2092 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
c906108c
SS
2093 if (loadfile_bfd == NULL)
2094 {
2095 perror_with_name (filename);
2096 return;
2097 }
917317f4 2098
192b62ce 2099 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2100 {
8a3fe4f8 2101 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2102 bfd_errmsg (bfd_get_error ()));
2103 }
c5aa993b 2104
192b62ce 2105 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2106 (void *) &total_progress.total_size);
2107
192b62ce 2108 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2109
dcb07cfa
PA
2110 using namespace std::chrono;
2111
2112 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2113
a76d924d
DJ
2114 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2115 load_progress) != 0)
2116 error (_("Load failed"));
c906108c 2117
dcb07cfa 2118 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2119
192b62ce 2120 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2121 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2122 uiout->text ("Start address ");
2123 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2124 uiout->text (", load size ");
2125 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2126 uiout->text ("\n");
fb14de7b 2127 regcache_write_pc (get_current_regcache (), entry);
c906108c 2128
38963c97
DJ
2129 /* Reset breakpoints, now that we have changed the load image. For
2130 instance, breakpoints may have been set (or reset, by
2131 post_create_inferior) while connected to the target but before we
2132 loaded the program. In that case, the prologue analyzer could
2133 have read instructions from the target to find the right
2134 breakpoint locations. Loading has changed the contents of that
2135 memory. */
2136
2137 breakpoint_re_set ();
2138
a76d924d
DJ
2139 print_transfer_performance (gdb_stdout, total_progress.data_count,
2140 total_progress.write_count,
dcb07cfa 2141 end_time - start_time);
c906108c
SS
2142
2143 do_cleanups (old_cleanups);
2144}
2145
dcb07cfa
PA
2146/* Report on STREAM the performance of a memory transfer operation,
2147 such as 'load'. DATA_COUNT is the number of bytes transferred.
2148 WRITE_COUNT is the number of separate write operations, or 0, if
2149 that information is not available. TIME is how long the operation
2150 lasted. */
c906108c 2151
dcb07cfa 2152static void
d9fcf2fb 2153print_transfer_performance (struct ui_file *stream,
917317f4
JM
2154 unsigned long data_count,
2155 unsigned long write_count,
dcb07cfa 2156 std::chrono::steady_clock::duration time)
917317f4 2157{
dcb07cfa 2158 using namespace std::chrono;
79a45e25 2159 struct ui_out *uiout = current_uiout;
2b71414d 2160
dcb07cfa 2161 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2162
112e8700 2163 uiout->text ("Transfer rate: ");
dcb07cfa 2164 if (ms.count () > 0)
8b93c638 2165 {
dcb07cfa 2166 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2167
112e8700 2168 if (uiout->is_mi_like_p ())
9f43d28c 2169 {
112e8700
SM
2170 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2171 uiout->text (" bits/sec");
9f43d28c
DJ
2172 }
2173 else if (rate < 1024)
2174 {
112e8700
SM
2175 uiout->field_fmt ("transfer-rate", "%lu", rate);
2176 uiout->text (" bytes/sec");
9f43d28c
DJ
2177 }
2178 else
2179 {
112e8700
SM
2180 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2181 uiout->text (" KB/sec");
9f43d28c 2182 }
8b93c638
JM
2183 }
2184 else
2185 {
112e8700
SM
2186 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2187 uiout->text (" bits in <1 sec");
8b93c638
JM
2188 }
2189 if (write_count > 0)
2190 {
112e8700
SM
2191 uiout->text (", ");
2192 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2193 uiout->text (" bytes/write");
8b93c638 2194 }
112e8700 2195 uiout->text (".\n");
c906108c
SS
2196}
2197
2198/* This function allows the addition of incrementally linked object files.
2199 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2200/* Note: ezannoni 2000-04-13 This function/command used to have a
2201 special case syntax for the rombug target (Rombug is the boot
2202 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2203 rombug case, the user doesn't need to supply a text address,
2204 instead a call to target_link() (in target.c) would supply the
c378eb4e 2205 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2206
c906108c 2207static void
fba45db2 2208add_symbol_file_command (char *args, int from_tty)
c906108c 2209{
5af949e3 2210 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2211 char *filename = NULL;
c906108c 2212 char *arg;
db162d44 2213 int section_index = 0;
2acceee2
JM
2214 int argcnt = 0;
2215 int sec_num = 0;
2216 int i;
db162d44
EZ
2217 int expecting_sec_name = 0;
2218 int expecting_sec_addr = 0;
5b96932b 2219 char **argv;
76ad5e1e 2220 struct objfile *objf;
b15cc25c
PA
2221 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2222 symfile_add_flags add_flags = 0;
2223
2224 if (from_tty)
2225 add_flags |= SYMFILE_VERBOSE;
db162d44 2226
a39a16c4 2227 struct sect_opt
2acceee2 2228 {
a121b7c1
PA
2229 const char *name;
2230 const char *value;
a39a16c4 2231 };
db162d44 2232
a39a16c4
MM
2233 struct section_addr_info *section_addrs;
2234 struct sect_opt *sect_opts = NULL;
2235 size_t num_sect_opts = 0;
3017564a 2236 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2237
a39a16c4 2238 num_sect_opts = 16;
8d749320 2239 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2240
c906108c
SS
2241 dont_repeat ();
2242
2243 if (args == NULL)
8a3fe4f8 2244 error (_("add-symbol-file takes a file name and an address"));
c906108c 2245
d1a41061 2246 argv = gdb_buildargv (args);
5b96932b 2247 make_cleanup_freeargv (argv);
db162d44 2248
5b96932b
AS
2249 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2250 {
c378eb4e 2251 /* Process the argument. */
db162d44 2252 if (argcnt == 0)
c906108c 2253 {
c378eb4e 2254 /* The first argument is the file name. */
db162d44 2255 filename = tilde_expand (arg);
3017564a 2256 make_cleanup (xfree, filename);
c906108c 2257 }
41dc8db8
MB
2258 else if (argcnt == 1)
2259 {
2260 /* The second argument is always the text address at which
2261 to load the program. */
2262 sect_opts[section_index].name = ".text";
2263 sect_opts[section_index].value = arg;
2264 if (++section_index >= num_sect_opts)
2265 {
2266 num_sect_opts *= 2;
2267 sect_opts = ((struct sect_opt *)
2268 xrealloc (sect_opts,
2269 num_sect_opts
2270 * sizeof (struct sect_opt)));
2271 }
2272 }
db162d44 2273 else
41dc8db8
MB
2274 {
2275 /* It's an option (starting with '-') or it's an argument
2276 to an option. */
41dc8db8
MB
2277 if (expecting_sec_name)
2278 {
2279 sect_opts[section_index].name = arg;
2280 expecting_sec_name = 0;
2281 }
2282 else if (expecting_sec_addr)
2283 {
2284 sect_opts[section_index].value = arg;
2285 expecting_sec_addr = 0;
2286 if (++section_index >= num_sect_opts)
2287 {
2288 num_sect_opts *= 2;
2289 sect_opts = ((struct sect_opt *)
2290 xrealloc (sect_opts,
2291 num_sect_opts
2292 * sizeof (struct sect_opt)));
2293 }
2294 }
2295 else if (strcmp (arg, "-readnow") == 0)
2296 flags |= OBJF_READNOW;
2297 else if (strcmp (arg, "-s") == 0)
2298 {
2299 expecting_sec_name = 1;
2300 expecting_sec_addr = 1;
2301 }
2302 else
2303 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2304 " [-readnow] [-s <secname> <addr>]*"));
2305 }
c906108c 2306 }
c906108c 2307
927890d0
JB
2308 /* This command takes at least two arguments. The first one is a
2309 filename, and the second is the address where this file has been
2310 loaded. Abort now if this address hasn't been provided by the
2311 user. */
2312 if (section_index < 1)
2313 error (_("The address where %s has been loaded is missing"), filename);
2314
c378eb4e 2315 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2316 a sect_addr_info structure to be passed around to other
2317 functions. We have to split this up into separate print
bb599908 2318 statements because hex_string returns a local static
c378eb4e 2319 string. */
5417f6dc 2320
a3f17187 2321 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2322 section_addrs = alloc_section_addr_info (section_index);
2323 make_cleanup (xfree, section_addrs);
db162d44 2324 for (i = 0; i < section_index; i++)
c906108c 2325 {
db162d44 2326 CORE_ADDR addr;
a121b7c1
PA
2327 const char *val = sect_opts[i].value;
2328 const char *sec = sect_opts[i].name;
5417f6dc 2329
ae822768 2330 addr = parse_and_eval_address (val);
db162d44 2331
db162d44 2332 /* Here we store the section offsets in the order they were
c378eb4e 2333 entered on the command line. */
a121b7c1 2334 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2335 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2336 printf_unfiltered ("\t%s_addr = %s\n", sec,
2337 paddress (gdbarch, addr));
db162d44
EZ
2338 sec_num++;
2339
5417f6dc 2340 /* The object's sections are initialized when a
db162d44 2341 call is made to build_objfile_section_table (objfile).
5417f6dc 2342 This happens in reread_symbols.
db162d44
EZ
2343 At this point, we don't know what file type this is,
2344 so we can't determine what section names are valid. */
2acceee2 2345 }
d76488d8 2346 section_addrs->num_sections = sec_num;
db162d44 2347
2acceee2 2348 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2349 error (_("Not confirmed."));
c906108c 2350
b15cc25c 2351 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2352
2353 add_target_sections_of_objfile (objf);
c906108c
SS
2354
2355 /* Getting new symbols may change our opinion about what is
2356 frameless. */
2357 reinit_frame_cache ();
db162d44 2358 do_cleanups (my_cleanups);
c906108c
SS
2359}
2360\f
70992597 2361
63644780
NB
2362/* This function removes a symbol file that was added via add-symbol-file. */
2363
2364static void
2365remove_symbol_file_command (char *args, int from_tty)
2366{
2367 char **argv;
2368 struct objfile *objf = NULL;
2369 struct cleanup *my_cleanups;
2370 struct program_space *pspace = current_program_space;
63644780
NB
2371
2372 dont_repeat ();
2373
2374 if (args == NULL)
2375 error (_("remove-symbol-file: no symbol file provided"));
2376
2377 my_cleanups = make_cleanup (null_cleanup, NULL);
2378
2379 argv = gdb_buildargv (args);
2380
2381 if (strcmp (argv[0], "-a") == 0)
2382 {
2383 /* Interpret the next argument as an address. */
2384 CORE_ADDR addr;
2385
2386 if (argv[1] == NULL)
2387 error (_("Missing address argument"));
2388
2389 if (argv[2] != NULL)
2390 error (_("Junk after %s"), argv[1]);
2391
2392 addr = parse_and_eval_address (argv[1]);
2393
2394 ALL_OBJFILES (objf)
2395 {
d03de421
PA
2396 if ((objf->flags & OBJF_USERLOADED) != 0
2397 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2398 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2399 break;
2400 }
2401 }
2402 else if (argv[0] != NULL)
2403 {
2404 /* Interpret the current argument as a file name. */
2405 char *filename;
2406
2407 if (argv[1] != NULL)
2408 error (_("Junk after %s"), argv[0]);
2409
2410 filename = tilde_expand (argv[0]);
2411 make_cleanup (xfree, filename);
2412
2413 ALL_OBJFILES (objf)
2414 {
d03de421
PA
2415 if ((objf->flags & OBJF_USERLOADED) != 0
2416 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2417 && objf->pspace == pspace
2418 && filename_cmp (filename, objfile_name (objf)) == 0)
2419 break;
2420 }
2421 }
2422
2423 if (objf == NULL)
2424 error (_("No symbol file found"));
2425
2426 if (from_tty
2427 && !query (_("Remove symbol table from file \"%s\"? "),
2428 objfile_name (objf)))
2429 error (_("Not confirmed."));
2430
2431 free_objfile (objf);
2432 clear_symtab_users (0);
2433
2434 do_cleanups (my_cleanups);
2435}
2436
c906108c 2437/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2438
c906108c 2439void
fba45db2 2440reread_symbols (void)
c906108c
SS
2441{
2442 struct objfile *objfile;
2443 long new_modtime;
c906108c
SS
2444 struct stat new_statbuf;
2445 int res;
4c404b8b 2446 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2447
2448 /* With the addition of shared libraries, this should be modified,
2449 the load time should be saved in the partial symbol tables, since
2450 different tables may come from different source files. FIXME.
2451 This routine should then walk down each partial symbol table
c378eb4e 2452 and see if the symbol table that it originates from has been changed. */
c906108c 2453
c5aa993b
JM
2454 for (objfile = object_files; objfile; objfile = objfile->next)
2455 {
9cce227f
TG
2456 if (objfile->obfd == NULL)
2457 continue;
2458
2459 /* Separate debug objfiles are handled in the main objfile. */
2460 if (objfile->separate_debug_objfile_backlink)
2461 continue;
2462
02aeec7b
JB
2463 /* If this object is from an archive (what you usually create with
2464 `ar', often called a `static library' on most systems, though
2465 a `shared library' on AIX is also an archive), then you should
2466 stat on the archive name, not member name. */
9cce227f
TG
2467 if (objfile->obfd->my_archive)
2468 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2469 else
4262abfb 2470 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2471 if (res != 0)
2472 {
c378eb4e 2473 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2474 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2475 objfile_name (objfile));
9cce227f
TG
2476 continue;
2477 }
2478 new_modtime = new_statbuf.st_mtime;
2479 if (new_modtime != objfile->mtime)
2480 {
2481 struct cleanup *old_cleanups;
2482 struct section_offsets *offsets;
2483 int num_offsets;
24ba069a 2484 char *original_name;
9cce227f
TG
2485
2486 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2487 objfile_name (objfile));
9cce227f
TG
2488
2489 /* There are various functions like symbol_file_add,
2490 symfile_bfd_open, syms_from_objfile, etc., which might
2491 appear to do what we want. But they have various other
2492 effects which we *don't* want. So we just do stuff
2493 ourselves. We don't worry about mapped files (for one thing,
2494 any mapped file will be out of date). */
2495
2496 /* If we get an error, blow away this objfile (not sure if
2497 that is the correct response for things like shared
2498 libraries). */
2499 old_cleanups = make_cleanup_free_objfile (objfile);
2500 /* We need to do this whenever any symbols go away. */
2501 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2502
0ba1096a
KT
2503 if (exec_bfd != NULL
2504 && filename_cmp (bfd_get_filename (objfile->obfd),
2505 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2506 {
2507 /* Reload EXEC_BFD without asking anything. */
2508
2509 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2510 }
2511
f6eeced0
JK
2512 /* Keep the calls order approx. the same as in free_objfile. */
2513
2514 /* Free the separate debug objfiles. It will be
2515 automatically recreated by sym_read. */
2516 free_objfile_separate_debug (objfile);
2517
2518 /* Remove any references to this objfile in the global
2519 value lists. */
2520 preserve_values (objfile);
2521
2522 /* Nuke all the state that we will re-read. Much of the following
2523 code which sets things to NULL really is necessary to tell
2524 other parts of GDB that there is nothing currently there.
2525
2526 Try to keep the freeing order compatible with free_objfile. */
2527
2528 if (objfile->sf != NULL)
2529 {
2530 (*objfile->sf->sym_finish) (objfile);
2531 }
2532
2533 clear_objfile_data (objfile);
2534
e1507e95 2535 /* Clean up any state BFD has sitting around. */
a4453b7e 2536 {
192b62ce 2537 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2538 char *obfd_filename;
a4453b7e
TT
2539
2540 obfd_filename = bfd_get_filename (objfile->obfd);
2541 /* Open the new BFD before freeing the old one, so that
2542 the filename remains live. */
192b62ce
TT
2543 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2544 objfile->obfd = temp.release ();
e1507e95 2545 if (objfile->obfd == NULL)
192b62ce 2546 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2547 }
2548
24ba069a
JK
2549 original_name = xstrdup (objfile->original_name);
2550 make_cleanup (xfree, original_name);
2551
9cce227f
TG
2552 /* bfd_openr sets cacheable to true, which is what we want. */
2553 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2554 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2555 bfd_errmsg (bfd_get_error ()));
2556
2557 /* Save the offsets, we will nuke them with the rest of the
2558 objfile_obstack. */
2559 num_offsets = objfile->num_sections;
2560 offsets = ((struct section_offsets *)
2561 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2562 memcpy (offsets, objfile->section_offsets,
2563 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2564
9cce227f
TG
2565 /* FIXME: Do we have to free a whole linked list, or is this
2566 enough? */
2567 if (objfile->global_psymbols.list)
2568 xfree (objfile->global_psymbols.list);
2569 memset (&objfile->global_psymbols, 0,
2570 sizeof (objfile->global_psymbols));
2571 if (objfile->static_psymbols.list)
2572 xfree (objfile->static_psymbols.list);
2573 memset (&objfile->static_psymbols, 0,
2574 sizeof (objfile->static_psymbols));
2575
c378eb4e 2576 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2577 psymbol_bcache_free (objfile->psymbol_cache);
2578 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2579 obstack_free (&objfile->objfile_obstack, 0);
2580 objfile->sections = NULL;
43f3e411 2581 objfile->compunit_symtabs = NULL;
9cce227f
TG
2582 objfile->psymtabs = NULL;
2583 objfile->psymtabs_addrmap = NULL;
2584 objfile->free_psymtabs = NULL;
34eaf542 2585 objfile->template_symbols = NULL;
9cce227f 2586
9cce227f
TG
2587 /* obstack_init also initializes the obstack so it is
2588 empty. We could use obstack_specify_allocation but
d82ea6a8 2589 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2590 obstack_init (&objfile->objfile_obstack);
779bd270 2591
846060df
JB
2592 /* set_objfile_per_bfd potentially allocates the per-bfd
2593 data on the objfile's obstack (if sharing data across
2594 multiple users is not possible), so it's important to
2595 do it *after* the obstack has been initialized. */
2596 set_objfile_per_bfd (objfile);
2597
224c3ddb
SM
2598 objfile->original_name
2599 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2600 strlen (original_name));
24ba069a 2601
779bd270
DE
2602 /* Reset the sym_fns pointer. The ELF reader can change it
2603 based on whether .gdb_index is present, and we need it to
2604 start over. PR symtab/15885 */
8fb8eb5c 2605 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2606
d82ea6a8 2607 build_objfile_section_table (objfile);
9cce227f
TG
2608 terminate_minimal_symbol_table (objfile);
2609
2610 /* We use the same section offsets as from last time. I'm not
2611 sure whether that is always correct for shared libraries. */
2612 objfile->section_offsets = (struct section_offsets *)
2613 obstack_alloc (&objfile->objfile_obstack,
2614 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2615 memcpy (objfile->section_offsets, offsets,
2616 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2617 objfile->num_sections = num_offsets;
2618
2619 /* What the hell is sym_new_init for, anyway? The concept of
2620 distinguishing between the main file and additional files
2621 in this way seems rather dubious. */
2622 if (objfile == symfile_objfile)
c906108c 2623 {
9cce227f 2624 (*objfile->sf->sym_new_init) (objfile);
c906108c 2625 }
9cce227f
TG
2626
2627 (*objfile->sf->sym_init) (objfile);
2628 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2629
2630 objfile->flags &= ~OBJF_PSYMTABS_READ;
2631 read_symbols (objfile, 0);
b11896a5 2632
9cce227f 2633 if (!objfile_has_symbols (objfile))
c906108c 2634 {
9cce227f
TG
2635 wrap_here ("");
2636 printf_unfiltered (_("(no debugging symbols found)\n"));
2637 wrap_here ("");
c5aa993b 2638 }
9cce227f
TG
2639
2640 /* We're done reading the symbol file; finish off complaints. */
2641 clear_complaints (&symfile_complaints, 0, 1);
2642
2643 /* Getting new symbols may change our opinion about what is
2644 frameless. */
2645
2646 reinit_frame_cache ();
2647
2648 /* Discard cleanups as symbol reading was successful. */
2649 discard_cleanups (old_cleanups);
2650
2651 /* If the mtime has changed between the time we set new_modtime
2652 and now, we *want* this to be out of date, so don't call stat
2653 again now. */
2654 objfile->mtime = new_modtime;
9cce227f 2655 init_entry_point_info (objfile);
4ac39b97 2656
4c404b8b 2657 new_objfiles.push_back (objfile);
c906108c
SS
2658 }
2659 }
c906108c 2660
4c404b8b 2661 if (!new_objfiles.empty ())
ea53e89f 2662 {
ff3536bc
UW
2663 /* Notify objfiles that we've modified objfile sections. */
2664 objfiles_changed ();
2665
c1e56572 2666 clear_symtab_users (0);
4ac39b97
JK
2667
2668 /* clear_objfile_data for each objfile was called before freeing it and
2669 observer_notify_new_objfile (NULL) has been called by
2670 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2671 for (auto iter : new_objfiles)
2672 observer_notify_new_objfile (iter);
4ac39b97 2673
ea53e89f
JB
2674 /* At least one objfile has changed, so we can consider that
2675 the executable we're debugging has changed too. */
781b42b0 2676 observer_notify_executable_changed ();
ea53e89f 2677 }
c906108c 2678}
c906108c
SS
2679\f
2680
c5aa993b
JM
2681typedef struct
2682{
2683 char *ext;
c906108c 2684 enum language lang;
3fcf0b0d
TT
2685} filename_language;
2686
2687DEF_VEC_O (filename_language);
c906108c 2688
3fcf0b0d 2689static VEC (filename_language) *filename_language_table;
c906108c 2690
56618e20
TT
2691/* See symfile.h. */
2692
2693void
2694add_filename_language (const char *ext, enum language lang)
c906108c 2695{
3fcf0b0d
TT
2696 filename_language entry;
2697
2698 entry.ext = xstrdup (ext);
2699 entry.lang = lang;
c906108c 2700
3fcf0b0d 2701 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2702}
2703
2704static char *ext_args;
920d2a44
AC
2705static void
2706show_ext_args (struct ui_file *file, int from_tty,
2707 struct cmd_list_element *c, const char *value)
2708{
3e43a32a
MS
2709 fprintf_filtered (file,
2710 _("Mapping between filename extension "
2711 "and source language is \"%s\".\n"),
920d2a44
AC
2712 value);
2713}
c906108c
SS
2714
2715static void
26c41df3 2716set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2717{
2718 int i;
2719 char *cp = ext_args;
2720 enum language lang;
3fcf0b0d 2721 filename_language *entry;
c906108c 2722
c378eb4e 2723 /* First arg is filename extension, starting with '.' */
c906108c 2724 if (*cp != '.')
8a3fe4f8 2725 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2726
2727 /* Find end of first arg. */
c5aa993b 2728 while (*cp && !isspace (*cp))
c906108c
SS
2729 cp++;
2730
2731 if (*cp == '\0')
3e43a32a
MS
2732 error (_("'%s': two arguments required -- "
2733 "filename extension and language"),
c906108c
SS
2734 ext_args);
2735
c378eb4e 2736 /* Null-terminate first arg. */
c5aa993b 2737 *cp++ = '\0';
c906108c
SS
2738
2739 /* Find beginning of second arg, which should be a source language. */
529480d0 2740 cp = skip_spaces (cp);
c906108c
SS
2741
2742 if (*cp == '\0')
3e43a32a
MS
2743 error (_("'%s': two arguments required -- "
2744 "filename extension and language"),
c906108c
SS
2745 ext_args);
2746
2747 /* Lookup the language from among those we know. */
2748 lang = language_enum (cp);
2749
2750 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2751 for (i = 0;
2752 VEC_iterate (filename_language, filename_language_table, i, entry);
2753 ++i)
2754 {
2755 if (0 == strcmp (ext_args, entry->ext))
2756 break;
2757 }
c906108c 2758
3fcf0b0d 2759 if (entry == NULL)
c906108c 2760 {
c378eb4e 2761 /* New file extension. */
c906108c
SS
2762 add_filename_language (ext_args, lang);
2763 }
2764 else
2765 {
c378eb4e 2766 /* Redefining a previously known filename extension. */
c906108c
SS
2767
2768 /* if (from_tty) */
2769 /* query ("Really make files of type %s '%s'?", */
2770 /* ext_args, language_str (lang)); */
2771
3fcf0b0d
TT
2772 xfree (entry->ext);
2773 entry->ext = xstrdup (ext_args);
2774 entry->lang = lang;
c906108c
SS
2775 }
2776}
2777
2778static void
fba45db2 2779info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2780{
2781 int i;
3fcf0b0d 2782 filename_language *entry;
c906108c 2783
a3f17187 2784 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2785 printf_filtered ("\n\n");
3fcf0b0d
TT
2786 for (i = 0;
2787 VEC_iterate (filename_language, filename_language_table, i, entry);
2788 ++i)
2789 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2790}
2791
c906108c 2792enum language
dd786858 2793deduce_language_from_filename (const char *filename)
c906108c
SS
2794{
2795 int i;
e6a959d6 2796 const char *cp;
c906108c
SS
2797
2798 if (filename != NULL)
2799 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2800 {
2801 filename_language *entry;
2802
2803 for (i = 0;
2804 VEC_iterate (filename_language, filename_language_table, i, entry);
2805 ++i)
2806 if (strcmp (cp, entry->ext) == 0)
2807 return entry->lang;
2808 }
c906108c
SS
2809
2810 return language_unknown;
2811}
2812\f
43f3e411
DE
2813/* Allocate and initialize a new symbol table.
2814 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2815
2816struct symtab *
43f3e411 2817allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2818{
43f3e411
DE
2819 struct objfile *objfile = cust->objfile;
2820 struct symtab *symtab
2821 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2822
19ba03f4
SM
2823 symtab->filename
2824 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2825 objfile->per_bfd->filename_cache);
c5aa993b
JM
2826 symtab->fullname = NULL;
2827 symtab->language = deduce_language_from_filename (filename);
c906108c 2828
db0fec5c
DE
2829 /* This can be very verbose with lots of headers.
2830 Only print at higher debug levels. */
2831 if (symtab_create_debug >= 2)
45cfd468
DE
2832 {
2833 /* Be a bit clever with debugging messages, and don't print objfile
2834 every time, only when it changes. */
2835 static char *last_objfile_name = NULL;
2836
2837 if (last_objfile_name == NULL
4262abfb 2838 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2839 {
2840 xfree (last_objfile_name);
4262abfb 2841 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2842 fprintf_unfiltered (gdb_stdlog,
2843 "Creating one or more symtabs for objfile %s ...\n",
2844 last_objfile_name);
2845 }
2846 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2847 "Created symtab %s for module %s.\n",
2848 host_address_to_string (symtab), filename);
45cfd468
DE
2849 }
2850
43f3e411
DE
2851 /* Add it to CUST's list of symtabs. */
2852 if (cust->filetabs == NULL)
2853 {
2854 cust->filetabs = symtab;
2855 cust->last_filetab = symtab;
2856 }
2857 else
2858 {
2859 cust->last_filetab->next = symtab;
2860 cust->last_filetab = symtab;
2861 }
2862
2863 /* Backlink to the containing compunit symtab. */
2864 symtab->compunit_symtab = cust;
2865
2866 return symtab;
2867}
2868
2869/* Allocate and initialize a new compunit.
2870 NAME is the name of the main source file, if there is one, or some
2871 descriptive text if there are no source files. */
2872
2873struct compunit_symtab *
2874allocate_compunit_symtab (struct objfile *objfile, const char *name)
2875{
2876 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2877 struct compunit_symtab);
2878 const char *saved_name;
2879
2880 cu->objfile = objfile;
2881
2882 /* The name we record here is only for display/debugging purposes.
2883 Just save the basename to avoid path issues (too long for display,
2884 relative vs absolute, etc.). */
2885 saved_name = lbasename (name);
224c3ddb
SM
2886 cu->name
2887 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2888 strlen (saved_name));
43f3e411
DE
2889
2890 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2891
2892 if (symtab_create_debug)
2893 {
2894 fprintf_unfiltered (gdb_stdlog,
2895 "Created compunit symtab %s for %s.\n",
2896 host_address_to_string (cu),
2897 cu->name);
2898 }
2899
2900 return cu;
2901}
2902
2903/* Hook CU to the objfile it comes from. */
2904
2905void
2906add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2907{
2908 cu->next = cu->objfile->compunit_symtabs;
2909 cu->objfile->compunit_symtabs = cu;
c906108c 2910}
c906108c 2911\f
c5aa993b 2912
b15cc25c
PA
2913/* Reset all data structures in gdb which may contain references to
2914 symbol table data. */
c906108c
SS
2915
2916void
b15cc25c 2917clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2918{
2919 /* Someday, we should do better than this, by only blowing away
2920 the things that really need to be blown. */
c0501be5
DJ
2921
2922 /* Clear the "current" symtab first, because it is no longer valid.
2923 breakpoint_re_set may try to access the current symtab. */
2924 clear_current_source_symtab_and_line ();
2925
c906108c 2926 clear_displays ();
1bfeeb0f 2927 clear_last_displayed_sal ();
c906108c 2928 clear_pc_function_cache ();
06d3b283 2929 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2930
2931 /* Clear globals which might have pointed into a removed objfile.
2932 FIXME: It's not clear which of these are supposed to persist
2933 between expressions and which ought to be reset each time. */
2934 expression_context_block = NULL;
2935 innermost_block = NULL;
8756216b
DP
2936
2937 /* Varobj may refer to old symbols, perform a cleanup. */
2938 varobj_invalidate ();
2939
e700d1b2
JB
2940 /* Now that the various caches have been cleared, we can re_set
2941 our breakpoints without risking it using stale data. */
2942 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2943 breakpoint_re_set ();
c906108c
SS
2944}
2945
74b7792f
AC
2946static void
2947clear_symtab_users_cleanup (void *ignore)
2948{
c1e56572 2949 clear_symtab_users (0);
74b7792f 2950}
c906108c 2951\f
c906108c
SS
2952/* OVERLAYS:
2953 The following code implements an abstraction for debugging overlay sections.
2954
2955 The target model is as follows:
2956 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2957 same VMA, each with its own unique LMA (or load address).
c906108c 2958 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2959 sections, one by one, from the load address into the VMA address.
5417f6dc 2960 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2961 sections should be considered to be mapped from the VMA to the LMA.
2962 This information is used for symbol lookup, and memory read/write.
5417f6dc 2963 For instance, if a section has been mapped then its contents
c5aa993b 2964 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2965
2966 Two levels of debugger support for overlays are available. One is
2967 "manual", in which the debugger relies on the user to tell it which
2968 overlays are currently mapped. This level of support is
2969 implemented entirely in the core debugger, and the information about
2970 whether a section is mapped is kept in the objfile->obj_section table.
2971
2972 The second level of support is "automatic", and is only available if
2973 the target-specific code provides functionality to read the target's
2974 overlay mapping table, and translate its contents for the debugger
2975 (by updating the mapped state information in the obj_section tables).
2976
2977 The interface is as follows:
c5aa993b
JM
2978 User commands:
2979 overlay map <name> -- tell gdb to consider this section mapped
2980 overlay unmap <name> -- tell gdb to consider this section unmapped
2981 overlay list -- list the sections that GDB thinks are mapped
2982 overlay read-target -- get the target's state of what's mapped
2983 overlay off/manual/auto -- set overlay debugging state
2984 Functional interface:
2985 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2986 section, return that section.
5417f6dc 2987 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2988 the pc, either in its VMA or its LMA
714835d5 2989 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2990 section_is_overlay(sect): true if section's VMA != LMA
2991 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2992 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2993 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2994 overlay_mapped_address(...): map an address from section's LMA to VMA
2995 overlay_unmapped_address(...): map an address from section's VMA to LMA
2996 symbol_overlayed_address(...): Return a "current" address for symbol:
2997 either in VMA or LMA depending on whether
c378eb4e 2998 the symbol's section is currently mapped. */
c906108c
SS
2999
3000/* Overlay debugging state: */
3001
d874f1e2 3002enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3003int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3004
c906108c 3005/* Function: section_is_overlay (SECTION)
5417f6dc 3006 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3007 SECTION is loaded at an address different from where it will "run". */
3008
3009int
714835d5 3010section_is_overlay (struct obj_section *section)
c906108c 3011{
714835d5
UW
3012 if (overlay_debugging && section)
3013 {
3014 bfd *abfd = section->objfile->obfd;
3015 asection *bfd_section = section->the_bfd_section;
f888f159 3016
714835d5
UW
3017 if (bfd_section_lma (abfd, bfd_section) != 0
3018 && bfd_section_lma (abfd, bfd_section)
3019 != bfd_section_vma (abfd, bfd_section))
3020 return 1;
3021 }
c906108c
SS
3022
3023 return 0;
3024}
3025
3026/* Function: overlay_invalidate_all (void)
3027 Invalidate the mapped state of all overlay sections (mark it as stale). */
3028
3029static void
fba45db2 3030overlay_invalidate_all (void)
c906108c 3031{
c5aa993b 3032 struct objfile *objfile;
c906108c
SS
3033 struct obj_section *sect;
3034
3035 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3036 if (section_is_overlay (sect))
3037 sect->ovly_mapped = -1;
c906108c
SS
3038}
3039
714835d5 3040/* Function: section_is_mapped (SECTION)
5417f6dc 3041 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3042
3043 Access to the ovly_mapped flag is restricted to this function, so
3044 that we can do automatic update. If the global flag
3045 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3046 overlay_invalidate_all. If the mapped state of the particular
3047 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3048
714835d5
UW
3049int
3050section_is_mapped (struct obj_section *osect)
c906108c 3051{
9216df95
UW
3052 struct gdbarch *gdbarch;
3053
714835d5 3054 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3055 return 0;
3056
c5aa993b 3057 switch (overlay_debugging)
c906108c
SS
3058 {
3059 default:
d874f1e2 3060 case ovly_off:
c5aa993b 3061 return 0; /* overlay debugging off */
d874f1e2 3062 case ovly_auto: /* overlay debugging automatic */
1c772458 3063 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3064 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3065 gdbarch = get_objfile_arch (osect->objfile);
3066 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3067 {
3068 if (overlay_cache_invalid)
3069 {
3070 overlay_invalidate_all ();
3071 overlay_cache_invalid = 0;
3072 }
3073 if (osect->ovly_mapped == -1)
9216df95 3074 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3075 }
3076 /* fall thru to manual case */
d874f1e2 3077 case ovly_on: /* overlay debugging manual */
c906108c
SS
3078 return osect->ovly_mapped == 1;
3079 }
3080}
3081
c906108c
SS
3082/* Function: pc_in_unmapped_range
3083 If PC falls into the lma range of SECTION, return true, else false. */
3084
3085CORE_ADDR
714835d5 3086pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3087{
714835d5
UW
3088 if (section_is_overlay (section))
3089 {
3090 bfd *abfd = section->objfile->obfd;
3091 asection *bfd_section = section->the_bfd_section;
fbd35540 3092
714835d5
UW
3093 /* We assume the LMA is relocated by the same offset as the VMA. */
3094 bfd_vma size = bfd_get_section_size (bfd_section);
3095 CORE_ADDR offset = obj_section_offset (section);
3096
3097 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3098 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3099 return 1;
3100 }
c906108c 3101
c906108c
SS
3102 return 0;
3103}
3104
3105/* Function: pc_in_mapped_range
3106 If PC falls into the vma range of SECTION, return true, else false. */
3107
3108CORE_ADDR
714835d5 3109pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3110{
714835d5
UW
3111 if (section_is_overlay (section))
3112 {
3113 if (obj_section_addr (section) <= pc
3114 && pc < obj_section_endaddr (section))
3115 return 1;
3116 }
c906108c 3117
c906108c
SS
3118 return 0;
3119}
3120
9ec8e6a0
JB
3121/* Return true if the mapped ranges of sections A and B overlap, false
3122 otherwise. */
3b7bacac 3123
b9362cc7 3124static int
714835d5 3125sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3126{
714835d5
UW
3127 CORE_ADDR a_start = obj_section_addr (a);
3128 CORE_ADDR a_end = obj_section_endaddr (a);
3129 CORE_ADDR b_start = obj_section_addr (b);
3130 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3131
3132 return (a_start < b_end && b_start < a_end);
3133}
3134
c906108c
SS
3135/* Function: overlay_unmapped_address (PC, SECTION)
3136 Returns the address corresponding to PC in the unmapped (load) range.
3137 May be the same as PC. */
3138
3139CORE_ADDR
714835d5 3140overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3141{
714835d5
UW
3142 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3143 {
3144 bfd *abfd = section->objfile->obfd;
3145 asection *bfd_section = section->the_bfd_section;
fbd35540 3146
714835d5
UW
3147 return pc + bfd_section_lma (abfd, bfd_section)
3148 - bfd_section_vma (abfd, bfd_section);
3149 }
c906108c
SS
3150
3151 return pc;
3152}
3153
3154/* Function: overlay_mapped_address (PC, SECTION)
3155 Returns the address corresponding to PC in the mapped (runtime) range.
3156 May be the same as PC. */
3157
3158CORE_ADDR
714835d5 3159overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3160{
714835d5
UW
3161 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3162 {
3163 bfd *abfd = section->objfile->obfd;
3164 asection *bfd_section = section->the_bfd_section;
fbd35540 3165
714835d5
UW
3166 return pc + bfd_section_vma (abfd, bfd_section)
3167 - bfd_section_lma (abfd, bfd_section);
3168 }
c906108c
SS
3169
3170 return pc;
3171}
3172
5417f6dc 3173/* Function: symbol_overlayed_address
c906108c
SS
3174 Return one of two addresses (relative to the VMA or to the LMA),
3175 depending on whether the section is mapped or not. */
3176
c5aa993b 3177CORE_ADDR
714835d5 3178symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3179{
3180 if (overlay_debugging)
3181 {
c378eb4e 3182 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3183 if (section == 0)
3184 return address;
c378eb4e
MS
3185 /* If the symbol's section is not an overlay, just return its
3186 address. */
c906108c
SS
3187 if (!section_is_overlay (section))
3188 return address;
c378eb4e 3189 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3190 if (section_is_mapped (section))
3191 return address;
3192 /*
3193 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3194 * then return its LOADED address rather than its vma address!!
3195 */
3196 return overlay_unmapped_address (address, section);
3197 }
3198 return address;
3199}
3200
5417f6dc 3201/* Function: find_pc_overlay (PC)
c906108c
SS
3202 Return the best-match overlay section for PC:
3203 If PC matches a mapped overlay section's VMA, return that section.
3204 Else if PC matches an unmapped section's VMA, return that section.
3205 Else if PC matches an unmapped section's LMA, return that section. */
3206
714835d5 3207struct obj_section *
fba45db2 3208find_pc_overlay (CORE_ADDR pc)
c906108c 3209{
c5aa993b 3210 struct objfile *objfile;
c906108c
SS
3211 struct obj_section *osect, *best_match = NULL;
3212
3213 if (overlay_debugging)
b631e59b
KT
3214 {
3215 ALL_OBJSECTIONS (objfile, osect)
3216 if (section_is_overlay (osect))
c5aa993b 3217 {
b631e59b
KT
3218 if (pc_in_mapped_range (pc, osect))
3219 {
3220 if (section_is_mapped (osect))
3221 return osect;
3222 else
3223 best_match = osect;
3224 }
3225 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3226 best_match = osect;
3227 }
b631e59b 3228 }
714835d5 3229 return best_match;
c906108c
SS
3230}
3231
3232/* Function: find_pc_mapped_section (PC)
5417f6dc 3233 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3234 currently marked as MAPPED, return that section. Else return NULL. */
3235
714835d5 3236struct obj_section *
fba45db2 3237find_pc_mapped_section (CORE_ADDR pc)
c906108c 3238{
c5aa993b 3239 struct objfile *objfile;
c906108c
SS
3240 struct obj_section *osect;
3241
3242 if (overlay_debugging)
b631e59b
KT
3243 {
3244 ALL_OBJSECTIONS (objfile, osect)
3245 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3246 return osect;
3247 }
c906108c
SS
3248
3249 return NULL;
3250}
3251
3252/* Function: list_overlays_command
c378eb4e 3253 Print a list of mapped sections and their PC ranges. */
c906108c 3254
5d3055ad 3255static void
fba45db2 3256list_overlays_command (char *args, int from_tty)
c906108c 3257{
c5aa993b
JM
3258 int nmapped = 0;
3259 struct objfile *objfile;
c906108c
SS
3260 struct obj_section *osect;
3261
3262 if (overlay_debugging)
b631e59b
KT
3263 {
3264 ALL_OBJSECTIONS (objfile, osect)
714835d5 3265 if (section_is_mapped (osect))
b631e59b
KT
3266 {
3267 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3268 const char *name;
3269 bfd_vma lma, vma;
3270 int size;
3271
3272 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3273 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3274 size = bfd_get_section_size (osect->the_bfd_section);
3275 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3276
3277 printf_filtered ("Section %s, loaded at ", name);
3278 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3279 puts_filtered (" - ");
3280 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3281 printf_filtered (", mapped at ");
3282 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3283 puts_filtered (" - ");
3284 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3285 puts_filtered ("\n");
3286
3287 nmapped++;
3288 }
3289 }
c906108c 3290 if (nmapped == 0)
a3f17187 3291 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3292}
3293
3294/* Function: map_overlay_command
3295 Mark the named section as mapped (ie. residing at its VMA address). */
3296
5d3055ad 3297static void
fba45db2 3298map_overlay_command (char *args, int from_tty)
c906108c 3299{
c5aa993b
JM
3300 struct objfile *objfile, *objfile2;
3301 struct obj_section *sec, *sec2;
c906108c
SS
3302
3303 if (!overlay_debugging)
3e43a32a
MS
3304 error (_("Overlay debugging not enabled. Use "
3305 "either the 'overlay auto' or\n"
3306 "the 'overlay manual' command."));
c906108c
SS
3307
3308 if (args == 0 || *args == 0)
8a3fe4f8 3309 error (_("Argument required: name of an overlay section"));
c906108c 3310
c378eb4e 3311 /* First, find a section matching the user supplied argument. */
c906108c
SS
3312 ALL_OBJSECTIONS (objfile, sec)
3313 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3314 {
c378eb4e 3315 /* Now, check to see if the section is an overlay. */
714835d5 3316 if (!section_is_overlay (sec))
c5aa993b
JM
3317 continue; /* not an overlay section */
3318
c378eb4e 3319 /* Mark the overlay as "mapped". */
c5aa993b
JM
3320 sec->ovly_mapped = 1;
3321
3322 /* Next, make a pass and unmap any sections that are
3323 overlapped by this new section: */
3324 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3325 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3326 {
3327 if (info_verbose)
a3f17187 3328 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3329 bfd_section_name (objfile->obfd,
3330 sec2->the_bfd_section));
c378eb4e 3331 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3332 }
3333 return;
3334 }
8a3fe4f8 3335 error (_("No overlay section called %s"), args);
c906108c
SS
3336}
3337
3338/* Function: unmap_overlay_command
5417f6dc 3339 Mark the overlay section as unmapped
c906108c
SS
3340 (ie. resident in its LMA address range, rather than the VMA range). */
3341
5d3055ad 3342static void
fba45db2 3343unmap_overlay_command (char *args, int from_tty)
c906108c 3344{
c5aa993b 3345 struct objfile *objfile;
7a270e0c 3346 struct obj_section *sec = NULL;
c906108c
SS
3347
3348 if (!overlay_debugging)
3e43a32a
MS
3349 error (_("Overlay debugging not enabled. "
3350 "Use either the 'overlay auto' or\n"
3351 "the 'overlay manual' command."));
c906108c
SS
3352
3353 if (args == 0 || *args == 0)
8a3fe4f8 3354 error (_("Argument required: name of an overlay section"));
c906108c 3355
c378eb4e 3356 /* First, find a section matching the user supplied argument. */
c906108c
SS
3357 ALL_OBJSECTIONS (objfile, sec)
3358 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3359 {
3360 if (!sec->ovly_mapped)
8a3fe4f8 3361 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3362 sec->ovly_mapped = 0;
3363 return;
3364 }
8a3fe4f8 3365 error (_("No overlay section called %s"), args);
c906108c
SS
3366}
3367
3368/* Function: overlay_auto_command
3369 A utility command to turn on overlay debugging.
c378eb4e 3370 Possibly this should be done via a set/show command. */
c906108c
SS
3371
3372static void
fba45db2 3373overlay_auto_command (char *args, int from_tty)
c906108c 3374{
d874f1e2 3375 overlay_debugging = ovly_auto;
1900040c 3376 enable_overlay_breakpoints ();
c906108c 3377 if (info_verbose)
a3f17187 3378 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3379}
3380
3381/* Function: overlay_manual_command
3382 A utility command to turn on overlay debugging.
c378eb4e 3383 Possibly this should be done via a set/show command. */
c906108c
SS
3384
3385static void
fba45db2 3386overlay_manual_command (char *args, int from_tty)
c906108c 3387{
d874f1e2 3388 overlay_debugging = ovly_on;
1900040c 3389 disable_overlay_breakpoints ();
c906108c 3390 if (info_verbose)
a3f17187 3391 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3392}
3393
3394/* Function: overlay_off_command
3395 A utility command to turn on overlay debugging.
c378eb4e 3396 Possibly this should be done via a set/show command. */
c906108c
SS
3397
3398static void
fba45db2 3399overlay_off_command (char *args, int from_tty)
c906108c 3400{
d874f1e2 3401 overlay_debugging = ovly_off;
1900040c 3402 disable_overlay_breakpoints ();
c906108c 3403 if (info_verbose)
a3f17187 3404 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3405}
3406
3407static void
fba45db2 3408overlay_load_command (char *args, int from_tty)
c906108c 3409{
e17c207e
UW
3410 struct gdbarch *gdbarch = get_current_arch ();
3411
3412 if (gdbarch_overlay_update_p (gdbarch))
3413 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3414 else
8a3fe4f8 3415 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3416}
3417
3418/* Function: overlay_command
c378eb4e 3419 A place-holder for a mis-typed command. */
c906108c 3420
c378eb4e 3421/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3422static struct cmd_list_element *overlaylist;
c906108c
SS
3423
3424static void
fba45db2 3425overlay_command (char *args, int from_tty)
c906108c 3426{
c5aa993b 3427 printf_unfiltered
c906108c 3428 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3429 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3430}
3431
c906108c
SS
3432/* Target Overlays for the "Simplest" overlay manager:
3433
5417f6dc
RM
3434 This is GDB's default target overlay layer. It works with the
3435 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3436 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3437 so targets that use a different runtime overlay manager can
c906108c
SS
3438 substitute their own overlay_update function and take over the
3439 function pointer.
3440
3441 The overlay_update function pokes around in the target's data structures
3442 to see what overlays are mapped, and updates GDB's overlay mapping with
3443 this information.
3444
3445 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3446 unsigned _novlys; /# number of overlay sections #/
3447 unsigned _ovly_table[_novlys][4] = {
438e1e42 3448 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3449 {..., ..., ..., ...},
3450 }
3451 unsigned _novly_regions; /# number of overlay regions #/
3452 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3453 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3454 {..., ..., ...},
3455 }
c906108c
SS
3456 These functions will attempt to update GDB's mappedness state in the
3457 symbol section table, based on the target's mappedness state.
3458
3459 To do this, we keep a cached copy of the target's _ovly_table, and
3460 attempt to detect when the cached copy is invalidated. The main
3461 entry point is "simple_overlay_update(SECT), which looks up SECT in
3462 the cached table and re-reads only the entry for that section from
c378eb4e 3463 the target (whenever possible). */
c906108c
SS
3464
3465/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3466static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3467static unsigned cache_novlys = 0;
c906108c 3468static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3469enum ovly_index
3470 {
438e1e42 3471 VMA, OSIZE, LMA, MAPPED
c5aa993b 3472 };
c906108c 3473
c378eb4e 3474/* Throw away the cached copy of _ovly_table. */
3b7bacac 3475
c906108c 3476static void
fba45db2 3477simple_free_overlay_table (void)
c906108c
SS
3478{
3479 if (cache_ovly_table)
b8c9b27d 3480 xfree (cache_ovly_table);
c5aa993b 3481 cache_novlys = 0;
c906108c
SS
3482 cache_ovly_table = NULL;
3483 cache_ovly_table_base = 0;
3484}
3485
9216df95 3486/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3487 Convert to host order. int LEN is number of ints. */
3b7bacac 3488
c906108c 3489static void
9216df95 3490read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3491 int len, int size, enum bfd_endian byte_order)
c906108c 3492{
c378eb4e 3493 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3494 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3495 int i;
c906108c 3496
9216df95 3497 read_memory (memaddr, buf, len * size);
c906108c 3498 for (i = 0; i < len; i++)
e17a4113 3499 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3500}
3501
3502/* Find and grab a copy of the target _ovly_table
c378eb4e 3503 (and _novlys, which is needed for the table's size). */
3b7bacac 3504
c5aa993b 3505static int
fba45db2 3506simple_read_overlay_table (void)
c906108c 3507{
3b7344d5 3508 struct bound_minimal_symbol novlys_msym;
7c7b6655 3509 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3510 struct gdbarch *gdbarch;
3511 int word_size;
e17a4113 3512 enum bfd_endian byte_order;
c906108c
SS
3513
3514 simple_free_overlay_table ();
9b27852e 3515 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3516 if (! novlys_msym.minsym)
c906108c 3517 {
8a3fe4f8 3518 error (_("Error reading inferior's overlay table: "
0d43edd1 3519 "couldn't find `_novlys' variable\n"
8a3fe4f8 3520 "in inferior. Use `overlay manual' mode."));
0d43edd1 3521 return 0;
c906108c 3522 }
0d43edd1 3523
7c7b6655
TT
3524 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3525 if (! ovly_table_msym.minsym)
0d43edd1 3526 {
8a3fe4f8 3527 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3528 "`_ovly_table' array\n"
8a3fe4f8 3529 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3530 return 0;
3531 }
3532
7c7b6655 3533 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3534 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3535 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3536
77e371c0
TT
3537 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3538 4, byte_order);
0d43edd1 3539 cache_ovly_table
224c3ddb 3540 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3541 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3542 read_target_long_array (cache_ovly_table_base,
777ea8f1 3543 (unsigned int *) cache_ovly_table,
e17a4113 3544 cache_novlys * 4, word_size, byte_order);
0d43edd1 3545
c5aa993b 3546 return 1; /* SUCCESS */
c906108c
SS
3547}
3548
5417f6dc 3549/* Function: simple_overlay_update_1
c906108c
SS
3550 A helper function for simple_overlay_update. Assuming a cached copy
3551 of _ovly_table exists, look through it to find an entry whose vma,
3552 lma and size match those of OSECT. Re-read the entry and make sure
3553 it still matches OSECT (else the table may no longer be valid).
3554 Set OSECT's mapped state to match the entry. Return: 1 for
3555 success, 0 for failure. */
3556
3557static int
fba45db2 3558simple_overlay_update_1 (struct obj_section *osect)
c906108c 3559{
764c99c1 3560 int i;
fbd35540
MS
3561 bfd *obfd = osect->objfile->obfd;
3562 asection *bsect = osect->the_bfd_section;
9216df95
UW
3563 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3564 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3565 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3566
c906108c 3567 for (i = 0; i < cache_novlys; i++)
fbd35540 3568 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3569 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3570 {
9216df95
UW
3571 read_target_long_array (cache_ovly_table_base + i * word_size,
3572 (unsigned int *) cache_ovly_table[i],
e17a4113 3573 4, word_size, byte_order);
fbd35540 3574 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3575 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3576 {
3577 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3578 return 1;
3579 }
c378eb4e 3580 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3581 return 0;
3582 }
3583 return 0;
3584}
3585
3586/* Function: simple_overlay_update
5417f6dc
RM
3587 If OSECT is NULL, then update all sections' mapped state
3588 (after re-reading the entire target _ovly_table).
3589 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3590 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3591 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3592 re-read the entire cache, and go ahead and update all sections. */
3593
1c772458 3594void
fba45db2 3595simple_overlay_update (struct obj_section *osect)
c906108c 3596{
c5aa993b 3597 struct objfile *objfile;
c906108c 3598
c378eb4e 3599 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3600 if (osect)
c378eb4e 3601 /* Have we got a cached copy of the target's overlay table? */
c906108c 3602 if (cache_ovly_table != NULL)
9cc89665
MS
3603 {
3604 /* Does its cached location match what's currently in the
3605 symtab? */
3b7344d5 3606 struct bound_minimal_symbol minsym
9cc89665
MS
3607 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3608
3b7344d5 3609 if (minsym.minsym == NULL)
9cc89665
MS
3610 error (_("Error reading inferior's overlay table: couldn't "
3611 "find `_ovly_table' array\n"
3612 "in inferior. Use `overlay manual' mode."));
3613
77e371c0 3614 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3615 /* Then go ahead and try to look up this single section in
3616 the cache. */
3617 if (simple_overlay_update_1 (osect))
3618 /* Found it! We're done. */
3619 return;
3620 }
c906108c
SS
3621
3622 /* Cached table no good: need to read the entire table anew.
3623 Or else we want all the sections, in which case it's actually
3624 more efficient to read the whole table in one block anyway. */
3625
0d43edd1
JB
3626 if (! simple_read_overlay_table ())
3627 return;
3628
c378eb4e 3629 /* Now may as well update all sections, even if only one was requested. */
c906108c 3630 ALL_OBJSECTIONS (objfile, osect)
714835d5 3631 if (section_is_overlay (osect))
c5aa993b 3632 {
764c99c1 3633 int i;
fbd35540
MS
3634 bfd *obfd = osect->objfile->obfd;
3635 asection *bsect = osect->the_bfd_section;
c5aa993b 3636
c5aa993b 3637 for (i = 0; i < cache_novlys; i++)
fbd35540 3638 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3639 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3640 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3641 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3642 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3643 }
3644 }
c906108c
SS
3645}
3646
086df311
DJ
3647/* Set the output sections and output offsets for section SECTP in
3648 ABFD. The relocation code in BFD will read these offsets, so we
3649 need to be sure they're initialized. We map each section to itself,
3650 with no offset; this means that SECTP->vma will be honored. */
3651
3652static void
3653symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3654{
3655 sectp->output_section = sectp;
3656 sectp->output_offset = 0;
3657}
3658
ac8035ab
TG
3659/* Default implementation for sym_relocate. */
3660
ac8035ab
TG
3661bfd_byte *
3662default_symfile_relocate (struct objfile *objfile, asection *sectp,
3663 bfd_byte *buf)
3664{
3019eac3
DE
3665 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3666 DWO file. */
3667 bfd *abfd = sectp->owner;
ac8035ab
TG
3668
3669 /* We're only interested in sections with relocation
3670 information. */
3671 if ((sectp->flags & SEC_RELOC) == 0)
3672 return NULL;
3673
3674 /* We will handle section offsets properly elsewhere, so relocate as if
3675 all sections begin at 0. */
3676 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3677
3678 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3679}
3680
086df311
DJ
3681/* Relocate the contents of a debug section SECTP in ABFD. The
3682 contents are stored in BUF if it is non-NULL, or returned in a
3683 malloc'd buffer otherwise.
3684
3685 For some platforms and debug info formats, shared libraries contain
3686 relocations against the debug sections (particularly for DWARF-2;
3687 one affected platform is PowerPC GNU/Linux, although it depends on
3688 the version of the linker in use). Also, ELF object files naturally
3689 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3690 the relocations in order to get the locations of symbols correct.
3691 Another example that may require relocation processing, is the
3692 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3693 debug section. */
086df311
DJ
3694
3695bfd_byte *
ac8035ab
TG
3696symfile_relocate_debug_section (struct objfile *objfile,
3697 asection *sectp, bfd_byte *buf)
086df311 3698{
ac8035ab 3699 gdb_assert (objfile->sf->sym_relocate);
086df311 3700
ac8035ab 3701 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3702}
c906108c 3703
31d99776
DJ
3704struct symfile_segment_data *
3705get_symfile_segment_data (bfd *abfd)
3706{
00b5771c 3707 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3708
3709 if (sf == NULL)
3710 return NULL;
3711
3712 return sf->sym_segments (abfd);
3713}
3714
3715void
3716free_symfile_segment_data (struct symfile_segment_data *data)
3717{
3718 xfree (data->segment_bases);
3719 xfree (data->segment_sizes);
3720 xfree (data->segment_info);
3721 xfree (data);
3722}
3723
28c32713
JB
3724/* Given:
3725 - DATA, containing segment addresses from the object file ABFD, and
3726 the mapping from ABFD's sections onto the segments that own them,
3727 and
3728 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3729 segment addresses reported by the target,
3730 store the appropriate offsets for each section in OFFSETS.
3731
3732 If there are fewer entries in SEGMENT_BASES than there are segments
3733 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3734
8d385431
DJ
3735 If there are more entries, then ignore the extra. The target may
3736 not be able to distinguish between an empty data segment and a
3737 missing data segment; a missing text segment is less plausible. */
3b7bacac 3738
31d99776 3739int
3189cb12
DE
3740symfile_map_offsets_to_segments (bfd *abfd,
3741 const struct symfile_segment_data *data,
31d99776
DJ
3742 struct section_offsets *offsets,
3743 int num_segment_bases,
3744 const CORE_ADDR *segment_bases)
3745{
3746 int i;
3747 asection *sect;
3748
28c32713
JB
3749 /* It doesn't make sense to call this function unless you have some
3750 segment base addresses. */
202b96c1 3751 gdb_assert (num_segment_bases > 0);
28c32713 3752
31d99776
DJ
3753 /* If we do not have segment mappings for the object file, we
3754 can not relocate it by segments. */
3755 gdb_assert (data != NULL);
3756 gdb_assert (data->num_segments > 0);
3757
31d99776
DJ
3758 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3759 {
31d99776
DJ
3760 int which = data->segment_info[i];
3761
28c32713
JB
3762 gdb_assert (0 <= which && which <= data->num_segments);
3763
3764 /* Don't bother computing offsets for sections that aren't
3765 loaded as part of any segment. */
3766 if (! which)
3767 continue;
3768
3769 /* Use the last SEGMENT_BASES entry as the address of any extra
3770 segments mentioned in DATA->segment_info. */
31d99776 3771 if (which > num_segment_bases)
28c32713 3772 which = num_segment_bases;
31d99776 3773
28c32713
JB
3774 offsets->offsets[i] = (segment_bases[which - 1]
3775 - data->segment_bases[which - 1]);
31d99776
DJ
3776 }
3777
3778 return 1;
3779}
3780
3781static void
3782symfile_find_segment_sections (struct objfile *objfile)
3783{
3784 bfd *abfd = objfile->obfd;
3785 int i;
3786 asection *sect;
3787 struct symfile_segment_data *data;
3788
3789 data = get_symfile_segment_data (objfile->obfd);
3790 if (data == NULL)
3791 return;
3792
3793 if (data->num_segments != 1 && data->num_segments != 2)
3794 {
3795 free_symfile_segment_data (data);
3796 return;
3797 }
3798
3799 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3800 {
31d99776
DJ
3801 int which = data->segment_info[i];
3802
3803 if (which == 1)
3804 {
3805 if (objfile->sect_index_text == -1)
3806 objfile->sect_index_text = sect->index;
3807
3808 if (objfile->sect_index_rodata == -1)
3809 objfile->sect_index_rodata = sect->index;
3810 }
3811 else if (which == 2)
3812 {
3813 if (objfile->sect_index_data == -1)
3814 objfile->sect_index_data = sect->index;
3815
3816 if (objfile->sect_index_bss == -1)
3817 objfile->sect_index_bss = sect->index;
3818 }
3819 }
3820
3821 free_symfile_segment_data (data);
3822}
3823
76ad5e1e
NB
3824/* Listen for free_objfile events. */
3825
3826static void
3827symfile_free_objfile (struct objfile *objfile)
3828{
c33b2f12
MM
3829 /* Remove the target sections owned by this objfile. */
3830 if (objfile != NULL)
76ad5e1e
NB
3831 remove_target_sections ((void *) objfile);
3832}
3833
540c2971
DE
3834/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3835 Expand all symtabs that match the specified criteria.
3836 See quick_symbol_functions.expand_symtabs_matching for details. */
3837
3838void
14bc53a8
PA
3839expand_symtabs_matching
3840 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3841 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3842 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3843 enum search_domain kind)
540c2971
DE
3844{
3845 struct objfile *objfile;
3846
3847 ALL_OBJFILES (objfile)
3848 {
3849 if (objfile->sf)
bb4142cf 3850 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3851 symbol_matcher,
14bc53a8 3852 expansion_notify, kind);
540c2971
DE
3853 }
3854}
3855
3856/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3857 Map function FUN over every file.
3858 See quick_symbol_functions.map_symbol_filenames for details. */
3859
3860void
bb4142cf
DE
3861map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3862 int need_fullname)
540c2971
DE
3863{
3864 struct objfile *objfile;
3865
3866 ALL_OBJFILES (objfile)
3867 {
3868 if (objfile->sf)
3869 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3870 need_fullname);
3871 }
3872}
3873
c906108c 3874void
fba45db2 3875_initialize_symfile (void)
c906108c
SS
3876{
3877 struct cmd_list_element *c;
c5aa993b 3878
76ad5e1e
NB
3879 observer_attach_free_objfile (symfile_free_objfile);
3880
1a966eab
AC
3881 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3882Load symbol table from executable file FILE.\n\
c906108c 3883The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3884to execute."), &cmdlist);
5ba2abeb 3885 set_cmd_completer (c, filename_completer);
c906108c 3886
1a966eab 3887 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3888Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3889Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3890 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3891The optional arguments are section-name section-address pairs and\n\
3892should be specified if the data and bss segments are not contiguous\n\
1a966eab 3893with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3894 &cmdlist);
5ba2abeb 3895 set_cmd_completer (c, filename_completer);
c906108c 3896
63644780
NB
3897 c = add_cmd ("remove-symbol-file", class_files,
3898 remove_symbol_file_command, _("\
3899Remove a symbol file added via the add-symbol-file command.\n\
3900Usage: remove-symbol-file FILENAME\n\
3901 remove-symbol-file -a ADDRESS\n\
3902The file to remove can be identified by its filename or by an address\n\
3903that lies within the boundaries of this symbol file in memory."),
3904 &cmdlist);
3905
1a966eab
AC
3906 c = add_cmd ("load", class_files, load_command, _("\
3907Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3908for access from GDB.\n\
5cf30ebf
LM
3909An optional load OFFSET may also be given as a literal address.\n\
3910When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3911on its own.\n\
3912Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3913 set_cmd_completer (c, filename_completer);
c906108c 3914
c5aa993b 3915 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3916 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3917 "overlay ", 0, &cmdlist);
3918
3919 add_com_alias ("ovly", "overlay", class_alias, 1);
3920 add_com_alias ("ov", "overlay", class_alias, 1);
3921
c5aa993b 3922 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3923 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3924
c5aa993b 3925 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3926 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3927
c5aa993b 3928 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3929 _("List mappings of overlay sections."), &overlaylist);
c906108c 3930
c5aa993b 3931 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3932 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3933 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3934 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3935 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3936 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3937 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3938 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3939
3940 /* Filename extension to source language lookup table: */
26c41df3
AC
3941 add_setshow_string_noescape_cmd ("extension-language", class_files,
3942 &ext_args, _("\
3943Set mapping between filename extension and source language."), _("\
3944Show mapping between filename extension and source language."), _("\
3945Usage: set extension-language .foo bar"),
3946 set_ext_lang_command,
920d2a44 3947 show_ext_args,
26c41df3 3948 &setlist, &showlist);
c906108c 3949
c5aa993b 3950 add_info ("extensions", info_ext_lang_command,
1bedd215 3951 _("All filename extensions associated with a source language."));
917317f4 3952
525226b5
AC
3953 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3954 &debug_file_directory, _("\
24ddea62
JK
3955Set the directories where separate debug symbols are searched for."), _("\
3956Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3957Separate debug symbols are first searched for in the same\n\
3958directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3959and lastly at the path of the directory of the binary with\n\
24ddea62 3960each global debug-file-directory component prepended."),
525226b5 3961 NULL,
920d2a44 3962 show_debug_file_directory,
525226b5 3963 &setlist, &showlist);
770e7fc7
DE
3964
3965 add_setshow_enum_cmd ("symbol-loading", no_class,
3966 print_symbol_loading_enums, &print_symbol_loading,
3967 _("\
3968Set printing of symbol loading messages."), _("\
3969Show printing of symbol loading messages."), _("\
3970off == turn all messages off\n\
3971brief == print messages for the executable,\n\
3972 and brief messages for shared libraries\n\
3973full == print messages for the executable,\n\
3974 and messages for each shared library."),
3975 NULL,
3976 NULL,
3977 &setprintlist, &showprintlist);
c906108c 3978}
This page took 2.216621 seconds and 4 git commands to generate.