wait_for_inferior and errors thrown from target_wait
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void add_filename_language (char *ext, enum language lang);
392a587b 118
a14ed312 119static void info_ext_lang_command (char *args, int from_tty);
392a587b 120
a14ed312 121static void init_filename_language_table (void);
392a587b 122
31d99776
DJ
123static void symfile_find_segment_sections (struct objfile *objfile);
124
a14ed312 125void _initialize_symfile (void);
c906108c
SS
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
c378eb4e 129 prepared to read. */
c906108c 130
c256e171
DE
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
00b5771c 139
c256e171
DE
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 143
770e7fc7
DE
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
b7209cb4
FF
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
c906108c 165 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 166 report all the functions that are actually present. */
c906108c
SS
167
168int auto_solib_add = 1;
c906108c 169\f
c5aa993b 170
770e7fc7
DE
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
0d14a781 196/* True if we are reading a symbol table. */
c906108c
SS
197
198int currently_reading_symtab = 0;
199
200static void
fba45db2 201decrement_reading_symtab (void *dummy)
c906108c
SS
202{
203 currently_reading_symtab--;
2cb9c859 204 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
205}
206
ccefe4c4
TT
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
3b7bacac 209
ccefe4c4
TT
210struct cleanup *
211increment_reading_symtab (void)
c906108c 212{
ccefe4c4 213 ++currently_reading_symtab;
2cb9c859 214 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 215 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
216}
217
5417f6dc
RM
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
c906108c
SS
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
4efb68b1 228find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 229{
c5aa993b 230 asection **lowest = (asection **) obj;
c906108c 231
eb73e134 232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
d76488d8
TT
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
a39a16c4
MM
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
a39a16c4
MM
258
259 return sap;
260}
62557bbc
KB
261
262/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 263 an existing section table. */
62557bbc
KB
264
265extern struct section_addr_info *
0542c86d
PA
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
62557bbc
KB
268{
269 struct section_addr_info *sap;
0542c86d 270 const struct target_section *stp;
62557bbc
KB
271 int oidx;
272
a39a16c4 273 sap = alloc_section_addr_info (end - start);
62557bbc
KB
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
2b2848e2
DE
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 281 && oidx < end - start)
62557bbc
KB
282 {
283 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
286 oidx++;
287 }
288 }
289
d76488d8
TT
290 sap->num_sections = oidx;
291
62557bbc
KB
292 return sap;
293}
294
82ccf5a5 295/* Create a section_addr_info from section offsets in ABFD. */
089b4803 296
82ccf5a5
JK
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
82ccf5a5
JK
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 307 {
82ccf5a5
JK
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
311 i++;
312 }
d76488d8
TT
313
314 sap->num_sections = i;
315
089b4803
TG
316 return sap;
317}
318
82ccf5a5
JK
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 331 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
62557bbc 339
c378eb4e 340/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
a39a16c4 347 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 348 xfree (sap->other[idx].name);
b8c9b27d 349 xfree (sap);
62557bbc
KB
350}
351
e8289572 352/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 353
e8289572
JB
354static void
355init_objfile_sect_indices (struct objfile *objfile)
c906108c 356{
e8289572 357 asection *sect;
c906108c 358 int i;
5417f6dc 359
b8fbeb18 360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_rodata = sect->index;
375
bbcd32ad
FF
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
31d99776
DJ
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
bbcd32ad
FF
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
b8fbeb18 411}
c906108c 412
c1bd25fd
DJ
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
2c0b251b 424static void
c1bd25fd
DJ
425place_section (bfd *abfd, asection *sect, void *obj)
426{
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
3bd72c6f 430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 431
2711e456
DJ
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 return;
435
436 /* If the user specified an offset, honor it. */
65cf3563 437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
441 start_addr = (arg->lowest + align - 1) & -align;
442
c1bd25fd
DJ
443 do {
444 asection *cur_sec;
c1bd25fd 445
c1bd25fd
DJ
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
c1bd25fd
DJ
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
2711e456
DJ
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
3bd72c6f 473 break;
c1bd25fd
DJ
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
65cf3563 481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 482 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 483}
e8289572 484
75242ef4
JK
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
e8289572
JB
488
489void
75242ef4
JK
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
3189cb12 492 const struct section_addr_info *addrs)
e8289572
JB
493{
494 int i;
495
75242ef4 496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 497
c378eb4e 498 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 499 for (i = 0; i < addrs->num_sections; i++)
e8289572 500 {
3189cb12 501 const struct other_sections *osp;
e8289572 502
75242ef4 503 osp = &addrs->other[i];
5488dafb 504 if (osp->sectindex == -1)
e8289572
JB
505 continue;
506
c378eb4e 507 /* Record all sections in offsets. */
e8289572 508 /* The section_offsets in the objfile are here filled in using
c378eb4e 509 the BFD index. */
75242ef4
JK
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
1276c759
JK
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
82ccf5a5
JK
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 539 int retval;
82ccf5a5 540
1276c759 541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
542 if (retval)
543 return retval;
544
5488dafb 545 return a->sectindex - b->sectindex;
82ccf5a5
JK
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 559 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
75242ef4 568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
75242ef4
JK
576 CORE_ADDR lower_offset;
577 int i;
82ccf5a5
JK
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
582
583 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
e8289572 592 }
75242ef4
JK
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
82ccf5a5
JK
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
c378eb4e
MS
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
1276c759 623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
624
625 while (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
82ccf5a5
JK
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
1276c759
JK
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
82ccf5a5
JK
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
75242ef4
JK
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
d76488d8 658 for (i = 0; i < addrs->num_sections; i++)
75242ef4 659 {
82ccf5a5 660 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
661
662 if (sect)
75242ef4 663 {
c378eb4e 664 /* This is the index used by BFD. */
82ccf5a5 665 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
666
667 if (addrs->other[i].addr != 0)
75242ef4 668 {
82ccf5a5 669 addrs->other[i].addr -= sect->addr;
75242ef4 670 lower_offset = addrs->other[i].addr;
75242ef4
JK
671 }
672 else
672d9c23 673 addrs->other[i].addr = lower_offset;
75242ef4
JK
674 }
675 else
672d9c23 676 {
1276c759
JK
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
b0fcb67f
JK
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
4d9743af
JK
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
1276c759
JK
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 695 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
672d9c23 707 addrs->other[i].addr = 0;
5488dafb 708 addrs->other[i].sectindex = -1;
672d9c23 709 }
75242ef4 710 }
82ccf5a5
JK
711
712 do_cleanups (my_cleanup);
75242ef4
JK
713}
714
715/* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721void
722default_symfile_offsets (struct objfile *objfile,
3189cb12 723 const struct section_addr_info *addrs)
75242ef4 724{
d445b2f6 725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
e8289572 731
c1bd25fd
DJ
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
2711e456
DJ
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
2711e456
DJ
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
30510692 794 offsets[cur_sec->index]);
2711e456
DJ
795 offsets[cur_sec->index] = 0;
796 }
797 }
c1bd25fd
DJ
798 }
799
e8289572 800 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 801 .rodata sections. */
e8289572
JB
802 init_objfile_sect_indices (objfile);
803}
804
31d99776
DJ
805/* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811struct symfile_segment_data *
812default_symfile_segments (bfd *abfd)
813{
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
41bf6aca 839 data = XCNEW (struct symfile_segment_data);
31d99776 840 data->num_segments = 1;
fc270c35
TT
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
843
844 num_sections = bfd_count_sections (abfd);
fc270c35 845 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867}
868
608e2dbb
TT
869/* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872static void
873read_symbols (struct objfile *objfile, int add_flags)
874{
875 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 876 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
24ba069a
JK
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
608e2dbb
TT
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901}
902
3d6e24f0
JB
903/* Initialize entry point information for this objfile. */
904
905static void
906init_entry_point_info (struct objfile *objfile)
907{
6ef55de7
TT
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
3d6e24f0
JB
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
6ef55de7
TT
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
3d6e24f0
JB
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
6ef55de7
TT
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
3d6e24f0
JB
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 936 ei->entry_point_p = 0;
3d6e24f0
JB
937 }
938
6ef55de7 939 if (ei->entry_point_p)
3d6e24f0 940 {
53eddfa6 941 struct obj_section *osect;
6ef55de7 942 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 943 int found;
3d6e24f0
JB
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
df6d5441 948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
6ef55de7 954 ei->entry_point
df6d5441 955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
6ef55de7 966 ei->the_bfd_section_index
53eddfa6
TT
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
6ef55de7 974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
975 }
976}
977
c906108c
SS
978/* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
36e4d068
JB
981 This function does not set the OBJFILE's entry-point info.
982
96baa820
JM
983 OBJFILE is where the symbols are to be read from.
984
7e8580c1
JB
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
96baa820 994
7eedccfa
PP
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
c906108c 998
36e4d068
JB
999static void
1000syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
36e4d068 1002 int add_flags)
c906108c 1003{
a39a16c4 1004 struct section_addr_info *local_addr = NULL;
c906108c 1005 struct cleanup *old_chain;
7eedccfa 1006 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1007
8fb8eb5c 1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1009
75245b24 1010 if (objfile->sf == NULL)
36e4d068
JB
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
d445b2f6 1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
75245b24 1023
c906108c
SS
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
74b7792f 1026 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1027
6bf667bb
DE
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
c378eb4e 1030 no load address was specified. */
6bf667bb 1031 if (! addrs)
a39a16c4 1032 {
d445b2f6 1033 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
c5aa993b 1038 if (mainline)
c906108c
SS
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1041 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
adb7f338 1049 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
53a5351d 1062 and assume that <addr> is where that got loaded.
c906108c 1063
53a5351d
JM
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
6bf667bb 1066 if (addrs->num_sections > 0)
75242ef4 1067 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
c378eb4e 1071 initial symbol reading for this file. */
c906108c 1072
c5aa993b 1073 (*objfile->sf->sym_init) (objfile);
7eedccfa 1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1075
6bf667bb 1076 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1077
608e2dbb 1078 read_symbols (objfile, add_flags);
b11896a5 1079
c906108c
SS
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
f7545552 1083 xfree (local_addr);
c906108c
SS
1084}
1085
36e4d068
JB
1086/* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
6bf667bb 1089static void
36e4d068
JB
1090syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
36e4d068
JB
1092 int add_flags)
1093{
6bf667bb 1094 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1095 init_entry_point_info (objfile);
1096}
1097
c906108c
SS
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1101
e7d52ed3
DE
1102static void
1103finish_new_objfile (struct objfile *objfile, int add_flags)
c906108c 1104{
c906108c 1105 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1106 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1107 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1108 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
c1e56572 1113 clear_symtab_users (add_flags);
c906108c 1114 }
7eedccfa 1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1116 {
69de3c6a 1117 breakpoint_re_set ();
c906108c
SS
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
5417f6dc 1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1128 A new reference is acquired by this function.
7904e09f 1129
24ba069a
JK
1130 For NAME description see allocate_objfile's definition.
1131
7eedccfa
PP
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1134
6bf667bb 1135 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1137
63524580
JK
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
c906108c 1141 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1142 Upon failure, jumps back to command level (never returns). */
7eedccfa 1143
7904e09f 1144static struct objfile *
24ba069a 1145symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
c906108c
SS
1148{
1149 struct objfile *objfile;
7eedccfa 1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1151 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1155
9291a0cd 1156 if (readnow_symbol_files)
b11896a5
TT
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
9291a0cd 1161
5417f6dc
RM
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
c906108c
SS
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1166 && mainline
c906108c 1167 && from_tty
9e2f0ad4 1168 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1169 error (_("Not confirmed."));
c906108c 1170
24ba069a
JK
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1173
63524580
JK
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
78a4a9b9
AC
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
c378eb4e 1179 performed, or need to read an unmapped symbol table. */
b11896a5 1180 if (should_print)
c906108c 1181 {
769d7dc4
AC
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1184 else
c906108c 1185 {
55333a84
DE
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
c906108c 1189 }
c906108c 1190 }
6bf667bb 1191 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1196 all partial symbol tables for this objfile if so. */
c906108c 1197
9291a0cd 1198 if ((flags & OBJF_READNOW))
c906108c 1199 {
b11896a5 1200 if (should_print)
c906108c 1201 {
a3f17187 1202 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
ccefe4c4
TT
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1209 }
1210
b11896a5 1211 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1212 {
1213 wrap_here ("");
55333a84 1214 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1215 wrap_here ("");
1216 }
1217
b11896a5 1218 if (should_print)
c906108c 1219 {
769d7dc4
AC
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
c906108c 1222 else
55333a84 1223 printf_unfiltered (_("done.\n"));
c906108c
SS
1224 }
1225
481d0f41
JB
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
109f874e 1231 if (objfile->sf == NULL)
8caee43b
PP
1232 {
1233 observer_notify_new_objfile (objfile);
c378eb4e 1234 return objfile; /* No symbols. */
8caee43b 1235 }
109f874e 1236
e7d52ed3 1237 finish_new_objfile (objfile, add_flags);
c906108c 1238
06d3b283 1239 observer_notify_new_objfile (objfile);
c906108c 1240
ce7d4522 1241 bfd_cache_close_all ();
c906108c
SS
1242 return (objfile);
1243}
1244
24ba069a
JK
1245/* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
9cce227f
TG
1247
1248void
24ba069a
JK
1249symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
9cce227f 1251{
15d123c9 1252 struct objfile *new_objfile;
089b4803
TG
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1261
6bf667bb 1262 new_objfile = symbol_file_add_with_addrs
24ba069a 1263 (bfd, name, symfile_flags, sap,
9cce227f 1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1265 | OBJF_USERLOADED),
1266 objfile);
089b4803
TG
1267
1268 do_cleanups (my_cleanup);
9cce227f 1269}
7904e09f 1270
eb4556d7
JB
1271/* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
6bf667bb 1273 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1274
eb4556d7 1275struct objfile *
24ba069a 1276symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1277 struct section_addr_info *addrs,
63524580 1278 int flags, struct objfile *parent)
eb4556d7 1279{
24ba069a
JK
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
eb4556d7
JB
1282}
1283
7904e09f 1284/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1286
7904e09f 1287struct objfile *
69150c3d
JK
1288symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
7904e09f 1290{
8ac244b4
TT
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
24ba069a 1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1296 do_cleanups (cleanup);
1297 return objf;
7904e09f
JB
1298}
1299
d7db6da9
FN
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
5417f6dc 1307
1adeb98a 1308void
69150c3d 1309symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1310{
d7db6da9
FN
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312}
1313
1314static void
69150c3d 1315symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1316{
7dcd53a0
TT
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
7eedccfa 1320 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1321
d7db6da9
FN
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
7dcd53a0
TT
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1adeb98a
FN
1328}
1329
1330void
1331symbol_file_clear (int from_tty)
1332{
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
0430b0d6
AS
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1337 objfile_name (symfile_objfile))
0430b0d6 1338 : !query (_("Discard symbol table? "))))
8a3fe4f8 1339 error (_("Not confirmed."));
1adeb98a 1340
0133421a
JK
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1343 no_shared_libraries (NULL, from_tty);
1344
0133421a
JK
1345 free_all_objfiles ();
1346
adb7f338 1347 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1350}
1351
5b5d99cf 1352static int
287ccc17 1353separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1354 struct objfile *parent_objfile)
5b5d99cf 1355{
904578ed
JK
1356 unsigned long file_crc;
1357 int file_crc_p;
f1838a98 1358 bfd *abfd;
32a0e547 1359 struct stat parent_stat, abfd_stat;
904578ed 1360 int verified_as_different;
32a0e547
JK
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1366 the separate debug infos with the same basename can exist. */
32a0e547 1367
4262abfb 1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1369 return 0;
5b5d99cf 1370
08d2cd74 1371 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1372
1373 if (!abfd)
5b5d99cf
JB
1374 return 0;
1375
0ba1096a 1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1390 {
904578ed
JK
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
cbb099e8 1394 gdb_bfd_unref (abfd);
904578ed
JK
1395 return 0;
1396 }
1397 verified_as_different = 1;
32a0e547 1398 }
904578ed
JK
1399 else
1400 verified_as_different = 0;
32a0e547 1401
dccee2de 1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1403
cbb099e8 1404 gdb_bfd_unref (abfd);
5b5d99cf 1405
904578ed
JK
1406 if (!file_crc_p)
1407 return 0;
1408
287ccc17
JK
1409 if (crc != file_crc)
1410 {
dccee2de
TT
1411 unsigned long parent_crc;
1412
0a93529c
GB
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
904578ed 1416
dccee2de 1417 if (!verified_as_different)
904578ed 1418 {
dccee2de 1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1420 return 0;
1421 }
1422
dccee2de 1423 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1426 name, objfile_name (parent_objfile));
904578ed 1427
287ccc17
JK
1428 return 0;
1429 }
1430
1431 return 1;
5b5d99cf
JB
1432}
1433
aa28a74e 1434char *debug_file_directory = NULL;
920d2a44
AC
1435static void
1436show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438{
3e43a32a
MS
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1442 value);
1443}
5b5d99cf
JB
1444
1445#if ! defined (DEBUG_SUBDIRECTORY)
1446#define DEBUG_SUBDIRECTORY ".debug"
1447#endif
1448
1db33378
PP
1449/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1455
1456static char *
1457find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
9cce227f 1461{
1db33378
PP
1462 char *debugdir;
1463 char *debugfile;
9cce227f 1464 int i;
e4ab2fad
JK
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
5b5d99cf 1468
1db33378 1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1470 i = strlen (dir);
1db33378
PP
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1ffa32ee 1473
25522fae
JK
1474 debugfile = xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1db33378 1478 + strlen (debuglink)
25522fae 1479 + 1);
5b5d99cf
JB
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1db33378 1483 strcat (debugfile, debuglink);
5b5d99cf 1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1486 return debugfile;
5417f6dc 1487
5b5d99cf
JB
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1db33378 1492 strcat (debugfile, debuglink);
5b5d99cf 1493
32a0e547 1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1495 return debugfile;
5417f6dc 1496
24ddea62 1497 /* Then try in the global debugfile directories.
f888f159 1498
24ddea62
JK
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
5417f6dc 1501
e4ab2fad
JK
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1504
e4ab2fad
JK
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
aa28a74e 1508 strcat (debugfile, "/");
24ddea62 1509 strcat (debugfile, dir);
1db33378 1510 strcat (debugfile, debuglink);
aa28a74e 1511
32a0e547 1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
24ddea62
JK
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1db33378
PP
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1522 strlen (gdb_sysroot)) == 0
1db33378 1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1524 {
e4ab2fad 1525 strcpy (debugfile, debugdir);
1db33378 1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1527 strcat (debugfile, "/");
1db33378 1528 strcat (debugfile, debuglink);
24ddea62 1529
32a0e547 1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
24ddea62 1535 }
aa28a74e 1536 }
f888f159 1537
e4ab2fad 1538 do_cleanups (back_to);
25522fae 1539 xfree (debugfile);
1db33378
PP
1540 return NULL;
1541}
1542
7edbb660 1543/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547static void
1548terminate_after_last_dir_separator (char *path)
1549{
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560}
1561
1562/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565char *
1566find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567{
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
cc0ea93c 1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
71bdabee 1583 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1584 dir = xstrdup (objfile_name (objfile));
71bdabee 1585 make_cleanup (xfree, dir);
1db33378
PP
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1db33378
PP
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
4262abfb
JK
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1602 {
1603 char *symlink_dir;
1604
4262abfb 1605 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1db33378 1621 }
aa28a74e 1622
1db33378 1623 do_cleanups (cleanups);
25522fae 1624 return debugfile;
5b5d99cf
JB
1625}
1626
c906108c
SS
1627/* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
c906108c
SS
1639 conventions (because it is confusing and inconvenient). */
1640
1641void
fba45db2 1642symbol_file_command (char *args, int from_tty)
c906108c 1643{
c906108c
SS
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1adeb98a 1648 symbol_file_clear (from_tty);
c906108c
SS
1649 }
1650 else
1651 {
d1a41061 1652 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1655 char *name = NULL;
1656
7a292a7a 1657 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1658 while (*argv != NULL)
1659 {
78a4a9b9
AC
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
8a3fe4f8 1663 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1664 else
1665 {
cb2f3a29 1666 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1667 name = *argv;
78a4a9b9 1668 }
cb2f3a29 1669
c906108c
SS
1670 argv++;
1671 }
1672
1673 if (name == NULL)
cb2f3a29
MK
1674 error (_("no symbol file name was specified"));
1675
c906108c
SS
1676 do_cleanups (cleanups);
1677 }
1678}
1679
1680/* Set the initial language.
1681
cb2f3a29
MK
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1689 full symbols. */
c906108c 1690
8b60591b 1691void
fba45db2 1692set_initial_language (void)
c906108c 1693{
9e6c82ad 1694 enum language lang = main_language ();
c906108c 1695
9e6c82ad 1696 if (lang == language_unknown)
01f8c46d 1697 {
bf6d8a91
TT
1698 char *name = main_name ();
1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1700
bf6d8a91
TT
1701 if (sym != NULL)
1702 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1703 }
cb2f3a29 1704
ccefe4c4
TT
1705 if (lang == language_unknown)
1706 {
1707 /* Make C the default language */
1708 lang = language_c;
c906108c 1709 }
ccefe4c4
TT
1710
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1713}
1714
874f5765 1715/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1716 open it normally. Returns a new reference to the BFD. On error,
1717 returns NULL with the BFD error set. */
874f5765
TG
1718
1719bfd *
08d2cd74 1720gdb_bfd_open_maybe_remote (const char *name)
874f5765 1721{
520b0001
TT
1722 bfd *result;
1723
874f5765 1724 if (remote_filename_p (name))
520b0001 1725 result = remote_bfd_open (name, gnutarget);
874f5765 1726 else
1c00ec6b 1727 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1728
520b0001 1729 return result;
874f5765
TG
1730}
1731
cb2f3a29
MK
1732/* Open the file specified by NAME and hand it off to BFD for
1733 preliminary analysis. Return a newly initialized bfd *, which
1734 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1735 absolute). In case of trouble, error() is called. */
c906108c
SS
1736
1737bfd *
69150c3d 1738symfile_bfd_open (const char *cname)
c906108c
SS
1739{
1740 bfd *sym_bfd;
1741 int desc;
69150c3d 1742 char *name, *absolute_name;
faab9922 1743 struct cleanup *back_to;
c906108c 1744
69150c3d 1745 if (remote_filename_p (cname))
f1838a98 1746 {
69150c3d 1747 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1748 if (!sym_bfd)
69150c3d 1749 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1750 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1751
1752 if (!bfd_check_format (sym_bfd, bfd_object))
1753 {
f9a062ff 1754 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1755 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1756 bfd_errmsg (bfd_get_error ()));
1757 }
1758
1759 return sym_bfd;
1760 }
1761
69150c3d 1762 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1763
1764 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1765 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1766 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1767#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1768 if (desc < 0)
1769 {
1770 char *exename = alloca (strlen (name) + 5);
433759f7 1771
c906108c 1772 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1773 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1774 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1775 }
1776#endif
1777 if (desc < 0)
1778 {
b8c9b27d 1779 make_cleanup (xfree, name);
c906108c
SS
1780 perror_with_name (name);
1781 }
cb2f3a29 1782
cb2f3a29
MK
1783 xfree (name);
1784 name = absolute_name;
faab9922 1785 back_to = make_cleanup (xfree, name);
c906108c 1786
1c00ec6b 1787 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1788 if (!sym_bfd)
faab9922
JK
1789 error (_("`%s': can't open to read symbols: %s."), name,
1790 bfd_errmsg (bfd_get_error ()));
549c1eea 1791 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1792
1793 if (!bfd_check_format (sym_bfd, bfd_object))
1794 {
f9a062ff 1795 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1796 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1797 bfd_errmsg (bfd_get_error ()));
1798 }
cb2f3a29 1799
faab9922
JK
1800 do_cleanups (back_to);
1801
cb2f3a29 1802 return sym_bfd;
c906108c
SS
1803}
1804
cb2f3a29
MK
1805/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1806 the section was not found. */
1807
0e931cf0
JB
1808int
1809get_section_index (struct objfile *objfile, char *section_name)
1810{
1811 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1812
0e931cf0
JB
1813 if (sect)
1814 return sect->index;
1815 else
1816 return -1;
1817}
1818
c256e171
DE
1819/* Link SF into the global symtab_fns list.
1820 FLAVOUR is the file format that SF handles.
1821 Called on startup by the _initialize routine in each object file format
1822 reader, to register information about each format the reader is prepared
1823 to handle. */
c906108c
SS
1824
1825void
c256e171 1826add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1827{
c256e171
DE
1828 registered_sym_fns fns = { flavour, sf };
1829
1830 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1831}
1832
cb2f3a29
MK
1833/* Initialize OBJFILE to read symbols from its associated BFD. It
1834 either returns or calls error(). The result is an initialized
1835 struct sym_fns in the objfile structure, that contains cached
1836 information about the symbol file. */
c906108c 1837
00b5771c 1838static const struct sym_fns *
31d99776 1839find_sym_fns (bfd *abfd)
c906108c 1840{
c256e171 1841 registered_sym_fns *rsf;
31d99776 1842 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1843 int i;
c906108c 1844
75245b24
MS
1845 if (our_flavour == bfd_target_srec_flavour
1846 || our_flavour == bfd_target_ihex_flavour
1847 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1848 return NULL; /* No symbols. */
75245b24 1849
c256e171
DE
1850 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1851 if (our_flavour == rsf->sym_flavour)
1852 return rsf->sym_fns;
cb2f3a29 1853
8a3fe4f8 1854 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1855 bfd_get_target (abfd));
c906108c
SS
1856}
1857\f
cb2f3a29 1858
c906108c
SS
1859/* This function runs the load command of our current target. */
1860
1861static void
fba45db2 1862load_command (char *arg, int from_tty)
c906108c 1863{
5b3fca71
TT
1864 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1865
e5cc9f32
JB
1866 dont_repeat ();
1867
4487aabf
PA
1868 /* The user might be reloading because the binary has changed. Take
1869 this opportunity to check. */
1870 reopen_exec_file ();
1871 reread_symbols ();
1872
c906108c 1873 if (arg == NULL)
1986bccd
AS
1874 {
1875 char *parg;
1876 int count = 0;
1877
1878 parg = arg = get_exec_file (1);
1879
1880 /* Count how many \ " ' tab space there are in the name. */
1881 while ((parg = strpbrk (parg, "\\\"'\t ")))
1882 {
1883 parg++;
1884 count++;
1885 }
1886
1887 if (count)
1888 {
1889 /* We need to quote this string so buildargv can pull it apart. */
1890 char *temp = xmalloc (strlen (arg) + count + 1 );
1891 char *ptemp = temp;
1892 char *prev;
1893
1894 make_cleanup (xfree, temp);
1895
1896 prev = parg = arg;
1897 while ((parg = strpbrk (parg, "\\\"'\t ")))
1898 {
1899 strncpy (ptemp, prev, parg - prev);
1900 ptemp += parg - prev;
1901 prev = parg++;
1902 *ptemp++ = '\\';
1903 }
1904 strcpy (ptemp, prev);
1905
1906 arg = temp;
1907 }
1908 }
1909
c906108c 1910 target_load (arg, from_tty);
2889e661
JB
1911
1912 /* After re-loading the executable, we don't really know which
1913 overlays are mapped any more. */
1914 overlay_cache_invalid = 1;
5b3fca71
TT
1915
1916 do_cleanups (cleanup);
c906108c
SS
1917}
1918
1919/* This version of "load" should be usable for any target. Currently
1920 it is just used for remote targets, not inftarg.c or core files,
1921 on the theory that only in that case is it useful.
1922
1923 Avoiding xmodem and the like seems like a win (a) because we don't have
1924 to worry about finding it, and (b) On VMS, fork() is very slow and so
1925 we don't want to run a subprocess. On the other hand, I'm not sure how
1926 performance compares. */
917317f4 1927
917317f4
JM
1928static int validate_download = 0;
1929
e4f9b4d5
MS
1930/* Callback service function for generic_load (bfd_map_over_sections). */
1931
1932static void
1933add_section_size_callback (bfd *abfd, asection *asec, void *data)
1934{
1935 bfd_size_type *sum = data;
1936
2c500098 1937 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1938}
1939
1940/* Opaque data for load_section_callback. */
1941struct load_section_data {
f698ca8e 1942 CORE_ADDR load_offset;
a76d924d
DJ
1943 struct load_progress_data *progress_data;
1944 VEC(memory_write_request_s) *requests;
1945};
1946
1947/* Opaque data for load_progress. */
1948struct load_progress_data {
1949 /* Cumulative data. */
e4f9b4d5
MS
1950 unsigned long write_count;
1951 unsigned long data_count;
1952 bfd_size_type total_size;
a76d924d
DJ
1953};
1954
1955/* Opaque data for load_progress for a single section. */
1956struct load_progress_section_data {
1957 struct load_progress_data *cumulative;
cf7a04e8 1958
a76d924d 1959 /* Per-section data. */
cf7a04e8
DJ
1960 const char *section_name;
1961 ULONGEST section_sent;
1962 ULONGEST section_size;
1963 CORE_ADDR lma;
1964 gdb_byte *buffer;
e4f9b4d5
MS
1965};
1966
a76d924d 1967/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1968
1969static void
1970load_progress (ULONGEST bytes, void *untyped_arg)
1971{
a76d924d
DJ
1972 struct load_progress_section_data *args = untyped_arg;
1973 struct load_progress_data *totals;
1974
1975 if (args == NULL)
1976 /* Writing padding data. No easy way to get at the cumulative
1977 stats, so just ignore this. */
1978 return;
1979
1980 totals = args->cumulative;
1981
1982 if (bytes == 0 && args->section_sent == 0)
1983 {
1984 /* The write is just starting. Let the user know we've started
1985 this section. */
79a45e25 1986 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1987 args->section_name, hex_string (args->section_size),
f5656ead 1988 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1989 return;
1990 }
cf7a04e8
DJ
1991
1992 if (validate_download)
1993 {
1994 /* Broken memories and broken monitors manifest themselves here
1995 when bring new computers to life. This doubles already slow
1996 downloads. */
1997 /* NOTE: cagney/1999-10-18: A more efficient implementation
1998 might add a verify_memory() method to the target vector and
1999 then use that. remote.c could implement that method using
2000 the ``qCRC'' packet. */
2001 gdb_byte *check = xmalloc (bytes);
2002 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2003
2004 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 2005 error (_("Download verify read failed at %s"),
f5656ead 2006 paddress (target_gdbarch (), args->lma));
cf7a04e8 2007 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 2008 error (_("Download verify compare failed at %s"),
f5656ead 2009 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
2010 do_cleanups (verify_cleanups);
2011 }
a76d924d 2012 totals->data_count += bytes;
cf7a04e8
DJ
2013 args->lma += bytes;
2014 args->buffer += bytes;
a76d924d 2015 totals->write_count += 1;
cf7a04e8 2016 args->section_sent += bytes;
522002f9 2017 if (check_quit_flag ()
cf7a04e8
DJ
2018 || (deprecated_ui_load_progress_hook != NULL
2019 && deprecated_ui_load_progress_hook (args->section_name,
2020 args->section_sent)))
2021 error (_("Canceled the download"));
2022
2023 if (deprecated_show_load_progress != NULL)
2024 deprecated_show_load_progress (args->section_name,
2025 args->section_sent,
2026 args->section_size,
a76d924d
DJ
2027 totals->data_count,
2028 totals->total_size);
cf7a04e8
DJ
2029}
2030
e4f9b4d5
MS
2031/* Callback service function for generic_load (bfd_map_over_sections). */
2032
2033static void
2034load_section_callback (bfd *abfd, asection *asec, void *data)
2035{
a76d924d 2036 struct memory_write_request *new_request;
e4f9b4d5 2037 struct load_section_data *args = data;
a76d924d 2038 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2039 bfd_size_type size = bfd_get_section_size (asec);
2040 gdb_byte *buffer;
cf7a04e8 2041 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2042
cf7a04e8
DJ
2043 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2044 return;
e4f9b4d5 2045
cf7a04e8
DJ
2046 if (size == 0)
2047 return;
e4f9b4d5 2048
a76d924d
DJ
2049 new_request = VEC_safe_push (memory_write_request_s,
2050 args->requests, NULL);
2051 memset (new_request, 0, sizeof (struct memory_write_request));
2052 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2053 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2054 new_request->end = new_request->begin + size; /* FIXME Should size
2055 be in instead? */
a76d924d
DJ
2056 new_request->data = xmalloc (size);
2057 new_request->baton = section_data;
cf7a04e8 2058
a76d924d 2059 buffer = new_request->data;
cf7a04e8 2060
a76d924d
DJ
2061 section_data->cumulative = args->progress_data;
2062 section_data->section_name = sect_name;
2063 section_data->section_size = size;
2064 section_data->lma = new_request->begin;
2065 section_data->buffer = buffer;
cf7a04e8
DJ
2066
2067 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2068}
2069
2070/* Clean up an entire memory request vector, including load
2071 data and progress records. */
cf7a04e8 2072
a76d924d
DJ
2073static void
2074clear_memory_write_data (void *arg)
2075{
2076 VEC(memory_write_request_s) **vec_p = arg;
2077 VEC(memory_write_request_s) *vec = *vec_p;
2078 int i;
2079 struct memory_write_request *mr;
cf7a04e8 2080
a76d924d
DJ
2081 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2082 {
2083 xfree (mr->data);
2084 xfree (mr->baton);
2085 }
2086 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2087}
2088
c906108c 2089void
9cbe5fff 2090generic_load (const char *args, int from_tty)
c906108c 2091{
c906108c 2092 bfd *loadfile_bfd;
2b71414d 2093 struct timeval start_time, end_time;
917317f4 2094 char *filename;
1986bccd 2095 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2096 struct load_section_data cbdata;
a76d924d 2097 struct load_progress_data total_progress;
79a45e25 2098 struct ui_out *uiout = current_uiout;
a76d924d 2099
e4f9b4d5 2100 CORE_ADDR entry;
1986bccd 2101 char **argv;
e4f9b4d5 2102
a76d924d
DJ
2103 memset (&cbdata, 0, sizeof (cbdata));
2104 memset (&total_progress, 0, sizeof (total_progress));
2105 cbdata.progress_data = &total_progress;
2106
2107 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2108
d1a41061
PP
2109 if (args == NULL)
2110 error_no_arg (_("file to load"));
1986bccd 2111
d1a41061 2112 argv = gdb_buildargv (args);
1986bccd
AS
2113 make_cleanup_freeargv (argv);
2114
2115 filename = tilde_expand (argv[0]);
2116 make_cleanup (xfree, filename);
2117
2118 if (argv[1] != NULL)
917317f4 2119 {
f698ca8e 2120 const char *endptr;
ba5f2f8a 2121
f698ca8e 2122 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2123
2124 /* If the last word was not a valid number then
2125 treat it as a file name with spaces in. */
2126 if (argv[1] == endptr)
2127 error (_("Invalid download offset:%s."), argv[1]);
2128
2129 if (argv[2] != NULL)
2130 error (_("Too many parameters."));
917317f4 2131 }
c906108c 2132
c378eb4e 2133 /* Open the file for loading. */
1c00ec6b 2134 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2135 if (loadfile_bfd == NULL)
2136 {
2137 perror_with_name (filename);
2138 return;
2139 }
917317f4 2140
f9a062ff 2141 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2142
c5aa993b 2143 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2144 {
8a3fe4f8 2145 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2146 bfd_errmsg (bfd_get_error ()));
2147 }
c5aa993b 2148
5417f6dc 2149 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2150 (void *) &total_progress.total_size);
2151
2152 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2153
2b71414d 2154 gettimeofday (&start_time, NULL);
c906108c 2155
a76d924d
DJ
2156 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2157 load_progress) != 0)
2158 error (_("Load failed"));
c906108c 2159
2b71414d 2160 gettimeofday (&end_time, NULL);
ba5f2f8a 2161
e4f9b4d5 2162 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2163 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2164 ui_out_text (uiout, "Start address ");
f5656ead 2165 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2166 ui_out_text (uiout, ", load size ");
a76d924d 2167 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2168 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2169 /* We were doing this in remote-mips.c, I suspect it is right
2170 for other targets too. */
fb14de7b 2171 regcache_write_pc (get_current_regcache (), entry);
c906108c 2172
38963c97
DJ
2173 /* Reset breakpoints, now that we have changed the load image. For
2174 instance, breakpoints may have been set (or reset, by
2175 post_create_inferior) while connected to the target but before we
2176 loaded the program. In that case, the prologue analyzer could
2177 have read instructions from the target to find the right
2178 breakpoint locations. Loading has changed the contents of that
2179 memory. */
2180
2181 breakpoint_re_set ();
2182
7ca9f392
AC
2183 /* FIXME: are we supposed to call symbol_file_add or not? According
2184 to a comment from remote-mips.c (where a call to symbol_file_add
2185 was commented out), making the call confuses GDB if more than one
2186 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2187 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2188
a76d924d
DJ
2189 print_transfer_performance (gdb_stdout, total_progress.data_count,
2190 total_progress.write_count,
2191 &start_time, &end_time);
c906108c
SS
2192
2193 do_cleanups (old_cleanups);
2194}
2195
c378eb4e 2196/* Report how fast the transfer went. */
c906108c 2197
917317f4 2198void
d9fcf2fb 2199print_transfer_performance (struct ui_file *stream,
917317f4
JM
2200 unsigned long data_count,
2201 unsigned long write_count,
2b71414d
DJ
2202 const struct timeval *start_time,
2203 const struct timeval *end_time)
917317f4 2204{
9f43d28c 2205 ULONGEST time_count;
79a45e25 2206 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2207
2208 /* Compute the elapsed time in milliseconds, as a tradeoff between
2209 accuracy and overflow. */
2210 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2211 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2212
8b93c638
JM
2213 ui_out_text (uiout, "Transfer rate: ");
2214 if (time_count > 0)
2215 {
9f43d28c
DJ
2216 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2217
2218 if (ui_out_is_mi_like_p (uiout))
2219 {
2220 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2221 ui_out_text (uiout, " bits/sec");
2222 }
2223 else if (rate < 1024)
2224 {
2225 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2226 ui_out_text (uiout, " bytes/sec");
2227 }
2228 else
2229 {
2230 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2231 ui_out_text (uiout, " KB/sec");
2232 }
8b93c638
JM
2233 }
2234 else
2235 {
ba5f2f8a 2236 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2237 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2238 }
2239 if (write_count > 0)
2240 {
2241 ui_out_text (uiout, ", ");
ba5f2f8a 2242 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2243 ui_out_text (uiout, " bytes/write");
2244 }
2245 ui_out_text (uiout, ".\n");
c906108c
SS
2246}
2247
2248/* This function allows the addition of incrementally linked object files.
2249 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2250/* Note: ezannoni 2000-04-13 This function/command used to have a
2251 special case syntax for the rombug target (Rombug is the boot
2252 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2253 rombug case, the user doesn't need to supply a text address,
2254 instead a call to target_link() (in target.c) would supply the
c378eb4e 2255 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2256
c906108c 2257static void
fba45db2 2258add_symbol_file_command (char *args, int from_tty)
c906108c 2259{
5af949e3 2260 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2261 char *filename = NULL;
d03de421 2262 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2263 char *arg;
db162d44 2264 int section_index = 0;
2acceee2
JM
2265 int argcnt = 0;
2266 int sec_num = 0;
2267 int i;
db162d44
EZ
2268 int expecting_sec_name = 0;
2269 int expecting_sec_addr = 0;
5b96932b 2270 char **argv;
76ad5e1e 2271 struct objfile *objf;
db162d44 2272
a39a16c4 2273 struct sect_opt
2acceee2 2274 {
2acceee2
JM
2275 char *name;
2276 char *value;
a39a16c4 2277 };
db162d44 2278
a39a16c4
MM
2279 struct section_addr_info *section_addrs;
2280 struct sect_opt *sect_opts = NULL;
2281 size_t num_sect_opts = 0;
3017564a 2282 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2283
a39a16c4 2284 num_sect_opts = 16;
5417f6dc 2285 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2286 * sizeof (struct sect_opt));
2287
c906108c
SS
2288 dont_repeat ();
2289
2290 if (args == NULL)
8a3fe4f8 2291 error (_("add-symbol-file takes a file name and an address"));
c906108c 2292
d1a41061 2293 argv = gdb_buildargv (args);
5b96932b 2294 make_cleanup_freeargv (argv);
db162d44 2295
5b96932b
AS
2296 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2297 {
c378eb4e 2298 /* Process the argument. */
db162d44 2299 if (argcnt == 0)
c906108c 2300 {
c378eb4e 2301 /* The first argument is the file name. */
db162d44 2302 filename = tilde_expand (arg);
3017564a 2303 make_cleanup (xfree, filename);
c906108c 2304 }
41dc8db8
MB
2305 else if (argcnt == 1)
2306 {
2307 /* The second argument is always the text address at which
2308 to load the program. */
2309 sect_opts[section_index].name = ".text";
2310 sect_opts[section_index].value = arg;
2311 if (++section_index >= num_sect_opts)
2312 {
2313 num_sect_opts *= 2;
2314 sect_opts = ((struct sect_opt *)
2315 xrealloc (sect_opts,
2316 num_sect_opts
2317 * sizeof (struct sect_opt)));
2318 }
2319 }
db162d44 2320 else
41dc8db8
MB
2321 {
2322 /* It's an option (starting with '-') or it's an argument
2323 to an option. */
41dc8db8
MB
2324 if (expecting_sec_name)
2325 {
2326 sect_opts[section_index].name = arg;
2327 expecting_sec_name = 0;
2328 }
2329 else if (expecting_sec_addr)
2330 {
2331 sect_opts[section_index].value = arg;
2332 expecting_sec_addr = 0;
2333 if (++section_index >= num_sect_opts)
2334 {
2335 num_sect_opts *= 2;
2336 sect_opts = ((struct sect_opt *)
2337 xrealloc (sect_opts,
2338 num_sect_opts
2339 * sizeof (struct sect_opt)));
2340 }
2341 }
2342 else if (strcmp (arg, "-readnow") == 0)
2343 flags |= OBJF_READNOW;
2344 else if (strcmp (arg, "-s") == 0)
2345 {
2346 expecting_sec_name = 1;
2347 expecting_sec_addr = 1;
2348 }
2349 else
2350 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2351 " [-readnow] [-s <secname> <addr>]*"));
2352 }
c906108c 2353 }
c906108c 2354
927890d0
JB
2355 /* This command takes at least two arguments. The first one is a
2356 filename, and the second is the address where this file has been
2357 loaded. Abort now if this address hasn't been provided by the
2358 user. */
2359 if (section_index < 1)
2360 error (_("The address where %s has been loaded is missing"), filename);
2361
c378eb4e 2362 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2363 a sect_addr_info structure to be passed around to other
2364 functions. We have to split this up into separate print
bb599908 2365 statements because hex_string returns a local static
c378eb4e 2366 string. */
5417f6dc 2367
a3f17187 2368 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2369 section_addrs = alloc_section_addr_info (section_index);
2370 make_cleanup (xfree, section_addrs);
db162d44 2371 for (i = 0; i < section_index; i++)
c906108c 2372 {
db162d44
EZ
2373 CORE_ADDR addr;
2374 char *val = sect_opts[i].value;
2375 char *sec = sect_opts[i].name;
5417f6dc 2376
ae822768 2377 addr = parse_and_eval_address (val);
db162d44 2378
db162d44 2379 /* Here we store the section offsets in the order they were
c378eb4e 2380 entered on the command line. */
a39a16c4
MM
2381 section_addrs->other[sec_num].name = sec;
2382 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2383 printf_unfiltered ("\t%s_addr = %s\n", sec,
2384 paddress (gdbarch, addr));
db162d44
EZ
2385 sec_num++;
2386
5417f6dc 2387 /* The object's sections are initialized when a
db162d44 2388 call is made to build_objfile_section_table (objfile).
5417f6dc 2389 This happens in reread_symbols.
db162d44
EZ
2390 At this point, we don't know what file type this is,
2391 so we can't determine what section names are valid. */
2acceee2 2392 }
d76488d8 2393 section_addrs->num_sections = sec_num;
db162d44 2394
2acceee2 2395 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2396 error (_("Not confirmed."));
c906108c 2397
76ad5e1e
NB
2398 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2399 section_addrs, flags);
2400
2401 add_target_sections_of_objfile (objf);
c906108c
SS
2402
2403 /* Getting new symbols may change our opinion about what is
2404 frameless. */
2405 reinit_frame_cache ();
db162d44 2406 do_cleanups (my_cleanups);
c906108c
SS
2407}
2408\f
70992597 2409
63644780
NB
2410/* This function removes a symbol file that was added via add-symbol-file. */
2411
2412static void
2413remove_symbol_file_command (char *args, int from_tty)
2414{
2415 char **argv;
2416 struct objfile *objf = NULL;
2417 struct cleanup *my_cleanups;
2418 struct program_space *pspace = current_program_space;
2419 struct gdbarch *gdbarch = get_current_arch ();
2420
2421 dont_repeat ();
2422
2423 if (args == NULL)
2424 error (_("remove-symbol-file: no symbol file provided"));
2425
2426 my_cleanups = make_cleanup (null_cleanup, NULL);
2427
2428 argv = gdb_buildargv (args);
2429
2430 if (strcmp (argv[0], "-a") == 0)
2431 {
2432 /* Interpret the next argument as an address. */
2433 CORE_ADDR addr;
2434
2435 if (argv[1] == NULL)
2436 error (_("Missing address argument"));
2437
2438 if (argv[2] != NULL)
2439 error (_("Junk after %s"), argv[1]);
2440
2441 addr = parse_and_eval_address (argv[1]);
2442
2443 ALL_OBJFILES (objf)
2444 {
d03de421
PA
2445 if ((objf->flags & OBJF_USERLOADED) != 0
2446 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2447 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2448 break;
2449 }
2450 }
2451 else if (argv[0] != NULL)
2452 {
2453 /* Interpret the current argument as a file name. */
2454 char *filename;
2455
2456 if (argv[1] != NULL)
2457 error (_("Junk after %s"), argv[0]);
2458
2459 filename = tilde_expand (argv[0]);
2460 make_cleanup (xfree, filename);
2461
2462 ALL_OBJFILES (objf)
2463 {
d03de421
PA
2464 if ((objf->flags & OBJF_USERLOADED) != 0
2465 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2466 && objf->pspace == pspace
2467 && filename_cmp (filename, objfile_name (objf)) == 0)
2468 break;
2469 }
2470 }
2471
2472 if (objf == NULL)
2473 error (_("No symbol file found"));
2474
2475 if (from_tty
2476 && !query (_("Remove symbol table from file \"%s\"? "),
2477 objfile_name (objf)))
2478 error (_("Not confirmed."));
2479
2480 free_objfile (objf);
2481 clear_symtab_users (0);
2482
2483 do_cleanups (my_cleanups);
2484}
2485
4ac39b97
JK
2486typedef struct objfile *objfilep;
2487
2488DEF_VEC_P (objfilep);
2489
c906108c 2490/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2491
c906108c 2492void
fba45db2 2493reread_symbols (void)
c906108c
SS
2494{
2495 struct objfile *objfile;
2496 long new_modtime;
c906108c
SS
2497 struct stat new_statbuf;
2498 int res;
4ac39b97
JK
2499 VEC (objfilep) *new_objfiles = NULL;
2500 struct cleanup *all_cleanups;
2501
2502 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2503
2504 /* With the addition of shared libraries, this should be modified,
2505 the load time should be saved in the partial symbol tables, since
2506 different tables may come from different source files. FIXME.
2507 This routine should then walk down each partial symbol table
c378eb4e 2508 and see if the symbol table that it originates from has been changed. */
c906108c 2509
c5aa993b
JM
2510 for (objfile = object_files; objfile; objfile = objfile->next)
2511 {
9cce227f
TG
2512 if (objfile->obfd == NULL)
2513 continue;
2514
2515 /* Separate debug objfiles are handled in the main objfile. */
2516 if (objfile->separate_debug_objfile_backlink)
2517 continue;
2518
02aeec7b
JB
2519 /* If this object is from an archive (what you usually create with
2520 `ar', often called a `static library' on most systems, though
2521 a `shared library' on AIX is also an archive), then you should
2522 stat on the archive name, not member name. */
9cce227f
TG
2523 if (objfile->obfd->my_archive)
2524 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2525 else
4262abfb 2526 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2527 if (res != 0)
2528 {
c378eb4e 2529 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2530 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2531 objfile_name (objfile));
9cce227f
TG
2532 continue;
2533 }
2534 new_modtime = new_statbuf.st_mtime;
2535 if (new_modtime != objfile->mtime)
2536 {
2537 struct cleanup *old_cleanups;
2538 struct section_offsets *offsets;
2539 int num_offsets;
24ba069a 2540 char *original_name;
9cce227f
TG
2541
2542 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2543 objfile_name (objfile));
9cce227f
TG
2544
2545 /* There are various functions like symbol_file_add,
2546 symfile_bfd_open, syms_from_objfile, etc., which might
2547 appear to do what we want. But they have various other
2548 effects which we *don't* want. So we just do stuff
2549 ourselves. We don't worry about mapped files (for one thing,
2550 any mapped file will be out of date). */
2551
2552 /* If we get an error, blow away this objfile (not sure if
2553 that is the correct response for things like shared
2554 libraries). */
2555 old_cleanups = make_cleanup_free_objfile (objfile);
2556 /* We need to do this whenever any symbols go away. */
2557 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2558
0ba1096a
KT
2559 if (exec_bfd != NULL
2560 && filename_cmp (bfd_get_filename (objfile->obfd),
2561 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2562 {
2563 /* Reload EXEC_BFD without asking anything. */
2564
2565 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2566 }
2567
f6eeced0
JK
2568 /* Keep the calls order approx. the same as in free_objfile. */
2569
2570 /* Free the separate debug objfiles. It will be
2571 automatically recreated by sym_read. */
2572 free_objfile_separate_debug (objfile);
2573
2574 /* Remove any references to this objfile in the global
2575 value lists. */
2576 preserve_values (objfile);
2577
2578 /* Nuke all the state that we will re-read. Much of the following
2579 code which sets things to NULL really is necessary to tell
2580 other parts of GDB that there is nothing currently there.
2581
2582 Try to keep the freeing order compatible with free_objfile. */
2583
2584 if (objfile->sf != NULL)
2585 {
2586 (*objfile->sf->sym_finish) (objfile);
2587 }
2588
2589 clear_objfile_data (objfile);
2590
e1507e95 2591 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2592 {
2593 struct bfd *obfd = objfile->obfd;
d3846e71 2594 char *obfd_filename;
a4453b7e
TT
2595
2596 obfd_filename = bfd_get_filename (objfile->obfd);
2597 /* Open the new BFD before freeing the old one, so that
2598 the filename remains live. */
08d2cd74 2599 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2600 if (objfile->obfd == NULL)
2601 {
2602 /* We have to make a cleanup and error here, rather
2603 than erroring later, because once we unref OBFD,
2604 OBFD_FILENAME will be freed. */
2605 make_cleanup_bfd_unref (obfd);
2606 error (_("Can't open %s to read symbols."), obfd_filename);
2607 }
a4453b7e
TT
2608 gdb_bfd_unref (obfd);
2609 }
2610
24ba069a
JK
2611 original_name = xstrdup (objfile->original_name);
2612 make_cleanup (xfree, original_name);
2613
9cce227f
TG
2614 /* bfd_openr sets cacheable to true, which is what we want. */
2615 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2616 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2617 bfd_errmsg (bfd_get_error ()));
2618
2619 /* Save the offsets, we will nuke them with the rest of the
2620 objfile_obstack. */
2621 num_offsets = objfile->num_sections;
2622 offsets = ((struct section_offsets *)
2623 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2624 memcpy (offsets, objfile->section_offsets,
2625 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2626
9cce227f
TG
2627 /* FIXME: Do we have to free a whole linked list, or is this
2628 enough? */
2629 if (objfile->global_psymbols.list)
2630 xfree (objfile->global_psymbols.list);
2631 memset (&objfile->global_psymbols, 0,
2632 sizeof (objfile->global_psymbols));
2633 if (objfile->static_psymbols.list)
2634 xfree (objfile->static_psymbols.list);
2635 memset (&objfile->static_psymbols, 0,
2636 sizeof (objfile->static_psymbols));
2637
c378eb4e 2638 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2639 psymbol_bcache_free (objfile->psymbol_cache);
2640 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2641 obstack_free (&objfile->objfile_obstack, 0);
2642 objfile->sections = NULL;
43f3e411 2643 objfile->compunit_symtabs = NULL;
9cce227f
TG
2644 objfile->psymtabs = NULL;
2645 objfile->psymtabs_addrmap = NULL;
2646 objfile->free_psymtabs = NULL;
34eaf542 2647 objfile->template_symbols = NULL;
9cce227f 2648
9cce227f
TG
2649 /* obstack_init also initializes the obstack so it is
2650 empty. We could use obstack_specify_allocation but
d82ea6a8 2651 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2652 obstack_init (&objfile->objfile_obstack);
779bd270 2653
846060df
JB
2654 /* set_objfile_per_bfd potentially allocates the per-bfd
2655 data on the objfile's obstack (if sharing data across
2656 multiple users is not possible), so it's important to
2657 do it *after* the obstack has been initialized. */
2658 set_objfile_per_bfd (objfile);
2659
24ba069a
JK
2660 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2661 original_name,
2662 strlen (original_name));
2663
779bd270
DE
2664 /* Reset the sym_fns pointer. The ELF reader can change it
2665 based on whether .gdb_index is present, and we need it to
2666 start over. PR symtab/15885 */
8fb8eb5c 2667 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2668
d82ea6a8 2669 build_objfile_section_table (objfile);
9cce227f
TG
2670 terminate_minimal_symbol_table (objfile);
2671
2672 /* We use the same section offsets as from last time. I'm not
2673 sure whether that is always correct for shared libraries. */
2674 objfile->section_offsets = (struct section_offsets *)
2675 obstack_alloc (&objfile->objfile_obstack,
2676 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2677 memcpy (objfile->section_offsets, offsets,
2678 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2679 objfile->num_sections = num_offsets;
2680
2681 /* What the hell is sym_new_init for, anyway? The concept of
2682 distinguishing between the main file and additional files
2683 in this way seems rather dubious. */
2684 if (objfile == symfile_objfile)
c906108c 2685 {
9cce227f 2686 (*objfile->sf->sym_new_init) (objfile);
c906108c 2687 }
9cce227f
TG
2688
2689 (*objfile->sf->sym_init) (objfile);
2690 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2691
2692 objfile->flags &= ~OBJF_PSYMTABS_READ;
2693 read_symbols (objfile, 0);
b11896a5 2694
9cce227f 2695 if (!objfile_has_symbols (objfile))
c906108c 2696 {
9cce227f
TG
2697 wrap_here ("");
2698 printf_unfiltered (_("(no debugging symbols found)\n"));
2699 wrap_here ("");
c5aa993b 2700 }
9cce227f
TG
2701
2702 /* We're done reading the symbol file; finish off complaints. */
2703 clear_complaints (&symfile_complaints, 0, 1);
2704
2705 /* Getting new symbols may change our opinion about what is
2706 frameless. */
2707
2708 reinit_frame_cache ();
2709
2710 /* Discard cleanups as symbol reading was successful. */
2711 discard_cleanups (old_cleanups);
2712
2713 /* If the mtime has changed between the time we set new_modtime
2714 and now, we *want* this to be out of date, so don't call stat
2715 again now. */
2716 objfile->mtime = new_modtime;
9cce227f 2717 init_entry_point_info (objfile);
4ac39b97
JK
2718
2719 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2720 }
2721 }
c906108c 2722
4ac39b97 2723 if (new_objfiles)
ea53e89f 2724 {
4ac39b97
JK
2725 int ix;
2726
ff3536bc
UW
2727 /* Notify objfiles that we've modified objfile sections. */
2728 objfiles_changed ();
2729
c1e56572 2730 clear_symtab_users (0);
4ac39b97
JK
2731
2732 /* clear_objfile_data for each objfile was called before freeing it and
2733 observer_notify_new_objfile (NULL) has been called by
2734 clear_symtab_users above. Notify the new files now. */
2735 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2736 observer_notify_new_objfile (objfile);
2737
ea53e89f
JB
2738 /* At least one objfile has changed, so we can consider that
2739 the executable we're debugging has changed too. */
781b42b0 2740 observer_notify_executable_changed ();
ea53e89f 2741 }
4ac39b97
JK
2742
2743 do_cleanups (all_cleanups);
c906108c 2744}
c906108c
SS
2745\f
2746
c5aa993b
JM
2747typedef struct
2748{
2749 char *ext;
c906108c 2750 enum language lang;
c5aa993b
JM
2751}
2752filename_language;
c906108c 2753
c5aa993b 2754static filename_language *filename_language_table;
c906108c
SS
2755static int fl_table_size, fl_table_next;
2756
2757static void
fba45db2 2758add_filename_language (char *ext, enum language lang)
c906108c
SS
2759{
2760 if (fl_table_next >= fl_table_size)
2761 {
2762 fl_table_size += 10;
5417f6dc 2763 filename_language_table =
25bf3106
PM
2764 xrealloc (filename_language_table,
2765 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2766 }
2767
4fcf66da 2768 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2769 filename_language_table[fl_table_next].lang = lang;
2770 fl_table_next++;
2771}
2772
2773static char *ext_args;
920d2a44
AC
2774static void
2775show_ext_args (struct ui_file *file, int from_tty,
2776 struct cmd_list_element *c, const char *value)
2777{
3e43a32a
MS
2778 fprintf_filtered (file,
2779 _("Mapping between filename extension "
2780 "and source language is \"%s\".\n"),
920d2a44
AC
2781 value);
2782}
c906108c
SS
2783
2784static void
26c41df3 2785set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2786{
2787 int i;
2788 char *cp = ext_args;
2789 enum language lang;
2790
c378eb4e 2791 /* First arg is filename extension, starting with '.' */
c906108c 2792 if (*cp != '.')
8a3fe4f8 2793 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2794
2795 /* Find end of first arg. */
c5aa993b 2796 while (*cp && !isspace (*cp))
c906108c
SS
2797 cp++;
2798
2799 if (*cp == '\0')
3e43a32a
MS
2800 error (_("'%s': two arguments required -- "
2801 "filename extension and language"),
c906108c
SS
2802 ext_args);
2803
c378eb4e 2804 /* Null-terminate first arg. */
c5aa993b 2805 *cp++ = '\0';
c906108c
SS
2806
2807 /* Find beginning of second arg, which should be a source language. */
529480d0 2808 cp = skip_spaces (cp);
c906108c
SS
2809
2810 if (*cp == '\0')
3e43a32a
MS
2811 error (_("'%s': two arguments required -- "
2812 "filename extension and language"),
c906108c
SS
2813 ext_args);
2814
2815 /* Lookup the language from among those we know. */
2816 lang = language_enum (cp);
2817
2818 /* Now lookup the filename extension: do we already know it? */
2819 for (i = 0; i < fl_table_next; i++)
2820 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2821 break;
2822
2823 if (i >= fl_table_next)
2824 {
c378eb4e 2825 /* New file extension. */
c906108c
SS
2826 add_filename_language (ext_args, lang);
2827 }
2828 else
2829 {
c378eb4e 2830 /* Redefining a previously known filename extension. */
c906108c
SS
2831
2832 /* if (from_tty) */
2833 /* query ("Really make files of type %s '%s'?", */
2834 /* ext_args, language_str (lang)); */
2835
b8c9b27d 2836 xfree (filename_language_table[i].ext);
4fcf66da 2837 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2838 filename_language_table[i].lang = lang;
2839 }
2840}
2841
2842static void
fba45db2 2843info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2844{
2845 int i;
2846
a3f17187 2847 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2848 printf_filtered ("\n\n");
2849 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2850 printf_filtered ("\t%s\t- %s\n",
2851 filename_language_table[i].ext,
c906108c
SS
2852 language_str (filename_language_table[i].lang));
2853}
2854
2855static void
fba45db2 2856init_filename_language_table (void)
c906108c 2857{
c378eb4e 2858 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2859 {
2860 fl_table_size = 20;
2861 fl_table_next = 0;
c5aa993b 2862 filename_language_table =
c906108c 2863 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2864 add_filename_language (".c", language_c);
6aecb9c2 2865 add_filename_language (".d", language_d);
c5aa993b
JM
2866 add_filename_language (".C", language_cplus);
2867 add_filename_language (".cc", language_cplus);
2868 add_filename_language (".cp", language_cplus);
2869 add_filename_language (".cpp", language_cplus);
2870 add_filename_language (".cxx", language_cplus);
2871 add_filename_language (".c++", language_cplus);
2872 add_filename_language (".java", language_java);
c906108c 2873 add_filename_language (".class", language_java);
da2cf7e0 2874 add_filename_language (".m", language_objc);
c5aa993b
JM
2875 add_filename_language (".f", language_fortran);
2876 add_filename_language (".F", language_fortran);
fd5700c7
JK
2877 add_filename_language (".for", language_fortran);
2878 add_filename_language (".FOR", language_fortran);
2879 add_filename_language (".ftn", language_fortran);
2880 add_filename_language (".FTN", language_fortran);
2881 add_filename_language (".fpp", language_fortran);
2882 add_filename_language (".FPP", language_fortran);
2883 add_filename_language (".f90", language_fortran);
2884 add_filename_language (".F90", language_fortran);
2885 add_filename_language (".f95", language_fortran);
2886 add_filename_language (".F95", language_fortran);
2887 add_filename_language (".f03", language_fortran);
2888 add_filename_language (".F03", language_fortran);
2889 add_filename_language (".f08", language_fortran);
2890 add_filename_language (".F08", language_fortran);
c5aa993b 2891 add_filename_language (".s", language_asm);
aa707ed0 2892 add_filename_language (".sx", language_asm);
c5aa993b 2893 add_filename_language (".S", language_asm);
c6fd39cd
PM
2894 add_filename_language (".pas", language_pascal);
2895 add_filename_language (".p", language_pascal);
2896 add_filename_language (".pp", language_pascal);
963a6417
PH
2897 add_filename_language (".adb", language_ada);
2898 add_filename_language (".ads", language_ada);
2899 add_filename_language (".a", language_ada);
2900 add_filename_language (".ada", language_ada);
dde59185 2901 add_filename_language (".dg", language_ada);
c906108c
SS
2902 }
2903}
2904
2905enum language
dd786858 2906deduce_language_from_filename (const char *filename)
c906108c
SS
2907{
2908 int i;
2909 char *cp;
2910
2911 if (filename != NULL)
2912 if ((cp = strrchr (filename, '.')) != NULL)
2913 for (i = 0; i < fl_table_next; i++)
2914 if (strcmp (cp, filename_language_table[i].ext) == 0)
2915 return filename_language_table[i].lang;
2916
2917 return language_unknown;
2918}
2919\f
43f3e411
DE
2920/* Allocate and initialize a new symbol table.
2921 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2922
2923struct symtab *
43f3e411 2924allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2925{
43f3e411
DE
2926 struct objfile *objfile = cust->objfile;
2927 struct symtab *symtab
2928 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2929
21ea9eec
TT
2930 symtab->filename = bcache (filename, strlen (filename) + 1,
2931 objfile->per_bfd->filename_cache);
c5aa993b
JM
2932 symtab->fullname = NULL;
2933 symtab->language = deduce_language_from_filename (filename);
c906108c 2934
db0fec5c
DE
2935 /* This can be very verbose with lots of headers.
2936 Only print at higher debug levels. */
2937 if (symtab_create_debug >= 2)
45cfd468
DE
2938 {
2939 /* Be a bit clever with debugging messages, and don't print objfile
2940 every time, only when it changes. */
2941 static char *last_objfile_name = NULL;
2942
2943 if (last_objfile_name == NULL
4262abfb 2944 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2945 {
2946 xfree (last_objfile_name);
4262abfb 2947 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2948 fprintf_unfiltered (gdb_stdlog,
2949 "Creating one or more symtabs for objfile %s ...\n",
2950 last_objfile_name);
2951 }
2952 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2953 "Created symtab %s for module %s.\n",
2954 host_address_to_string (symtab), filename);
45cfd468
DE
2955 }
2956
43f3e411
DE
2957 /* Add it to CUST's list of symtabs. */
2958 if (cust->filetabs == NULL)
2959 {
2960 cust->filetabs = symtab;
2961 cust->last_filetab = symtab;
2962 }
2963 else
2964 {
2965 cust->last_filetab->next = symtab;
2966 cust->last_filetab = symtab;
2967 }
2968
2969 /* Backlink to the containing compunit symtab. */
2970 symtab->compunit_symtab = cust;
2971
2972 return symtab;
2973}
2974
2975/* Allocate and initialize a new compunit.
2976 NAME is the name of the main source file, if there is one, or some
2977 descriptive text if there are no source files. */
2978
2979struct compunit_symtab *
2980allocate_compunit_symtab (struct objfile *objfile, const char *name)
2981{
2982 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2983 struct compunit_symtab);
2984 const char *saved_name;
2985
2986 cu->objfile = objfile;
2987
2988 /* The name we record here is only for display/debugging purposes.
2989 Just save the basename to avoid path issues (too long for display,
2990 relative vs absolute, etc.). */
2991 saved_name = lbasename (name);
2992 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2993 strlen (saved_name));
2994
2995 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2996
2997 if (symtab_create_debug)
2998 {
2999 fprintf_unfiltered (gdb_stdlog,
3000 "Created compunit symtab %s for %s.\n",
3001 host_address_to_string (cu),
3002 cu->name);
3003 }
3004
3005 return cu;
3006}
3007
3008/* Hook CU to the objfile it comes from. */
3009
3010void
3011add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
3012{
3013 cu->next = cu->objfile->compunit_symtabs;
3014 cu->objfile->compunit_symtabs = cu;
c906108c 3015}
c906108c 3016\f
c5aa993b 3017
c906108c 3018/* Reset all data structures in gdb which may contain references to symbol
c1e56572 3019 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
3020
3021void
c1e56572 3022clear_symtab_users (int add_flags)
c906108c
SS
3023{
3024 /* Someday, we should do better than this, by only blowing away
3025 the things that really need to be blown. */
c0501be5
DJ
3026
3027 /* Clear the "current" symtab first, because it is no longer valid.
3028 breakpoint_re_set may try to access the current symtab. */
3029 clear_current_source_symtab_and_line ();
3030
c906108c 3031 clear_displays ();
1bfeeb0f 3032 clear_last_displayed_sal ();
c906108c 3033 clear_pc_function_cache ();
06d3b283 3034 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
3035
3036 /* Clear globals which might have pointed into a removed objfile.
3037 FIXME: It's not clear which of these are supposed to persist
3038 between expressions and which ought to be reset each time. */
3039 expression_context_block = NULL;
3040 innermost_block = NULL;
8756216b
DP
3041
3042 /* Varobj may refer to old symbols, perform a cleanup. */
3043 varobj_invalidate ();
3044
e700d1b2
JB
3045 /* Now that the various caches have been cleared, we can re_set
3046 our breakpoints without risking it using stale data. */
3047 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3048 breakpoint_re_set ();
c906108c
SS
3049}
3050
74b7792f
AC
3051static void
3052clear_symtab_users_cleanup (void *ignore)
3053{
c1e56572 3054 clear_symtab_users (0);
74b7792f 3055}
c906108c 3056\f
c906108c
SS
3057/* OVERLAYS:
3058 The following code implements an abstraction for debugging overlay sections.
3059
3060 The target model is as follows:
3061 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3062 same VMA, each with its own unique LMA (or load address).
c906108c 3063 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3064 sections, one by one, from the load address into the VMA address.
5417f6dc 3065 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3066 sections should be considered to be mapped from the VMA to the LMA.
3067 This information is used for symbol lookup, and memory read/write.
5417f6dc 3068 For instance, if a section has been mapped then its contents
c5aa993b 3069 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3070
3071 Two levels of debugger support for overlays are available. One is
3072 "manual", in which the debugger relies on the user to tell it which
3073 overlays are currently mapped. This level of support is
3074 implemented entirely in the core debugger, and the information about
3075 whether a section is mapped is kept in the objfile->obj_section table.
3076
3077 The second level of support is "automatic", and is only available if
3078 the target-specific code provides functionality to read the target's
3079 overlay mapping table, and translate its contents for the debugger
3080 (by updating the mapped state information in the obj_section tables).
3081
3082 The interface is as follows:
c5aa993b
JM
3083 User commands:
3084 overlay map <name> -- tell gdb to consider this section mapped
3085 overlay unmap <name> -- tell gdb to consider this section unmapped
3086 overlay list -- list the sections that GDB thinks are mapped
3087 overlay read-target -- get the target's state of what's mapped
3088 overlay off/manual/auto -- set overlay debugging state
3089 Functional interface:
3090 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3091 section, return that section.
5417f6dc 3092 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3093 the pc, either in its VMA or its LMA
714835d5 3094 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3095 section_is_overlay(sect): true if section's VMA != LMA
3096 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3097 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3098 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3099 overlay_mapped_address(...): map an address from section's LMA to VMA
3100 overlay_unmapped_address(...): map an address from section's VMA to LMA
3101 symbol_overlayed_address(...): Return a "current" address for symbol:
3102 either in VMA or LMA depending on whether
c378eb4e 3103 the symbol's section is currently mapped. */
c906108c
SS
3104
3105/* Overlay debugging state: */
3106
d874f1e2 3107enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3108int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3109
c906108c 3110/* Function: section_is_overlay (SECTION)
5417f6dc 3111 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3112 SECTION is loaded at an address different from where it will "run". */
3113
3114int
714835d5 3115section_is_overlay (struct obj_section *section)
c906108c 3116{
714835d5
UW
3117 if (overlay_debugging && section)
3118 {
3119 bfd *abfd = section->objfile->obfd;
3120 asection *bfd_section = section->the_bfd_section;
f888f159 3121
714835d5
UW
3122 if (bfd_section_lma (abfd, bfd_section) != 0
3123 && bfd_section_lma (abfd, bfd_section)
3124 != bfd_section_vma (abfd, bfd_section))
3125 return 1;
3126 }
c906108c
SS
3127
3128 return 0;
3129}
3130
3131/* Function: overlay_invalidate_all (void)
3132 Invalidate the mapped state of all overlay sections (mark it as stale). */
3133
3134static void
fba45db2 3135overlay_invalidate_all (void)
c906108c 3136{
c5aa993b 3137 struct objfile *objfile;
c906108c
SS
3138 struct obj_section *sect;
3139
3140 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3141 if (section_is_overlay (sect))
3142 sect->ovly_mapped = -1;
c906108c
SS
3143}
3144
714835d5 3145/* Function: section_is_mapped (SECTION)
5417f6dc 3146 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3147
3148 Access to the ovly_mapped flag is restricted to this function, so
3149 that we can do automatic update. If the global flag
3150 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3151 overlay_invalidate_all. If the mapped state of the particular
3152 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3153
714835d5
UW
3154int
3155section_is_mapped (struct obj_section *osect)
c906108c 3156{
9216df95
UW
3157 struct gdbarch *gdbarch;
3158
714835d5 3159 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3160 return 0;
3161
c5aa993b 3162 switch (overlay_debugging)
c906108c
SS
3163 {
3164 default:
d874f1e2 3165 case ovly_off:
c5aa993b 3166 return 0; /* overlay debugging off */
d874f1e2 3167 case ovly_auto: /* overlay debugging automatic */
1c772458 3168 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3169 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3170 gdbarch = get_objfile_arch (osect->objfile);
3171 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3172 {
3173 if (overlay_cache_invalid)
3174 {
3175 overlay_invalidate_all ();
3176 overlay_cache_invalid = 0;
3177 }
3178 if (osect->ovly_mapped == -1)
9216df95 3179 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3180 }
3181 /* fall thru to manual case */
d874f1e2 3182 case ovly_on: /* overlay debugging manual */
c906108c
SS
3183 return osect->ovly_mapped == 1;
3184 }
3185}
3186
c906108c
SS
3187/* Function: pc_in_unmapped_range
3188 If PC falls into the lma range of SECTION, return true, else false. */
3189
3190CORE_ADDR
714835d5 3191pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3192{
714835d5
UW
3193 if (section_is_overlay (section))
3194 {
3195 bfd *abfd = section->objfile->obfd;
3196 asection *bfd_section = section->the_bfd_section;
fbd35540 3197
714835d5
UW
3198 /* We assume the LMA is relocated by the same offset as the VMA. */
3199 bfd_vma size = bfd_get_section_size (bfd_section);
3200 CORE_ADDR offset = obj_section_offset (section);
3201
3202 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3203 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3204 return 1;
3205 }
c906108c 3206
c906108c
SS
3207 return 0;
3208}
3209
3210/* Function: pc_in_mapped_range
3211 If PC falls into the vma range of SECTION, return true, else false. */
3212
3213CORE_ADDR
714835d5 3214pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3215{
714835d5
UW
3216 if (section_is_overlay (section))
3217 {
3218 if (obj_section_addr (section) <= pc
3219 && pc < obj_section_endaddr (section))
3220 return 1;
3221 }
c906108c 3222
c906108c
SS
3223 return 0;
3224}
3225
9ec8e6a0
JB
3226/* Return true if the mapped ranges of sections A and B overlap, false
3227 otherwise. */
3b7bacac 3228
b9362cc7 3229static int
714835d5 3230sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3231{
714835d5
UW
3232 CORE_ADDR a_start = obj_section_addr (a);
3233 CORE_ADDR a_end = obj_section_endaddr (a);
3234 CORE_ADDR b_start = obj_section_addr (b);
3235 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3236
3237 return (a_start < b_end && b_start < a_end);
3238}
3239
c906108c
SS
3240/* Function: overlay_unmapped_address (PC, SECTION)
3241 Returns the address corresponding to PC in the unmapped (load) range.
3242 May be the same as PC. */
3243
3244CORE_ADDR
714835d5 3245overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3246{
714835d5
UW
3247 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3248 {
3249 bfd *abfd = section->objfile->obfd;
3250 asection *bfd_section = section->the_bfd_section;
fbd35540 3251
714835d5
UW
3252 return pc + bfd_section_lma (abfd, bfd_section)
3253 - bfd_section_vma (abfd, bfd_section);
3254 }
c906108c
SS
3255
3256 return pc;
3257}
3258
3259/* Function: overlay_mapped_address (PC, SECTION)
3260 Returns the address corresponding to PC in the mapped (runtime) range.
3261 May be the same as PC. */
3262
3263CORE_ADDR
714835d5 3264overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3265{
714835d5
UW
3266 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3267 {
3268 bfd *abfd = section->objfile->obfd;
3269 asection *bfd_section = section->the_bfd_section;
fbd35540 3270
714835d5
UW
3271 return pc + bfd_section_vma (abfd, bfd_section)
3272 - bfd_section_lma (abfd, bfd_section);
3273 }
c906108c
SS
3274
3275 return pc;
3276}
3277
5417f6dc 3278/* Function: symbol_overlayed_address
c906108c
SS
3279 Return one of two addresses (relative to the VMA or to the LMA),
3280 depending on whether the section is mapped or not. */
3281
c5aa993b 3282CORE_ADDR
714835d5 3283symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3284{
3285 if (overlay_debugging)
3286 {
c378eb4e 3287 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3288 if (section == 0)
3289 return address;
c378eb4e
MS
3290 /* If the symbol's section is not an overlay, just return its
3291 address. */
c906108c
SS
3292 if (!section_is_overlay (section))
3293 return address;
c378eb4e 3294 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3295 if (section_is_mapped (section))
3296 return address;
3297 /*
3298 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3299 * then return its LOADED address rather than its vma address!!
3300 */
3301 return overlay_unmapped_address (address, section);
3302 }
3303 return address;
3304}
3305
5417f6dc 3306/* Function: find_pc_overlay (PC)
c906108c
SS
3307 Return the best-match overlay section for PC:
3308 If PC matches a mapped overlay section's VMA, return that section.
3309 Else if PC matches an unmapped section's VMA, return that section.
3310 Else if PC matches an unmapped section's LMA, return that section. */
3311
714835d5 3312struct obj_section *
fba45db2 3313find_pc_overlay (CORE_ADDR pc)
c906108c 3314{
c5aa993b 3315 struct objfile *objfile;
c906108c
SS
3316 struct obj_section *osect, *best_match = NULL;
3317
3318 if (overlay_debugging)
3319 ALL_OBJSECTIONS (objfile, osect)
714835d5 3320 if (section_is_overlay (osect))
c5aa993b 3321 {
714835d5 3322 if (pc_in_mapped_range (pc, osect))
c5aa993b 3323 {
714835d5
UW
3324 if (section_is_mapped (osect))
3325 return osect;
c5aa993b
JM
3326 else
3327 best_match = osect;
3328 }
714835d5 3329 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3330 best_match = osect;
3331 }
714835d5 3332 return best_match;
c906108c
SS
3333}
3334
3335/* Function: find_pc_mapped_section (PC)
5417f6dc 3336 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3337 currently marked as MAPPED, return that section. Else return NULL. */
3338
714835d5 3339struct obj_section *
fba45db2 3340find_pc_mapped_section (CORE_ADDR pc)
c906108c 3341{
c5aa993b 3342 struct objfile *objfile;
c906108c
SS
3343 struct obj_section *osect;
3344
3345 if (overlay_debugging)
3346 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3347 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3348 return osect;
c906108c
SS
3349
3350 return NULL;
3351}
3352
3353/* Function: list_overlays_command
c378eb4e 3354 Print a list of mapped sections and their PC ranges. */
c906108c 3355
5d3055ad 3356static void
fba45db2 3357list_overlays_command (char *args, int from_tty)
c906108c 3358{
c5aa993b
JM
3359 int nmapped = 0;
3360 struct objfile *objfile;
c906108c
SS
3361 struct obj_section *osect;
3362
3363 if (overlay_debugging)
3364 ALL_OBJSECTIONS (objfile, osect)
714835d5 3365 if (section_is_mapped (osect))
c5aa993b 3366 {
5af949e3 3367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3368 const char *name;
3369 bfd_vma lma, vma;
3370 int size;
3371
3372 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3373 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3374 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3375 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3376
3377 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3378 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3379 puts_filtered (" - ");
5af949e3 3380 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3381 printf_filtered (", mapped at ");
5af949e3 3382 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3383 puts_filtered (" - ");
5af949e3 3384 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3385 puts_filtered ("\n");
3386
3387 nmapped++;
3388 }
c906108c 3389 if (nmapped == 0)
a3f17187 3390 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3391}
3392
3393/* Function: map_overlay_command
3394 Mark the named section as mapped (ie. residing at its VMA address). */
3395
5d3055ad 3396static void
fba45db2 3397map_overlay_command (char *args, int from_tty)
c906108c 3398{
c5aa993b
JM
3399 struct objfile *objfile, *objfile2;
3400 struct obj_section *sec, *sec2;
c906108c
SS
3401
3402 if (!overlay_debugging)
3e43a32a
MS
3403 error (_("Overlay debugging not enabled. Use "
3404 "either the 'overlay auto' or\n"
3405 "the 'overlay manual' command."));
c906108c
SS
3406
3407 if (args == 0 || *args == 0)
8a3fe4f8 3408 error (_("Argument required: name of an overlay section"));
c906108c 3409
c378eb4e 3410 /* First, find a section matching the user supplied argument. */
c906108c
SS
3411 ALL_OBJSECTIONS (objfile, sec)
3412 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3413 {
c378eb4e 3414 /* Now, check to see if the section is an overlay. */
714835d5 3415 if (!section_is_overlay (sec))
c5aa993b
JM
3416 continue; /* not an overlay section */
3417
c378eb4e 3418 /* Mark the overlay as "mapped". */
c5aa993b
JM
3419 sec->ovly_mapped = 1;
3420
3421 /* Next, make a pass and unmap any sections that are
3422 overlapped by this new section: */
3423 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3424 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3425 {
3426 if (info_verbose)
a3f17187 3427 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3428 bfd_section_name (objfile->obfd,
3429 sec2->the_bfd_section));
c378eb4e 3430 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3431 }
3432 return;
3433 }
8a3fe4f8 3434 error (_("No overlay section called %s"), args);
c906108c
SS
3435}
3436
3437/* Function: unmap_overlay_command
5417f6dc 3438 Mark the overlay section as unmapped
c906108c
SS
3439 (ie. resident in its LMA address range, rather than the VMA range). */
3440
5d3055ad 3441static void
fba45db2 3442unmap_overlay_command (char *args, int from_tty)
c906108c 3443{
c5aa993b 3444 struct objfile *objfile;
7a270e0c 3445 struct obj_section *sec = NULL;
c906108c
SS
3446
3447 if (!overlay_debugging)
3e43a32a
MS
3448 error (_("Overlay debugging not enabled. "
3449 "Use either the 'overlay auto' or\n"
3450 "the 'overlay manual' command."));
c906108c
SS
3451
3452 if (args == 0 || *args == 0)
8a3fe4f8 3453 error (_("Argument required: name of an overlay section"));
c906108c 3454
c378eb4e 3455 /* First, find a section matching the user supplied argument. */
c906108c
SS
3456 ALL_OBJSECTIONS (objfile, sec)
3457 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3458 {
3459 if (!sec->ovly_mapped)
8a3fe4f8 3460 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3461 sec->ovly_mapped = 0;
3462 return;
3463 }
8a3fe4f8 3464 error (_("No overlay section called %s"), args);
c906108c
SS
3465}
3466
3467/* Function: overlay_auto_command
3468 A utility command to turn on overlay debugging.
c378eb4e 3469 Possibly this should be done via a set/show command. */
c906108c
SS
3470
3471static void
fba45db2 3472overlay_auto_command (char *args, int from_tty)
c906108c 3473{
d874f1e2 3474 overlay_debugging = ovly_auto;
1900040c 3475 enable_overlay_breakpoints ();
c906108c 3476 if (info_verbose)
a3f17187 3477 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3478}
3479
3480/* Function: overlay_manual_command
3481 A utility command to turn on overlay debugging.
c378eb4e 3482 Possibly this should be done via a set/show command. */
c906108c
SS
3483
3484static void
fba45db2 3485overlay_manual_command (char *args, int from_tty)
c906108c 3486{
d874f1e2 3487 overlay_debugging = ovly_on;
1900040c 3488 disable_overlay_breakpoints ();
c906108c 3489 if (info_verbose)
a3f17187 3490 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3491}
3492
3493/* Function: overlay_off_command
3494 A utility command to turn on overlay debugging.
c378eb4e 3495 Possibly this should be done via a set/show command. */
c906108c
SS
3496
3497static void
fba45db2 3498overlay_off_command (char *args, int from_tty)
c906108c 3499{
d874f1e2 3500 overlay_debugging = ovly_off;
1900040c 3501 disable_overlay_breakpoints ();
c906108c 3502 if (info_verbose)
a3f17187 3503 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3504}
3505
3506static void
fba45db2 3507overlay_load_command (char *args, int from_tty)
c906108c 3508{
e17c207e
UW
3509 struct gdbarch *gdbarch = get_current_arch ();
3510
3511 if (gdbarch_overlay_update_p (gdbarch))
3512 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3513 else
8a3fe4f8 3514 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3515}
3516
3517/* Function: overlay_command
c378eb4e 3518 A place-holder for a mis-typed command. */
c906108c 3519
c378eb4e 3520/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3521static struct cmd_list_element *overlaylist;
c906108c
SS
3522
3523static void
fba45db2 3524overlay_command (char *args, int from_tty)
c906108c 3525{
c5aa993b 3526 printf_unfiltered
c906108c 3527 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3528 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3529}
3530
c906108c
SS
3531/* Target Overlays for the "Simplest" overlay manager:
3532
5417f6dc
RM
3533 This is GDB's default target overlay layer. It works with the
3534 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3535 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3536 so targets that use a different runtime overlay manager can
c906108c
SS
3537 substitute their own overlay_update function and take over the
3538 function pointer.
3539
3540 The overlay_update function pokes around in the target's data structures
3541 to see what overlays are mapped, and updates GDB's overlay mapping with
3542 this information.
3543
3544 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3545 unsigned _novlys; /# number of overlay sections #/
3546 unsigned _ovly_table[_novlys][4] = {
3547 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3548 {..., ..., ..., ...},
3549 }
3550 unsigned _novly_regions; /# number of overlay regions #/
3551 unsigned _ovly_region_table[_novly_regions][3] = {
3552 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3553 {..., ..., ...},
3554 }
c906108c
SS
3555 These functions will attempt to update GDB's mappedness state in the
3556 symbol section table, based on the target's mappedness state.
3557
3558 To do this, we keep a cached copy of the target's _ovly_table, and
3559 attempt to detect when the cached copy is invalidated. The main
3560 entry point is "simple_overlay_update(SECT), which looks up SECT in
3561 the cached table and re-reads only the entry for that section from
c378eb4e 3562 the target (whenever possible). */
c906108c
SS
3563
3564/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3565static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3566static unsigned cache_novlys = 0;
c906108c 3567static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3568enum ovly_index
3569 {
3570 VMA, SIZE, LMA, MAPPED
3571 };
c906108c 3572
c378eb4e 3573/* Throw away the cached copy of _ovly_table. */
3b7bacac 3574
c906108c 3575static void
fba45db2 3576simple_free_overlay_table (void)
c906108c
SS
3577{
3578 if (cache_ovly_table)
b8c9b27d 3579 xfree (cache_ovly_table);
c5aa993b 3580 cache_novlys = 0;
c906108c
SS
3581 cache_ovly_table = NULL;
3582 cache_ovly_table_base = 0;
3583}
3584
9216df95 3585/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3586 Convert to host order. int LEN is number of ints. */
3b7bacac 3587
c906108c 3588static void
9216df95 3589read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3590 int len, int size, enum bfd_endian byte_order)
c906108c 3591{
c378eb4e 3592 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3593 gdb_byte *buf = alloca (len * size);
c5aa993b 3594 int i;
c906108c 3595
9216df95 3596 read_memory (memaddr, buf, len * size);
c906108c 3597 for (i = 0; i < len; i++)
e17a4113 3598 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3599}
3600
3601/* Find and grab a copy of the target _ovly_table
c378eb4e 3602 (and _novlys, which is needed for the table's size). */
3b7bacac 3603
c5aa993b 3604static int
fba45db2 3605simple_read_overlay_table (void)
c906108c 3606{
3b7344d5 3607 struct bound_minimal_symbol novlys_msym;
7c7b6655 3608 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3609 struct gdbarch *gdbarch;
3610 int word_size;
e17a4113 3611 enum bfd_endian byte_order;
c906108c
SS
3612
3613 simple_free_overlay_table ();
9b27852e 3614 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3615 if (! novlys_msym.minsym)
c906108c 3616 {
8a3fe4f8 3617 error (_("Error reading inferior's overlay table: "
0d43edd1 3618 "couldn't find `_novlys' variable\n"
8a3fe4f8 3619 "in inferior. Use `overlay manual' mode."));
0d43edd1 3620 return 0;
c906108c 3621 }
0d43edd1 3622
7c7b6655
TT
3623 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3624 if (! ovly_table_msym.minsym)
0d43edd1 3625 {
8a3fe4f8 3626 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3627 "`_ovly_table' array\n"
8a3fe4f8 3628 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3629 return 0;
3630 }
3631
7c7b6655 3632 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3633 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3634 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3635
77e371c0
TT
3636 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3637 4, byte_order);
0d43edd1
JB
3638 cache_ovly_table
3639 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3640 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3641 read_target_long_array (cache_ovly_table_base,
777ea8f1 3642 (unsigned int *) cache_ovly_table,
e17a4113 3643 cache_novlys * 4, word_size, byte_order);
0d43edd1 3644
c5aa993b 3645 return 1; /* SUCCESS */
c906108c
SS
3646}
3647
5417f6dc 3648/* Function: simple_overlay_update_1
c906108c
SS
3649 A helper function for simple_overlay_update. Assuming a cached copy
3650 of _ovly_table exists, look through it to find an entry whose vma,
3651 lma and size match those of OSECT. Re-read the entry and make sure
3652 it still matches OSECT (else the table may no longer be valid).
3653 Set OSECT's mapped state to match the entry. Return: 1 for
3654 success, 0 for failure. */
3655
3656static int
fba45db2 3657simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3658{
3659 int i, size;
fbd35540
MS
3660 bfd *obfd = osect->objfile->obfd;
3661 asection *bsect = osect->the_bfd_section;
9216df95
UW
3662 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3663 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3665
2c500098 3666 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3667 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3668 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3669 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3670 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3671 {
9216df95
UW
3672 read_target_long_array (cache_ovly_table_base + i * word_size,
3673 (unsigned int *) cache_ovly_table[i],
e17a4113 3674 4, word_size, byte_order);
fbd35540
MS
3675 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3676 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3677 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3678 {
3679 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3680 return 1;
3681 }
c378eb4e 3682 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3683 return 0;
3684 }
3685 return 0;
3686}
3687
3688/* Function: simple_overlay_update
5417f6dc
RM
3689 If OSECT is NULL, then update all sections' mapped state
3690 (after re-reading the entire target _ovly_table).
3691 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3692 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3693 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3694 re-read the entire cache, and go ahead and update all sections. */
3695
1c772458 3696void
fba45db2 3697simple_overlay_update (struct obj_section *osect)
c906108c 3698{
c5aa993b 3699 struct objfile *objfile;
c906108c 3700
c378eb4e 3701 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3702 if (osect)
c378eb4e 3703 /* Have we got a cached copy of the target's overlay table? */
c906108c 3704 if (cache_ovly_table != NULL)
9cc89665
MS
3705 {
3706 /* Does its cached location match what's currently in the
3707 symtab? */
3b7344d5 3708 struct bound_minimal_symbol minsym
9cc89665
MS
3709 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3710
3b7344d5 3711 if (minsym.minsym == NULL)
9cc89665
MS
3712 error (_("Error reading inferior's overlay table: couldn't "
3713 "find `_ovly_table' array\n"
3714 "in inferior. Use `overlay manual' mode."));
3715
77e371c0 3716 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3717 /* Then go ahead and try to look up this single section in
3718 the cache. */
3719 if (simple_overlay_update_1 (osect))
3720 /* Found it! We're done. */
3721 return;
3722 }
c906108c
SS
3723
3724 /* Cached table no good: need to read the entire table anew.
3725 Or else we want all the sections, in which case it's actually
3726 more efficient to read the whole table in one block anyway. */
3727
0d43edd1
JB
3728 if (! simple_read_overlay_table ())
3729 return;
3730
c378eb4e 3731 /* Now may as well update all sections, even if only one was requested. */
c906108c 3732 ALL_OBJSECTIONS (objfile, osect)
714835d5 3733 if (section_is_overlay (osect))
c5aa993b
JM
3734 {
3735 int i, size;
fbd35540
MS
3736 bfd *obfd = osect->objfile->obfd;
3737 asection *bsect = osect->the_bfd_section;
c5aa993b 3738
2c500098 3739 size = bfd_get_section_size (bsect);
c5aa993b 3740 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3741 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3742 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3743 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3744 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3745 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3746 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3747 }
3748 }
c906108c
SS
3749}
3750
086df311
DJ
3751/* Set the output sections and output offsets for section SECTP in
3752 ABFD. The relocation code in BFD will read these offsets, so we
3753 need to be sure they're initialized. We map each section to itself,
3754 with no offset; this means that SECTP->vma will be honored. */
3755
3756static void
3757symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3758{
3759 sectp->output_section = sectp;
3760 sectp->output_offset = 0;
3761}
3762
ac8035ab
TG
3763/* Default implementation for sym_relocate. */
3764
ac8035ab
TG
3765bfd_byte *
3766default_symfile_relocate (struct objfile *objfile, asection *sectp,
3767 bfd_byte *buf)
3768{
3019eac3
DE
3769 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3770 DWO file. */
3771 bfd *abfd = sectp->owner;
ac8035ab
TG
3772
3773 /* We're only interested in sections with relocation
3774 information. */
3775 if ((sectp->flags & SEC_RELOC) == 0)
3776 return NULL;
3777
3778 /* We will handle section offsets properly elsewhere, so relocate as if
3779 all sections begin at 0. */
3780 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3781
3782 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3783}
3784
086df311
DJ
3785/* Relocate the contents of a debug section SECTP in ABFD. The
3786 contents are stored in BUF if it is non-NULL, or returned in a
3787 malloc'd buffer otherwise.
3788
3789 For some platforms and debug info formats, shared libraries contain
3790 relocations against the debug sections (particularly for DWARF-2;
3791 one affected platform is PowerPC GNU/Linux, although it depends on
3792 the version of the linker in use). Also, ELF object files naturally
3793 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3794 the relocations in order to get the locations of symbols correct.
3795 Another example that may require relocation processing, is the
3796 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3797 debug section. */
086df311
DJ
3798
3799bfd_byte *
ac8035ab
TG
3800symfile_relocate_debug_section (struct objfile *objfile,
3801 asection *sectp, bfd_byte *buf)
086df311 3802{
ac8035ab 3803 gdb_assert (objfile->sf->sym_relocate);
086df311 3804
ac8035ab 3805 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3806}
c906108c 3807
31d99776
DJ
3808struct symfile_segment_data *
3809get_symfile_segment_data (bfd *abfd)
3810{
00b5771c 3811 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3812
3813 if (sf == NULL)
3814 return NULL;
3815
3816 return sf->sym_segments (abfd);
3817}
3818
3819void
3820free_symfile_segment_data (struct symfile_segment_data *data)
3821{
3822 xfree (data->segment_bases);
3823 xfree (data->segment_sizes);
3824 xfree (data->segment_info);
3825 xfree (data);
3826}
3827
28c32713
JB
3828/* Given:
3829 - DATA, containing segment addresses from the object file ABFD, and
3830 the mapping from ABFD's sections onto the segments that own them,
3831 and
3832 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3833 segment addresses reported by the target,
3834 store the appropriate offsets for each section in OFFSETS.
3835
3836 If there are fewer entries in SEGMENT_BASES than there are segments
3837 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3838
8d385431
DJ
3839 If there are more entries, then ignore the extra. The target may
3840 not be able to distinguish between an empty data segment and a
3841 missing data segment; a missing text segment is less plausible. */
3b7bacac 3842
31d99776 3843int
3189cb12
DE
3844symfile_map_offsets_to_segments (bfd *abfd,
3845 const struct symfile_segment_data *data,
31d99776
DJ
3846 struct section_offsets *offsets,
3847 int num_segment_bases,
3848 const CORE_ADDR *segment_bases)
3849{
3850 int i;
3851 asection *sect;
3852
28c32713
JB
3853 /* It doesn't make sense to call this function unless you have some
3854 segment base addresses. */
202b96c1 3855 gdb_assert (num_segment_bases > 0);
28c32713 3856
31d99776
DJ
3857 /* If we do not have segment mappings for the object file, we
3858 can not relocate it by segments. */
3859 gdb_assert (data != NULL);
3860 gdb_assert (data->num_segments > 0);
3861
31d99776
DJ
3862 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3863 {
31d99776
DJ
3864 int which = data->segment_info[i];
3865
28c32713
JB
3866 gdb_assert (0 <= which && which <= data->num_segments);
3867
3868 /* Don't bother computing offsets for sections that aren't
3869 loaded as part of any segment. */
3870 if (! which)
3871 continue;
3872
3873 /* Use the last SEGMENT_BASES entry as the address of any extra
3874 segments mentioned in DATA->segment_info. */
31d99776 3875 if (which > num_segment_bases)
28c32713 3876 which = num_segment_bases;
31d99776 3877
28c32713
JB
3878 offsets->offsets[i] = (segment_bases[which - 1]
3879 - data->segment_bases[which - 1]);
31d99776
DJ
3880 }
3881
3882 return 1;
3883}
3884
3885static void
3886symfile_find_segment_sections (struct objfile *objfile)
3887{
3888 bfd *abfd = objfile->obfd;
3889 int i;
3890 asection *sect;
3891 struct symfile_segment_data *data;
3892
3893 data = get_symfile_segment_data (objfile->obfd);
3894 if (data == NULL)
3895 return;
3896
3897 if (data->num_segments != 1 && data->num_segments != 2)
3898 {
3899 free_symfile_segment_data (data);
3900 return;
3901 }
3902
3903 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3904 {
31d99776
DJ
3905 int which = data->segment_info[i];
3906
3907 if (which == 1)
3908 {
3909 if (objfile->sect_index_text == -1)
3910 objfile->sect_index_text = sect->index;
3911
3912 if (objfile->sect_index_rodata == -1)
3913 objfile->sect_index_rodata = sect->index;
3914 }
3915 else if (which == 2)
3916 {
3917 if (objfile->sect_index_data == -1)
3918 objfile->sect_index_data = sect->index;
3919
3920 if (objfile->sect_index_bss == -1)
3921 objfile->sect_index_bss = sect->index;
3922 }
3923 }
3924
3925 free_symfile_segment_data (data);
3926}
3927
76ad5e1e
NB
3928/* Listen for free_objfile events. */
3929
3930static void
3931symfile_free_objfile (struct objfile *objfile)
3932{
c33b2f12
MM
3933 /* Remove the target sections owned by this objfile. */
3934 if (objfile != NULL)
76ad5e1e
NB
3935 remove_target_sections ((void *) objfile);
3936}
3937
540c2971
DE
3938/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3939 Expand all symtabs that match the specified criteria.
3940 See quick_symbol_functions.expand_symtabs_matching for details. */
3941
3942void
bb4142cf
DE
3943expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3944 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3945 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3946 enum search_domain kind,
3947 void *data)
540c2971
DE
3948{
3949 struct objfile *objfile;
3950
3951 ALL_OBJFILES (objfile)
3952 {
3953 if (objfile->sf)
bb4142cf 3954 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3955 symbol_matcher,
3956 expansion_notify, kind,
bb4142cf 3957 data);
540c2971
DE
3958 }
3959}
3960
3961/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3962 Map function FUN over every file.
3963 See quick_symbol_functions.map_symbol_filenames for details. */
3964
3965void
bb4142cf
DE
3966map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3967 int need_fullname)
540c2971
DE
3968{
3969 struct objfile *objfile;
3970
3971 ALL_OBJFILES (objfile)
3972 {
3973 if (objfile->sf)
3974 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3975 need_fullname);
3976 }
3977}
3978
c906108c 3979void
fba45db2 3980_initialize_symfile (void)
c906108c
SS
3981{
3982 struct cmd_list_element *c;
c5aa993b 3983
76ad5e1e
NB
3984 observer_attach_free_objfile (symfile_free_objfile);
3985
1a966eab
AC
3986 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3987Load symbol table from executable file FILE.\n\
c906108c 3988The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3989to execute."), &cmdlist);
5ba2abeb 3990 set_cmd_completer (c, filename_completer);
c906108c 3991
1a966eab 3992 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3993Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3994Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3995 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3996The optional arguments are section-name section-address pairs and\n\
3997should be specified if the data and bss segments are not contiguous\n\
1a966eab 3998with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3999 &cmdlist);
5ba2abeb 4000 set_cmd_completer (c, filename_completer);
c906108c 4001
63644780
NB
4002 c = add_cmd ("remove-symbol-file", class_files,
4003 remove_symbol_file_command, _("\
4004Remove a symbol file added via the add-symbol-file command.\n\
4005Usage: remove-symbol-file FILENAME\n\
4006 remove-symbol-file -a ADDRESS\n\
4007The file to remove can be identified by its filename or by an address\n\
4008that lies within the boundaries of this symbol file in memory."),
4009 &cmdlist);
4010
1a966eab
AC
4011 c = add_cmd ("load", class_files, load_command, _("\
4012Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4013for access from GDB.\n\
4014A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4015 set_cmd_completer (c, filename_completer);
c906108c 4016
c5aa993b 4017 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4018 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4019 "overlay ", 0, &cmdlist);
4020
4021 add_com_alias ("ovly", "overlay", class_alias, 1);
4022 add_com_alias ("ov", "overlay", class_alias, 1);
4023
c5aa993b 4024 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4025 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4026
c5aa993b 4027 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4028 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4029
c5aa993b 4030 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4031 _("List mappings of overlay sections."), &overlaylist);
c906108c 4032
c5aa993b 4033 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4034 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4035 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4036 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4037 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4038 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4039 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4040 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4041
4042 /* Filename extension to source language lookup table: */
4043 init_filename_language_table ();
26c41df3
AC
4044 add_setshow_string_noescape_cmd ("extension-language", class_files,
4045 &ext_args, _("\
4046Set mapping between filename extension and source language."), _("\
4047Show mapping between filename extension and source language."), _("\
4048Usage: set extension-language .foo bar"),
4049 set_ext_lang_command,
920d2a44 4050 show_ext_args,
26c41df3 4051 &setlist, &showlist);
c906108c 4052
c5aa993b 4053 add_info ("extensions", info_ext_lang_command,
1bedd215 4054 _("All filename extensions associated with a source language."));
917317f4 4055
525226b5
AC
4056 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4057 &debug_file_directory, _("\
24ddea62
JK
4058Set the directories where separate debug symbols are searched for."), _("\
4059Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4060Separate debug symbols are first searched for in the same\n\
4061directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4062and lastly at the path of the directory of the binary with\n\
24ddea62 4063each global debug-file-directory component prepended."),
525226b5 4064 NULL,
920d2a44 4065 show_debug_file_directory,
525226b5 4066 &setlist, &showlist);
770e7fc7
DE
4067
4068 add_setshow_enum_cmd ("symbol-loading", no_class,
4069 print_symbol_loading_enums, &print_symbol_loading,
4070 _("\
4071Set printing of symbol loading messages."), _("\
4072Show printing of symbol loading messages."), _("\
4073off == turn all messages off\n\
4074brief == print messages for the executable,\n\
4075 and brief messages for shared libraries\n\
4076full == print messages for the executable,\n\
4077 and messages for each shared library."),
4078 NULL,
4079 NULL,
4080 &setprintlist, &showprintlist);
c906108c 4081}
This page took 1.998202 seconds and 4 git commands to generate.