gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
d7db6da9
FN
90static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
a14ed312 94bfd *symfile_bfd_open (char *);
c906108c 95
0e931cf0
JB
96int get_section_index (struct objfile *, char *);
97
00b5771c 98static const struct sym_fns *find_sym_fns (bfd *);
c906108c 99
a14ed312 100static void decrement_reading_symtab (void *);
c906108c 101
a14ed312 102static void overlay_invalidate_all (void);
c906108c 103
a14ed312 104static void overlay_auto_command (char *, int);
c906108c 105
a14ed312 106static void overlay_manual_command (char *, int);
c906108c 107
a14ed312 108static void overlay_off_command (char *, int);
c906108c 109
a14ed312 110static void overlay_load_command (char *, int);
c906108c 111
a14ed312 112static void overlay_command (char *, int);
c906108c 113
a14ed312 114static void simple_free_overlay_table (void);
c906108c 115
e17a4113
UW
116static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
c906108c 118
a14ed312 119static int simple_read_overlay_table (void);
c906108c 120
a14ed312 121static int simple_overlay_update_1 (struct obj_section *);
c906108c 122
a14ed312 123static void add_filename_language (char *ext, enum language lang);
392a587b 124
a14ed312 125static void info_ext_lang_command (char *args, int from_tty);
392a587b 126
a14ed312 127static void init_filename_language_table (void);
392a587b 128
31d99776
DJ
129static void symfile_find_segment_sections (struct objfile *objfile);
130
a14ed312 131void _initialize_symfile (void);
c906108c
SS
132
133/* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
c378eb4e 135 prepared to read. */
c906108c 136
00b5771c
TT
137typedef const struct sym_fns *sym_fns_ptr;
138DEF_VEC_P (sym_fns_ptr);
139
140static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 141
b7209cb4
FF
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
c906108c 149 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 150 report all the functions that are actually present. */
c906108c
SS
151
152int auto_solib_add = 1;
c906108c 153\f
c5aa993b 154
0d14a781 155/* True if we are reading a symbol table. */
c906108c
SS
156
157int currently_reading_symtab = 0;
158
159static void
fba45db2 160decrement_reading_symtab (void *dummy)
c906108c
SS
161{
162 currently_reading_symtab--;
2cb9c859 163 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
164}
165
ccefe4c4
TT
166/* Increment currently_reading_symtab and return a cleanup that can be
167 used to decrement it. */
3b7bacac 168
ccefe4c4
TT
169struct cleanup *
170increment_reading_symtab (void)
c906108c 171{
ccefe4c4 172 ++currently_reading_symtab;
2cb9c859 173 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 174 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
175}
176
5417f6dc
RM
177/* Remember the lowest-addressed loadable section we've seen.
178 This function is called via bfd_map_over_sections.
c906108c
SS
179
180 In case of equal vmas, the section with the largest size becomes the
181 lowest-addressed loadable section.
182
183 If the vmas and sizes are equal, the last section is considered the
184 lowest-addressed loadable section. */
185
186void
4efb68b1 187find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 188{
c5aa993b 189 asection **lowest = (asection **) obj;
c906108c 190
eb73e134 191 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
192 return;
193 if (!*lowest)
194 *lowest = sect; /* First loadable section */
195 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
196 *lowest = sect; /* A lower loadable section */
197 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
198 && (bfd_section_size (abfd, (*lowest))
199 <= bfd_section_size (abfd, sect)))
200 *lowest = sect;
201}
202
d76488d8
TT
203/* Create a new section_addr_info, with room for NUM_SECTIONS. The
204 new object's 'num_sections' field is set to 0; it must be updated
205 by the caller. */
a39a16c4
MM
206
207struct section_addr_info *
208alloc_section_addr_info (size_t num_sections)
209{
210 struct section_addr_info *sap;
211 size_t size;
212
213 size = (sizeof (struct section_addr_info)
214 + sizeof (struct other_sections) * (num_sections - 1));
215 sap = (struct section_addr_info *) xmalloc (size);
216 memset (sap, 0, size);
a39a16c4
MM
217
218 return sap;
219}
62557bbc
KB
220
221/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 222 an existing section table. */
62557bbc
KB
223
224extern struct section_addr_info *
0542c86d
PA
225build_section_addr_info_from_section_table (const struct target_section *start,
226 const struct target_section *end)
62557bbc
KB
227{
228 struct section_addr_info *sap;
0542c86d 229 const struct target_section *stp;
62557bbc
KB
230 int oidx;
231
a39a16c4 232 sap = alloc_section_addr_info (end - start);
62557bbc
KB
233
234 for (stp = start, oidx = 0; stp != end; stp++)
235 {
5417f6dc 236 if (bfd_get_section_flags (stp->bfd,
fbd35540 237 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 238 && oidx < end - start)
62557bbc
KB
239 {
240 sap->other[oidx].addr = stp->addr;
5417f6dc 241 sap->other[oidx].name
fbd35540 242 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
65cf3563
TT
243 sap->other[oidx].sectindex
244 = gdb_bfd_section_index (stp->bfd, stp->the_bfd_section);
62557bbc
KB
245 oidx++;
246 }
247 }
248
d76488d8
TT
249 sap->num_sections = oidx;
250
62557bbc
KB
251 return sap;
252}
253
82ccf5a5 254/* Create a section_addr_info from section offsets in ABFD. */
089b4803 255
82ccf5a5
JK
256static struct section_addr_info *
257build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
258{
259 struct section_addr_info *sap;
260 int i;
261 struct bfd_section *sec;
262
82ccf5a5
JK
263 sap = alloc_section_addr_info (bfd_count_sections (abfd));
264 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
265 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 266 {
82ccf5a5
JK
267 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
268 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 269 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
270 i++;
271 }
d76488d8
TT
272
273 sap->num_sections = i;
274
089b4803
TG
275 return sap;
276}
277
82ccf5a5
JK
278/* Create a section_addr_info from section offsets in OBJFILE. */
279
280struct section_addr_info *
281build_section_addr_info_from_objfile (const struct objfile *objfile)
282{
283 struct section_addr_info *sap;
284 int i;
285
286 /* Before reread_symbols gets rewritten it is not safe to call:
287 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
288 */
289 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 290 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
291 {
292 int sectindex = sap->other[i].sectindex;
293
294 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
295 }
296 return sap;
297}
62557bbc 298
c378eb4e 299/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
300
301extern void
302free_section_addr_info (struct section_addr_info *sap)
303{
304 int idx;
305
a39a16c4 306 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 307 xfree (sap->other[idx].name);
b8c9b27d 308 xfree (sap);
62557bbc
KB
309}
310
e8289572 311/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 312
e8289572
JB
313static void
314init_objfile_sect_indices (struct objfile *objfile)
c906108c 315{
e8289572 316 asection *sect;
c906108c 317 int i;
5417f6dc 318
b8fbeb18 319 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 320 if (sect)
b8fbeb18
EZ
321 objfile->sect_index_text = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_data = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_bss = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 332 if (sect)
b8fbeb18
EZ
333 objfile->sect_index_rodata = sect->index;
334
bbcd32ad
FF
335 /* This is where things get really weird... We MUST have valid
336 indices for the various sect_index_* members or gdb will abort.
337 So if for example, there is no ".text" section, we have to
31d99776
DJ
338 accomodate that. First, check for a file with the standard
339 one or two segments. */
340
341 symfile_find_segment_sections (objfile);
342
343 /* Except when explicitly adding symbol files at some address,
344 section_offsets contains nothing but zeros, so it doesn't matter
345 which slot in section_offsets the individual sect_index_* members
346 index into. So if they are all zero, it is safe to just point
347 all the currently uninitialized indices to the first slot. But
348 beware: if this is the main executable, it may be relocated
349 later, e.g. by the remote qOffsets packet, and then this will
350 be wrong! That's why we try segments first. */
bbcd32ad
FF
351
352 for (i = 0; i < objfile->num_sections; i++)
353 {
354 if (ANOFFSET (objfile->section_offsets, i) != 0)
355 {
356 break;
357 }
358 }
359 if (i == objfile->num_sections)
360 {
361 if (objfile->sect_index_text == -1)
362 objfile->sect_index_text = 0;
363 if (objfile->sect_index_data == -1)
364 objfile->sect_index_data = 0;
365 if (objfile->sect_index_bss == -1)
366 objfile->sect_index_bss = 0;
367 if (objfile->sect_index_rodata == -1)
368 objfile->sect_index_rodata = 0;
369 }
b8fbeb18 370}
c906108c 371
c1bd25fd
DJ
372/* The arguments to place_section. */
373
374struct place_section_arg
375{
376 struct section_offsets *offsets;
377 CORE_ADDR lowest;
378};
379
380/* Find a unique offset to use for loadable section SECT if
381 the user did not provide an offset. */
382
2c0b251b 383static void
c1bd25fd
DJ
384place_section (bfd *abfd, asection *sect, void *obj)
385{
386 struct place_section_arg *arg = obj;
387 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
388 int done;
3bd72c6f 389 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 390
2711e456
DJ
391 /* We are only interested in allocated sections. */
392 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
393 return;
394
395 /* If the user specified an offset, honor it. */
65cf3563 396 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
397 return;
398
399 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
400 start_addr = (arg->lowest + align - 1) & -align;
401
c1bd25fd
DJ
402 do {
403 asection *cur_sec;
c1bd25fd 404
c1bd25fd
DJ
405 done = 1;
406
407 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
408 {
409 int indx = cur_sec->index;
c1bd25fd
DJ
410
411 /* We don't need to compare against ourself. */
412 if (cur_sec == sect)
413 continue;
414
2711e456
DJ
415 /* We can only conflict with allocated sections. */
416 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
417 continue;
418
419 /* If the section offset is 0, either the section has not been placed
420 yet, or it was the lowest section placed (in which case LOWEST
421 will be past its end). */
422 if (offsets[indx] == 0)
423 continue;
424
425 /* If this section would overlap us, then we must move up. */
426 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
427 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
428 {
429 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
430 start_addr = (start_addr + align - 1) & -align;
431 done = 0;
3bd72c6f 432 break;
c1bd25fd
DJ
433 }
434
435 /* Otherwise, we appear to be OK. So far. */
436 }
437 }
438 while (!done);
439
65cf3563 440 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 441 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 442}
e8289572 443
75242ef4
JK
444/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
445 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
446 entries. */
e8289572
JB
447
448void
75242ef4
JK
449relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
450 int num_sections,
3189cb12 451 const struct section_addr_info *addrs)
e8289572
JB
452{
453 int i;
454
75242ef4 455 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 456
c378eb4e 457 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 458 for (i = 0; i < addrs->num_sections; i++)
e8289572 459 {
3189cb12 460 const struct other_sections *osp;
e8289572 461
75242ef4 462 osp = &addrs->other[i];
5488dafb 463 if (osp->sectindex == -1)
e8289572
JB
464 continue;
465
c378eb4e 466 /* Record all sections in offsets. */
e8289572 467 /* The section_offsets in the objfile are here filled in using
c378eb4e 468 the BFD index. */
75242ef4
JK
469 section_offsets->offsets[osp->sectindex] = osp->addr;
470 }
471}
472
1276c759
JK
473/* Transform section name S for a name comparison. prelink can split section
474 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
475 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
476 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
477 (`.sbss') section has invalid (increased) virtual address. */
478
479static const char *
480addr_section_name (const char *s)
481{
482 if (strcmp (s, ".dynbss") == 0)
483 return ".bss";
484 if (strcmp (s, ".sdynbss") == 0)
485 return ".sbss";
486
487 return s;
488}
489
82ccf5a5
JK
490/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
491 their (name, sectindex) pair. sectindex makes the sort by name stable. */
492
493static int
494addrs_section_compar (const void *ap, const void *bp)
495{
496 const struct other_sections *a = *((struct other_sections **) ap);
497 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 498 int retval;
82ccf5a5 499
1276c759 500 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
501 if (retval)
502 return retval;
503
5488dafb 504 return a->sectindex - b->sectindex;
82ccf5a5
JK
505}
506
507/* Provide sorted array of pointers to sections of ADDRS. The array is
508 terminated by NULL. Caller is responsible to call xfree for it. */
509
510static struct other_sections **
511addrs_section_sort (struct section_addr_info *addrs)
512{
513 struct other_sections **array;
514 int i;
515
516 /* `+ 1' for the NULL terminator. */
517 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 518 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
519 array[i] = &addrs->other[i];
520 array[i] = NULL;
521
522 qsort (array, i, sizeof (*array), addrs_section_compar);
523
524 return array;
525}
526
75242ef4 527/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
528 also SECTINDEXes specific to ABFD there. This function can be used to
529 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
530
531void
532addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
533{
534 asection *lower_sect;
75242ef4
JK
535 CORE_ADDR lower_offset;
536 int i;
82ccf5a5
JK
537 struct cleanup *my_cleanup;
538 struct section_addr_info *abfd_addrs;
539 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
540 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
541
542 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
543 continguous sections. */
544 lower_sect = NULL;
545 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
546 if (lower_sect == NULL)
547 {
548 warning (_("no loadable sections found in added symbol-file %s"),
549 bfd_get_filename (abfd));
550 lower_offset = 0;
e8289572 551 }
75242ef4
JK
552 else
553 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
554
82ccf5a5
JK
555 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
556 in ABFD. Section names are not unique - there can be multiple sections of
557 the same name. Also the sections of the same name do not have to be
558 adjacent to each other. Some sections may be present only in one of the
559 files. Even sections present in both files do not have to be in the same
560 order.
561
562 Use stable sort by name for the sections in both files. Then linearly
563 scan both lists matching as most of the entries as possible. */
564
565 addrs_sorted = addrs_section_sort (addrs);
566 my_cleanup = make_cleanup (xfree, addrs_sorted);
567
568 abfd_addrs = build_section_addr_info_from_bfd (abfd);
569 make_cleanup_free_section_addr_info (abfd_addrs);
570 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
571 make_cleanup (xfree, abfd_addrs_sorted);
572
c378eb4e
MS
573 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
574 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
575
576 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
577 * addrs->num_sections);
578 make_cleanup (xfree, addrs_to_abfd_addrs);
579
580 while (*addrs_sorted)
581 {
1276c759 582 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
583
584 while (*abfd_addrs_sorted
1276c759
JK
585 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
586 sect_name) < 0)
82ccf5a5
JK
587 abfd_addrs_sorted++;
588
589 if (*abfd_addrs_sorted
1276c759
JK
590 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 sect_name) == 0)
82ccf5a5
JK
592 {
593 int index_in_addrs;
594
595 /* Make the found item directly addressable from ADDRS. */
596 index_in_addrs = *addrs_sorted - addrs->other;
597 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
598 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
599
600 /* Never use the same ABFD entry twice. */
601 abfd_addrs_sorted++;
602 }
603
604 addrs_sorted++;
605 }
606
75242ef4
JK
607 /* Calculate offsets for the loadable sections.
608 FIXME! Sections must be in order of increasing loadable section
609 so that contiguous sections can use the lower-offset!!!
610
611 Adjust offsets if the segments are not contiguous.
612 If the section is contiguous, its offset should be set to
613 the offset of the highest loadable section lower than it
614 (the loadable section directly below it in memory).
615 this_offset = lower_offset = lower_addr - lower_orig_addr */
616
d76488d8 617 for (i = 0; i < addrs->num_sections; i++)
75242ef4 618 {
82ccf5a5 619 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
620
621 if (sect)
75242ef4 622 {
c378eb4e 623 /* This is the index used by BFD. */
82ccf5a5 624 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
625
626 if (addrs->other[i].addr != 0)
75242ef4 627 {
82ccf5a5 628 addrs->other[i].addr -= sect->addr;
75242ef4 629 lower_offset = addrs->other[i].addr;
75242ef4
JK
630 }
631 else
672d9c23 632 addrs->other[i].addr = lower_offset;
75242ef4
JK
633 }
634 else
672d9c23 635 {
1276c759
JK
636 /* addr_section_name transformation is not used for SECT_NAME. */
637 const char *sect_name = addrs->other[i].name;
638
b0fcb67f
JK
639 /* This section does not exist in ABFD, which is normally
640 unexpected and we want to issue a warning.
641
4d9743af
JK
642 However, the ELF prelinker does create a few sections which are
643 marked in the main executable as loadable (they are loaded in
644 memory from the DYNAMIC segment) and yet are not present in
645 separate debug info files. This is fine, and should not cause
646 a warning. Shared libraries contain just the section
647 ".gnu.liblist" but it is not marked as loadable there. There is
648 no other way to identify them than by their name as the sections
1276c759
JK
649 created by prelink have no special flags.
650
651 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
652
653 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 654 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
655 || (strcmp (sect_name, ".bss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)
659 || (strcmp (sect_name, ".sbss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
663 warning (_("section %s not found in %s"), sect_name,
664 bfd_get_filename (abfd));
665
672d9c23 666 addrs->other[i].addr = 0;
5488dafb 667 addrs->other[i].sectindex = -1;
672d9c23 668 }
75242ef4 669 }
82ccf5a5
JK
670
671 do_cleanups (my_cleanup);
75242ef4
JK
672}
673
674/* Parse the user's idea of an offset for dynamic linking, into our idea
675 of how to represent it for fast symbol reading. This is the default
676 version of the sym_fns.sym_offsets function for symbol readers that
677 don't need to do anything special. It allocates a section_offsets table
678 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
679
680void
681default_symfile_offsets (struct objfile *objfile,
3189cb12 682 const struct section_addr_info *addrs)
75242ef4 683{
d445b2f6 684 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
685 objfile->section_offsets = (struct section_offsets *)
686 obstack_alloc (&objfile->objfile_obstack,
687 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
688 relative_addr_info_to_section_offsets (objfile->section_offsets,
689 objfile->num_sections, addrs);
e8289572 690
c1bd25fd
DJ
691 /* For relocatable files, all loadable sections will start at zero.
692 The zero is meaningless, so try to pick arbitrary addresses such
693 that no loadable sections overlap. This algorithm is quadratic,
694 but the number of sections in a single object file is generally
695 small. */
696 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
697 {
698 struct place_section_arg arg;
2711e456
DJ
699 bfd *abfd = objfile->obfd;
700 asection *cur_sec;
2711e456
DJ
701
702 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
703 /* We do not expect this to happen; just skip this step if the
704 relocatable file has a section with an assigned VMA. */
705 if (bfd_section_vma (abfd, cur_sec) != 0)
706 break;
707
708 if (cur_sec == NULL)
709 {
710 CORE_ADDR *offsets = objfile->section_offsets->offsets;
711
712 /* Pick non-overlapping offsets for sections the user did not
713 place explicitly. */
714 arg.offsets = objfile->section_offsets;
715 arg.lowest = 0;
716 bfd_map_over_sections (objfile->obfd, place_section, &arg);
717
718 /* Correctly filling in the section offsets is not quite
719 enough. Relocatable files have two properties that
720 (most) shared objects do not:
721
722 - Their debug information will contain relocations. Some
723 shared libraries do also, but many do not, so this can not
724 be assumed.
725
726 - If there are multiple code sections they will be loaded
727 at different relative addresses in memory than they are
728 in the objfile, since all sections in the file will start
729 at address zero.
730
731 Because GDB has very limited ability to map from an
732 address in debug info to the correct code section,
733 it relies on adding SECT_OFF_TEXT to things which might be
734 code. If we clear all the section offsets, and set the
735 section VMAs instead, then symfile_relocate_debug_section
736 will return meaningful debug information pointing at the
737 correct sections.
738
739 GDB has too many different data structures for section
740 addresses - a bfd, objfile, and so_list all have section
741 tables, as does exec_ops. Some of these could probably
742 be eliminated. */
743
744 for (cur_sec = abfd->sections; cur_sec != NULL;
745 cur_sec = cur_sec->next)
746 {
747 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
748 continue;
749
750 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
751 exec_set_section_address (bfd_get_filename (abfd),
752 cur_sec->index,
30510692 753 offsets[cur_sec->index]);
2711e456
DJ
754 offsets[cur_sec->index] = 0;
755 }
756 }
c1bd25fd
DJ
757 }
758
e8289572 759 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 760 .rodata sections. */
e8289572
JB
761 init_objfile_sect_indices (objfile);
762}
763
31d99776
DJ
764/* Divide the file into segments, which are individual relocatable units.
765 This is the default version of the sym_fns.sym_segments function for
766 symbol readers that do not have an explicit representation of segments.
767 It assumes that object files do not have segments, and fully linked
768 files have a single segment. */
769
770struct symfile_segment_data *
771default_symfile_segments (bfd *abfd)
772{
773 int num_sections, i;
774 asection *sect;
775 struct symfile_segment_data *data;
776 CORE_ADDR low, high;
777
778 /* Relocatable files contain enough information to position each
779 loadable section independently; they should not be relocated
780 in segments. */
781 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
782 return NULL;
783
784 /* Make sure there is at least one loadable section in the file. */
785 for (sect = abfd->sections; sect != NULL; sect = sect->next)
786 {
787 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
788 continue;
789
790 break;
791 }
792 if (sect == NULL)
793 return NULL;
794
795 low = bfd_get_section_vma (abfd, sect);
796 high = low + bfd_get_section_size (sect);
797
798 data = XZALLOC (struct symfile_segment_data);
799 data->num_segments = 1;
800 data->segment_bases = XCALLOC (1, CORE_ADDR);
801 data->segment_sizes = XCALLOC (1, CORE_ADDR);
802
803 num_sections = bfd_count_sections (abfd);
804 data->segment_info = XCALLOC (num_sections, int);
805
806 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
807 {
808 CORE_ADDR vma;
809
810 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
811 continue;
812
813 vma = bfd_get_section_vma (abfd, sect);
814 if (vma < low)
815 low = vma;
816 if (vma + bfd_get_section_size (sect) > high)
817 high = vma + bfd_get_section_size (sect);
818
819 data->segment_info[i] = 1;
820 }
821
822 data->segment_bases[0] = low;
823 data->segment_sizes[0] = high - low;
824
825 return data;
826}
827
608e2dbb
TT
828/* This is a convenience function to call sym_read for OBJFILE and
829 possibly force the partial symbols to be read. */
830
831static void
832read_symbols (struct objfile *objfile, int add_flags)
833{
834 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
835
836 /* find_separate_debug_file_in_section should be called only if there is
837 single binary with no existing separate debug info file. */
838 if (!objfile_has_partial_symbols (objfile)
839 && objfile->separate_debug_objfile == NULL
840 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
841 {
842 bfd *abfd = find_separate_debug_file_in_section (objfile);
843 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
844
845 if (abfd != NULL)
846 symbol_file_add_separate (abfd, add_flags, objfile);
847
848 do_cleanups (cleanup);
849 }
850 if ((add_flags & SYMFILE_NO_READ) == 0)
851 require_partial_symbols (objfile, 0);
852}
853
3d6e24f0
JB
854/* Initialize entry point information for this objfile. */
855
856static void
857init_entry_point_info (struct objfile *objfile)
858{
859 /* Save startup file's range of PC addresses to help blockframe.c
860 decide where the bottom of the stack is. */
861
862 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
863 {
864 /* Executable file -- record its entry point so we'll recognize
865 the startup file because it contains the entry point. */
866 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
867 objfile->ei.entry_point_p = 1;
868 }
869 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
870 && bfd_get_start_address (objfile->obfd) != 0)
871 {
872 /* Some shared libraries may have entry points set and be
873 runnable. There's no clear way to indicate this, so just check
874 for values other than zero. */
875 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
876 objfile->ei.entry_point_p = 1;
877 }
878 else
879 {
880 /* Examination of non-executable.o files. Short-circuit this stuff. */
881 objfile->ei.entry_point_p = 0;
882 }
883
884 if (objfile->ei.entry_point_p)
885 {
886 CORE_ADDR entry_point = objfile->ei.entry_point;
887
888 /* Make certain that the address points at real code, and not a
889 function descriptor. */
890 entry_point
891 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
892 entry_point,
893 &current_target);
894
895 /* Remove any ISA markers, so that this matches entries in the
896 symbol table. */
897 objfile->ei.entry_point
898 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
899 }
900}
901
c906108c
SS
902/* Process a symbol file, as either the main file or as a dynamically
903 loaded file.
904
36e4d068
JB
905 This function does not set the OBJFILE's entry-point info.
906
96baa820
JM
907 OBJFILE is where the symbols are to be read from.
908
7e8580c1
JB
909 ADDRS is the list of section load addresses. If the user has given
910 an 'add-symbol-file' command, then this is the list of offsets and
911 addresses he or she provided as arguments to the command; or, if
912 we're handling a shared library, these are the actual addresses the
913 sections are loaded at, according to the inferior's dynamic linker
914 (as gleaned by GDB's shared library code). We convert each address
915 into an offset from the section VMA's as it appears in the object
916 file, and then call the file's sym_offsets function to convert this
917 into a format-specific offset table --- a `struct section_offsets'.
96baa820 918
7eedccfa
PP
919 ADD_FLAGS encodes verbosity level, whether this is main symbol or
920 an extra symbol file such as dynamically loaded code, and wether
921 breakpoint reset should be deferred. */
c906108c 922
36e4d068
JB
923static void
924syms_from_objfile_1 (struct objfile *objfile,
925 struct section_addr_info *addrs,
36e4d068 926 int add_flags)
c906108c 927{
a39a16c4 928 struct section_addr_info *local_addr = NULL;
c906108c 929 struct cleanup *old_chain;
7eedccfa 930 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 931
31d99776 932 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 933
75245b24 934 if (objfile->sf == NULL)
36e4d068
JB
935 {
936 /* No symbols to load, but we still need to make sure
937 that the section_offsets table is allocated. */
d445b2f6 938 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 939 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
940
941 objfile->num_sections = num_sections;
942 objfile->section_offsets
943 = obstack_alloc (&objfile->objfile_obstack, size);
944 memset (objfile->section_offsets, 0, size);
945 return;
946 }
75245b24 947
c906108c
SS
948 /* Make sure that partially constructed symbol tables will be cleaned up
949 if an error occurs during symbol reading. */
74b7792f 950 old_chain = make_cleanup_free_objfile (objfile);
c906108c 951
6bf667bb
DE
952 /* If ADDRS is NULL, put together a dummy address list.
953 We now establish the convention that an addr of zero means
c378eb4e 954 no load address was specified. */
6bf667bb 955 if (! addrs)
a39a16c4 956 {
d445b2f6 957 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
958 make_cleanup (xfree, local_addr);
959 addrs = local_addr;
960 }
961
c5aa993b 962 if (mainline)
c906108c
SS
963 {
964 /* We will modify the main symbol table, make sure that all its users
c5aa993b 965 will be cleaned up if an error occurs during symbol reading. */
74b7792f 966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
adb7f338 973 gdb_assert (symfile_objfile == NULL);
c906108c
SS
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
c906108c 980
c5aa993b 981 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
53a5351d 986 and assume that <addr> is where that got loaded.
c906108c 987
53a5351d
JM
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
6bf667bb 990 if (addrs->num_sections > 0)
75242ef4 991 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
c378eb4e 995 initial symbol reading for this file. */
c906108c 996
c5aa993b 997 (*objfile->sf->sym_init) (objfile);
7eedccfa 998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 999
6bf667bb 1000 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1001
608e2dbb 1002 read_symbols (objfile, add_flags);
b11896a5 1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
36e4d068
JB
1010/* Same as syms_from_objfile_1, but also initializes the objfile
1011 entry-point info. */
1012
6bf667bb 1013static void
36e4d068
JB
1014syms_from_objfile (struct objfile *objfile,
1015 struct section_addr_info *addrs,
36e4d068
JB
1016 int add_flags)
1017{
6bf667bb 1018 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1019 init_entry_point_info (objfile);
1020}
1021
c906108c
SS
1022/* Perform required actions after either reading in the initial
1023 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1024 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1025
c906108c 1026void
7eedccfa 1027new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1028{
c906108c 1029 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1030 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1031 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1032 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1033 {
1034 /* OK, make it the "real" symbol file. */
1035 symfile_objfile = objfile;
1036
c1e56572 1037 clear_symtab_users (add_flags);
c906108c 1038 }
7eedccfa 1039 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1040 {
69de3c6a 1041 breakpoint_re_set ();
c906108c
SS
1042 }
1043
1044 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1045 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1046}
1047
1048/* Process a symbol file, as either the main file or as a dynamically
1049 loaded file.
1050
5417f6dc 1051 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1052 A new reference is acquired by this function.
7904e09f 1053
7eedccfa
PP
1054 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1055 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1056
6bf667bb 1057 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1058 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1059
63524580
JK
1060 PARENT is the original objfile if ABFD is a separate debug info file.
1061 Otherwise PARENT is NULL.
1062
c906108c 1063 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1064 Upon failure, jumps back to command level (never returns). */
7eedccfa 1065
7904e09f 1066static struct objfile *
6bf667bb
DE
1067symbol_file_add_with_addrs (bfd *abfd, int add_flags,
1068 struct section_addr_info *addrs,
1069 int flags, struct objfile *parent)
c906108c
SS
1070{
1071 struct objfile *objfile;
5417f6dc 1072 const char *name = bfd_get_filename (abfd);
7eedccfa 1073 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1074 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1075 const int should_print = ((from_tty || info_verbose)
1076 && (readnow_symbol_files
1077 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1078
9291a0cd 1079 if (readnow_symbol_files)
b11896a5
TT
1080 {
1081 flags |= OBJF_READNOW;
1082 add_flags &= ~SYMFILE_NO_READ;
1083 }
9291a0cd 1084
5417f6dc
RM
1085 /* Give user a chance to burp if we'd be
1086 interactively wiping out any existing symbols. */
c906108c
SS
1087
1088 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1089 && mainline
c906108c 1090 && from_tty
9e2f0ad4 1091 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1092 error (_("Not confirmed."));
c906108c 1093
0838fb57 1094 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1095
63524580
JK
1096 if (parent)
1097 add_separate_debug_objfile (objfile, parent);
1098
78a4a9b9
AC
1099 /* We either created a new mapped symbol table, mapped an existing
1100 symbol table file which has not had initial symbol reading
c378eb4e 1101 performed, or need to read an unmapped symbol table. */
b11896a5 1102 if (should_print)
c906108c 1103 {
769d7dc4
AC
1104 if (deprecated_pre_add_symbol_hook)
1105 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1106 else
c906108c 1107 {
55333a84
DE
1108 printf_unfiltered (_("Reading symbols from %s..."), name);
1109 wrap_here ("");
1110 gdb_flush (gdb_stdout);
c906108c 1111 }
c906108c 1112 }
6bf667bb 1113 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1114
1115 /* We now have at least a partial symbol table. Check to see if the
1116 user requested that all symbols be read on initial access via either
1117 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1118 all partial symbol tables for this objfile if so. */
c906108c 1119
9291a0cd 1120 if ((flags & OBJF_READNOW))
c906108c 1121 {
b11896a5 1122 if (should_print)
c906108c 1123 {
a3f17187 1124 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1125 wrap_here ("");
1126 gdb_flush (gdb_stdout);
1127 }
1128
ccefe4c4
TT
1129 if (objfile->sf)
1130 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1131 }
1132
b11896a5 1133 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1134 {
1135 wrap_here ("");
55333a84 1136 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1137 wrap_here ("");
1138 }
1139
b11896a5 1140 if (should_print)
c906108c 1141 {
769d7dc4
AC
1142 if (deprecated_post_add_symbol_hook)
1143 deprecated_post_add_symbol_hook ();
c906108c 1144 else
55333a84 1145 printf_unfiltered (_("done.\n"));
c906108c
SS
1146 }
1147
481d0f41
JB
1148 /* We print some messages regardless of whether 'from_tty ||
1149 info_verbose' is true, so make sure they go out at the right
1150 time. */
1151 gdb_flush (gdb_stdout);
1152
109f874e 1153 if (objfile->sf == NULL)
8caee43b
PP
1154 {
1155 observer_notify_new_objfile (objfile);
c378eb4e 1156 return objfile; /* No symbols. */
8caee43b 1157 }
109f874e 1158
7eedccfa 1159 new_symfile_objfile (objfile, add_flags);
c906108c 1160
06d3b283 1161 observer_notify_new_objfile (objfile);
c906108c 1162
ce7d4522 1163 bfd_cache_close_all ();
c906108c
SS
1164 return (objfile);
1165}
1166
9cce227f
TG
1167/* Add BFD as a separate debug file for OBJFILE. */
1168
1169void
1170symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1171{
15d123c9 1172 struct objfile *new_objfile;
089b4803
TG
1173 struct section_addr_info *sap;
1174 struct cleanup *my_cleanup;
1175
1176 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1177 because sections of BFD may not match sections of OBJFILE and because
1178 vma may have been modified by tools such as prelink. */
1179 sap = build_section_addr_info_from_objfile (objfile);
1180 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1181
6bf667bb
DE
1182 new_objfile = symbol_file_add_with_addrs
1183 (bfd, symfile_flags, sap,
9cce227f 1184 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1185 | OBJF_USERLOADED),
1186 objfile);
089b4803
TG
1187
1188 do_cleanups (my_cleanup);
9cce227f 1189}
7904e09f 1190
eb4556d7
JB
1191/* Process the symbol file ABFD, as either the main file or as a
1192 dynamically loaded file.
6bf667bb 1193 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1194
eb4556d7 1195struct objfile *
7eedccfa 1196symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1197 struct section_addr_info *addrs,
63524580 1198 int flags, struct objfile *parent)
eb4556d7 1199{
6bf667bb 1200 return symbol_file_add_with_addrs (abfd, add_flags, addrs, flags, parent);
eb4556d7
JB
1201}
1202
7904e09f 1203/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1204 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1205
7904e09f 1206struct objfile *
7eedccfa
PP
1207symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
7904e09f 1209{
8ac244b4
TT
1210 bfd *bfd = symfile_bfd_open (name);
1211 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1212 struct objfile *objf;
1213
882f447f 1214 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1215 do_cleanups (cleanup);
1216 return objf;
7904e09f
JB
1217}
1218
d7db6da9
FN
1219/* Call symbol_file_add() with default values and update whatever is
1220 affected by the loading of a new main().
1221 Used when the file is supplied in the gdb command line
1222 and by some targets with special loading requirements.
1223 The auxiliary function, symbol_file_add_main_1(), has the flags
1224 argument for the switches that can only be specified in the symbol_file
1225 command itself. */
5417f6dc 1226
1adeb98a
FN
1227void
1228symbol_file_add_main (char *args, int from_tty)
1229{
d7db6da9
FN
1230 symbol_file_add_main_1 (args, from_tty, 0);
1231}
1232
1233static void
1234symbol_file_add_main_1 (char *args, int from_tty, int flags)
1235{
7dcd53a0
TT
1236 const int add_flags = (current_inferior ()->symfile_flags
1237 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1238
7eedccfa 1239 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1240
d7db6da9
FN
1241 /* Getting new symbols may change our opinion about
1242 what is frameless. */
1243 reinit_frame_cache ();
1244
7dcd53a0
TT
1245 if ((flags & SYMFILE_NO_READ) == 0)
1246 set_initial_language ();
1adeb98a
FN
1247}
1248
1249void
1250symbol_file_clear (int from_tty)
1251{
1252 if ((have_full_symbols () || have_partial_symbols ())
1253 && from_tty
0430b0d6
AS
1254 && (symfile_objfile
1255 ? !query (_("Discard symbol table from `%s'? "),
1256 symfile_objfile->name)
1257 : !query (_("Discard symbol table? "))))
8a3fe4f8 1258 error (_("Not confirmed."));
1adeb98a 1259
0133421a
JK
1260 /* solib descriptors may have handles to objfiles. Wipe them before their
1261 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1262 no_shared_libraries (NULL, from_tty);
1263
0133421a
JK
1264 free_all_objfiles ();
1265
adb7f338 1266 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1267 if (from_tty)
1268 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1269}
1270
5b5d99cf 1271static int
287ccc17 1272separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1273 struct objfile *parent_objfile)
5b5d99cf 1274{
904578ed
JK
1275 unsigned long file_crc;
1276 int file_crc_p;
f1838a98 1277 bfd *abfd;
32a0e547 1278 struct stat parent_stat, abfd_stat;
904578ed 1279 int verified_as_different;
32a0e547
JK
1280
1281 /* Find a separate debug info file as if symbols would be present in
1282 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1283 section can contain just the basename of PARENT_OBJFILE without any
1284 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1285 the separate debug infos with the same basename can exist. */
32a0e547 1286
0ba1096a 1287 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1288 return 0;
5b5d99cf 1289
08d2cd74 1290 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1291
1292 if (!abfd)
5b5d99cf
JB
1293 return 0;
1294
0ba1096a 1295 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1296
1297 Some operating systems, e.g. Windows, do not provide a meaningful
1298 st_ino; they always set it to zero. (Windows does provide a
1299 meaningful st_dev.) Do not indicate a duplicate library in that
1300 case. While there is no guarantee that a system that provides
1301 meaningful inode numbers will never set st_ino to zero, this is
1302 merely an optimization, so we do not need to worry about false
1303 negatives. */
1304
1305 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1306 && abfd_stat.st_ino != 0
1307 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1308 {
904578ed
JK
1309 if (abfd_stat.st_dev == parent_stat.st_dev
1310 && abfd_stat.st_ino == parent_stat.st_ino)
1311 {
cbb099e8 1312 gdb_bfd_unref (abfd);
904578ed
JK
1313 return 0;
1314 }
1315 verified_as_different = 1;
32a0e547 1316 }
904578ed
JK
1317 else
1318 verified_as_different = 0;
32a0e547 1319
dccee2de 1320 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1321
cbb099e8 1322 gdb_bfd_unref (abfd);
5b5d99cf 1323
904578ed
JK
1324 if (!file_crc_p)
1325 return 0;
1326
287ccc17
JK
1327 if (crc != file_crc)
1328 {
dccee2de
TT
1329 unsigned long parent_crc;
1330
904578ed
JK
1331 /* If one (or both) the files are accessed for example the via "remote:"
1332 gdbserver way it does not support the bfd_stat operation. Verify
1333 whether those two files are not the same manually. */
1334
dccee2de 1335 if (!verified_as_different)
904578ed 1336 {
dccee2de 1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1338 return 0;
1339 }
1340
dccee2de 1341 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
1344 name, parent_objfile->name);
1345
287ccc17
JK
1346 return 0;
1347 }
1348
1349 return 1;
5b5d99cf
JB
1350}
1351
aa28a74e 1352char *debug_file_directory = NULL;
920d2a44
AC
1353static void
1354show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356{
3e43a32a
MS
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1360 value);
1361}
5b5d99cf
JB
1362
1363#if ! defined (DEBUG_SUBDIRECTORY)
1364#define DEBUG_SUBDIRECTORY ".debug"
1365#endif
1366
1db33378
PP
1367/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1373
1374static char *
1375find_separate_debug_file (const char *dir,
1376 const char *canon_dir,
1377 const char *debuglink,
1378 unsigned long crc32, struct objfile *objfile)
9cce227f 1379{
1db33378
PP
1380 char *debugdir;
1381 char *debugfile;
9cce227f 1382 int i;
e4ab2fad
JK
1383 VEC (char_ptr) *debugdir_vec;
1384 struct cleanup *back_to;
1385 int ix;
5b5d99cf 1386
1db33378 1387 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1388 i = strlen (dir);
1db33378
PP
1389 if (canon_dir != NULL && strlen (canon_dir) > i)
1390 i = strlen (canon_dir);
1ffa32ee 1391
25522fae
JK
1392 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + i
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1db33378 1396 + strlen (debuglink)
25522fae 1397 + 1);
5b5d99cf
JB
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1db33378 1401 strcat (debugfile, debuglink);
5b5d99cf 1402
32a0e547 1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1404 return debugfile;
5417f6dc 1405
5b5d99cf
JB
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1db33378 1410 strcat (debugfile, debuglink);
5b5d99cf 1411
32a0e547 1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1413 return debugfile;
5417f6dc 1414
24ddea62 1415 /* Then try in the global debugfile directories.
f888f159 1416
24ddea62
JK
1417 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1418 cause "/..." lookups. */
5417f6dc 1419
e4ab2fad
JK
1420 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1421 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1422
e4ab2fad
JK
1423 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1424 {
1425 strcpy (debugfile, debugdir);
aa28a74e 1426 strcat (debugfile, "/");
24ddea62 1427 strcat (debugfile, dir);
1db33378 1428 strcat (debugfile, debuglink);
aa28a74e 1429
32a0e547 1430 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1431 {
1432 do_cleanups (back_to);
1433 return debugfile;
1434 }
24ddea62
JK
1435
1436 /* If the file is in the sysroot, try using its base path in the
1437 global debugfile directory. */
1db33378
PP
1438 if (canon_dir != NULL
1439 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1440 strlen (gdb_sysroot)) == 0
1db33378 1441 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1442 {
e4ab2fad 1443 strcpy (debugfile, debugdir);
1db33378 1444 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1445 strcat (debugfile, "/");
1db33378 1446 strcat (debugfile, debuglink);
24ddea62 1447
32a0e547 1448 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1449 {
1450 do_cleanups (back_to);
1451 return debugfile;
1452 }
24ddea62 1453 }
aa28a74e 1454 }
f888f159 1455
e4ab2fad 1456 do_cleanups (back_to);
25522fae 1457 xfree (debugfile);
1db33378
PP
1458 return NULL;
1459}
1460
7edbb660 1461/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1462 If there were no directory separators in PATH, PATH will be empty
1463 string on return. */
1464
1465static void
1466terminate_after_last_dir_separator (char *path)
1467{
1468 int i;
1469
1470 /* Strip off the final filename part, leaving the directory name,
1471 followed by a slash. The directory can be relative or absolute. */
1472 for (i = strlen(path) - 1; i >= 0; i--)
1473 if (IS_DIR_SEPARATOR (path[i]))
1474 break;
1475
1476 /* If I is -1 then no directory is present there and DIR will be "". */
1477 path[i + 1] = '\0';
1478}
1479
1480/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1481 Returns pathname, or NULL. */
1482
1483char *
1484find_separate_debug_file_by_debuglink (struct objfile *objfile)
1485{
1486 char *debuglink;
1487 char *dir, *canon_dir;
1488 char *debugfile;
1489 unsigned long crc32;
1490 struct cleanup *cleanups;
1491
cc0ea93c 1492 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1493
1494 if (debuglink == NULL)
1495 {
1496 /* There's no separate debug info, hence there's no way we could
1497 load it => no warning. */
1498 return NULL;
1499 }
1500
71bdabee 1501 cleanups = make_cleanup (xfree, debuglink);
1db33378 1502 dir = xstrdup (objfile->name);
71bdabee 1503 make_cleanup (xfree, dir);
1db33378
PP
1504 terminate_after_last_dir_separator (dir);
1505 canon_dir = lrealpath (dir);
1506
1507 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1508 crc32, objfile);
1509 xfree (canon_dir);
1510
1511 if (debugfile == NULL)
1512 {
1513#ifdef HAVE_LSTAT
1514 /* For PR gdb/9538, try again with realpath (if different from the
1515 original). */
1516
1517 struct stat st_buf;
1518
1519 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1520 {
1521 char *symlink_dir;
1522
1523 symlink_dir = lrealpath (objfile->name);
1524 if (symlink_dir != NULL)
1525 {
1526 make_cleanup (xfree, symlink_dir);
1527 terminate_after_last_dir_separator (symlink_dir);
1528 if (strcmp (dir, symlink_dir) != 0)
1529 {
1530 /* Different directory, so try using it. */
1531 debugfile = find_separate_debug_file (symlink_dir,
1532 symlink_dir,
1533 debuglink,
1534 crc32,
1535 objfile);
1536 }
1537 }
1538 }
1539#endif /* HAVE_LSTAT */
1540 }
aa28a74e 1541
1db33378 1542 do_cleanups (cleanups);
25522fae 1543 return debugfile;
5b5d99cf
JB
1544}
1545
c906108c
SS
1546/* This is the symbol-file command. Read the file, analyze its
1547 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1548 the command is rather bizarre:
1549
1550 1. The function buildargv implements various quoting conventions
1551 which are undocumented and have little or nothing in common with
1552 the way things are quoted (or not quoted) elsewhere in GDB.
1553
1554 2. Options are used, which are not generally used in GDB (perhaps
1555 "set mapped on", "set readnow on" would be better)
1556
1557 3. The order of options matters, which is contrary to GNU
c906108c
SS
1558 conventions (because it is confusing and inconvenient). */
1559
1560void
fba45db2 1561symbol_file_command (char *args, int from_tty)
c906108c 1562{
c906108c
SS
1563 dont_repeat ();
1564
1565 if (args == NULL)
1566 {
1adeb98a 1567 symbol_file_clear (from_tty);
c906108c
SS
1568 }
1569 else
1570 {
d1a41061 1571 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1572 int flags = OBJF_USERLOADED;
1573 struct cleanup *cleanups;
1574 char *name = NULL;
1575
7a292a7a 1576 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1577 while (*argv != NULL)
1578 {
78a4a9b9
AC
1579 if (strcmp (*argv, "-readnow") == 0)
1580 flags |= OBJF_READNOW;
1581 else if (**argv == '-')
8a3fe4f8 1582 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1583 else
1584 {
cb2f3a29 1585 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1586 name = *argv;
78a4a9b9 1587 }
cb2f3a29 1588
c906108c
SS
1589 argv++;
1590 }
1591
1592 if (name == NULL)
cb2f3a29
MK
1593 error (_("no symbol file name was specified"));
1594
c906108c
SS
1595 do_cleanups (cleanups);
1596 }
1597}
1598
1599/* Set the initial language.
1600
cb2f3a29
MK
1601 FIXME: A better solution would be to record the language in the
1602 psymtab when reading partial symbols, and then use it (if known) to
1603 set the language. This would be a win for formats that encode the
1604 language in an easily discoverable place, such as DWARF. For
1605 stabs, we can jump through hoops looking for specially named
1606 symbols or try to intuit the language from the specific type of
1607 stabs we find, but we can't do that until later when we read in
1608 full symbols. */
c906108c 1609
8b60591b 1610void
fba45db2 1611set_initial_language (void)
c906108c 1612{
c5aa993b 1613 enum language lang = language_unknown;
c906108c 1614
01f8c46d
JK
1615 if (language_of_main != language_unknown)
1616 lang = language_of_main;
1617 else
1618 {
1619 const char *filename;
f888f159 1620
01f8c46d
JK
1621 filename = find_main_filename ();
1622 if (filename != NULL)
1623 lang = deduce_language_from_filename (filename);
1624 }
cb2f3a29 1625
ccefe4c4
TT
1626 if (lang == language_unknown)
1627 {
1628 /* Make C the default language */
1629 lang = language_c;
c906108c 1630 }
ccefe4c4
TT
1631
1632 set_language (lang);
1633 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1634}
1635
874f5765 1636/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1637 open it normally. Returns a new reference to the BFD. On error,
1638 returns NULL with the BFD error set. */
874f5765
TG
1639
1640bfd *
08d2cd74 1641gdb_bfd_open_maybe_remote (const char *name)
874f5765 1642{
520b0001
TT
1643 bfd *result;
1644
874f5765 1645 if (remote_filename_p (name))
520b0001 1646 result = remote_bfd_open (name, gnutarget);
874f5765 1647 else
1c00ec6b 1648 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1649
520b0001 1650 return result;
874f5765
TG
1651}
1652
cb2f3a29
MK
1653/* Open the file specified by NAME and hand it off to BFD for
1654 preliminary analysis. Return a newly initialized bfd *, which
1655 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1656 absolute). In case of trouble, error() is called. */
c906108c
SS
1657
1658bfd *
fba45db2 1659symfile_bfd_open (char *name)
c906108c
SS
1660{
1661 bfd *sym_bfd;
1662 int desc;
1663 char *absolute_name;
faab9922 1664 struct cleanup *back_to;
c906108c 1665
f1838a98
UW
1666 if (remote_filename_p (name))
1667 {
520b0001 1668 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1669 if (!sym_bfd)
a4453b7e
TT
1670 error (_("`%s': can't open to read symbols: %s."), name,
1671 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1672
1673 if (!bfd_check_format (sym_bfd, bfd_object))
1674 {
f9a062ff 1675 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1676 error (_("`%s': can't read symbols: %s."), name,
1677 bfd_errmsg (bfd_get_error ()));
1678 }
1679
1680 return sym_bfd;
1681 }
1682
cb2f3a29 1683 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1684
1685 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1686 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1687 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1688#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1689 if (desc < 0)
1690 {
1691 char *exename = alloca (strlen (name) + 5);
433759f7 1692
c906108c 1693 strcat (strcpy (exename, name), ".exe");
014d698b 1694 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1695 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1696 }
1697#endif
1698 if (desc < 0)
1699 {
b8c9b27d 1700 make_cleanup (xfree, name);
c906108c
SS
1701 perror_with_name (name);
1702 }
cb2f3a29 1703
cb2f3a29
MK
1704 xfree (name);
1705 name = absolute_name;
faab9922 1706 back_to = make_cleanup (xfree, name);
c906108c 1707
1c00ec6b 1708 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1709 if (!sym_bfd)
faab9922
JK
1710 error (_("`%s': can't open to read symbols: %s."), name,
1711 bfd_errmsg (bfd_get_error ()));
549c1eea 1712 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1713
1714 if (!bfd_check_format (sym_bfd, bfd_object))
1715 {
f9a062ff 1716 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1717 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1718 bfd_errmsg (bfd_get_error ()));
1719 }
cb2f3a29 1720
faab9922
JK
1721 do_cleanups (back_to);
1722
cb2f3a29 1723 return sym_bfd;
c906108c
SS
1724}
1725
cb2f3a29
MK
1726/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1727 the section was not found. */
1728
0e931cf0
JB
1729int
1730get_section_index (struct objfile *objfile, char *section_name)
1731{
1732 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1733
0e931cf0
JB
1734 if (sect)
1735 return sect->index;
1736 else
1737 return -1;
1738}
1739
cb2f3a29
MK
1740/* Link SF into the global symtab_fns list. Called on startup by the
1741 _initialize routine in each object file format reader, to register
b021a221 1742 information about each format the reader is prepared to handle. */
c906108c
SS
1743
1744void
00b5771c 1745add_symtab_fns (const struct sym_fns *sf)
c906108c 1746{
00b5771c 1747 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1748}
1749
cb2f3a29
MK
1750/* Initialize OBJFILE to read symbols from its associated BFD. It
1751 either returns or calls error(). The result is an initialized
1752 struct sym_fns in the objfile structure, that contains cached
1753 information about the symbol file. */
c906108c 1754
00b5771c 1755static const struct sym_fns *
31d99776 1756find_sym_fns (bfd *abfd)
c906108c 1757{
00b5771c 1758 const struct sym_fns *sf;
31d99776 1759 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1760 int i;
c906108c 1761
75245b24
MS
1762 if (our_flavour == bfd_target_srec_flavour
1763 || our_flavour == bfd_target_ihex_flavour
1764 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1765 return NULL; /* No symbols. */
75245b24 1766
00b5771c 1767 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1768 if (our_flavour == sf->sym_flavour)
1769 return sf;
cb2f3a29 1770
8a3fe4f8 1771 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1772 bfd_get_target (abfd));
c906108c
SS
1773}
1774\f
cb2f3a29 1775
c906108c
SS
1776/* This function runs the load command of our current target. */
1777
1778static void
fba45db2 1779load_command (char *arg, int from_tty)
c906108c 1780{
5b3fca71
TT
1781 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1782
e5cc9f32
JB
1783 dont_repeat ();
1784
4487aabf
PA
1785 /* The user might be reloading because the binary has changed. Take
1786 this opportunity to check. */
1787 reopen_exec_file ();
1788 reread_symbols ();
1789
c906108c 1790 if (arg == NULL)
1986bccd
AS
1791 {
1792 char *parg;
1793 int count = 0;
1794
1795 parg = arg = get_exec_file (1);
1796
1797 /* Count how many \ " ' tab space there are in the name. */
1798 while ((parg = strpbrk (parg, "\\\"'\t ")))
1799 {
1800 parg++;
1801 count++;
1802 }
1803
1804 if (count)
1805 {
1806 /* We need to quote this string so buildargv can pull it apart. */
1807 char *temp = xmalloc (strlen (arg) + count + 1 );
1808 char *ptemp = temp;
1809 char *prev;
1810
1811 make_cleanup (xfree, temp);
1812
1813 prev = parg = arg;
1814 while ((parg = strpbrk (parg, "\\\"'\t ")))
1815 {
1816 strncpy (ptemp, prev, parg - prev);
1817 ptemp += parg - prev;
1818 prev = parg++;
1819 *ptemp++ = '\\';
1820 }
1821 strcpy (ptemp, prev);
1822
1823 arg = temp;
1824 }
1825 }
1826
c906108c 1827 target_load (arg, from_tty);
2889e661
JB
1828
1829 /* After re-loading the executable, we don't really know which
1830 overlays are mapped any more. */
1831 overlay_cache_invalid = 1;
5b3fca71
TT
1832
1833 do_cleanups (cleanup);
c906108c
SS
1834}
1835
1836/* This version of "load" should be usable for any target. Currently
1837 it is just used for remote targets, not inftarg.c or core files,
1838 on the theory that only in that case is it useful.
1839
1840 Avoiding xmodem and the like seems like a win (a) because we don't have
1841 to worry about finding it, and (b) On VMS, fork() is very slow and so
1842 we don't want to run a subprocess. On the other hand, I'm not sure how
1843 performance compares. */
917317f4 1844
917317f4
JM
1845static int validate_download = 0;
1846
e4f9b4d5
MS
1847/* Callback service function for generic_load (bfd_map_over_sections). */
1848
1849static void
1850add_section_size_callback (bfd *abfd, asection *asec, void *data)
1851{
1852 bfd_size_type *sum = data;
1853
2c500098 1854 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1855}
1856
1857/* Opaque data for load_section_callback. */
1858struct load_section_data {
f698ca8e 1859 CORE_ADDR load_offset;
a76d924d
DJ
1860 struct load_progress_data *progress_data;
1861 VEC(memory_write_request_s) *requests;
1862};
1863
1864/* Opaque data for load_progress. */
1865struct load_progress_data {
1866 /* Cumulative data. */
e4f9b4d5
MS
1867 unsigned long write_count;
1868 unsigned long data_count;
1869 bfd_size_type total_size;
a76d924d
DJ
1870};
1871
1872/* Opaque data for load_progress for a single section. */
1873struct load_progress_section_data {
1874 struct load_progress_data *cumulative;
cf7a04e8 1875
a76d924d 1876 /* Per-section data. */
cf7a04e8
DJ
1877 const char *section_name;
1878 ULONGEST section_sent;
1879 ULONGEST section_size;
1880 CORE_ADDR lma;
1881 gdb_byte *buffer;
e4f9b4d5
MS
1882};
1883
a76d924d 1884/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1885
1886static void
1887load_progress (ULONGEST bytes, void *untyped_arg)
1888{
a76d924d
DJ
1889 struct load_progress_section_data *args = untyped_arg;
1890 struct load_progress_data *totals;
1891
1892 if (args == NULL)
1893 /* Writing padding data. No easy way to get at the cumulative
1894 stats, so just ignore this. */
1895 return;
1896
1897 totals = args->cumulative;
1898
1899 if (bytes == 0 && args->section_sent == 0)
1900 {
1901 /* The write is just starting. Let the user know we've started
1902 this section. */
79a45e25 1903 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1904 args->section_name, hex_string (args->section_size),
f5656ead 1905 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1906 return;
1907 }
cf7a04e8
DJ
1908
1909 if (validate_download)
1910 {
1911 /* Broken memories and broken monitors manifest themselves here
1912 when bring new computers to life. This doubles already slow
1913 downloads. */
1914 /* NOTE: cagney/1999-10-18: A more efficient implementation
1915 might add a verify_memory() method to the target vector and
1916 then use that. remote.c could implement that method using
1917 the ``qCRC'' packet. */
1918 gdb_byte *check = xmalloc (bytes);
1919 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1920
1921 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1922 error (_("Download verify read failed at %s"),
f5656ead 1923 paddress (target_gdbarch (), args->lma));
cf7a04e8 1924 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1925 error (_("Download verify compare failed at %s"),
f5656ead 1926 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1927 do_cleanups (verify_cleanups);
1928 }
a76d924d 1929 totals->data_count += bytes;
cf7a04e8
DJ
1930 args->lma += bytes;
1931 args->buffer += bytes;
a76d924d 1932 totals->write_count += 1;
cf7a04e8 1933 args->section_sent += bytes;
522002f9 1934 if (check_quit_flag ()
cf7a04e8
DJ
1935 || (deprecated_ui_load_progress_hook != NULL
1936 && deprecated_ui_load_progress_hook (args->section_name,
1937 args->section_sent)))
1938 error (_("Canceled the download"));
1939
1940 if (deprecated_show_load_progress != NULL)
1941 deprecated_show_load_progress (args->section_name,
1942 args->section_sent,
1943 args->section_size,
a76d924d
DJ
1944 totals->data_count,
1945 totals->total_size);
cf7a04e8
DJ
1946}
1947
e4f9b4d5
MS
1948/* Callback service function for generic_load (bfd_map_over_sections). */
1949
1950static void
1951load_section_callback (bfd *abfd, asection *asec, void *data)
1952{
a76d924d 1953 struct memory_write_request *new_request;
e4f9b4d5 1954 struct load_section_data *args = data;
a76d924d 1955 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1956 bfd_size_type size = bfd_get_section_size (asec);
1957 gdb_byte *buffer;
cf7a04e8 1958 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1959
cf7a04e8
DJ
1960 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1961 return;
e4f9b4d5 1962
cf7a04e8
DJ
1963 if (size == 0)
1964 return;
e4f9b4d5 1965
a76d924d
DJ
1966 new_request = VEC_safe_push (memory_write_request_s,
1967 args->requests, NULL);
1968 memset (new_request, 0, sizeof (struct memory_write_request));
1969 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1970 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1971 new_request->end = new_request->begin + size; /* FIXME Should size
1972 be in instead? */
a76d924d
DJ
1973 new_request->data = xmalloc (size);
1974 new_request->baton = section_data;
cf7a04e8 1975
a76d924d 1976 buffer = new_request->data;
cf7a04e8 1977
a76d924d
DJ
1978 section_data->cumulative = args->progress_data;
1979 section_data->section_name = sect_name;
1980 section_data->section_size = size;
1981 section_data->lma = new_request->begin;
1982 section_data->buffer = buffer;
cf7a04e8
DJ
1983
1984 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1985}
1986
1987/* Clean up an entire memory request vector, including load
1988 data and progress records. */
cf7a04e8 1989
a76d924d
DJ
1990static void
1991clear_memory_write_data (void *arg)
1992{
1993 VEC(memory_write_request_s) **vec_p = arg;
1994 VEC(memory_write_request_s) *vec = *vec_p;
1995 int i;
1996 struct memory_write_request *mr;
cf7a04e8 1997
a76d924d
DJ
1998 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1999 {
2000 xfree (mr->data);
2001 xfree (mr->baton);
2002 }
2003 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2004}
2005
c906108c 2006void
917317f4 2007generic_load (char *args, int from_tty)
c906108c 2008{
c906108c 2009 bfd *loadfile_bfd;
2b71414d 2010 struct timeval start_time, end_time;
917317f4 2011 char *filename;
1986bccd 2012 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2013 struct load_section_data cbdata;
a76d924d 2014 struct load_progress_data total_progress;
79a45e25 2015 struct ui_out *uiout = current_uiout;
a76d924d 2016
e4f9b4d5 2017 CORE_ADDR entry;
1986bccd 2018 char **argv;
e4f9b4d5 2019
a76d924d
DJ
2020 memset (&cbdata, 0, sizeof (cbdata));
2021 memset (&total_progress, 0, sizeof (total_progress));
2022 cbdata.progress_data = &total_progress;
2023
2024 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2025
d1a41061
PP
2026 if (args == NULL)
2027 error_no_arg (_("file to load"));
1986bccd 2028
d1a41061 2029 argv = gdb_buildargv (args);
1986bccd
AS
2030 make_cleanup_freeargv (argv);
2031
2032 filename = tilde_expand (argv[0]);
2033 make_cleanup (xfree, filename);
2034
2035 if (argv[1] != NULL)
917317f4 2036 {
f698ca8e 2037 const char *endptr;
ba5f2f8a 2038
f698ca8e 2039 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2040
2041 /* If the last word was not a valid number then
2042 treat it as a file name with spaces in. */
2043 if (argv[1] == endptr)
2044 error (_("Invalid download offset:%s."), argv[1]);
2045
2046 if (argv[2] != NULL)
2047 error (_("Too many parameters."));
917317f4 2048 }
c906108c 2049
c378eb4e 2050 /* Open the file for loading. */
1c00ec6b 2051 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2052 if (loadfile_bfd == NULL)
2053 {
2054 perror_with_name (filename);
2055 return;
2056 }
917317f4 2057
f9a062ff 2058 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2059
c5aa993b 2060 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2061 {
8a3fe4f8 2062 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2063 bfd_errmsg (bfd_get_error ()));
2064 }
c5aa993b 2065
5417f6dc 2066 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2067 (void *) &total_progress.total_size);
2068
2069 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2070
2b71414d 2071 gettimeofday (&start_time, NULL);
c906108c 2072
a76d924d
DJ
2073 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2074 load_progress) != 0)
2075 error (_("Load failed"));
c906108c 2076
2b71414d 2077 gettimeofday (&end_time, NULL);
ba5f2f8a 2078
e4f9b4d5 2079 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2080 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2081 ui_out_text (uiout, "Start address ");
f5656ead 2082 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2083 ui_out_text (uiout, ", load size ");
a76d924d 2084 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2085 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2086 /* We were doing this in remote-mips.c, I suspect it is right
2087 for other targets too. */
fb14de7b 2088 regcache_write_pc (get_current_regcache (), entry);
c906108c 2089
38963c97
DJ
2090 /* Reset breakpoints, now that we have changed the load image. For
2091 instance, breakpoints may have been set (or reset, by
2092 post_create_inferior) while connected to the target but before we
2093 loaded the program. In that case, the prologue analyzer could
2094 have read instructions from the target to find the right
2095 breakpoint locations. Loading has changed the contents of that
2096 memory. */
2097
2098 breakpoint_re_set ();
2099
7ca9f392
AC
2100 /* FIXME: are we supposed to call symbol_file_add or not? According
2101 to a comment from remote-mips.c (where a call to symbol_file_add
2102 was commented out), making the call confuses GDB if more than one
2103 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2104 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2105
a76d924d
DJ
2106 print_transfer_performance (gdb_stdout, total_progress.data_count,
2107 total_progress.write_count,
2108 &start_time, &end_time);
c906108c
SS
2109
2110 do_cleanups (old_cleanups);
2111}
2112
c378eb4e 2113/* Report how fast the transfer went. */
c906108c 2114
917317f4 2115void
d9fcf2fb 2116print_transfer_performance (struct ui_file *stream,
917317f4
JM
2117 unsigned long data_count,
2118 unsigned long write_count,
2b71414d
DJ
2119 const struct timeval *start_time,
2120 const struct timeval *end_time)
917317f4 2121{
9f43d28c 2122 ULONGEST time_count;
79a45e25 2123 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2124
2125 /* Compute the elapsed time in milliseconds, as a tradeoff between
2126 accuracy and overflow. */
2127 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2128 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2129
8b93c638
JM
2130 ui_out_text (uiout, "Transfer rate: ");
2131 if (time_count > 0)
2132 {
9f43d28c
DJ
2133 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2134
2135 if (ui_out_is_mi_like_p (uiout))
2136 {
2137 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2138 ui_out_text (uiout, " bits/sec");
2139 }
2140 else if (rate < 1024)
2141 {
2142 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2143 ui_out_text (uiout, " bytes/sec");
2144 }
2145 else
2146 {
2147 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2148 ui_out_text (uiout, " KB/sec");
2149 }
8b93c638
JM
2150 }
2151 else
2152 {
ba5f2f8a 2153 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2154 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2155 }
2156 if (write_count > 0)
2157 {
2158 ui_out_text (uiout, ", ");
ba5f2f8a 2159 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2160 ui_out_text (uiout, " bytes/write");
2161 }
2162 ui_out_text (uiout, ".\n");
c906108c
SS
2163}
2164
2165/* This function allows the addition of incrementally linked object files.
2166 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2167/* Note: ezannoni 2000-04-13 This function/command used to have a
2168 special case syntax for the rombug target (Rombug is the boot
2169 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2170 rombug case, the user doesn't need to supply a text address,
2171 instead a call to target_link() (in target.c) would supply the
c378eb4e 2172 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2173
c906108c 2174static void
fba45db2 2175add_symbol_file_command (char *args, int from_tty)
c906108c 2176{
5af949e3 2177 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2178 char *filename = NULL;
2df3850c 2179 int flags = OBJF_USERLOADED;
c906108c 2180 char *arg;
db162d44 2181 int section_index = 0;
2acceee2
JM
2182 int argcnt = 0;
2183 int sec_num = 0;
2184 int i;
db162d44
EZ
2185 int expecting_sec_name = 0;
2186 int expecting_sec_addr = 0;
5b96932b 2187 char **argv;
db162d44 2188
a39a16c4 2189 struct sect_opt
2acceee2 2190 {
2acceee2
JM
2191 char *name;
2192 char *value;
a39a16c4 2193 };
db162d44 2194
a39a16c4
MM
2195 struct section_addr_info *section_addrs;
2196 struct sect_opt *sect_opts = NULL;
2197 size_t num_sect_opts = 0;
3017564a 2198 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2199
a39a16c4 2200 num_sect_opts = 16;
5417f6dc 2201 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2202 * sizeof (struct sect_opt));
2203
c906108c
SS
2204 dont_repeat ();
2205
2206 if (args == NULL)
8a3fe4f8 2207 error (_("add-symbol-file takes a file name and an address"));
c906108c 2208
d1a41061 2209 argv = gdb_buildargv (args);
5b96932b 2210 make_cleanup_freeargv (argv);
db162d44 2211
5b96932b
AS
2212 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2213 {
c378eb4e 2214 /* Process the argument. */
db162d44 2215 if (argcnt == 0)
c906108c 2216 {
c378eb4e 2217 /* The first argument is the file name. */
db162d44 2218 filename = tilde_expand (arg);
3017564a 2219 make_cleanup (xfree, filename);
c906108c 2220 }
db162d44 2221 else
7a78ae4e
ND
2222 if (argcnt == 1)
2223 {
2224 /* The second argument is always the text address at which
c378eb4e 2225 to load the program. */
7a78ae4e
ND
2226 sect_opts[section_index].name = ".text";
2227 sect_opts[section_index].value = arg;
f414f22f 2228 if (++section_index >= num_sect_opts)
a39a16c4
MM
2229 {
2230 num_sect_opts *= 2;
5417f6dc 2231 sect_opts = ((struct sect_opt *)
a39a16c4 2232 xrealloc (sect_opts,
5417f6dc 2233 num_sect_opts
a39a16c4
MM
2234 * sizeof (struct sect_opt)));
2235 }
7a78ae4e
ND
2236 }
2237 else
2238 {
2239 /* It's an option (starting with '-') or it's an argument
c378eb4e 2240 to an option. */
7a78ae4e
ND
2241
2242 if (*arg == '-')
2243 {
78a4a9b9
AC
2244 if (strcmp (arg, "-readnow") == 0)
2245 flags |= OBJF_READNOW;
2246 else if (strcmp (arg, "-s") == 0)
2247 {
2248 expecting_sec_name = 1;
2249 expecting_sec_addr = 1;
2250 }
7a78ae4e
ND
2251 }
2252 else
2253 {
2254 if (expecting_sec_name)
db162d44 2255 {
7a78ae4e
ND
2256 sect_opts[section_index].name = arg;
2257 expecting_sec_name = 0;
db162d44
EZ
2258 }
2259 else
7a78ae4e
ND
2260 if (expecting_sec_addr)
2261 {
2262 sect_opts[section_index].value = arg;
2263 expecting_sec_addr = 0;
f414f22f 2264 if (++section_index >= num_sect_opts)
a39a16c4
MM
2265 {
2266 num_sect_opts *= 2;
5417f6dc 2267 sect_opts = ((struct sect_opt *)
a39a16c4 2268 xrealloc (sect_opts,
5417f6dc 2269 num_sect_opts
a39a16c4
MM
2270 * sizeof (struct sect_opt)));
2271 }
7a78ae4e
ND
2272 }
2273 else
3e43a32a 2274 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2275 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2276 }
2277 }
c906108c 2278 }
c906108c 2279
927890d0
JB
2280 /* This command takes at least two arguments. The first one is a
2281 filename, and the second is the address where this file has been
2282 loaded. Abort now if this address hasn't been provided by the
2283 user. */
2284 if (section_index < 1)
2285 error (_("The address where %s has been loaded is missing"), filename);
2286
c378eb4e 2287 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2288 a sect_addr_info structure to be passed around to other
2289 functions. We have to split this up into separate print
bb599908 2290 statements because hex_string returns a local static
c378eb4e 2291 string. */
5417f6dc 2292
a3f17187 2293 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2294 section_addrs = alloc_section_addr_info (section_index);
2295 make_cleanup (xfree, section_addrs);
db162d44 2296 for (i = 0; i < section_index; i++)
c906108c 2297 {
db162d44
EZ
2298 CORE_ADDR addr;
2299 char *val = sect_opts[i].value;
2300 char *sec = sect_opts[i].name;
5417f6dc 2301
ae822768 2302 addr = parse_and_eval_address (val);
db162d44 2303
db162d44 2304 /* Here we store the section offsets in the order they were
c378eb4e 2305 entered on the command line. */
a39a16c4
MM
2306 section_addrs->other[sec_num].name = sec;
2307 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2308 printf_unfiltered ("\t%s_addr = %s\n", sec,
2309 paddress (gdbarch, addr));
db162d44
EZ
2310 sec_num++;
2311
5417f6dc 2312 /* The object's sections are initialized when a
db162d44 2313 call is made to build_objfile_section_table (objfile).
5417f6dc 2314 This happens in reread_symbols.
db162d44
EZ
2315 At this point, we don't know what file type this is,
2316 so we can't determine what section names are valid. */
2acceee2 2317 }
d76488d8 2318 section_addrs->num_sections = sec_num;
db162d44 2319
2acceee2 2320 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2321 error (_("Not confirmed."));
c906108c 2322
7eedccfa
PP
2323 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2324 section_addrs, flags);
c906108c
SS
2325
2326 /* Getting new symbols may change our opinion about what is
2327 frameless. */
2328 reinit_frame_cache ();
db162d44 2329 do_cleanups (my_cleanups);
c906108c
SS
2330}
2331\f
70992597 2332
4ac39b97
JK
2333typedef struct objfile *objfilep;
2334
2335DEF_VEC_P (objfilep);
2336
c906108c 2337/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2338
c906108c 2339void
fba45db2 2340reread_symbols (void)
c906108c
SS
2341{
2342 struct objfile *objfile;
2343 long new_modtime;
c906108c
SS
2344 struct stat new_statbuf;
2345 int res;
4ac39b97
JK
2346 VEC (objfilep) *new_objfiles = NULL;
2347 struct cleanup *all_cleanups;
2348
2349 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2350
2351 /* With the addition of shared libraries, this should be modified,
2352 the load time should be saved in the partial symbol tables, since
2353 different tables may come from different source files. FIXME.
2354 This routine should then walk down each partial symbol table
c378eb4e 2355 and see if the symbol table that it originates from has been changed. */
c906108c 2356
c5aa993b
JM
2357 for (objfile = object_files; objfile; objfile = objfile->next)
2358 {
9cce227f
TG
2359 /* solib-sunos.c creates one objfile with obfd. */
2360 if (objfile->obfd == NULL)
2361 continue;
2362
2363 /* Separate debug objfiles are handled in the main objfile. */
2364 if (objfile->separate_debug_objfile_backlink)
2365 continue;
2366
02aeec7b
JB
2367 /* If this object is from an archive (what you usually create with
2368 `ar', often called a `static library' on most systems, though
2369 a `shared library' on AIX is also an archive), then you should
2370 stat on the archive name, not member name. */
9cce227f
TG
2371 if (objfile->obfd->my_archive)
2372 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2373 else
9cce227f
TG
2374 res = stat (objfile->name, &new_statbuf);
2375 if (res != 0)
2376 {
c378eb4e 2377 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2378 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2379 objfile->name);
2380 continue;
2381 }
2382 new_modtime = new_statbuf.st_mtime;
2383 if (new_modtime != objfile->mtime)
2384 {
2385 struct cleanup *old_cleanups;
2386 struct section_offsets *offsets;
2387 int num_offsets;
2388 char *obfd_filename;
2389
2390 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2391 objfile->name);
2392
2393 /* There are various functions like symbol_file_add,
2394 symfile_bfd_open, syms_from_objfile, etc., which might
2395 appear to do what we want. But they have various other
2396 effects which we *don't* want. So we just do stuff
2397 ourselves. We don't worry about mapped files (for one thing,
2398 any mapped file will be out of date). */
2399
2400 /* If we get an error, blow away this objfile (not sure if
2401 that is the correct response for things like shared
2402 libraries). */
2403 old_cleanups = make_cleanup_free_objfile (objfile);
2404 /* We need to do this whenever any symbols go away. */
2405 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2406
0ba1096a
KT
2407 if (exec_bfd != NULL
2408 && filename_cmp (bfd_get_filename (objfile->obfd),
2409 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2410 {
2411 /* Reload EXEC_BFD without asking anything. */
2412
2413 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2414 }
2415
f6eeced0
JK
2416 /* Keep the calls order approx. the same as in free_objfile. */
2417
2418 /* Free the separate debug objfiles. It will be
2419 automatically recreated by sym_read. */
2420 free_objfile_separate_debug (objfile);
2421
2422 /* Remove any references to this objfile in the global
2423 value lists. */
2424 preserve_values (objfile);
2425
2426 /* Nuke all the state that we will re-read. Much of the following
2427 code which sets things to NULL really is necessary to tell
2428 other parts of GDB that there is nothing currently there.
2429
2430 Try to keep the freeing order compatible with free_objfile. */
2431
2432 if (objfile->sf != NULL)
2433 {
2434 (*objfile->sf->sym_finish) (objfile);
2435 }
2436
2437 clear_objfile_data (objfile);
2438
e1507e95 2439 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2440 {
2441 struct bfd *obfd = objfile->obfd;
2442
2443 obfd_filename = bfd_get_filename (objfile->obfd);
2444 /* Open the new BFD before freeing the old one, so that
2445 the filename remains live. */
08d2cd74 2446 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2447 if (objfile->obfd == NULL)
2448 {
2449 /* We have to make a cleanup and error here, rather
2450 than erroring later, because once we unref OBFD,
2451 OBFD_FILENAME will be freed. */
2452 make_cleanup_bfd_unref (obfd);
2453 error (_("Can't open %s to read symbols."), obfd_filename);
2454 }
a4453b7e
TT
2455 gdb_bfd_unref (obfd);
2456 }
2457
e1507e95 2458 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2459 /* bfd_openr sets cacheable to true, which is what we want. */
2460 if (!bfd_check_format (objfile->obfd, bfd_object))
2461 error (_("Can't read symbols from %s: %s."), objfile->name,
2462 bfd_errmsg (bfd_get_error ()));
2463
2464 /* Save the offsets, we will nuke them with the rest of the
2465 objfile_obstack. */
2466 num_offsets = objfile->num_sections;
2467 offsets = ((struct section_offsets *)
2468 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2469 memcpy (offsets, objfile->section_offsets,
2470 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2471
9cce227f
TG
2472 /* FIXME: Do we have to free a whole linked list, or is this
2473 enough? */
2474 if (objfile->global_psymbols.list)
2475 xfree (objfile->global_psymbols.list);
2476 memset (&objfile->global_psymbols, 0,
2477 sizeof (objfile->global_psymbols));
2478 if (objfile->static_psymbols.list)
2479 xfree (objfile->static_psymbols.list);
2480 memset (&objfile->static_psymbols, 0,
2481 sizeof (objfile->static_psymbols));
2482
c378eb4e 2483 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2484 psymbol_bcache_free (objfile->psymbol_cache);
2485 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2486 if (objfile->demangled_names_hash != NULL)
2487 {
2488 htab_delete (objfile->demangled_names_hash);
2489 objfile->demangled_names_hash = NULL;
2490 }
2491 obstack_free (&objfile->objfile_obstack, 0);
2492 objfile->sections = NULL;
2493 objfile->symtabs = NULL;
2494 objfile->psymtabs = NULL;
2495 objfile->psymtabs_addrmap = NULL;
2496 objfile->free_psymtabs = NULL;
34eaf542 2497 objfile->template_symbols = NULL;
9cce227f 2498 objfile->msymbols = NULL;
9cce227f
TG
2499 objfile->minimal_symbol_count = 0;
2500 memset (&objfile->msymbol_hash, 0,
2501 sizeof (objfile->msymbol_hash));
2502 memset (&objfile->msymbol_demangled_hash, 0,
2503 sizeof (objfile->msymbol_demangled_hash));
2504
706e3705
TT
2505 set_objfile_per_bfd (objfile);
2506
9cce227f
TG
2507 /* obstack_init also initializes the obstack so it is
2508 empty. We could use obstack_specify_allocation but
d82ea6a8 2509 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2510 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2511 build_objfile_section_table (objfile);
9cce227f
TG
2512 terminate_minimal_symbol_table (objfile);
2513
2514 /* We use the same section offsets as from last time. I'm not
2515 sure whether that is always correct for shared libraries. */
2516 objfile->section_offsets = (struct section_offsets *)
2517 obstack_alloc (&objfile->objfile_obstack,
2518 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2519 memcpy (objfile->section_offsets, offsets,
2520 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2521 objfile->num_sections = num_offsets;
2522
2523 /* What the hell is sym_new_init for, anyway? The concept of
2524 distinguishing between the main file and additional files
2525 in this way seems rather dubious. */
2526 if (objfile == symfile_objfile)
c906108c 2527 {
9cce227f 2528 (*objfile->sf->sym_new_init) (objfile);
c906108c 2529 }
9cce227f
TG
2530
2531 (*objfile->sf->sym_init) (objfile);
2532 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2533
2534 objfile->flags &= ~OBJF_PSYMTABS_READ;
2535 read_symbols (objfile, 0);
b11896a5 2536
9cce227f 2537 if (!objfile_has_symbols (objfile))
c906108c 2538 {
9cce227f
TG
2539 wrap_here ("");
2540 printf_unfiltered (_("(no debugging symbols found)\n"));
2541 wrap_here ("");
c5aa993b 2542 }
9cce227f
TG
2543
2544 /* We're done reading the symbol file; finish off complaints. */
2545 clear_complaints (&symfile_complaints, 0, 1);
2546
2547 /* Getting new symbols may change our opinion about what is
2548 frameless. */
2549
2550 reinit_frame_cache ();
2551
2552 /* Discard cleanups as symbol reading was successful. */
2553 discard_cleanups (old_cleanups);
2554
2555 /* If the mtime has changed between the time we set new_modtime
2556 and now, we *want* this to be out of date, so don't call stat
2557 again now. */
2558 objfile->mtime = new_modtime;
9cce227f 2559 init_entry_point_info (objfile);
4ac39b97
JK
2560
2561 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2562 }
2563 }
c906108c 2564
4ac39b97 2565 if (new_objfiles)
ea53e89f 2566 {
4ac39b97
JK
2567 int ix;
2568
ff3536bc
UW
2569 /* Notify objfiles that we've modified objfile sections. */
2570 objfiles_changed ();
2571
c1e56572 2572 clear_symtab_users (0);
4ac39b97
JK
2573
2574 /* clear_objfile_data for each objfile was called before freeing it and
2575 observer_notify_new_objfile (NULL) has been called by
2576 clear_symtab_users above. Notify the new files now. */
2577 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2578 observer_notify_new_objfile (objfile);
2579
ea53e89f
JB
2580 /* At least one objfile has changed, so we can consider that
2581 the executable we're debugging has changed too. */
781b42b0 2582 observer_notify_executable_changed ();
ea53e89f 2583 }
4ac39b97
JK
2584
2585 do_cleanups (all_cleanups);
c906108c 2586}
c906108c
SS
2587\f
2588
c5aa993b
JM
2589typedef struct
2590{
2591 char *ext;
c906108c 2592 enum language lang;
c5aa993b
JM
2593}
2594filename_language;
c906108c 2595
c5aa993b 2596static filename_language *filename_language_table;
c906108c
SS
2597static int fl_table_size, fl_table_next;
2598
2599static void
fba45db2 2600add_filename_language (char *ext, enum language lang)
c906108c
SS
2601{
2602 if (fl_table_next >= fl_table_size)
2603 {
2604 fl_table_size += 10;
5417f6dc 2605 filename_language_table =
25bf3106
PM
2606 xrealloc (filename_language_table,
2607 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2608 }
2609
4fcf66da 2610 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2611 filename_language_table[fl_table_next].lang = lang;
2612 fl_table_next++;
2613}
2614
2615static char *ext_args;
920d2a44
AC
2616static void
2617show_ext_args (struct ui_file *file, int from_tty,
2618 struct cmd_list_element *c, const char *value)
2619{
3e43a32a
MS
2620 fprintf_filtered (file,
2621 _("Mapping between filename extension "
2622 "and source language is \"%s\".\n"),
920d2a44
AC
2623 value);
2624}
c906108c
SS
2625
2626static void
26c41df3 2627set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2628{
2629 int i;
2630 char *cp = ext_args;
2631 enum language lang;
2632
c378eb4e 2633 /* First arg is filename extension, starting with '.' */
c906108c 2634 if (*cp != '.')
8a3fe4f8 2635 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2636
2637 /* Find end of first arg. */
c5aa993b 2638 while (*cp && !isspace (*cp))
c906108c
SS
2639 cp++;
2640
2641 if (*cp == '\0')
3e43a32a
MS
2642 error (_("'%s': two arguments required -- "
2643 "filename extension and language"),
c906108c
SS
2644 ext_args);
2645
c378eb4e 2646 /* Null-terminate first arg. */
c5aa993b 2647 *cp++ = '\0';
c906108c
SS
2648
2649 /* Find beginning of second arg, which should be a source language. */
529480d0 2650 cp = skip_spaces (cp);
c906108c
SS
2651
2652 if (*cp == '\0')
3e43a32a
MS
2653 error (_("'%s': two arguments required -- "
2654 "filename extension and language"),
c906108c
SS
2655 ext_args);
2656
2657 /* Lookup the language from among those we know. */
2658 lang = language_enum (cp);
2659
2660 /* Now lookup the filename extension: do we already know it? */
2661 for (i = 0; i < fl_table_next; i++)
2662 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2663 break;
2664
2665 if (i >= fl_table_next)
2666 {
c378eb4e 2667 /* New file extension. */
c906108c
SS
2668 add_filename_language (ext_args, lang);
2669 }
2670 else
2671 {
c378eb4e 2672 /* Redefining a previously known filename extension. */
c906108c
SS
2673
2674 /* if (from_tty) */
2675 /* query ("Really make files of type %s '%s'?", */
2676 /* ext_args, language_str (lang)); */
2677
b8c9b27d 2678 xfree (filename_language_table[i].ext);
4fcf66da 2679 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2680 filename_language_table[i].lang = lang;
2681 }
2682}
2683
2684static void
fba45db2 2685info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2686{
2687 int i;
2688
a3f17187 2689 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2690 printf_filtered ("\n\n");
2691 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2692 printf_filtered ("\t%s\t- %s\n",
2693 filename_language_table[i].ext,
c906108c
SS
2694 language_str (filename_language_table[i].lang));
2695}
2696
2697static void
fba45db2 2698init_filename_language_table (void)
c906108c 2699{
c378eb4e 2700 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2701 {
2702 fl_table_size = 20;
2703 fl_table_next = 0;
c5aa993b 2704 filename_language_table =
c906108c 2705 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2706 add_filename_language (".c", language_c);
6aecb9c2 2707 add_filename_language (".d", language_d);
c5aa993b
JM
2708 add_filename_language (".C", language_cplus);
2709 add_filename_language (".cc", language_cplus);
2710 add_filename_language (".cp", language_cplus);
2711 add_filename_language (".cpp", language_cplus);
2712 add_filename_language (".cxx", language_cplus);
2713 add_filename_language (".c++", language_cplus);
2714 add_filename_language (".java", language_java);
c906108c 2715 add_filename_language (".class", language_java);
da2cf7e0 2716 add_filename_language (".m", language_objc);
c5aa993b
JM
2717 add_filename_language (".f", language_fortran);
2718 add_filename_language (".F", language_fortran);
fd5700c7
JK
2719 add_filename_language (".for", language_fortran);
2720 add_filename_language (".FOR", language_fortran);
2721 add_filename_language (".ftn", language_fortran);
2722 add_filename_language (".FTN", language_fortran);
2723 add_filename_language (".fpp", language_fortran);
2724 add_filename_language (".FPP", language_fortran);
2725 add_filename_language (".f90", language_fortran);
2726 add_filename_language (".F90", language_fortran);
2727 add_filename_language (".f95", language_fortran);
2728 add_filename_language (".F95", language_fortran);
2729 add_filename_language (".f03", language_fortran);
2730 add_filename_language (".F03", language_fortran);
2731 add_filename_language (".f08", language_fortran);
2732 add_filename_language (".F08", language_fortran);
c5aa993b 2733 add_filename_language (".s", language_asm);
aa707ed0 2734 add_filename_language (".sx", language_asm);
c5aa993b 2735 add_filename_language (".S", language_asm);
c6fd39cd
PM
2736 add_filename_language (".pas", language_pascal);
2737 add_filename_language (".p", language_pascal);
2738 add_filename_language (".pp", language_pascal);
963a6417
PH
2739 add_filename_language (".adb", language_ada);
2740 add_filename_language (".ads", language_ada);
2741 add_filename_language (".a", language_ada);
2742 add_filename_language (".ada", language_ada);
dde59185 2743 add_filename_language (".dg", language_ada);
c906108c
SS
2744 }
2745}
2746
2747enum language
dd786858 2748deduce_language_from_filename (const char *filename)
c906108c
SS
2749{
2750 int i;
2751 char *cp;
2752
2753 if (filename != NULL)
2754 if ((cp = strrchr (filename, '.')) != NULL)
2755 for (i = 0; i < fl_table_next; i++)
2756 if (strcmp (cp, filename_language_table[i].ext) == 0)
2757 return filename_language_table[i].lang;
2758
2759 return language_unknown;
2760}
2761\f
2762/* allocate_symtab:
2763
2764 Allocate and partly initialize a new symbol table. Return a pointer
2765 to it. error() if no space.
2766
2767 Caller must set these fields:
c5aa993b
JM
2768 LINETABLE(symtab)
2769 symtab->blockvector
2770 symtab->dirname
2771 symtab->free_code
2772 symtab->free_ptr
c906108c
SS
2773 */
2774
2775struct symtab *
72b9f47f 2776allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2777{
52f0bd74 2778 struct symtab *symtab;
c906108c
SS
2779
2780 symtab = (struct symtab *)
4a146b47 2781 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2782 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2783 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2784 objfile->per_bfd->filename_cache);
c5aa993b
JM
2785 symtab->fullname = NULL;
2786 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2787 symtab->debugformat = "unknown";
c906108c 2788
c378eb4e 2789 /* Hook it to the objfile it comes from. */
c906108c 2790
c5aa993b
JM
2791 symtab->objfile = objfile;
2792 symtab->next = objfile->symtabs;
2793 objfile->symtabs = symtab;
c906108c 2794
45cfd468
DE
2795 if (symtab_create_debug)
2796 {
2797 /* Be a bit clever with debugging messages, and don't print objfile
2798 every time, only when it changes. */
2799 static char *last_objfile_name = NULL;
2800
2801 if (last_objfile_name == NULL
2802 || strcmp (last_objfile_name, objfile->name) != 0)
2803 {
2804 xfree (last_objfile_name);
2805 last_objfile_name = xstrdup (objfile->name);
2806 fprintf_unfiltered (gdb_stdlog,
2807 "Creating one or more symtabs for objfile %s ...\n",
2808 last_objfile_name);
2809 }
2810 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2811 "Created symtab %s for module %s.\n",
2812 host_address_to_string (symtab), filename);
45cfd468
DE
2813 }
2814
c906108c
SS
2815 return (symtab);
2816}
c906108c 2817\f
c5aa993b 2818
c906108c 2819/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2820 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2821
2822void
c1e56572 2823clear_symtab_users (int add_flags)
c906108c
SS
2824{
2825 /* Someday, we should do better than this, by only blowing away
2826 the things that really need to be blown. */
c0501be5
DJ
2827
2828 /* Clear the "current" symtab first, because it is no longer valid.
2829 breakpoint_re_set may try to access the current symtab. */
2830 clear_current_source_symtab_and_line ();
2831
c906108c 2832 clear_displays ();
c1e56572
JK
2833 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2834 breakpoint_re_set ();
1bfeeb0f 2835 clear_last_displayed_sal ();
c906108c 2836 clear_pc_function_cache ();
06d3b283 2837 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2838
2839 /* Clear globals which might have pointed into a removed objfile.
2840 FIXME: It's not clear which of these are supposed to persist
2841 between expressions and which ought to be reset each time. */
2842 expression_context_block = NULL;
2843 innermost_block = NULL;
8756216b
DP
2844
2845 /* Varobj may refer to old symbols, perform a cleanup. */
2846 varobj_invalidate ();
2847
c906108c
SS
2848}
2849
74b7792f
AC
2850static void
2851clear_symtab_users_cleanup (void *ignore)
2852{
c1e56572 2853 clear_symtab_users (0);
74b7792f 2854}
c906108c 2855\f
c906108c
SS
2856/* OVERLAYS:
2857 The following code implements an abstraction for debugging overlay sections.
2858
2859 The target model is as follows:
2860 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2861 same VMA, each with its own unique LMA (or load address).
c906108c 2862 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2863 sections, one by one, from the load address into the VMA address.
5417f6dc 2864 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2865 sections should be considered to be mapped from the VMA to the LMA.
2866 This information is used for symbol lookup, and memory read/write.
5417f6dc 2867 For instance, if a section has been mapped then its contents
c5aa993b 2868 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2869
2870 Two levels of debugger support for overlays are available. One is
2871 "manual", in which the debugger relies on the user to tell it which
2872 overlays are currently mapped. This level of support is
2873 implemented entirely in the core debugger, and the information about
2874 whether a section is mapped is kept in the objfile->obj_section table.
2875
2876 The second level of support is "automatic", and is only available if
2877 the target-specific code provides functionality to read the target's
2878 overlay mapping table, and translate its contents for the debugger
2879 (by updating the mapped state information in the obj_section tables).
2880
2881 The interface is as follows:
c5aa993b
JM
2882 User commands:
2883 overlay map <name> -- tell gdb to consider this section mapped
2884 overlay unmap <name> -- tell gdb to consider this section unmapped
2885 overlay list -- list the sections that GDB thinks are mapped
2886 overlay read-target -- get the target's state of what's mapped
2887 overlay off/manual/auto -- set overlay debugging state
2888 Functional interface:
2889 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2890 section, return that section.
5417f6dc 2891 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2892 the pc, either in its VMA or its LMA
714835d5 2893 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2894 section_is_overlay(sect): true if section's VMA != LMA
2895 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2896 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2897 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2898 overlay_mapped_address(...): map an address from section's LMA to VMA
2899 overlay_unmapped_address(...): map an address from section's VMA to LMA
2900 symbol_overlayed_address(...): Return a "current" address for symbol:
2901 either in VMA or LMA depending on whether
c378eb4e 2902 the symbol's section is currently mapped. */
c906108c
SS
2903
2904/* Overlay debugging state: */
2905
d874f1e2 2906enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2907int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2908
c906108c 2909/* Function: section_is_overlay (SECTION)
5417f6dc 2910 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2911 SECTION is loaded at an address different from where it will "run". */
2912
2913int
714835d5 2914section_is_overlay (struct obj_section *section)
c906108c 2915{
714835d5
UW
2916 if (overlay_debugging && section)
2917 {
2918 bfd *abfd = section->objfile->obfd;
2919 asection *bfd_section = section->the_bfd_section;
f888f159 2920
714835d5
UW
2921 if (bfd_section_lma (abfd, bfd_section) != 0
2922 && bfd_section_lma (abfd, bfd_section)
2923 != bfd_section_vma (abfd, bfd_section))
2924 return 1;
2925 }
c906108c
SS
2926
2927 return 0;
2928}
2929
2930/* Function: overlay_invalidate_all (void)
2931 Invalidate the mapped state of all overlay sections (mark it as stale). */
2932
2933static void
fba45db2 2934overlay_invalidate_all (void)
c906108c 2935{
c5aa993b 2936 struct objfile *objfile;
c906108c
SS
2937 struct obj_section *sect;
2938
2939 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2940 if (section_is_overlay (sect))
2941 sect->ovly_mapped = -1;
c906108c
SS
2942}
2943
714835d5 2944/* Function: section_is_mapped (SECTION)
5417f6dc 2945 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2946
2947 Access to the ovly_mapped flag is restricted to this function, so
2948 that we can do automatic update. If the global flag
2949 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2950 overlay_invalidate_all. If the mapped state of the particular
2951 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2952
714835d5
UW
2953int
2954section_is_mapped (struct obj_section *osect)
c906108c 2955{
9216df95
UW
2956 struct gdbarch *gdbarch;
2957
714835d5 2958 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2959 return 0;
2960
c5aa993b 2961 switch (overlay_debugging)
c906108c
SS
2962 {
2963 default:
d874f1e2 2964 case ovly_off:
c5aa993b 2965 return 0; /* overlay debugging off */
d874f1e2 2966 case ovly_auto: /* overlay debugging automatic */
1c772458 2967 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2968 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2969 gdbarch = get_objfile_arch (osect->objfile);
2970 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2971 {
2972 if (overlay_cache_invalid)
2973 {
2974 overlay_invalidate_all ();
2975 overlay_cache_invalid = 0;
2976 }
2977 if (osect->ovly_mapped == -1)
9216df95 2978 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2979 }
2980 /* fall thru to manual case */
d874f1e2 2981 case ovly_on: /* overlay debugging manual */
c906108c
SS
2982 return osect->ovly_mapped == 1;
2983 }
2984}
2985
c906108c
SS
2986/* Function: pc_in_unmapped_range
2987 If PC falls into the lma range of SECTION, return true, else false. */
2988
2989CORE_ADDR
714835d5 2990pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2991{
714835d5
UW
2992 if (section_is_overlay (section))
2993 {
2994 bfd *abfd = section->objfile->obfd;
2995 asection *bfd_section = section->the_bfd_section;
fbd35540 2996
714835d5
UW
2997 /* We assume the LMA is relocated by the same offset as the VMA. */
2998 bfd_vma size = bfd_get_section_size (bfd_section);
2999 CORE_ADDR offset = obj_section_offset (section);
3000
3001 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3002 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3003 return 1;
3004 }
c906108c 3005
c906108c
SS
3006 return 0;
3007}
3008
3009/* Function: pc_in_mapped_range
3010 If PC falls into the vma range of SECTION, return true, else false. */
3011
3012CORE_ADDR
714835d5 3013pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3014{
714835d5
UW
3015 if (section_is_overlay (section))
3016 {
3017 if (obj_section_addr (section) <= pc
3018 && pc < obj_section_endaddr (section))
3019 return 1;
3020 }
c906108c 3021
c906108c
SS
3022 return 0;
3023}
3024
9ec8e6a0
JB
3025/* Return true if the mapped ranges of sections A and B overlap, false
3026 otherwise. */
3b7bacac 3027
b9362cc7 3028static int
714835d5 3029sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3030{
714835d5
UW
3031 CORE_ADDR a_start = obj_section_addr (a);
3032 CORE_ADDR a_end = obj_section_endaddr (a);
3033 CORE_ADDR b_start = obj_section_addr (b);
3034 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3035
3036 return (a_start < b_end && b_start < a_end);
3037}
3038
c906108c
SS
3039/* Function: overlay_unmapped_address (PC, SECTION)
3040 Returns the address corresponding to PC in the unmapped (load) range.
3041 May be the same as PC. */
3042
3043CORE_ADDR
714835d5 3044overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3045{
714835d5
UW
3046 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3047 {
3048 bfd *abfd = section->objfile->obfd;
3049 asection *bfd_section = section->the_bfd_section;
fbd35540 3050
714835d5
UW
3051 return pc + bfd_section_lma (abfd, bfd_section)
3052 - bfd_section_vma (abfd, bfd_section);
3053 }
c906108c
SS
3054
3055 return pc;
3056}
3057
3058/* Function: overlay_mapped_address (PC, SECTION)
3059 Returns the address corresponding to PC in the mapped (runtime) range.
3060 May be the same as PC. */
3061
3062CORE_ADDR
714835d5 3063overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3064{
714835d5
UW
3065 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3066 {
3067 bfd *abfd = section->objfile->obfd;
3068 asection *bfd_section = section->the_bfd_section;
fbd35540 3069
714835d5
UW
3070 return pc + bfd_section_vma (abfd, bfd_section)
3071 - bfd_section_lma (abfd, bfd_section);
3072 }
c906108c
SS
3073
3074 return pc;
3075}
3076
5417f6dc 3077/* Function: symbol_overlayed_address
c906108c
SS
3078 Return one of two addresses (relative to the VMA or to the LMA),
3079 depending on whether the section is mapped or not. */
3080
c5aa993b 3081CORE_ADDR
714835d5 3082symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3083{
3084 if (overlay_debugging)
3085 {
c378eb4e 3086 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3087 if (section == 0)
3088 return address;
c378eb4e
MS
3089 /* If the symbol's section is not an overlay, just return its
3090 address. */
c906108c
SS
3091 if (!section_is_overlay (section))
3092 return address;
c378eb4e 3093 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3094 if (section_is_mapped (section))
3095 return address;
3096 /*
3097 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3098 * then return its LOADED address rather than its vma address!!
3099 */
3100 return overlay_unmapped_address (address, section);
3101 }
3102 return address;
3103}
3104
5417f6dc 3105/* Function: find_pc_overlay (PC)
c906108c
SS
3106 Return the best-match overlay section for PC:
3107 If PC matches a mapped overlay section's VMA, return that section.
3108 Else if PC matches an unmapped section's VMA, return that section.
3109 Else if PC matches an unmapped section's LMA, return that section. */
3110
714835d5 3111struct obj_section *
fba45db2 3112find_pc_overlay (CORE_ADDR pc)
c906108c 3113{
c5aa993b 3114 struct objfile *objfile;
c906108c
SS
3115 struct obj_section *osect, *best_match = NULL;
3116
3117 if (overlay_debugging)
3118 ALL_OBJSECTIONS (objfile, osect)
714835d5 3119 if (section_is_overlay (osect))
c5aa993b 3120 {
714835d5 3121 if (pc_in_mapped_range (pc, osect))
c5aa993b 3122 {
714835d5
UW
3123 if (section_is_mapped (osect))
3124 return osect;
c5aa993b
JM
3125 else
3126 best_match = osect;
3127 }
714835d5 3128 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3129 best_match = osect;
3130 }
714835d5 3131 return best_match;
c906108c
SS
3132}
3133
3134/* Function: find_pc_mapped_section (PC)
5417f6dc 3135 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3136 currently marked as MAPPED, return that section. Else return NULL. */
3137
714835d5 3138struct obj_section *
fba45db2 3139find_pc_mapped_section (CORE_ADDR pc)
c906108c 3140{
c5aa993b 3141 struct objfile *objfile;
c906108c
SS
3142 struct obj_section *osect;
3143
3144 if (overlay_debugging)
3145 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3146 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3147 return osect;
c906108c
SS
3148
3149 return NULL;
3150}
3151
3152/* Function: list_overlays_command
c378eb4e 3153 Print a list of mapped sections and their PC ranges. */
c906108c 3154
5d3055ad 3155static void
fba45db2 3156list_overlays_command (char *args, int from_tty)
c906108c 3157{
c5aa993b
JM
3158 int nmapped = 0;
3159 struct objfile *objfile;
c906108c
SS
3160 struct obj_section *osect;
3161
3162 if (overlay_debugging)
3163 ALL_OBJSECTIONS (objfile, osect)
714835d5 3164 if (section_is_mapped (osect))
c5aa993b 3165 {
5af949e3 3166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3167 const char *name;
3168 bfd_vma lma, vma;
3169 int size;
3170
3171 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3172 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3173 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3174 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3175
3176 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3177 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3178 puts_filtered (" - ");
5af949e3 3179 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3180 printf_filtered (", mapped at ");
5af949e3 3181 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3182 puts_filtered (" - ");
5af949e3 3183 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3184 puts_filtered ("\n");
3185
3186 nmapped++;
3187 }
c906108c 3188 if (nmapped == 0)
a3f17187 3189 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3190}
3191
3192/* Function: map_overlay_command
3193 Mark the named section as mapped (ie. residing at its VMA address). */
3194
5d3055ad 3195static void
fba45db2 3196map_overlay_command (char *args, int from_tty)
c906108c 3197{
c5aa993b
JM
3198 struct objfile *objfile, *objfile2;
3199 struct obj_section *sec, *sec2;
c906108c
SS
3200
3201 if (!overlay_debugging)
3e43a32a
MS
3202 error (_("Overlay debugging not enabled. Use "
3203 "either the 'overlay auto' or\n"
3204 "the 'overlay manual' command."));
c906108c
SS
3205
3206 if (args == 0 || *args == 0)
8a3fe4f8 3207 error (_("Argument required: name of an overlay section"));
c906108c 3208
c378eb4e 3209 /* First, find a section matching the user supplied argument. */
c906108c
SS
3210 ALL_OBJSECTIONS (objfile, sec)
3211 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3212 {
c378eb4e 3213 /* Now, check to see if the section is an overlay. */
714835d5 3214 if (!section_is_overlay (sec))
c5aa993b
JM
3215 continue; /* not an overlay section */
3216
c378eb4e 3217 /* Mark the overlay as "mapped". */
c5aa993b
JM
3218 sec->ovly_mapped = 1;
3219
3220 /* Next, make a pass and unmap any sections that are
3221 overlapped by this new section: */
3222 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3223 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3224 {
3225 if (info_verbose)
a3f17187 3226 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3227 bfd_section_name (objfile->obfd,
3228 sec2->the_bfd_section));
c378eb4e 3229 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3230 }
3231 return;
3232 }
8a3fe4f8 3233 error (_("No overlay section called %s"), args);
c906108c
SS
3234}
3235
3236/* Function: unmap_overlay_command
5417f6dc 3237 Mark the overlay section as unmapped
c906108c
SS
3238 (ie. resident in its LMA address range, rather than the VMA range). */
3239
5d3055ad 3240static void
fba45db2 3241unmap_overlay_command (char *args, int from_tty)
c906108c 3242{
c5aa993b 3243 struct objfile *objfile;
c906108c
SS
3244 struct obj_section *sec;
3245
3246 if (!overlay_debugging)
3e43a32a
MS
3247 error (_("Overlay debugging not enabled. "
3248 "Use either the 'overlay auto' or\n"
3249 "the 'overlay manual' command."));
c906108c
SS
3250
3251 if (args == 0 || *args == 0)
8a3fe4f8 3252 error (_("Argument required: name of an overlay section"));
c906108c 3253
c378eb4e 3254 /* First, find a section matching the user supplied argument. */
c906108c
SS
3255 ALL_OBJSECTIONS (objfile, sec)
3256 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3257 {
3258 if (!sec->ovly_mapped)
8a3fe4f8 3259 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3260 sec->ovly_mapped = 0;
3261 return;
3262 }
8a3fe4f8 3263 error (_("No overlay section called %s"), args);
c906108c
SS
3264}
3265
3266/* Function: overlay_auto_command
3267 A utility command to turn on overlay debugging.
c378eb4e 3268 Possibly this should be done via a set/show command. */
c906108c
SS
3269
3270static void
fba45db2 3271overlay_auto_command (char *args, int from_tty)
c906108c 3272{
d874f1e2 3273 overlay_debugging = ovly_auto;
1900040c 3274 enable_overlay_breakpoints ();
c906108c 3275 if (info_verbose)
a3f17187 3276 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3277}
3278
3279/* Function: overlay_manual_command
3280 A utility command to turn on overlay debugging.
c378eb4e 3281 Possibly this should be done via a set/show command. */
c906108c
SS
3282
3283static void
fba45db2 3284overlay_manual_command (char *args, int from_tty)
c906108c 3285{
d874f1e2 3286 overlay_debugging = ovly_on;
1900040c 3287 disable_overlay_breakpoints ();
c906108c 3288 if (info_verbose)
a3f17187 3289 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3290}
3291
3292/* Function: overlay_off_command
3293 A utility command to turn on overlay debugging.
c378eb4e 3294 Possibly this should be done via a set/show command. */
c906108c
SS
3295
3296static void
fba45db2 3297overlay_off_command (char *args, int from_tty)
c906108c 3298{
d874f1e2 3299 overlay_debugging = ovly_off;
1900040c 3300 disable_overlay_breakpoints ();
c906108c 3301 if (info_verbose)
a3f17187 3302 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3303}
3304
3305static void
fba45db2 3306overlay_load_command (char *args, int from_tty)
c906108c 3307{
e17c207e
UW
3308 struct gdbarch *gdbarch = get_current_arch ();
3309
3310 if (gdbarch_overlay_update_p (gdbarch))
3311 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3312 else
8a3fe4f8 3313 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3314}
3315
3316/* Function: overlay_command
c378eb4e 3317 A place-holder for a mis-typed command. */
c906108c 3318
c378eb4e 3319/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3320static struct cmd_list_element *overlaylist;
c906108c
SS
3321
3322static void
fba45db2 3323overlay_command (char *args, int from_tty)
c906108c 3324{
c5aa993b 3325 printf_unfiltered
c906108c
SS
3326 ("\"overlay\" must be followed by the name of an overlay command.\n");
3327 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3328}
3329
c906108c
SS
3330/* Target Overlays for the "Simplest" overlay manager:
3331
5417f6dc
RM
3332 This is GDB's default target overlay layer. It works with the
3333 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3334 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3335 so targets that use a different runtime overlay manager can
c906108c
SS
3336 substitute their own overlay_update function and take over the
3337 function pointer.
3338
3339 The overlay_update function pokes around in the target's data structures
3340 to see what overlays are mapped, and updates GDB's overlay mapping with
3341 this information.
3342
3343 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3344 unsigned _novlys; /# number of overlay sections #/
3345 unsigned _ovly_table[_novlys][4] = {
3346 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3347 {..., ..., ..., ...},
3348 }
3349 unsigned _novly_regions; /# number of overlay regions #/
3350 unsigned _ovly_region_table[_novly_regions][3] = {
3351 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3352 {..., ..., ...},
3353 }
c906108c
SS
3354 These functions will attempt to update GDB's mappedness state in the
3355 symbol section table, based on the target's mappedness state.
3356
3357 To do this, we keep a cached copy of the target's _ovly_table, and
3358 attempt to detect when the cached copy is invalidated. The main
3359 entry point is "simple_overlay_update(SECT), which looks up SECT in
3360 the cached table and re-reads only the entry for that section from
c378eb4e 3361 the target (whenever possible). */
c906108c
SS
3362
3363/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3364static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3365static unsigned cache_novlys = 0;
c906108c 3366static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3367enum ovly_index
3368 {
3369 VMA, SIZE, LMA, MAPPED
3370 };
c906108c 3371
c378eb4e 3372/* Throw away the cached copy of _ovly_table. */
3b7bacac 3373
c906108c 3374static void
fba45db2 3375simple_free_overlay_table (void)
c906108c
SS
3376{
3377 if (cache_ovly_table)
b8c9b27d 3378 xfree (cache_ovly_table);
c5aa993b 3379 cache_novlys = 0;
c906108c
SS
3380 cache_ovly_table = NULL;
3381 cache_ovly_table_base = 0;
3382}
3383
9216df95 3384/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3385 Convert to host order. int LEN is number of ints. */
3b7bacac 3386
c906108c 3387static void
9216df95 3388read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3389 int len, int size, enum bfd_endian byte_order)
c906108c 3390{
c378eb4e 3391 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3392 gdb_byte *buf = alloca (len * size);
c5aa993b 3393 int i;
c906108c 3394
9216df95 3395 read_memory (memaddr, buf, len * size);
c906108c 3396 for (i = 0; i < len; i++)
e17a4113 3397 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3398}
3399
3400/* Find and grab a copy of the target _ovly_table
c378eb4e 3401 (and _novlys, which is needed for the table's size). */
3b7bacac 3402
c5aa993b 3403static int
fba45db2 3404simple_read_overlay_table (void)
c906108c 3405{
0d43edd1 3406 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3407 struct gdbarch *gdbarch;
3408 int word_size;
e17a4113 3409 enum bfd_endian byte_order;
c906108c
SS
3410
3411 simple_free_overlay_table ();
9b27852e 3412 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3413 if (! novlys_msym)
c906108c 3414 {
8a3fe4f8 3415 error (_("Error reading inferior's overlay table: "
0d43edd1 3416 "couldn't find `_novlys' variable\n"
8a3fe4f8 3417 "in inferior. Use `overlay manual' mode."));
0d43edd1 3418 return 0;
c906108c 3419 }
0d43edd1 3420
9b27852e 3421 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3422 if (! ovly_table_msym)
3423 {
8a3fe4f8 3424 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3425 "`_ovly_table' array\n"
8a3fe4f8 3426 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3427 return 0;
3428 }
3429
9216df95
UW
3430 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3431 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3432 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3433
e17a4113
UW
3434 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3435 4, byte_order);
0d43edd1
JB
3436 cache_ovly_table
3437 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3438 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3439 read_target_long_array (cache_ovly_table_base,
777ea8f1 3440 (unsigned int *) cache_ovly_table,
e17a4113 3441 cache_novlys * 4, word_size, byte_order);
0d43edd1 3442
c5aa993b 3443 return 1; /* SUCCESS */
c906108c
SS
3444}
3445
5417f6dc 3446/* Function: simple_overlay_update_1
c906108c
SS
3447 A helper function for simple_overlay_update. Assuming a cached copy
3448 of _ovly_table exists, look through it to find an entry whose vma,
3449 lma and size match those of OSECT. Re-read the entry and make sure
3450 it still matches OSECT (else the table may no longer be valid).
3451 Set OSECT's mapped state to match the entry. Return: 1 for
3452 success, 0 for failure. */
3453
3454static int
fba45db2 3455simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3456{
3457 int i, size;
fbd35540
MS
3458 bfd *obfd = osect->objfile->obfd;
3459 asection *bsect = osect->the_bfd_section;
9216df95
UW
3460 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3461 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3463
2c500098 3464 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3465 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3466 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3467 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3468 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3469 {
9216df95
UW
3470 read_target_long_array (cache_ovly_table_base + i * word_size,
3471 (unsigned int *) cache_ovly_table[i],
e17a4113 3472 4, word_size, byte_order);
fbd35540
MS
3473 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3474 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3475 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3476 {
3477 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3478 return 1;
3479 }
c378eb4e 3480 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3481 return 0;
3482 }
3483 return 0;
3484}
3485
3486/* Function: simple_overlay_update
5417f6dc
RM
3487 If OSECT is NULL, then update all sections' mapped state
3488 (after re-reading the entire target _ovly_table).
3489 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3490 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3491 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3492 re-read the entire cache, and go ahead and update all sections. */
3493
1c772458 3494void
fba45db2 3495simple_overlay_update (struct obj_section *osect)
c906108c 3496{
c5aa993b 3497 struct objfile *objfile;
c906108c 3498
c378eb4e 3499 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3500 if (osect)
c378eb4e 3501 /* Have we got a cached copy of the target's overlay table? */
c906108c 3502 if (cache_ovly_table != NULL)
9cc89665
MS
3503 {
3504 /* Does its cached location match what's currently in the
3505 symtab? */
3506 struct minimal_symbol *minsym
3507 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3508
3509 if (minsym == NULL)
3510 error (_("Error reading inferior's overlay table: couldn't "
3511 "find `_ovly_table' array\n"
3512 "in inferior. Use `overlay manual' mode."));
3513
3514 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3515 /* Then go ahead and try to look up this single section in
3516 the cache. */
3517 if (simple_overlay_update_1 (osect))
3518 /* Found it! We're done. */
3519 return;
3520 }
c906108c
SS
3521
3522 /* Cached table no good: need to read the entire table anew.
3523 Or else we want all the sections, in which case it's actually
3524 more efficient to read the whole table in one block anyway. */
3525
0d43edd1
JB
3526 if (! simple_read_overlay_table ())
3527 return;
3528
c378eb4e 3529 /* Now may as well update all sections, even if only one was requested. */
c906108c 3530 ALL_OBJSECTIONS (objfile, osect)
714835d5 3531 if (section_is_overlay (osect))
c5aa993b
JM
3532 {
3533 int i, size;
fbd35540
MS
3534 bfd *obfd = osect->objfile->obfd;
3535 asection *bsect = osect->the_bfd_section;
c5aa993b 3536
2c500098 3537 size = bfd_get_section_size (bsect);
c5aa993b 3538 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3539 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3540 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3541 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3542 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3543 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3544 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3545 }
3546 }
c906108c
SS
3547}
3548
086df311
DJ
3549/* Set the output sections and output offsets for section SECTP in
3550 ABFD. The relocation code in BFD will read these offsets, so we
3551 need to be sure they're initialized. We map each section to itself,
3552 with no offset; this means that SECTP->vma will be honored. */
3553
3554static void
3555symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3556{
3557 sectp->output_section = sectp;
3558 sectp->output_offset = 0;
3559}
3560
ac8035ab
TG
3561/* Default implementation for sym_relocate. */
3562
ac8035ab
TG
3563bfd_byte *
3564default_symfile_relocate (struct objfile *objfile, asection *sectp,
3565 bfd_byte *buf)
3566{
3019eac3
DE
3567 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3568 DWO file. */
3569 bfd *abfd = sectp->owner;
ac8035ab
TG
3570
3571 /* We're only interested in sections with relocation
3572 information. */
3573 if ((sectp->flags & SEC_RELOC) == 0)
3574 return NULL;
3575
3576 /* We will handle section offsets properly elsewhere, so relocate as if
3577 all sections begin at 0. */
3578 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3579
3580 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3581}
3582
086df311
DJ
3583/* Relocate the contents of a debug section SECTP in ABFD. The
3584 contents are stored in BUF if it is non-NULL, or returned in a
3585 malloc'd buffer otherwise.
3586
3587 For some platforms and debug info formats, shared libraries contain
3588 relocations against the debug sections (particularly for DWARF-2;
3589 one affected platform is PowerPC GNU/Linux, although it depends on
3590 the version of the linker in use). Also, ELF object files naturally
3591 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3592 the relocations in order to get the locations of symbols correct.
3593 Another example that may require relocation processing, is the
3594 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3595 debug section. */
086df311
DJ
3596
3597bfd_byte *
ac8035ab
TG
3598symfile_relocate_debug_section (struct objfile *objfile,
3599 asection *sectp, bfd_byte *buf)
086df311 3600{
ac8035ab 3601 gdb_assert (objfile->sf->sym_relocate);
086df311 3602
ac8035ab 3603 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3604}
c906108c 3605
31d99776
DJ
3606struct symfile_segment_data *
3607get_symfile_segment_data (bfd *abfd)
3608{
00b5771c 3609 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3610
3611 if (sf == NULL)
3612 return NULL;
3613
3614 return sf->sym_segments (abfd);
3615}
3616
3617void
3618free_symfile_segment_data (struct symfile_segment_data *data)
3619{
3620 xfree (data->segment_bases);
3621 xfree (data->segment_sizes);
3622 xfree (data->segment_info);
3623 xfree (data);
3624}
3625
28c32713
JB
3626/* Given:
3627 - DATA, containing segment addresses from the object file ABFD, and
3628 the mapping from ABFD's sections onto the segments that own them,
3629 and
3630 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3631 segment addresses reported by the target,
3632 store the appropriate offsets for each section in OFFSETS.
3633
3634 If there are fewer entries in SEGMENT_BASES than there are segments
3635 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3636
8d385431
DJ
3637 If there are more entries, then ignore the extra. The target may
3638 not be able to distinguish between an empty data segment and a
3639 missing data segment; a missing text segment is less plausible. */
3b7bacac 3640
31d99776 3641int
3189cb12
DE
3642symfile_map_offsets_to_segments (bfd *abfd,
3643 const struct symfile_segment_data *data,
31d99776
DJ
3644 struct section_offsets *offsets,
3645 int num_segment_bases,
3646 const CORE_ADDR *segment_bases)
3647{
3648 int i;
3649 asection *sect;
3650
28c32713
JB
3651 /* It doesn't make sense to call this function unless you have some
3652 segment base addresses. */
202b96c1 3653 gdb_assert (num_segment_bases > 0);
28c32713 3654
31d99776
DJ
3655 /* If we do not have segment mappings for the object file, we
3656 can not relocate it by segments. */
3657 gdb_assert (data != NULL);
3658 gdb_assert (data->num_segments > 0);
3659
31d99776
DJ
3660 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3661 {
31d99776
DJ
3662 int which = data->segment_info[i];
3663
28c32713
JB
3664 gdb_assert (0 <= which && which <= data->num_segments);
3665
3666 /* Don't bother computing offsets for sections that aren't
3667 loaded as part of any segment. */
3668 if (! which)
3669 continue;
3670
3671 /* Use the last SEGMENT_BASES entry as the address of any extra
3672 segments mentioned in DATA->segment_info. */
31d99776 3673 if (which > num_segment_bases)
28c32713 3674 which = num_segment_bases;
31d99776 3675
28c32713
JB
3676 offsets->offsets[i] = (segment_bases[which - 1]
3677 - data->segment_bases[which - 1]);
31d99776
DJ
3678 }
3679
3680 return 1;
3681}
3682
3683static void
3684symfile_find_segment_sections (struct objfile *objfile)
3685{
3686 bfd *abfd = objfile->obfd;
3687 int i;
3688 asection *sect;
3689 struct symfile_segment_data *data;
3690
3691 data = get_symfile_segment_data (objfile->obfd);
3692 if (data == NULL)
3693 return;
3694
3695 if (data->num_segments != 1 && data->num_segments != 2)
3696 {
3697 free_symfile_segment_data (data);
3698 return;
3699 }
3700
3701 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3702 {
31d99776
DJ
3703 int which = data->segment_info[i];
3704
3705 if (which == 1)
3706 {
3707 if (objfile->sect_index_text == -1)
3708 objfile->sect_index_text = sect->index;
3709
3710 if (objfile->sect_index_rodata == -1)
3711 objfile->sect_index_rodata = sect->index;
3712 }
3713 else if (which == 2)
3714 {
3715 if (objfile->sect_index_data == -1)
3716 objfile->sect_index_data = sect->index;
3717
3718 if (objfile->sect_index_bss == -1)
3719 objfile->sect_index_bss = sect->index;
3720 }
3721 }
3722
3723 free_symfile_segment_data (data);
3724}
3725
c906108c 3726void
fba45db2 3727_initialize_symfile (void)
c906108c
SS
3728{
3729 struct cmd_list_element *c;
c5aa993b 3730
1a966eab
AC
3731 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3732Load symbol table from executable file FILE.\n\
c906108c 3733The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3734to execute."), &cmdlist);
5ba2abeb 3735 set_cmd_completer (c, filename_completer);
c906108c 3736
1a966eab 3737 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3738Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3739Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3740 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3741The optional arguments are section-name section-address pairs and\n\
3742should be specified if the data and bss segments are not contiguous\n\
1a966eab 3743with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3744 &cmdlist);
5ba2abeb 3745 set_cmd_completer (c, filename_completer);
c906108c 3746
1a966eab
AC
3747 c = add_cmd ("load", class_files, load_command, _("\
3748Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3749for access from GDB.\n\
3750A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3751 set_cmd_completer (c, filename_completer);
c906108c 3752
c5aa993b 3753 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3754 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3755 "overlay ", 0, &cmdlist);
3756
3757 add_com_alias ("ovly", "overlay", class_alias, 1);
3758 add_com_alias ("ov", "overlay", class_alias, 1);
3759
c5aa993b 3760 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3761 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3762
c5aa993b 3763 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3764 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3765
c5aa993b 3766 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3767 _("List mappings of overlay sections."), &overlaylist);
c906108c 3768
c5aa993b 3769 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3770 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3771 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3772 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3773 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3774 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3775 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3776 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3777
3778 /* Filename extension to source language lookup table: */
3779 init_filename_language_table ();
26c41df3
AC
3780 add_setshow_string_noescape_cmd ("extension-language", class_files,
3781 &ext_args, _("\
3782Set mapping between filename extension and source language."), _("\
3783Show mapping between filename extension and source language."), _("\
3784Usage: set extension-language .foo bar"),
3785 set_ext_lang_command,
920d2a44 3786 show_ext_args,
26c41df3 3787 &setlist, &showlist);
c906108c 3788
c5aa993b 3789 add_info ("extensions", info_ext_lang_command,
1bedd215 3790 _("All filename extensions associated with a source language."));
917317f4 3791
525226b5
AC
3792 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3793 &debug_file_directory, _("\
24ddea62
JK
3794Set the directories where separate debug symbols are searched for."), _("\
3795Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3796Separate debug symbols are first searched for in the same\n\
3797directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3798and lastly at the path of the directory of the binary with\n\
24ddea62 3799each global debug-file-directory component prepended."),
525226b5 3800 NULL,
920d2a44 3801 show_debug_file_directory,
525226b5 3802 &setlist, &showlist);
c906108c 3803}
This page took 1.857826 seconds and 4 git commands to generate.