[ARM] PR ld/21402, only override the symbol dynamic decision on undefined weak symbol.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
53ce3c39 63#include <sys/stat.h>
c906108c 64#include <ctype.h>
dcb07cfa 65#include <chrono>
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
ecf45d2c 88static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 89 objfile_flags flags);
d7db6da9 90
00b5771c 91static const struct sym_fns *find_sym_fns (bfd *);
c906108c 92
a14ed312 93static void overlay_invalidate_all (void);
c906108c 94
a14ed312 95static void overlay_command (char *, int);
c906108c 96
a14ed312 97static void simple_free_overlay_table (void);
c906108c 98
e17a4113
UW
99static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
100 enum bfd_endian);
c906108c 101
a14ed312 102static int simple_read_overlay_table (void);
c906108c 103
a14ed312 104static int simple_overlay_update_1 (struct obj_section *);
c906108c 105
a14ed312 106static void info_ext_lang_command (char *args, int from_tty);
392a587b 107
31d99776
DJ
108static void symfile_find_segment_sections (struct objfile *objfile);
109
c906108c
SS
110/* List of all available sym_fns. On gdb startup, each object file reader
111 calls add_symtab_fns() to register information on each format it is
c378eb4e 112 prepared to read. */
c906108c 113
c256e171
DE
114typedef struct
115{
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121} registered_sym_fns;
00b5771c 122
c256e171
DE
123DEF_VEC_O (registered_sym_fns);
124
125static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 126
770e7fc7
DE
127/* Values for "set print symbol-loading". */
128
129const char print_symbol_loading_off[] = "off";
130const char print_symbol_loading_brief[] = "brief";
131const char print_symbol_loading_full[] = "full";
132static const char *print_symbol_loading_enums[] =
133{
134 print_symbol_loading_off,
135 print_symbol_loading_brief,
136 print_symbol_loading_full,
137 NULL
138};
139static const char *print_symbol_loading = print_symbol_loading_full;
140
b7209cb4
FF
141/* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
c906108c 148 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 149 report all the functions that are actually present. */
c906108c
SS
150
151int auto_solib_add = 1;
c906108c 152\f
c5aa993b 153
770e7fc7
DE
154/* Return non-zero if symbol-loading messages should be printed.
155 FROM_TTY is the standard from_tty argument to gdb commands.
156 If EXEC is non-zero the messages are for the executable.
157 Otherwise, messages are for shared libraries.
158 If FULL is non-zero then the caller is printing a detailed message.
159 E.g., the message includes the shared library name.
160 Otherwise, the caller is printing a brief "summary" message. */
161
162int
163print_symbol_loading_p (int from_tty, int exec, int full)
164{
165 if (!from_tty && !info_verbose)
166 return 0;
167
168 if (exec)
169 {
170 /* We don't check FULL for executables, there are few such
171 messages, therefore brief == full. */
172 return print_symbol_loading != print_symbol_loading_off;
173 }
174 if (full)
175 return print_symbol_loading == print_symbol_loading_full;
176 return print_symbol_loading == print_symbol_loading_brief;
177}
178
0d14a781 179/* True if we are reading a symbol table. */
c906108c
SS
180
181int currently_reading_symtab = 0;
182
ccefe4c4
TT
183/* Increment currently_reading_symtab and return a cleanup that can be
184 used to decrement it. */
3b7bacac 185
c83dd867 186scoped_restore_tmpl<int>
ccefe4c4 187increment_reading_symtab (void)
c906108c 188{
c83dd867
TT
189 gdb_assert (currently_reading_symtab >= 0);
190 return make_scoped_restore (&currently_reading_symtab,
191 currently_reading_symtab + 1);
c906108c
SS
192}
193
5417f6dc
RM
194/* Remember the lowest-addressed loadable section we've seen.
195 This function is called via bfd_map_over_sections.
c906108c
SS
196
197 In case of equal vmas, the section with the largest size becomes the
198 lowest-addressed loadable section.
199
200 If the vmas and sizes are equal, the last section is considered the
201 lowest-addressed loadable section. */
202
203void
4efb68b1 204find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 205{
c5aa993b 206 asection **lowest = (asection **) obj;
c906108c 207
eb73e134 208 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
209 return;
210 if (!*lowest)
211 *lowest = sect; /* First loadable section */
212 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
213 *lowest = sect; /* A lower loadable section */
214 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
215 && (bfd_section_size (abfd, (*lowest))
216 <= bfd_section_size (abfd, sect)))
217 *lowest = sect;
218}
219
d76488d8
TT
220/* Create a new section_addr_info, with room for NUM_SECTIONS. The
221 new object's 'num_sections' field is set to 0; it must be updated
222 by the caller. */
a39a16c4
MM
223
224struct section_addr_info *
225alloc_section_addr_info (size_t num_sections)
226{
227 struct section_addr_info *sap;
228 size_t size;
229
230 size = (sizeof (struct section_addr_info)
231 + sizeof (struct other_sections) * (num_sections - 1));
232 sap = (struct section_addr_info *) xmalloc (size);
233 memset (sap, 0, size);
a39a16c4
MM
234
235 return sap;
236}
62557bbc
KB
237
238/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 239 an existing section table. */
62557bbc
KB
240
241extern struct section_addr_info *
0542c86d
PA
242build_section_addr_info_from_section_table (const struct target_section *start,
243 const struct target_section *end)
62557bbc
KB
244{
245 struct section_addr_info *sap;
0542c86d 246 const struct target_section *stp;
62557bbc
KB
247 int oidx;
248
a39a16c4 249 sap = alloc_section_addr_info (end - start);
62557bbc
KB
250
251 for (stp = start, oidx = 0; stp != end; stp++)
252 {
2b2848e2
DE
253 struct bfd_section *asect = stp->the_bfd_section;
254 bfd *abfd = asect->owner;
255
256 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 257 && oidx < end - start)
62557bbc
KB
258 {
259 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
260 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
261 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
262 oidx++;
263 }
264 }
265
d76488d8
TT
266 sap->num_sections = oidx;
267
62557bbc
KB
268 return sap;
269}
270
82ccf5a5 271/* Create a section_addr_info from section offsets in ABFD. */
089b4803 272
82ccf5a5
JK
273static struct section_addr_info *
274build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
275{
276 struct section_addr_info *sap;
277 int i;
278 struct bfd_section *sec;
279
82ccf5a5
JK
280 sap = alloc_section_addr_info (bfd_count_sections (abfd));
281 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
282 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 283 {
82ccf5a5
JK
284 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
285 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 286 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
287 i++;
288 }
d76488d8
TT
289
290 sap->num_sections = i;
291
089b4803
TG
292 return sap;
293}
294
82ccf5a5
JK
295/* Create a section_addr_info from section offsets in OBJFILE. */
296
297struct section_addr_info *
298build_section_addr_info_from_objfile (const struct objfile *objfile)
299{
300 struct section_addr_info *sap;
301 int i;
302
303 /* Before reread_symbols gets rewritten it is not safe to call:
304 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
305 */
306 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 307 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
308 {
309 int sectindex = sap->other[i].sectindex;
310
311 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
312 }
313 return sap;
314}
62557bbc 315
c378eb4e 316/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
317
318extern void
319free_section_addr_info (struct section_addr_info *sap)
320{
321 int idx;
322
a39a16c4 323 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 324 xfree (sap->other[idx].name);
b8c9b27d 325 xfree (sap);
62557bbc
KB
326}
327
e8289572 328/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 329
e8289572
JB
330static void
331init_objfile_sect_indices (struct objfile *objfile)
c906108c 332{
e8289572 333 asection *sect;
c906108c 334 int i;
5417f6dc 335
b8fbeb18 336 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 337 if (sect)
b8fbeb18
EZ
338 objfile->sect_index_text = sect->index;
339
340 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 341 if (sect)
b8fbeb18
EZ
342 objfile->sect_index_data = sect->index;
343
344 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 345 if (sect)
b8fbeb18
EZ
346 objfile->sect_index_bss = sect->index;
347
348 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 349 if (sect)
b8fbeb18
EZ
350 objfile->sect_index_rodata = sect->index;
351
bbcd32ad
FF
352 /* This is where things get really weird... We MUST have valid
353 indices for the various sect_index_* members or gdb will abort.
354 So if for example, there is no ".text" section, we have to
31d99776
DJ
355 accomodate that. First, check for a file with the standard
356 one or two segments. */
357
358 symfile_find_segment_sections (objfile);
359
360 /* Except when explicitly adding symbol files at some address,
361 section_offsets contains nothing but zeros, so it doesn't matter
362 which slot in section_offsets the individual sect_index_* members
363 index into. So if they are all zero, it is safe to just point
364 all the currently uninitialized indices to the first slot. But
365 beware: if this is the main executable, it may be relocated
366 later, e.g. by the remote qOffsets packet, and then this will
367 be wrong! That's why we try segments first. */
bbcd32ad
FF
368
369 for (i = 0; i < objfile->num_sections; i++)
370 {
371 if (ANOFFSET (objfile->section_offsets, i) != 0)
372 {
373 break;
374 }
375 }
376 if (i == objfile->num_sections)
377 {
378 if (objfile->sect_index_text == -1)
379 objfile->sect_index_text = 0;
380 if (objfile->sect_index_data == -1)
381 objfile->sect_index_data = 0;
382 if (objfile->sect_index_bss == -1)
383 objfile->sect_index_bss = 0;
384 if (objfile->sect_index_rodata == -1)
385 objfile->sect_index_rodata = 0;
386 }
b8fbeb18 387}
c906108c 388
c1bd25fd
DJ
389/* The arguments to place_section. */
390
391struct place_section_arg
392{
393 struct section_offsets *offsets;
394 CORE_ADDR lowest;
395};
396
397/* Find a unique offset to use for loadable section SECT if
398 the user did not provide an offset. */
399
2c0b251b 400static void
c1bd25fd
DJ
401place_section (bfd *abfd, asection *sect, void *obj)
402{
19ba03f4 403 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
404 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
405 int done;
3bd72c6f 406 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 407
2711e456
DJ
408 /* We are only interested in allocated sections. */
409 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
410 return;
411
412 /* If the user specified an offset, honor it. */
65cf3563 413 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
414 return;
415
416 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
417 start_addr = (arg->lowest + align - 1) & -align;
418
c1bd25fd
DJ
419 do {
420 asection *cur_sec;
c1bd25fd 421
c1bd25fd
DJ
422 done = 1;
423
424 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
425 {
426 int indx = cur_sec->index;
c1bd25fd
DJ
427
428 /* We don't need to compare against ourself. */
429 if (cur_sec == sect)
430 continue;
431
2711e456
DJ
432 /* We can only conflict with allocated sections. */
433 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 continue;
435
436 /* If the section offset is 0, either the section has not been placed
437 yet, or it was the lowest section placed (in which case LOWEST
438 will be past its end). */
439 if (offsets[indx] == 0)
440 continue;
441
442 /* If this section would overlap us, then we must move up. */
443 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
444 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
445 {
446 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
447 start_addr = (start_addr + align - 1) & -align;
448 done = 0;
3bd72c6f 449 break;
c1bd25fd
DJ
450 }
451
452 /* Otherwise, we appear to be OK. So far. */
453 }
454 }
455 while (!done);
456
65cf3563 457 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 458 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 459}
e8289572 460
75242ef4
JK
461/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
462 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
463 entries. */
e8289572
JB
464
465void
75242ef4
JK
466relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
467 int num_sections,
3189cb12 468 const struct section_addr_info *addrs)
e8289572
JB
469{
470 int i;
471
75242ef4 472 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 473
c378eb4e 474 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 475 for (i = 0; i < addrs->num_sections; i++)
e8289572 476 {
3189cb12 477 const struct other_sections *osp;
e8289572 478
75242ef4 479 osp = &addrs->other[i];
5488dafb 480 if (osp->sectindex == -1)
e8289572
JB
481 continue;
482
c378eb4e 483 /* Record all sections in offsets. */
e8289572 484 /* The section_offsets in the objfile are here filled in using
c378eb4e 485 the BFD index. */
75242ef4
JK
486 section_offsets->offsets[osp->sectindex] = osp->addr;
487 }
488}
489
1276c759
JK
490/* Transform section name S for a name comparison. prelink can split section
491 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
492 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
493 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
494 (`.sbss') section has invalid (increased) virtual address. */
495
496static const char *
497addr_section_name (const char *s)
498{
499 if (strcmp (s, ".dynbss") == 0)
500 return ".bss";
501 if (strcmp (s, ".sdynbss") == 0)
502 return ".sbss";
503
504 return s;
505}
506
82ccf5a5
JK
507/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
508 their (name, sectindex) pair. sectindex makes the sort by name stable. */
509
510static int
511addrs_section_compar (const void *ap, const void *bp)
512{
513 const struct other_sections *a = *((struct other_sections **) ap);
514 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 515 int retval;
82ccf5a5 516
1276c759 517 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
518 if (retval)
519 return retval;
520
5488dafb 521 return a->sectindex - b->sectindex;
82ccf5a5
JK
522}
523
524/* Provide sorted array of pointers to sections of ADDRS. The array is
525 terminated by NULL. Caller is responsible to call xfree for it. */
526
527static struct other_sections **
528addrs_section_sort (struct section_addr_info *addrs)
529{
530 struct other_sections **array;
531 int i;
532
533 /* `+ 1' for the NULL terminator. */
8d749320 534 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 535 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
536 array[i] = &addrs->other[i];
537 array[i] = NULL;
538
539 qsort (array, i, sizeof (*array), addrs_section_compar);
540
541 return array;
542}
543
75242ef4 544/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
545 also SECTINDEXes specific to ABFD there. This function can be used to
546 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
547
548void
549addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
550{
551 asection *lower_sect;
75242ef4
JK
552 CORE_ADDR lower_offset;
553 int i;
82ccf5a5
JK
554 struct cleanup *my_cleanup;
555 struct section_addr_info *abfd_addrs;
556 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
557 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
558
559 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
560 continguous sections. */
561 lower_sect = NULL;
562 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
563 if (lower_sect == NULL)
564 {
565 warning (_("no loadable sections found in added symbol-file %s"),
566 bfd_get_filename (abfd));
567 lower_offset = 0;
e8289572 568 }
75242ef4
JK
569 else
570 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
571
82ccf5a5
JK
572 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
573 in ABFD. Section names are not unique - there can be multiple sections of
574 the same name. Also the sections of the same name do not have to be
575 adjacent to each other. Some sections may be present only in one of the
576 files. Even sections present in both files do not have to be in the same
577 order.
578
579 Use stable sort by name for the sections in both files. Then linearly
580 scan both lists matching as most of the entries as possible. */
581
582 addrs_sorted = addrs_section_sort (addrs);
583 my_cleanup = make_cleanup (xfree, addrs_sorted);
584
585 abfd_addrs = build_section_addr_info_from_bfd (abfd);
586 make_cleanup_free_section_addr_info (abfd_addrs);
587 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
588 make_cleanup (xfree, abfd_addrs_sorted);
589
c378eb4e
MS
590 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
591 ABFD_ADDRS_SORTED. */
82ccf5a5 592
8d749320 593 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
594 make_cleanup (xfree, addrs_to_abfd_addrs);
595
596 while (*addrs_sorted)
597 {
1276c759 598 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
599
600 while (*abfd_addrs_sorted
1276c759
JK
601 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
602 sect_name) < 0)
82ccf5a5
JK
603 abfd_addrs_sorted++;
604
605 if (*abfd_addrs_sorted
1276c759
JK
606 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
607 sect_name) == 0)
82ccf5a5
JK
608 {
609 int index_in_addrs;
610
611 /* Make the found item directly addressable from ADDRS. */
612 index_in_addrs = *addrs_sorted - addrs->other;
613 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
614 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
615
616 /* Never use the same ABFD entry twice. */
617 abfd_addrs_sorted++;
618 }
619
620 addrs_sorted++;
621 }
622
75242ef4
JK
623 /* Calculate offsets for the loadable sections.
624 FIXME! Sections must be in order of increasing loadable section
625 so that contiguous sections can use the lower-offset!!!
626
627 Adjust offsets if the segments are not contiguous.
628 If the section is contiguous, its offset should be set to
629 the offset of the highest loadable section lower than it
630 (the loadable section directly below it in memory).
631 this_offset = lower_offset = lower_addr - lower_orig_addr */
632
d76488d8 633 for (i = 0; i < addrs->num_sections; i++)
75242ef4 634 {
82ccf5a5 635 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
636
637 if (sect)
75242ef4 638 {
c378eb4e 639 /* This is the index used by BFD. */
82ccf5a5 640 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
641
642 if (addrs->other[i].addr != 0)
75242ef4 643 {
82ccf5a5 644 addrs->other[i].addr -= sect->addr;
75242ef4 645 lower_offset = addrs->other[i].addr;
75242ef4
JK
646 }
647 else
672d9c23 648 addrs->other[i].addr = lower_offset;
75242ef4
JK
649 }
650 else
672d9c23 651 {
1276c759
JK
652 /* addr_section_name transformation is not used for SECT_NAME. */
653 const char *sect_name = addrs->other[i].name;
654
b0fcb67f
JK
655 /* This section does not exist in ABFD, which is normally
656 unexpected and we want to issue a warning.
657
4d9743af
JK
658 However, the ELF prelinker does create a few sections which are
659 marked in the main executable as loadable (they are loaded in
660 memory from the DYNAMIC segment) and yet are not present in
661 separate debug info files. This is fine, and should not cause
662 a warning. Shared libraries contain just the section
663 ".gnu.liblist" but it is not marked as loadable there. There is
664 no other way to identify them than by their name as the sections
1276c759
JK
665 created by prelink have no special flags.
666
667 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
668
669 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 670 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
671 || (strcmp (sect_name, ".bss") == 0
672 && i > 0
673 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
674 && addrs_to_abfd_addrs[i - 1] != NULL)
675 || (strcmp (sect_name, ".sbss") == 0
676 && i > 0
677 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
678 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
679 warning (_("section %s not found in %s"), sect_name,
680 bfd_get_filename (abfd));
681
672d9c23 682 addrs->other[i].addr = 0;
5488dafb 683 addrs->other[i].sectindex = -1;
672d9c23 684 }
75242ef4 685 }
82ccf5a5
JK
686
687 do_cleanups (my_cleanup);
75242ef4
JK
688}
689
690/* Parse the user's idea of an offset for dynamic linking, into our idea
691 of how to represent it for fast symbol reading. This is the default
692 version of the sym_fns.sym_offsets function for symbol readers that
693 don't need to do anything special. It allocates a section_offsets table
694 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
695
696void
697default_symfile_offsets (struct objfile *objfile,
3189cb12 698 const struct section_addr_info *addrs)
75242ef4 699{
d445b2f6 700 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
701 objfile->section_offsets = (struct section_offsets *)
702 obstack_alloc (&objfile->objfile_obstack,
703 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
704 relative_addr_info_to_section_offsets (objfile->section_offsets,
705 objfile->num_sections, addrs);
e8289572 706
c1bd25fd
DJ
707 /* For relocatable files, all loadable sections will start at zero.
708 The zero is meaningless, so try to pick arbitrary addresses such
709 that no loadable sections overlap. This algorithm is quadratic,
710 but the number of sections in a single object file is generally
711 small. */
712 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
713 {
714 struct place_section_arg arg;
2711e456
DJ
715 bfd *abfd = objfile->obfd;
716 asection *cur_sec;
2711e456
DJ
717
718 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
719 /* We do not expect this to happen; just skip this step if the
720 relocatable file has a section with an assigned VMA. */
721 if (bfd_section_vma (abfd, cur_sec) != 0)
722 break;
723
724 if (cur_sec == NULL)
725 {
726 CORE_ADDR *offsets = objfile->section_offsets->offsets;
727
728 /* Pick non-overlapping offsets for sections the user did not
729 place explicitly. */
730 arg.offsets = objfile->section_offsets;
731 arg.lowest = 0;
732 bfd_map_over_sections (objfile->obfd, place_section, &arg);
733
734 /* Correctly filling in the section offsets is not quite
735 enough. Relocatable files have two properties that
736 (most) shared objects do not:
737
738 - Their debug information will contain relocations. Some
739 shared libraries do also, but many do not, so this can not
740 be assumed.
741
742 - If there are multiple code sections they will be loaded
743 at different relative addresses in memory than they are
744 in the objfile, since all sections in the file will start
745 at address zero.
746
747 Because GDB has very limited ability to map from an
748 address in debug info to the correct code section,
749 it relies on adding SECT_OFF_TEXT to things which might be
750 code. If we clear all the section offsets, and set the
751 section VMAs instead, then symfile_relocate_debug_section
752 will return meaningful debug information pointing at the
753 correct sections.
754
755 GDB has too many different data structures for section
756 addresses - a bfd, objfile, and so_list all have section
757 tables, as does exec_ops. Some of these could probably
758 be eliminated. */
759
760 for (cur_sec = abfd->sections; cur_sec != NULL;
761 cur_sec = cur_sec->next)
762 {
763 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
764 continue;
765
766 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
767 exec_set_section_address (bfd_get_filename (abfd),
768 cur_sec->index,
30510692 769 offsets[cur_sec->index]);
2711e456
DJ
770 offsets[cur_sec->index] = 0;
771 }
772 }
c1bd25fd
DJ
773 }
774
e8289572 775 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 776 .rodata sections. */
e8289572
JB
777 init_objfile_sect_indices (objfile);
778}
779
31d99776
DJ
780/* Divide the file into segments, which are individual relocatable units.
781 This is the default version of the sym_fns.sym_segments function for
782 symbol readers that do not have an explicit representation of segments.
783 It assumes that object files do not have segments, and fully linked
784 files have a single segment. */
785
786struct symfile_segment_data *
787default_symfile_segments (bfd *abfd)
788{
789 int num_sections, i;
790 asection *sect;
791 struct symfile_segment_data *data;
792 CORE_ADDR low, high;
793
794 /* Relocatable files contain enough information to position each
795 loadable section independently; they should not be relocated
796 in segments. */
797 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
798 return NULL;
799
800 /* Make sure there is at least one loadable section in the file. */
801 for (sect = abfd->sections; sect != NULL; sect = sect->next)
802 {
803 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
804 continue;
805
806 break;
807 }
808 if (sect == NULL)
809 return NULL;
810
811 low = bfd_get_section_vma (abfd, sect);
812 high = low + bfd_get_section_size (sect);
813
41bf6aca 814 data = XCNEW (struct symfile_segment_data);
31d99776 815 data->num_segments = 1;
fc270c35
TT
816 data->segment_bases = XCNEW (CORE_ADDR);
817 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
818
819 num_sections = bfd_count_sections (abfd);
fc270c35 820 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
821
822 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
823 {
824 CORE_ADDR vma;
825
826 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
827 continue;
828
829 vma = bfd_get_section_vma (abfd, sect);
830 if (vma < low)
831 low = vma;
832 if (vma + bfd_get_section_size (sect) > high)
833 high = vma + bfd_get_section_size (sect);
834
835 data->segment_info[i] = 1;
836 }
837
838 data->segment_bases[0] = low;
839 data->segment_sizes[0] = high - low;
840
841 return data;
842}
843
608e2dbb
TT
844/* This is a convenience function to call sym_read for OBJFILE and
845 possibly force the partial symbols to be read. */
846
847static void
b15cc25c 848read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
849{
850 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 851 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
852
853 /* find_separate_debug_file_in_section should be called only if there is
854 single binary with no existing separate debug info file. */
855 if (!objfile_has_partial_symbols (objfile)
856 && objfile->separate_debug_objfile == NULL
857 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 858 {
192b62ce 859 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
860
861 if (abfd != NULL)
24ba069a
JK
862 {
863 /* find_separate_debug_file_in_section uses the same filename for the
864 virtual section-as-bfd like the bfd filename containing the
865 section. Therefore use also non-canonical name form for the same
866 file containing the section. */
192b62ce
TT
867 symbol_file_add_separate (abfd.get (), objfile->original_name,
868 add_flags, objfile);
24ba069a 869 }
608e2dbb
TT
870 }
871 if ((add_flags & SYMFILE_NO_READ) == 0)
872 require_partial_symbols (objfile, 0);
873}
874
3d6e24f0
JB
875/* Initialize entry point information for this objfile. */
876
877static void
878init_entry_point_info (struct objfile *objfile)
879{
6ef55de7
TT
880 struct entry_info *ei = &objfile->per_bfd->ei;
881
882 if (ei->initialized)
883 return;
884 ei->initialized = 1;
885
3d6e24f0
JB
886 /* Save startup file's range of PC addresses to help blockframe.c
887 decide where the bottom of the stack is. */
888
889 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
890 {
891 /* Executable file -- record its entry point so we'll recognize
892 the startup file because it contains the entry point. */
6ef55de7
TT
893 ei->entry_point = bfd_get_start_address (objfile->obfd);
894 ei->entry_point_p = 1;
3d6e24f0
JB
895 }
896 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
897 && bfd_get_start_address (objfile->obfd) != 0)
898 {
899 /* Some shared libraries may have entry points set and be
900 runnable. There's no clear way to indicate this, so just check
901 for values other than zero. */
6ef55de7
TT
902 ei->entry_point = bfd_get_start_address (objfile->obfd);
903 ei->entry_point_p = 1;
3d6e24f0
JB
904 }
905 else
906 {
907 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 908 ei->entry_point_p = 0;
3d6e24f0
JB
909 }
910
6ef55de7 911 if (ei->entry_point_p)
3d6e24f0 912 {
53eddfa6 913 struct obj_section *osect;
6ef55de7 914 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 915 int found;
3d6e24f0
JB
916
917 /* Make certain that the address points at real code, and not a
918 function descriptor. */
919 entry_point
df6d5441 920 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
921 entry_point,
922 &current_target);
923
924 /* Remove any ISA markers, so that this matches entries in the
925 symbol table. */
6ef55de7 926 ei->entry_point
df6d5441 927 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
928
929 found = 0;
930 ALL_OBJFILE_OSECTIONS (objfile, osect)
931 {
932 struct bfd_section *sect = osect->the_bfd_section;
933
934 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
935 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
936 + bfd_get_section_size (sect)))
937 {
6ef55de7 938 ei->the_bfd_section_index
53eddfa6
TT
939 = gdb_bfd_section_index (objfile->obfd, sect);
940 found = 1;
941 break;
942 }
943 }
944
945 if (!found)
6ef55de7 946 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
947 }
948}
949
c906108c
SS
950/* Process a symbol file, as either the main file or as a dynamically
951 loaded file.
952
36e4d068
JB
953 This function does not set the OBJFILE's entry-point info.
954
96baa820
JM
955 OBJFILE is where the symbols are to be read from.
956
7e8580c1
JB
957 ADDRS is the list of section load addresses. If the user has given
958 an 'add-symbol-file' command, then this is the list of offsets and
959 addresses he or she provided as arguments to the command; or, if
960 we're handling a shared library, these are the actual addresses the
961 sections are loaded at, according to the inferior's dynamic linker
962 (as gleaned by GDB's shared library code). We convert each address
963 into an offset from the section VMA's as it appears in the object
964 file, and then call the file's sym_offsets function to convert this
965 into a format-specific offset table --- a `struct section_offsets'.
96baa820 966
7eedccfa
PP
967 ADD_FLAGS encodes verbosity level, whether this is main symbol or
968 an extra symbol file such as dynamically loaded code, and wether
969 breakpoint reset should be deferred. */
c906108c 970
36e4d068
JB
971static void
972syms_from_objfile_1 (struct objfile *objfile,
973 struct section_addr_info *addrs,
b15cc25c 974 symfile_add_flags add_flags)
c906108c 975{
a39a16c4 976 struct section_addr_info *local_addr = NULL;
c906108c 977 struct cleanup *old_chain;
7eedccfa 978 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 979
8fb8eb5c 980 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 981
75245b24 982 if (objfile->sf == NULL)
36e4d068
JB
983 {
984 /* No symbols to load, but we still need to make sure
985 that the section_offsets table is allocated. */
d445b2f6 986 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
988
989 objfile->num_sections = num_sections;
990 objfile->section_offsets
224c3ddb
SM
991 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
992 size);
36e4d068
JB
993 memset (objfile->section_offsets, 0, size);
994 return;
995 }
75245b24 996
c906108c
SS
997 /* Make sure that partially constructed symbol tables will be cleaned up
998 if an error occurs during symbol reading. */
74b7792f 999 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1000
6bf667bb
DE
1001 /* If ADDRS is NULL, put together a dummy address list.
1002 We now establish the convention that an addr of zero means
c378eb4e 1003 no load address was specified. */
6bf667bb 1004 if (! addrs)
a39a16c4 1005 {
d445b2f6 1006 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1007 make_cleanup (xfree, local_addr);
1008 addrs = local_addr;
1009 }
1010
c5aa993b 1011 if (mainline)
c906108c
SS
1012 {
1013 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1014 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1015 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1016
1017 /* Since no error yet, throw away the old symbol table. */
1018
1019 if (symfile_objfile != NULL)
1020 {
1021 free_objfile (symfile_objfile);
adb7f338 1022 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1023 }
1024
1025 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1026 If the user wants to get rid of them, they should do "symbol-file"
1027 without arguments first. Not sure this is the best behavior
1028 (PR 2207). */
c906108c 1029
c5aa993b 1030 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1031 }
1032
1033 /* Convert addr into an offset rather than an absolute address.
1034 We find the lowest address of a loaded segment in the objfile,
53a5351d 1035 and assume that <addr> is where that got loaded.
c906108c 1036
53a5351d
JM
1037 We no longer warn if the lowest section is not a text segment (as
1038 happens for the PA64 port. */
6bf667bb 1039 if (addrs->num_sections > 0)
75242ef4 1040 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1041
1042 /* Initialize symbol reading routines for this objfile, allow complaints to
1043 appear for this new file, and record how verbose to be, then do the
c378eb4e 1044 initial symbol reading for this file. */
c906108c 1045
c5aa993b 1046 (*objfile->sf->sym_init) (objfile);
7eedccfa 1047 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1048
6bf667bb 1049 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1050
608e2dbb 1051 read_symbols (objfile, add_flags);
b11896a5 1052
c906108c
SS
1053 /* Discard cleanups as symbol reading was successful. */
1054
1055 discard_cleanups (old_chain);
f7545552 1056 xfree (local_addr);
c906108c
SS
1057}
1058
36e4d068
JB
1059/* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
6bf667bb 1062static void
36e4d068
JB
1063syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
b15cc25c 1065 symfile_add_flags add_flags)
36e4d068 1066{
6bf667bb 1067 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1068 init_entry_point_info (objfile);
1069}
1070
c906108c
SS
1071/* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1074
e7d52ed3 1075static void
b15cc25c 1076finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1077{
c906108c 1078 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1079 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1080 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1081 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
c1e56572 1086 clear_symtab_users (add_flags);
c906108c 1087 }
7eedccfa 1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1089 {
69de3c6a 1090 breakpoint_re_set ();
c906108c
SS
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1095}
1096
1097/* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
5417f6dc 1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1101 A new reference is acquired by this function.
7904e09f 1102
24ba069a
JK
1103 For NAME description see allocate_objfile's definition.
1104
7eedccfa
PP
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1107
6bf667bb 1108 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1110
63524580
JK
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
c906108c 1114 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1115 Upon failure, jumps back to command level (never returns). */
7eedccfa 1116
7904e09f 1117static struct objfile *
b15cc25c
PA
1118symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
6bf667bb 1120 struct section_addr_info *addrs,
b15cc25c 1121 objfile_flags flags, struct objfile *parent)
c906108c
SS
1122{
1123 struct objfile *objfile;
7eedccfa 1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1125 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1129
9291a0cd 1130 if (readnow_symbol_files)
b11896a5
TT
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
9291a0cd 1135
5417f6dc
RM
1136 /* Give user a chance to burp if we'd be
1137 interactively wiping out any existing symbols. */
c906108c
SS
1138
1139 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1140 && mainline
c906108c 1141 && from_tty
9e2f0ad4 1142 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1143 error (_("Not confirmed."));
c906108c 1144
b15cc25c
PA
1145 if (mainline)
1146 flags |= OBJF_MAINLINE;
1147 objfile = allocate_objfile (abfd, name, flags);
c906108c 1148
63524580
JK
1149 if (parent)
1150 add_separate_debug_objfile (objfile, parent);
1151
78a4a9b9
AC
1152 /* We either created a new mapped symbol table, mapped an existing
1153 symbol table file which has not had initial symbol reading
c378eb4e 1154 performed, or need to read an unmapped symbol table. */
b11896a5 1155 if (should_print)
c906108c 1156 {
769d7dc4
AC
1157 if (deprecated_pre_add_symbol_hook)
1158 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1159 else
c906108c 1160 {
55333a84
DE
1161 printf_unfiltered (_("Reading symbols from %s..."), name);
1162 wrap_here ("");
1163 gdb_flush (gdb_stdout);
c906108c 1164 }
c906108c 1165 }
6bf667bb 1166 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1167
1168 /* We now have at least a partial symbol table. Check to see if the
1169 user requested that all symbols be read on initial access via either
1170 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1171 all partial symbol tables for this objfile if so. */
c906108c 1172
9291a0cd 1173 if ((flags & OBJF_READNOW))
c906108c 1174 {
b11896a5 1175 if (should_print)
c906108c 1176 {
a3f17187 1177 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1178 wrap_here ("");
1179 gdb_flush (gdb_stdout);
1180 }
1181
ccefe4c4
TT
1182 if (objfile->sf)
1183 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1184 }
1185
b11896a5 1186 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1187 {
1188 wrap_here ("");
55333a84 1189 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1190 wrap_here ("");
1191 }
1192
b11896a5 1193 if (should_print)
c906108c 1194 {
769d7dc4
AC
1195 if (deprecated_post_add_symbol_hook)
1196 deprecated_post_add_symbol_hook ();
c906108c 1197 else
55333a84 1198 printf_unfiltered (_("done.\n"));
c906108c
SS
1199 }
1200
481d0f41
JB
1201 /* We print some messages regardless of whether 'from_tty ||
1202 info_verbose' is true, so make sure they go out at the right
1203 time. */
1204 gdb_flush (gdb_stdout);
1205
109f874e 1206 if (objfile->sf == NULL)
8caee43b
PP
1207 {
1208 observer_notify_new_objfile (objfile);
c378eb4e 1209 return objfile; /* No symbols. */
8caee43b 1210 }
109f874e 1211
e7d52ed3 1212 finish_new_objfile (objfile, add_flags);
c906108c 1213
06d3b283 1214 observer_notify_new_objfile (objfile);
c906108c 1215
ce7d4522 1216 bfd_cache_close_all ();
c906108c
SS
1217 return (objfile);
1218}
1219
24ba069a
JK
1220/* Add BFD as a separate debug file for OBJFILE. For NAME description
1221 see allocate_objfile's definition. */
9cce227f
TG
1222
1223void
b15cc25c
PA
1224symbol_file_add_separate (bfd *bfd, const char *name,
1225 symfile_add_flags symfile_flags,
24ba069a 1226 struct objfile *objfile)
9cce227f 1227{
089b4803
TG
1228 struct section_addr_info *sap;
1229 struct cleanup *my_cleanup;
1230
1231 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1232 because sections of BFD may not match sections of OBJFILE and because
1233 vma may have been modified by tools such as prelink. */
1234 sap = build_section_addr_info_from_objfile (objfile);
1235 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1236
870f88f7 1237 symbol_file_add_with_addrs
24ba069a 1238 (bfd, name, symfile_flags, sap,
9cce227f 1239 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1240 | OBJF_USERLOADED),
1241 objfile);
089b4803
TG
1242
1243 do_cleanups (my_cleanup);
9cce227f 1244}
7904e09f 1245
eb4556d7
JB
1246/* Process the symbol file ABFD, as either the main file or as a
1247 dynamically loaded file.
6bf667bb 1248 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1249
eb4556d7 1250struct objfile *
b15cc25c
PA
1251symbol_file_add_from_bfd (bfd *abfd, const char *name,
1252 symfile_add_flags add_flags,
eb4556d7 1253 struct section_addr_info *addrs,
b15cc25c 1254 objfile_flags flags, struct objfile *parent)
eb4556d7 1255{
24ba069a
JK
1256 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1257 parent);
eb4556d7
JB
1258}
1259
7904e09f 1260/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1261 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1262
7904e09f 1263struct objfile *
b15cc25c
PA
1264symbol_file_add (const char *name, symfile_add_flags add_flags,
1265 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1266{
192b62ce 1267 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1268
192b62ce
TT
1269 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1270 flags, NULL);
7904e09f
JB
1271}
1272
d7db6da9
FN
1273/* Call symbol_file_add() with default values and update whatever is
1274 affected by the loading of a new main().
1275 Used when the file is supplied in the gdb command line
1276 and by some targets with special loading requirements.
1277 The auxiliary function, symbol_file_add_main_1(), has the flags
1278 argument for the switches that can only be specified in the symbol_file
1279 command itself. */
5417f6dc 1280
1adeb98a 1281void
ecf45d2c 1282symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1283{
ecf45d2c 1284 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1285}
1286
1287static void
ecf45d2c
SL
1288symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1289 objfile_flags flags)
d7db6da9 1290{
ecf45d2c 1291 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1292
7eedccfa 1293 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1294
d7db6da9
FN
1295 /* Getting new symbols may change our opinion about
1296 what is frameless. */
1297 reinit_frame_cache ();
1298
b15cc25c 1299 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1300 set_initial_language ();
1adeb98a
FN
1301}
1302
1303void
1304symbol_file_clear (int from_tty)
1305{
1306 if ((have_full_symbols () || have_partial_symbols ())
1307 && from_tty
0430b0d6
AS
1308 && (symfile_objfile
1309 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1310 objfile_name (symfile_objfile))
0430b0d6 1311 : !query (_("Discard symbol table? "))))
8a3fe4f8 1312 error (_("Not confirmed."));
1adeb98a 1313
0133421a
JK
1314 /* solib descriptors may have handles to objfiles. Wipe them before their
1315 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1316 no_shared_libraries (NULL, from_tty);
1317
0133421a
JK
1318 free_all_objfiles ();
1319
adb7f338 1320 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1321 if (from_tty)
1322 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1323}
1324
c4dcb155
SM
1325/* See symfile.h. */
1326
1327int separate_debug_file_debug = 0;
1328
5b5d99cf 1329static int
287ccc17 1330separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1331 struct objfile *parent_objfile)
5b5d99cf 1332{
904578ed
JK
1333 unsigned long file_crc;
1334 int file_crc_p;
32a0e547 1335 struct stat parent_stat, abfd_stat;
904578ed 1336 int verified_as_different;
32a0e547
JK
1337
1338 /* Find a separate debug info file as if symbols would be present in
1339 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1340 section can contain just the basename of PARENT_OBJFILE without any
1341 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1342 the separate debug infos with the same basename can exist. */
32a0e547 1343
4262abfb 1344 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1345 return 0;
5b5d99cf 1346
c4dcb155
SM
1347 if (separate_debug_file_debug)
1348 printf_unfiltered (_(" Trying %s\n"), name);
1349
192b62ce 1350 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1351
192b62ce 1352 if (abfd == NULL)
5b5d99cf
JB
1353 return 0;
1354
0ba1096a 1355 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1356
1357 Some operating systems, e.g. Windows, do not provide a meaningful
1358 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1359 meaningful st_dev.) Files accessed from gdbservers that do not
1360 support the vFile:fstat packet will also have st_ino set to zero.
1361 Do not indicate a duplicate library in either case. While there
1362 is no guarantee that a system that provides meaningful inode
1363 numbers will never set st_ino to zero, this is merely an
1364 optimization, so we do not need to worry about false negatives. */
32a0e547 1365
192b62ce 1366 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1367 && abfd_stat.st_ino != 0
1368 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1369 {
904578ed
JK
1370 if (abfd_stat.st_dev == parent_stat.st_dev
1371 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1372 return 0;
904578ed 1373 verified_as_different = 1;
32a0e547 1374 }
904578ed
JK
1375 else
1376 verified_as_different = 0;
32a0e547 1377
192b62ce 1378 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1379
904578ed
JK
1380 if (!file_crc_p)
1381 return 0;
1382
287ccc17
JK
1383 if (crc != file_crc)
1384 {
dccee2de
TT
1385 unsigned long parent_crc;
1386
0a93529c
GB
1387 /* If the files could not be verified as different with
1388 bfd_stat then we need to calculate the parent's CRC
1389 to verify whether the files are different or not. */
904578ed 1390
dccee2de 1391 if (!verified_as_different)
904578ed 1392 {
dccee2de 1393 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1394 return 0;
1395 }
1396
dccee2de 1397 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1398 warning (_("the debug information found in \"%s\""
1399 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1400 name, objfile_name (parent_objfile));
904578ed 1401
287ccc17
JK
1402 return 0;
1403 }
1404
1405 return 1;
5b5d99cf
JB
1406}
1407
aa28a74e 1408char *debug_file_directory = NULL;
920d2a44
AC
1409static void
1410show_debug_file_directory (struct ui_file *file, int from_tty,
1411 struct cmd_list_element *c, const char *value)
1412{
3e43a32a
MS
1413 fprintf_filtered (file,
1414 _("The directory where separate debug "
1415 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1416 value);
1417}
5b5d99cf
JB
1418
1419#if ! defined (DEBUG_SUBDIRECTORY)
1420#define DEBUG_SUBDIRECTORY ".debug"
1421#endif
1422
1db33378
PP
1423/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1424 where the original file resides (may not be the same as
1425 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1426 looking for. CANON_DIR is the "realpath" form of DIR.
1427 DIR must contain a trailing '/'.
1428 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1429
1430static char *
1431find_separate_debug_file (const char *dir,
1432 const char *canon_dir,
1433 const char *debuglink,
1434 unsigned long crc32, struct objfile *objfile)
9cce227f 1435{
1db33378
PP
1436 char *debugdir;
1437 char *debugfile;
9cce227f 1438 int i;
e4ab2fad
JK
1439 VEC (char_ptr) *debugdir_vec;
1440 struct cleanup *back_to;
1441 int ix;
5b5d99cf 1442
c4dcb155
SM
1443 if (separate_debug_file_debug)
1444 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1445 "%s\n"), objfile_name (objfile));
1446
325fac50 1447 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1448 i = strlen (dir);
1db33378
PP
1449 if (canon_dir != NULL && strlen (canon_dir) > i)
1450 i = strlen (canon_dir);
1ffa32ee 1451
224c3ddb
SM
1452 debugfile
1453 = (char *) xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1457 + strlen (debuglink)
1458 + 1);
5b5d99cf
JB
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1db33378 1462 strcat (debugfile, debuglink);
5b5d99cf 1463
32a0e547 1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1465 return debugfile;
5417f6dc 1466
5b5d99cf
JB
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1db33378 1471 strcat (debugfile, debuglink);
5b5d99cf 1472
32a0e547 1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1474 return debugfile;
5417f6dc 1475
24ddea62 1476 /* Then try in the global debugfile directories.
f888f159 1477
24ddea62
JK
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
5417f6dc 1480
e4ab2fad
JK
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1483
e4ab2fad
JK
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
aa28a74e 1487 strcat (debugfile, "/");
24ddea62 1488 strcat (debugfile, dir);
1db33378 1489 strcat (debugfile, debuglink);
aa28a74e 1490
32a0e547 1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
24ddea62
JK
1496
1497 /* If the file is in the sysroot, try using its base path in the
1498 global debugfile directory. */
1db33378
PP
1499 if (canon_dir != NULL
1500 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1501 strlen (gdb_sysroot)) == 0
1db33378 1502 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1503 {
e4ab2fad 1504 strcpy (debugfile, debugdir);
1db33378 1505 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1506 strcat (debugfile, "/");
1db33378 1507 strcat (debugfile, debuglink);
24ddea62 1508
32a0e547 1509 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1510 {
1511 do_cleanups (back_to);
1512 return debugfile;
1513 }
24ddea62 1514 }
aa28a74e 1515 }
f888f159 1516
e4ab2fad 1517 do_cleanups (back_to);
25522fae 1518 xfree (debugfile);
1db33378
PP
1519 return NULL;
1520}
1521
7edbb660 1522/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1523 If there were no directory separators in PATH, PATH will be empty
1524 string on return. */
1525
1526static void
1527terminate_after_last_dir_separator (char *path)
1528{
1529 int i;
1530
1531 /* Strip off the final filename part, leaving the directory name,
1532 followed by a slash. The directory can be relative or absolute. */
1533 for (i = strlen(path) - 1; i >= 0; i--)
1534 if (IS_DIR_SEPARATOR (path[i]))
1535 break;
1536
1537 /* If I is -1 then no directory is present there and DIR will be "". */
1538 path[i + 1] = '\0';
1539}
1540
1541/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1542 Returns pathname, or NULL. */
1543
1544char *
1545find_separate_debug_file_by_debuglink (struct objfile *objfile)
1546{
1547 char *debuglink;
1548 char *dir, *canon_dir;
1549 char *debugfile;
1550 unsigned long crc32;
1551 struct cleanup *cleanups;
1552
cc0ea93c 1553 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1554
1555 if (debuglink == NULL)
1556 {
1557 /* There's no separate debug info, hence there's no way we could
1558 load it => no warning. */
1559 return NULL;
1560 }
1561
71bdabee 1562 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1563 dir = xstrdup (objfile_name (objfile));
71bdabee 1564 make_cleanup (xfree, dir);
1db33378
PP
1565 terminate_after_last_dir_separator (dir);
1566 canon_dir = lrealpath (dir);
1567
1568 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1569 crc32, objfile);
1570 xfree (canon_dir);
1571
1572 if (debugfile == NULL)
1573 {
1db33378
PP
1574 /* For PR gdb/9538, try again with realpath (if different from the
1575 original). */
1576
1577 struct stat st_buf;
1578
4262abfb
JK
1579 if (lstat (objfile_name (objfile), &st_buf) == 0
1580 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1581 {
1582 char *symlink_dir;
1583
4262abfb 1584 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1585 if (symlink_dir != NULL)
1586 {
1587 make_cleanup (xfree, symlink_dir);
1588 terminate_after_last_dir_separator (symlink_dir);
1589 if (strcmp (dir, symlink_dir) != 0)
1590 {
1591 /* Different directory, so try using it. */
1592 debugfile = find_separate_debug_file (symlink_dir,
1593 symlink_dir,
1594 debuglink,
1595 crc32,
1596 objfile);
1597 }
1598 }
1599 }
1db33378 1600 }
aa28a74e 1601
1db33378 1602 do_cleanups (cleanups);
25522fae 1603 return debugfile;
5b5d99cf
JB
1604}
1605
c906108c
SS
1606/* This is the symbol-file command. Read the file, analyze its
1607 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1608 the command is rather bizarre:
1609
1610 1. The function buildargv implements various quoting conventions
1611 which are undocumented and have little or nothing in common with
1612 the way things are quoted (or not quoted) elsewhere in GDB.
1613
1614 2. Options are used, which are not generally used in GDB (perhaps
1615 "set mapped on", "set readnow on" would be better)
1616
1617 3. The order of options matters, which is contrary to GNU
c906108c
SS
1618 conventions (because it is confusing and inconvenient). */
1619
1620void
1d8b34a7 1621symbol_file_command (const char *args, int from_tty)
c906108c 1622{
c906108c
SS
1623 dont_repeat ();
1624
1625 if (args == NULL)
1626 {
1adeb98a 1627 symbol_file_clear (from_tty);
c906108c
SS
1628 }
1629 else
1630 {
b15cc25c 1631 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1632 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1633 char *name = NULL;
1634
ecf45d2c
SL
1635 if (from_tty)
1636 add_flags |= SYMFILE_VERBOSE;
1637
773a1edc
TT
1638 gdb_argv built_argv (args);
1639 for (char *arg : built_argv)
c906108c 1640 {
773a1edc 1641 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1642 flags |= OBJF_READNOW;
773a1edc
TT
1643 else if (*arg == '-')
1644 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1645 else
1646 {
773a1edc
TT
1647 symbol_file_add_main_1 (arg, add_flags, flags);
1648 name = arg;
78a4a9b9 1649 }
c906108c
SS
1650 }
1651
1652 if (name == NULL)
cb2f3a29 1653 error (_("no symbol file name was specified"));
c906108c
SS
1654 }
1655}
1656
1657/* Set the initial language.
1658
cb2f3a29
MK
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
c906108c 1667
8b60591b 1668void
fba45db2 1669set_initial_language (void)
c906108c 1670{
9e6c82ad 1671 enum language lang = main_language ();
c906108c 1672
9e6c82ad 1673 if (lang == language_unknown)
01f8c46d 1674 {
bf6d8a91 1675 char *name = main_name ();
d12307c1 1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1677
bf6d8a91
TT
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1680 }
cb2f3a29 1681
ccefe4c4
TT
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
c906108c 1686 }
ccefe4c4
TT
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1690}
1691
cb2f3a29
MK
1692/* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
c906108c 1696
192b62ce 1697gdb_bfd_ref_ptr
97a41605 1698symfile_bfd_open (const char *name)
c906108c 1699{
97a41605
GB
1700 int desc = -1;
1701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1702
97a41605 1703 if (!is_target_filename (name))
f1838a98 1704 {
ee0c3293 1705 char *absolute_name;
f1838a98 1706
ee0c3293 1707 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1708
97a41605
GB
1709 /* Look down path for it, allocate 2nd new malloc'd copy. */
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1712 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1713#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1714 if (desc < 0)
1715 {
ee0c3293 1716 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1717
ee0c3293 1718 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 exename, O_RDONLY | O_BINARY, &absolute_name);
1722 }
c906108c 1723#endif
97a41605 1724 if (desc < 0)
ee0c3293 1725 perror_with_name (expanded_name.get ());
cb2f3a29 1726
97a41605
GB
1727 make_cleanup (xfree, absolute_name);
1728 name = absolute_name;
1729 }
c906108c 1730
192b62ce
TT
1731 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1732 if (sym_bfd == NULL)
faab9922
JK
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
97a41605 1735
192b62ce
TT
1736 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1737 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1738
192b62ce
TT
1739 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1742
faab9922
JK
1743 do_cleanups (back_to);
1744
cb2f3a29 1745 return sym_bfd;
c906108c
SS
1746}
1747
cb2f3a29
MK
1748/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1749 the section was not found. */
1750
0e931cf0 1751int
a121b7c1 1752get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1753{
1754 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1755
0e931cf0
JB
1756 if (sect)
1757 return sect->index;
1758 else
1759 return -1;
1760}
1761
c256e171
DE
1762/* Link SF into the global symtab_fns list.
1763 FLAVOUR is the file format that SF handles.
1764 Called on startup by the _initialize routine in each object file format
1765 reader, to register information about each format the reader is prepared
1766 to handle. */
c906108c
SS
1767
1768void
c256e171 1769add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1770{
c256e171
DE
1771 registered_sym_fns fns = { flavour, sf };
1772
1773 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1774}
1775
cb2f3a29
MK
1776/* Initialize OBJFILE to read symbols from its associated BFD. It
1777 either returns or calls error(). The result is an initialized
1778 struct sym_fns in the objfile structure, that contains cached
1779 information about the symbol file. */
c906108c 1780
00b5771c 1781static const struct sym_fns *
31d99776 1782find_sym_fns (bfd *abfd)
c906108c 1783{
c256e171 1784 registered_sym_fns *rsf;
31d99776 1785 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1786 int i;
c906108c 1787
75245b24
MS
1788 if (our_flavour == bfd_target_srec_flavour
1789 || our_flavour == bfd_target_ihex_flavour
1790 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1791 return NULL; /* No symbols. */
75245b24 1792
c256e171
DE
1793 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1794 if (our_flavour == rsf->sym_flavour)
1795 return rsf->sym_fns;
cb2f3a29 1796
8a3fe4f8 1797 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1798 bfd_get_target (abfd));
c906108c
SS
1799}
1800\f
cb2f3a29 1801
c906108c
SS
1802/* This function runs the load command of our current target. */
1803
1804static void
fba45db2 1805load_command (char *arg, int from_tty)
c906108c 1806{
5b3fca71
TT
1807 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1808
e5cc9f32
JB
1809 dont_repeat ();
1810
4487aabf
PA
1811 /* The user might be reloading because the binary has changed. Take
1812 this opportunity to check. */
1813 reopen_exec_file ();
1814 reread_symbols ();
1815
c906108c 1816 if (arg == NULL)
1986bccd
AS
1817 {
1818 char *parg;
1819 int count = 0;
1820
1821 parg = arg = get_exec_file (1);
1822
1823 /* Count how many \ " ' tab space there are in the name. */
1824 while ((parg = strpbrk (parg, "\\\"'\t ")))
1825 {
1826 parg++;
1827 count++;
1828 }
1829
1830 if (count)
1831 {
1832 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1833 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1834 char *ptemp = temp;
1835 char *prev;
1836
1837 make_cleanup (xfree, temp);
1838
1839 prev = parg = arg;
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 strncpy (ptemp, prev, parg - prev);
1843 ptemp += parg - prev;
1844 prev = parg++;
1845 *ptemp++ = '\\';
1846 }
1847 strcpy (ptemp, prev);
1848
1849 arg = temp;
1850 }
1851 }
1852
c906108c 1853 target_load (arg, from_tty);
2889e661
JB
1854
1855 /* After re-loading the executable, we don't really know which
1856 overlays are mapped any more. */
1857 overlay_cache_invalid = 1;
5b3fca71
TT
1858
1859 do_cleanups (cleanup);
c906108c
SS
1860}
1861
1862/* This version of "load" should be usable for any target. Currently
1863 it is just used for remote targets, not inftarg.c or core files,
1864 on the theory that only in that case is it useful.
1865
1866 Avoiding xmodem and the like seems like a win (a) because we don't have
1867 to worry about finding it, and (b) On VMS, fork() is very slow and so
1868 we don't want to run a subprocess. On the other hand, I'm not sure how
1869 performance compares. */
917317f4 1870
917317f4
JM
1871static int validate_download = 0;
1872
e4f9b4d5
MS
1873/* Callback service function for generic_load (bfd_map_over_sections). */
1874
1875static void
1876add_section_size_callback (bfd *abfd, asection *asec, void *data)
1877{
19ba03f4 1878 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1879
2c500098 1880 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1881}
1882
1883/* Opaque data for load_section_callback. */
1884struct load_section_data {
f698ca8e 1885 CORE_ADDR load_offset;
a76d924d
DJ
1886 struct load_progress_data *progress_data;
1887 VEC(memory_write_request_s) *requests;
1888};
1889
1890/* Opaque data for load_progress. */
1891struct load_progress_data {
1892 /* Cumulative data. */
e4f9b4d5
MS
1893 unsigned long write_count;
1894 unsigned long data_count;
1895 bfd_size_type total_size;
a76d924d
DJ
1896};
1897
1898/* Opaque data for load_progress for a single section. */
1899struct load_progress_section_data {
1900 struct load_progress_data *cumulative;
cf7a04e8 1901
a76d924d 1902 /* Per-section data. */
cf7a04e8
DJ
1903 const char *section_name;
1904 ULONGEST section_sent;
1905 ULONGEST section_size;
1906 CORE_ADDR lma;
1907 gdb_byte *buffer;
e4f9b4d5
MS
1908};
1909
a76d924d 1910/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1911
1912static void
1913load_progress (ULONGEST bytes, void *untyped_arg)
1914{
19ba03f4
SM
1915 struct load_progress_section_data *args
1916 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1917 struct load_progress_data *totals;
1918
1919 if (args == NULL)
1920 /* Writing padding data. No easy way to get at the cumulative
1921 stats, so just ignore this. */
1922 return;
1923
1924 totals = args->cumulative;
1925
1926 if (bytes == 0 && args->section_sent == 0)
1927 {
1928 /* The write is just starting. Let the user know we've started
1929 this section. */
112e8700
SM
1930 current_uiout->message ("Loading section %s, size %s lma %s\n",
1931 args->section_name,
1932 hex_string (args->section_size),
1933 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1934 return;
1935 }
cf7a04e8
DJ
1936
1937 if (validate_download)
1938 {
1939 /* Broken memories and broken monitors manifest themselves here
1940 when bring new computers to life. This doubles already slow
1941 downloads. */
1942 /* NOTE: cagney/1999-10-18: A more efficient implementation
1943 might add a verify_memory() method to the target vector and
1944 then use that. remote.c could implement that method using
1945 the ``qCRC'' packet. */
0efef640 1946 gdb::byte_vector check (bytes);
cf7a04e8 1947
0efef640 1948 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1949 error (_("Download verify read failed at %s"),
f5656ead 1950 paddress (target_gdbarch (), args->lma));
0efef640 1951 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1952 error (_("Download verify compare failed at %s"),
f5656ead 1953 paddress (target_gdbarch (), args->lma));
cf7a04e8 1954 }
a76d924d 1955 totals->data_count += bytes;
cf7a04e8
DJ
1956 args->lma += bytes;
1957 args->buffer += bytes;
a76d924d 1958 totals->write_count += 1;
cf7a04e8 1959 args->section_sent += bytes;
522002f9 1960 if (check_quit_flag ()
cf7a04e8
DJ
1961 || (deprecated_ui_load_progress_hook != NULL
1962 && deprecated_ui_load_progress_hook (args->section_name,
1963 args->section_sent)))
1964 error (_("Canceled the download"));
1965
1966 if (deprecated_show_load_progress != NULL)
1967 deprecated_show_load_progress (args->section_name,
1968 args->section_sent,
1969 args->section_size,
a76d924d
DJ
1970 totals->data_count,
1971 totals->total_size);
cf7a04e8
DJ
1972}
1973
e4f9b4d5
MS
1974/* Callback service function for generic_load (bfd_map_over_sections). */
1975
1976static void
1977load_section_callback (bfd *abfd, asection *asec, void *data)
1978{
a76d924d 1979 struct memory_write_request *new_request;
19ba03f4 1980 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1981 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1982 bfd_size_type size = bfd_get_section_size (asec);
1983 gdb_byte *buffer;
cf7a04e8 1984 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1985
cf7a04e8
DJ
1986 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1987 return;
e4f9b4d5 1988
cf7a04e8
DJ
1989 if (size == 0)
1990 return;
e4f9b4d5 1991
a76d924d
DJ
1992 new_request = VEC_safe_push (memory_write_request_s,
1993 args->requests, NULL);
1994 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 1995 section_data = XCNEW (struct load_progress_section_data);
a76d924d 1996 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1997 new_request->end = new_request->begin + size; /* FIXME Should size
1998 be in instead? */
224c3ddb 1999 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2000 new_request->baton = section_data;
cf7a04e8 2001
a76d924d 2002 buffer = new_request->data;
cf7a04e8 2003
a76d924d
DJ
2004 section_data->cumulative = args->progress_data;
2005 section_data->section_name = sect_name;
2006 section_data->section_size = size;
2007 section_data->lma = new_request->begin;
2008 section_data->buffer = buffer;
cf7a04e8
DJ
2009
2010 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2011}
2012
2013/* Clean up an entire memory request vector, including load
2014 data and progress records. */
cf7a04e8 2015
a76d924d
DJ
2016static void
2017clear_memory_write_data (void *arg)
2018{
19ba03f4 2019 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2020 VEC(memory_write_request_s) *vec = *vec_p;
2021 int i;
2022 struct memory_write_request *mr;
cf7a04e8 2023
a76d924d
DJ
2024 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2025 {
2026 xfree (mr->data);
2027 xfree (mr->baton);
2028 }
2029 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2030}
2031
dcb07cfa
PA
2032static void print_transfer_performance (struct ui_file *stream,
2033 unsigned long data_count,
2034 unsigned long write_count,
2035 std::chrono::steady_clock::duration d);
2036
c906108c 2037void
9cbe5fff 2038generic_load (const char *args, int from_tty)
c906108c 2039{
773a1edc 2040 struct cleanup *old_cleanups;
e4f9b4d5 2041 struct load_section_data cbdata;
a76d924d 2042 struct load_progress_data total_progress;
79a45e25 2043 struct ui_out *uiout = current_uiout;
a76d924d 2044
e4f9b4d5
MS
2045 CORE_ADDR entry;
2046
a76d924d
DJ
2047 memset (&cbdata, 0, sizeof (cbdata));
2048 memset (&total_progress, 0, sizeof (total_progress));
2049 cbdata.progress_data = &total_progress;
2050
773a1edc 2051 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2052
d1a41061
PP
2053 if (args == NULL)
2054 error_no_arg (_("file to load"));
1986bccd 2055
773a1edc 2056 gdb_argv argv (args);
1986bccd 2057
ee0c3293 2058 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2059
2060 if (argv[1] != NULL)
917317f4 2061 {
f698ca8e 2062 const char *endptr;
ba5f2f8a 2063
f698ca8e 2064 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2065
2066 /* If the last word was not a valid number then
2067 treat it as a file name with spaces in. */
2068 if (argv[1] == endptr)
2069 error (_("Invalid download offset:%s."), argv[1]);
2070
2071 if (argv[2] != NULL)
2072 error (_("Too many parameters."));
917317f4 2073 }
c906108c 2074
c378eb4e 2075 /* Open the file for loading. */
ee0c3293 2076 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2077 if (loadfile_bfd == NULL)
ee0c3293 2078 perror_with_name (filename.get ());
917317f4 2079
192b62ce 2080 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2081 {
ee0c3293 2082 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2083 bfd_errmsg (bfd_get_error ()));
2084 }
c5aa993b 2085
192b62ce 2086 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2087 (void *) &total_progress.total_size);
2088
192b62ce 2089 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2090
dcb07cfa
PA
2091 using namespace std::chrono;
2092
2093 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2094
a76d924d
DJ
2095 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2096 load_progress) != 0)
2097 error (_("Load failed"));
c906108c 2098
dcb07cfa 2099 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2100
192b62ce 2101 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2102 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2103 uiout->text ("Start address ");
2104 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2105 uiout->text (", load size ");
2106 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2107 uiout->text ("\n");
fb14de7b 2108 regcache_write_pc (get_current_regcache (), entry);
c906108c 2109
38963c97
DJ
2110 /* Reset breakpoints, now that we have changed the load image. For
2111 instance, breakpoints may have been set (or reset, by
2112 post_create_inferior) while connected to the target but before we
2113 loaded the program. In that case, the prologue analyzer could
2114 have read instructions from the target to find the right
2115 breakpoint locations. Loading has changed the contents of that
2116 memory. */
2117
2118 breakpoint_re_set ();
2119
a76d924d
DJ
2120 print_transfer_performance (gdb_stdout, total_progress.data_count,
2121 total_progress.write_count,
dcb07cfa 2122 end_time - start_time);
c906108c
SS
2123
2124 do_cleanups (old_cleanups);
2125}
2126
dcb07cfa
PA
2127/* Report on STREAM the performance of a memory transfer operation,
2128 such as 'load'. DATA_COUNT is the number of bytes transferred.
2129 WRITE_COUNT is the number of separate write operations, or 0, if
2130 that information is not available. TIME is how long the operation
2131 lasted. */
c906108c 2132
dcb07cfa 2133static void
d9fcf2fb 2134print_transfer_performance (struct ui_file *stream,
917317f4
JM
2135 unsigned long data_count,
2136 unsigned long write_count,
dcb07cfa 2137 std::chrono::steady_clock::duration time)
917317f4 2138{
dcb07cfa 2139 using namespace std::chrono;
79a45e25 2140 struct ui_out *uiout = current_uiout;
2b71414d 2141
dcb07cfa 2142 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2143
112e8700 2144 uiout->text ("Transfer rate: ");
dcb07cfa 2145 if (ms.count () > 0)
8b93c638 2146 {
dcb07cfa 2147 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2148
112e8700 2149 if (uiout->is_mi_like_p ())
9f43d28c 2150 {
112e8700
SM
2151 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2152 uiout->text (" bits/sec");
9f43d28c
DJ
2153 }
2154 else if (rate < 1024)
2155 {
112e8700
SM
2156 uiout->field_fmt ("transfer-rate", "%lu", rate);
2157 uiout->text (" bytes/sec");
9f43d28c
DJ
2158 }
2159 else
2160 {
112e8700
SM
2161 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2162 uiout->text (" KB/sec");
9f43d28c 2163 }
8b93c638
JM
2164 }
2165 else
2166 {
112e8700
SM
2167 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2168 uiout->text (" bits in <1 sec");
8b93c638
JM
2169 }
2170 if (write_count > 0)
2171 {
112e8700
SM
2172 uiout->text (", ");
2173 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2174 uiout->text (" bytes/write");
8b93c638 2175 }
112e8700 2176 uiout->text (".\n");
c906108c
SS
2177}
2178
2179/* This function allows the addition of incrementally linked object files.
2180 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2181/* Note: ezannoni 2000-04-13 This function/command used to have a
2182 special case syntax for the rombug target (Rombug is the boot
2183 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2184 rombug case, the user doesn't need to supply a text address,
2185 instead a call to target_link() (in target.c) would supply the
c378eb4e 2186 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2187
c906108c 2188static void
2cf311eb 2189add_symbol_file_command (const char *args, int from_tty)
c906108c 2190{
5af949e3 2191 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2192 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2193 char *arg;
2acceee2
JM
2194 int argcnt = 0;
2195 int sec_num = 0;
db162d44
EZ
2196 int expecting_sec_name = 0;
2197 int expecting_sec_addr = 0;
76ad5e1e 2198 struct objfile *objf;
b15cc25c
PA
2199 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2200 symfile_add_flags add_flags = 0;
2201
2202 if (from_tty)
2203 add_flags |= SYMFILE_VERBOSE;
db162d44 2204
a39a16c4 2205 struct sect_opt
2acceee2 2206 {
a121b7c1
PA
2207 const char *name;
2208 const char *value;
a39a16c4 2209 };
db162d44 2210
a39a16c4 2211 struct section_addr_info *section_addrs;
f978cb06 2212 std::vector<sect_opt> sect_opts;
3017564a 2213 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2214
c906108c
SS
2215 dont_repeat ();
2216
2217 if (args == NULL)
8a3fe4f8 2218 error (_("add-symbol-file takes a file name and an address"));
c906108c 2219
773a1edc 2220 gdb_argv argv (args);
db162d44 2221
5b96932b
AS
2222 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2223 {
c378eb4e 2224 /* Process the argument. */
db162d44 2225 if (argcnt == 0)
c906108c 2226 {
c378eb4e 2227 /* The first argument is the file name. */
ee0c3293 2228 filename.reset (tilde_expand (arg));
c906108c 2229 }
41dc8db8
MB
2230 else if (argcnt == 1)
2231 {
2232 /* The second argument is always the text address at which
2233 to load the program. */
f978cb06
TT
2234 sect_opt sect = { ".text", arg };
2235 sect_opts.push_back (sect);
41dc8db8 2236 }
db162d44 2237 else
41dc8db8
MB
2238 {
2239 /* It's an option (starting with '-') or it's an argument
2240 to an option. */
41dc8db8
MB
2241 if (expecting_sec_name)
2242 {
f978cb06
TT
2243 sect_opt sect = { arg, NULL };
2244 sect_opts.push_back (sect);
41dc8db8
MB
2245 expecting_sec_name = 0;
2246 }
2247 else if (expecting_sec_addr)
2248 {
f978cb06 2249 sect_opts.back ().value = arg;
41dc8db8 2250 expecting_sec_addr = 0;
41dc8db8
MB
2251 }
2252 else if (strcmp (arg, "-readnow") == 0)
2253 flags |= OBJF_READNOW;
2254 else if (strcmp (arg, "-s") == 0)
2255 {
2256 expecting_sec_name = 1;
2257 expecting_sec_addr = 1;
2258 }
2259 else
2260 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2261 " [-readnow] [-s <secname> <addr>]*"));
2262 }
c906108c 2263 }
c906108c 2264
927890d0
JB
2265 /* This command takes at least two arguments. The first one is a
2266 filename, and the second is the address where this file has been
2267 loaded. Abort now if this address hasn't been provided by the
2268 user. */
f978cb06 2269 if (sect_opts.empty ())
ee0c3293
TT
2270 error (_("The address where %s has been loaded is missing"),
2271 filename.get ());
927890d0 2272
c378eb4e 2273 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2274 a sect_addr_info structure to be passed around to other
2275 functions. We have to split this up into separate print
bb599908 2276 statements because hex_string returns a local static
c378eb4e 2277 string. */
5417f6dc 2278
ee0c3293
TT
2279 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2280 filename.get ());
f978cb06 2281 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2282 make_cleanup (xfree, section_addrs);
f978cb06 2283 for (sect_opt &sect : sect_opts)
c906108c 2284 {
db162d44 2285 CORE_ADDR addr;
f978cb06
TT
2286 const char *val = sect.value;
2287 const char *sec = sect.name;
5417f6dc 2288
ae822768 2289 addr = parse_and_eval_address (val);
db162d44 2290
db162d44 2291 /* Here we store the section offsets in the order they were
c378eb4e 2292 entered on the command line. */
a121b7c1 2293 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2294 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2295 printf_unfiltered ("\t%s_addr = %s\n", sec,
2296 paddress (gdbarch, addr));
db162d44
EZ
2297 sec_num++;
2298
5417f6dc 2299 /* The object's sections are initialized when a
db162d44 2300 call is made to build_objfile_section_table (objfile).
5417f6dc 2301 This happens in reread_symbols.
db162d44
EZ
2302 At this point, we don't know what file type this is,
2303 so we can't determine what section names are valid. */
2acceee2 2304 }
d76488d8 2305 section_addrs->num_sections = sec_num;
db162d44 2306
2acceee2 2307 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2308 error (_("Not confirmed."));
c906108c 2309
ee0c3293 2310 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2311
2312 add_target_sections_of_objfile (objf);
c906108c
SS
2313
2314 /* Getting new symbols may change our opinion about what is
2315 frameless. */
2316 reinit_frame_cache ();
db162d44 2317 do_cleanups (my_cleanups);
c906108c
SS
2318}
2319\f
70992597 2320
63644780
NB
2321/* This function removes a symbol file that was added via add-symbol-file. */
2322
2323static void
2cf311eb 2324remove_symbol_file_command (const char *args, int from_tty)
63644780 2325{
63644780 2326 struct objfile *objf = NULL;
63644780 2327 struct program_space *pspace = current_program_space;
63644780
NB
2328
2329 dont_repeat ();
2330
2331 if (args == NULL)
2332 error (_("remove-symbol-file: no symbol file provided"));
2333
773a1edc 2334 gdb_argv argv (args);
63644780
NB
2335
2336 if (strcmp (argv[0], "-a") == 0)
2337 {
2338 /* Interpret the next argument as an address. */
2339 CORE_ADDR addr;
2340
2341 if (argv[1] == NULL)
2342 error (_("Missing address argument"));
2343
2344 if (argv[2] != NULL)
2345 error (_("Junk after %s"), argv[1]);
2346
2347 addr = parse_and_eval_address (argv[1]);
2348
2349 ALL_OBJFILES (objf)
2350 {
d03de421
PA
2351 if ((objf->flags & OBJF_USERLOADED) != 0
2352 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2353 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2354 break;
2355 }
2356 }
2357 else if (argv[0] != NULL)
2358 {
2359 /* Interpret the current argument as a file name. */
63644780
NB
2360
2361 if (argv[1] != NULL)
2362 error (_("Junk after %s"), argv[0]);
2363
ee0c3293 2364 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2365
2366 ALL_OBJFILES (objf)
2367 {
d03de421
PA
2368 if ((objf->flags & OBJF_USERLOADED) != 0
2369 && (objf->flags & OBJF_SHARED) != 0
63644780 2370 && objf->pspace == pspace
ee0c3293 2371 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2372 break;
2373 }
2374 }
2375
2376 if (objf == NULL)
2377 error (_("No symbol file found"));
2378
2379 if (from_tty
2380 && !query (_("Remove symbol table from file \"%s\"? "),
2381 objfile_name (objf)))
2382 error (_("Not confirmed."));
2383
2384 free_objfile (objf);
2385 clear_symtab_users (0);
63644780
NB
2386}
2387
c906108c 2388/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2389
c906108c 2390void
fba45db2 2391reread_symbols (void)
c906108c
SS
2392{
2393 struct objfile *objfile;
2394 long new_modtime;
c906108c
SS
2395 struct stat new_statbuf;
2396 int res;
4c404b8b 2397 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2398
2399 /* With the addition of shared libraries, this should be modified,
2400 the load time should be saved in the partial symbol tables, since
2401 different tables may come from different source files. FIXME.
2402 This routine should then walk down each partial symbol table
c378eb4e 2403 and see if the symbol table that it originates from has been changed. */
c906108c 2404
c5aa993b
JM
2405 for (objfile = object_files; objfile; objfile = objfile->next)
2406 {
9cce227f
TG
2407 if (objfile->obfd == NULL)
2408 continue;
2409
2410 /* Separate debug objfiles are handled in the main objfile. */
2411 if (objfile->separate_debug_objfile_backlink)
2412 continue;
2413
02aeec7b
JB
2414 /* If this object is from an archive (what you usually create with
2415 `ar', often called a `static library' on most systems, though
2416 a `shared library' on AIX is also an archive), then you should
2417 stat on the archive name, not member name. */
9cce227f
TG
2418 if (objfile->obfd->my_archive)
2419 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2420 else
4262abfb 2421 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2422 if (res != 0)
2423 {
c378eb4e 2424 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2425 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2426 objfile_name (objfile));
9cce227f
TG
2427 continue;
2428 }
2429 new_modtime = new_statbuf.st_mtime;
2430 if (new_modtime != objfile->mtime)
2431 {
2432 struct cleanup *old_cleanups;
2433 struct section_offsets *offsets;
2434 int num_offsets;
24ba069a 2435 char *original_name;
9cce227f
TG
2436
2437 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2438 objfile_name (objfile));
9cce227f
TG
2439
2440 /* There are various functions like symbol_file_add,
2441 symfile_bfd_open, syms_from_objfile, etc., which might
2442 appear to do what we want. But they have various other
2443 effects which we *don't* want. So we just do stuff
2444 ourselves. We don't worry about mapped files (for one thing,
2445 any mapped file will be out of date). */
2446
2447 /* If we get an error, blow away this objfile (not sure if
2448 that is the correct response for things like shared
2449 libraries). */
2450 old_cleanups = make_cleanup_free_objfile (objfile);
2451 /* We need to do this whenever any symbols go away. */
2452 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2453
0ba1096a
KT
2454 if (exec_bfd != NULL
2455 && filename_cmp (bfd_get_filename (objfile->obfd),
2456 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2457 {
2458 /* Reload EXEC_BFD without asking anything. */
2459
2460 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2461 }
2462
f6eeced0
JK
2463 /* Keep the calls order approx. the same as in free_objfile. */
2464
2465 /* Free the separate debug objfiles. It will be
2466 automatically recreated by sym_read. */
2467 free_objfile_separate_debug (objfile);
2468
2469 /* Remove any references to this objfile in the global
2470 value lists. */
2471 preserve_values (objfile);
2472
2473 /* Nuke all the state that we will re-read. Much of the following
2474 code which sets things to NULL really is necessary to tell
2475 other parts of GDB that there is nothing currently there.
2476
2477 Try to keep the freeing order compatible with free_objfile. */
2478
2479 if (objfile->sf != NULL)
2480 {
2481 (*objfile->sf->sym_finish) (objfile);
2482 }
2483
2484 clear_objfile_data (objfile);
2485
e1507e95 2486 /* Clean up any state BFD has sitting around. */
a4453b7e 2487 {
192b62ce 2488 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2489 char *obfd_filename;
a4453b7e
TT
2490
2491 obfd_filename = bfd_get_filename (objfile->obfd);
2492 /* Open the new BFD before freeing the old one, so that
2493 the filename remains live. */
192b62ce
TT
2494 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2495 objfile->obfd = temp.release ();
e1507e95 2496 if (objfile->obfd == NULL)
192b62ce 2497 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2498 }
2499
24ba069a
JK
2500 original_name = xstrdup (objfile->original_name);
2501 make_cleanup (xfree, original_name);
2502
9cce227f
TG
2503 /* bfd_openr sets cacheable to true, which is what we want. */
2504 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2505 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2506 bfd_errmsg (bfd_get_error ()));
2507
2508 /* Save the offsets, we will nuke them with the rest of the
2509 objfile_obstack. */
2510 num_offsets = objfile->num_sections;
2511 offsets = ((struct section_offsets *)
2512 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2513 memcpy (offsets, objfile->section_offsets,
2514 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2515
9cce227f
TG
2516 /* FIXME: Do we have to free a whole linked list, or is this
2517 enough? */
2518 if (objfile->global_psymbols.list)
2519 xfree (objfile->global_psymbols.list);
2520 memset (&objfile->global_psymbols, 0,
2521 sizeof (objfile->global_psymbols));
2522 if (objfile->static_psymbols.list)
2523 xfree (objfile->static_psymbols.list);
2524 memset (&objfile->static_psymbols, 0,
2525 sizeof (objfile->static_psymbols));
2526
c378eb4e 2527 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2528 psymbol_bcache_free (objfile->psymbol_cache);
2529 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2530
2531 /* NB: after this call to obstack_free, objfiles_changed
2532 will need to be called (see discussion below). */
9cce227f
TG
2533 obstack_free (&objfile->objfile_obstack, 0);
2534 objfile->sections = NULL;
43f3e411 2535 objfile->compunit_symtabs = NULL;
9cce227f
TG
2536 objfile->psymtabs = NULL;
2537 objfile->psymtabs_addrmap = NULL;
2538 objfile->free_psymtabs = NULL;
34eaf542 2539 objfile->template_symbols = NULL;
9cce227f 2540
9cce227f
TG
2541 /* obstack_init also initializes the obstack so it is
2542 empty. We could use obstack_specify_allocation but
d82ea6a8 2543 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2544 obstack_init (&objfile->objfile_obstack);
779bd270 2545
846060df
JB
2546 /* set_objfile_per_bfd potentially allocates the per-bfd
2547 data on the objfile's obstack (if sharing data across
2548 multiple users is not possible), so it's important to
2549 do it *after* the obstack has been initialized. */
2550 set_objfile_per_bfd (objfile);
2551
224c3ddb
SM
2552 objfile->original_name
2553 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2554 strlen (original_name));
24ba069a 2555
779bd270
DE
2556 /* Reset the sym_fns pointer. The ELF reader can change it
2557 based on whether .gdb_index is present, and we need it to
2558 start over. PR symtab/15885 */
8fb8eb5c 2559 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2560
d82ea6a8 2561 build_objfile_section_table (objfile);
9cce227f
TG
2562 terminate_minimal_symbol_table (objfile);
2563
2564 /* We use the same section offsets as from last time. I'm not
2565 sure whether that is always correct for shared libraries. */
2566 objfile->section_offsets = (struct section_offsets *)
2567 obstack_alloc (&objfile->objfile_obstack,
2568 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2569 memcpy (objfile->section_offsets, offsets,
2570 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2571 objfile->num_sections = num_offsets;
2572
2573 /* What the hell is sym_new_init for, anyway? The concept of
2574 distinguishing between the main file and additional files
2575 in this way seems rather dubious. */
2576 if (objfile == symfile_objfile)
c906108c 2577 {
9cce227f 2578 (*objfile->sf->sym_new_init) (objfile);
c906108c 2579 }
9cce227f
TG
2580
2581 (*objfile->sf->sym_init) (objfile);
2582 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2583
2584 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2585
2586 /* We are about to read new symbols and potentially also
2587 DWARF information. Some targets may want to pass addresses
2588 read from DWARF DIE's through an adjustment function before
2589 saving them, like MIPS, which may call into
2590 "find_pc_section". When called, that function will make
2591 use of per-objfile program space data.
2592
2593 Since we discarded our section information above, we have
2594 dangling pointers in the per-objfile program space data
2595 structure. Force GDB to update the section mapping
2596 information by letting it know the objfile has changed,
2597 making the dangling pointers point to correct data
2598 again. */
2599
2600 objfiles_changed ();
2601
608e2dbb 2602 read_symbols (objfile, 0);
b11896a5 2603
9cce227f 2604 if (!objfile_has_symbols (objfile))
c906108c 2605 {
9cce227f
TG
2606 wrap_here ("");
2607 printf_unfiltered (_("(no debugging symbols found)\n"));
2608 wrap_here ("");
c5aa993b 2609 }
9cce227f
TG
2610
2611 /* We're done reading the symbol file; finish off complaints. */
2612 clear_complaints (&symfile_complaints, 0, 1);
2613
2614 /* Getting new symbols may change our opinion about what is
2615 frameless. */
2616
2617 reinit_frame_cache ();
2618
2619 /* Discard cleanups as symbol reading was successful. */
2620 discard_cleanups (old_cleanups);
2621
2622 /* If the mtime has changed between the time we set new_modtime
2623 and now, we *want* this to be out of date, so don't call stat
2624 again now. */
2625 objfile->mtime = new_modtime;
9cce227f 2626 init_entry_point_info (objfile);
4ac39b97 2627
4c404b8b 2628 new_objfiles.push_back (objfile);
c906108c
SS
2629 }
2630 }
c906108c 2631
4c404b8b 2632 if (!new_objfiles.empty ())
ea53e89f 2633 {
c1e56572 2634 clear_symtab_users (0);
4ac39b97
JK
2635
2636 /* clear_objfile_data for each objfile was called before freeing it and
2637 observer_notify_new_objfile (NULL) has been called by
2638 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2639 for (auto iter : new_objfiles)
2640 observer_notify_new_objfile (iter);
4ac39b97 2641
ea53e89f
JB
2642 /* At least one objfile has changed, so we can consider that
2643 the executable we're debugging has changed too. */
781b42b0 2644 observer_notify_executable_changed ();
ea53e89f 2645 }
c906108c 2646}
c906108c
SS
2647\f
2648
c5aa993b
JM
2649typedef struct
2650{
2651 char *ext;
c906108c 2652 enum language lang;
3fcf0b0d
TT
2653} filename_language;
2654
2655DEF_VEC_O (filename_language);
c906108c 2656
3fcf0b0d 2657static VEC (filename_language) *filename_language_table;
c906108c 2658
56618e20
TT
2659/* See symfile.h. */
2660
2661void
2662add_filename_language (const char *ext, enum language lang)
c906108c 2663{
3fcf0b0d
TT
2664 filename_language entry;
2665
2666 entry.ext = xstrdup (ext);
2667 entry.lang = lang;
c906108c 2668
3fcf0b0d 2669 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2670}
2671
2672static char *ext_args;
920d2a44
AC
2673static void
2674show_ext_args (struct ui_file *file, int from_tty,
2675 struct cmd_list_element *c, const char *value)
2676{
3e43a32a
MS
2677 fprintf_filtered (file,
2678 _("Mapping between filename extension "
2679 "and source language is \"%s\".\n"),
920d2a44
AC
2680 value);
2681}
c906108c
SS
2682
2683static void
26c41df3 2684set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2685{
2686 int i;
2687 char *cp = ext_args;
2688 enum language lang;
3fcf0b0d 2689 filename_language *entry;
c906108c 2690
c378eb4e 2691 /* First arg is filename extension, starting with '.' */
c906108c 2692 if (*cp != '.')
8a3fe4f8 2693 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2694
2695 /* Find end of first arg. */
c5aa993b 2696 while (*cp && !isspace (*cp))
c906108c
SS
2697 cp++;
2698
2699 if (*cp == '\0')
3e43a32a
MS
2700 error (_("'%s': two arguments required -- "
2701 "filename extension and language"),
c906108c
SS
2702 ext_args);
2703
c378eb4e 2704 /* Null-terminate first arg. */
c5aa993b 2705 *cp++ = '\0';
c906108c
SS
2706
2707 /* Find beginning of second arg, which should be a source language. */
529480d0 2708 cp = skip_spaces (cp);
c906108c
SS
2709
2710 if (*cp == '\0')
3e43a32a
MS
2711 error (_("'%s': two arguments required -- "
2712 "filename extension and language"),
c906108c
SS
2713 ext_args);
2714
2715 /* Lookup the language from among those we know. */
2716 lang = language_enum (cp);
2717
2718 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2719 for (i = 0;
2720 VEC_iterate (filename_language, filename_language_table, i, entry);
2721 ++i)
2722 {
2723 if (0 == strcmp (ext_args, entry->ext))
2724 break;
2725 }
c906108c 2726
3fcf0b0d 2727 if (entry == NULL)
c906108c 2728 {
c378eb4e 2729 /* New file extension. */
c906108c
SS
2730 add_filename_language (ext_args, lang);
2731 }
2732 else
2733 {
c378eb4e 2734 /* Redefining a previously known filename extension. */
c906108c
SS
2735
2736 /* if (from_tty) */
2737 /* query ("Really make files of type %s '%s'?", */
2738 /* ext_args, language_str (lang)); */
2739
3fcf0b0d
TT
2740 xfree (entry->ext);
2741 entry->ext = xstrdup (ext_args);
2742 entry->lang = lang;
c906108c
SS
2743 }
2744}
2745
2746static void
fba45db2 2747info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2748{
2749 int i;
3fcf0b0d 2750 filename_language *entry;
c906108c 2751
a3f17187 2752 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2753 printf_filtered ("\n\n");
3fcf0b0d
TT
2754 for (i = 0;
2755 VEC_iterate (filename_language, filename_language_table, i, entry);
2756 ++i)
2757 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2758}
2759
c906108c 2760enum language
dd786858 2761deduce_language_from_filename (const char *filename)
c906108c
SS
2762{
2763 int i;
e6a959d6 2764 const char *cp;
c906108c
SS
2765
2766 if (filename != NULL)
2767 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2768 {
2769 filename_language *entry;
2770
2771 for (i = 0;
2772 VEC_iterate (filename_language, filename_language_table, i, entry);
2773 ++i)
2774 if (strcmp (cp, entry->ext) == 0)
2775 return entry->lang;
2776 }
c906108c
SS
2777
2778 return language_unknown;
2779}
2780\f
43f3e411
DE
2781/* Allocate and initialize a new symbol table.
2782 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2783
2784struct symtab *
43f3e411 2785allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2786{
43f3e411
DE
2787 struct objfile *objfile = cust->objfile;
2788 struct symtab *symtab
2789 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2790
19ba03f4
SM
2791 symtab->filename
2792 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2793 objfile->per_bfd->filename_cache);
c5aa993b
JM
2794 symtab->fullname = NULL;
2795 symtab->language = deduce_language_from_filename (filename);
c906108c 2796
db0fec5c
DE
2797 /* This can be very verbose with lots of headers.
2798 Only print at higher debug levels. */
2799 if (symtab_create_debug >= 2)
45cfd468
DE
2800 {
2801 /* Be a bit clever with debugging messages, and don't print objfile
2802 every time, only when it changes. */
2803 static char *last_objfile_name = NULL;
2804
2805 if (last_objfile_name == NULL
4262abfb 2806 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2807 {
2808 xfree (last_objfile_name);
4262abfb 2809 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2810 fprintf_unfiltered (gdb_stdlog,
2811 "Creating one or more symtabs for objfile %s ...\n",
2812 last_objfile_name);
2813 }
2814 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2815 "Created symtab %s for module %s.\n",
2816 host_address_to_string (symtab), filename);
45cfd468
DE
2817 }
2818
43f3e411
DE
2819 /* Add it to CUST's list of symtabs. */
2820 if (cust->filetabs == NULL)
2821 {
2822 cust->filetabs = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825 else
2826 {
2827 cust->last_filetab->next = symtab;
2828 cust->last_filetab = symtab;
2829 }
2830
2831 /* Backlink to the containing compunit symtab. */
2832 symtab->compunit_symtab = cust;
2833
2834 return symtab;
2835}
2836
2837/* Allocate and initialize a new compunit.
2838 NAME is the name of the main source file, if there is one, or some
2839 descriptive text if there are no source files. */
2840
2841struct compunit_symtab *
2842allocate_compunit_symtab (struct objfile *objfile, const char *name)
2843{
2844 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2845 struct compunit_symtab);
2846 const char *saved_name;
2847
2848 cu->objfile = objfile;
2849
2850 /* The name we record here is only for display/debugging purposes.
2851 Just save the basename to avoid path issues (too long for display,
2852 relative vs absolute, etc.). */
2853 saved_name = lbasename (name);
224c3ddb
SM
2854 cu->name
2855 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2856 strlen (saved_name));
43f3e411
DE
2857
2858 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2859
2860 if (symtab_create_debug)
2861 {
2862 fprintf_unfiltered (gdb_stdlog,
2863 "Created compunit symtab %s for %s.\n",
2864 host_address_to_string (cu),
2865 cu->name);
2866 }
2867
2868 return cu;
2869}
2870
2871/* Hook CU to the objfile it comes from. */
2872
2873void
2874add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2875{
2876 cu->next = cu->objfile->compunit_symtabs;
2877 cu->objfile->compunit_symtabs = cu;
c906108c 2878}
c906108c 2879\f
c5aa993b 2880
b15cc25c
PA
2881/* Reset all data structures in gdb which may contain references to
2882 symbol table data. */
c906108c
SS
2883
2884void
b15cc25c 2885clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2886{
2887 /* Someday, we should do better than this, by only blowing away
2888 the things that really need to be blown. */
c0501be5
DJ
2889
2890 /* Clear the "current" symtab first, because it is no longer valid.
2891 breakpoint_re_set may try to access the current symtab. */
2892 clear_current_source_symtab_and_line ();
2893
c906108c 2894 clear_displays ();
1bfeeb0f 2895 clear_last_displayed_sal ();
c906108c 2896 clear_pc_function_cache ();
06d3b283 2897 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2898
2899 /* Clear globals which might have pointed into a removed objfile.
2900 FIXME: It's not clear which of these are supposed to persist
2901 between expressions and which ought to be reset each time. */
2902 expression_context_block = NULL;
2903 innermost_block = NULL;
8756216b
DP
2904
2905 /* Varobj may refer to old symbols, perform a cleanup. */
2906 varobj_invalidate ();
2907
e700d1b2
JB
2908 /* Now that the various caches have been cleared, we can re_set
2909 our breakpoints without risking it using stale data. */
2910 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2911 breakpoint_re_set ();
c906108c
SS
2912}
2913
74b7792f
AC
2914static void
2915clear_symtab_users_cleanup (void *ignore)
2916{
c1e56572 2917 clear_symtab_users (0);
74b7792f 2918}
c906108c 2919\f
c906108c
SS
2920/* OVERLAYS:
2921 The following code implements an abstraction for debugging overlay sections.
2922
2923 The target model is as follows:
2924 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2925 same VMA, each with its own unique LMA (or load address).
c906108c 2926 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2927 sections, one by one, from the load address into the VMA address.
5417f6dc 2928 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2929 sections should be considered to be mapped from the VMA to the LMA.
2930 This information is used for symbol lookup, and memory read/write.
5417f6dc 2931 For instance, if a section has been mapped then its contents
c5aa993b 2932 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2933
2934 Two levels of debugger support for overlays are available. One is
2935 "manual", in which the debugger relies on the user to tell it which
2936 overlays are currently mapped. This level of support is
2937 implemented entirely in the core debugger, and the information about
2938 whether a section is mapped is kept in the objfile->obj_section table.
2939
2940 The second level of support is "automatic", and is only available if
2941 the target-specific code provides functionality to read the target's
2942 overlay mapping table, and translate its contents for the debugger
2943 (by updating the mapped state information in the obj_section tables).
2944
2945 The interface is as follows:
c5aa993b
JM
2946 User commands:
2947 overlay map <name> -- tell gdb to consider this section mapped
2948 overlay unmap <name> -- tell gdb to consider this section unmapped
2949 overlay list -- list the sections that GDB thinks are mapped
2950 overlay read-target -- get the target's state of what's mapped
2951 overlay off/manual/auto -- set overlay debugging state
2952 Functional interface:
2953 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2954 section, return that section.
5417f6dc 2955 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2956 the pc, either in its VMA or its LMA
714835d5 2957 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2958 section_is_overlay(sect): true if section's VMA != LMA
2959 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2960 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2961 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2962 overlay_mapped_address(...): map an address from section's LMA to VMA
2963 overlay_unmapped_address(...): map an address from section's VMA to LMA
2964 symbol_overlayed_address(...): Return a "current" address for symbol:
2965 either in VMA or LMA depending on whether
c378eb4e 2966 the symbol's section is currently mapped. */
c906108c
SS
2967
2968/* Overlay debugging state: */
2969
d874f1e2 2970enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2971int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2972
c906108c 2973/* Function: section_is_overlay (SECTION)
5417f6dc 2974 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2975 SECTION is loaded at an address different from where it will "run". */
2976
2977int
714835d5 2978section_is_overlay (struct obj_section *section)
c906108c 2979{
714835d5
UW
2980 if (overlay_debugging && section)
2981 {
2982 bfd *abfd = section->objfile->obfd;
2983 asection *bfd_section = section->the_bfd_section;
f888f159 2984
714835d5
UW
2985 if (bfd_section_lma (abfd, bfd_section) != 0
2986 && bfd_section_lma (abfd, bfd_section)
2987 != bfd_section_vma (abfd, bfd_section))
2988 return 1;
2989 }
c906108c
SS
2990
2991 return 0;
2992}
2993
2994/* Function: overlay_invalidate_all (void)
2995 Invalidate the mapped state of all overlay sections (mark it as stale). */
2996
2997static void
fba45db2 2998overlay_invalidate_all (void)
c906108c 2999{
c5aa993b 3000 struct objfile *objfile;
c906108c
SS
3001 struct obj_section *sect;
3002
3003 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3004 if (section_is_overlay (sect))
3005 sect->ovly_mapped = -1;
c906108c
SS
3006}
3007
714835d5 3008/* Function: section_is_mapped (SECTION)
5417f6dc 3009 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3010
3011 Access to the ovly_mapped flag is restricted to this function, so
3012 that we can do automatic update. If the global flag
3013 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3014 overlay_invalidate_all. If the mapped state of the particular
3015 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3016
714835d5
UW
3017int
3018section_is_mapped (struct obj_section *osect)
c906108c 3019{
9216df95
UW
3020 struct gdbarch *gdbarch;
3021
714835d5 3022 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3023 return 0;
3024
c5aa993b 3025 switch (overlay_debugging)
c906108c
SS
3026 {
3027 default:
d874f1e2 3028 case ovly_off:
c5aa993b 3029 return 0; /* overlay debugging off */
d874f1e2 3030 case ovly_auto: /* overlay debugging automatic */
1c772458 3031 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3032 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3033 gdbarch = get_objfile_arch (osect->objfile);
3034 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3035 {
3036 if (overlay_cache_invalid)
3037 {
3038 overlay_invalidate_all ();
3039 overlay_cache_invalid = 0;
3040 }
3041 if (osect->ovly_mapped == -1)
9216df95 3042 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3043 }
3044 /* fall thru to manual case */
d874f1e2 3045 case ovly_on: /* overlay debugging manual */
c906108c
SS
3046 return osect->ovly_mapped == 1;
3047 }
3048}
3049
c906108c
SS
3050/* Function: pc_in_unmapped_range
3051 If PC falls into the lma range of SECTION, return true, else false. */
3052
3053CORE_ADDR
714835d5 3054pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3055{
714835d5
UW
3056 if (section_is_overlay (section))
3057 {
3058 bfd *abfd = section->objfile->obfd;
3059 asection *bfd_section = section->the_bfd_section;
fbd35540 3060
714835d5
UW
3061 /* We assume the LMA is relocated by the same offset as the VMA. */
3062 bfd_vma size = bfd_get_section_size (bfd_section);
3063 CORE_ADDR offset = obj_section_offset (section);
3064
3065 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3066 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3067 return 1;
3068 }
c906108c 3069
c906108c
SS
3070 return 0;
3071}
3072
3073/* Function: pc_in_mapped_range
3074 If PC falls into the vma range of SECTION, return true, else false. */
3075
3076CORE_ADDR
714835d5 3077pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3078{
714835d5
UW
3079 if (section_is_overlay (section))
3080 {
3081 if (obj_section_addr (section) <= pc
3082 && pc < obj_section_endaddr (section))
3083 return 1;
3084 }
c906108c 3085
c906108c
SS
3086 return 0;
3087}
3088
9ec8e6a0
JB
3089/* Return true if the mapped ranges of sections A and B overlap, false
3090 otherwise. */
3b7bacac 3091
b9362cc7 3092static int
714835d5 3093sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3094{
714835d5
UW
3095 CORE_ADDR a_start = obj_section_addr (a);
3096 CORE_ADDR a_end = obj_section_endaddr (a);
3097 CORE_ADDR b_start = obj_section_addr (b);
3098 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3099
3100 return (a_start < b_end && b_start < a_end);
3101}
3102
c906108c
SS
3103/* Function: overlay_unmapped_address (PC, SECTION)
3104 Returns the address corresponding to PC in the unmapped (load) range.
3105 May be the same as PC. */
3106
3107CORE_ADDR
714835d5 3108overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3109{
714835d5
UW
3110 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3111 {
3112 bfd *abfd = section->objfile->obfd;
3113 asection *bfd_section = section->the_bfd_section;
fbd35540 3114
714835d5
UW
3115 return pc + bfd_section_lma (abfd, bfd_section)
3116 - bfd_section_vma (abfd, bfd_section);
3117 }
c906108c
SS
3118
3119 return pc;
3120}
3121
3122/* Function: overlay_mapped_address (PC, SECTION)
3123 Returns the address corresponding to PC in the mapped (runtime) range.
3124 May be the same as PC. */
3125
3126CORE_ADDR
714835d5 3127overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3128{
714835d5
UW
3129 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3130 {
3131 bfd *abfd = section->objfile->obfd;
3132 asection *bfd_section = section->the_bfd_section;
fbd35540 3133
714835d5
UW
3134 return pc + bfd_section_vma (abfd, bfd_section)
3135 - bfd_section_lma (abfd, bfd_section);
3136 }
c906108c
SS
3137
3138 return pc;
3139}
3140
5417f6dc 3141/* Function: symbol_overlayed_address
c906108c
SS
3142 Return one of two addresses (relative to the VMA or to the LMA),
3143 depending on whether the section is mapped or not. */
3144
c5aa993b 3145CORE_ADDR
714835d5 3146symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3147{
3148 if (overlay_debugging)
3149 {
c378eb4e 3150 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3151 if (section == 0)
3152 return address;
c378eb4e
MS
3153 /* If the symbol's section is not an overlay, just return its
3154 address. */
c906108c
SS
3155 if (!section_is_overlay (section))
3156 return address;
c378eb4e 3157 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3158 if (section_is_mapped (section))
3159 return address;
3160 /*
3161 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3162 * then return its LOADED address rather than its vma address!!
3163 */
3164 return overlay_unmapped_address (address, section);
3165 }
3166 return address;
3167}
3168
5417f6dc 3169/* Function: find_pc_overlay (PC)
c906108c
SS
3170 Return the best-match overlay section for PC:
3171 If PC matches a mapped overlay section's VMA, return that section.
3172 Else if PC matches an unmapped section's VMA, return that section.
3173 Else if PC matches an unmapped section's LMA, return that section. */
3174
714835d5 3175struct obj_section *
fba45db2 3176find_pc_overlay (CORE_ADDR pc)
c906108c 3177{
c5aa993b 3178 struct objfile *objfile;
c906108c
SS
3179 struct obj_section *osect, *best_match = NULL;
3180
3181 if (overlay_debugging)
b631e59b
KT
3182 {
3183 ALL_OBJSECTIONS (objfile, osect)
3184 if (section_is_overlay (osect))
c5aa993b 3185 {
b631e59b
KT
3186 if (pc_in_mapped_range (pc, osect))
3187 {
3188 if (section_is_mapped (osect))
3189 return osect;
3190 else
3191 best_match = osect;
3192 }
3193 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3194 best_match = osect;
3195 }
b631e59b 3196 }
714835d5 3197 return best_match;
c906108c
SS
3198}
3199
3200/* Function: find_pc_mapped_section (PC)
5417f6dc 3201 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3202 currently marked as MAPPED, return that section. Else return NULL. */
3203
714835d5 3204struct obj_section *
fba45db2 3205find_pc_mapped_section (CORE_ADDR pc)
c906108c 3206{
c5aa993b 3207 struct objfile *objfile;
c906108c
SS
3208 struct obj_section *osect;
3209
3210 if (overlay_debugging)
b631e59b
KT
3211 {
3212 ALL_OBJSECTIONS (objfile, osect)
3213 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3214 return osect;
3215 }
c906108c
SS
3216
3217 return NULL;
3218}
3219
3220/* Function: list_overlays_command
c378eb4e 3221 Print a list of mapped sections and their PC ranges. */
c906108c 3222
5d3055ad 3223static void
2cf311eb 3224list_overlays_command (const char *args, int from_tty)
c906108c 3225{
c5aa993b
JM
3226 int nmapped = 0;
3227 struct objfile *objfile;
c906108c
SS
3228 struct obj_section *osect;
3229
3230 if (overlay_debugging)
b631e59b
KT
3231 {
3232 ALL_OBJSECTIONS (objfile, osect)
714835d5 3233 if (section_is_mapped (osect))
b631e59b
KT
3234 {
3235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3236 const char *name;
3237 bfd_vma lma, vma;
3238 int size;
3239
3240 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3241 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3242 size = bfd_get_section_size (osect->the_bfd_section);
3243 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3244
3245 printf_filtered ("Section %s, loaded at ", name);
3246 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3247 puts_filtered (" - ");
3248 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3249 printf_filtered (", mapped at ");
3250 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3251 puts_filtered (" - ");
3252 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3253 puts_filtered ("\n");
3254
3255 nmapped++;
3256 }
3257 }
c906108c 3258 if (nmapped == 0)
a3f17187 3259 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3260}
3261
3262/* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
5d3055ad 3265static void
2cf311eb 3266map_overlay_command (const char *args, int from_tty)
c906108c 3267{
c5aa993b
JM
3268 struct objfile *objfile, *objfile2;
3269 struct obj_section *sec, *sec2;
c906108c
SS
3270
3271 if (!overlay_debugging)
3e43a32a
MS
3272 error (_("Overlay debugging not enabled. Use "
3273 "either the 'overlay auto' or\n"
3274 "the 'overlay manual' command."));
c906108c
SS
3275
3276 if (args == 0 || *args == 0)
8a3fe4f8 3277 error (_("Argument required: name of an overlay section"));
c906108c 3278
c378eb4e 3279 /* First, find a section matching the user supplied argument. */
c906108c
SS
3280 ALL_OBJSECTIONS (objfile, sec)
3281 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3282 {
c378eb4e 3283 /* Now, check to see if the section is an overlay. */
714835d5 3284 if (!section_is_overlay (sec))
c5aa993b
JM
3285 continue; /* not an overlay section */
3286
c378eb4e 3287 /* Mark the overlay as "mapped". */
c5aa993b
JM
3288 sec->ovly_mapped = 1;
3289
3290 /* Next, make a pass and unmap any sections that are
3291 overlapped by this new section: */
3292 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3293 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3294 {
3295 if (info_verbose)
a3f17187 3296 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3297 bfd_section_name (objfile->obfd,
3298 sec2->the_bfd_section));
c378eb4e 3299 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3300 }
3301 return;
3302 }
8a3fe4f8 3303 error (_("No overlay section called %s"), args);
c906108c
SS
3304}
3305
3306/* Function: unmap_overlay_command
5417f6dc 3307 Mark the overlay section as unmapped
c906108c
SS
3308 (ie. resident in its LMA address range, rather than the VMA range). */
3309
5d3055ad 3310static void
2cf311eb 3311unmap_overlay_command (const char *args, int from_tty)
c906108c 3312{
c5aa993b 3313 struct objfile *objfile;
7a270e0c 3314 struct obj_section *sec = NULL;
c906108c
SS
3315
3316 if (!overlay_debugging)
3e43a32a
MS
3317 error (_("Overlay debugging not enabled. "
3318 "Use either the 'overlay auto' or\n"
3319 "the 'overlay manual' command."));
c906108c
SS
3320
3321 if (args == 0 || *args == 0)
8a3fe4f8 3322 error (_("Argument required: name of an overlay section"));
c906108c 3323
c378eb4e 3324 /* First, find a section matching the user supplied argument. */
c906108c
SS
3325 ALL_OBJSECTIONS (objfile, sec)
3326 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3327 {
3328 if (!sec->ovly_mapped)
8a3fe4f8 3329 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3330 sec->ovly_mapped = 0;
3331 return;
3332 }
8a3fe4f8 3333 error (_("No overlay section called %s"), args);
c906108c
SS
3334}
3335
3336/* Function: overlay_auto_command
3337 A utility command to turn on overlay debugging.
c378eb4e 3338 Possibly this should be done via a set/show command. */
c906108c
SS
3339
3340static void
2cf311eb 3341overlay_auto_command (const char *args, int from_tty)
c906108c 3342{
d874f1e2 3343 overlay_debugging = ovly_auto;
1900040c 3344 enable_overlay_breakpoints ();
c906108c 3345 if (info_verbose)
a3f17187 3346 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3347}
3348
3349/* Function: overlay_manual_command
3350 A utility command to turn on overlay debugging.
c378eb4e 3351 Possibly this should be done via a set/show command. */
c906108c
SS
3352
3353static void
2cf311eb 3354overlay_manual_command (const char *args, int from_tty)
c906108c 3355{
d874f1e2 3356 overlay_debugging = ovly_on;
1900040c 3357 disable_overlay_breakpoints ();
c906108c 3358 if (info_verbose)
a3f17187 3359 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3360}
3361
3362/* Function: overlay_off_command
3363 A utility command to turn on overlay debugging.
c378eb4e 3364 Possibly this should be done via a set/show command. */
c906108c
SS
3365
3366static void
2cf311eb 3367overlay_off_command (const char *args, int from_tty)
c906108c 3368{
d874f1e2 3369 overlay_debugging = ovly_off;
1900040c 3370 disable_overlay_breakpoints ();
c906108c 3371 if (info_verbose)
a3f17187 3372 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3373}
3374
3375static void
2cf311eb 3376overlay_load_command (const char *args, int from_tty)
c906108c 3377{
e17c207e
UW
3378 struct gdbarch *gdbarch = get_current_arch ();
3379
3380 if (gdbarch_overlay_update_p (gdbarch))
3381 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3382 else
8a3fe4f8 3383 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3384}
3385
3386/* Function: overlay_command
c378eb4e 3387 A place-holder for a mis-typed command. */
c906108c 3388
c378eb4e 3389/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3390static struct cmd_list_element *overlaylist;
c906108c
SS
3391
3392static void
fba45db2 3393overlay_command (char *args, int from_tty)
c906108c 3394{
c5aa993b 3395 printf_unfiltered
c906108c 3396 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3397 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3398}
3399
c906108c
SS
3400/* Target Overlays for the "Simplest" overlay manager:
3401
5417f6dc
RM
3402 This is GDB's default target overlay layer. It works with the
3403 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3404 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3405 so targets that use a different runtime overlay manager can
c906108c
SS
3406 substitute their own overlay_update function and take over the
3407 function pointer.
3408
3409 The overlay_update function pokes around in the target's data structures
3410 to see what overlays are mapped, and updates GDB's overlay mapping with
3411 this information.
3412
3413 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3414 unsigned _novlys; /# number of overlay sections #/
3415 unsigned _ovly_table[_novlys][4] = {
438e1e42 3416 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3417 {..., ..., ..., ...},
3418 }
3419 unsigned _novly_regions; /# number of overlay regions #/
3420 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3421 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3422 {..., ..., ...},
3423 }
c906108c
SS
3424 These functions will attempt to update GDB's mappedness state in the
3425 symbol section table, based on the target's mappedness state.
3426
3427 To do this, we keep a cached copy of the target's _ovly_table, and
3428 attempt to detect when the cached copy is invalidated. The main
3429 entry point is "simple_overlay_update(SECT), which looks up SECT in
3430 the cached table and re-reads only the entry for that section from
c378eb4e 3431 the target (whenever possible). */
c906108c
SS
3432
3433/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3434static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3435static unsigned cache_novlys = 0;
c906108c 3436static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3437enum ovly_index
3438 {
438e1e42 3439 VMA, OSIZE, LMA, MAPPED
c5aa993b 3440 };
c906108c 3441
c378eb4e 3442/* Throw away the cached copy of _ovly_table. */
3b7bacac 3443
c906108c 3444static void
fba45db2 3445simple_free_overlay_table (void)
c906108c
SS
3446{
3447 if (cache_ovly_table)
b8c9b27d 3448 xfree (cache_ovly_table);
c5aa993b 3449 cache_novlys = 0;
c906108c
SS
3450 cache_ovly_table = NULL;
3451 cache_ovly_table_base = 0;
3452}
3453
9216df95 3454/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3455 Convert to host order. int LEN is number of ints. */
3b7bacac 3456
c906108c 3457static void
9216df95 3458read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3459 int len, int size, enum bfd_endian byte_order)
c906108c 3460{
c378eb4e 3461 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3462 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3463 int i;
c906108c 3464
9216df95 3465 read_memory (memaddr, buf, len * size);
c906108c 3466 for (i = 0; i < len; i++)
e17a4113 3467 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3468}
3469
3470/* Find and grab a copy of the target _ovly_table
c378eb4e 3471 (and _novlys, which is needed for the table's size). */
3b7bacac 3472
c5aa993b 3473static int
fba45db2 3474simple_read_overlay_table (void)
c906108c 3475{
3b7344d5 3476 struct bound_minimal_symbol novlys_msym;
7c7b6655 3477 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3478 struct gdbarch *gdbarch;
3479 int word_size;
e17a4113 3480 enum bfd_endian byte_order;
c906108c
SS
3481
3482 simple_free_overlay_table ();
9b27852e 3483 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3484 if (! novlys_msym.minsym)
c906108c 3485 {
8a3fe4f8 3486 error (_("Error reading inferior's overlay table: "
0d43edd1 3487 "couldn't find `_novlys' variable\n"
8a3fe4f8 3488 "in inferior. Use `overlay manual' mode."));
0d43edd1 3489 return 0;
c906108c 3490 }
0d43edd1 3491
7c7b6655
TT
3492 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3493 if (! ovly_table_msym.minsym)
0d43edd1 3494 {
8a3fe4f8 3495 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3496 "`_ovly_table' array\n"
8a3fe4f8 3497 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3498 return 0;
3499 }
3500
7c7b6655 3501 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3502 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3503 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3504
77e371c0
TT
3505 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3506 4, byte_order);
0d43edd1 3507 cache_ovly_table
224c3ddb 3508 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3509 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3510 read_target_long_array (cache_ovly_table_base,
777ea8f1 3511 (unsigned int *) cache_ovly_table,
e17a4113 3512 cache_novlys * 4, word_size, byte_order);
0d43edd1 3513
c5aa993b 3514 return 1; /* SUCCESS */
c906108c
SS
3515}
3516
5417f6dc 3517/* Function: simple_overlay_update_1
c906108c
SS
3518 A helper function for simple_overlay_update. Assuming a cached copy
3519 of _ovly_table exists, look through it to find an entry whose vma,
3520 lma and size match those of OSECT. Re-read the entry and make sure
3521 it still matches OSECT (else the table may no longer be valid).
3522 Set OSECT's mapped state to match the entry. Return: 1 for
3523 success, 0 for failure. */
3524
3525static int
fba45db2 3526simple_overlay_update_1 (struct obj_section *osect)
c906108c 3527{
764c99c1 3528 int i;
fbd35540
MS
3529 bfd *obfd = osect->objfile->obfd;
3530 asection *bsect = osect->the_bfd_section;
9216df95
UW
3531 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3532 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3534
c906108c 3535 for (i = 0; i < cache_novlys; i++)
fbd35540 3536 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3537 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3538 {
9216df95
UW
3539 read_target_long_array (cache_ovly_table_base + i * word_size,
3540 (unsigned int *) cache_ovly_table[i],
e17a4113 3541 4, word_size, byte_order);
fbd35540 3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3543 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3544 {
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 return 1;
3547 }
c378eb4e 3548 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3549 return 0;
3550 }
3551 return 0;
3552}
3553
3554/* Function: simple_overlay_update
5417f6dc
RM
3555 If OSECT is NULL, then update all sections' mapped state
3556 (after re-reading the entire target _ovly_table).
3557 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3558 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3559 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3560 re-read the entire cache, and go ahead and update all sections. */
3561
1c772458 3562void
fba45db2 3563simple_overlay_update (struct obj_section *osect)
c906108c 3564{
c5aa993b 3565 struct objfile *objfile;
c906108c 3566
c378eb4e 3567 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3568 if (osect)
c378eb4e 3569 /* Have we got a cached copy of the target's overlay table? */
c906108c 3570 if (cache_ovly_table != NULL)
9cc89665
MS
3571 {
3572 /* Does its cached location match what's currently in the
3573 symtab? */
3b7344d5 3574 struct bound_minimal_symbol minsym
9cc89665
MS
3575 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3576
3b7344d5 3577 if (minsym.minsym == NULL)
9cc89665
MS
3578 error (_("Error reading inferior's overlay table: couldn't "
3579 "find `_ovly_table' array\n"
3580 "in inferior. Use `overlay manual' mode."));
3581
77e371c0 3582 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3583 /* Then go ahead and try to look up this single section in
3584 the cache. */
3585 if (simple_overlay_update_1 (osect))
3586 /* Found it! We're done. */
3587 return;
3588 }
c906108c
SS
3589
3590 /* Cached table no good: need to read the entire table anew.
3591 Or else we want all the sections, in which case it's actually
3592 more efficient to read the whole table in one block anyway. */
3593
0d43edd1
JB
3594 if (! simple_read_overlay_table ())
3595 return;
3596
c378eb4e 3597 /* Now may as well update all sections, even if only one was requested. */
c906108c 3598 ALL_OBJSECTIONS (objfile, osect)
714835d5 3599 if (section_is_overlay (osect))
c5aa993b 3600 {
764c99c1 3601 int i;
fbd35540
MS
3602 bfd *obfd = osect->objfile->obfd;
3603 asection *bsect = osect->the_bfd_section;
c5aa993b 3604
c5aa993b 3605 for (i = 0; i < cache_novlys; i++)
fbd35540 3606 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3607 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3608 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3609 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3610 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3611 }
3612 }
c906108c
SS
3613}
3614
086df311
DJ
3615/* Set the output sections and output offsets for section SECTP in
3616 ABFD. The relocation code in BFD will read these offsets, so we
3617 need to be sure they're initialized. We map each section to itself,
3618 with no offset; this means that SECTP->vma will be honored. */
3619
3620static void
3621symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3622{
3623 sectp->output_section = sectp;
3624 sectp->output_offset = 0;
3625}
3626
ac8035ab
TG
3627/* Default implementation for sym_relocate. */
3628
ac8035ab
TG
3629bfd_byte *
3630default_symfile_relocate (struct objfile *objfile, asection *sectp,
3631 bfd_byte *buf)
3632{
3019eac3
DE
3633 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3634 DWO file. */
3635 bfd *abfd = sectp->owner;
ac8035ab
TG
3636
3637 /* We're only interested in sections with relocation
3638 information. */
3639 if ((sectp->flags & SEC_RELOC) == 0)
3640 return NULL;
3641
3642 /* We will handle section offsets properly elsewhere, so relocate as if
3643 all sections begin at 0. */
3644 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3645
3646 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3647}
3648
086df311
DJ
3649/* Relocate the contents of a debug section SECTP in ABFD. The
3650 contents are stored in BUF if it is non-NULL, or returned in a
3651 malloc'd buffer otherwise.
3652
3653 For some platforms and debug info formats, shared libraries contain
3654 relocations against the debug sections (particularly for DWARF-2;
3655 one affected platform is PowerPC GNU/Linux, although it depends on
3656 the version of the linker in use). Also, ELF object files naturally
3657 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3658 the relocations in order to get the locations of symbols correct.
3659 Another example that may require relocation processing, is the
3660 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3661 debug section. */
086df311
DJ
3662
3663bfd_byte *
ac8035ab
TG
3664symfile_relocate_debug_section (struct objfile *objfile,
3665 asection *sectp, bfd_byte *buf)
086df311 3666{
ac8035ab 3667 gdb_assert (objfile->sf->sym_relocate);
086df311 3668
ac8035ab 3669 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3670}
c906108c 3671
31d99776
DJ
3672struct symfile_segment_data *
3673get_symfile_segment_data (bfd *abfd)
3674{
00b5771c 3675 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3676
3677 if (sf == NULL)
3678 return NULL;
3679
3680 return sf->sym_segments (abfd);
3681}
3682
3683void
3684free_symfile_segment_data (struct symfile_segment_data *data)
3685{
3686 xfree (data->segment_bases);
3687 xfree (data->segment_sizes);
3688 xfree (data->segment_info);
3689 xfree (data);
3690}
3691
28c32713
JB
3692/* Given:
3693 - DATA, containing segment addresses from the object file ABFD, and
3694 the mapping from ABFD's sections onto the segments that own them,
3695 and
3696 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3697 segment addresses reported by the target,
3698 store the appropriate offsets for each section in OFFSETS.
3699
3700 If there are fewer entries in SEGMENT_BASES than there are segments
3701 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3702
8d385431
DJ
3703 If there are more entries, then ignore the extra. The target may
3704 not be able to distinguish between an empty data segment and a
3705 missing data segment; a missing text segment is less plausible. */
3b7bacac 3706
31d99776 3707int
3189cb12
DE
3708symfile_map_offsets_to_segments (bfd *abfd,
3709 const struct symfile_segment_data *data,
31d99776
DJ
3710 struct section_offsets *offsets,
3711 int num_segment_bases,
3712 const CORE_ADDR *segment_bases)
3713{
3714 int i;
3715 asection *sect;
3716
28c32713
JB
3717 /* It doesn't make sense to call this function unless you have some
3718 segment base addresses. */
202b96c1 3719 gdb_assert (num_segment_bases > 0);
28c32713 3720
31d99776
DJ
3721 /* If we do not have segment mappings for the object file, we
3722 can not relocate it by segments. */
3723 gdb_assert (data != NULL);
3724 gdb_assert (data->num_segments > 0);
3725
31d99776
DJ
3726 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3727 {
31d99776
DJ
3728 int which = data->segment_info[i];
3729
28c32713
JB
3730 gdb_assert (0 <= which && which <= data->num_segments);
3731
3732 /* Don't bother computing offsets for sections that aren't
3733 loaded as part of any segment. */
3734 if (! which)
3735 continue;
3736
3737 /* Use the last SEGMENT_BASES entry as the address of any extra
3738 segments mentioned in DATA->segment_info. */
31d99776 3739 if (which > num_segment_bases)
28c32713 3740 which = num_segment_bases;
31d99776 3741
28c32713
JB
3742 offsets->offsets[i] = (segment_bases[which - 1]
3743 - data->segment_bases[which - 1]);
31d99776
DJ
3744 }
3745
3746 return 1;
3747}
3748
3749static void
3750symfile_find_segment_sections (struct objfile *objfile)
3751{
3752 bfd *abfd = objfile->obfd;
3753 int i;
3754 asection *sect;
3755 struct symfile_segment_data *data;
3756
3757 data = get_symfile_segment_data (objfile->obfd);
3758 if (data == NULL)
3759 return;
3760
3761 if (data->num_segments != 1 && data->num_segments != 2)
3762 {
3763 free_symfile_segment_data (data);
3764 return;
3765 }
3766
3767 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3768 {
31d99776
DJ
3769 int which = data->segment_info[i];
3770
3771 if (which == 1)
3772 {
3773 if (objfile->sect_index_text == -1)
3774 objfile->sect_index_text = sect->index;
3775
3776 if (objfile->sect_index_rodata == -1)
3777 objfile->sect_index_rodata = sect->index;
3778 }
3779 else if (which == 2)
3780 {
3781 if (objfile->sect_index_data == -1)
3782 objfile->sect_index_data = sect->index;
3783
3784 if (objfile->sect_index_bss == -1)
3785 objfile->sect_index_bss = sect->index;
3786 }
3787 }
3788
3789 free_symfile_segment_data (data);
3790}
3791
76ad5e1e
NB
3792/* Listen for free_objfile events. */
3793
3794static void
3795symfile_free_objfile (struct objfile *objfile)
3796{
c33b2f12
MM
3797 /* Remove the target sections owned by this objfile. */
3798 if (objfile != NULL)
76ad5e1e
NB
3799 remove_target_sections ((void *) objfile);
3800}
3801
540c2971
DE
3802/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3803 Expand all symtabs that match the specified criteria.
3804 See quick_symbol_functions.expand_symtabs_matching for details. */
3805
3806void
14bc53a8
PA
3807expand_symtabs_matching
3808 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3809 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3810 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3811 enum search_domain kind)
540c2971
DE
3812{
3813 struct objfile *objfile;
3814
3815 ALL_OBJFILES (objfile)
3816 {
3817 if (objfile->sf)
bb4142cf 3818 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3819 symbol_matcher,
14bc53a8 3820 expansion_notify, kind);
540c2971
DE
3821 }
3822}
3823
3824/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3825 Map function FUN over every file.
3826 See quick_symbol_functions.map_symbol_filenames for details. */
3827
3828void
bb4142cf
DE
3829map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3830 int need_fullname)
540c2971
DE
3831{
3832 struct objfile *objfile;
3833
3834 ALL_OBJFILES (objfile)
3835 {
3836 if (objfile->sf)
3837 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3838 need_fullname);
3839 }
3840}
3841
c906108c 3842void
fba45db2 3843_initialize_symfile (void)
c906108c
SS
3844{
3845 struct cmd_list_element *c;
c5aa993b 3846
76ad5e1e
NB
3847 observer_attach_free_objfile (symfile_free_objfile);
3848
1a966eab
AC
3849 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3850Load symbol table from executable file FILE.\n\
c906108c 3851The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3852to execute."), &cmdlist);
5ba2abeb 3853 set_cmd_completer (c, filename_completer);
c906108c 3854
1a966eab 3855 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3856Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3857Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3858 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3859The optional arguments are section-name section-address pairs and\n\
3860should be specified if the data and bss segments are not contiguous\n\
1a966eab 3861with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3862 &cmdlist);
5ba2abeb 3863 set_cmd_completer (c, filename_completer);
c906108c 3864
63644780
NB
3865 c = add_cmd ("remove-symbol-file", class_files,
3866 remove_symbol_file_command, _("\
3867Remove a symbol file added via the add-symbol-file command.\n\
3868Usage: remove-symbol-file FILENAME\n\
3869 remove-symbol-file -a ADDRESS\n\
3870The file to remove can be identified by its filename or by an address\n\
3871that lies within the boundaries of this symbol file in memory."),
3872 &cmdlist);
3873
1a966eab
AC
3874 c = add_cmd ("load", class_files, load_command, _("\
3875Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3876for access from GDB.\n\
5cf30ebf
LM
3877An optional load OFFSET may also be given as a literal address.\n\
3878When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3879on its own.\n\
3880Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3881 set_cmd_completer (c, filename_completer);
c906108c 3882
c5aa993b 3883 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3884 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3885 "overlay ", 0, &cmdlist);
3886
3887 add_com_alias ("ovly", "overlay", class_alias, 1);
3888 add_com_alias ("ov", "overlay", class_alias, 1);
3889
c5aa993b 3890 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3891 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3892
c5aa993b 3893 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3894 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3895
c5aa993b 3896 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3897 _("List mappings of overlay sections."), &overlaylist);
c906108c 3898
c5aa993b 3899 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3900 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3901 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3902 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3903 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3904 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3905 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3906 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3907
3908 /* Filename extension to source language lookup table: */
26c41df3
AC
3909 add_setshow_string_noescape_cmd ("extension-language", class_files,
3910 &ext_args, _("\
3911Set mapping between filename extension and source language."), _("\
3912Show mapping between filename extension and source language."), _("\
3913Usage: set extension-language .foo bar"),
3914 set_ext_lang_command,
920d2a44 3915 show_ext_args,
26c41df3 3916 &setlist, &showlist);
c906108c 3917
c5aa993b 3918 add_info ("extensions", info_ext_lang_command,
1bedd215 3919 _("All filename extensions associated with a source language."));
917317f4 3920
525226b5
AC
3921 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3922 &debug_file_directory, _("\
24ddea62
JK
3923Set the directories where separate debug symbols are searched for."), _("\
3924Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3925Separate debug symbols are first searched for in the same\n\
3926directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3927and lastly at the path of the directory of the binary with\n\
24ddea62 3928each global debug-file-directory component prepended."),
525226b5 3929 NULL,
920d2a44 3930 show_debug_file_directory,
525226b5 3931 &setlist, &showlist);
770e7fc7
DE
3932
3933 add_setshow_enum_cmd ("symbol-loading", no_class,
3934 print_symbol_loading_enums, &print_symbol_loading,
3935 _("\
3936Set printing of symbol loading messages."), _("\
3937Show printing of symbol loading messages."), _("\
3938off == turn all messages off\n\
3939brief == print messages for the executable,\n\
3940 and brief messages for shared libraries\n\
3941full == print messages for the executable,\n\
3942 and messages for each shared library."),
3943 NULL,
3944 NULL,
3945 &setprintlist, &showprintlist);
c4dcb155
SM
3946
3947 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3948 &separate_debug_file_debug, _("\
3949Set printing of separate debug info file search debug."), _("\
3950Show printing of separate debug info file search debug."), _("\
3951When on, GDB prints the searched locations while looking for separate debug \
3952info files."), NULL, NULL, &setdebuglist, &showdebuglist);
c906108c 3953}
This page took 2.206899 seconds and 4 git commands to generate.