* config/tc-mips.c (macro_build_jalr): Reverse a negative
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
7b6bb8da 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
1bfeeb0f 59#include "stack.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* External variables and functions referenced. */
c906108c 87
a14ed312 88extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 89
c378eb4e 90/* Functions this file defines. */
c906108c 91
a14ed312 92static void load_command (char *, int);
c906108c 93
d7db6da9
FN
94static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
a14ed312 96static void add_symbol_file_command (char *, int);
c906108c 97
a14ed312 98bfd *symfile_bfd_open (char *);
c906108c 99
0e931cf0
JB
100int get_section_index (struct objfile *, char *);
101
00b5771c 102static const struct sym_fns *find_sym_fns (bfd *);
c906108c 103
a14ed312 104static void decrement_reading_symtab (void *);
c906108c 105
a14ed312 106static void overlay_invalidate_all (void);
c906108c 107
a14ed312 108void list_overlays_command (char *, int);
c906108c 109
a14ed312 110void map_overlay_command (char *, int);
c906108c 111
a14ed312 112void unmap_overlay_command (char *, int);
c906108c 113
a14ed312 114static void overlay_auto_command (char *, int);
c906108c 115
a14ed312 116static void overlay_manual_command (char *, int);
c906108c 117
a14ed312 118static void overlay_off_command (char *, int);
c906108c 119
a14ed312 120static void overlay_load_command (char *, int);
c906108c 121
a14ed312 122static void overlay_command (char *, int);
c906108c 123
a14ed312 124static void simple_free_overlay_table (void);
c906108c 125
e17a4113
UW
126static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
127 enum bfd_endian);
c906108c 128
a14ed312 129static int simple_read_overlay_table (void);
c906108c 130
a14ed312 131static int simple_overlay_update_1 (struct obj_section *);
c906108c 132
a14ed312 133static void add_filename_language (char *ext, enum language lang);
392a587b 134
a14ed312 135static void info_ext_lang_command (char *args, int from_tty);
392a587b 136
a14ed312 137static void init_filename_language_table (void);
392a587b 138
31d99776
DJ
139static void symfile_find_segment_sections (struct objfile *objfile);
140
a14ed312 141void _initialize_symfile (void);
c906108c
SS
142
143/* List of all available sym_fns. On gdb startup, each object file reader
144 calls add_symtab_fns() to register information on each format it is
c378eb4e 145 prepared to read. */
c906108c 146
00b5771c
TT
147typedef const struct sym_fns *sym_fns_ptr;
148DEF_VEC_P (sym_fns_ptr);
149
150static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c
SS
151
152/* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155#ifdef SYMBOL_RELOADING_DEFAULT
156int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157#else
158int symbol_reloading = 0;
159#endif
920d2a44
AC
160static void
161show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
3e43a32a
MS
164 fprintf_filtered (file, _("Dynamic symbol table reloading "
165 "multiple times in one run is %s.\n"),
920d2a44
AC
166 value);
167}
168
b7209cb4
FF
169/* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
c906108c 176 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 177 report all the functions that are actually present. */
c906108c
SS
178
179int auto_solib_add = 1;
c906108c 180\f
c5aa993b 181
c906108c
SS
182/* Make a null terminated copy of the string at PTR with SIZE characters in
183 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 184 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 185 may be part of a larger string and we are only saving a substring. */
c906108c
SS
186
187char *
63ca651f 188obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 189{
52f0bd74 190 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
191 /* Open-coded memcpy--saves function call time. These strings are usually
192 short. FIXME: Is this really still true with a compiler that can
c378eb4e 193 inline memcpy? */
c906108c 194 {
aa1ee363
AC
195 const char *p1 = ptr;
196 char *p2 = p;
63ca651f 197 const char *end = ptr + size;
433759f7 198
c906108c
SS
199 while (p1 != end)
200 *p2++ = *p1++;
201 }
202 p[size] = 0;
203 return p;
204}
205
3e43a32a
MS
206/* Concatenate NULL terminated variable argument list of `const char *'
207 strings; return the new string. Space is found in the OBSTACKP.
208 Argument list must be terminated by a sentinel expression `(char *)
209 NULL'. */
c906108c
SS
210
211char *
48cb83fd 212obconcat (struct obstack *obstackp, ...)
c906108c 213{
48cb83fd
JK
214 va_list ap;
215
216 va_start (ap, obstackp);
217 for (;;)
218 {
219 const char *s = va_arg (ap, const char *);
220
221 if (s == NULL)
222 break;
223
224 obstack_grow_str (obstackp, s);
225 }
226 va_end (ap);
227 obstack_1grow (obstackp, 0);
228
229 return obstack_finish (obstackp);
c906108c
SS
230}
231
0d14a781 232/* True if we are reading a symbol table. */
c906108c
SS
233
234int currently_reading_symtab = 0;
235
236static void
fba45db2 237decrement_reading_symtab (void *dummy)
c906108c
SS
238{
239 currently_reading_symtab--;
240}
241
ccefe4c4
TT
242/* Increment currently_reading_symtab and return a cleanup that can be
243 used to decrement it. */
244struct cleanup *
245increment_reading_symtab (void)
c906108c 246{
ccefe4c4
TT
247 ++currently_reading_symtab;
248 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
249}
250
5417f6dc
RM
251/* Remember the lowest-addressed loadable section we've seen.
252 This function is called via bfd_map_over_sections.
c906108c
SS
253
254 In case of equal vmas, the section with the largest size becomes the
255 lowest-addressed loadable section.
256
257 If the vmas and sizes are equal, the last section is considered the
258 lowest-addressed loadable section. */
259
260void
4efb68b1 261find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 262{
c5aa993b 263 asection **lowest = (asection **) obj;
c906108c 264
eb73e134 265 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
266 return;
267 if (!*lowest)
268 *lowest = sect; /* First loadable section */
269 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
270 *lowest = sect; /* A lower loadable section */
271 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
272 && (bfd_section_size (abfd, (*lowest))
273 <= bfd_section_size (abfd, sect)))
274 *lowest = sect;
275}
276
a39a16c4
MM
277/* Create a new section_addr_info, with room for NUM_SECTIONS. */
278
279struct section_addr_info *
280alloc_section_addr_info (size_t num_sections)
281{
282 struct section_addr_info *sap;
283 size_t size;
284
285 size = (sizeof (struct section_addr_info)
286 + sizeof (struct other_sections) * (num_sections - 1));
287 sap = (struct section_addr_info *) xmalloc (size);
288 memset (sap, 0, size);
289 sap->num_sections = num_sections;
290
291 return sap;
292}
62557bbc
KB
293
294/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 295 an existing section table. */
62557bbc
KB
296
297extern struct section_addr_info *
0542c86d
PA
298build_section_addr_info_from_section_table (const struct target_section *start,
299 const struct target_section *end)
62557bbc
KB
300{
301 struct section_addr_info *sap;
0542c86d 302 const struct target_section *stp;
62557bbc
KB
303 int oidx;
304
a39a16c4 305 sap = alloc_section_addr_info (end - start);
62557bbc
KB
306
307 for (stp = start, oidx = 0; stp != end; stp++)
308 {
5417f6dc 309 if (bfd_get_section_flags (stp->bfd,
fbd35540 310 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 311 && oidx < end - start)
62557bbc
KB
312 {
313 sap->other[oidx].addr = stp->addr;
5417f6dc 314 sap->other[oidx].name
fbd35540 315 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
316 sap->other[oidx].sectindex = stp->the_bfd_section->index;
317 oidx++;
318 }
319 }
320
321 return sap;
322}
323
82ccf5a5 324/* Create a section_addr_info from section offsets in ABFD. */
089b4803 325
82ccf5a5
JK
326static struct section_addr_info *
327build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
328{
329 struct section_addr_info *sap;
330 int i;
331 struct bfd_section *sec;
332
82ccf5a5
JK
333 sap = alloc_section_addr_info (bfd_count_sections (abfd));
334 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
335 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 336 {
82ccf5a5
JK
337 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
338 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
339 sap->other[i].sectindex = sec->index;
340 i++;
341 }
089b4803
TG
342 return sap;
343}
344
82ccf5a5
JK
345/* Create a section_addr_info from section offsets in OBJFILE. */
346
347struct section_addr_info *
348build_section_addr_info_from_objfile (const struct objfile *objfile)
349{
350 struct section_addr_info *sap;
351 int i;
352
353 /* Before reread_symbols gets rewritten it is not safe to call:
354 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
355 */
356 sap = build_section_addr_info_from_bfd (objfile->obfd);
357 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
358 {
359 int sectindex = sap->other[i].sectindex;
360
361 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
362 }
363 return sap;
364}
62557bbc 365
c378eb4e 366/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
367
368extern void
369free_section_addr_info (struct section_addr_info *sap)
370{
371 int idx;
372
a39a16c4 373 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 374 if (sap->other[idx].name)
b8c9b27d
KB
375 xfree (sap->other[idx].name);
376 xfree (sap);
62557bbc
KB
377}
378
379
e8289572
JB
380/* Initialize OBJFILE's sect_index_* members. */
381static void
382init_objfile_sect_indices (struct objfile *objfile)
c906108c 383{
e8289572 384 asection *sect;
c906108c 385 int i;
5417f6dc 386
b8fbeb18 387 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 388 if (sect)
b8fbeb18
EZ
389 objfile->sect_index_text = sect->index;
390
391 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 392 if (sect)
b8fbeb18
EZ
393 objfile->sect_index_data = sect->index;
394
395 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 396 if (sect)
b8fbeb18
EZ
397 objfile->sect_index_bss = sect->index;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 400 if (sect)
b8fbeb18
EZ
401 objfile->sect_index_rodata = sect->index;
402
bbcd32ad
FF
403 /* This is where things get really weird... We MUST have valid
404 indices for the various sect_index_* members or gdb will abort.
405 So if for example, there is no ".text" section, we have to
31d99776
DJ
406 accomodate that. First, check for a file with the standard
407 one or two segments. */
408
409 symfile_find_segment_sections (objfile);
410
411 /* Except when explicitly adding symbol files at some address,
412 section_offsets contains nothing but zeros, so it doesn't matter
413 which slot in section_offsets the individual sect_index_* members
414 index into. So if they are all zero, it is safe to just point
415 all the currently uninitialized indices to the first slot. But
416 beware: if this is the main executable, it may be relocated
417 later, e.g. by the remote qOffsets packet, and then this will
418 be wrong! That's why we try segments first. */
bbcd32ad
FF
419
420 for (i = 0; i < objfile->num_sections; i++)
421 {
422 if (ANOFFSET (objfile->section_offsets, i) != 0)
423 {
424 break;
425 }
426 }
427 if (i == objfile->num_sections)
428 {
429 if (objfile->sect_index_text == -1)
430 objfile->sect_index_text = 0;
431 if (objfile->sect_index_data == -1)
432 objfile->sect_index_data = 0;
433 if (objfile->sect_index_bss == -1)
434 objfile->sect_index_bss = 0;
435 if (objfile->sect_index_rodata == -1)
436 objfile->sect_index_rodata = 0;
437 }
b8fbeb18 438}
c906108c 439
c1bd25fd
DJ
440/* The arguments to place_section. */
441
442struct place_section_arg
443{
444 struct section_offsets *offsets;
445 CORE_ADDR lowest;
446};
447
448/* Find a unique offset to use for loadable section SECT if
449 the user did not provide an offset. */
450
2c0b251b 451static void
c1bd25fd
DJ
452place_section (bfd *abfd, asection *sect, void *obj)
453{
454 struct place_section_arg *arg = obj;
455 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
456 int done;
3bd72c6f 457 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 458
2711e456
DJ
459 /* We are only interested in allocated sections. */
460 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
461 return;
462
463 /* If the user specified an offset, honor it. */
464 if (offsets[sect->index] != 0)
465 return;
466
467 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
468 start_addr = (arg->lowest + align - 1) & -align;
469
c1bd25fd
DJ
470 do {
471 asection *cur_sec;
c1bd25fd 472
c1bd25fd
DJ
473 done = 1;
474
475 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
476 {
477 int indx = cur_sec->index;
c1bd25fd
DJ
478
479 /* We don't need to compare against ourself. */
480 if (cur_sec == sect)
481 continue;
482
2711e456
DJ
483 /* We can only conflict with allocated sections. */
484 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
485 continue;
486
487 /* If the section offset is 0, either the section has not been placed
488 yet, or it was the lowest section placed (in which case LOWEST
489 will be past its end). */
490 if (offsets[indx] == 0)
491 continue;
492
493 /* If this section would overlap us, then we must move up. */
494 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
495 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
496 {
497 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
498 start_addr = (start_addr + align - 1) & -align;
499 done = 0;
3bd72c6f 500 break;
c1bd25fd
DJ
501 }
502
503 /* Otherwise, we appear to be OK. So far. */
504 }
505 }
506 while (!done);
507
508 offsets[sect->index] = start_addr;
509 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 510}
e8289572 511
75242ef4
JK
512/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
513 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
514 entries. */
e8289572
JB
515
516void
75242ef4
JK
517relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
518 int num_sections,
519 struct section_addr_info *addrs)
e8289572
JB
520{
521 int i;
522
75242ef4 523 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 524
c378eb4e 525 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 526 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 527 {
75242ef4 528 struct other_sections *osp;
e8289572 529
75242ef4 530 osp = &addrs->other[i];
5488dafb 531 if (osp->sectindex == -1)
e8289572
JB
532 continue;
533
c378eb4e 534 /* Record all sections in offsets. */
e8289572 535 /* The section_offsets in the objfile are here filled in using
c378eb4e 536 the BFD index. */
75242ef4
JK
537 section_offsets->offsets[osp->sectindex] = osp->addr;
538 }
539}
540
1276c759
JK
541/* Transform section name S for a name comparison. prelink can split section
542 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
543 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
544 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
545 (`.sbss') section has invalid (increased) virtual address. */
546
547static const char *
548addr_section_name (const char *s)
549{
550 if (strcmp (s, ".dynbss") == 0)
551 return ".bss";
552 if (strcmp (s, ".sdynbss") == 0)
553 return ".sbss";
554
555 return s;
556}
557
82ccf5a5
JK
558/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
559 their (name, sectindex) pair. sectindex makes the sort by name stable. */
560
561static int
562addrs_section_compar (const void *ap, const void *bp)
563{
564 const struct other_sections *a = *((struct other_sections **) ap);
565 const struct other_sections *b = *((struct other_sections **) bp);
566 int retval, a_idx, b_idx;
567
1276c759 568 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
569 if (retval)
570 return retval;
571
5488dafb 572 return a->sectindex - b->sectindex;
82ccf5a5
JK
573}
574
575/* Provide sorted array of pointers to sections of ADDRS. The array is
576 terminated by NULL. Caller is responsible to call xfree for it. */
577
578static struct other_sections **
579addrs_section_sort (struct section_addr_info *addrs)
580{
581 struct other_sections **array;
582 int i;
583
584 /* `+ 1' for the NULL terminator. */
585 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
586 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
587 array[i] = &addrs->other[i];
588 array[i] = NULL;
589
590 qsort (array, i, sizeof (*array), addrs_section_compar);
591
592 return array;
593}
594
75242ef4 595/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
596 also SECTINDEXes specific to ABFD there. This function can be used to
597 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
598
599void
600addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
601{
602 asection *lower_sect;
75242ef4
JK
603 CORE_ADDR lower_offset;
604 int i;
82ccf5a5
JK
605 struct cleanup *my_cleanup;
606 struct section_addr_info *abfd_addrs;
607 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
608 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
609
610 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
611 continguous sections. */
612 lower_sect = NULL;
613 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
614 if (lower_sect == NULL)
615 {
616 warning (_("no loadable sections found in added symbol-file %s"),
617 bfd_get_filename (abfd));
618 lower_offset = 0;
e8289572 619 }
75242ef4
JK
620 else
621 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
622
82ccf5a5
JK
623 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
624 in ABFD. Section names are not unique - there can be multiple sections of
625 the same name. Also the sections of the same name do not have to be
626 adjacent to each other. Some sections may be present only in one of the
627 files. Even sections present in both files do not have to be in the same
628 order.
629
630 Use stable sort by name for the sections in both files. Then linearly
631 scan both lists matching as most of the entries as possible. */
632
633 addrs_sorted = addrs_section_sort (addrs);
634 my_cleanup = make_cleanup (xfree, addrs_sorted);
635
636 abfd_addrs = build_section_addr_info_from_bfd (abfd);
637 make_cleanup_free_section_addr_info (abfd_addrs);
638 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
639 make_cleanup (xfree, abfd_addrs_sorted);
640
c378eb4e
MS
641 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
642 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
643
644 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
645 * addrs->num_sections);
646 make_cleanup (xfree, addrs_to_abfd_addrs);
647
648 while (*addrs_sorted)
649 {
1276c759 650 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
651
652 while (*abfd_addrs_sorted
1276c759
JK
653 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
654 sect_name) < 0)
82ccf5a5
JK
655 abfd_addrs_sorted++;
656
657 if (*abfd_addrs_sorted
1276c759
JK
658 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
659 sect_name) == 0)
82ccf5a5
JK
660 {
661 int index_in_addrs;
662
663 /* Make the found item directly addressable from ADDRS. */
664 index_in_addrs = *addrs_sorted - addrs->other;
665 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
666 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
667
668 /* Never use the same ABFD entry twice. */
669 abfd_addrs_sorted++;
670 }
671
672 addrs_sorted++;
673 }
674
75242ef4
JK
675 /* Calculate offsets for the loadable sections.
676 FIXME! Sections must be in order of increasing loadable section
677 so that contiguous sections can use the lower-offset!!!
678
679 Adjust offsets if the segments are not contiguous.
680 If the section is contiguous, its offset should be set to
681 the offset of the highest loadable section lower than it
682 (the loadable section directly below it in memory).
683 this_offset = lower_offset = lower_addr - lower_orig_addr */
684
685 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
686 {
82ccf5a5 687 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
688
689 if (sect)
75242ef4 690 {
c378eb4e 691 /* This is the index used by BFD. */
82ccf5a5 692 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
693
694 if (addrs->other[i].addr != 0)
75242ef4 695 {
82ccf5a5 696 addrs->other[i].addr -= sect->addr;
75242ef4 697 lower_offset = addrs->other[i].addr;
75242ef4
JK
698 }
699 else
672d9c23 700 addrs->other[i].addr = lower_offset;
75242ef4
JK
701 }
702 else
672d9c23 703 {
1276c759
JK
704 /* addr_section_name transformation is not used for SECT_NAME. */
705 const char *sect_name = addrs->other[i].name;
706
b0fcb67f
JK
707 /* This section does not exist in ABFD, which is normally
708 unexpected and we want to issue a warning.
709
4d9743af
JK
710 However, the ELF prelinker does create a few sections which are
711 marked in the main executable as loadable (they are loaded in
712 memory from the DYNAMIC segment) and yet are not present in
713 separate debug info files. This is fine, and should not cause
714 a warning. Shared libraries contain just the section
715 ".gnu.liblist" but it is not marked as loadable there. There is
716 no other way to identify them than by their name as the sections
1276c759
JK
717 created by prelink have no special flags.
718
719 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
720
721 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 722 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
723 || (strcmp (sect_name, ".bss") == 0
724 && i > 0
725 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
726 && addrs_to_abfd_addrs[i - 1] != NULL)
727 || (strcmp (sect_name, ".sbss") == 0
728 && i > 0
729 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
730 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
731 warning (_("section %s not found in %s"), sect_name,
732 bfd_get_filename (abfd));
733
672d9c23 734 addrs->other[i].addr = 0;
5488dafb 735 addrs->other[i].sectindex = -1;
672d9c23 736 }
75242ef4 737 }
82ccf5a5
JK
738
739 do_cleanups (my_cleanup);
75242ef4
JK
740}
741
742/* Parse the user's idea of an offset for dynamic linking, into our idea
743 of how to represent it for fast symbol reading. This is the default
744 version of the sym_fns.sym_offsets function for symbol readers that
745 don't need to do anything special. It allocates a section_offsets table
746 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
747
748void
749default_symfile_offsets (struct objfile *objfile,
750 struct section_addr_info *addrs)
751{
752 objfile->num_sections = bfd_count_sections (objfile->obfd);
753 objfile->section_offsets = (struct section_offsets *)
754 obstack_alloc (&objfile->objfile_obstack,
755 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
756 relative_addr_info_to_section_offsets (objfile->section_offsets,
757 objfile->num_sections, addrs);
e8289572 758
c1bd25fd
DJ
759 /* For relocatable files, all loadable sections will start at zero.
760 The zero is meaningless, so try to pick arbitrary addresses such
761 that no loadable sections overlap. This algorithm is quadratic,
762 but the number of sections in a single object file is generally
763 small. */
764 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
765 {
766 struct place_section_arg arg;
2711e456
DJ
767 bfd *abfd = objfile->obfd;
768 asection *cur_sec;
2711e456
DJ
769
770 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
771 /* We do not expect this to happen; just skip this step if the
772 relocatable file has a section with an assigned VMA. */
773 if (bfd_section_vma (abfd, cur_sec) != 0)
774 break;
775
776 if (cur_sec == NULL)
777 {
778 CORE_ADDR *offsets = objfile->section_offsets->offsets;
779
780 /* Pick non-overlapping offsets for sections the user did not
781 place explicitly. */
782 arg.offsets = objfile->section_offsets;
783 arg.lowest = 0;
784 bfd_map_over_sections (objfile->obfd, place_section, &arg);
785
786 /* Correctly filling in the section offsets is not quite
787 enough. Relocatable files have two properties that
788 (most) shared objects do not:
789
790 - Their debug information will contain relocations. Some
791 shared libraries do also, but many do not, so this can not
792 be assumed.
793
794 - If there are multiple code sections they will be loaded
795 at different relative addresses in memory than they are
796 in the objfile, since all sections in the file will start
797 at address zero.
798
799 Because GDB has very limited ability to map from an
800 address in debug info to the correct code section,
801 it relies on adding SECT_OFF_TEXT to things which might be
802 code. If we clear all the section offsets, and set the
803 section VMAs instead, then symfile_relocate_debug_section
804 will return meaningful debug information pointing at the
805 correct sections.
806
807 GDB has too many different data structures for section
808 addresses - a bfd, objfile, and so_list all have section
809 tables, as does exec_ops. Some of these could probably
810 be eliminated. */
811
812 for (cur_sec = abfd->sections; cur_sec != NULL;
813 cur_sec = cur_sec->next)
814 {
815 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
816 continue;
817
818 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
819 exec_set_section_address (bfd_get_filename (abfd),
820 cur_sec->index,
30510692 821 offsets[cur_sec->index]);
2711e456
DJ
822 offsets[cur_sec->index] = 0;
823 }
824 }
c1bd25fd
DJ
825 }
826
e8289572 827 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 828 .rodata sections. */
e8289572
JB
829 init_objfile_sect_indices (objfile);
830}
831
832
31d99776
DJ
833/* Divide the file into segments, which are individual relocatable units.
834 This is the default version of the sym_fns.sym_segments function for
835 symbol readers that do not have an explicit representation of segments.
836 It assumes that object files do not have segments, and fully linked
837 files have a single segment. */
838
839struct symfile_segment_data *
840default_symfile_segments (bfd *abfd)
841{
842 int num_sections, i;
843 asection *sect;
844 struct symfile_segment_data *data;
845 CORE_ADDR low, high;
846
847 /* Relocatable files contain enough information to position each
848 loadable section independently; they should not be relocated
849 in segments. */
850 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
851 return NULL;
852
853 /* Make sure there is at least one loadable section in the file. */
854 for (sect = abfd->sections; sect != NULL; sect = sect->next)
855 {
856 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
857 continue;
858
859 break;
860 }
861 if (sect == NULL)
862 return NULL;
863
864 low = bfd_get_section_vma (abfd, sect);
865 high = low + bfd_get_section_size (sect);
866
867 data = XZALLOC (struct symfile_segment_data);
868 data->num_segments = 1;
869 data->segment_bases = XCALLOC (1, CORE_ADDR);
870 data->segment_sizes = XCALLOC (1, CORE_ADDR);
871
872 num_sections = bfd_count_sections (abfd);
873 data->segment_info = XCALLOC (num_sections, int);
874
875 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
876 {
877 CORE_ADDR vma;
878
879 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
880 continue;
881
882 vma = bfd_get_section_vma (abfd, sect);
883 if (vma < low)
884 low = vma;
885 if (vma + bfd_get_section_size (sect) > high)
886 high = vma + bfd_get_section_size (sect);
887
888 data->segment_info[i] = 1;
889 }
890
891 data->segment_bases[0] = low;
892 data->segment_sizes[0] = high - low;
893
894 return data;
895}
896
c906108c
SS
897/* Process a symbol file, as either the main file or as a dynamically
898 loaded file.
899
96baa820
JM
900 OBJFILE is where the symbols are to be read from.
901
7e8580c1
JB
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
911 If ADDRS is non-zero, OFFSETS must be zero.
912
913 OFFSETS is a table of section offsets already in the right
914 format-specific representation. NUM_OFFSETS is the number of
915 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
916 assume this is the proper table the call to sym_offsets described
917 above would produce. Instead of calling sym_offsets, we just dump
918 it right into objfile->section_offsets. (When we're re-reading
919 symbols from an objfile, we don't have the original load address
920 list any more; all we have is the section offset table.) If
921 OFFSETS is non-zero, ADDRS must be zero.
96baa820 922
7eedccfa
PP
923 ADD_FLAGS encodes verbosity level, whether this is main symbol or
924 an extra symbol file such as dynamically loaded code, and wether
925 breakpoint reset should be deferred. */
c906108c
SS
926
927void
7e8580c1
JB
928syms_from_objfile (struct objfile *objfile,
929 struct section_addr_info *addrs,
930 struct section_offsets *offsets,
931 int num_offsets,
7eedccfa 932 int add_flags)
c906108c 933{
a39a16c4 934 struct section_addr_info *local_addr = NULL;
c906108c 935 struct cleanup *old_chain;
7eedccfa 936 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 937
7e8580c1 938 gdb_assert (! (addrs && offsets));
2acceee2 939
c906108c 940 init_entry_point_info (objfile);
31d99776 941 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 942
75245b24 943 if (objfile->sf == NULL)
c378eb4e 944 return; /* No symbols. */
75245b24 945
c906108c
SS
946 /* Make sure that partially constructed symbol tables will be cleaned up
947 if an error occurs during symbol reading. */
74b7792f 948 old_chain = make_cleanup_free_objfile (objfile);
c906108c 949
a39a16c4
MM
950 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
951 list. We now establish the convention that an addr of zero means
c378eb4e 952 no load address was specified. */
a39a16c4
MM
953 if (! addrs && ! offsets)
954 {
5417f6dc 955 local_addr
a39a16c4
MM
956 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
957 make_cleanup (xfree, local_addr);
958 addrs = local_addr;
959 }
960
961 /* Now either addrs or offsets is non-zero. */
962
c5aa993b 963 if (mainline)
c906108c
SS
964 {
965 /* We will modify the main symbol table, make sure that all its users
c5aa993b 966 will be cleaned up if an error occurs during symbol reading. */
74b7792f 967 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
968
969 /* Since no error yet, throw away the old symbol table. */
970
971 if (symfile_objfile != NULL)
972 {
973 free_objfile (symfile_objfile);
adb7f338 974 gdb_assert (symfile_objfile == NULL);
c906108c
SS
975 }
976
977 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
978 If the user wants to get rid of them, they should do "symbol-file"
979 without arguments first. Not sure this is the best behavior
980 (PR 2207). */
c906108c 981
c5aa993b 982 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
983 }
984
985 /* Convert addr into an offset rather than an absolute address.
986 We find the lowest address of a loaded segment in the objfile,
53a5351d 987 and assume that <addr> is where that got loaded.
c906108c 988
53a5351d
JM
989 We no longer warn if the lowest section is not a text segment (as
990 happens for the PA64 port. */
0d15807d 991 if (addrs && addrs->other[0].name)
75242ef4 992 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
993
994 /* Initialize symbol reading routines for this objfile, allow complaints to
995 appear for this new file, and record how verbose to be, then do the
c378eb4e 996 initial symbol reading for this file. */
c906108c 997
c5aa993b 998 (*objfile->sf->sym_init) (objfile);
7eedccfa 999 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1000
7e8580c1
JB
1001 if (addrs)
1002 (*objfile->sf->sym_offsets) (objfile, addrs);
1003 else
1004 {
1005 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1006
1007 /* Just copy in the offset table directly as given to us. */
1008 objfile->num_sections = num_offsets;
1009 objfile->section_offsets
1010 = ((struct section_offsets *)
8b92e4d5 1011 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1012 memcpy (objfile->section_offsets, offsets, size);
1013
1014 init_objfile_sect_indices (objfile);
1015 }
c906108c 1016
f4352531 1017 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1018
b11896a5
TT
1019 if ((add_flags & SYMFILE_NO_READ) == 0)
1020 require_partial_symbols (objfile, 0);
1021
c906108c
SS
1022 /* Discard cleanups as symbol reading was successful. */
1023
1024 discard_cleanups (old_chain);
f7545552 1025 xfree (local_addr);
c906108c
SS
1026}
1027
1028/* Perform required actions after either reading in the initial
1029 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1030 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1031
c906108c 1032void
7eedccfa 1033new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1034{
c906108c 1035 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1036 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1037 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1038 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1039 {
1040 /* OK, make it the "real" symbol file. */
1041 symfile_objfile = objfile;
1042
c1e56572 1043 clear_symtab_users (add_flags);
c906108c 1044 }
7eedccfa 1045 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1046 {
69de3c6a 1047 breakpoint_re_set ();
c906108c
SS
1048 }
1049
1050 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1051 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1052}
1053
1054/* Process a symbol file, as either the main file or as a dynamically
1055 loaded file.
1056
5417f6dc
RM
1057 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1058 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1059
7eedccfa
PP
1060 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1061 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1062
1063 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1064 syms_from_objfile, above.
1065 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1066
63524580
JK
1067 PARENT is the original objfile if ABFD is a separate debug info file.
1068 Otherwise PARENT is NULL.
1069
c906108c 1070 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1071 Upon failure, jumps back to command level (never returns). */
7eedccfa 1072
7904e09f 1073static struct objfile *
7eedccfa
PP
1074symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1075 int add_flags,
7904e09f
JB
1076 struct section_addr_info *addrs,
1077 struct section_offsets *offsets,
1078 int num_offsets,
63524580 1079 int flags, struct objfile *parent)
c906108c
SS
1080{
1081 struct objfile *objfile;
a39a16c4 1082 struct cleanup *my_cleanups;
5417f6dc 1083 const char *name = bfd_get_filename (abfd);
7eedccfa 1084 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1085 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1086 const int should_print = ((from_tty || info_verbose)
1087 && (readnow_symbol_files
1088 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1089
9291a0cd 1090 if (readnow_symbol_files)
b11896a5
TT
1091 {
1092 flags |= OBJF_READNOW;
1093 add_flags &= ~SYMFILE_NO_READ;
1094 }
9291a0cd 1095
5417f6dc 1096 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1097
5417f6dc
RM
1098 /* Give user a chance to burp if we'd be
1099 interactively wiping out any existing symbols. */
c906108c
SS
1100
1101 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1102 && mainline
c906108c 1103 && from_tty
9e2f0ad4 1104 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1105 error (_("Not confirmed."));
c906108c 1106
0838fb57 1107 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1108 discard_cleanups (my_cleanups);
c906108c 1109
63524580
JK
1110 if (parent)
1111 add_separate_debug_objfile (objfile, parent);
1112
78a4a9b9
AC
1113 /* We either created a new mapped symbol table, mapped an existing
1114 symbol table file which has not had initial symbol reading
c378eb4e 1115 performed, or need to read an unmapped symbol table. */
b11896a5 1116 if (should_print)
c906108c 1117 {
769d7dc4
AC
1118 if (deprecated_pre_add_symbol_hook)
1119 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1120 else
c906108c 1121 {
55333a84
DE
1122 printf_unfiltered (_("Reading symbols from %s..."), name);
1123 wrap_here ("");
1124 gdb_flush (gdb_stdout);
c906108c 1125 }
c906108c 1126 }
78a4a9b9 1127 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1128 add_flags);
c906108c
SS
1129
1130 /* We now have at least a partial symbol table. Check to see if the
1131 user requested that all symbols be read on initial access via either
1132 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1133 all partial symbol tables for this objfile if so. */
c906108c 1134
9291a0cd 1135 if ((flags & OBJF_READNOW))
c906108c 1136 {
b11896a5 1137 if (should_print)
c906108c 1138 {
a3f17187 1139 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1140 wrap_here ("");
1141 gdb_flush (gdb_stdout);
1142 }
1143
ccefe4c4
TT
1144 if (objfile->sf)
1145 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1146 }
1147
b11896a5 1148 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1149 {
1150 wrap_here ("");
55333a84 1151 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1152 wrap_here ("");
1153 }
1154
b11896a5 1155 if (should_print)
c906108c 1156 {
769d7dc4
AC
1157 if (deprecated_post_add_symbol_hook)
1158 deprecated_post_add_symbol_hook ();
c906108c 1159 else
55333a84 1160 printf_unfiltered (_("done.\n"));
c906108c
SS
1161 }
1162
481d0f41
JB
1163 /* We print some messages regardless of whether 'from_tty ||
1164 info_verbose' is true, so make sure they go out at the right
1165 time. */
1166 gdb_flush (gdb_stdout);
1167
a39a16c4
MM
1168 do_cleanups (my_cleanups);
1169
109f874e 1170 if (objfile->sf == NULL)
8caee43b
PP
1171 {
1172 observer_notify_new_objfile (objfile);
c378eb4e 1173 return objfile; /* No symbols. */
8caee43b 1174 }
109f874e 1175
7eedccfa 1176 new_symfile_objfile (objfile, add_flags);
c906108c 1177
06d3b283 1178 observer_notify_new_objfile (objfile);
c906108c 1179
ce7d4522 1180 bfd_cache_close_all ();
c906108c
SS
1181 return (objfile);
1182}
1183
9cce227f
TG
1184/* Add BFD as a separate debug file for OBJFILE. */
1185
1186void
1187symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1188{
15d123c9 1189 struct objfile *new_objfile;
089b4803
TG
1190 struct section_addr_info *sap;
1191 struct cleanup *my_cleanup;
1192
1193 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1194 because sections of BFD may not match sections of OBJFILE and because
1195 vma may have been modified by tools such as prelink. */
1196 sap = build_section_addr_info_from_objfile (objfile);
1197 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1198
15d123c9 1199 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1200 (bfd, symfile_flags,
089b4803 1201 sap, NULL, 0,
9cce227f 1202 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1203 | OBJF_USERLOADED),
1204 objfile);
089b4803
TG
1205
1206 do_cleanups (my_cleanup);
9cce227f 1207}
7904e09f 1208
eb4556d7
JB
1209/* Process the symbol file ABFD, as either the main file or as a
1210 dynamically loaded file.
1211
1212 See symbol_file_add_with_addrs_or_offsets's comments for
1213 details. */
1214struct objfile *
7eedccfa 1215symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1216 struct section_addr_info *addrs,
63524580 1217 int flags, struct objfile *parent)
eb4556d7 1218{
7eedccfa 1219 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1220 flags, parent);
eb4556d7
JB
1221}
1222
1223
7904e09f
JB
1224/* Process a symbol file, as either the main file or as a dynamically
1225 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1226 for details. */
1227struct objfile *
7eedccfa
PP
1228symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1229 int flags)
7904e09f 1230{
7eedccfa 1231 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1232 flags, NULL);
7904e09f
JB
1233}
1234
1235
d7db6da9
FN
1236/* Call symbol_file_add() with default values and update whatever is
1237 affected by the loading of a new main().
1238 Used when the file is supplied in the gdb command line
1239 and by some targets with special loading requirements.
1240 The auxiliary function, symbol_file_add_main_1(), has the flags
1241 argument for the switches that can only be specified in the symbol_file
1242 command itself. */
5417f6dc 1243
1adeb98a
FN
1244void
1245symbol_file_add_main (char *args, int from_tty)
1246{
d7db6da9
FN
1247 symbol_file_add_main_1 (args, from_tty, 0);
1248}
1249
1250static void
1251symbol_file_add_main_1 (char *args, int from_tty, int flags)
1252{
7eedccfa
PP
1253 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1254 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1255
d7db6da9
FN
1256 /* Getting new symbols may change our opinion about
1257 what is frameless. */
1258 reinit_frame_cache ();
1259
1260 set_initial_language ();
1adeb98a
FN
1261}
1262
1263void
1264symbol_file_clear (int from_tty)
1265{
1266 if ((have_full_symbols () || have_partial_symbols ())
1267 && from_tty
0430b0d6
AS
1268 && (symfile_objfile
1269 ? !query (_("Discard symbol table from `%s'? "),
1270 symfile_objfile->name)
1271 : !query (_("Discard symbol table? "))))
8a3fe4f8 1272 error (_("Not confirmed."));
1adeb98a 1273
0133421a
JK
1274 /* solib descriptors may have handles to objfiles. Wipe them before their
1275 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1276 no_shared_libraries (NULL, from_tty);
1277
0133421a
JK
1278 free_all_objfiles ();
1279
adb7f338 1280 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1281 if (from_tty)
1282 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1283}
1284
5b5d99cf
JB
1285static char *
1286get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1287{
1288 asection *sect;
1289 bfd_size_type debuglink_size;
1290 unsigned long crc32;
1291 char *contents;
1292 int crc_offset;
5417f6dc 1293
5b5d99cf
JB
1294 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1295
1296 if (sect == NULL)
1297 return NULL;
1298
1299 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1300
5b5d99cf
JB
1301 contents = xmalloc (debuglink_size);
1302 bfd_get_section_contents (objfile->obfd, sect, contents,
1303 (file_ptr)0, (bfd_size_type)debuglink_size);
1304
c378eb4e 1305 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1306 crc_offset = strlen (contents) + 1;
1307 crc_offset = (crc_offset + 3) & ~3;
1308
1309 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1310
5b5d99cf
JB
1311 *crc32_out = crc32;
1312 return contents;
1313}
1314
904578ed
JK
1315/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1316 return 1. Otherwise print a warning and return 0. ABFD seek position is
1317 not preserved. */
1318
1319static int
1320get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1321{
1322 unsigned long file_crc = 0;
1323
1324 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1325 {
1326 warning (_("Problem reading \"%s\" for CRC: %s"),
1327 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1328 return 0;
1329 }
1330
1331 for (;;)
1332 {
1333 gdb_byte buffer[8 * 1024];
1334 bfd_size_type count;
1335
1336 count = bfd_bread (buffer, sizeof (buffer), abfd);
1337 if (count == (bfd_size_type) -1)
1338 {
1339 warning (_("Problem reading \"%s\" for CRC: %s"),
1340 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1341 return 0;
1342 }
1343 if (count == 0)
1344 break;
1345 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1346 }
1347
1348 *file_crc_return = file_crc;
1349 return 1;
1350}
1351
5b5d99cf 1352static int
287ccc17 1353separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1354 struct objfile *parent_objfile)
5b5d99cf 1355{
904578ed
JK
1356 unsigned long file_crc;
1357 int file_crc_p;
f1838a98 1358 bfd *abfd;
32a0e547 1359 struct stat parent_stat, abfd_stat;
904578ed 1360 int verified_as_different;
32a0e547
JK
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1366 the separate debug infos with the same basename can exist. */
32a0e547 1367
0ba1096a 1368 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1369 return 0;
5b5d99cf 1370
874f5765 1371 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1372
1373 if (!abfd)
5b5d99cf
JB
1374 return 0;
1375
0ba1096a 1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Do not indicate a duplicate library in that
1381 case. While there is no guarantee that a system that provides
1382 meaningful inode numbers will never set st_ino to zero, this is
1383 merely an optimization, so we do not need to worry about false
1384 negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1389 {
904578ed
JK
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
1393 bfd_close (abfd);
1394 return 0;
1395 }
1396 verified_as_different = 1;
32a0e547 1397 }
904578ed
JK
1398 else
1399 verified_as_different = 0;
32a0e547 1400
904578ed 1401 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1402
f1838a98 1403 bfd_close (abfd);
5b5d99cf 1404
904578ed
JK
1405 if (!file_crc_p)
1406 return 0;
1407
287ccc17
JK
1408 if (crc != file_crc)
1409 {
904578ed
JK
1410 /* If one (or both) the files are accessed for example the via "remote:"
1411 gdbserver way it does not support the bfd_stat operation. Verify
1412 whether those two files are not the same manually. */
1413
1414 if (!verified_as_different && !parent_objfile->crc32_p)
1415 {
1416 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1417 &parent_objfile->crc32);
1418 if (!parent_objfile->crc32_p)
1419 return 0;
1420 }
1421
0e8aefe7 1422 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
1425 name, parent_objfile->name);
1426
287ccc17
JK
1427 return 0;
1428 }
1429
1430 return 1;
5b5d99cf
JB
1431}
1432
aa28a74e 1433char *debug_file_directory = NULL;
920d2a44
AC
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
3e43a32a
MS
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1441 value);
1442}
5b5d99cf
JB
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
9cce227f
TG
1448char *
1449find_separate_debug_file_by_debuglink (struct objfile *objfile)
1450{
952a6d41 1451 char *basename, *debugdir;
9cce227f
TG
1452 char *dir = NULL;
1453 char *debugfile = NULL;
1454 char *canon_name = NULL;
9cce227f
TG
1455 unsigned long crc32;
1456 int i;
5b5d99cf
JB
1457
1458 basename = get_debug_link_info (objfile, &crc32);
1459
1460 if (basename == NULL)
287ccc17
JK
1461 /* There's no separate debug info, hence there's no way we could
1462 load it => no warning. */
25522fae 1463 goto cleanup_return_debugfile;
5417f6dc 1464
5b5d99cf
JB
1465 dir = xstrdup (objfile->name);
1466
fe36c4f4 1467 /* Strip off the final filename part, leaving the directory name,
569b05a5 1468 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1469 for (i = strlen(dir) - 1; i >= 0; i--)
1470 {
1471 if (IS_DIR_SEPARATOR (dir[i]))
1472 break;
1473 }
569b05a5 1474 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1475 dir[i+1] = '\0';
5417f6dc 1476
c378eb4e 1477 /* Set I to max (strlen (canon_name), strlen (dir)). */
1ffa32ee
JK
1478 canon_name = lrealpath (dir);
1479 i = strlen (dir);
1480 if (canon_name && strlen (canon_name) > i)
1481 i = strlen (canon_name);
1482
25522fae
JK
1483 debugfile = xmalloc (strlen (debug_file_directory) + 1
1484 + i
1485 + strlen (DEBUG_SUBDIRECTORY)
1486 + strlen ("/")
1487 + strlen (basename)
1488 + 1);
5b5d99cf
JB
1489
1490 /* First try in the same directory as the original file. */
1491 strcpy (debugfile, dir);
1492 strcat (debugfile, basename);
1493
32a0e547 1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1495 goto cleanup_return_debugfile;
5417f6dc 1496
5b5d99cf
JB
1497 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1498 strcpy (debugfile, dir);
1499 strcat (debugfile, DEBUG_SUBDIRECTORY);
1500 strcat (debugfile, "/");
1501 strcat (debugfile, basename);
1502
32a0e547 1503 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1504 goto cleanup_return_debugfile;
5417f6dc 1505
24ddea62
JK
1506 /* Then try in the global debugfile directories.
1507
1508 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1509 cause "/..." lookups. */
5417f6dc 1510
24ddea62
JK
1511 debugdir = debug_file_directory;
1512 do
aa28a74e 1513 {
24ddea62
JK
1514 char *debugdir_end;
1515
1516 while (*debugdir == DIRNAME_SEPARATOR)
1517 debugdir++;
1518
1519 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1520 if (debugdir_end == NULL)
1521 debugdir_end = &debugdir[strlen (debugdir)];
1522
1523 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1524 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1525 strcat (debugfile, "/");
24ddea62 1526 strcat (debugfile, dir);
aa28a74e
DJ
1527 strcat (debugfile, basename);
1528
32a0e547 1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1530 goto cleanup_return_debugfile;
24ddea62
JK
1531
1532 /* If the file is in the sysroot, try using its base path in the
1533 global debugfile directory. */
1534 if (canon_name
0ba1096a
KT
1535 && filename_ncmp (canon_name, gdb_sysroot,
1536 strlen (gdb_sysroot)) == 0
24ddea62
JK
1537 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1538 {
1539 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1540 debugfile[debugdir_end - debugdir] = 0;
1541 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1542 strcat (debugfile, "/");
1543 strcat (debugfile, basename);
1544
32a0e547 1545 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1546 goto cleanup_return_debugfile;
1547 }
1548
1549 debugdir = debugdir_end;
aa28a74e 1550 }
24ddea62 1551 while (*debugdir != 0);
aa28a74e 1552
25522fae
JK
1553 xfree (debugfile);
1554 debugfile = NULL;
aa28a74e 1555
25522fae
JK
1556cleanup_return_debugfile:
1557 xfree (canon_name);
5b5d99cf
JB
1558 xfree (basename);
1559 xfree (dir);
25522fae 1560 return debugfile;
5b5d99cf
JB
1561}
1562
1563
c906108c
SS
1564/* This is the symbol-file command. Read the file, analyze its
1565 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1566 the command is rather bizarre:
1567
1568 1. The function buildargv implements various quoting conventions
1569 which are undocumented and have little or nothing in common with
1570 the way things are quoted (or not quoted) elsewhere in GDB.
1571
1572 2. Options are used, which are not generally used in GDB (perhaps
1573 "set mapped on", "set readnow on" would be better)
1574
1575 3. The order of options matters, which is contrary to GNU
c906108c
SS
1576 conventions (because it is confusing and inconvenient). */
1577
1578void
fba45db2 1579symbol_file_command (char *args, int from_tty)
c906108c 1580{
c906108c
SS
1581 dont_repeat ();
1582
1583 if (args == NULL)
1584 {
1adeb98a 1585 symbol_file_clear (from_tty);
c906108c
SS
1586 }
1587 else
1588 {
d1a41061 1589 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1590 int flags = OBJF_USERLOADED;
1591 struct cleanup *cleanups;
1592 char *name = NULL;
1593
7a292a7a 1594 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1595 while (*argv != NULL)
1596 {
78a4a9b9
AC
1597 if (strcmp (*argv, "-readnow") == 0)
1598 flags |= OBJF_READNOW;
1599 else if (**argv == '-')
8a3fe4f8 1600 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1601 else
1602 {
cb2f3a29 1603 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1604 name = *argv;
78a4a9b9 1605 }
cb2f3a29 1606
c906108c
SS
1607 argv++;
1608 }
1609
1610 if (name == NULL)
cb2f3a29
MK
1611 error (_("no symbol file name was specified"));
1612
c906108c
SS
1613 do_cleanups (cleanups);
1614 }
1615}
1616
1617/* Set the initial language.
1618
cb2f3a29
MK
1619 FIXME: A better solution would be to record the language in the
1620 psymtab when reading partial symbols, and then use it (if known) to
1621 set the language. This would be a win for formats that encode the
1622 language in an easily discoverable place, such as DWARF. For
1623 stabs, we can jump through hoops looking for specially named
1624 symbols or try to intuit the language from the specific type of
1625 stabs we find, but we can't do that until later when we read in
1626 full symbols. */
c906108c 1627
8b60591b 1628void
fba45db2 1629set_initial_language (void)
c906108c 1630{
c5aa993b 1631 enum language lang = language_unknown;
c906108c 1632
01f8c46d
JK
1633 if (language_of_main != language_unknown)
1634 lang = language_of_main;
1635 else
1636 {
1637 const char *filename;
1638
1639 filename = find_main_filename ();
1640 if (filename != NULL)
1641 lang = deduce_language_from_filename (filename);
1642 }
cb2f3a29 1643
ccefe4c4
TT
1644 if (lang == language_unknown)
1645 {
1646 /* Make C the default language */
1647 lang = language_c;
c906108c 1648 }
ccefe4c4
TT
1649
1650 set_language (lang);
1651 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1652}
1653
874f5765
TG
1654/* If NAME is a remote name open the file using remote protocol, otherwise
1655 open it normally. */
1656
1657bfd *
1658bfd_open_maybe_remote (const char *name)
1659{
1660 if (remote_filename_p (name))
1661 return remote_bfd_open (name, gnutarget);
1662 else
1663 return bfd_openr (name, gnutarget);
1664}
1665
1666
cb2f3a29
MK
1667/* Open the file specified by NAME and hand it off to BFD for
1668 preliminary analysis. Return a newly initialized bfd *, which
1669 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1670 absolute). In case of trouble, error() is called. */
c906108c
SS
1671
1672bfd *
fba45db2 1673symfile_bfd_open (char *name)
c906108c
SS
1674{
1675 bfd *sym_bfd;
1676 int desc;
1677 char *absolute_name;
1678
f1838a98
UW
1679 if (remote_filename_p (name))
1680 {
1681 name = xstrdup (name);
1682 sym_bfd = remote_bfd_open (name, gnutarget);
1683 if (!sym_bfd)
1684 {
1685 make_cleanup (xfree, name);
1686 error (_("`%s': can't open to read symbols: %s."), name,
1687 bfd_errmsg (bfd_get_error ()));
1688 }
1689
1690 if (!bfd_check_format (sym_bfd, bfd_object))
1691 {
1692 bfd_close (sym_bfd);
1693 make_cleanup (xfree, name);
1694 error (_("`%s': can't read symbols: %s."), name,
1695 bfd_errmsg (bfd_get_error ()));
1696 }
1697
1698 return sym_bfd;
1699 }
1700
cb2f3a29 1701 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1702
1703 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1704 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1705 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1706#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1707 if (desc < 0)
1708 {
1709 char *exename = alloca (strlen (name) + 5);
433759f7 1710
c906108c 1711 strcat (strcpy (exename, name), ".exe");
014d698b 1712 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1713 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1714 }
1715#endif
1716 if (desc < 0)
1717 {
b8c9b27d 1718 make_cleanup (xfree, name);
c906108c
SS
1719 perror_with_name (name);
1720 }
cb2f3a29
MK
1721
1722 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
c378eb4e 1723 bfd. It'll be freed in free_objfile(). */
cb2f3a29
MK
1724 xfree (name);
1725 name = absolute_name;
c906108c 1726
9f76c2cd 1727 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1728 if (!sym_bfd)
1729 {
1730 close (desc);
b8c9b27d 1731 make_cleanup (xfree, name);
f1838a98 1732 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1733 bfd_errmsg (bfd_get_error ()));
1734 }
549c1eea 1735 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1736
1737 if (!bfd_check_format (sym_bfd, bfd_object))
1738 {
cb2f3a29
MK
1739 /* FIXME: should be checking for errors from bfd_close (for one
1740 thing, on error it does not free all the storage associated
1741 with the bfd). */
1742 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1743 make_cleanup (xfree, name);
f1838a98 1744 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1745 bfd_errmsg (bfd_get_error ()));
1746 }
cb2f3a29 1747
4f6f9936
JK
1748 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1749 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1750
cb2f3a29 1751 return sym_bfd;
c906108c
SS
1752}
1753
cb2f3a29
MK
1754/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1755 the section was not found. */
1756
0e931cf0
JB
1757int
1758get_section_index (struct objfile *objfile, char *section_name)
1759{
1760 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1761
0e931cf0
JB
1762 if (sect)
1763 return sect->index;
1764 else
1765 return -1;
1766}
1767
cb2f3a29
MK
1768/* Link SF into the global symtab_fns list. Called on startup by the
1769 _initialize routine in each object file format reader, to register
b021a221 1770 information about each format the reader is prepared to handle. */
c906108c
SS
1771
1772void
00b5771c 1773add_symtab_fns (const struct sym_fns *sf)
c906108c 1774{
00b5771c 1775 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1776}
1777
cb2f3a29
MK
1778/* Initialize OBJFILE to read symbols from its associated BFD. It
1779 either returns or calls error(). The result is an initialized
1780 struct sym_fns in the objfile structure, that contains cached
1781 information about the symbol file. */
c906108c 1782
00b5771c 1783static const struct sym_fns *
31d99776 1784find_sym_fns (bfd *abfd)
c906108c 1785{
00b5771c 1786 const struct sym_fns *sf;
31d99776 1787 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1788 int i;
c906108c 1789
75245b24
MS
1790 if (our_flavour == bfd_target_srec_flavour
1791 || our_flavour == bfd_target_ihex_flavour
1792 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1793 return NULL; /* No symbols. */
75245b24 1794
00b5771c 1795 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1796 if (our_flavour == sf->sym_flavour)
1797 return sf;
cb2f3a29 1798
8a3fe4f8 1799 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1800 bfd_get_target (abfd));
c906108c
SS
1801}
1802\f
cb2f3a29 1803
c906108c
SS
1804/* This function runs the load command of our current target. */
1805
1806static void
fba45db2 1807load_command (char *arg, int from_tty)
c906108c 1808{
e5cc9f32
JB
1809 dont_repeat ();
1810
4487aabf
PA
1811 /* The user might be reloading because the binary has changed. Take
1812 this opportunity to check. */
1813 reopen_exec_file ();
1814 reread_symbols ();
1815
c906108c 1816 if (arg == NULL)
1986bccd
AS
1817 {
1818 char *parg;
1819 int count = 0;
1820
1821 parg = arg = get_exec_file (1);
1822
1823 /* Count how many \ " ' tab space there are in the name. */
1824 while ((parg = strpbrk (parg, "\\\"'\t ")))
1825 {
1826 parg++;
1827 count++;
1828 }
1829
1830 if (count)
1831 {
1832 /* We need to quote this string so buildargv can pull it apart. */
1833 char *temp = xmalloc (strlen (arg) + count + 1 );
1834 char *ptemp = temp;
1835 char *prev;
1836
1837 make_cleanup (xfree, temp);
1838
1839 prev = parg = arg;
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 strncpy (ptemp, prev, parg - prev);
1843 ptemp += parg - prev;
1844 prev = parg++;
1845 *ptemp++ = '\\';
1846 }
1847 strcpy (ptemp, prev);
1848
1849 arg = temp;
1850 }
1851 }
1852
c906108c 1853 target_load (arg, from_tty);
2889e661
JB
1854
1855 /* After re-loading the executable, we don't really know which
1856 overlays are mapped any more. */
1857 overlay_cache_invalid = 1;
c906108c
SS
1858}
1859
1860/* This version of "load" should be usable for any target. Currently
1861 it is just used for remote targets, not inftarg.c or core files,
1862 on the theory that only in that case is it useful.
1863
1864 Avoiding xmodem and the like seems like a win (a) because we don't have
1865 to worry about finding it, and (b) On VMS, fork() is very slow and so
1866 we don't want to run a subprocess. On the other hand, I'm not sure how
1867 performance compares. */
917317f4 1868
917317f4
JM
1869static int validate_download = 0;
1870
e4f9b4d5
MS
1871/* Callback service function for generic_load (bfd_map_over_sections). */
1872
1873static void
1874add_section_size_callback (bfd *abfd, asection *asec, void *data)
1875{
1876 bfd_size_type *sum = data;
1877
2c500098 1878 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1879}
1880
1881/* Opaque data for load_section_callback. */
1882struct load_section_data {
1883 unsigned long load_offset;
a76d924d
DJ
1884 struct load_progress_data *progress_data;
1885 VEC(memory_write_request_s) *requests;
1886};
1887
1888/* Opaque data for load_progress. */
1889struct load_progress_data {
1890 /* Cumulative data. */
e4f9b4d5
MS
1891 unsigned long write_count;
1892 unsigned long data_count;
1893 bfd_size_type total_size;
a76d924d
DJ
1894};
1895
1896/* Opaque data for load_progress for a single section. */
1897struct load_progress_section_data {
1898 struct load_progress_data *cumulative;
cf7a04e8 1899
a76d924d 1900 /* Per-section data. */
cf7a04e8
DJ
1901 const char *section_name;
1902 ULONGEST section_sent;
1903 ULONGEST section_size;
1904 CORE_ADDR lma;
1905 gdb_byte *buffer;
e4f9b4d5
MS
1906};
1907
a76d924d 1908/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1909
1910static void
1911load_progress (ULONGEST bytes, void *untyped_arg)
1912{
a76d924d
DJ
1913 struct load_progress_section_data *args = untyped_arg;
1914 struct load_progress_data *totals;
1915
1916 if (args == NULL)
1917 /* Writing padding data. No easy way to get at the cumulative
1918 stats, so just ignore this. */
1919 return;
1920
1921 totals = args->cumulative;
1922
1923 if (bytes == 0 && args->section_sent == 0)
1924 {
1925 /* The write is just starting. Let the user know we've started
1926 this section. */
79a45e25 1927 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1928 args->section_name, hex_string (args->section_size),
1929 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1930 return;
1931 }
cf7a04e8
DJ
1932
1933 if (validate_download)
1934 {
1935 /* Broken memories and broken monitors manifest themselves here
1936 when bring new computers to life. This doubles already slow
1937 downloads. */
1938 /* NOTE: cagney/1999-10-18: A more efficient implementation
1939 might add a verify_memory() method to the target vector and
1940 then use that. remote.c could implement that method using
1941 the ``qCRC'' packet. */
1942 gdb_byte *check = xmalloc (bytes);
1943 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1944
1945 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1946 error (_("Download verify read failed at %s"),
1947 paddress (target_gdbarch, args->lma));
cf7a04e8 1948 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1949 error (_("Download verify compare failed at %s"),
1950 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1951 do_cleanups (verify_cleanups);
1952 }
a76d924d 1953 totals->data_count += bytes;
cf7a04e8
DJ
1954 args->lma += bytes;
1955 args->buffer += bytes;
a76d924d 1956 totals->write_count += 1;
cf7a04e8
DJ
1957 args->section_sent += bytes;
1958 if (quit_flag
1959 || (deprecated_ui_load_progress_hook != NULL
1960 && deprecated_ui_load_progress_hook (args->section_name,
1961 args->section_sent)))
1962 error (_("Canceled the download"));
1963
1964 if (deprecated_show_load_progress != NULL)
1965 deprecated_show_load_progress (args->section_name,
1966 args->section_sent,
1967 args->section_size,
a76d924d
DJ
1968 totals->data_count,
1969 totals->total_size);
cf7a04e8
DJ
1970}
1971
e4f9b4d5
MS
1972/* Callback service function for generic_load (bfd_map_over_sections). */
1973
1974static void
1975load_section_callback (bfd *abfd, asection *asec, void *data)
1976{
a76d924d 1977 struct memory_write_request *new_request;
e4f9b4d5 1978 struct load_section_data *args = data;
a76d924d 1979 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1980 bfd_size_type size = bfd_get_section_size (asec);
1981 gdb_byte *buffer;
cf7a04e8 1982 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1983
cf7a04e8
DJ
1984 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1985 return;
e4f9b4d5 1986
cf7a04e8
DJ
1987 if (size == 0)
1988 return;
e4f9b4d5 1989
a76d924d
DJ
1990 new_request = VEC_safe_push (memory_write_request_s,
1991 args->requests, NULL);
1992 memset (new_request, 0, sizeof (struct memory_write_request));
1993 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1994 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1995 new_request->end = new_request->begin + size; /* FIXME Should size
1996 be in instead? */
a76d924d
DJ
1997 new_request->data = xmalloc (size);
1998 new_request->baton = section_data;
cf7a04e8 1999
a76d924d 2000 buffer = new_request->data;
cf7a04e8 2001
a76d924d
DJ
2002 section_data->cumulative = args->progress_data;
2003 section_data->section_name = sect_name;
2004 section_data->section_size = size;
2005 section_data->lma = new_request->begin;
2006 section_data->buffer = buffer;
cf7a04e8
DJ
2007
2008 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2009}
2010
2011/* Clean up an entire memory request vector, including load
2012 data and progress records. */
cf7a04e8 2013
a76d924d
DJ
2014static void
2015clear_memory_write_data (void *arg)
2016{
2017 VEC(memory_write_request_s) **vec_p = arg;
2018 VEC(memory_write_request_s) *vec = *vec_p;
2019 int i;
2020 struct memory_write_request *mr;
cf7a04e8 2021
a76d924d
DJ
2022 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2023 {
2024 xfree (mr->data);
2025 xfree (mr->baton);
2026 }
2027 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2028}
2029
c906108c 2030void
917317f4 2031generic_load (char *args, int from_tty)
c906108c 2032{
c906108c 2033 bfd *loadfile_bfd;
2b71414d 2034 struct timeval start_time, end_time;
917317f4 2035 char *filename;
1986bccd 2036 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2037 struct load_section_data cbdata;
a76d924d 2038 struct load_progress_data total_progress;
79a45e25 2039 struct ui_out *uiout = current_uiout;
a76d924d 2040
e4f9b4d5 2041 CORE_ADDR entry;
1986bccd 2042 char **argv;
e4f9b4d5 2043
a76d924d
DJ
2044 memset (&cbdata, 0, sizeof (cbdata));
2045 memset (&total_progress, 0, sizeof (total_progress));
2046 cbdata.progress_data = &total_progress;
2047
2048 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2049
d1a41061
PP
2050 if (args == NULL)
2051 error_no_arg (_("file to load"));
1986bccd 2052
d1a41061 2053 argv = gdb_buildargv (args);
1986bccd
AS
2054 make_cleanup_freeargv (argv);
2055
2056 filename = tilde_expand (argv[0]);
2057 make_cleanup (xfree, filename);
2058
2059 if (argv[1] != NULL)
917317f4
JM
2060 {
2061 char *endptr;
ba5f2f8a 2062
1986bccd
AS
2063 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2064
2065 /* If the last word was not a valid number then
2066 treat it as a file name with spaces in. */
2067 if (argv[1] == endptr)
2068 error (_("Invalid download offset:%s."), argv[1]);
2069
2070 if (argv[2] != NULL)
2071 error (_("Too many parameters."));
917317f4 2072 }
c906108c 2073
c378eb4e 2074 /* Open the file for loading. */
c906108c
SS
2075 loadfile_bfd = bfd_openr (filename, gnutarget);
2076 if (loadfile_bfd == NULL)
2077 {
2078 perror_with_name (filename);
2079 return;
2080 }
917317f4 2081
c906108c
SS
2082 /* FIXME: should be checking for errors from bfd_close (for one thing,
2083 on error it does not free all the storage associated with the
2084 bfd). */
5c65bbb6 2085 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2086
c5aa993b 2087 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2088 {
8a3fe4f8 2089 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2090 bfd_errmsg (bfd_get_error ()));
2091 }
c5aa993b 2092
5417f6dc 2093 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2094 (void *) &total_progress.total_size);
2095
2096 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2097
2b71414d 2098 gettimeofday (&start_time, NULL);
c906108c 2099
a76d924d
DJ
2100 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2101 load_progress) != 0)
2102 error (_("Load failed"));
c906108c 2103
2b71414d 2104 gettimeofday (&end_time, NULL);
ba5f2f8a 2105
e4f9b4d5 2106 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2107 ui_out_text (uiout, "Start address ");
5af949e3 2108 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2109 ui_out_text (uiout, ", load size ");
a76d924d 2110 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2111 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2112 /* We were doing this in remote-mips.c, I suspect it is right
2113 for other targets too. */
fb14de7b 2114 regcache_write_pc (get_current_regcache (), entry);
c906108c 2115
38963c97
DJ
2116 /* Reset breakpoints, now that we have changed the load image. For
2117 instance, breakpoints may have been set (or reset, by
2118 post_create_inferior) while connected to the target but before we
2119 loaded the program. In that case, the prologue analyzer could
2120 have read instructions from the target to find the right
2121 breakpoint locations. Loading has changed the contents of that
2122 memory. */
2123
2124 breakpoint_re_set ();
2125
7ca9f392
AC
2126 /* FIXME: are we supposed to call symbol_file_add or not? According
2127 to a comment from remote-mips.c (where a call to symbol_file_add
2128 was commented out), making the call confuses GDB if more than one
2129 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2130 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2131
a76d924d
DJ
2132 print_transfer_performance (gdb_stdout, total_progress.data_count,
2133 total_progress.write_count,
2134 &start_time, &end_time);
c906108c
SS
2135
2136 do_cleanups (old_cleanups);
2137}
2138
c378eb4e 2139/* Report how fast the transfer went. */
c906108c 2140
917317f4
JM
2141/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2142 replaced by print_transfer_performance (with a very different
c378eb4e 2143 function signature). */
917317f4 2144
c906108c 2145void
fba45db2
KB
2146report_transfer_performance (unsigned long data_count, time_t start_time,
2147 time_t end_time)
c906108c 2148{
2b71414d
DJ
2149 struct timeval start, end;
2150
2151 start.tv_sec = start_time;
2152 start.tv_usec = 0;
2153 end.tv_sec = end_time;
2154 end.tv_usec = 0;
2155
2156 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2157}
2158
2159void
d9fcf2fb 2160print_transfer_performance (struct ui_file *stream,
917317f4
JM
2161 unsigned long data_count,
2162 unsigned long write_count,
2b71414d
DJ
2163 const struct timeval *start_time,
2164 const struct timeval *end_time)
917317f4 2165{
9f43d28c 2166 ULONGEST time_count;
79a45e25 2167 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2168
2169 /* Compute the elapsed time in milliseconds, as a tradeoff between
2170 accuracy and overflow. */
2171 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2172 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2173
8b93c638
JM
2174 ui_out_text (uiout, "Transfer rate: ");
2175 if (time_count > 0)
2176 {
9f43d28c
DJ
2177 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2178
2179 if (ui_out_is_mi_like_p (uiout))
2180 {
2181 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2182 ui_out_text (uiout, " bits/sec");
2183 }
2184 else if (rate < 1024)
2185 {
2186 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2187 ui_out_text (uiout, " bytes/sec");
2188 }
2189 else
2190 {
2191 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2192 ui_out_text (uiout, " KB/sec");
2193 }
8b93c638
JM
2194 }
2195 else
2196 {
ba5f2f8a 2197 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2198 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2199 }
2200 if (write_count > 0)
2201 {
2202 ui_out_text (uiout, ", ");
ba5f2f8a 2203 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2204 ui_out_text (uiout, " bytes/write");
2205 }
2206 ui_out_text (uiout, ".\n");
c906108c
SS
2207}
2208
2209/* This function allows the addition of incrementally linked object files.
2210 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2211/* Note: ezannoni 2000-04-13 This function/command used to have a
2212 special case syntax for the rombug target (Rombug is the boot
2213 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2214 rombug case, the user doesn't need to supply a text address,
2215 instead a call to target_link() (in target.c) would supply the
c378eb4e 2216 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2217
c906108c 2218static void
fba45db2 2219add_symbol_file_command (char *args, int from_tty)
c906108c 2220{
5af949e3 2221 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2222 char *filename = NULL;
2df3850c 2223 int flags = OBJF_USERLOADED;
c906108c 2224 char *arg;
db162d44 2225 int section_index = 0;
2acceee2
JM
2226 int argcnt = 0;
2227 int sec_num = 0;
2228 int i;
db162d44
EZ
2229 int expecting_sec_name = 0;
2230 int expecting_sec_addr = 0;
5b96932b 2231 char **argv;
db162d44 2232
a39a16c4 2233 struct sect_opt
2acceee2 2234 {
2acceee2
JM
2235 char *name;
2236 char *value;
a39a16c4 2237 };
db162d44 2238
a39a16c4
MM
2239 struct section_addr_info *section_addrs;
2240 struct sect_opt *sect_opts = NULL;
2241 size_t num_sect_opts = 0;
3017564a 2242 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2243
a39a16c4 2244 num_sect_opts = 16;
5417f6dc 2245 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2246 * sizeof (struct sect_opt));
2247
c906108c
SS
2248 dont_repeat ();
2249
2250 if (args == NULL)
8a3fe4f8 2251 error (_("add-symbol-file takes a file name and an address"));
c906108c 2252
d1a41061 2253 argv = gdb_buildargv (args);
5b96932b 2254 make_cleanup_freeargv (argv);
db162d44 2255
5b96932b
AS
2256 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2257 {
c378eb4e 2258 /* Process the argument. */
db162d44 2259 if (argcnt == 0)
c906108c 2260 {
c378eb4e 2261 /* The first argument is the file name. */
db162d44 2262 filename = tilde_expand (arg);
3017564a 2263 make_cleanup (xfree, filename);
c906108c 2264 }
db162d44 2265 else
7a78ae4e
ND
2266 if (argcnt == 1)
2267 {
2268 /* The second argument is always the text address at which
c378eb4e 2269 to load the program. */
7a78ae4e
ND
2270 sect_opts[section_index].name = ".text";
2271 sect_opts[section_index].value = arg;
f414f22f 2272 if (++section_index >= num_sect_opts)
a39a16c4
MM
2273 {
2274 num_sect_opts *= 2;
5417f6dc 2275 sect_opts = ((struct sect_opt *)
a39a16c4 2276 xrealloc (sect_opts,
5417f6dc 2277 num_sect_opts
a39a16c4
MM
2278 * sizeof (struct sect_opt)));
2279 }
7a78ae4e
ND
2280 }
2281 else
2282 {
2283 /* It's an option (starting with '-') or it's an argument
c378eb4e 2284 to an option. */
7a78ae4e
ND
2285
2286 if (*arg == '-')
2287 {
78a4a9b9
AC
2288 if (strcmp (arg, "-readnow") == 0)
2289 flags |= OBJF_READNOW;
2290 else if (strcmp (arg, "-s") == 0)
2291 {
2292 expecting_sec_name = 1;
2293 expecting_sec_addr = 1;
2294 }
7a78ae4e
ND
2295 }
2296 else
2297 {
2298 if (expecting_sec_name)
db162d44 2299 {
7a78ae4e
ND
2300 sect_opts[section_index].name = arg;
2301 expecting_sec_name = 0;
db162d44
EZ
2302 }
2303 else
7a78ae4e
ND
2304 if (expecting_sec_addr)
2305 {
2306 sect_opts[section_index].value = arg;
2307 expecting_sec_addr = 0;
f414f22f 2308 if (++section_index >= num_sect_opts)
a39a16c4
MM
2309 {
2310 num_sect_opts *= 2;
5417f6dc 2311 sect_opts = ((struct sect_opt *)
a39a16c4 2312 xrealloc (sect_opts,
5417f6dc 2313 num_sect_opts
a39a16c4
MM
2314 * sizeof (struct sect_opt)));
2315 }
7a78ae4e
ND
2316 }
2317 else
3e43a32a 2318 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2319 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2320 }
2321 }
c906108c 2322 }
c906108c 2323
927890d0
JB
2324 /* This command takes at least two arguments. The first one is a
2325 filename, and the second is the address where this file has been
2326 loaded. Abort now if this address hasn't been provided by the
2327 user. */
2328 if (section_index < 1)
2329 error (_("The address where %s has been loaded is missing"), filename);
2330
c378eb4e 2331 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2332 a sect_addr_info structure to be passed around to other
2333 functions. We have to split this up into separate print
bb599908 2334 statements because hex_string returns a local static
c378eb4e 2335 string. */
5417f6dc 2336
a3f17187 2337 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2338 section_addrs = alloc_section_addr_info (section_index);
2339 make_cleanup (xfree, section_addrs);
db162d44 2340 for (i = 0; i < section_index; i++)
c906108c 2341 {
db162d44
EZ
2342 CORE_ADDR addr;
2343 char *val = sect_opts[i].value;
2344 char *sec = sect_opts[i].name;
5417f6dc 2345
ae822768 2346 addr = parse_and_eval_address (val);
db162d44 2347
db162d44 2348 /* Here we store the section offsets in the order they were
c378eb4e 2349 entered on the command line. */
a39a16c4
MM
2350 section_addrs->other[sec_num].name = sec;
2351 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2352 printf_unfiltered ("\t%s_addr = %s\n", sec,
2353 paddress (gdbarch, addr));
db162d44
EZ
2354 sec_num++;
2355
5417f6dc 2356 /* The object's sections are initialized when a
db162d44 2357 call is made to build_objfile_section_table (objfile).
5417f6dc 2358 This happens in reread_symbols.
db162d44
EZ
2359 At this point, we don't know what file type this is,
2360 so we can't determine what section names are valid. */
2acceee2 2361 }
db162d44 2362
2acceee2 2363 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2364 error (_("Not confirmed."));
c906108c 2365
7eedccfa
PP
2366 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2367 section_addrs, flags);
c906108c
SS
2368
2369 /* Getting new symbols may change our opinion about what is
2370 frameless. */
2371 reinit_frame_cache ();
db162d44 2372 do_cleanups (my_cleanups);
c906108c
SS
2373}
2374\f
70992597 2375
c906108c
SS
2376/* Re-read symbols if a symbol-file has changed. */
2377void
fba45db2 2378reread_symbols (void)
c906108c
SS
2379{
2380 struct objfile *objfile;
2381 long new_modtime;
2382 int reread_one = 0;
2383 struct stat new_statbuf;
2384 int res;
2385
2386 /* With the addition of shared libraries, this should be modified,
2387 the load time should be saved in the partial symbol tables, since
2388 different tables may come from different source files. FIXME.
2389 This routine should then walk down each partial symbol table
c378eb4e 2390 and see if the symbol table that it originates from has been changed. */
c906108c 2391
c5aa993b
JM
2392 for (objfile = object_files; objfile; objfile = objfile->next)
2393 {
9cce227f
TG
2394 /* solib-sunos.c creates one objfile with obfd. */
2395 if (objfile->obfd == NULL)
2396 continue;
2397
2398 /* Separate debug objfiles are handled in the main objfile. */
2399 if (objfile->separate_debug_objfile_backlink)
2400 continue;
2401
02aeec7b
JB
2402 /* If this object is from an archive (what you usually create with
2403 `ar', often called a `static library' on most systems, though
2404 a `shared library' on AIX is also an archive), then you should
2405 stat on the archive name, not member name. */
9cce227f
TG
2406 if (objfile->obfd->my_archive)
2407 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2408 else
9cce227f
TG
2409 res = stat (objfile->name, &new_statbuf);
2410 if (res != 0)
2411 {
c378eb4e 2412 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2413 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2414 objfile->name);
2415 continue;
2416 }
2417 new_modtime = new_statbuf.st_mtime;
2418 if (new_modtime != objfile->mtime)
2419 {
2420 struct cleanup *old_cleanups;
2421 struct section_offsets *offsets;
2422 int num_offsets;
2423 char *obfd_filename;
2424
2425 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2426 objfile->name);
2427
2428 /* There are various functions like symbol_file_add,
2429 symfile_bfd_open, syms_from_objfile, etc., which might
2430 appear to do what we want. But they have various other
2431 effects which we *don't* want. So we just do stuff
2432 ourselves. We don't worry about mapped files (for one thing,
2433 any mapped file will be out of date). */
2434
2435 /* If we get an error, blow away this objfile (not sure if
2436 that is the correct response for things like shared
2437 libraries). */
2438 old_cleanups = make_cleanup_free_objfile (objfile);
2439 /* We need to do this whenever any symbols go away. */
2440 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2441
0ba1096a
KT
2442 if (exec_bfd != NULL
2443 && filename_cmp (bfd_get_filename (objfile->obfd),
2444 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2445 {
2446 /* Reload EXEC_BFD without asking anything. */
2447
2448 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2449 }
2450
2451 /* Clean up any state BFD has sitting around. We don't need
2452 to close the descriptor but BFD lacks a way of closing the
2453 BFD without closing the descriptor. */
2454 obfd_filename = bfd_get_filename (objfile->obfd);
2455 if (!bfd_close (objfile->obfd))
2456 error (_("Can't close BFD for %s: %s"), objfile->name,
2457 bfd_errmsg (bfd_get_error ()));
874f5765 2458 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2459 if (objfile->obfd == NULL)
2460 error (_("Can't open %s to read symbols."), objfile->name);
2461 else
2462 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2463 /* bfd_openr sets cacheable to true, which is what we want. */
2464 if (!bfd_check_format (objfile->obfd, bfd_object))
2465 error (_("Can't read symbols from %s: %s."), objfile->name,
2466 bfd_errmsg (bfd_get_error ()));
2467
2468 /* Save the offsets, we will nuke them with the rest of the
2469 objfile_obstack. */
2470 num_offsets = objfile->num_sections;
2471 offsets = ((struct section_offsets *)
2472 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2473 memcpy (offsets, objfile->section_offsets,
2474 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2475
2476 /* Remove any references to this objfile in the global
2477 value lists. */
2478 preserve_values (objfile);
2479
2480 /* Nuke all the state that we will re-read. Much of the following
2481 code which sets things to NULL really is necessary to tell
2482 other parts of GDB that there is nothing currently there.
2483
2484 Try to keep the freeing order compatible with free_objfile. */
2485
2486 if (objfile->sf != NULL)
2487 {
2488 (*objfile->sf->sym_finish) (objfile);
2489 }
2490
2491 clear_objfile_data (objfile);
2492
15d123c9 2493 /* Free the separate debug objfiles. It will be
9cce227f 2494 automatically recreated by sym_read. */
15d123c9 2495 free_objfile_separate_debug (objfile);
9cce227f
TG
2496
2497 /* FIXME: Do we have to free a whole linked list, or is this
2498 enough? */
2499 if (objfile->global_psymbols.list)
2500 xfree (objfile->global_psymbols.list);
2501 memset (&objfile->global_psymbols, 0,
2502 sizeof (objfile->global_psymbols));
2503 if (objfile->static_psymbols.list)
2504 xfree (objfile->static_psymbols.list);
2505 memset (&objfile->static_psymbols, 0,
2506 sizeof (objfile->static_psymbols));
2507
c378eb4e 2508 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2509 psymbol_bcache_free (objfile->psymbol_cache);
2510 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2511 bcache_xfree (objfile->macro_cache);
cbd70537 2512 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2513 bcache_xfree (objfile->filename_cache);
cbd70537 2514 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2515 if (objfile->demangled_names_hash != NULL)
2516 {
2517 htab_delete (objfile->demangled_names_hash);
2518 objfile->demangled_names_hash = NULL;
2519 }
2520 obstack_free (&objfile->objfile_obstack, 0);
2521 objfile->sections = NULL;
2522 objfile->symtabs = NULL;
2523 objfile->psymtabs = NULL;
2524 objfile->psymtabs_addrmap = NULL;
2525 objfile->free_psymtabs = NULL;
34eaf542 2526 objfile->template_symbols = NULL;
9cce227f
TG
2527 objfile->msymbols = NULL;
2528 objfile->deprecated_sym_private = NULL;
2529 objfile->minimal_symbol_count = 0;
2530 memset (&objfile->msymbol_hash, 0,
2531 sizeof (objfile->msymbol_hash));
2532 memset (&objfile->msymbol_demangled_hash, 0,
2533 sizeof (objfile->msymbol_demangled_hash));
2534
9cce227f
TG
2535 /* obstack_init also initializes the obstack so it is
2536 empty. We could use obstack_specify_allocation but
2537 gdb_obstack.h specifies the alloc/dealloc
2538 functions. */
2539 obstack_init (&objfile->objfile_obstack);
2540 if (build_objfile_section_table (objfile))
2541 {
2542 error (_("Can't find the file sections in `%s': %s"),
2543 objfile->name, bfd_errmsg (bfd_get_error ()));
2544 }
2545 terminate_minimal_symbol_table (objfile);
2546
2547 /* We use the same section offsets as from last time. I'm not
2548 sure whether that is always correct for shared libraries. */
2549 objfile->section_offsets = (struct section_offsets *)
2550 obstack_alloc (&objfile->objfile_obstack,
2551 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2552 memcpy (objfile->section_offsets, offsets,
2553 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2554 objfile->num_sections = num_offsets;
2555
2556 /* What the hell is sym_new_init for, anyway? The concept of
2557 distinguishing between the main file and additional files
2558 in this way seems rather dubious. */
2559 if (objfile == symfile_objfile)
c906108c 2560 {
9cce227f 2561 (*objfile->sf->sym_new_init) (objfile);
c906108c 2562 }
9cce227f
TG
2563
2564 (*objfile->sf->sym_init) (objfile);
2565 clear_complaints (&symfile_complaints, 1, 1);
2566 /* Do not set flags as this is safe and we don't want to be
2567 verbose. */
2568 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2569 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2570 {
2571 objfile->flags &= ~OBJF_PSYMTABS_READ;
2572 require_partial_symbols (objfile, 0);
2573 }
2574
9cce227f 2575 if (!objfile_has_symbols (objfile))
c906108c 2576 {
9cce227f
TG
2577 wrap_here ("");
2578 printf_unfiltered (_("(no debugging symbols found)\n"));
2579 wrap_here ("");
c5aa993b 2580 }
9cce227f
TG
2581
2582 /* We're done reading the symbol file; finish off complaints. */
2583 clear_complaints (&symfile_complaints, 0, 1);
2584
2585 /* Getting new symbols may change our opinion about what is
2586 frameless. */
2587
2588 reinit_frame_cache ();
2589
2590 /* Discard cleanups as symbol reading was successful. */
2591 discard_cleanups (old_cleanups);
2592
2593 /* If the mtime has changed between the time we set new_modtime
2594 and now, we *want* this to be out of date, so don't call stat
2595 again now. */
2596 objfile->mtime = new_modtime;
2597 reread_one = 1;
2598 init_entry_point_info (objfile);
c906108c
SS
2599 }
2600 }
c906108c
SS
2601
2602 if (reread_one)
ea53e89f 2603 {
ff3536bc
UW
2604 /* Notify objfiles that we've modified objfile sections. */
2605 objfiles_changed ();
2606
c1e56572 2607 clear_symtab_users (0);
ea53e89f
JB
2608 /* At least one objfile has changed, so we can consider that
2609 the executable we're debugging has changed too. */
781b42b0 2610 observer_notify_executable_changed ();
ea53e89f 2611 }
c906108c 2612}
c906108c
SS
2613\f
2614
c5aa993b
JM
2615
2616typedef struct
2617{
2618 char *ext;
c906108c 2619 enum language lang;
c5aa993b
JM
2620}
2621filename_language;
c906108c 2622
c5aa993b 2623static filename_language *filename_language_table;
c906108c
SS
2624static int fl_table_size, fl_table_next;
2625
2626static void
fba45db2 2627add_filename_language (char *ext, enum language lang)
c906108c
SS
2628{
2629 if (fl_table_next >= fl_table_size)
2630 {
2631 fl_table_size += 10;
5417f6dc 2632 filename_language_table =
25bf3106
PM
2633 xrealloc (filename_language_table,
2634 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2635 }
2636
4fcf66da 2637 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2638 filename_language_table[fl_table_next].lang = lang;
2639 fl_table_next++;
2640}
2641
2642static char *ext_args;
920d2a44
AC
2643static void
2644show_ext_args (struct ui_file *file, int from_tty,
2645 struct cmd_list_element *c, const char *value)
2646{
3e43a32a
MS
2647 fprintf_filtered (file,
2648 _("Mapping between filename extension "
2649 "and source language is \"%s\".\n"),
920d2a44
AC
2650 value);
2651}
c906108c
SS
2652
2653static void
26c41df3 2654set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2655{
2656 int i;
2657 char *cp = ext_args;
2658 enum language lang;
2659
c378eb4e 2660 /* First arg is filename extension, starting with '.' */
c906108c 2661 if (*cp != '.')
8a3fe4f8 2662 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2663
2664 /* Find end of first arg. */
c5aa993b 2665 while (*cp && !isspace (*cp))
c906108c
SS
2666 cp++;
2667
2668 if (*cp == '\0')
3e43a32a
MS
2669 error (_("'%s': two arguments required -- "
2670 "filename extension and language"),
c906108c
SS
2671 ext_args);
2672
c378eb4e 2673 /* Null-terminate first arg. */
c5aa993b 2674 *cp++ = '\0';
c906108c
SS
2675
2676 /* Find beginning of second arg, which should be a source language. */
2677 while (*cp && isspace (*cp))
2678 cp++;
2679
2680 if (*cp == '\0')
3e43a32a
MS
2681 error (_("'%s': two arguments required -- "
2682 "filename extension and language"),
c906108c
SS
2683 ext_args);
2684
2685 /* Lookup the language from among those we know. */
2686 lang = language_enum (cp);
2687
2688 /* Now lookup the filename extension: do we already know it? */
2689 for (i = 0; i < fl_table_next; i++)
2690 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2691 break;
2692
2693 if (i >= fl_table_next)
2694 {
c378eb4e 2695 /* New file extension. */
c906108c
SS
2696 add_filename_language (ext_args, lang);
2697 }
2698 else
2699 {
c378eb4e 2700 /* Redefining a previously known filename extension. */
c906108c
SS
2701
2702 /* if (from_tty) */
2703 /* query ("Really make files of type %s '%s'?", */
2704 /* ext_args, language_str (lang)); */
2705
b8c9b27d 2706 xfree (filename_language_table[i].ext);
4fcf66da 2707 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2708 filename_language_table[i].lang = lang;
2709 }
2710}
2711
2712static void
fba45db2 2713info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2714{
2715 int i;
2716
a3f17187 2717 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2718 printf_filtered ("\n\n");
2719 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2720 printf_filtered ("\t%s\t- %s\n",
2721 filename_language_table[i].ext,
c906108c
SS
2722 language_str (filename_language_table[i].lang));
2723}
2724
2725static void
fba45db2 2726init_filename_language_table (void)
c906108c 2727{
c378eb4e 2728 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2729 {
2730 fl_table_size = 20;
2731 fl_table_next = 0;
c5aa993b 2732 filename_language_table =
c906108c 2733 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2734 add_filename_language (".c", language_c);
6aecb9c2 2735 add_filename_language (".d", language_d);
c5aa993b
JM
2736 add_filename_language (".C", language_cplus);
2737 add_filename_language (".cc", language_cplus);
2738 add_filename_language (".cp", language_cplus);
2739 add_filename_language (".cpp", language_cplus);
2740 add_filename_language (".cxx", language_cplus);
2741 add_filename_language (".c++", language_cplus);
2742 add_filename_language (".java", language_java);
c906108c 2743 add_filename_language (".class", language_java);
da2cf7e0 2744 add_filename_language (".m", language_objc);
c5aa993b
JM
2745 add_filename_language (".f", language_fortran);
2746 add_filename_language (".F", language_fortran);
fd5700c7
JK
2747 add_filename_language (".for", language_fortran);
2748 add_filename_language (".FOR", language_fortran);
2749 add_filename_language (".ftn", language_fortran);
2750 add_filename_language (".FTN", language_fortran);
2751 add_filename_language (".fpp", language_fortran);
2752 add_filename_language (".FPP", language_fortran);
2753 add_filename_language (".f90", language_fortran);
2754 add_filename_language (".F90", language_fortran);
2755 add_filename_language (".f95", language_fortran);
2756 add_filename_language (".F95", language_fortran);
2757 add_filename_language (".f03", language_fortran);
2758 add_filename_language (".F03", language_fortran);
2759 add_filename_language (".f08", language_fortran);
2760 add_filename_language (".F08", language_fortran);
c5aa993b 2761 add_filename_language (".s", language_asm);
aa707ed0 2762 add_filename_language (".sx", language_asm);
c5aa993b 2763 add_filename_language (".S", language_asm);
c6fd39cd
PM
2764 add_filename_language (".pas", language_pascal);
2765 add_filename_language (".p", language_pascal);
2766 add_filename_language (".pp", language_pascal);
963a6417
PH
2767 add_filename_language (".adb", language_ada);
2768 add_filename_language (".ads", language_ada);
2769 add_filename_language (".a", language_ada);
2770 add_filename_language (".ada", language_ada);
dde59185 2771 add_filename_language (".dg", language_ada);
c906108c
SS
2772 }
2773}
2774
2775enum language
dd786858 2776deduce_language_from_filename (const char *filename)
c906108c
SS
2777{
2778 int i;
2779 char *cp;
2780
2781 if (filename != NULL)
2782 if ((cp = strrchr (filename, '.')) != NULL)
2783 for (i = 0; i < fl_table_next; i++)
2784 if (strcmp (cp, filename_language_table[i].ext) == 0)
2785 return filename_language_table[i].lang;
2786
2787 return language_unknown;
2788}
2789\f
2790/* allocate_symtab:
2791
2792 Allocate and partly initialize a new symbol table. Return a pointer
2793 to it. error() if no space.
2794
2795 Caller must set these fields:
c5aa993b
JM
2796 LINETABLE(symtab)
2797 symtab->blockvector
2798 symtab->dirname
2799 symtab->free_code
2800 symtab->free_ptr
c906108c
SS
2801 */
2802
2803struct symtab *
72b9f47f 2804allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2805{
52f0bd74 2806 struct symtab *symtab;
c906108c
SS
2807
2808 symtab = (struct symtab *)
4a146b47 2809 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2810 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2811 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2812 objfile->filename_cache);
c5aa993b
JM
2813 symtab->fullname = NULL;
2814 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2815 symtab->debugformat = "unknown";
c906108c 2816
c378eb4e 2817 /* Hook it to the objfile it comes from. */
c906108c 2818
c5aa993b
JM
2819 symtab->objfile = objfile;
2820 symtab->next = objfile->symtabs;
2821 objfile->symtabs = symtab;
c906108c 2822
c906108c
SS
2823 return (symtab);
2824}
c906108c 2825\f
c5aa993b 2826
c906108c 2827/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2828 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2829
2830void
c1e56572 2831clear_symtab_users (int add_flags)
c906108c
SS
2832{
2833 /* Someday, we should do better than this, by only blowing away
2834 the things that really need to be blown. */
c0501be5
DJ
2835
2836 /* Clear the "current" symtab first, because it is no longer valid.
2837 breakpoint_re_set may try to access the current symtab. */
2838 clear_current_source_symtab_and_line ();
2839
c906108c 2840 clear_displays ();
c1e56572
JK
2841 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2842 breakpoint_re_set ();
1bfeeb0f 2843 clear_last_displayed_sal ();
c906108c 2844 clear_pc_function_cache ();
06d3b283 2845 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2846
2847 /* Clear globals which might have pointed into a removed objfile.
2848 FIXME: It's not clear which of these are supposed to persist
2849 between expressions and which ought to be reset each time. */
2850 expression_context_block = NULL;
2851 innermost_block = NULL;
8756216b
DP
2852
2853 /* Varobj may refer to old symbols, perform a cleanup. */
2854 varobj_invalidate ();
2855
c906108c
SS
2856}
2857
74b7792f
AC
2858static void
2859clear_symtab_users_cleanup (void *ignore)
2860{
c1e56572 2861 clear_symtab_users (0);
74b7792f 2862}
c906108c 2863\f
c906108c
SS
2864/* OVERLAYS:
2865 The following code implements an abstraction for debugging overlay sections.
2866
2867 The target model is as follows:
2868 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2869 same VMA, each with its own unique LMA (or load address).
c906108c 2870 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2871 sections, one by one, from the load address into the VMA address.
5417f6dc 2872 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2873 sections should be considered to be mapped from the VMA to the LMA.
2874 This information is used for symbol lookup, and memory read/write.
5417f6dc 2875 For instance, if a section has been mapped then its contents
c5aa993b 2876 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2877
2878 Two levels of debugger support for overlays are available. One is
2879 "manual", in which the debugger relies on the user to tell it which
2880 overlays are currently mapped. This level of support is
2881 implemented entirely in the core debugger, and the information about
2882 whether a section is mapped is kept in the objfile->obj_section table.
2883
2884 The second level of support is "automatic", and is only available if
2885 the target-specific code provides functionality to read the target's
2886 overlay mapping table, and translate its contents for the debugger
2887 (by updating the mapped state information in the obj_section tables).
2888
2889 The interface is as follows:
c5aa993b
JM
2890 User commands:
2891 overlay map <name> -- tell gdb to consider this section mapped
2892 overlay unmap <name> -- tell gdb to consider this section unmapped
2893 overlay list -- list the sections that GDB thinks are mapped
2894 overlay read-target -- get the target's state of what's mapped
2895 overlay off/manual/auto -- set overlay debugging state
2896 Functional interface:
2897 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2898 section, return that section.
5417f6dc 2899 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2900 the pc, either in its VMA or its LMA
714835d5 2901 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2902 section_is_overlay(sect): true if section's VMA != LMA
2903 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2904 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2905 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2906 overlay_mapped_address(...): map an address from section's LMA to VMA
2907 overlay_unmapped_address(...): map an address from section's VMA to LMA
2908 symbol_overlayed_address(...): Return a "current" address for symbol:
2909 either in VMA or LMA depending on whether
c378eb4e 2910 the symbol's section is currently mapped. */
c906108c
SS
2911
2912/* Overlay debugging state: */
2913
d874f1e2 2914enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2915int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2916
c906108c 2917/* Function: section_is_overlay (SECTION)
5417f6dc 2918 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2919 SECTION is loaded at an address different from where it will "run". */
2920
2921int
714835d5 2922section_is_overlay (struct obj_section *section)
c906108c 2923{
714835d5
UW
2924 if (overlay_debugging && section)
2925 {
2926 bfd *abfd = section->objfile->obfd;
2927 asection *bfd_section = section->the_bfd_section;
2928
2929 if (bfd_section_lma (abfd, bfd_section) != 0
2930 && bfd_section_lma (abfd, bfd_section)
2931 != bfd_section_vma (abfd, bfd_section))
2932 return 1;
2933 }
c906108c
SS
2934
2935 return 0;
2936}
2937
2938/* Function: overlay_invalidate_all (void)
2939 Invalidate the mapped state of all overlay sections (mark it as stale). */
2940
2941static void
fba45db2 2942overlay_invalidate_all (void)
c906108c 2943{
c5aa993b 2944 struct objfile *objfile;
c906108c
SS
2945 struct obj_section *sect;
2946
2947 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2948 if (section_is_overlay (sect))
2949 sect->ovly_mapped = -1;
c906108c
SS
2950}
2951
714835d5 2952/* Function: section_is_mapped (SECTION)
5417f6dc 2953 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2954
2955 Access to the ovly_mapped flag is restricted to this function, so
2956 that we can do automatic update. If the global flag
2957 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2958 overlay_invalidate_all. If the mapped state of the particular
2959 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2960
714835d5
UW
2961int
2962section_is_mapped (struct obj_section *osect)
c906108c 2963{
9216df95
UW
2964 struct gdbarch *gdbarch;
2965
714835d5 2966 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2967 return 0;
2968
c5aa993b 2969 switch (overlay_debugging)
c906108c
SS
2970 {
2971 default:
d874f1e2 2972 case ovly_off:
c5aa993b 2973 return 0; /* overlay debugging off */
d874f1e2 2974 case ovly_auto: /* overlay debugging automatic */
1c772458 2975 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2976 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2977 gdbarch = get_objfile_arch (osect->objfile);
2978 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2979 {
2980 if (overlay_cache_invalid)
2981 {
2982 overlay_invalidate_all ();
2983 overlay_cache_invalid = 0;
2984 }
2985 if (osect->ovly_mapped == -1)
9216df95 2986 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2987 }
2988 /* fall thru to manual case */
d874f1e2 2989 case ovly_on: /* overlay debugging manual */
c906108c
SS
2990 return osect->ovly_mapped == 1;
2991 }
2992}
2993
c906108c
SS
2994/* Function: pc_in_unmapped_range
2995 If PC falls into the lma range of SECTION, return true, else false. */
2996
2997CORE_ADDR
714835d5 2998pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2999{
714835d5
UW
3000 if (section_is_overlay (section))
3001 {
3002 bfd *abfd = section->objfile->obfd;
3003 asection *bfd_section = section->the_bfd_section;
fbd35540 3004
714835d5
UW
3005 /* We assume the LMA is relocated by the same offset as the VMA. */
3006 bfd_vma size = bfd_get_section_size (bfd_section);
3007 CORE_ADDR offset = obj_section_offset (section);
3008
3009 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3010 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3011 return 1;
3012 }
c906108c 3013
c906108c
SS
3014 return 0;
3015}
3016
3017/* Function: pc_in_mapped_range
3018 If PC falls into the vma range of SECTION, return true, else false. */
3019
3020CORE_ADDR
714835d5 3021pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3022{
714835d5
UW
3023 if (section_is_overlay (section))
3024 {
3025 if (obj_section_addr (section) <= pc
3026 && pc < obj_section_endaddr (section))
3027 return 1;
3028 }
c906108c 3029
c906108c
SS
3030 return 0;
3031}
3032
9ec8e6a0
JB
3033
3034/* Return true if the mapped ranges of sections A and B overlap, false
3035 otherwise. */
b9362cc7 3036static int
714835d5 3037sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3038{
714835d5
UW
3039 CORE_ADDR a_start = obj_section_addr (a);
3040 CORE_ADDR a_end = obj_section_endaddr (a);
3041 CORE_ADDR b_start = obj_section_addr (b);
3042 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3043
3044 return (a_start < b_end && b_start < a_end);
3045}
3046
c906108c
SS
3047/* Function: overlay_unmapped_address (PC, SECTION)
3048 Returns the address corresponding to PC in the unmapped (load) range.
3049 May be the same as PC. */
3050
3051CORE_ADDR
714835d5 3052overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3053{
714835d5
UW
3054 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3055 {
3056 bfd *abfd = section->objfile->obfd;
3057 asection *bfd_section = section->the_bfd_section;
fbd35540 3058
714835d5
UW
3059 return pc + bfd_section_lma (abfd, bfd_section)
3060 - bfd_section_vma (abfd, bfd_section);
3061 }
c906108c
SS
3062
3063 return pc;
3064}
3065
3066/* Function: overlay_mapped_address (PC, SECTION)
3067 Returns the address corresponding to PC in the mapped (runtime) range.
3068 May be the same as PC. */
3069
3070CORE_ADDR
714835d5 3071overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3072{
714835d5
UW
3073 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3074 {
3075 bfd *abfd = section->objfile->obfd;
3076 asection *bfd_section = section->the_bfd_section;
fbd35540 3077
714835d5
UW
3078 return pc + bfd_section_vma (abfd, bfd_section)
3079 - bfd_section_lma (abfd, bfd_section);
3080 }
c906108c
SS
3081
3082 return pc;
3083}
3084
3085
5417f6dc 3086/* Function: symbol_overlayed_address
c906108c
SS
3087 Return one of two addresses (relative to the VMA or to the LMA),
3088 depending on whether the section is mapped or not. */
3089
c5aa993b 3090CORE_ADDR
714835d5 3091symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3092{
3093 if (overlay_debugging)
3094 {
c378eb4e 3095 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3096 if (section == 0)
3097 return address;
c378eb4e
MS
3098 /* If the symbol's section is not an overlay, just return its
3099 address. */
c906108c
SS
3100 if (!section_is_overlay (section))
3101 return address;
c378eb4e 3102 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3103 if (section_is_mapped (section))
3104 return address;
3105 /*
3106 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3107 * then return its LOADED address rather than its vma address!!
3108 */
3109 return overlay_unmapped_address (address, section);
3110 }
3111 return address;
3112}
3113
5417f6dc 3114/* Function: find_pc_overlay (PC)
c906108c
SS
3115 Return the best-match overlay section for PC:
3116 If PC matches a mapped overlay section's VMA, return that section.
3117 Else if PC matches an unmapped section's VMA, return that section.
3118 Else if PC matches an unmapped section's LMA, return that section. */
3119
714835d5 3120struct obj_section *
fba45db2 3121find_pc_overlay (CORE_ADDR pc)
c906108c 3122{
c5aa993b 3123 struct objfile *objfile;
c906108c
SS
3124 struct obj_section *osect, *best_match = NULL;
3125
3126 if (overlay_debugging)
3127 ALL_OBJSECTIONS (objfile, osect)
714835d5 3128 if (section_is_overlay (osect))
c5aa993b 3129 {
714835d5 3130 if (pc_in_mapped_range (pc, osect))
c5aa993b 3131 {
714835d5
UW
3132 if (section_is_mapped (osect))
3133 return osect;
c5aa993b
JM
3134 else
3135 best_match = osect;
3136 }
714835d5 3137 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3138 best_match = osect;
3139 }
714835d5 3140 return best_match;
c906108c
SS
3141}
3142
3143/* Function: find_pc_mapped_section (PC)
5417f6dc 3144 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3145 currently marked as MAPPED, return that section. Else return NULL. */
3146
714835d5 3147struct obj_section *
fba45db2 3148find_pc_mapped_section (CORE_ADDR pc)
c906108c 3149{
c5aa993b 3150 struct objfile *objfile;
c906108c
SS
3151 struct obj_section *osect;
3152
3153 if (overlay_debugging)
3154 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3155 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3156 return osect;
c906108c
SS
3157
3158 return NULL;
3159}
3160
3161/* Function: list_overlays_command
c378eb4e 3162 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3163
3164void
fba45db2 3165list_overlays_command (char *args, int from_tty)
c906108c 3166{
c5aa993b
JM
3167 int nmapped = 0;
3168 struct objfile *objfile;
c906108c
SS
3169 struct obj_section *osect;
3170
3171 if (overlay_debugging)
3172 ALL_OBJSECTIONS (objfile, osect)
714835d5 3173 if (section_is_mapped (osect))
c5aa993b 3174 {
5af949e3 3175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3176 const char *name;
3177 bfd_vma lma, vma;
3178 int size;
3179
3180 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3181 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3182 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3183 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3184
3185 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3186 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3187 puts_filtered (" - ");
5af949e3 3188 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3189 printf_filtered (", mapped at ");
5af949e3 3190 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3191 puts_filtered (" - ");
5af949e3 3192 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3193 puts_filtered ("\n");
3194
3195 nmapped++;
3196 }
c906108c 3197 if (nmapped == 0)
a3f17187 3198 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3199}
3200
3201/* Function: map_overlay_command
3202 Mark the named section as mapped (ie. residing at its VMA address). */
3203
3204void
fba45db2 3205map_overlay_command (char *args, int from_tty)
c906108c 3206{
c5aa993b
JM
3207 struct objfile *objfile, *objfile2;
3208 struct obj_section *sec, *sec2;
c906108c
SS
3209
3210 if (!overlay_debugging)
3e43a32a
MS
3211 error (_("Overlay debugging not enabled. Use "
3212 "either the 'overlay auto' or\n"
3213 "the 'overlay manual' command."));
c906108c
SS
3214
3215 if (args == 0 || *args == 0)
8a3fe4f8 3216 error (_("Argument required: name of an overlay section"));
c906108c 3217
c378eb4e 3218 /* First, find a section matching the user supplied argument. */
c906108c
SS
3219 ALL_OBJSECTIONS (objfile, sec)
3220 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3221 {
c378eb4e 3222 /* Now, check to see if the section is an overlay. */
714835d5 3223 if (!section_is_overlay (sec))
c5aa993b
JM
3224 continue; /* not an overlay section */
3225
c378eb4e 3226 /* Mark the overlay as "mapped". */
c5aa993b
JM
3227 sec->ovly_mapped = 1;
3228
3229 /* Next, make a pass and unmap any sections that are
3230 overlapped by this new section: */
3231 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3232 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3233 {
3234 if (info_verbose)
a3f17187 3235 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3236 bfd_section_name (objfile->obfd,
3237 sec2->the_bfd_section));
c378eb4e 3238 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3239 }
3240 return;
3241 }
8a3fe4f8 3242 error (_("No overlay section called %s"), args);
c906108c
SS
3243}
3244
3245/* Function: unmap_overlay_command
5417f6dc 3246 Mark the overlay section as unmapped
c906108c
SS
3247 (ie. resident in its LMA address range, rather than the VMA range). */
3248
3249void
fba45db2 3250unmap_overlay_command (char *args, int from_tty)
c906108c 3251{
c5aa993b 3252 struct objfile *objfile;
c906108c
SS
3253 struct obj_section *sec;
3254
3255 if (!overlay_debugging)
3e43a32a
MS
3256 error (_("Overlay debugging not enabled. "
3257 "Use either the 'overlay auto' or\n"
3258 "the 'overlay manual' command."));
c906108c
SS
3259
3260 if (args == 0 || *args == 0)
8a3fe4f8 3261 error (_("Argument required: name of an overlay section"));
c906108c 3262
c378eb4e 3263 /* First, find a section matching the user supplied argument. */
c906108c
SS
3264 ALL_OBJSECTIONS (objfile, sec)
3265 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3266 {
3267 if (!sec->ovly_mapped)
8a3fe4f8 3268 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3269 sec->ovly_mapped = 0;
3270 return;
3271 }
8a3fe4f8 3272 error (_("No overlay section called %s"), args);
c906108c
SS
3273}
3274
3275/* Function: overlay_auto_command
3276 A utility command to turn on overlay debugging.
c378eb4e 3277 Possibly this should be done via a set/show command. */
c906108c
SS
3278
3279static void
fba45db2 3280overlay_auto_command (char *args, int from_tty)
c906108c 3281{
d874f1e2 3282 overlay_debugging = ovly_auto;
1900040c 3283 enable_overlay_breakpoints ();
c906108c 3284 if (info_verbose)
a3f17187 3285 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3286}
3287
3288/* Function: overlay_manual_command
3289 A utility command to turn on overlay debugging.
c378eb4e 3290 Possibly this should be done via a set/show command. */
c906108c
SS
3291
3292static void
fba45db2 3293overlay_manual_command (char *args, int from_tty)
c906108c 3294{
d874f1e2 3295 overlay_debugging = ovly_on;
1900040c 3296 disable_overlay_breakpoints ();
c906108c 3297 if (info_verbose)
a3f17187 3298 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3299}
3300
3301/* Function: overlay_off_command
3302 A utility command to turn on overlay debugging.
c378eb4e 3303 Possibly this should be done via a set/show command. */
c906108c
SS
3304
3305static void
fba45db2 3306overlay_off_command (char *args, int from_tty)
c906108c 3307{
d874f1e2 3308 overlay_debugging = ovly_off;
1900040c 3309 disable_overlay_breakpoints ();
c906108c 3310 if (info_verbose)
a3f17187 3311 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3312}
3313
3314static void
fba45db2 3315overlay_load_command (char *args, int from_tty)
c906108c 3316{
e17c207e
UW
3317 struct gdbarch *gdbarch = get_current_arch ();
3318
3319 if (gdbarch_overlay_update_p (gdbarch))
3320 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3321 else
8a3fe4f8 3322 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3323}
3324
3325/* Function: overlay_command
c378eb4e 3326 A place-holder for a mis-typed command. */
c906108c 3327
c378eb4e 3328/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3329struct cmd_list_element *overlaylist;
3330
3331static void
fba45db2 3332overlay_command (char *args, int from_tty)
c906108c 3333{
c5aa993b 3334 printf_unfiltered
c906108c
SS
3335 ("\"overlay\" must be followed by the name of an overlay command.\n");
3336 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3337}
3338
3339
3340/* Target Overlays for the "Simplest" overlay manager:
3341
5417f6dc
RM
3342 This is GDB's default target overlay layer. It works with the
3343 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3344 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3345 so targets that use a different runtime overlay manager can
c906108c
SS
3346 substitute their own overlay_update function and take over the
3347 function pointer.
3348
3349 The overlay_update function pokes around in the target's data structures
3350 to see what overlays are mapped, and updates GDB's overlay mapping with
3351 this information.
3352
3353 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3354 unsigned _novlys; /# number of overlay sections #/
3355 unsigned _ovly_table[_novlys][4] = {
3356 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3357 {..., ..., ..., ...},
3358 }
3359 unsigned _novly_regions; /# number of overlay regions #/
3360 unsigned _ovly_region_table[_novly_regions][3] = {
3361 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3362 {..., ..., ...},
3363 }
c906108c
SS
3364 These functions will attempt to update GDB's mappedness state in the
3365 symbol section table, based on the target's mappedness state.
3366
3367 To do this, we keep a cached copy of the target's _ovly_table, and
3368 attempt to detect when the cached copy is invalidated. The main
3369 entry point is "simple_overlay_update(SECT), which looks up SECT in
3370 the cached table and re-reads only the entry for that section from
c378eb4e 3371 the target (whenever possible). */
c906108c
SS
3372
3373/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3374static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3375static unsigned cache_novlys = 0;
c906108c 3376static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3377enum ovly_index
3378 {
3379 VMA, SIZE, LMA, MAPPED
3380 };
c906108c 3381
c378eb4e 3382/* Throw away the cached copy of _ovly_table. */
c906108c 3383static void
fba45db2 3384simple_free_overlay_table (void)
c906108c
SS
3385{
3386 if (cache_ovly_table)
b8c9b27d 3387 xfree (cache_ovly_table);
c5aa993b 3388 cache_novlys = 0;
c906108c
SS
3389 cache_ovly_table = NULL;
3390 cache_ovly_table_base = 0;
3391}
3392
9216df95 3393/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3394 Convert to host order. int LEN is number of ints. */
c906108c 3395static void
9216df95 3396read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3397 int len, int size, enum bfd_endian byte_order)
c906108c 3398{
c378eb4e 3399 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3400 gdb_byte *buf = alloca (len * size);
c5aa993b 3401 int i;
c906108c 3402
9216df95 3403 read_memory (memaddr, buf, len * size);
c906108c 3404 for (i = 0; i < len; i++)
e17a4113 3405 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3406}
3407
3408/* Find and grab a copy of the target _ovly_table
c378eb4e 3409 (and _novlys, which is needed for the table's size). */
c5aa993b 3410static int
fba45db2 3411simple_read_overlay_table (void)
c906108c 3412{
0d43edd1 3413 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3414 struct gdbarch *gdbarch;
3415 int word_size;
e17a4113 3416 enum bfd_endian byte_order;
c906108c
SS
3417
3418 simple_free_overlay_table ();
9b27852e 3419 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3420 if (! novlys_msym)
c906108c 3421 {
8a3fe4f8 3422 error (_("Error reading inferior's overlay table: "
0d43edd1 3423 "couldn't find `_novlys' variable\n"
8a3fe4f8 3424 "in inferior. Use `overlay manual' mode."));
0d43edd1 3425 return 0;
c906108c 3426 }
0d43edd1 3427
9b27852e 3428 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3429 if (! ovly_table_msym)
3430 {
8a3fe4f8 3431 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3432 "`_ovly_table' array\n"
8a3fe4f8 3433 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3434 return 0;
3435 }
3436
9216df95
UW
3437 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3438 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3439 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3440
e17a4113
UW
3441 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3442 4, byte_order);
0d43edd1
JB
3443 cache_ovly_table
3444 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3445 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3446 read_target_long_array (cache_ovly_table_base,
777ea8f1 3447 (unsigned int *) cache_ovly_table,
e17a4113 3448 cache_novlys * 4, word_size, byte_order);
0d43edd1 3449
c5aa993b 3450 return 1; /* SUCCESS */
c906108c
SS
3451}
3452
5417f6dc 3453/* Function: simple_overlay_update_1
c906108c
SS
3454 A helper function for simple_overlay_update. Assuming a cached copy
3455 of _ovly_table exists, look through it to find an entry whose vma,
3456 lma and size match those of OSECT. Re-read the entry and make sure
3457 it still matches OSECT (else the table may no longer be valid).
3458 Set OSECT's mapped state to match the entry. Return: 1 for
3459 success, 0 for failure. */
3460
3461static int
fba45db2 3462simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3463{
3464 int i, size;
fbd35540
MS
3465 bfd *obfd = osect->objfile->obfd;
3466 asection *bsect = osect->the_bfd_section;
9216df95
UW
3467 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3468 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3469 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3470
2c500098 3471 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3472 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3473 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3474 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3475 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3476 {
9216df95
UW
3477 read_target_long_array (cache_ovly_table_base + i * word_size,
3478 (unsigned int *) cache_ovly_table[i],
e17a4113 3479 4, word_size, byte_order);
fbd35540
MS
3480 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3481 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3482 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3483 {
3484 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3485 return 1;
3486 }
c378eb4e 3487 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3488 return 0;
3489 }
3490 return 0;
3491}
3492
3493/* Function: simple_overlay_update
5417f6dc
RM
3494 If OSECT is NULL, then update all sections' mapped state
3495 (after re-reading the entire target _ovly_table).
3496 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3497 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3498 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3499 re-read the entire cache, and go ahead and update all sections. */
3500
1c772458 3501void
fba45db2 3502simple_overlay_update (struct obj_section *osect)
c906108c 3503{
c5aa993b 3504 struct objfile *objfile;
c906108c 3505
c378eb4e 3506 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3507 if (osect)
c378eb4e 3508 /* Have we got a cached copy of the target's overlay table? */
c906108c 3509 if (cache_ovly_table != NULL)
9cc89665
MS
3510 {
3511 /* Does its cached location match what's currently in the
3512 symtab? */
3513 struct minimal_symbol *minsym
3514 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3515
3516 if (minsym == NULL)
3517 error (_("Error reading inferior's overlay table: couldn't "
3518 "find `_ovly_table' array\n"
3519 "in inferior. Use `overlay manual' mode."));
3520
3521 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3522 /* Then go ahead and try to look up this single section in
3523 the cache. */
3524 if (simple_overlay_update_1 (osect))
3525 /* Found it! We're done. */
3526 return;
3527 }
c906108c
SS
3528
3529 /* Cached table no good: need to read the entire table anew.
3530 Or else we want all the sections, in which case it's actually
3531 more efficient to read the whole table in one block anyway. */
3532
0d43edd1
JB
3533 if (! simple_read_overlay_table ())
3534 return;
3535
c378eb4e 3536 /* Now may as well update all sections, even if only one was requested. */
c906108c 3537 ALL_OBJSECTIONS (objfile, osect)
714835d5 3538 if (section_is_overlay (osect))
c5aa993b
JM
3539 {
3540 int i, size;
fbd35540
MS
3541 bfd *obfd = osect->objfile->obfd;
3542 asection *bsect = osect->the_bfd_section;
c5aa993b 3543
2c500098 3544 size = bfd_get_section_size (bsect);
c5aa993b 3545 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3546 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3547 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3548 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3549 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3550 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3551 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3552 }
3553 }
c906108c
SS
3554}
3555
086df311
DJ
3556/* Set the output sections and output offsets for section SECTP in
3557 ABFD. The relocation code in BFD will read these offsets, so we
3558 need to be sure they're initialized. We map each section to itself,
3559 with no offset; this means that SECTP->vma will be honored. */
3560
3561static void
3562symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3563{
3564 sectp->output_section = sectp;
3565 sectp->output_offset = 0;
3566}
3567
ac8035ab
TG
3568/* Default implementation for sym_relocate. */
3569
3570
3571bfd_byte *
3572default_symfile_relocate (struct objfile *objfile, asection *sectp,
3573 bfd_byte *buf)
3574{
3575 bfd *abfd = objfile->obfd;
3576
3577 /* We're only interested in sections with relocation
3578 information. */
3579 if ((sectp->flags & SEC_RELOC) == 0)
3580 return NULL;
3581
3582 /* We will handle section offsets properly elsewhere, so relocate as if
3583 all sections begin at 0. */
3584 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3585
3586 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3587}
3588
086df311
DJ
3589/* Relocate the contents of a debug section SECTP in ABFD. The
3590 contents are stored in BUF if it is non-NULL, or returned in a
3591 malloc'd buffer otherwise.
3592
3593 For some platforms and debug info formats, shared libraries contain
3594 relocations against the debug sections (particularly for DWARF-2;
3595 one affected platform is PowerPC GNU/Linux, although it depends on
3596 the version of the linker in use). Also, ELF object files naturally
3597 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3598 the relocations in order to get the locations of symbols correct.
3599 Another example that may require relocation processing, is the
3600 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3601 debug section. */
086df311
DJ
3602
3603bfd_byte *
ac8035ab
TG
3604symfile_relocate_debug_section (struct objfile *objfile,
3605 asection *sectp, bfd_byte *buf)
086df311 3606{
ac8035ab 3607 gdb_assert (objfile->sf->sym_relocate);
086df311 3608
ac8035ab 3609 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3610}
c906108c 3611
31d99776
DJ
3612struct symfile_segment_data *
3613get_symfile_segment_data (bfd *abfd)
3614{
00b5771c 3615 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3616
3617 if (sf == NULL)
3618 return NULL;
3619
3620 return sf->sym_segments (abfd);
3621}
3622
3623void
3624free_symfile_segment_data (struct symfile_segment_data *data)
3625{
3626 xfree (data->segment_bases);
3627 xfree (data->segment_sizes);
3628 xfree (data->segment_info);
3629 xfree (data);
3630}
3631
28c32713
JB
3632
3633/* Given:
3634 - DATA, containing segment addresses from the object file ABFD, and
3635 the mapping from ABFD's sections onto the segments that own them,
3636 and
3637 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3638 segment addresses reported by the target,
3639 store the appropriate offsets for each section in OFFSETS.
3640
3641 If there are fewer entries in SEGMENT_BASES than there are segments
3642 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3643
8d385431
DJ
3644 If there are more entries, then ignore the extra. The target may
3645 not be able to distinguish between an empty data segment and a
3646 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3647int
3648symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3649 struct section_offsets *offsets,
3650 int num_segment_bases,
3651 const CORE_ADDR *segment_bases)
3652{
3653 int i;
3654 asection *sect;
3655
28c32713
JB
3656 /* It doesn't make sense to call this function unless you have some
3657 segment base addresses. */
202b96c1 3658 gdb_assert (num_segment_bases > 0);
28c32713 3659
31d99776
DJ
3660 /* If we do not have segment mappings for the object file, we
3661 can not relocate it by segments. */
3662 gdb_assert (data != NULL);
3663 gdb_assert (data->num_segments > 0);
3664
31d99776
DJ
3665 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3666 {
31d99776
DJ
3667 int which = data->segment_info[i];
3668
28c32713
JB
3669 gdb_assert (0 <= which && which <= data->num_segments);
3670
3671 /* Don't bother computing offsets for sections that aren't
3672 loaded as part of any segment. */
3673 if (! which)
3674 continue;
3675
3676 /* Use the last SEGMENT_BASES entry as the address of any extra
3677 segments mentioned in DATA->segment_info. */
31d99776 3678 if (which > num_segment_bases)
28c32713 3679 which = num_segment_bases;
31d99776 3680
28c32713
JB
3681 offsets->offsets[i] = (segment_bases[which - 1]
3682 - data->segment_bases[which - 1]);
31d99776
DJ
3683 }
3684
3685 return 1;
3686}
3687
3688static void
3689symfile_find_segment_sections (struct objfile *objfile)
3690{
3691 bfd *abfd = objfile->obfd;
3692 int i;
3693 asection *sect;
3694 struct symfile_segment_data *data;
3695
3696 data = get_symfile_segment_data (objfile->obfd);
3697 if (data == NULL)
3698 return;
3699
3700 if (data->num_segments != 1 && data->num_segments != 2)
3701 {
3702 free_symfile_segment_data (data);
3703 return;
3704 }
3705
3706 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3707 {
31d99776
DJ
3708 int which = data->segment_info[i];
3709
3710 if (which == 1)
3711 {
3712 if (objfile->sect_index_text == -1)
3713 objfile->sect_index_text = sect->index;
3714
3715 if (objfile->sect_index_rodata == -1)
3716 objfile->sect_index_rodata = sect->index;
3717 }
3718 else if (which == 2)
3719 {
3720 if (objfile->sect_index_data == -1)
3721 objfile->sect_index_data = sect->index;
3722
3723 if (objfile->sect_index_bss == -1)
3724 objfile->sect_index_bss = sect->index;
3725 }
3726 }
3727
3728 free_symfile_segment_data (data);
3729}
3730
c906108c 3731void
fba45db2 3732_initialize_symfile (void)
c906108c
SS
3733{
3734 struct cmd_list_element *c;
c5aa993b 3735
1a966eab
AC
3736 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3737Load symbol table from executable file FILE.\n\
c906108c 3738The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3739to execute."), &cmdlist);
5ba2abeb 3740 set_cmd_completer (c, filename_completer);
c906108c 3741
1a966eab 3742 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3743Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3744Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3745 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3746The optional arguments are section-name section-address pairs and\n\
3747should be specified if the data and bss segments are not contiguous\n\
1a966eab 3748with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3749 &cmdlist);
5ba2abeb 3750 set_cmd_completer (c, filename_completer);
c906108c 3751
1a966eab
AC
3752 c = add_cmd ("load", class_files, load_command, _("\
3753Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3754for access from GDB.\n\
3755A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3756 set_cmd_completer (c, filename_completer);
c906108c 3757
5bf193a2
AC
3758 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3759 &symbol_reloading, _("\
3760Set dynamic symbol table reloading multiple times in one run."), _("\
3761Show dynamic symbol table reloading multiple times in one run."), NULL,
3762 NULL,
920d2a44 3763 show_symbol_reloading,
5bf193a2 3764 &setlist, &showlist);
c906108c 3765
c5aa993b 3766 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3767 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3768 "overlay ", 0, &cmdlist);
3769
3770 add_com_alias ("ovly", "overlay", class_alias, 1);
3771 add_com_alias ("ov", "overlay", class_alias, 1);
3772
c5aa993b 3773 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3774 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3775
c5aa993b 3776 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3777 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3778
c5aa993b 3779 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3780 _("List mappings of overlay sections."), &overlaylist);
c906108c 3781
c5aa993b 3782 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3783 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3784 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3785 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3786 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3787 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3788 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3789 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3790
3791 /* Filename extension to source language lookup table: */
3792 init_filename_language_table ();
26c41df3
AC
3793 add_setshow_string_noescape_cmd ("extension-language", class_files,
3794 &ext_args, _("\
3795Set mapping between filename extension and source language."), _("\
3796Show mapping between filename extension and source language."), _("\
3797Usage: set extension-language .foo bar"),
3798 set_ext_lang_command,
920d2a44 3799 show_ext_args,
26c41df3 3800 &setlist, &showlist);
c906108c 3801
c5aa993b 3802 add_info ("extensions", info_ext_lang_command,
1bedd215 3803 _("All filename extensions associated with a source language."));
917317f4 3804
525226b5
AC
3805 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3806 &debug_file_directory, _("\
24ddea62
JK
3807Set the directories where separate debug symbols are searched for."), _("\
3808Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3809Separate debug symbols are first searched for in the same\n\
3810directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3811and lastly at the path of the directory of the binary with\n\
24ddea62 3812each global debug-file-directory component prepended."),
525226b5 3813 NULL,
920d2a44 3814 show_debug_file_directory,
525226b5 3815 &setlist, &showlist);
c906108c 3816}
This page took 1.490264 seconds and 4 git commands to generate.