* exec.c (xfer_memory): Add attrib argument.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
d9fcf2fb 2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "breakpoint.h"
33#include "language.h"
34#include "complaints.h"
35#include "demangle.h"
c5aa993b 36#include "inferior.h" /* for write_pc */
c906108c
SS
37#include "gdb-stabs.h"
38#include "obstack.h"
c5f0f3d0 39#include "completer.h"
c906108c
SS
40
41#include <assert.h>
42#include <sys/types.h>
43#include <fcntl.h>
44#include "gdb_string.h"
45#include "gdb_stat.h"
46#include <ctype.h>
47#include <time.h>
c906108c
SS
48
49#ifndef O_BINARY
50#define O_BINARY 0
51#endif
52
53#ifdef HPUXHPPA
54
55/* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58extern int hp_som_som_object_present;
59extern int hp_cxx_exception_support_initialized;
60#define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64#endif
65
917317f4 66int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
67void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
507f3c78
KB
72void (*pre_add_symbol_hook) (char *);
73void (*post_add_symbol_hook) (void);
74void (*target_new_objfile_hook) (struct objfile *);
c906108c 75
74b7792f
AC
76static void clear_symtab_users_cleanup (void *ignore);
77
c906108c 78/* Global variables owned by this file */
c5aa993b 79int readnow_symbol_files; /* Read full symbols immediately */
c906108c 80
c5aa993b
JM
81struct complaint oldsyms_complaint =
82{
c906108c
SS
83 "Replacing old symbols for `%s'", 0, 0
84};
85
c5aa993b
JM
86struct complaint empty_symtab_complaint =
87{
c906108c
SS
88 "Empty symbol table found for `%s'", 0, 0
89};
90
2acceee2
JM
91struct complaint unknown_option_complaint =
92{
93 "Unknown option `%s' ignored", 0, 0
94};
95
c906108c
SS
96/* External variables and functions referenced. */
97
98extern int info_verbose;
99
a14ed312 100extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
101
102/* Functions this file defines */
103
104#if 0
a14ed312
KB
105static int simple_read_overlay_region_table (void);
106static void simple_free_overlay_region_table (void);
c906108c
SS
107#endif
108
a14ed312 109static void set_initial_language (void);
c906108c 110
a14ed312 111static void load_command (char *, int);
c906108c 112
a14ed312 113static void add_symbol_file_command (char *, int);
c906108c 114
a14ed312 115static void add_shared_symbol_files_command (char *, int);
c906108c 116
a14ed312 117static void cashier_psymtab (struct partial_symtab *);
c906108c 118
a14ed312 119static int compare_psymbols (const void *, const void *);
c906108c 120
a14ed312 121static int compare_symbols (const void *, const void *);
c906108c 122
a14ed312 123bfd *symfile_bfd_open (char *);
c906108c 124
a14ed312 125static void find_sym_fns (struct objfile *);
c906108c 126
a14ed312 127static void decrement_reading_symtab (void *);
c906108c 128
a14ed312 129static void overlay_invalidate_all (void);
c906108c 130
a14ed312 131static int overlay_is_mapped (struct obj_section *);
c906108c 132
a14ed312 133void list_overlays_command (char *, int);
c906108c 134
a14ed312 135void map_overlay_command (char *, int);
c906108c 136
a14ed312 137void unmap_overlay_command (char *, int);
c906108c 138
a14ed312 139static void overlay_auto_command (char *, int);
c906108c 140
a14ed312 141static void overlay_manual_command (char *, int);
c906108c 142
a14ed312 143static void overlay_off_command (char *, int);
c906108c 144
a14ed312 145static void overlay_load_command (char *, int);
c906108c 146
a14ed312 147static void overlay_command (char *, int);
c906108c 148
a14ed312 149static void simple_free_overlay_table (void);
c906108c 150
a14ed312 151static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 152
a14ed312 153static int simple_read_overlay_table (void);
c906108c 154
a14ed312 155static int simple_overlay_update_1 (struct obj_section *);
c906108c 156
a14ed312 157static void add_filename_language (char *ext, enum language lang);
392a587b 158
a14ed312 159static void set_ext_lang_command (char *args, int from_tty);
392a587b 160
a14ed312 161static void info_ext_lang_command (char *args, int from_tty);
392a587b 162
a14ed312 163static void init_filename_language_table (void);
392a587b 164
a14ed312 165void _initialize_symfile (void);
c906108c
SS
166
167/* List of all available sym_fns. On gdb startup, each object file reader
168 calls add_symtab_fns() to register information on each format it is
169 prepared to read. */
170
171static struct sym_fns *symtab_fns = NULL;
172
173/* Flag for whether user will be reloading symbols multiple times.
174 Defaults to ON for VxWorks, otherwise OFF. */
175
176#ifdef SYMBOL_RELOADING_DEFAULT
177int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
178#else
179int symbol_reloading = 0;
180#endif
181
182/* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
183 this variable is interpreted as a threshhold. If adding a new
184 library's symbol table to those already known to the debugger would
185 exceed this threshhold, then the shlib's symbols are not added.
186
187 If non-zero on other platforms, shared library symbols will be added
188 automatically when the inferior is created, new libraries are loaded,
189 or when attaching to the inferior. This is almost always what users
190 will want to have happen; but for very large programs, the startup
191 time will be excessive, and so if this is a problem, the user can
192 clear this flag and then add the shared library symbols as needed.
193 Note that there is a potential for confusion, since if the shared
194 library symbols are not loaded, commands like "info fun" will *not*
195 report all the functions that are actually present.
196
197 Note that HP-UX interprets this variable to mean, "threshhold size
198 in megabytes, where zero means never add". Other platforms interpret
199 this variable to mean, "always add if non-zero, never add if zero."
c5aa993b 200 */
c906108c
SS
201
202int auto_solib_add = 1;
c906108c 203\f
c5aa993b 204
c906108c
SS
205/* Since this function is called from within qsort, in an ANSI environment
206 it must conform to the prototype for qsort, which specifies that the
207 comparison function takes two "void *" pointers. */
208
209static int
fba45db2 210compare_symbols (const PTR s1p, const PTR s2p)
c906108c
SS
211{
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
494b7ec9 216 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
217}
218
219/*
220
c5aa993b 221 LOCAL FUNCTION
c906108c 222
c5aa993b 223 compare_psymbols -- compare two partial symbols by name
c906108c 224
c5aa993b 225 DESCRIPTION
c906108c 226
c5aa993b
JM
227 Given pointers to pointers to two partial symbol table entries,
228 compare them by name and return -N, 0, or +N (ala strcmp).
229 Typically used by sorting routines like qsort().
c906108c 230
c5aa993b 231 NOTES
c906108c 232
c5aa993b
JM
233 Does direct compare of first two characters before punting
234 and passing to strcmp for longer compares. Note that the
235 original version had a bug whereby two null strings or two
236 identically named one character strings would return the
237 comparison of memory following the null byte.
c906108c
SS
238
239 */
240
241static int
fba45db2 242compare_psymbols (const PTR s1p, const PTR s2p)
c906108c 243{
fba7f19c
EZ
244 register struct partial_symbol **s1, **s2;
245 register char *st1, *st2;
246
247 s1 = (struct partial_symbol **) s1p;
248 s2 = (struct partial_symbol **) s2p;
249 st1 = SYMBOL_SOURCE_NAME (*s1);
250 st2 = SYMBOL_SOURCE_NAME (*s2);
251
c906108c
SS
252
253 if ((st1[0] - st2[0]) || !st1[0])
254 {
255 return (st1[0] - st2[0]);
256 }
257 else if ((st1[1] - st2[1]) || !st1[1])
258 {
259 return (st1[1] - st2[1]);
260 }
261 else
262 {
c5aa993b 263 return (strcmp (st1, st2));
c906108c
SS
264 }
265}
266
267void
fba45db2 268sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
269{
270 /* Sort the global list; don't sort the static list */
271
c5aa993b
JM
272 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
273 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
274 compare_psymbols);
275}
276
277/* Call sort_block_syms to sort alphabetically the symbols of one block. */
278
279void
fba45db2 280sort_block_syms (register struct block *b)
c906108c
SS
281{
282 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
283 sizeof (struct symbol *), compare_symbols);
284}
285
286/* Call sort_symtab_syms to sort alphabetically
287 the symbols of each block of one symtab. */
288
289void
fba45db2 290sort_symtab_syms (register struct symtab *s)
c906108c
SS
291{
292 register struct blockvector *bv;
293 int nbl;
294 int i;
295 register struct block *b;
296
297 if (s == 0)
298 return;
299 bv = BLOCKVECTOR (s);
300 nbl = BLOCKVECTOR_NBLOCKS (bv);
301 for (i = 0; i < nbl; i++)
302 {
303 b = BLOCKVECTOR_BLOCK (bv, i);
304 if (BLOCK_SHOULD_SORT (b))
305 sort_block_syms (b);
306 }
307}
308
309/* Make a null terminated copy of the string at PTR with SIZE characters in
310 the obstack pointed to by OBSTACKP . Returns the address of the copy.
311 Note that the string at PTR does not have to be null terminated, I.E. it
312 may be part of a larger string and we are only saving a substring. */
313
314char *
fba45db2 315obsavestring (char *ptr, int size, struct obstack *obstackp)
c906108c
SS
316{
317 register char *p = (char *) obstack_alloc (obstackp, size + 1);
318 /* Open-coded memcpy--saves function call time. These strings are usually
319 short. FIXME: Is this really still true with a compiler that can
320 inline memcpy? */
321 {
322 register char *p1 = ptr;
323 register char *p2 = p;
324 char *end = ptr + size;
325 while (p1 != end)
326 *p2++ = *p1++;
327 }
328 p[size] = 0;
329 return p;
330}
331
332/* Concatenate strings S1, S2 and S3; return the new string. Space is found
333 in the obstack pointed to by OBSTACKP. */
334
335char *
fba45db2
KB
336obconcat (struct obstack *obstackp, const char *s1, const char *s2,
337 const char *s3)
c906108c
SS
338{
339 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
340 register char *val = (char *) obstack_alloc (obstackp, len);
341 strcpy (val, s1);
342 strcat (val, s2);
343 strcat (val, s3);
344 return val;
345}
346
347/* True if we are nested inside psymtab_to_symtab. */
348
349int currently_reading_symtab = 0;
350
351static void
fba45db2 352decrement_reading_symtab (void *dummy)
c906108c
SS
353{
354 currently_reading_symtab--;
355}
356
357/* Get the symbol table that corresponds to a partial_symtab.
358 This is fast after the first time you do it. In fact, there
359 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
360 case inline. */
361
362struct symtab *
fba45db2 363psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
364{
365 /* If it's been looked up before, return it. */
366 if (pst->symtab)
367 return pst->symtab;
368
369 /* If it has not yet been read in, read it. */
370 if (!pst->readin)
c5aa993b 371 {
c906108c
SS
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
376 }
377
378 return pst->symtab;
379}
380
381/* Initialize entry point information for this objfile. */
382
383void
fba45db2 384init_entry_point_info (struct objfile *objfile)
c906108c
SS
385{
386 /* Save startup file's range of PC addresses to help blockframe.c
387 decide where the bottom of the stack is. */
388
c5aa993b 389 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
390 {
391 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
392 the startup file because it contains the entry point. */
393 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
394 }
395 else
396 {
397 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 398 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 399 }
c5aa993b
JM
400 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
404 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
405 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
406}
407
408/* Get current entry point address. */
409
410CORE_ADDR
fba45db2 411entry_point_address (void)
c906108c
SS
412{
413 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
414}
415
416/* Remember the lowest-addressed loadable section we've seen.
417 This function is called via bfd_map_over_sections.
418
419 In case of equal vmas, the section with the largest size becomes the
420 lowest-addressed loadable section.
421
422 If the vmas and sizes are equal, the last section is considered the
423 lowest-addressed loadable section. */
424
425void
fba45db2 426find_lowest_section (bfd *abfd, asection *sect, PTR obj)
c906108c 427{
c5aa993b 428 asection **lowest = (asection **) obj;
c906108c
SS
429
430 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
431 return;
432 if (!*lowest)
433 *lowest = sect; /* First loadable section */
434 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
435 *lowest = sect; /* A lower loadable section */
436 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
437 && (bfd_section_size (abfd, (*lowest))
438 <= bfd_section_size (abfd, sect)))
439 *lowest = sect;
440}
441
62557bbc
KB
442
443/* Build (allocate and populate) a section_addr_info struct from
444 an existing section table. */
445
446extern struct section_addr_info *
447build_section_addr_info_from_section_table (const struct section_table *start,
448 const struct section_table *end)
449{
450 struct section_addr_info *sap;
451 const struct section_table *stp;
452 int oidx;
453
454 sap = xmalloc (sizeof (struct section_addr_info));
455 memset (sap, 0, sizeof (struct section_addr_info));
456
457 for (stp = start, oidx = 0; stp != end; stp++)
458 {
62557bbc
KB
459 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
460 && oidx < MAX_SECTIONS)
461 {
462 sap->other[oidx].addr = stp->addr;
463 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
464 sap->other[oidx].sectindex = stp->the_bfd_section->index;
465 oidx++;
466 }
467 }
468
469 return sap;
470}
471
472
473/* Free all memory allocated by build_section_addr_info_from_section_table. */
474
475extern void
476free_section_addr_info (struct section_addr_info *sap)
477{
478 int idx;
479
480 for (idx = 0; idx < MAX_SECTIONS; idx++)
481 if (sap->other[idx].name)
b8c9b27d
KB
482 xfree (sap->other[idx].name);
483 xfree (sap);
62557bbc
KB
484}
485
486
c906108c
SS
487/* Parse the user's idea of an offset for dynamic linking, into our idea
488 of how to represent it for fast symbol reading. This is the default
489 version of the sym_fns.sym_offsets function for symbol readers that
490 don't need to do anything special. It allocates a section_offsets table
491 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
492
d4f3574e 493void
fba45db2
KB
494default_symfile_offsets (struct objfile *objfile,
495 struct section_addr_info *addrs)
c906108c 496{
c906108c 497 int i;
b8fbeb18 498 asection *sect = NULL;
c906108c
SS
499
500 objfile->num_sections = SECT_OFF_MAX;
d4f3574e 501 objfile->section_offsets = (struct section_offsets *)
c5aa993b 502 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
d4f3574e 503 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
c906108c 504
b8fbeb18
EZ
505 /* Now calculate offsets for section that were specified by the
506 caller. */
2acceee2
JM
507 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
508 {
509 struct other_sections *osp ;
510
511 osp = &addrs->other[i] ;
b8fbeb18 512 if (osp->addr == 0)
2acceee2 513 continue;
b8fbeb18 514
2acceee2 515 /* Record all sections in offsets */
b8fbeb18
EZ
516 /* The section_offsets in the objfile are here filled in using
517 the BFD index. */
a4c8257b 518 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
2acceee2 519 }
c906108c 520
b8fbeb18
EZ
521 /* Remember the bfd indexes for the .text, .data, .bss and
522 .rodata sections. */
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".text");
525 if (sect)
526 objfile->sect_index_text = sect->index;
527
528 sect = bfd_get_section_by_name (objfile->obfd, ".data");
529 if (sect)
530 objfile->sect_index_data = sect->index;
531
532 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
533 if (sect)
534 objfile->sect_index_bss = sect->index;
535
536 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
537 if (sect)
538 objfile->sect_index_rodata = sect->index;
539
540}
c906108c
SS
541
542/* Process a symbol file, as either the main file or as a dynamically
543 loaded file.
544
96baa820
JM
545 OBJFILE is where the symbols are to be read from.
546
547 ADDR is the address where the text segment was loaded, unless the
548 objfile is the main symbol file, in which case it is zero.
549
550 MAINLINE is nonzero if this is the main symbol file, or zero if
551 it's an extra symbol file such as dynamically loaded code.
552
553 VERBO is nonzero if the caller has printed a verbose message about
554 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
555
556void
fba45db2
KB
557syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
558 int mainline, int verbo)
c906108c 559{
2acceee2
JM
560 asection *lower_sect;
561 asection *sect;
562 CORE_ADDR lower_offset;
563 struct section_addr_info local_addr;
c906108c 564 struct cleanup *old_chain;
2acceee2
JM
565 int i;
566
567 /* If ADDRS is NULL, initialize the local section_addr_info struct and
568 point ADDRS to it. We now establish the convention that an addr of
569 zero means no load address was specified. */
570
571 if (addrs == NULL)
572 {
573 memset (&local_addr, 0, sizeof (local_addr));
574 addrs = &local_addr;
575 }
c906108c
SS
576
577 init_entry_point_info (objfile);
578 find_sym_fns (objfile);
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
74b7792f 582 old_chain = make_cleanup_free_objfile (objfile);
c906108c 583
c5aa993b 584 if (mainline)
c906108c
SS
585 {
586 /* We will modify the main symbol table, make sure that all its users
c5aa993b 587 will be cleaned up if an error occurs during symbol reading. */
74b7792f 588 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
589
590 /* Since no error yet, throw away the old symbol table. */
591
592 if (symfile_objfile != NULL)
593 {
594 free_objfile (symfile_objfile);
595 symfile_objfile = NULL;
596 }
597
598 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
599 If the user wants to get rid of them, they should do "symbol-file"
600 without arguments first. Not sure this is the best behavior
601 (PR 2207). */
c906108c 602
c5aa993b 603 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
604 }
605
606 /* Convert addr into an offset rather than an absolute address.
607 We find the lowest address of a loaded segment in the objfile,
53a5351d 608 and assume that <addr> is where that got loaded.
c906108c 609
53a5351d
JM
610 We no longer warn if the lowest section is not a text segment (as
611 happens for the PA64 port. */
e7cf9df1 612 if (!mainline)
c906108c 613 {
2acceee2
JM
614 /* Find lowest loadable section to be used as starting point for
615 continguous sections. FIXME!! won't work without call to find
616 .text first, but this assumes text is lowest section. */
617 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
618 if (lower_sect == NULL)
c906108c 619 bfd_map_over_sections (objfile->obfd, find_lowest_section,
2acceee2
JM
620 (PTR) &lower_sect);
621 if (lower_sect == NULL)
c906108c
SS
622 warning ("no loadable sections found in added symbol-file %s",
623 objfile->name);
b8fbeb18
EZ
624 else
625 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
626 warning ("Lowest section in %s is %s at %s",
627 objfile->name,
628 bfd_section_name (objfile->obfd, lower_sect),
629 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
630 if (lower_sect != NULL)
631 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
632 else
633 lower_offset = 0;
634
635 /* Calculate offsets for the loadable sections.
636 FIXME! Sections must be in order of increasing loadable section
637 so that contiguous sections can use the lower-offset!!!
638
639 Adjust offsets if the segments are not contiguous.
640 If the section is contiguous, its offset should be set to
641 the offset of the highest loadable section lower than it
642 (the loadable section directly below it in memory).
643 this_offset = lower_offset = lower_addr - lower_orig_addr */
644
e7cf9df1 645 /* Calculate offsets for sections. */
2acceee2
JM
646 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
647 {
e7cf9df1 648 if (addrs->other[i].addr != 0)
2acceee2 649 {
e7cf9df1 650 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
2acceee2
JM
651 if (sect)
652 {
653 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
654 lower_offset = addrs->other[i].addr;
e7cf9df1 655 /* This is the index used by BFD. */
2acceee2
JM
656 addrs->other[i].sectindex = sect->index ;
657 }
658 else
659 {
660 warning ("section %s not found in %s", addrs->other[i].name,
661 objfile->name);
662 addrs->other[i].addr = 0;
663 }
664 }
665 else
666 addrs->other[i].addr = lower_offset;
667 }
c906108c
SS
668 }
669
670 /* Initialize symbol reading routines for this objfile, allow complaints to
671 appear for this new file, and record how verbose to be, then do the
672 initial symbol reading for this file. */
673
c5aa993b 674 (*objfile->sf->sym_init) (objfile);
c906108c
SS
675 clear_complaints (1, verbo);
676
2acceee2 677 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c
SS
678
679#ifndef IBM6000_TARGET
680 /* This is a SVR4/SunOS specific hack, I think. In any event, it
681 screws RS/6000. sym_offsets should be doing this sort of thing,
682 because it knows the mapping between bfd sections and
683 section_offsets. */
684 /* This is a hack. As far as I can tell, section offsets are not
685 target dependent. They are all set to addr with a couple of
686 exceptions. The exceptions are sysvr4 shared libraries, whose
687 offsets are kept in solib structures anyway and rs6000 xcoff
688 which handles shared libraries in a completely unique way.
689
690 Section offsets are built similarly, except that they are built
691 by adding addr in all cases because there is no clear mapping
692 from section_offsets into actual sections. Note that solib.c
96baa820 693 has a different algorithm for finding section offsets.
c906108c
SS
694
695 These should probably all be collapsed into some target
696 independent form of shared library support. FIXME. */
697
2acceee2 698 if (addrs)
c906108c
SS
699 {
700 struct obj_section *s;
701
2acceee2
JM
702 /* Map section offsets in "addr" back to the object's
703 sections by comparing the section names with bfd's
704 section names. Then adjust the section address by
705 the offset. */ /* for gdb/13815 */
706
96baa820 707 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 708 {
2acceee2
JM
709 CORE_ADDR s_addr = 0;
710 int i;
711
62557bbc
KB
712 for (i = 0;
713 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
714 i++)
2acceee2
JM
715 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
716 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
717
c906108c 718 s->addr -= s->offset;
2acceee2 719 s->addr += s_addr;
c906108c 720 s->endaddr -= s->offset;
2acceee2
JM
721 s->endaddr += s_addr;
722 s->offset += s_addr;
c906108c
SS
723 }
724 }
725#endif /* not IBM6000_TARGET */
726
96baa820 727 (*objfile->sf->sym_read) (objfile, mainline);
c906108c
SS
728
729 if (!have_partial_symbols () && !have_full_symbols ())
730 {
731 wrap_here ("");
732 printf_filtered ("(no debugging symbols found)...");
733 wrap_here ("");
734 }
735
736 /* Don't allow char * to have a typename (else would get caddr_t).
737 Ditto void *. FIXME: Check whether this is now done by all the
738 symbol readers themselves (many of them now do), and if so remove
739 it from here. */
740
741 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
742 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
743
744 /* Mark the objfile has having had initial symbol read attempted. Note
745 that this does not mean we found any symbols... */
746
c5aa993b 747 objfile->flags |= OBJF_SYMS;
c906108c
SS
748
749 /* Discard cleanups as symbol reading was successful. */
750
751 discard_cleanups (old_chain);
752
96baa820 753 /* Call this after reading in a new symbol table to give target
38c2ef12 754 dependent code a crack at the new symbols. For instance, this
96baa820
JM
755 could be used to update the values of target-specific symbols GDB
756 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
757
758 TARGET_SYMFILE_POSTREAD (objfile);
759}
760
761/* Perform required actions after either reading in the initial
762 symbols for a new objfile, or mapping in the symbols from a reusable
763 objfile. */
c5aa993b 764
c906108c 765void
fba45db2 766new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
767{
768
769 /* If this is the main symbol file we have to clean up all users of the
770 old main symbol file. Otherwise it is sufficient to fixup all the
771 breakpoints that may have been redefined by this symbol file. */
772 if (mainline)
773 {
774 /* OK, make it the "real" symbol file. */
775 symfile_objfile = objfile;
776
777 clear_symtab_users ();
778 }
779 else
780 {
781 breakpoint_re_set ();
782 }
783
784 /* We're done reading the symbol file; finish off complaints. */
785 clear_complaints (0, verbo);
786}
787
788/* Process a symbol file, as either the main file or as a dynamically
789 loaded file.
790
791 NAME is the file name (which will be tilde-expanded and made
792 absolute herein) (but we don't free or modify NAME itself).
793 FROM_TTY says how verbose to be. MAINLINE specifies whether this
794 is the main symbol file, or whether it's an extra symbol file such
795 as dynamically loaded code. If !mainline, ADDR is the address
796 where the text segment was loaded.
797
c906108c
SS
798 Upon success, returns a pointer to the objfile that was added.
799 Upon failure, jumps back to command level (never returns). */
800
801struct objfile *
fba45db2
KB
802symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
803 int mainline, int flags)
c906108c
SS
804{
805 struct objfile *objfile;
806 struct partial_symtab *psymtab;
807 bfd *abfd;
808
809 /* Open a bfd for the file, and give user a chance to burp if we'd be
810 interactively wiping out any existing symbols. */
811
812 abfd = symfile_bfd_open (name);
813
814 if ((have_full_symbols () || have_partial_symbols ())
815 && mainline
816 && from_tty
817 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 818 error ("Not confirmed.");
c906108c 819
2df3850c 820 objfile = allocate_objfile (abfd, flags);
c906108c
SS
821
822 /* If the objfile uses a mapped symbol file, and we have a psymtab for
823 it, then skip reading any symbols at this time. */
824
c5aa993b 825 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
826 {
827 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
828 initial symbol reading performed, so we can skip that part. Notify
829 the user that instead of reading the symbols, they have been mapped.
830 */
c906108c
SS
831 if (from_tty || info_verbose)
832 {
833 printf_filtered ("Mapped symbols for %s...", name);
834 wrap_here ("");
835 gdb_flush (gdb_stdout);
836 }
837 init_entry_point_info (objfile);
838 find_sym_fns (objfile);
839 }
840 else
841 {
842 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
843 symbol table file which has not had initial symbol reading
844 performed, or need to read an unmapped symbol table. */
c906108c
SS
845 if (from_tty || info_verbose)
846 {
847 if (pre_add_symbol_hook)
848 pre_add_symbol_hook (name);
849 else
850 {
851 printf_filtered ("Reading symbols from %s...", name);
852 wrap_here ("");
853 gdb_flush (gdb_stdout);
854 }
855 }
2acceee2 856 syms_from_objfile (objfile, addrs, mainline, from_tty);
c906108c
SS
857 }
858
859 /* We now have at least a partial symbol table. Check to see if the
860 user requested that all symbols be read on initial access via either
861 the gdb startup command line or on a per symbol file basis. Expand
862 all partial symbol tables for this objfile if so. */
863
2acceee2 864 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
865 {
866 if (from_tty || info_verbose)
867 {
868 printf_filtered ("expanding to full symbols...");
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872
c5aa993b 873 for (psymtab = objfile->psymtabs;
c906108c 874 psymtab != NULL;
c5aa993b 875 psymtab = psymtab->next)
c906108c
SS
876 {
877 psymtab_to_symtab (psymtab);
878 }
879 }
880
881 if (from_tty || info_verbose)
882 {
883 if (post_add_symbol_hook)
c5aa993b 884 post_add_symbol_hook ();
c906108c 885 else
c5aa993b
JM
886 {
887 printf_filtered ("done.\n");
888 gdb_flush (gdb_stdout);
889 }
c906108c
SS
890 }
891
892 new_symfile_objfile (objfile, mainline, from_tty);
893
11cf8741
JM
894 if (target_new_objfile_hook)
895 target_new_objfile_hook (objfile);
c906108c
SS
896
897 return (objfile);
898}
899
900/* This is the symbol-file command. Read the file, analyze its
901 symbols, and add a struct symtab to a symtab list. The syntax of
902 the command is rather bizarre--(1) buildargv implements various
903 quoting conventions which are undocumented and have little or
904 nothing in common with the way things are quoted (or not quoted)
905 elsewhere in GDB, (2) options are used, which are not generally
906 used in GDB (perhaps "set mapped on", "set readnow on" would be
907 better), (3) the order of options matters, which is contrary to GNU
908 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
909/* Note: ezannoni 2000-04-17. This function used to have support for
910 rombug (see remote-os9k.c). It consisted of a call to target_link()
911 (target.c) to get the address of the text segment from the target,
912 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
913
914void
fba45db2 915symbol_file_command (char *args, int from_tty)
c906108c
SS
916{
917 char **argv;
918 char *name = NULL;
c906108c 919 struct cleanup *cleanups;
2df3850c 920 int flags = OBJF_USERLOADED;
c906108c
SS
921
922 dont_repeat ();
923
924 if (args == NULL)
925 {
926 if ((have_full_symbols () || have_partial_symbols ())
927 && from_tty
928 && !query ("Discard symbol table from `%s'? ",
c5aa993b 929 symfile_objfile->name))
c906108c
SS
930 error ("Not confirmed.");
931 free_all_objfiles ();
932
933 /* solib descriptors may have handles to objfiles. Since their
934 storage has just been released, we'd better wipe the solib
935 descriptors as well.
c5aa993b 936 */
c906108c
SS
937#if defined(SOLIB_RESTART)
938 SOLIB_RESTART ();
939#endif
940
941 symfile_objfile = NULL;
942 if (from_tty)
c906108c 943 printf_unfiltered ("No symbol file now.\n");
c906108c
SS
944#ifdef HPUXHPPA
945 RESET_HP_UX_GLOBALS ();
946#endif
947 }
948 else
949 {
950 if ((argv = buildargv (args)) == NULL)
951 {
952 nomem (0);
953 }
7a292a7a 954 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
955 while (*argv != NULL)
956 {
957 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
958 flags |= OBJF_MAPPED;
959 else
960 if (STREQ (*argv, "-readnow"))
2acceee2 961 flags |= OBJF_READNOW;
4da95fc4
EZ
962 else
963 if (**argv == '-')
964 error ("unknown option `%s'", *argv);
c5aa993b 965 else
c5aa993b 966 {
4da95fc4 967 name = *argv;
2df3850c 968 symbol_file_add (name, from_tty, NULL, 1, flags);
c906108c 969#ifdef HPUXHPPA
c5aa993b 970 RESET_HP_UX_GLOBALS ();
c906108c 971#endif
4da95fc4
EZ
972 /* Getting new symbols may change our opinion about
973 what is frameless. */
974 reinit_frame_cache ();
c906108c 975
4da95fc4
EZ
976 set_initial_language ();
977 }
c906108c
SS
978 argv++;
979 }
980
981 if (name == NULL)
982 {
983 error ("no symbol file name was specified");
984 }
c5aa993b 985 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
c906108c
SS
986 do_cleanups (cleanups);
987 }
988}
989
990/* Set the initial language.
991
992 A better solution would be to record the language in the psymtab when reading
993 partial symbols, and then use it (if known) to set the language. This would
994 be a win for formats that encode the language in an easily discoverable place,
995 such as DWARF. For stabs, we can jump through hoops looking for specially
996 named symbols or try to intuit the language from the specific type of stabs
997 we find, but we can't do that until later when we read in full symbols.
998 FIXME. */
999
1000static void
fba45db2 1001set_initial_language (void)
c906108c
SS
1002{
1003 struct partial_symtab *pst;
c5aa993b 1004 enum language lang = language_unknown;
c906108c
SS
1005
1006 pst = find_main_psymtab ();
1007 if (pst != NULL)
1008 {
c5aa993b 1009 if (pst->filename != NULL)
c906108c 1010 {
c5aa993b
JM
1011 lang = deduce_language_from_filename (pst->filename);
1012 }
c906108c
SS
1013 if (lang == language_unknown)
1014 {
c5aa993b
JM
1015 /* Make C the default language */
1016 lang = language_c;
c906108c
SS
1017 }
1018 set_language (lang);
1019 expected_language = current_language; /* Don't warn the user */
1020 }
1021}
1022
1023/* Open file specified by NAME and hand it off to BFD for preliminary
1024 analysis. Result is a newly initialized bfd *, which includes a newly
1025 malloc'd` copy of NAME (tilde-expanded and made absolute).
1026 In case of trouble, error() is called. */
1027
1028bfd *
fba45db2 1029symfile_bfd_open (char *name)
c906108c
SS
1030{
1031 bfd *sym_bfd;
1032 int desc;
1033 char *absolute_name;
1034
1035
1036
1037 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1038
1039 /* Look down path for it, allocate 2nd new malloc'd copy. */
1040 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1041#if defined(__GO32__) || defined(_WIN32)
1042 if (desc < 0)
1043 {
1044 char *exename = alloca (strlen (name) + 5);
1045 strcat (strcpy (exename, name), ".exe");
1046 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1047 0, &absolute_name);
c906108c
SS
1048 }
1049#endif
1050 if (desc < 0)
1051 {
b8c9b27d 1052 make_cleanup (xfree, name);
c906108c
SS
1053 perror_with_name (name);
1054 }
b8c9b27d 1055 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1056 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1057 /* It'll be freed in free_objfile(). */
c906108c
SS
1058
1059 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1060 if (!sym_bfd)
1061 {
1062 close (desc);
b8c9b27d 1063 make_cleanup (xfree, name);
c906108c
SS
1064 error ("\"%s\": can't open to read symbols: %s.", name,
1065 bfd_errmsg (bfd_get_error ()));
1066 }
1067 sym_bfd->cacheable = true;
1068
1069 if (!bfd_check_format (sym_bfd, bfd_object))
1070 {
1071 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1072 on error it does not free all the storage associated with the
1073 bfd). */
c906108c 1074 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1075 make_cleanup (xfree, name);
c906108c
SS
1076 error ("\"%s\": can't read symbols: %s.", name,
1077 bfd_errmsg (bfd_get_error ()));
1078 }
1079 return (sym_bfd);
1080}
1081
1082/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1083 startup by the _initialize routine in each object file format reader,
1084 to register information about each format the the reader is prepared
1085 to handle. */
1086
1087void
fba45db2 1088add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1089{
1090 sf->next = symtab_fns;
1091 symtab_fns = sf;
1092}
1093
1094
1095/* Initialize to read symbols from the symbol file sym_bfd. It either
1096 returns or calls error(). The result is an initialized struct sym_fns
1097 in the objfile structure, that contains cached information about the
1098 symbol file. */
1099
1100static void
fba45db2 1101find_sym_fns (struct objfile *objfile)
c906108c
SS
1102{
1103 struct sym_fns *sf;
c5aa993b
JM
1104 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1105 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1106
c906108c
SS
1107 /* Special kludge for apollo. See dstread.c. */
1108 if (STREQN (our_target, "apollo", 6))
c5aa993b 1109 our_flavour = (enum bfd_flavour) -2;
c906108c 1110
c5aa993b 1111 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1112 {
c5aa993b 1113 if (our_flavour == sf->sym_flavour)
c906108c 1114 {
c5aa993b 1115 objfile->sf = sf;
c906108c
SS
1116 return;
1117 }
1118 }
1119 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1120 bfd_get_target (objfile->obfd));
c906108c
SS
1121}
1122\f
1123/* This function runs the load command of our current target. */
1124
1125static void
fba45db2 1126load_command (char *arg, int from_tty)
c906108c
SS
1127{
1128 if (arg == NULL)
1129 arg = get_exec_file (1);
1130 target_load (arg, from_tty);
1131}
1132
1133/* This version of "load" should be usable for any target. Currently
1134 it is just used for remote targets, not inftarg.c or core files,
1135 on the theory that only in that case is it useful.
1136
1137 Avoiding xmodem and the like seems like a win (a) because we don't have
1138 to worry about finding it, and (b) On VMS, fork() is very slow and so
1139 we don't want to run a subprocess. On the other hand, I'm not sure how
1140 performance compares. */
917317f4
JM
1141
1142static int download_write_size = 512;
1143static int validate_download = 0;
1144
c906108c 1145void
917317f4 1146generic_load (char *args, int from_tty)
c906108c 1147{
c906108c
SS
1148 asection *s;
1149 bfd *loadfile_bfd;
1150 time_t start_time, end_time; /* Start and end times of download */
1151 unsigned long data_count = 0; /* Number of bytes transferred to memory */
917317f4
JM
1152 unsigned long write_count = 0; /* Number of writes needed. */
1153 unsigned long load_offset; /* offset to add to vma for each section */
1154 char *filename;
1155 struct cleanup *old_cleanups;
1156 char *offptr;
c2d11a7d
JM
1157 CORE_ADDR total_size = 0;
1158 CORE_ADDR total_sent = 0;
917317f4
JM
1159
1160 /* Parse the input argument - the user can specify a load offset as
1161 a second argument. */
1162 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1163 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1164 strcpy (filename, args);
1165 offptr = strchr (filename, ' ');
1166 if (offptr != NULL)
1167 {
1168 char *endptr;
1169 load_offset = strtoul (offptr, &endptr, 0);
1170 if (offptr == endptr)
1171 error ("Invalid download offset:%s\n", offptr);
1172 *offptr = '\0';
1173 }
c906108c
SS
1174 else
1175 load_offset = 0;
1176
917317f4 1177 /* Open the file for loading. */
c906108c
SS
1178 loadfile_bfd = bfd_openr (filename, gnutarget);
1179 if (loadfile_bfd == NULL)
1180 {
1181 perror_with_name (filename);
1182 return;
1183 }
917317f4 1184
c906108c
SS
1185 /* FIXME: should be checking for errors from bfd_close (for one thing,
1186 on error it does not free all the storage associated with the
1187 bfd). */
5c65bbb6 1188 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1189
c5aa993b 1190 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1191 {
1192 error ("\"%s\" is not an object file: %s", filename,
1193 bfd_errmsg (bfd_get_error ()));
1194 }
c5aa993b 1195
c2d11a7d
JM
1196 for (s = loadfile_bfd->sections; s; s = s->next)
1197 if (s->flags & SEC_LOAD)
1198 total_size += bfd_get_section_size_before_reloc (s);
1199
c906108c
SS
1200 start_time = time (NULL);
1201
c5aa993b
JM
1202 for (s = loadfile_bfd->sections; s; s = s->next)
1203 {
1204 if (s->flags & SEC_LOAD)
1205 {
917317f4 1206 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
c5aa993b
JM
1207 if (size > 0)
1208 {
1209 char *buffer;
1210 struct cleanup *old_chain;
917317f4
JM
1211 CORE_ADDR lma = s->lma + load_offset;
1212 CORE_ADDR block_size;
c5aa993b 1213 int err;
917317f4
JM
1214 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1215 CORE_ADDR sent;
c5aa993b 1216
917317f4
JM
1217 if (download_write_size > 0 && size > download_write_size)
1218 block_size = download_write_size;
1219 else
1220 block_size = size;
c5aa993b
JM
1221
1222 buffer = xmalloc (size);
b8c9b27d 1223 old_chain = make_cleanup (xfree, buffer);
c5aa993b 1224
c5aa993b
JM
1225 /* Is this really necessary? I guess it gives the user something
1226 to look at during a long download. */
8b93c638
JM
1227#ifdef UI_OUT
1228 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1229 sect_name, paddr_nz (size), paddr_nz (lma));
1230#else
917317f4
JM
1231 fprintf_unfiltered (gdb_stdout,
1232 "Loading section %s, size 0x%s lma 0x%s\n",
1233 sect_name, paddr_nz (size), paddr_nz (lma));
8b93c638 1234#endif
c5aa993b
JM
1235
1236 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1237
c5aa993b
JM
1238 sent = 0;
1239 do
1240 {
917317f4
JM
1241 CORE_ADDR len;
1242 CORE_ADDR this_transfer = size - sent;
1243 if (this_transfer >= block_size)
1244 this_transfer = block_size;
1245 len = target_write_memory_partial (lma, buffer,
1246 this_transfer, &err);
c5aa993b
JM
1247 if (err)
1248 break;
917317f4
JM
1249 if (validate_download)
1250 {
1251 /* Broken memories and broken monitors manifest
1252 themselves here when bring new computers to
1253 life. This doubles already slow downloads. */
1254 /* NOTE: cagney/1999-10-18: A more efficient
1255 implementation might add a verify_memory()
1256 method to the target vector and then use
1257 that. remote.c could implement that method
1258 using the ``qCRC'' packet. */
1259 char *check = xmalloc (len);
b8c9b27d 1260 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
917317f4
JM
1261 if (target_read_memory (lma, check, len) != 0)
1262 error ("Download verify read failed at 0x%s",
1263 paddr (lma));
1264 if (memcmp (buffer, check, len) != 0)
1265 error ("Download verify compare failed at 0x%s",
1266 paddr (lma));
1267 do_cleanups (verify_cleanups);
1268 }
c5aa993b
JM
1269 data_count += len;
1270 lma += len;
1271 buffer += len;
917317f4
JM
1272 write_count += 1;
1273 sent += len;
c2d11a7d 1274 total_sent += len;
917317f4
JM
1275 if (quit_flag
1276 || (ui_load_progress_hook != NULL
1277 && ui_load_progress_hook (sect_name, sent)))
1278 error ("Canceled the download");
c2d11a7d
JM
1279
1280 if (show_load_progress != NULL)
1281 show_load_progress (sect_name, sent, size, total_sent, total_size);
917317f4
JM
1282 }
1283 while (sent < size);
c5aa993b
JM
1284
1285 if (err != 0)
917317f4 1286 error ("Memory access error while loading section %s.", sect_name);
c906108c 1287
c5aa993b
JM
1288 do_cleanups (old_chain);
1289 }
1290 }
c906108c
SS
1291 }
1292
1293 end_time = time (NULL);
1294 {
917317f4 1295 CORE_ADDR entry;
c5aa993b 1296 entry = bfd_get_start_address (loadfile_bfd);
8b93c638
JM
1297#ifdef UI_OUT
1298 ui_out_text (uiout, "Start address ");
1299 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1300 ui_out_text (uiout, ", load size ");
1301 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1302 ui_out_text (uiout, "\n");
1303
1304#else
917317f4
JM
1305 fprintf_unfiltered (gdb_stdout,
1306 "Start address 0x%s , load size %ld\n",
1307 paddr_nz (entry), data_count);
8b93c638 1308#endif
c906108c
SS
1309 /* We were doing this in remote-mips.c, I suspect it is right
1310 for other targets too. */
1311 write_pc (entry);
1312 }
1313
1314 /* FIXME: are we supposed to call symbol_file_add or not? According to
1315 a comment from remote-mips.c (where a call to symbol_file_add was
1316 commented out), making the call confuses GDB if more than one file is
1317 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1318 does. */
1319
917317f4
JM
1320 print_transfer_performance (gdb_stdout, data_count, write_count,
1321 end_time - start_time);
c906108c
SS
1322
1323 do_cleanups (old_cleanups);
1324}
1325
1326/* Report how fast the transfer went. */
1327
917317f4
JM
1328/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1329 replaced by print_transfer_performance (with a very different
1330 function signature). */
1331
c906108c 1332void
fba45db2
KB
1333report_transfer_performance (unsigned long data_count, time_t start_time,
1334 time_t end_time)
c906108c 1335{
917317f4
JM
1336 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1337}
1338
1339void
d9fcf2fb 1340print_transfer_performance (struct ui_file *stream,
917317f4
JM
1341 unsigned long data_count,
1342 unsigned long write_count,
1343 unsigned long time_count)
1344{
8b93c638
JM
1345#ifdef UI_OUT
1346 ui_out_text (uiout, "Transfer rate: ");
1347 if (time_count > 0)
1348 {
1349 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1350 (data_count * 8) / time_count);
1351 ui_out_text (uiout, " bits/sec");
1352 }
1353 else
1354 {
1355 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1356 ui_out_text (uiout, " bits in <1 sec");
1357 }
1358 if (write_count > 0)
1359 {
1360 ui_out_text (uiout, ", ");
1361 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1362 ui_out_text (uiout, " bytes/write");
1363 }
1364 ui_out_text (uiout, ".\n");
1365#else
917317f4
JM
1366 fprintf_unfiltered (stream, "Transfer rate: ");
1367 if (time_count > 0)
1368 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
c906108c 1369 else
917317f4
JM
1370 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1371 if (write_count > 0)
1372 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1373 fprintf_unfiltered (stream, ".\n");
8b93c638 1374#endif
c906108c
SS
1375}
1376
1377/* This function allows the addition of incrementally linked object files.
1378 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1379/* Note: ezannoni 2000-04-13 This function/command used to have a
1380 special case syntax for the rombug target (Rombug is the boot
1381 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1382 rombug case, the user doesn't need to supply a text address,
1383 instead a call to target_link() (in target.c) would supply the
1384 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1385
1386/* ARGSUSED */
1387static void
fba45db2 1388add_symbol_file_command (char *args, int from_tty)
c906108c 1389{
db162d44 1390 char *filename = NULL;
2df3850c 1391 int flags = OBJF_USERLOADED;
c906108c 1392 char *arg;
2acceee2 1393 int expecting_option = 0;
db162d44 1394 int section_index = 0;
2acceee2
JM
1395 int argcnt = 0;
1396 int sec_num = 0;
1397 int i;
db162d44
EZ
1398 int expecting_sec_name = 0;
1399 int expecting_sec_addr = 0;
1400
2acceee2
JM
1401 struct
1402 {
2acceee2
JM
1403 char *name;
1404 char *value;
db162d44
EZ
1405 } sect_opts[SECT_OFF_MAX];
1406
2acceee2 1407 struct section_addr_info section_addrs;
db162d44 1408 struct cleanup *my_cleanups;
c5aa993b 1409
c906108c
SS
1410 dont_repeat ();
1411
1412 if (args == NULL)
db162d44 1413 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1414
1415 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1416 args = xstrdup (args);
c906108c 1417
2acceee2
JM
1418 /* Ensure section_addrs is initialized */
1419 memset (&section_addrs, 0, sizeof (section_addrs));
1420
2acceee2 1421 while (*args != '\000')
c906108c 1422 {
db162d44 1423 /* Any leading spaces? */
c5aa993b 1424 while (isspace (*args))
db162d44
EZ
1425 args++;
1426
1427 /* Point arg to the beginning of the argument. */
c906108c 1428 arg = args;
db162d44
EZ
1429
1430 /* Move args pointer over the argument. */
c5aa993b 1431 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1432 args++;
1433
1434 /* If there are more arguments, terminate arg and
1435 proceed past it. */
c906108c 1436 if (*args != '\000')
db162d44
EZ
1437 *args++ = '\000';
1438
1439 /* Now process the argument. */
1440 if (argcnt == 0)
c906108c 1441 {
db162d44
EZ
1442 /* The first argument is the file name. */
1443 filename = tilde_expand (arg);
b8c9b27d 1444 my_cleanups = make_cleanup (xfree, filename);
c906108c 1445 }
db162d44 1446 else
7a78ae4e
ND
1447 if (argcnt == 1)
1448 {
1449 /* The second argument is always the text address at which
1450 to load the program. */
1451 sect_opts[section_index].name = ".text";
1452 sect_opts[section_index].value = arg;
1453 section_index++;
1454 }
1455 else
1456 {
1457 /* It's an option (starting with '-') or it's an argument
1458 to an option */
1459
1460 if (*arg == '-')
1461 {
1462 if (strcmp (arg, "-mapped") == 0)
1463 flags |= OBJF_MAPPED;
1464 else
1465 if (strcmp (arg, "-readnow") == 0)
1466 flags |= OBJF_READNOW;
1467 else
1468 if (strcmp (arg, "-s") == 0)
1469 {
1470 if (section_index >= SECT_OFF_MAX)
1471 error ("Too many sections specified.");
1472 expecting_sec_name = 1;
1473 expecting_sec_addr = 1;
1474 }
1475 }
1476 else
1477 {
1478 if (expecting_sec_name)
db162d44 1479 {
7a78ae4e
ND
1480 sect_opts[section_index].name = arg;
1481 expecting_sec_name = 0;
db162d44
EZ
1482 }
1483 else
7a78ae4e
ND
1484 if (expecting_sec_addr)
1485 {
1486 sect_opts[section_index].value = arg;
1487 expecting_sec_addr = 0;
1488 section_index++;
1489 }
1490 else
1491 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1492 }
1493 }
db162d44 1494 argcnt++;
c906108c 1495 }
c906108c 1496
db162d44
EZ
1497 /* Print the prompt for the query below. And save the arguments into
1498 a sect_addr_info structure to be passed around to other
1499 functions. We have to split this up into separate print
1500 statements because local_hex_string returns a local static
1501 string. */
2acceee2 1502
db162d44
EZ
1503 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1504 for (i = 0; i < section_index; i++)
c906108c 1505 {
db162d44
EZ
1506 CORE_ADDR addr;
1507 char *val = sect_opts[i].value;
1508 char *sec = sect_opts[i].name;
1509
1510 val = sect_opts[i].value;
1511 if (val[0] == '0' && val[1] == 'x')
1512 addr = strtoul (val+2, NULL, 16);
1513 else
1514 addr = strtoul (val, NULL, 10);
1515
db162d44
EZ
1516 /* Here we store the section offsets in the order they were
1517 entered on the command line. */
1518 section_addrs.other[sec_num].name = sec;
1519 section_addrs.other[sec_num].addr = addr;
1520 printf_filtered ("\t%s_addr = %s\n",
1521 sec,
1522 local_hex_string ((unsigned long)addr));
1523 sec_num++;
1524
1525 /* The object's sections are initialized when a
1526 call is made to build_objfile_section_table (objfile).
1527 This happens in reread_symbols.
1528 At this point, we don't know what file type this is,
1529 so we can't determine what section names are valid. */
2acceee2 1530 }
db162d44 1531
2acceee2 1532 if (from_tty && (!query ("%s", "")))
c906108c
SS
1533 error ("Not confirmed.");
1534
db162d44 1535 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1536
1537 /* Getting new symbols may change our opinion about what is
1538 frameless. */
1539 reinit_frame_cache ();
db162d44 1540 do_cleanups (my_cleanups);
c906108c
SS
1541}
1542\f
1543static void
fba45db2 1544add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1545{
1546#ifdef ADD_SHARED_SYMBOL_FILES
1547 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1548#else
1549 error ("This command is not available in this configuration of GDB.");
c5aa993b 1550#endif
c906108c
SS
1551}
1552\f
1553/* Re-read symbols if a symbol-file has changed. */
1554void
fba45db2 1555reread_symbols (void)
c906108c
SS
1556{
1557 struct objfile *objfile;
1558 long new_modtime;
1559 int reread_one = 0;
1560 struct stat new_statbuf;
1561 int res;
1562
1563 /* With the addition of shared libraries, this should be modified,
1564 the load time should be saved in the partial symbol tables, since
1565 different tables may come from different source files. FIXME.
1566 This routine should then walk down each partial symbol table
1567 and see if the symbol table that it originates from has been changed */
1568
c5aa993b
JM
1569 for (objfile = object_files; objfile; objfile = objfile->next)
1570 {
1571 if (objfile->obfd)
1572 {
c906108c 1573#ifdef IBM6000_TARGET
c5aa993b
JM
1574 /* If this object is from a shared library, then you should
1575 stat on the library name, not member name. */
c906108c 1576
c5aa993b
JM
1577 if (objfile->obfd->my_archive)
1578 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1579 else
c906108c 1580#endif
c5aa993b
JM
1581 res = stat (objfile->name, &new_statbuf);
1582 if (res != 0)
c906108c 1583 {
c5aa993b
JM
1584 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1585 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1586 objfile->name);
1587 continue;
c906108c 1588 }
c5aa993b
JM
1589 new_modtime = new_statbuf.st_mtime;
1590 if (new_modtime != objfile->mtime)
c906108c 1591 {
c5aa993b
JM
1592 struct cleanup *old_cleanups;
1593 struct section_offsets *offsets;
1594 int num_offsets;
c5aa993b
JM
1595 char *obfd_filename;
1596
1597 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1598 objfile->name);
1599
1600 /* There are various functions like symbol_file_add,
1601 symfile_bfd_open, syms_from_objfile, etc., which might
1602 appear to do what we want. But they have various other
1603 effects which we *don't* want. So we just do stuff
1604 ourselves. We don't worry about mapped files (for one thing,
1605 any mapped file will be out of date). */
1606
1607 /* If we get an error, blow away this objfile (not sure if
1608 that is the correct response for things like shared
1609 libraries). */
74b7792f 1610 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1611 /* We need to do this whenever any symbols go away. */
74b7792f 1612 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1613
1614 /* Clean up any state BFD has sitting around. We don't need
1615 to close the descriptor but BFD lacks a way of closing the
1616 BFD without closing the descriptor. */
1617 obfd_filename = bfd_get_filename (objfile->obfd);
1618 if (!bfd_close (objfile->obfd))
1619 error ("Can't close BFD for %s: %s", objfile->name,
1620 bfd_errmsg (bfd_get_error ()));
1621 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1622 if (objfile->obfd == NULL)
1623 error ("Can't open %s to read symbols.", objfile->name);
1624 /* bfd_openr sets cacheable to true, which is what we want. */
1625 if (!bfd_check_format (objfile->obfd, bfd_object))
1626 error ("Can't read symbols from %s: %s.", objfile->name,
1627 bfd_errmsg (bfd_get_error ()));
1628
1629 /* Save the offsets, we will nuke them with the rest of the
1630 psymbol_obstack. */
1631 num_offsets = objfile->num_sections;
d4f3574e
SS
1632 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1633 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1634
1635 /* Nuke all the state that we will re-read. Much of the following
1636 code which sets things to NULL really is necessary to tell
1637 other parts of GDB that there is nothing currently there. */
1638
1639 /* FIXME: Do we have to free a whole linked list, or is this
1640 enough? */
1641 if (objfile->global_psymbols.list)
1642 mfree (objfile->md, objfile->global_psymbols.list);
1643 memset (&objfile->global_psymbols, 0,
1644 sizeof (objfile->global_psymbols));
1645 if (objfile->static_psymbols.list)
1646 mfree (objfile->md, objfile->static_psymbols.list);
1647 memset (&objfile->static_psymbols, 0,
1648 sizeof (objfile->static_psymbols));
1649
1650 /* Free the obstacks for non-reusable objfiles */
c2d11a7d 1651 free_bcache (&objfile->psymbol_cache);
c5aa993b
JM
1652 obstack_free (&objfile->psymbol_obstack, 0);
1653 obstack_free (&objfile->symbol_obstack, 0);
1654 obstack_free (&objfile->type_obstack, 0);
1655 objfile->sections = NULL;
1656 objfile->symtabs = NULL;
1657 objfile->psymtabs = NULL;
1658 objfile->free_psymtabs = NULL;
1659 objfile->msymbols = NULL;
1660 objfile->minimal_symbol_count = 0;
0a83117a
MS
1661 memset (&objfile->msymbol_hash, 0,
1662 sizeof (objfile->msymbol_hash));
1663 memset (&objfile->msymbol_demangled_hash, 0,
1664 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1665 objfile->fundamental_types = NULL;
1666 if (objfile->sf != NULL)
1667 {
1668 (*objfile->sf->sym_finish) (objfile);
1669 }
1670
1671 /* We never make this a mapped file. */
1672 objfile->md = NULL;
1673 /* obstack_specify_allocation also initializes the obstack so
1674 it is empty. */
1675 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
b8c9b27d 1676 xmalloc, xfree);
c5aa993b 1677 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1678 xmalloc, xfree);
c5aa993b 1679 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1680 xmalloc, xfree);
c5aa993b 1681 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1682 xmalloc, xfree);
c5aa993b
JM
1683 if (build_objfile_section_table (objfile))
1684 {
1685 error ("Can't find the file sections in `%s': %s",
1686 objfile->name, bfd_errmsg (bfd_get_error ()));
1687 }
1688
1689 /* We use the same section offsets as from last time. I'm not
1690 sure whether that is always correct for shared libraries. */
1691 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
1692 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1693 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1694 objfile->num_sections = num_offsets;
1695
1696 /* What the hell is sym_new_init for, anyway? The concept of
1697 distinguishing between the main file and additional files
1698 in this way seems rather dubious. */
1699 if (objfile == symfile_objfile)
1700 {
1701 (*objfile->sf->sym_new_init) (objfile);
c906108c 1702#ifdef HPUXHPPA
c5aa993b 1703 RESET_HP_UX_GLOBALS ();
c906108c 1704#endif
c5aa993b
JM
1705 }
1706
1707 (*objfile->sf->sym_init) (objfile);
1708 clear_complaints (1, 1);
1709 /* The "mainline" parameter is a hideous hack; I think leaving it
1710 zero is OK since dbxread.c also does what it needs to do if
1711 objfile->global_psymbols.size is 0. */
96baa820 1712 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1713 if (!have_partial_symbols () && !have_full_symbols ())
1714 {
1715 wrap_here ("");
1716 printf_filtered ("(no debugging symbols found)\n");
1717 wrap_here ("");
1718 }
1719 objfile->flags |= OBJF_SYMS;
1720
1721 /* We're done reading the symbol file; finish off complaints. */
1722 clear_complaints (0, 1);
c906108c 1723
c5aa993b
JM
1724 /* Getting new symbols may change our opinion about what is
1725 frameless. */
c906108c 1726
c5aa993b 1727 reinit_frame_cache ();
c906108c 1728
c5aa993b
JM
1729 /* Discard cleanups as symbol reading was successful. */
1730 discard_cleanups (old_cleanups);
c906108c 1731
c5aa993b
JM
1732 /* If the mtime has changed between the time we set new_modtime
1733 and now, we *want* this to be out of date, so don't call stat
1734 again now. */
1735 objfile->mtime = new_modtime;
1736 reread_one = 1;
c906108c 1737
c5aa993b 1738 /* Call this after reading in a new symbol table to give target
38c2ef12 1739 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
1740 could be used to update the values of target-specific symbols GDB
1741 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 1742
c5aa993b
JM
1743 TARGET_SYMFILE_POSTREAD (objfile);
1744 }
c906108c
SS
1745 }
1746 }
c906108c
SS
1747
1748 if (reread_one)
1749 clear_symtab_users ();
1750}
c906108c
SS
1751\f
1752
c5aa993b
JM
1753
1754typedef struct
1755{
1756 char *ext;
c906108c 1757 enum language lang;
c5aa993b
JM
1758}
1759filename_language;
c906108c 1760
c5aa993b 1761static filename_language *filename_language_table;
c906108c
SS
1762static int fl_table_size, fl_table_next;
1763
1764static void
fba45db2 1765add_filename_language (char *ext, enum language lang)
c906108c
SS
1766{
1767 if (fl_table_next >= fl_table_size)
1768 {
1769 fl_table_size += 10;
c5aa993b 1770 filename_language_table = realloc (filename_language_table,
c906108c
SS
1771 fl_table_size);
1772 }
1773
c5aa993b 1774 filename_language_table[fl_table_next].ext = strsave (ext);
c906108c
SS
1775 filename_language_table[fl_table_next].lang = lang;
1776 fl_table_next++;
1777}
1778
1779static char *ext_args;
1780
1781static void
fba45db2 1782set_ext_lang_command (char *args, int from_tty)
c906108c
SS
1783{
1784 int i;
1785 char *cp = ext_args;
1786 enum language lang;
1787
1788 /* First arg is filename extension, starting with '.' */
1789 if (*cp != '.')
1790 error ("'%s': Filename extension must begin with '.'", ext_args);
1791
1792 /* Find end of first arg. */
c5aa993b 1793 while (*cp && !isspace (*cp))
c906108c
SS
1794 cp++;
1795
1796 if (*cp == '\0')
1797 error ("'%s': two arguments required -- filename extension and language",
1798 ext_args);
1799
1800 /* Null-terminate first arg */
c5aa993b 1801 *cp++ = '\0';
c906108c
SS
1802
1803 /* Find beginning of second arg, which should be a source language. */
1804 while (*cp && isspace (*cp))
1805 cp++;
1806
1807 if (*cp == '\0')
1808 error ("'%s': two arguments required -- filename extension and language",
1809 ext_args);
1810
1811 /* Lookup the language from among those we know. */
1812 lang = language_enum (cp);
1813
1814 /* Now lookup the filename extension: do we already know it? */
1815 for (i = 0; i < fl_table_next; i++)
1816 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1817 break;
1818
1819 if (i >= fl_table_next)
1820 {
1821 /* new file extension */
1822 add_filename_language (ext_args, lang);
1823 }
1824 else
1825 {
1826 /* redefining a previously known filename extension */
1827
1828 /* if (from_tty) */
1829 /* query ("Really make files of type %s '%s'?", */
1830 /* ext_args, language_str (lang)); */
1831
b8c9b27d 1832 xfree (filename_language_table[i].ext);
c5aa993b 1833 filename_language_table[i].ext = strsave (ext_args);
c906108c
SS
1834 filename_language_table[i].lang = lang;
1835 }
1836}
1837
1838static void
fba45db2 1839info_ext_lang_command (char *args, int from_tty)
c906108c
SS
1840{
1841 int i;
1842
1843 printf_filtered ("Filename extensions and the languages they represent:");
1844 printf_filtered ("\n\n");
1845 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
1846 printf_filtered ("\t%s\t- %s\n",
1847 filename_language_table[i].ext,
c906108c
SS
1848 language_str (filename_language_table[i].lang));
1849}
1850
1851static void
fba45db2 1852init_filename_language_table (void)
c906108c
SS
1853{
1854 if (fl_table_size == 0) /* protect against repetition */
1855 {
1856 fl_table_size = 20;
1857 fl_table_next = 0;
c5aa993b 1858 filename_language_table =
c906108c 1859 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
1860 add_filename_language (".c", language_c);
1861 add_filename_language (".C", language_cplus);
1862 add_filename_language (".cc", language_cplus);
1863 add_filename_language (".cp", language_cplus);
1864 add_filename_language (".cpp", language_cplus);
1865 add_filename_language (".cxx", language_cplus);
1866 add_filename_language (".c++", language_cplus);
1867 add_filename_language (".java", language_java);
c906108c 1868 add_filename_language (".class", language_java);
c5aa993b
JM
1869 add_filename_language (".ch", language_chill);
1870 add_filename_language (".c186", language_chill);
1871 add_filename_language (".c286", language_chill);
1872 add_filename_language (".f", language_fortran);
1873 add_filename_language (".F", language_fortran);
1874 add_filename_language (".s", language_asm);
1875 add_filename_language (".S", language_asm);
c6fd39cd
PM
1876 add_filename_language (".pas", language_pascal);
1877 add_filename_language (".p", language_pascal);
1878 add_filename_language (".pp", language_pascal);
c906108c
SS
1879 }
1880}
1881
1882enum language
fba45db2 1883deduce_language_from_filename (char *filename)
c906108c
SS
1884{
1885 int i;
1886 char *cp;
1887
1888 if (filename != NULL)
1889 if ((cp = strrchr (filename, '.')) != NULL)
1890 for (i = 0; i < fl_table_next; i++)
1891 if (strcmp (cp, filename_language_table[i].ext) == 0)
1892 return filename_language_table[i].lang;
1893
1894 return language_unknown;
1895}
1896\f
1897/* allocate_symtab:
1898
1899 Allocate and partly initialize a new symbol table. Return a pointer
1900 to it. error() if no space.
1901
1902 Caller must set these fields:
c5aa993b
JM
1903 LINETABLE(symtab)
1904 symtab->blockvector
1905 symtab->dirname
1906 symtab->free_code
1907 symtab->free_ptr
1908 possibly free_named_symtabs (symtab->filename);
c906108c
SS
1909 */
1910
1911struct symtab *
fba45db2 1912allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
1913{
1914 register struct symtab *symtab;
1915
1916 symtab = (struct symtab *)
c5aa993b 1917 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 1918 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
1919 symtab->filename = obsavestring (filename, strlen (filename),
1920 &objfile->symbol_obstack);
1921 symtab->fullname = NULL;
1922 symtab->language = deduce_language_from_filename (filename);
1923 symtab->debugformat = obsavestring ("unknown", 7,
1924 &objfile->symbol_obstack);
c906108c
SS
1925
1926 /* Hook it to the objfile it comes from */
1927
c5aa993b
JM
1928 symtab->objfile = objfile;
1929 symtab->next = objfile->symtabs;
1930 objfile->symtabs = symtab;
c906108c
SS
1931
1932 /* FIXME: This should go away. It is only defined for the Z8000,
1933 and the Z8000 definition of this macro doesn't have anything to
1934 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1935 here for convenience. */
1936#ifdef INIT_EXTRA_SYMTAB_INFO
1937 INIT_EXTRA_SYMTAB_INFO (symtab);
1938#endif
1939
1940 return (symtab);
1941}
1942
1943struct partial_symtab *
fba45db2 1944allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
1945{
1946 struct partial_symtab *psymtab;
1947
c5aa993b 1948 if (objfile->free_psymtabs)
c906108c 1949 {
c5aa993b
JM
1950 psymtab = objfile->free_psymtabs;
1951 objfile->free_psymtabs = psymtab->next;
c906108c
SS
1952 }
1953 else
1954 psymtab = (struct partial_symtab *)
c5aa993b 1955 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
1956 sizeof (struct partial_symtab));
1957
1958 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
1959 psymtab->filename = obsavestring (filename, strlen (filename),
1960 &objfile->psymbol_obstack);
1961 psymtab->symtab = NULL;
c906108c
SS
1962
1963 /* Prepend it to the psymtab list for the objfile it belongs to.
1964 Psymtabs are searched in most recent inserted -> least recent
1965 inserted order. */
1966
c5aa993b
JM
1967 psymtab->objfile = objfile;
1968 psymtab->next = objfile->psymtabs;
1969 objfile->psymtabs = psymtab;
c906108c
SS
1970#if 0
1971 {
1972 struct partial_symtab **prev_pst;
c5aa993b
JM
1973 psymtab->objfile = objfile;
1974 psymtab->next = NULL;
1975 prev_pst = &(objfile->psymtabs);
c906108c 1976 while ((*prev_pst) != NULL)
c5aa993b 1977 prev_pst = &((*prev_pst)->next);
c906108c 1978 (*prev_pst) = psymtab;
c5aa993b 1979 }
c906108c 1980#endif
c5aa993b 1981
c906108c
SS
1982 return (psymtab);
1983}
1984
1985void
fba45db2 1986discard_psymtab (struct partial_symtab *pst)
c906108c
SS
1987{
1988 struct partial_symtab **prev_pst;
1989
1990 /* From dbxread.c:
1991 Empty psymtabs happen as a result of header files which don't
1992 have any symbols in them. There can be a lot of them. But this
1993 check is wrong, in that a psymtab with N_SLINE entries but
1994 nothing else is not empty, but we don't realize that. Fixing
1995 that without slowing things down might be tricky. */
1996
1997 /* First, snip it out of the psymtab chain */
1998
1999 prev_pst = &(pst->objfile->psymtabs);
2000 while ((*prev_pst) != pst)
2001 prev_pst = &((*prev_pst)->next);
2002 (*prev_pst) = pst->next;
2003
2004 /* Next, put it on a free list for recycling */
2005
2006 pst->next = pst->objfile->free_psymtabs;
2007 pst->objfile->free_psymtabs = pst;
2008}
c906108c 2009\f
c5aa993b 2010
c906108c
SS
2011/* Reset all data structures in gdb which may contain references to symbol
2012 table data. */
2013
2014void
fba45db2 2015clear_symtab_users (void)
c906108c
SS
2016{
2017 /* Someday, we should do better than this, by only blowing away
2018 the things that really need to be blown. */
2019 clear_value_history ();
2020 clear_displays ();
2021 clear_internalvars ();
2022 breakpoint_re_set ();
2023 set_default_breakpoint (0, 0, 0, 0);
2024 current_source_symtab = 0;
2025 current_source_line = 0;
2026 clear_pc_function_cache ();
11cf8741
JM
2027 if (target_new_objfile_hook)
2028 target_new_objfile_hook (NULL);
c906108c
SS
2029}
2030
74b7792f
AC
2031static void
2032clear_symtab_users_cleanup (void *ignore)
2033{
2034 clear_symtab_users ();
2035}
2036
c906108c
SS
2037/* clear_symtab_users_once:
2038
2039 This function is run after symbol reading, or from a cleanup.
2040 If an old symbol table was obsoleted, the old symbol table
2041 has been blown away, but the other GDB data structures that may
2042 reference it have not yet been cleared or re-directed. (The old
2043 symtab was zapped, and the cleanup queued, in free_named_symtab()
2044 below.)
2045
2046 This function can be queued N times as a cleanup, or called
2047 directly; it will do all the work the first time, and then will be a
2048 no-op until the next time it is queued. This works by bumping a
2049 counter at queueing time. Much later when the cleanup is run, or at
2050 the end of symbol processing (in case the cleanup is discarded), if
2051 the queued count is greater than the "done-count", we do the work
2052 and set the done-count to the queued count. If the queued count is
2053 less than or equal to the done-count, we just ignore the call. This
2054 is needed because reading a single .o file will often replace many
2055 symtabs (one per .h file, for example), and we don't want to reset
2056 the breakpoints N times in the user's face.
2057
2058 The reason we both queue a cleanup, and call it directly after symbol
2059 reading, is because the cleanup protects us in case of errors, but is
2060 discarded if symbol reading is successful. */
2061
2062#if 0
2063/* FIXME: As free_named_symtabs is currently a big noop this function
2064 is no longer needed. */
a14ed312 2065static void clear_symtab_users_once (void);
c906108c
SS
2066
2067static int clear_symtab_users_queued;
2068static int clear_symtab_users_done;
2069
2070static void
fba45db2 2071clear_symtab_users_once (void)
c906108c
SS
2072{
2073 /* Enforce once-per-`do_cleanups'-semantics */
2074 if (clear_symtab_users_queued <= clear_symtab_users_done)
2075 return;
2076 clear_symtab_users_done = clear_symtab_users_queued;
2077
2078 clear_symtab_users ();
2079}
2080#endif
2081
2082/* Delete the specified psymtab, and any others that reference it. */
2083
2084static void
fba45db2 2085cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2086{
2087 struct partial_symtab *ps, *pprev = NULL;
2088 int i;
2089
2090 /* Find its previous psymtab in the chain */
c5aa993b
JM
2091 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2092 {
2093 if (ps == pst)
2094 break;
2095 pprev = ps;
2096 }
c906108c 2097
c5aa993b
JM
2098 if (ps)
2099 {
2100 /* Unhook it from the chain. */
2101 if (ps == pst->objfile->psymtabs)
2102 pst->objfile->psymtabs = ps->next;
2103 else
2104 pprev->next = ps->next;
2105
2106 /* FIXME, we can't conveniently deallocate the entries in the
2107 partial_symbol lists (global_psymbols/static_psymbols) that
2108 this psymtab points to. These just take up space until all
2109 the psymtabs are reclaimed. Ditto the dependencies list and
2110 filename, which are all in the psymbol_obstack. */
2111
2112 /* We need to cashier any psymtab that has this one as a dependency... */
2113 again:
2114 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2115 {
2116 for (i = 0; i < ps->number_of_dependencies; i++)
2117 {
2118 if (ps->dependencies[i] == pst)
2119 {
2120 cashier_psymtab (ps);
2121 goto again; /* Must restart, chain has been munged. */
2122 }
2123 }
c906108c 2124 }
c906108c 2125 }
c906108c
SS
2126}
2127
2128/* If a symtab or psymtab for filename NAME is found, free it along
2129 with any dependent breakpoints, displays, etc.
2130 Used when loading new versions of object modules with the "add-file"
2131 command. This is only called on the top-level symtab or psymtab's name;
2132 it is not called for subsidiary files such as .h files.
2133
2134 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2135 FIXME. The return value appears to never be used.
c906108c
SS
2136
2137 FIXME. I think this is not the best way to do this. We should
2138 work on being gentler to the environment while still cleaning up
2139 all stray pointers into the freed symtab. */
2140
2141int
fba45db2 2142free_named_symtabs (char *name)
c906108c
SS
2143{
2144#if 0
2145 /* FIXME: With the new method of each objfile having it's own
2146 psymtab list, this function needs serious rethinking. In particular,
2147 why was it ever necessary to toss psymtabs with specific compilation
2148 unit filenames, as opposed to all psymtabs from a particular symbol
2149 file? -- fnf
2150 Well, the answer is that some systems permit reloading of particular
2151 compilation units. We want to blow away any old info about these
2152 compilation units, regardless of which objfiles they arrived in. --gnu. */
2153
2154 register struct symtab *s;
2155 register struct symtab *prev;
2156 register struct partial_symtab *ps;
2157 struct blockvector *bv;
2158 int blewit = 0;
2159
2160 /* We only wack things if the symbol-reload switch is set. */
2161 if (!symbol_reloading)
2162 return 0;
2163
2164 /* Some symbol formats have trouble providing file names... */
2165 if (name == 0 || *name == '\0')
2166 return 0;
2167
2168 /* Look for a psymtab with the specified name. */
2169
2170again2:
c5aa993b
JM
2171 for (ps = partial_symtab_list; ps; ps = ps->next)
2172 {
2173 if (STREQ (name, ps->filename))
2174 {
2175 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2176 goto again2; /* Must restart, chain has been munged */
2177 }
c906108c 2178 }
c906108c
SS
2179
2180 /* Look for a symtab with the specified name. */
2181
2182 for (s = symtab_list; s; s = s->next)
2183 {
2184 if (STREQ (name, s->filename))
2185 break;
2186 prev = s;
2187 }
2188
2189 if (s)
2190 {
2191 if (s == symtab_list)
2192 symtab_list = s->next;
2193 else
2194 prev->next = s->next;
2195
2196 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2197 or not they depend on the symtab being freed. This should be
2198 changed so that only those data structures affected are deleted. */
c906108c
SS
2199
2200 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2201 This test is necessary due to a bug in "dbxread.c" that
2202 causes empty symtabs to be created for N_SO symbols that
2203 contain the pathname of the object file. (This problem
2204 has been fixed in GDB 3.9x). */
c906108c
SS
2205
2206 bv = BLOCKVECTOR (s);
2207 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2208 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2209 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2210 {
2211 complain (&oldsyms_complaint, name);
2212
2213 clear_symtab_users_queued++;
2214 make_cleanup (clear_symtab_users_once, 0);
2215 blewit = 1;
c5aa993b
JM
2216 }
2217 else
2218 {
c906108c
SS
2219 complain (&empty_symtab_complaint, name);
2220 }
2221
2222 free_symtab (s);
2223 }
2224 else
2225 {
2226 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2227 even though no symtab was found, since the file might have
2228 been compiled without debugging, and hence not be associated
2229 with a symtab. In order to handle this correctly, we would need
2230 to keep a list of text address ranges for undebuggable files.
2231 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2232 ;
2233 }
2234
2235 /* FIXME, what about the minimal symbol table? */
2236 return blewit;
2237#else
2238 return (0);
2239#endif
2240}
2241\f
2242/* Allocate and partially fill a partial symtab. It will be
2243 completely filled at the end of the symbol list.
2244
d4f3574e 2245 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2246
2247struct partial_symtab *
fba45db2
KB
2248start_psymtab_common (struct objfile *objfile,
2249 struct section_offsets *section_offsets, char *filename,
2250 CORE_ADDR textlow, struct partial_symbol **global_syms,
2251 struct partial_symbol **static_syms)
c906108c
SS
2252{
2253 struct partial_symtab *psymtab;
2254
2255 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2256 psymtab->section_offsets = section_offsets;
2257 psymtab->textlow = textlow;
2258 psymtab->texthigh = psymtab->textlow; /* default */
2259 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2260 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2261 return (psymtab);
2262}
2263\f
2264/* Add a symbol with a long value to a psymtab.
2265 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2266
2267void
fba45db2
KB
2268add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2269 enum address_class class,
2270 struct psymbol_allocation_list *list, long val, /* Value as a long */
2271 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2272 enum language language, struct objfile *objfile)
c906108c
SS
2273{
2274 register struct partial_symbol *psym;
2275 char *buf = alloca (namelength + 1);
2276 /* psymbol is static so that there will be no uninitialized gaps in the
2277 structure which might contain random data, causing cache misses in
2278 bcache. */
2279 static struct partial_symbol psymbol;
2280
2281 /* Create local copy of the partial symbol */
2282 memcpy (buf, name, namelength);
2283 buf[namelength] = '\0';
2284 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2285 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2286 if (val != 0)
2287 {
2288 SYMBOL_VALUE (&psymbol) = val;
2289 }
2290 else
2291 {
2292 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2293 }
2294 SYMBOL_SECTION (&psymbol) = 0;
2295 SYMBOL_LANGUAGE (&psymbol) = language;
2296 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2297 PSYMBOL_CLASS (&psymbol) = class;
2298 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2299
2300 /* Stash the partial symbol away in the cache */
2301 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2302
2303 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2304 if (list->next >= list->list + list->size)
2305 {
2306 extend_psymbol_list (list, objfile);
2307 }
2308 *list->next++ = psym;
2309 OBJSTAT (objfile, n_psyms++);
2310}
2311
2312/* Add a symbol with a long value to a psymtab. This differs from
2313 * add_psymbol_to_list above in taking both a mangled and a demangled
2314 * name. */
2315
2316void
fba45db2
KB
2317add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2318 int dem_namelength, namespace_enum namespace,
2319 enum address_class class,
2320 struct psymbol_allocation_list *list, long val, /* Value as a long */
2321 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2322 enum language language,
2323 struct objfile *objfile)
c906108c
SS
2324{
2325 register struct partial_symbol *psym;
2326 char *buf = alloca (namelength + 1);
2327 /* psymbol is static so that there will be no uninitialized gaps in the
2328 structure which might contain random data, causing cache misses in
2329 bcache. */
2330 static struct partial_symbol psymbol;
2331
2332 /* Create local copy of the partial symbol */
2333
2334 memcpy (buf, name, namelength);
2335 buf[namelength] = '\0';
2336 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2337
2338 buf = alloca (dem_namelength + 1);
2339 memcpy (buf, dem_name, dem_namelength);
2340 buf[dem_namelength] = '\0';
c5aa993b 2341
c906108c
SS
2342 switch (language)
2343 {
c5aa993b
JM
2344 case language_c:
2345 case language_cplus:
2346 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2347 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2348 break;
2349 case language_chill:
2350 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2351 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2352
c906108c
SS
2353 /* FIXME What should be done for the default case? Ignoring for now. */
2354 }
2355
2356 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2357 if (val != 0)
2358 {
2359 SYMBOL_VALUE (&psymbol) = val;
2360 }
2361 else
2362 {
2363 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2364 }
2365 SYMBOL_SECTION (&psymbol) = 0;
2366 SYMBOL_LANGUAGE (&psymbol) = language;
2367 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2368 PSYMBOL_CLASS (&psymbol) = class;
2369 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2370
2371 /* Stash the partial symbol away in the cache */
2372 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2373
2374 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2375 if (list->next >= list->list + list->size)
2376 {
2377 extend_psymbol_list (list, objfile);
2378 }
2379 *list->next++ = psym;
2380 OBJSTAT (objfile, n_psyms++);
2381}
2382
2383/* Initialize storage for partial symbols. */
2384
2385void
fba45db2 2386init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2387{
2388 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2389
2390 if (objfile->global_psymbols.list)
c906108c 2391 {
c5aa993b 2392 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
c906108c 2393 }
c5aa993b 2394 if (objfile->static_psymbols.list)
c906108c 2395 {
c5aa993b 2396 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
c906108c 2397 }
c5aa993b 2398
c906108c
SS
2399 /* Current best guess is that approximately a twentieth
2400 of the total symbols (in a debugging file) are global or static
2401 oriented symbols */
c906108c 2402
c5aa993b
JM
2403 objfile->global_psymbols.size = total_symbols / 10;
2404 objfile->static_psymbols.size = total_symbols / 10;
2405
2406 if (objfile->global_psymbols.size > 0)
c906108c 2407 {
c5aa993b
JM
2408 objfile->global_psymbols.next =
2409 objfile->global_psymbols.list = (struct partial_symbol **)
2410 xmmalloc (objfile->md, (objfile->global_psymbols.size
2411 * sizeof (struct partial_symbol *)));
c906108c 2412 }
c5aa993b 2413 if (objfile->static_psymbols.size > 0)
c906108c 2414 {
c5aa993b
JM
2415 objfile->static_psymbols.next =
2416 objfile->static_psymbols.list = (struct partial_symbol **)
2417 xmmalloc (objfile->md, (objfile->static_psymbols.size
2418 * sizeof (struct partial_symbol *)));
c906108c
SS
2419 }
2420}
2421
2422/* OVERLAYS:
2423 The following code implements an abstraction for debugging overlay sections.
2424
2425 The target model is as follows:
2426 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2427 same VMA, each with its own unique LMA (or load address).
c906108c 2428 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2429 sections, one by one, from the load address into the VMA address.
c906108c 2430 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2431 sections should be considered to be mapped from the VMA to the LMA.
2432 This information is used for symbol lookup, and memory read/write.
2433 For instance, if a section has been mapped then its contents
2434 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2435
2436 Two levels of debugger support for overlays are available. One is
2437 "manual", in which the debugger relies on the user to tell it which
2438 overlays are currently mapped. This level of support is
2439 implemented entirely in the core debugger, and the information about
2440 whether a section is mapped is kept in the objfile->obj_section table.
2441
2442 The second level of support is "automatic", and is only available if
2443 the target-specific code provides functionality to read the target's
2444 overlay mapping table, and translate its contents for the debugger
2445 (by updating the mapped state information in the obj_section tables).
2446
2447 The interface is as follows:
c5aa993b
JM
2448 User commands:
2449 overlay map <name> -- tell gdb to consider this section mapped
2450 overlay unmap <name> -- tell gdb to consider this section unmapped
2451 overlay list -- list the sections that GDB thinks are mapped
2452 overlay read-target -- get the target's state of what's mapped
2453 overlay off/manual/auto -- set overlay debugging state
2454 Functional interface:
2455 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2456 section, return that section.
2457 find_pc_overlay(pc): find any overlay section that contains
2458 the pc, either in its VMA or its LMA
2459 overlay_is_mapped(sect): true if overlay is marked as mapped
2460 section_is_overlay(sect): true if section's VMA != LMA
2461 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2462 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2463 overlay_mapped_address(...): map an address from section's LMA to VMA
2464 overlay_unmapped_address(...): map an address from section's VMA to LMA
2465 symbol_overlayed_address(...): Return a "current" address for symbol:
2466 either in VMA or LMA depending on whether
2467 the symbol's section is currently mapped
c906108c
SS
2468 */
2469
2470/* Overlay debugging state: */
2471
2472int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2473int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2474
2475/* Target vector for refreshing overlay mapped state */
a14ed312 2476static void simple_overlay_update (struct obj_section *);
507f3c78 2477void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2478
2479/* Function: section_is_overlay (SECTION)
2480 Returns true if SECTION has VMA not equal to LMA, ie.
2481 SECTION is loaded at an address different from where it will "run". */
2482
2483int
fba45db2 2484section_is_overlay (asection *section)
c906108c
SS
2485{
2486 if (overlay_debugging)
2487 if (section && section->lma != 0 &&
2488 section->vma != section->lma)
2489 return 1;
2490
2491 return 0;
2492}
2493
2494/* Function: overlay_invalidate_all (void)
2495 Invalidate the mapped state of all overlay sections (mark it as stale). */
2496
2497static void
fba45db2 2498overlay_invalidate_all (void)
c906108c 2499{
c5aa993b 2500 struct objfile *objfile;
c906108c
SS
2501 struct obj_section *sect;
2502
2503 ALL_OBJSECTIONS (objfile, sect)
2504 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2505 sect->ovly_mapped = -1;
c906108c
SS
2506}
2507
2508/* Function: overlay_is_mapped (SECTION)
2509 Returns true if section is an overlay, and is currently mapped.
2510 Private: public access is thru function section_is_mapped.
2511
2512 Access to the ovly_mapped flag is restricted to this function, so
2513 that we can do automatic update. If the global flag
2514 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2515 overlay_invalidate_all. If the mapped state of the particular
2516 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2517
c5aa993b 2518static int
fba45db2 2519overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2520{
2521 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2522 return 0;
2523
c5aa993b 2524 switch (overlay_debugging)
c906108c
SS
2525 {
2526 default:
c5aa993b
JM
2527 case 0:
2528 return 0; /* overlay debugging off */
c906108c
SS
2529 case -1: /* overlay debugging automatic */
2530 /* Unles there is a target_overlay_update function,
c5aa993b 2531 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2532 if (target_overlay_update)
2533 {
2534 if (overlay_cache_invalid)
2535 {
2536 overlay_invalidate_all ();
2537 overlay_cache_invalid = 0;
2538 }
2539 if (osect->ovly_mapped == -1)
2540 (*target_overlay_update) (osect);
2541 }
2542 /* fall thru to manual case */
2543 case 1: /* overlay debugging manual */
2544 return osect->ovly_mapped == 1;
2545 }
2546}
2547
2548/* Function: section_is_mapped
2549 Returns true if section is an overlay, and is currently mapped. */
2550
2551int
fba45db2 2552section_is_mapped (asection *section)
c906108c 2553{
c5aa993b 2554 struct objfile *objfile;
c906108c
SS
2555 struct obj_section *osect;
2556
2557 if (overlay_debugging)
2558 if (section && section_is_overlay (section))
2559 ALL_OBJSECTIONS (objfile, osect)
2560 if (osect->the_bfd_section == section)
c5aa993b 2561 return overlay_is_mapped (osect);
c906108c
SS
2562
2563 return 0;
2564}
2565
2566/* Function: pc_in_unmapped_range
2567 If PC falls into the lma range of SECTION, return true, else false. */
2568
2569CORE_ADDR
fba45db2 2570pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2571{
2572 int size;
2573
2574 if (overlay_debugging)
2575 if (section && section_is_overlay (section))
2576 {
2577 size = bfd_get_section_size_before_reloc (section);
2578 if (section->lma <= pc && pc < section->lma + size)
2579 return 1;
2580 }
2581 return 0;
2582}
2583
2584/* Function: pc_in_mapped_range
2585 If PC falls into the vma range of SECTION, return true, else false. */
2586
2587CORE_ADDR
fba45db2 2588pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2589{
2590 int size;
2591
2592 if (overlay_debugging)
2593 if (section && section_is_overlay (section))
2594 {
2595 size = bfd_get_section_size_before_reloc (section);
2596 if (section->vma <= pc && pc < section->vma + size)
2597 return 1;
2598 }
2599 return 0;
2600}
2601
2602/* Function: overlay_unmapped_address (PC, SECTION)
2603 Returns the address corresponding to PC in the unmapped (load) range.
2604 May be the same as PC. */
2605
2606CORE_ADDR
fba45db2 2607overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2608{
2609 if (overlay_debugging)
2610 if (section && section_is_overlay (section) &&
2611 pc_in_mapped_range (pc, section))
2612 return pc + section->lma - section->vma;
2613
2614 return pc;
2615}
2616
2617/* Function: overlay_mapped_address (PC, SECTION)
2618 Returns the address corresponding to PC in the mapped (runtime) range.
2619 May be the same as PC. */
2620
2621CORE_ADDR
fba45db2 2622overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2623{
2624 if (overlay_debugging)
2625 if (section && section_is_overlay (section) &&
2626 pc_in_unmapped_range (pc, section))
2627 return pc + section->vma - section->lma;
2628
2629 return pc;
2630}
2631
2632
2633/* Function: symbol_overlayed_address
2634 Return one of two addresses (relative to the VMA or to the LMA),
2635 depending on whether the section is mapped or not. */
2636
c5aa993b 2637CORE_ADDR
fba45db2 2638symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2639{
2640 if (overlay_debugging)
2641 {
2642 /* If the symbol has no section, just return its regular address. */
2643 if (section == 0)
2644 return address;
2645 /* If the symbol's section is not an overlay, just return its address */
2646 if (!section_is_overlay (section))
2647 return address;
2648 /* If the symbol's section is mapped, just return its address */
2649 if (section_is_mapped (section))
2650 return address;
2651 /*
2652 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2653 * then return its LOADED address rather than its vma address!!
2654 */
2655 return overlay_unmapped_address (address, section);
2656 }
2657 return address;
2658}
2659
2660/* Function: find_pc_overlay (PC)
2661 Return the best-match overlay section for PC:
2662 If PC matches a mapped overlay section's VMA, return that section.
2663 Else if PC matches an unmapped section's VMA, return that section.
2664 Else if PC matches an unmapped section's LMA, return that section. */
2665
2666asection *
fba45db2 2667find_pc_overlay (CORE_ADDR pc)
c906108c 2668{
c5aa993b 2669 struct objfile *objfile;
c906108c
SS
2670 struct obj_section *osect, *best_match = NULL;
2671
2672 if (overlay_debugging)
2673 ALL_OBJSECTIONS (objfile, osect)
2674 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
2675 {
2676 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2677 {
2678 if (overlay_is_mapped (osect))
2679 return osect->the_bfd_section;
2680 else
2681 best_match = osect;
2682 }
2683 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2684 best_match = osect;
2685 }
c906108c
SS
2686 return best_match ? best_match->the_bfd_section : NULL;
2687}
2688
2689/* Function: find_pc_mapped_section (PC)
2690 If PC falls into the VMA address range of an overlay section that is
2691 currently marked as MAPPED, return that section. Else return NULL. */
2692
2693asection *
fba45db2 2694find_pc_mapped_section (CORE_ADDR pc)
c906108c 2695{
c5aa993b 2696 struct objfile *objfile;
c906108c
SS
2697 struct obj_section *osect;
2698
2699 if (overlay_debugging)
2700 ALL_OBJSECTIONS (objfile, osect)
2701 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2702 overlay_is_mapped (osect))
c5aa993b 2703 return osect->the_bfd_section;
c906108c
SS
2704
2705 return NULL;
2706}
2707
2708/* Function: list_overlays_command
2709 Print a list of mapped sections and their PC ranges */
2710
2711void
fba45db2 2712list_overlays_command (char *args, int from_tty)
c906108c 2713{
c5aa993b
JM
2714 int nmapped = 0;
2715 struct objfile *objfile;
c906108c
SS
2716 struct obj_section *osect;
2717
2718 if (overlay_debugging)
2719 ALL_OBJSECTIONS (objfile, osect)
2720 if (overlay_is_mapped (osect))
c5aa993b
JM
2721 {
2722 const char *name;
2723 bfd_vma lma, vma;
2724 int size;
2725
2726 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2727 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2728 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2729 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2730
2731 printf_filtered ("Section %s, loaded at ", name);
2732 print_address_numeric (lma, 1, gdb_stdout);
2733 puts_filtered (" - ");
2734 print_address_numeric (lma + size, 1, gdb_stdout);
2735 printf_filtered (", mapped at ");
2736 print_address_numeric (vma, 1, gdb_stdout);
2737 puts_filtered (" - ");
2738 print_address_numeric (vma + size, 1, gdb_stdout);
2739 puts_filtered ("\n");
2740
2741 nmapped++;
2742 }
c906108c
SS
2743 if (nmapped == 0)
2744 printf_filtered ("No sections are mapped.\n");
2745}
2746
2747/* Function: map_overlay_command
2748 Mark the named section as mapped (ie. residing at its VMA address). */
2749
2750void
fba45db2 2751map_overlay_command (char *args, int from_tty)
c906108c 2752{
c5aa993b
JM
2753 struct objfile *objfile, *objfile2;
2754 struct obj_section *sec, *sec2;
2755 asection *bfdsec;
c906108c
SS
2756
2757 if (!overlay_debugging)
515ad16c
EZ
2758 error ("\
2759Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2760the 'overlay manual' command.");
c906108c
SS
2761
2762 if (args == 0 || *args == 0)
2763 error ("Argument required: name of an overlay section");
2764
2765 /* First, find a section matching the user supplied argument */
2766 ALL_OBJSECTIONS (objfile, sec)
2767 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2768 {
2769 /* Now, check to see if the section is an overlay. */
2770 bfdsec = sec->the_bfd_section;
2771 if (!section_is_overlay (bfdsec))
2772 continue; /* not an overlay section */
2773
2774 /* Mark the overlay as "mapped" */
2775 sec->ovly_mapped = 1;
2776
2777 /* Next, make a pass and unmap any sections that are
2778 overlapped by this new section: */
2779 ALL_OBJSECTIONS (objfile2, sec2)
2780 if (sec2->ovly_mapped &&
2781 sec != sec2 &&
2782 sec->the_bfd_section != sec2->the_bfd_section &&
2783 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2784 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2785 {
2786 if (info_verbose)
2787 printf_filtered ("Note: section %s unmapped by overlap\n",
2788 bfd_section_name (objfile->obfd,
2789 sec2->the_bfd_section));
2790 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2791 }
2792 return;
2793 }
c906108c
SS
2794 error ("No overlay section called %s", args);
2795}
2796
2797/* Function: unmap_overlay_command
2798 Mark the overlay section as unmapped
2799 (ie. resident in its LMA address range, rather than the VMA range). */
2800
2801void
fba45db2 2802unmap_overlay_command (char *args, int from_tty)
c906108c 2803{
c5aa993b 2804 struct objfile *objfile;
c906108c
SS
2805 struct obj_section *sec;
2806
2807 if (!overlay_debugging)
515ad16c
EZ
2808 error ("\
2809Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2810the 'overlay manual' command.");
c906108c
SS
2811
2812 if (args == 0 || *args == 0)
2813 error ("Argument required: name of an overlay section");
2814
2815 /* First, find a section matching the user supplied argument */
2816 ALL_OBJSECTIONS (objfile, sec)
2817 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2818 {
2819 if (!sec->ovly_mapped)
2820 error ("Section %s is not mapped", args);
2821 sec->ovly_mapped = 0;
2822 return;
2823 }
c906108c
SS
2824 error ("No overlay section called %s", args);
2825}
2826
2827/* Function: overlay_auto_command
2828 A utility command to turn on overlay debugging.
2829 Possibly this should be done via a set/show command. */
2830
2831static void
fba45db2 2832overlay_auto_command (char *args, int from_tty)
c906108c
SS
2833{
2834 overlay_debugging = -1;
2835 if (info_verbose)
2836 printf_filtered ("Automatic overlay debugging enabled.");
2837}
2838
2839/* Function: overlay_manual_command
2840 A utility command to turn on overlay debugging.
2841 Possibly this should be done via a set/show command. */
2842
2843static void
fba45db2 2844overlay_manual_command (char *args, int from_tty)
c906108c
SS
2845{
2846 overlay_debugging = 1;
2847 if (info_verbose)
2848 printf_filtered ("Overlay debugging enabled.");
2849}
2850
2851/* Function: overlay_off_command
2852 A utility command to turn on overlay debugging.
2853 Possibly this should be done via a set/show command. */
2854
2855static void
fba45db2 2856overlay_off_command (char *args, int from_tty)
c906108c 2857{
c5aa993b 2858 overlay_debugging = 0;
c906108c
SS
2859 if (info_verbose)
2860 printf_filtered ("Overlay debugging disabled.");
2861}
2862
2863static void
fba45db2 2864overlay_load_command (char *args, int from_tty)
c906108c
SS
2865{
2866 if (target_overlay_update)
2867 (*target_overlay_update) (NULL);
2868 else
2869 error ("This target does not know how to read its overlay state.");
2870}
2871
2872/* Function: overlay_command
2873 A place-holder for a mis-typed command */
2874
2875/* Command list chain containing all defined "overlay" subcommands. */
2876struct cmd_list_element *overlaylist;
2877
2878static void
fba45db2 2879overlay_command (char *args, int from_tty)
c906108c 2880{
c5aa993b 2881 printf_unfiltered
c906108c
SS
2882 ("\"overlay\" must be followed by the name of an overlay command.\n");
2883 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2884}
2885
2886
2887/* Target Overlays for the "Simplest" overlay manager:
2888
2889 This is GDB's default target overlay layer. It works with the
2890 minimal overlay manager supplied as an example by Cygnus. The
2891 entry point is via a function pointer "target_overlay_update",
2892 so targets that use a different runtime overlay manager can
2893 substitute their own overlay_update function and take over the
2894 function pointer.
2895
2896 The overlay_update function pokes around in the target's data structures
2897 to see what overlays are mapped, and updates GDB's overlay mapping with
2898 this information.
2899
2900 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
2901 unsigned _novlys; /# number of overlay sections #/
2902 unsigned _ovly_table[_novlys][4] = {
2903 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2904 {..., ..., ..., ...},
2905 }
2906 unsigned _novly_regions; /# number of overlay regions #/
2907 unsigned _ovly_region_table[_novly_regions][3] = {
2908 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2909 {..., ..., ...},
2910 }
c906108c
SS
2911 These functions will attempt to update GDB's mappedness state in the
2912 symbol section table, based on the target's mappedness state.
2913
2914 To do this, we keep a cached copy of the target's _ovly_table, and
2915 attempt to detect when the cached copy is invalidated. The main
2916 entry point is "simple_overlay_update(SECT), which looks up SECT in
2917 the cached table and re-reads only the entry for that section from
2918 the target (whenever possible).
2919 */
2920
2921/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 2922static unsigned (*cache_ovly_table)[4] = 0;
c906108c 2923#if 0
c5aa993b 2924static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 2925#endif
c5aa993b 2926static unsigned cache_novlys = 0;
c906108c 2927#if 0
c5aa993b 2928static unsigned cache_novly_regions = 0;
c906108c
SS
2929#endif
2930static CORE_ADDR cache_ovly_table_base = 0;
2931#if 0
2932static CORE_ADDR cache_ovly_region_table_base = 0;
2933#endif
c5aa993b
JM
2934enum ovly_index
2935 {
2936 VMA, SIZE, LMA, MAPPED
2937 };
c906108c
SS
2938#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2939
2940/* Throw away the cached copy of _ovly_table */
2941static void
fba45db2 2942simple_free_overlay_table (void)
c906108c
SS
2943{
2944 if (cache_ovly_table)
b8c9b27d 2945 xfree (cache_ovly_table);
c5aa993b 2946 cache_novlys = 0;
c906108c
SS
2947 cache_ovly_table = NULL;
2948 cache_ovly_table_base = 0;
2949}
2950
2951#if 0
2952/* Throw away the cached copy of _ovly_region_table */
2953static void
fba45db2 2954simple_free_overlay_region_table (void)
c906108c
SS
2955{
2956 if (cache_ovly_region_table)
b8c9b27d 2957 xfree (cache_ovly_region_table);
c5aa993b 2958 cache_novly_regions = 0;
c906108c
SS
2959 cache_ovly_region_table = NULL;
2960 cache_ovly_region_table_base = 0;
2961}
2962#endif
2963
2964/* Read an array of ints from the target into a local buffer.
2965 Convert to host order. int LEN is number of ints */
2966static void
fba45db2 2967read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c
SS
2968{
2969 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 2970 int i;
c906108c
SS
2971
2972 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2973 for (i = 0; i < len; i++)
c5aa993b 2974 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
2975 TARGET_LONG_BYTES);
2976}
2977
2978/* Find and grab a copy of the target _ovly_table
2979 (and _novlys, which is needed for the table's size) */
c5aa993b 2980static int
fba45db2 2981simple_read_overlay_table (void)
c906108c
SS
2982{
2983 struct minimal_symbol *msym;
2984
2985 simple_free_overlay_table ();
2986 msym = lookup_minimal_symbol ("_novlys", 0, 0);
2987 if (msym != NULL)
2988 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
2989 else
2990 return 0; /* failure */
2991 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
c906108c
SS
2992 if (cache_ovly_table != NULL)
2993 {
2994 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
2995 if (msym != NULL)
2996 {
2997 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
2998 read_target_long_array (cache_ovly_table_base,
2999 (int *) cache_ovly_table,
c906108c
SS
3000 cache_novlys * 4);
3001 }
c5aa993b
JM
3002 else
3003 return 0; /* failure */
c906108c 3004 }
c5aa993b
JM
3005 else
3006 return 0; /* failure */
3007 return 1; /* SUCCESS */
c906108c
SS
3008}
3009
3010#if 0
3011/* Find and grab a copy of the target _ovly_region_table
3012 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3013static int
fba45db2 3014simple_read_overlay_region_table (void)
c906108c
SS
3015{
3016 struct minimal_symbol *msym;
3017
3018 simple_free_overlay_region_table ();
3019 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3020 if (msym != NULL)
3021 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3022 else
3023 return 0; /* failure */
c906108c
SS
3024 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3025 if (cache_ovly_region_table != NULL)
3026 {
3027 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3028 if (msym != NULL)
3029 {
3030 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3031 read_target_long_array (cache_ovly_region_table_base,
3032 (int *) cache_ovly_region_table,
c906108c
SS
3033 cache_novly_regions * 3);
3034 }
c5aa993b
JM
3035 else
3036 return 0; /* failure */
c906108c 3037 }
c5aa993b
JM
3038 else
3039 return 0; /* failure */
3040 return 1; /* SUCCESS */
c906108c
SS
3041}
3042#endif
3043
3044/* Function: simple_overlay_update_1
3045 A helper function for simple_overlay_update. Assuming a cached copy
3046 of _ovly_table exists, look through it to find an entry whose vma,
3047 lma and size match those of OSECT. Re-read the entry and make sure
3048 it still matches OSECT (else the table may no longer be valid).
3049 Set OSECT's mapped state to match the entry. Return: 1 for
3050 success, 0 for failure. */
3051
3052static int
fba45db2 3053simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3054{
3055 int i, size;
3056
3057 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3058 for (i = 0; i < cache_novlys; i++)
c5aa993b
JM
3059 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3060 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3061 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3062 {
3063 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3064 (int *) cache_ovly_table[i], 4);
c5aa993b
JM
3065 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3066 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3067 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3068 {
3069 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3070 return 1;
3071 }
c5aa993b 3072 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3073 return 0;
3074 }
3075 return 0;
3076}
3077
3078/* Function: simple_overlay_update
3079 If OSECT is NULL, then update all sections' mapped state
3080 (after re-reading the entire target _ovly_table).
3081 If OSECT is non-NULL, then try to find a matching entry in the
3082 cached ovly_table and update only OSECT's mapped state.
3083 If a cached entry can't be found or the cache isn't valid, then
3084 re-read the entire cache, and go ahead and update all sections. */
3085
3086static void
fba45db2 3087simple_overlay_update (struct obj_section *osect)
c906108c 3088{
c5aa993b 3089 struct objfile *objfile;
c906108c
SS
3090
3091 /* Were we given an osect to look up? NULL means do all of them. */
3092 if (osect)
3093 /* Have we got a cached copy of the target's overlay table? */
3094 if (cache_ovly_table != NULL)
3095 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3096 if (cache_ovly_table_base ==
c906108c
SS
3097 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3098 /* Then go ahead and try to look up this single section in the cache */
3099 if (simple_overlay_update_1 (osect))
3100 /* Found it! We're done. */
3101 return;
3102
3103 /* Cached table no good: need to read the entire table anew.
3104 Or else we want all the sections, in which case it's actually
3105 more efficient to read the whole table in one block anyway. */
3106
3107 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3108 {
3109 warning ("Failed to read the target overlay mapping table.");
3110 return;
3111 }
3112 /* Now may as well update all sections, even if only one was requested. */
3113 ALL_OBJSECTIONS (objfile, osect)
3114 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3115 {
3116 int i, size;
3117
3118 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3119 for (i = 0; i < cache_novlys; i++)
3120 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3121 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3122 cache_ovly_table[i][SIZE] == size */ )
3123 { /* obj_section matches i'th entry in ovly_table */
3124 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3125 break; /* finished with inner for loop: break out */
3126 }
3127 }
c906108c
SS
3128}
3129
3130
3131void
fba45db2 3132_initialize_symfile (void)
c906108c
SS
3133{
3134 struct cmd_list_element *c;
c5aa993b 3135
c906108c 3136 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3137 "Load symbol table from executable file FILE.\n\
c906108c
SS
3138The `file' command can also load symbol tables, as well as setting the file\n\
3139to execute.", &cmdlist);
3140 c->completer = filename_completer;
3141
3142 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3143 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3144Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3145ADDR is the starting address of the file's text.\n\
db162d44
EZ
3146The optional arguments are section-name section-address pairs and\n\
3147should be specified if the data and bss segments are not contiguous\n\
3148with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c
SS
3149 &cmdlist);
3150 c->completer = filename_completer;
3151
3152 c = add_cmd ("add-shared-symbol-files", class_files,
3153 add_shared_symbol_files_command,
3154 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3155 &cmdlist);
c906108c
SS
3156 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3157 &cmdlist);
3158
3159 c = add_cmd ("load", class_files, load_command,
c5aa993b 3160 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c
SS
3161for access from GDB.", &cmdlist);
3162 c->completer = filename_completer;
3163
3164 add_show_from_set
3165 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3166 (char *) &symbol_reloading,
3167 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3168 &setlist),
3169 &showlist);
3170
c5aa993b
JM
3171 add_prefix_cmd ("overlay", class_support, overlay_command,
3172 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3173 "overlay ", 0, &cmdlist);
3174
3175 add_com_alias ("ovly", "overlay", class_alias, 1);
3176 add_com_alias ("ov", "overlay", class_alias, 1);
3177
c5aa993b 3178 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3179 "Assert that an overlay section is mapped.", &overlaylist);
3180
c5aa993b 3181 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3182 "Assert that an overlay section is unmapped.", &overlaylist);
3183
c5aa993b 3184 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3185 "List mappings of overlay sections.", &overlaylist);
3186
c5aa993b 3187 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3188 "Enable overlay debugging.", &overlaylist);
c5aa993b 3189 add_cmd ("off", class_support, overlay_off_command,
c906108c 3190 "Disable overlay debugging.", &overlaylist);
c5aa993b 3191 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3192 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3193 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3194 "Read the overlay mapping state from the target.", &overlaylist);
3195
3196 /* Filename extension to source language lookup table: */
3197 init_filename_language_table ();
3198 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3199 (char *) &ext_args,
c906108c
SS
3200 "Set mapping between filename extension and source language.\n\
3201Usage: set extension-language .foo bar",
c5aa993b 3202 &setlist);
c906108c
SS
3203 c->function.cfunc = set_ext_lang_command;
3204
c5aa993b 3205 add_info ("extensions", info_ext_lang_command,
c906108c 3206 "All filename extensions associated with a source language.");
917317f4
JM
3207
3208 add_show_from_set
3209 (add_set_cmd ("download-write-size", class_obscure,
3210 var_integer, (char *) &download_write_size,
3211 "Set the write size used when downloading a program.\n"
3212 "Only used when downloading a program onto a remote\n"
3213 "target. Specify zero, or a negative value, to disable\n"
3214 "blocked writes. The actual size of each transfer is also\n"
3215 "limited by the size of the target packet and the memory\n"
3216 "cache.\n",
3217 &setlist),
3218 &showlist);
c906108c 3219}
This page took 0.385233 seconds and 4 git commands to generate.