Add PowerPC64 ld --tls-get-addr-optimize.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
438e1e42 65#include "gdb_sys_time.h"
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void add_filename_language (char *ext, enum language lang);
392a587b 118
a14ed312 119static void info_ext_lang_command (char *args, int from_tty);
392a587b 120
a14ed312 121static void init_filename_language_table (void);
392a587b 122
31d99776
DJ
123static void symfile_find_segment_sections (struct objfile *objfile);
124
a14ed312 125void _initialize_symfile (void);
c906108c
SS
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
c378eb4e 129 prepared to read. */
c906108c 130
c256e171
DE
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
00b5771c 139
c256e171
DE
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 143
770e7fc7
DE
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
b7209cb4
FF
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
c906108c 165 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 166 report all the functions that are actually present. */
c906108c
SS
167
168int auto_solib_add = 1;
c906108c 169\f
c5aa993b 170
770e7fc7
DE
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
0d14a781 196/* True if we are reading a symbol table. */
c906108c
SS
197
198int currently_reading_symtab = 0;
199
200static void
fba45db2 201decrement_reading_symtab (void *dummy)
c906108c
SS
202{
203 currently_reading_symtab--;
2cb9c859 204 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
205}
206
ccefe4c4
TT
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
3b7bacac 209
ccefe4c4
TT
210struct cleanup *
211increment_reading_symtab (void)
c906108c 212{
ccefe4c4 213 ++currently_reading_symtab;
2cb9c859 214 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 215 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
216}
217
5417f6dc
RM
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
c906108c
SS
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
4efb68b1 228find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 229{
c5aa993b 230 asection **lowest = (asection **) obj;
c906108c 231
eb73e134 232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
d76488d8
TT
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
a39a16c4
MM
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
a39a16c4
MM
258
259 return sap;
260}
62557bbc
KB
261
262/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 263 an existing section table. */
62557bbc
KB
264
265extern struct section_addr_info *
0542c86d
PA
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
62557bbc
KB
268{
269 struct section_addr_info *sap;
0542c86d 270 const struct target_section *stp;
62557bbc
KB
271 int oidx;
272
a39a16c4 273 sap = alloc_section_addr_info (end - start);
62557bbc
KB
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
2b2848e2
DE
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 281 && oidx < end - start)
62557bbc
KB
282 {
283 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
286 oidx++;
287 }
288 }
289
d76488d8
TT
290 sap->num_sections = oidx;
291
62557bbc
KB
292 return sap;
293}
294
82ccf5a5 295/* Create a section_addr_info from section offsets in ABFD. */
089b4803 296
82ccf5a5
JK
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
82ccf5a5
JK
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 307 {
82ccf5a5
JK
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
311 i++;
312 }
d76488d8
TT
313
314 sap->num_sections = i;
315
089b4803
TG
316 return sap;
317}
318
82ccf5a5
JK
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 331 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
62557bbc 339
c378eb4e 340/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
a39a16c4 347 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 348 xfree (sap->other[idx].name);
b8c9b27d 349 xfree (sap);
62557bbc
KB
350}
351
e8289572 352/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 353
e8289572
JB
354static void
355init_objfile_sect_indices (struct objfile *objfile)
c906108c 356{
e8289572 357 asection *sect;
c906108c 358 int i;
5417f6dc 359
b8fbeb18 360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_rodata = sect->index;
375
bbcd32ad
FF
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
31d99776
DJ
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
bbcd32ad
FF
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
b8fbeb18 411}
c906108c 412
c1bd25fd
DJ
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
2c0b251b 424static void
c1bd25fd
DJ
425place_section (bfd *abfd, asection *sect, void *obj)
426{
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
3bd72c6f 430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 431
2711e456
DJ
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 return;
435
436 /* If the user specified an offset, honor it. */
65cf3563 437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
441 start_addr = (arg->lowest + align - 1) & -align;
442
c1bd25fd
DJ
443 do {
444 asection *cur_sec;
c1bd25fd 445
c1bd25fd
DJ
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
c1bd25fd
DJ
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
2711e456
DJ
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
3bd72c6f 473 break;
c1bd25fd
DJ
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
65cf3563 481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 482 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 483}
e8289572 484
75242ef4
JK
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
e8289572
JB
488
489void
75242ef4
JK
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
3189cb12 492 const struct section_addr_info *addrs)
e8289572
JB
493{
494 int i;
495
75242ef4 496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 497
c378eb4e 498 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 499 for (i = 0; i < addrs->num_sections; i++)
e8289572 500 {
3189cb12 501 const struct other_sections *osp;
e8289572 502
75242ef4 503 osp = &addrs->other[i];
5488dafb 504 if (osp->sectindex == -1)
e8289572
JB
505 continue;
506
c378eb4e 507 /* Record all sections in offsets. */
e8289572 508 /* The section_offsets in the objfile are here filled in using
c378eb4e 509 the BFD index. */
75242ef4
JK
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
1276c759
JK
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
82ccf5a5
JK
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 539 int retval;
82ccf5a5 540
1276c759 541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
542 if (retval)
543 return retval;
544
5488dafb 545 return a->sectindex - b->sectindex;
82ccf5a5
JK
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
8d749320 558 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 559 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
75242ef4 568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
75242ef4
JK
576 CORE_ADDR lower_offset;
577 int i;
82ccf5a5
JK
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
582
583 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
e8289572 592 }
75242ef4
JK
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
82ccf5a5
JK
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
c378eb4e
MS
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
82ccf5a5 616
8d749320 617 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
618 make_cleanup (xfree, addrs_to_abfd_addrs);
619
620 while (*addrs_sorted)
621 {
1276c759 622 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
623
624 while (*abfd_addrs_sorted
1276c759
JK
625 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
626 sect_name) < 0)
82ccf5a5
JK
627 abfd_addrs_sorted++;
628
629 if (*abfd_addrs_sorted
1276c759
JK
630 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
631 sect_name) == 0)
82ccf5a5
JK
632 {
633 int index_in_addrs;
634
635 /* Make the found item directly addressable from ADDRS. */
636 index_in_addrs = *addrs_sorted - addrs->other;
637 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
638 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
639
640 /* Never use the same ABFD entry twice. */
641 abfd_addrs_sorted++;
642 }
643
644 addrs_sorted++;
645 }
646
75242ef4
JK
647 /* Calculate offsets for the loadable sections.
648 FIXME! Sections must be in order of increasing loadable section
649 so that contiguous sections can use the lower-offset!!!
650
651 Adjust offsets if the segments are not contiguous.
652 If the section is contiguous, its offset should be set to
653 the offset of the highest loadable section lower than it
654 (the loadable section directly below it in memory).
655 this_offset = lower_offset = lower_addr - lower_orig_addr */
656
d76488d8 657 for (i = 0; i < addrs->num_sections; i++)
75242ef4 658 {
82ccf5a5 659 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
660
661 if (sect)
75242ef4 662 {
c378eb4e 663 /* This is the index used by BFD. */
82ccf5a5 664 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
665
666 if (addrs->other[i].addr != 0)
75242ef4 667 {
82ccf5a5 668 addrs->other[i].addr -= sect->addr;
75242ef4 669 lower_offset = addrs->other[i].addr;
75242ef4
JK
670 }
671 else
672d9c23 672 addrs->other[i].addr = lower_offset;
75242ef4
JK
673 }
674 else
672d9c23 675 {
1276c759
JK
676 /* addr_section_name transformation is not used for SECT_NAME. */
677 const char *sect_name = addrs->other[i].name;
678
b0fcb67f
JK
679 /* This section does not exist in ABFD, which is normally
680 unexpected and we want to issue a warning.
681
4d9743af
JK
682 However, the ELF prelinker does create a few sections which are
683 marked in the main executable as loadable (they are loaded in
684 memory from the DYNAMIC segment) and yet are not present in
685 separate debug info files. This is fine, and should not cause
686 a warning. Shared libraries contain just the section
687 ".gnu.liblist" but it is not marked as loadable there. There is
688 no other way to identify them than by their name as the sections
1276c759
JK
689 created by prelink have no special flags.
690
691 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
692
693 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 694 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
695 || (strcmp (sect_name, ".bss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)
699 || (strcmp (sect_name, ".sbss") == 0
700 && i > 0
701 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
702 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
672d9c23 706 addrs->other[i].addr = 0;
5488dafb 707 addrs->other[i].sectindex = -1;
672d9c23 708 }
75242ef4 709 }
82ccf5a5
JK
710
711 do_cleanups (my_cleanup);
75242ef4
JK
712}
713
714/* Parse the user's idea of an offset for dynamic linking, into our idea
715 of how to represent it for fast symbol reading. This is the default
716 version of the sym_fns.sym_offsets function for symbol readers that
717 don't need to do anything special. It allocates a section_offsets table
718 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
719
720void
721default_symfile_offsets (struct objfile *objfile,
3189cb12 722 const struct section_addr_info *addrs)
75242ef4 723{
d445b2f6 724 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
725 objfile->section_offsets = (struct section_offsets *)
726 obstack_alloc (&objfile->objfile_obstack,
727 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
728 relative_addr_info_to_section_offsets (objfile->section_offsets,
729 objfile->num_sections, addrs);
e8289572 730
c1bd25fd
DJ
731 /* For relocatable files, all loadable sections will start at zero.
732 The zero is meaningless, so try to pick arbitrary addresses such
733 that no loadable sections overlap. This algorithm is quadratic,
734 but the number of sections in a single object file is generally
735 small. */
736 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
737 {
738 struct place_section_arg arg;
2711e456
DJ
739 bfd *abfd = objfile->obfd;
740 asection *cur_sec;
2711e456
DJ
741
742 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
743 /* We do not expect this to happen; just skip this step if the
744 relocatable file has a section with an assigned VMA. */
745 if (bfd_section_vma (abfd, cur_sec) != 0)
746 break;
747
748 if (cur_sec == NULL)
749 {
750 CORE_ADDR *offsets = objfile->section_offsets->offsets;
751
752 /* Pick non-overlapping offsets for sections the user did not
753 place explicitly. */
754 arg.offsets = objfile->section_offsets;
755 arg.lowest = 0;
756 bfd_map_over_sections (objfile->obfd, place_section, &arg);
757
758 /* Correctly filling in the section offsets is not quite
759 enough. Relocatable files have two properties that
760 (most) shared objects do not:
761
762 - Their debug information will contain relocations. Some
763 shared libraries do also, but many do not, so this can not
764 be assumed.
765
766 - If there are multiple code sections they will be loaded
767 at different relative addresses in memory than they are
768 in the objfile, since all sections in the file will start
769 at address zero.
770
771 Because GDB has very limited ability to map from an
772 address in debug info to the correct code section,
773 it relies on adding SECT_OFF_TEXT to things which might be
774 code. If we clear all the section offsets, and set the
775 section VMAs instead, then symfile_relocate_debug_section
776 will return meaningful debug information pointing at the
777 correct sections.
778
779 GDB has too many different data structures for section
780 addresses - a bfd, objfile, and so_list all have section
781 tables, as does exec_ops. Some of these could probably
782 be eliminated. */
783
784 for (cur_sec = abfd->sections; cur_sec != NULL;
785 cur_sec = cur_sec->next)
786 {
787 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
788 continue;
789
790 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
791 exec_set_section_address (bfd_get_filename (abfd),
792 cur_sec->index,
30510692 793 offsets[cur_sec->index]);
2711e456
DJ
794 offsets[cur_sec->index] = 0;
795 }
796 }
c1bd25fd
DJ
797 }
798
e8289572 799 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 800 .rodata sections. */
e8289572
JB
801 init_objfile_sect_indices (objfile);
802}
803
31d99776
DJ
804/* Divide the file into segments, which are individual relocatable units.
805 This is the default version of the sym_fns.sym_segments function for
806 symbol readers that do not have an explicit representation of segments.
807 It assumes that object files do not have segments, and fully linked
808 files have a single segment. */
809
810struct symfile_segment_data *
811default_symfile_segments (bfd *abfd)
812{
813 int num_sections, i;
814 asection *sect;
815 struct symfile_segment_data *data;
816 CORE_ADDR low, high;
817
818 /* Relocatable files contain enough information to position each
819 loadable section independently; they should not be relocated
820 in segments. */
821 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
822 return NULL;
823
824 /* Make sure there is at least one loadable section in the file. */
825 for (sect = abfd->sections; sect != NULL; sect = sect->next)
826 {
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 break;
831 }
832 if (sect == NULL)
833 return NULL;
834
835 low = bfd_get_section_vma (abfd, sect);
836 high = low + bfd_get_section_size (sect);
837
41bf6aca 838 data = XCNEW (struct symfile_segment_data);
31d99776 839 data->num_segments = 1;
fc270c35
TT
840 data->segment_bases = XCNEW (CORE_ADDR);
841 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
842
843 num_sections = bfd_count_sections (abfd);
fc270c35 844 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
845
846 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
847 {
848 CORE_ADDR vma;
849
850 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
851 continue;
852
853 vma = bfd_get_section_vma (abfd, sect);
854 if (vma < low)
855 low = vma;
856 if (vma + bfd_get_section_size (sect) > high)
857 high = vma + bfd_get_section_size (sect);
858
859 data->segment_info[i] = 1;
860 }
861
862 data->segment_bases[0] = low;
863 data->segment_sizes[0] = high - low;
864
865 return data;
866}
867
608e2dbb
TT
868/* This is a convenience function to call sym_read for OBJFILE and
869 possibly force the partial symbols to be read. */
870
871static void
872read_symbols (struct objfile *objfile, int add_flags)
873{
874 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 875 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
876
877 /* find_separate_debug_file_in_section should be called only if there is
878 single binary with no existing separate debug info file. */
879 if (!objfile_has_partial_symbols (objfile)
880 && objfile->separate_debug_objfile == NULL
881 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
882 {
883 bfd *abfd = find_separate_debug_file_in_section (objfile);
884 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
885
886 if (abfd != NULL)
24ba069a
JK
887 {
888 /* find_separate_debug_file_in_section uses the same filename for the
889 virtual section-as-bfd like the bfd filename containing the
890 section. Therefore use also non-canonical name form for the same
891 file containing the section. */
892 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
893 objfile);
894 }
608e2dbb
TT
895
896 do_cleanups (cleanup);
897 }
898 if ((add_flags & SYMFILE_NO_READ) == 0)
899 require_partial_symbols (objfile, 0);
900}
901
3d6e24f0
JB
902/* Initialize entry point information for this objfile. */
903
904static void
905init_entry_point_info (struct objfile *objfile)
906{
6ef55de7
TT
907 struct entry_info *ei = &objfile->per_bfd->ei;
908
909 if (ei->initialized)
910 return;
911 ei->initialized = 1;
912
3d6e24f0
JB
913 /* Save startup file's range of PC addresses to help blockframe.c
914 decide where the bottom of the stack is. */
915
916 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
917 {
918 /* Executable file -- record its entry point so we'll recognize
919 the startup file because it contains the entry point. */
6ef55de7
TT
920 ei->entry_point = bfd_get_start_address (objfile->obfd);
921 ei->entry_point_p = 1;
3d6e24f0
JB
922 }
923 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
924 && bfd_get_start_address (objfile->obfd) != 0)
925 {
926 /* Some shared libraries may have entry points set and be
927 runnable. There's no clear way to indicate this, so just check
928 for values other than zero. */
6ef55de7
TT
929 ei->entry_point = bfd_get_start_address (objfile->obfd);
930 ei->entry_point_p = 1;
3d6e24f0
JB
931 }
932 else
933 {
934 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 935 ei->entry_point_p = 0;
3d6e24f0
JB
936 }
937
6ef55de7 938 if (ei->entry_point_p)
3d6e24f0 939 {
53eddfa6 940 struct obj_section *osect;
6ef55de7 941 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 942 int found;
3d6e24f0
JB
943
944 /* Make certain that the address points at real code, and not a
945 function descriptor. */
946 entry_point
df6d5441 947 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
948 entry_point,
949 &current_target);
950
951 /* Remove any ISA markers, so that this matches entries in the
952 symbol table. */
6ef55de7 953 ei->entry_point
df6d5441 954 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
955
956 found = 0;
957 ALL_OBJFILE_OSECTIONS (objfile, osect)
958 {
959 struct bfd_section *sect = osect->the_bfd_section;
960
961 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
962 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
963 + bfd_get_section_size (sect)))
964 {
6ef55de7 965 ei->the_bfd_section_index
53eddfa6
TT
966 = gdb_bfd_section_index (objfile->obfd, sect);
967 found = 1;
968 break;
969 }
970 }
971
972 if (!found)
6ef55de7 973 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
974 }
975}
976
c906108c
SS
977/* Process a symbol file, as either the main file or as a dynamically
978 loaded file.
979
36e4d068
JB
980 This function does not set the OBJFILE's entry-point info.
981
96baa820
JM
982 OBJFILE is where the symbols are to be read from.
983
7e8580c1
JB
984 ADDRS is the list of section load addresses. If the user has given
985 an 'add-symbol-file' command, then this is the list of offsets and
986 addresses he or she provided as arguments to the command; or, if
987 we're handling a shared library, these are the actual addresses the
988 sections are loaded at, according to the inferior's dynamic linker
989 (as gleaned by GDB's shared library code). We convert each address
990 into an offset from the section VMA's as it appears in the object
991 file, and then call the file's sym_offsets function to convert this
992 into a format-specific offset table --- a `struct section_offsets'.
96baa820 993
7eedccfa
PP
994 ADD_FLAGS encodes verbosity level, whether this is main symbol or
995 an extra symbol file such as dynamically loaded code, and wether
996 breakpoint reset should be deferred. */
c906108c 997
36e4d068
JB
998static void
999syms_from_objfile_1 (struct objfile *objfile,
1000 struct section_addr_info *addrs,
36e4d068 1001 int add_flags)
c906108c 1002{
a39a16c4 1003 struct section_addr_info *local_addr = NULL;
c906108c 1004 struct cleanup *old_chain;
7eedccfa 1005 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1006
8fb8eb5c 1007 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1008
75245b24 1009 if (objfile->sf == NULL)
36e4d068
JB
1010 {
1011 /* No symbols to load, but we still need to make sure
1012 that the section_offsets table is allocated. */
d445b2f6 1013 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1015
1016 objfile->num_sections = num_sections;
1017 objfile->section_offsets
1018 = obstack_alloc (&objfile->objfile_obstack, size);
1019 memset (objfile->section_offsets, 0, size);
1020 return;
1021 }
75245b24 1022
c906108c
SS
1023 /* Make sure that partially constructed symbol tables will be cleaned up
1024 if an error occurs during symbol reading. */
74b7792f 1025 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1026
6bf667bb
DE
1027 /* If ADDRS is NULL, put together a dummy address list.
1028 We now establish the convention that an addr of zero means
c378eb4e 1029 no load address was specified. */
6bf667bb 1030 if (! addrs)
a39a16c4 1031 {
d445b2f6 1032 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1033 make_cleanup (xfree, local_addr);
1034 addrs = local_addr;
1035 }
1036
c5aa993b 1037 if (mainline)
c906108c
SS
1038 {
1039 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1040 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1041 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1042
1043 /* Since no error yet, throw away the old symbol table. */
1044
1045 if (symfile_objfile != NULL)
1046 {
1047 free_objfile (symfile_objfile);
adb7f338 1048 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1049 }
1050
1051 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1052 If the user wants to get rid of them, they should do "symbol-file"
1053 without arguments first. Not sure this is the best behavior
1054 (PR 2207). */
c906108c 1055
c5aa993b 1056 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1057 }
1058
1059 /* Convert addr into an offset rather than an absolute address.
1060 We find the lowest address of a loaded segment in the objfile,
53a5351d 1061 and assume that <addr> is where that got loaded.
c906108c 1062
53a5351d
JM
1063 We no longer warn if the lowest section is not a text segment (as
1064 happens for the PA64 port. */
6bf667bb 1065 if (addrs->num_sections > 0)
75242ef4 1066 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1067
1068 /* Initialize symbol reading routines for this objfile, allow complaints to
1069 appear for this new file, and record how verbose to be, then do the
c378eb4e 1070 initial symbol reading for this file. */
c906108c 1071
c5aa993b 1072 (*objfile->sf->sym_init) (objfile);
7eedccfa 1073 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1074
6bf667bb 1075 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1076
608e2dbb 1077 read_symbols (objfile, add_flags);
b11896a5 1078
c906108c
SS
1079 /* Discard cleanups as symbol reading was successful. */
1080
1081 discard_cleanups (old_chain);
f7545552 1082 xfree (local_addr);
c906108c
SS
1083}
1084
36e4d068
JB
1085/* Same as syms_from_objfile_1, but also initializes the objfile
1086 entry-point info. */
1087
6bf667bb 1088static void
36e4d068
JB
1089syms_from_objfile (struct objfile *objfile,
1090 struct section_addr_info *addrs,
36e4d068
JB
1091 int add_flags)
1092{
6bf667bb 1093 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1094 init_entry_point_info (objfile);
1095}
1096
c906108c
SS
1097/* Perform required actions after either reading in the initial
1098 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1099 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1100
e7d52ed3
DE
1101static void
1102finish_new_objfile (struct objfile *objfile, int add_flags)
c906108c 1103{
c906108c 1104 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1105 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1106 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1107 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1108 {
1109 /* OK, make it the "real" symbol file. */
1110 symfile_objfile = objfile;
1111
c1e56572 1112 clear_symtab_users (add_flags);
c906108c 1113 }
7eedccfa 1114 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1115 {
69de3c6a 1116 breakpoint_re_set ();
c906108c
SS
1117 }
1118
1119 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1120 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1121}
1122
1123/* Process a symbol file, as either the main file or as a dynamically
1124 loaded file.
1125
5417f6dc 1126 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1127 A new reference is acquired by this function.
7904e09f 1128
24ba069a
JK
1129 For NAME description see allocate_objfile's definition.
1130
7eedccfa
PP
1131 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1132 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1133
6bf667bb 1134 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1135 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1136
63524580
JK
1137 PARENT is the original objfile if ABFD is a separate debug info file.
1138 Otherwise PARENT is NULL.
1139
c906108c 1140 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1141 Upon failure, jumps back to command level (never returns). */
7eedccfa 1142
7904e09f 1143static struct objfile *
24ba069a 1144symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1145 struct section_addr_info *addrs,
1146 int flags, struct objfile *parent)
c906108c
SS
1147{
1148 struct objfile *objfile;
7eedccfa 1149 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1150 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1151 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1152 && (readnow_symbol_files
1153 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1154
9291a0cd 1155 if (readnow_symbol_files)
b11896a5
TT
1156 {
1157 flags |= OBJF_READNOW;
1158 add_flags &= ~SYMFILE_NO_READ;
1159 }
9291a0cd 1160
5417f6dc
RM
1161 /* Give user a chance to burp if we'd be
1162 interactively wiping out any existing symbols. */
c906108c
SS
1163
1164 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1165 && mainline
c906108c 1166 && from_tty
9e2f0ad4 1167 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1168 error (_("Not confirmed."));
c906108c 1169
24ba069a
JK
1170 objfile = allocate_objfile (abfd, name,
1171 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1172
63524580
JK
1173 if (parent)
1174 add_separate_debug_objfile (objfile, parent);
1175
78a4a9b9
AC
1176 /* We either created a new mapped symbol table, mapped an existing
1177 symbol table file which has not had initial symbol reading
c378eb4e 1178 performed, or need to read an unmapped symbol table. */
b11896a5 1179 if (should_print)
c906108c 1180 {
769d7dc4
AC
1181 if (deprecated_pre_add_symbol_hook)
1182 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1183 else
c906108c 1184 {
55333a84
DE
1185 printf_unfiltered (_("Reading symbols from %s..."), name);
1186 wrap_here ("");
1187 gdb_flush (gdb_stdout);
c906108c 1188 }
c906108c 1189 }
6bf667bb 1190 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1191
1192 /* We now have at least a partial symbol table. Check to see if the
1193 user requested that all symbols be read on initial access via either
1194 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1195 all partial symbol tables for this objfile if so. */
c906108c 1196
9291a0cd 1197 if ((flags & OBJF_READNOW))
c906108c 1198 {
b11896a5 1199 if (should_print)
c906108c 1200 {
a3f17187 1201 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1202 wrap_here ("");
1203 gdb_flush (gdb_stdout);
1204 }
1205
ccefe4c4
TT
1206 if (objfile->sf)
1207 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1208 }
1209
b11896a5 1210 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1211 {
1212 wrap_here ("");
55333a84 1213 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1214 wrap_here ("");
1215 }
1216
b11896a5 1217 if (should_print)
c906108c 1218 {
769d7dc4
AC
1219 if (deprecated_post_add_symbol_hook)
1220 deprecated_post_add_symbol_hook ();
c906108c 1221 else
55333a84 1222 printf_unfiltered (_("done.\n"));
c906108c
SS
1223 }
1224
481d0f41
JB
1225 /* We print some messages regardless of whether 'from_tty ||
1226 info_verbose' is true, so make sure they go out at the right
1227 time. */
1228 gdb_flush (gdb_stdout);
1229
109f874e 1230 if (objfile->sf == NULL)
8caee43b
PP
1231 {
1232 observer_notify_new_objfile (objfile);
c378eb4e 1233 return objfile; /* No symbols. */
8caee43b 1234 }
109f874e 1235
e7d52ed3 1236 finish_new_objfile (objfile, add_flags);
c906108c 1237
06d3b283 1238 observer_notify_new_objfile (objfile);
c906108c 1239
ce7d4522 1240 bfd_cache_close_all ();
c906108c
SS
1241 return (objfile);
1242}
1243
24ba069a
JK
1244/* Add BFD as a separate debug file for OBJFILE. For NAME description
1245 see allocate_objfile's definition. */
9cce227f
TG
1246
1247void
24ba069a
JK
1248symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1249 struct objfile *objfile)
9cce227f 1250{
15d123c9 1251 struct objfile *new_objfile;
089b4803
TG
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1260
6bf667bb 1261 new_objfile = symbol_file_add_with_addrs
24ba069a 1262 (bfd, name, symfile_flags, sap,
9cce227f 1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1264 | OBJF_USERLOADED),
1265 objfile);
089b4803
TG
1266
1267 do_cleanups (my_cleanup);
9cce227f 1268}
7904e09f 1269
eb4556d7
JB
1270/* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
6bf667bb 1272 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
eb4556d7 1274struct objfile *
24ba069a 1275symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1276 struct section_addr_info *addrs,
63524580 1277 int flags, struct objfile *parent)
eb4556d7 1278{
24ba069a
JK
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1280 parent);
eb4556d7
JB
1281}
1282
7904e09f 1283/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1285
7904e09f 1286struct objfile *
69150c3d
JK
1287symbol_file_add (const char *name, int add_flags,
1288 struct section_addr_info *addrs, int flags)
7904e09f 1289{
8ac244b4
TT
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1293
24ba069a 1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1295 do_cleanups (cleanup);
1296 return objf;
7904e09f
JB
1297}
1298
d7db6da9
FN
1299/* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1305 command itself. */
5417f6dc 1306
1adeb98a 1307void
69150c3d 1308symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1309{
d7db6da9
FN
1310 symbol_file_add_main_1 (args, from_tty, 0);
1311}
1312
1313static void
69150c3d 1314symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1315{
7dcd53a0
TT
1316 const int add_flags = (current_inferior ()->symfile_flags
1317 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1318
7eedccfa 1319 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1320
d7db6da9
FN
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1324
7dcd53a0
TT
1325 if ((flags & SYMFILE_NO_READ) == 0)
1326 set_initial_language ();
1adeb98a
FN
1327}
1328
1329void
1330symbol_file_clear (int from_tty)
1331{
1332 if ((have_full_symbols () || have_partial_symbols ())
1333 && from_tty
0430b0d6
AS
1334 && (symfile_objfile
1335 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1336 objfile_name (symfile_objfile))
0430b0d6 1337 : !query (_("Discard symbol table? "))))
8a3fe4f8 1338 error (_("Not confirmed."));
1adeb98a 1339
0133421a
JK
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1342 no_shared_libraries (NULL, from_tty);
1343
0133421a
JK
1344 free_all_objfiles ();
1345
adb7f338 1346 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1347 if (from_tty)
1348 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1349}
1350
5b5d99cf 1351static int
287ccc17 1352separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1353 struct objfile *parent_objfile)
5b5d99cf 1354{
904578ed
JK
1355 unsigned long file_crc;
1356 int file_crc_p;
f1838a98 1357 bfd *abfd;
32a0e547 1358 struct stat parent_stat, abfd_stat;
904578ed 1359 int verified_as_different;
32a0e547
JK
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1365 the separate debug infos with the same basename can exist. */
32a0e547 1366
4262abfb 1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1368 return 0;
5b5d99cf 1369
2938e6cf 1370 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1371
1372 if (!abfd)
5b5d99cf
JB
1373 return 0;
1374
0ba1096a 1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1389 {
904578ed
JK
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
cbb099e8 1393 gdb_bfd_unref (abfd);
904578ed
JK
1394 return 0;
1395 }
1396 verified_as_different = 1;
32a0e547 1397 }
904578ed
JK
1398 else
1399 verified_as_different = 0;
32a0e547 1400
dccee2de 1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1402
cbb099e8 1403 gdb_bfd_unref (abfd);
5b5d99cf 1404
904578ed
JK
1405 if (!file_crc_p)
1406 return 0;
1407
287ccc17
JK
1408 if (crc != file_crc)
1409 {
dccee2de
TT
1410 unsigned long parent_crc;
1411
0a93529c
GB
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
904578ed 1415
dccee2de 1416 if (!verified_as_different)
904578ed 1417 {
dccee2de 1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1419 return 0;
1420 }
1421
dccee2de 1422 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1425 name, objfile_name (parent_objfile));
904578ed 1426
287ccc17
JK
1427 return 0;
1428 }
1429
1430 return 1;
5b5d99cf
JB
1431}
1432
aa28a74e 1433char *debug_file_directory = NULL;
920d2a44
AC
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
3e43a32a
MS
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1441 value);
1442}
5b5d99cf
JB
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
1db33378
PP
1448/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1454
1455static char *
1456find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
9cce227f 1460{
1db33378
PP
1461 char *debugdir;
1462 char *debugfile;
9cce227f 1463 int i;
e4ab2fad
JK
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
5b5d99cf 1467
1db33378 1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1469 i = strlen (dir);
1db33378
PP
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1ffa32ee 1472
25522fae
JK
1473 debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 + i
1475 + strlen (DEBUG_SUBDIRECTORY)
1476 + strlen ("/")
1db33378 1477 + strlen (debuglink)
25522fae 1478 + 1);
5b5d99cf
JB
1479
1480 /* First try in the same directory as the original file. */
1481 strcpy (debugfile, dir);
1db33378 1482 strcat (debugfile, debuglink);
5b5d99cf 1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1485 return debugfile;
5417f6dc 1486
5b5d99cf
JB
1487 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1488 strcpy (debugfile, dir);
1489 strcat (debugfile, DEBUG_SUBDIRECTORY);
1490 strcat (debugfile, "/");
1db33378 1491 strcat (debugfile, debuglink);
5b5d99cf 1492
32a0e547 1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1494 return debugfile;
5417f6dc 1495
24ddea62 1496 /* Then try in the global debugfile directories.
f888f159 1497
24ddea62
JK
1498 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499 cause "/..." lookups. */
5417f6dc 1500
e4ab2fad
JK
1501 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1503
e4ab2fad
JK
1504 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505 {
1506 strcpy (debugfile, debugdir);
aa28a74e 1507 strcat (debugfile, "/");
24ddea62 1508 strcat (debugfile, dir);
1db33378 1509 strcat (debugfile, debuglink);
aa28a74e 1510
32a0e547 1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1512 {
1513 do_cleanups (back_to);
1514 return debugfile;
1515 }
24ddea62
JK
1516
1517 /* If the file is in the sysroot, try using its base path in the
1518 global debugfile directory. */
1db33378
PP
1519 if (canon_dir != NULL
1520 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1521 strlen (gdb_sysroot)) == 0
1db33378 1522 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1523 {
e4ab2fad 1524 strcpy (debugfile, debugdir);
1db33378 1525 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1526 strcat (debugfile, "/");
1db33378 1527 strcat (debugfile, debuglink);
24ddea62 1528
32a0e547 1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1530 {
1531 do_cleanups (back_to);
1532 return debugfile;
1533 }
24ddea62 1534 }
aa28a74e 1535 }
f888f159 1536
e4ab2fad 1537 do_cleanups (back_to);
25522fae 1538 xfree (debugfile);
1db33378
PP
1539 return NULL;
1540}
1541
7edbb660 1542/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1543 If there were no directory separators in PATH, PATH will be empty
1544 string on return. */
1545
1546static void
1547terminate_after_last_dir_separator (char *path)
1548{
1549 int i;
1550
1551 /* Strip off the final filename part, leaving the directory name,
1552 followed by a slash. The directory can be relative or absolute. */
1553 for (i = strlen(path) - 1; i >= 0; i--)
1554 if (IS_DIR_SEPARATOR (path[i]))
1555 break;
1556
1557 /* If I is -1 then no directory is present there and DIR will be "". */
1558 path[i + 1] = '\0';
1559}
1560
1561/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1562 Returns pathname, or NULL. */
1563
1564char *
1565find_separate_debug_file_by_debuglink (struct objfile *objfile)
1566{
1567 char *debuglink;
1568 char *dir, *canon_dir;
1569 char *debugfile;
1570 unsigned long crc32;
1571 struct cleanup *cleanups;
1572
cc0ea93c 1573 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1574
1575 if (debuglink == NULL)
1576 {
1577 /* There's no separate debug info, hence there's no way we could
1578 load it => no warning. */
1579 return NULL;
1580 }
1581
71bdabee 1582 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1583 dir = xstrdup (objfile_name (objfile));
71bdabee 1584 make_cleanup (xfree, dir);
1db33378
PP
1585 terminate_after_last_dir_separator (dir);
1586 canon_dir = lrealpath (dir);
1587
1588 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1589 crc32, objfile);
1590 xfree (canon_dir);
1591
1592 if (debugfile == NULL)
1593 {
1db33378
PP
1594 /* For PR gdb/9538, try again with realpath (if different from the
1595 original). */
1596
1597 struct stat st_buf;
1598
4262abfb
JK
1599 if (lstat (objfile_name (objfile), &st_buf) == 0
1600 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1601 {
1602 char *symlink_dir;
1603
4262abfb 1604 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1605 if (symlink_dir != NULL)
1606 {
1607 make_cleanup (xfree, symlink_dir);
1608 terminate_after_last_dir_separator (symlink_dir);
1609 if (strcmp (dir, symlink_dir) != 0)
1610 {
1611 /* Different directory, so try using it. */
1612 debugfile = find_separate_debug_file (symlink_dir,
1613 symlink_dir,
1614 debuglink,
1615 crc32,
1616 objfile);
1617 }
1618 }
1619 }
1db33378 1620 }
aa28a74e 1621
1db33378 1622 do_cleanups (cleanups);
25522fae 1623 return debugfile;
5b5d99cf
JB
1624}
1625
c906108c
SS
1626/* This is the symbol-file command. Read the file, analyze its
1627 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1628 the command is rather bizarre:
1629
1630 1. The function buildargv implements various quoting conventions
1631 which are undocumented and have little or nothing in common with
1632 the way things are quoted (or not quoted) elsewhere in GDB.
1633
1634 2. Options are used, which are not generally used in GDB (perhaps
1635 "set mapped on", "set readnow on" would be better)
1636
1637 3. The order of options matters, which is contrary to GNU
c906108c
SS
1638 conventions (because it is confusing and inconvenient). */
1639
1640void
fba45db2 1641symbol_file_command (char *args, int from_tty)
c906108c 1642{
c906108c
SS
1643 dont_repeat ();
1644
1645 if (args == NULL)
1646 {
1adeb98a 1647 symbol_file_clear (from_tty);
c906108c
SS
1648 }
1649 else
1650 {
d1a41061 1651 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1652 int flags = OBJF_USERLOADED;
1653 struct cleanup *cleanups;
1654 char *name = NULL;
1655
7a292a7a 1656 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1657 while (*argv != NULL)
1658 {
78a4a9b9
AC
1659 if (strcmp (*argv, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
1661 else if (**argv == '-')
8a3fe4f8 1662 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1663 else
1664 {
cb2f3a29 1665 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1666 name = *argv;
78a4a9b9 1667 }
cb2f3a29 1668
c906108c
SS
1669 argv++;
1670 }
1671
1672 if (name == NULL)
cb2f3a29
MK
1673 error (_("no symbol file name was specified"));
1674
c906108c
SS
1675 do_cleanups (cleanups);
1676 }
1677}
1678
1679/* Set the initial language.
1680
cb2f3a29
MK
1681 FIXME: A better solution would be to record the language in the
1682 psymtab when reading partial symbols, and then use it (if known) to
1683 set the language. This would be a win for formats that encode the
1684 language in an easily discoverable place, such as DWARF. For
1685 stabs, we can jump through hoops looking for specially named
1686 symbols or try to intuit the language from the specific type of
1687 stabs we find, but we can't do that until later when we read in
1688 full symbols. */
c906108c 1689
8b60591b 1690void
fba45db2 1691set_initial_language (void)
c906108c 1692{
9e6c82ad 1693 enum language lang = main_language ();
c906108c 1694
9e6c82ad 1695 if (lang == language_unknown)
01f8c46d 1696 {
bf6d8a91 1697 char *name = main_name ();
d12307c1 1698 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1699
bf6d8a91
TT
1700 if (sym != NULL)
1701 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1702 }
cb2f3a29 1703
ccefe4c4
TT
1704 if (lang == language_unknown)
1705 {
1706 /* Make C the default language */
1707 lang = language_c;
c906108c 1708 }
ccefe4c4
TT
1709
1710 set_language (lang);
1711 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1712}
1713
cb2f3a29
MK
1714/* Open the file specified by NAME and hand it off to BFD for
1715 preliminary analysis. Return a newly initialized bfd *, which
1716 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1717 absolute). In case of trouble, error() is called. */
c906108c
SS
1718
1719bfd *
97a41605 1720symfile_bfd_open (const char *name)
c906108c
SS
1721{
1722 bfd *sym_bfd;
97a41605
GB
1723 int desc = -1;
1724 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1725
97a41605 1726 if (!is_target_filename (name))
f1838a98 1727 {
97a41605 1728 char *expanded_name, *absolute_name;
f1838a98 1729
97a41605 1730 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1731
97a41605
GB
1732 /* Look down path for it, allocate 2nd new malloc'd copy. */
1733 desc = openp (getenv ("PATH"),
1734 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1735 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1736#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1737 if (desc < 0)
1738 {
1739 char *exename = alloca (strlen (expanded_name) + 5);
433759f7 1740
97a41605
GB
1741 strcat (strcpy (exename, expanded_name), ".exe");
1742 desc = openp (getenv ("PATH"),
1743 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1744 exename, O_RDONLY | O_BINARY, &absolute_name);
1745 }
c906108c 1746#endif
97a41605
GB
1747 if (desc < 0)
1748 {
1749 make_cleanup (xfree, expanded_name);
1750 perror_with_name (expanded_name);
1751 }
cb2f3a29 1752
97a41605
GB
1753 xfree (expanded_name);
1754 make_cleanup (xfree, absolute_name);
1755 name = absolute_name;
1756 }
c906108c 1757
1c00ec6b 1758 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1759 if (!sym_bfd)
faab9922
JK
1760 error (_("`%s': can't open to read symbols: %s."), name,
1761 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1762
1763 if (!gdb_bfd_has_target_filename (sym_bfd))
1764 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1765
1766 if (!bfd_check_format (sym_bfd, bfd_object))
1767 {
f9a062ff 1768 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1769 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1770 bfd_errmsg (bfd_get_error ()));
1771 }
cb2f3a29 1772
faab9922
JK
1773 do_cleanups (back_to);
1774
cb2f3a29 1775 return sym_bfd;
c906108c
SS
1776}
1777
cb2f3a29
MK
1778/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1779 the section was not found. */
1780
0e931cf0
JB
1781int
1782get_section_index (struct objfile *objfile, char *section_name)
1783{
1784 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1785
0e931cf0
JB
1786 if (sect)
1787 return sect->index;
1788 else
1789 return -1;
1790}
1791
c256e171
DE
1792/* Link SF into the global symtab_fns list.
1793 FLAVOUR is the file format that SF handles.
1794 Called on startup by the _initialize routine in each object file format
1795 reader, to register information about each format the reader is prepared
1796 to handle. */
c906108c
SS
1797
1798void
c256e171 1799add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1800{
c256e171
DE
1801 registered_sym_fns fns = { flavour, sf };
1802
1803 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1804}
1805
cb2f3a29
MK
1806/* Initialize OBJFILE to read symbols from its associated BFD. It
1807 either returns or calls error(). The result is an initialized
1808 struct sym_fns in the objfile structure, that contains cached
1809 information about the symbol file. */
c906108c 1810
00b5771c 1811static const struct sym_fns *
31d99776 1812find_sym_fns (bfd *abfd)
c906108c 1813{
c256e171 1814 registered_sym_fns *rsf;
31d99776 1815 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1816 int i;
c906108c 1817
75245b24
MS
1818 if (our_flavour == bfd_target_srec_flavour
1819 || our_flavour == bfd_target_ihex_flavour
1820 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1821 return NULL; /* No symbols. */
75245b24 1822
c256e171
DE
1823 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1824 if (our_flavour == rsf->sym_flavour)
1825 return rsf->sym_fns;
cb2f3a29 1826
8a3fe4f8 1827 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1828 bfd_get_target (abfd));
c906108c
SS
1829}
1830\f
cb2f3a29 1831
c906108c
SS
1832/* This function runs the load command of our current target. */
1833
1834static void
fba45db2 1835load_command (char *arg, int from_tty)
c906108c 1836{
5b3fca71
TT
1837 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1838
e5cc9f32
JB
1839 dont_repeat ();
1840
4487aabf
PA
1841 /* The user might be reloading because the binary has changed. Take
1842 this opportunity to check. */
1843 reopen_exec_file ();
1844 reread_symbols ();
1845
c906108c 1846 if (arg == NULL)
1986bccd
AS
1847 {
1848 char *parg;
1849 int count = 0;
1850
1851 parg = arg = get_exec_file (1);
1852
1853 /* Count how many \ " ' tab space there are in the name. */
1854 while ((parg = strpbrk (parg, "\\\"'\t ")))
1855 {
1856 parg++;
1857 count++;
1858 }
1859
1860 if (count)
1861 {
1862 /* We need to quote this string so buildargv can pull it apart. */
1863 char *temp = xmalloc (strlen (arg) + count + 1 );
1864 char *ptemp = temp;
1865 char *prev;
1866
1867 make_cleanup (xfree, temp);
1868
1869 prev = parg = arg;
1870 while ((parg = strpbrk (parg, "\\\"'\t ")))
1871 {
1872 strncpy (ptemp, prev, parg - prev);
1873 ptemp += parg - prev;
1874 prev = parg++;
1875 *ptemp++ = '\\';
1876 }
1877 strcpy (ptemp, prev);
1878
1879 arg = temp;
1880 }
1881 }
1882
c906108c 1883 target_load (arg, from_tty);
2889e661
JB
1884
1885 /* After re-loading the executable, we don't really know which
1886 overlays are mapped any more. */
1887 overlay_cache_invalid = 1;
5b3fca71
TT
1888
1889 do_cleanups (cleanup);
c906108c
SS
1890}
1891
1892/* This version of "load" should be usable for any target. Currently
1893 it is just used for remote targets, not inftarg.c or core files,
1894 on the theory that only in that case is it useful.
1895
1896 Avoiding xmodem and the like seems like a win (a) because we don't have
1897 to worry about finding it, and (b) On VMS, fork() is very slow and so
1898 we don't want to run a subprocess. On the other hand, I'm not sure how
1899 performance compares. */
917317f4 1900
917317f4
JM
1901static int validate_download = 0;
1902
e4f9b4d5
MS
1903/* Callback service function for generic_load (bfd_map_over_sections). */
1904
1905static void
1906add_section_size_callback (bfd *abfd, asection *asec, void *data)
1907{
1908 bfd_size_type *sum = data;
1909
2c500098 1910 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1911}
1912
1913/* Opaque data for load_section_callback. */
1914struct load_section_data {
f698ca8e 1915 CORE_ADDR load_offset;
a76d924d
DJ
1916 struct load_progress_data *progress_data;
1917 VEC(memory_write_request_s) *requests;
1918};
1919
1920/* Opaque data for load_progress. */
1921struct load_progress_data {
1922 /* Cumulative data. */
e4f9b4d5
MS
1923 unsigned long write_count;
1924 unsigned long data_count;
1925 bfd_size_type total_size;
a76d924d
DJ
1926};
1927
1928/* Opaque data for load_progress for a single section. */
1929struct load_progress_section_data {
1930 struct load_progress_data *cumulative;
cf7a04e8 1931
a76d924d 1932 /* Per-section data. */
cf7a04e8
DJ
1933 const char *section_name;
1934 ULONGEST section_sent;
1935 ULONGEST section_size;
1936 CORE_ADDR lma;
1937 gdb_byte *buffer;
e4f9b4d5
MS
1938};
1939
a76d924d 1940/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1941
1942static void
1943load_progress (ULONGEST bytes, void *untyped_arg)
1944{
a76d924d
DJ
1945 struct load_progress_section_data *args = untyped_arg;
1946 struct load_progress_data *totals;
1947
1948 if (args == NULL)
1949 /* Writing padding data. No easy way to get at the cumulative
1950 stats, so just ignore this. */
1951 return;
1952
1953 totals = args->cumulative;
1954
1955 if (bytes == 0 && args->section_sent == 0)
1956 {
1957 /* The write is just starting. Let the user know we've started
1958 this section. */
79a45e25 1959 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1960 args->section_name, hex_string (args->section_size),
f5656ead 1961 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1962 return;
1963 }
cf7a04e8
DJ
1964
1965 if (validate_download)
1966 {
1967 /* Broken memories and broken monitors manifest themselves here
1968 when bring new computers to life. This doubles already slow
1969 downloads. */
1970 /* NOTE: cagney/1999-10-18: A more efficient implementation
1971 might add a verify_memory() method to the target vector and
1972 then use that. remote.c could implement that method using
1973 the ``qCRC'' packet. */
1974 gdb_byte *check = xmalloc (bytes);
1975 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1976
1977 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1978 error (_("Download verify read failed at %s"),
f5656ead 1979 paddress (target_gdbarch (), args->lma));
cf7a04e8 1980 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1981 error (_("Download verify compare failed at %s"),
f5656ead 1982 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1983 do_cleanups (verify_cleanups);
1984 }
a76d924d 1985 totals->data_count += bytes;
cf7a04e8
DJ
1986 args->lma += bytes;
1987 args->buffer += bytes;
a76d924d 1988 totals->write_count += 1;
cf7a04e8 1989 args->section_sent += bytes;
522002f9 1990 if (check_quit_flag ()
cf7a04e8
DJ
1991 || (deprecated_ui_load_progress_hook != NULL
1992 && deprecated_ui_load_progress_hook (args->section_name,
1993 args->section_sent)))
1994 error (_("Canceled the download"));
1995
1996 if (deprecated_show_load_progress != NULL)
1997 deprecated_show_load_progress (args->section_name,
1998 args->section_sent,
1999 args->section_size,
a76d924d
DJ
2000 totals->data_count,
2001 totals->total_size);
cf7a04e8
DJ
2002}
2003
e4f9b4d5
MS
2004/* Callback service function for generic_load (bfd_map_over_sections). */
2005
2006static void
2007load_section_callback (bfd *abfd, asection *asec, void *data)
2008{
a76d924d 2009 struct memory_write_request *new_request;
e4f9b4d5 2010 struct load_section_data *args = data;
a76d924d 2011 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 gdb_byte *buffer;
cf7a04e8 2014 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2015
cf7a04e8
DJ
2016 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2017 return;
e4f9b4d5 2018
cf7a04e8
DJ
2019 if (size == 0)
2020 return;
e4f9b4d5 2021
a76d924d
DJ
2022 new_request = VEC_safe_push (memory_write_request_s,
2023 args->requests, NULL);
2024 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2025 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2026 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2027 new_request->end = new_request->begin + size; /* FIXME Should size
2028 be in instead? */
a76d924d
DJ
2029 new_request->data = xmalloc (size);
2030 new_request->baton = section_data;
cf7a04e8 2031
a76d924d 2032 buffer = new_request->data;
cf7a04e8 2033
a76d924d
DJ
2034 section_data->cumulative = args->progress_data;
2035 section_data->section_name = sect_name;
2036 section_data->section_size = size;
2037 section_data->lma = new_request->begin;
2038 section_data->buffer = buffer;
cf7a04e8
DJ
2039
2040 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2041}
2042
2043/* Clean up an entire memory request vector, including load
2044 data and progress records. */
cf7a04e8 2045
a76d924d
DJ
2046static void
2047clear_memory_write_data (void *arg)
2048{
2049 VEC(memory_write_request_s) **vec_p = arg;
2050 VEC(memory_write_request_s) *vec = *vec_p;
2051 int i;
2052 struct memory_write_request *mr;
cf7a04e8 2053
a76d924d
DJ
2054 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2055 {
2056 xfree (mr->data);
2057 xfree (mr->baton);
2058 }
2059 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2060}
2061
c906108c 2062void
9cbe5fff 2063generic_load (const char *args, int from_tty)
c906108c 2064{
c906108c 2065 bfd *loadfile_bfd;
2b71414d 2066 struct timeval start_time, end_time;
917317f4 2067 char *filename;
1986bccd 2068 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2069 struct load_section_data cbdata;
a76d924d 2070 struct load_progress_data total_progress;
79a45e25 2071 struct ui_out *uiout = current_uiout;
a76d924d 2072
e4f9b4d5 2073 CORE_ADDR entry;
1986bccd 2074 char **argv;
e4f9b4d5 2075
a76d924d
DJ
2076 memset (&cbdata, 0, sizeof (cbdata));
2077 memset (&total_progress, 0, sizeof (total_progress));
2078 cbdata.progress_data = &total_progress;
2079
2080 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2081
d1a41061
PP
2082 if (args == NULL)
2083 error_no_arg (_("file to load"));
1986bccd 2084
d1a41061 2085 argv = gdb_buildargv (args);
1986bccd
AS
2086 make_cleanup_freeargv (argv);
2087
2088 filename = tilde_expand (argv[0]);
2089 make_cleanup (xfree, filename);
2090
2091 if (argv[1] != NULL)
917317f4 2092 {
f698ca8e 2093 const char *endptr;
ba5f2f8a 2094
f698ca8e 2095 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2096
2097 /* If the last word was not a valid number then
2098 treat it as a file name with spaces in. */
2099 if (argv[1] == endptr)
2100 error (_("Invalid download offset:%s."), argv[1]);
2101
2102 if (argv[2] != NULL)
2103 error (_("Too many parameters."));
917317f4 2104 }
c906108c 2105
c378eb4e 2106 /* Open the file for loading. */
1c00ec6b 2107 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2108 if (loadfile_bfd == NULL)
2109 {
2110 perror_with_name (filename);
2111 return;
2112 }
917317f4 2113
f9a062ff 2114 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2115
c5aa993b 2116 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2117 {
8a3fe4f8 2118 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2119 bfd_errmsg (bfd_get_error ()));
2120 }
c5aa993b 2121
5417f6dc 2122 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2123 (void *) &total_progress.total_size);
2124
2125 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2126
2b71414d 2127 gettimeofday (&start_time, NULL);
c906108c 2128
a76d924d
DJ
2129 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2130 load_progress) != 0)
2131 error (_("Load failed"));
c906108c 2132
2b71414d 2133 gettimeofday (&end_time, NULL);
ba5f2f8a 2134
e4f9b4d5 2135 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2136 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2137 ui_out_text (uiout, "Start address ");
f5656ead 2138 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2139 ui_out_text (uiout, ", load size ");
a76d924d 2140 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2141 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2142 /* We were doing this in remote-mips.c, I suspect it is right
2143 for other targets too. */
fb14de7b 2144 regcache_write_pc (get_current_regcache (), entry);
c906108c 2145
38963c97
DJ
2146 /* Reset breakpoints, now that we have changed the load image. For
2147 instance, breakpoints may have been set (or reset, by
2148 post_create_inferior) while connected to the target but before we
2149 loaded the program. In that case, the prologue analyzer could
2150 have read instructions from the target to find the right
2151 breakpoint locations. Loading has changed the contents of that
2152 memory. */
2153
2154 breakpoint_re_set ();
2155
7ca9f392
AC
2156 /* FIXME: are we supposed to call symbol_file_add or not? According
2157 to a comment from remote-mips.c (where a call to symbol_file_add
2158 was commented out), making the call confuses GDB if more than one
2159 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2160 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2161
a76d924d
DJ
2162 print_transfer_performance (gdb_stdout, total_progress.data_count,
2163 total_progress.write_count,
2164 &start_time, &end_time);
c906108c
SS
2165
2166 do_cleanups (old_cleanups);
2167}
2168
c378eb4e 2169/* Report how fast the transfer went. */
c906108c 2170
917317f4 2171void
d9fcf2fb 2172print_transfer_performance (struct ui_file *stream,
917317f4
JM
2173 unsigned long data_count,
2174 unsigned long write_count,
2b71414d
DJ
2175 const struct timeval *start_time,
2176 const struct timeval *end_time)
917317f4 2177{
9f43d28c 2178 ULONGEST time_count;
79a45e25 2179 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2180
2181 /* Compute the elapsed time in milliseconds, as a tradeoff between
2182 accuracy and overflow. */
2183 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2184 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2185
8b93c638
JM
2186 ui_out_text (uiout, "Transfer rate: ");
2187 if (time_count > 0)
2188 {
9f43d28c
DJ
2189 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2190
2191 if (ui_out_is_mi_like_p (uiout))
2192 {
2193 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2194 ui_out_text (uiout, " bits/sec");
2195 }
2196 else if (rate < 1024)
2197 {
2198 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2199 ui_out_text (uiout, " bytes/sec");
2200 }
2201 else
2202 {
2203 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2204 ui_out_text (uiout, " KB/sec");
2205 }
8b93c638
JM
2206 }
2207 else
2208 {
ba5f2f8a 2209 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2210 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2211 }
2212 if (write_count > 0)
2213 {
2214 ui_out_text (uiout, ", ");
ba5f2f8a 2215 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2216 ui_out_text (uiout, " bytes/write");
2217 }
2218 ui_out_text (uiout, ".\n");
c906108c
SS
2219}
2220
2221/* This function allows the addition of incrementally linked object files.
2222 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2223/* Note: ezannoni 2000-04-13 This function/command used to have a
2224 special case syntax for the rombug target (Rombug is the boot
2225 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2226 rombug case, the user doesn't need to supply a text address,
2227 instead a call to target_link() (in target.c) would supply the
c378eb4e 2228 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2229
c906108c 2230static void
fba45db2 2231add_symbol_file_command (char *args, int from_tty)
c906108c 2232{
5af949e3 2233 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2234 char *filename = NULL;
d03de421 2235 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2236 char *arg;
db162d44 2237 int section_index = 0;
2acceee2
JM
2238 int argcnt = 0;
2239 int sec_num = 0;
2240 int i;
db162d44
EZ
2241 int expecting_sec_name = 0;
2242 int expecting_sec_addr = 0;
5b96932b 2243 char **argv;
76ad5e1e 2244 struct objfile *objf;
db162d44 2245
a39a16c4 2246 struct sect_opt
2acceee2 2247 {
2acceee2
JM
2248 char *name;
2249 char *value;
a39a16c4 2250 };
db162d44 2251
a39a16c4
MM
2252 struct section_addr_info *section_addrs;
2253 struct sect_opt *sect_opts = NULL;
2254 size_t num_sect_opts = 0;
3017564a 2255 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2256
a39a16c4 2257 num_sect_opts = 16;
8d749320 2258 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2259
c906108c
SS
2260 dont_repeat ();
2261
2262 if (args == NULL)
8a3fe4f8 2263 error (_("add-symbol-file takes a file name and an address"));
c906108c 2264
d1a41061 2265 argv = gdb_buildargv (args);
5b96932b 2266 make_cleanup_freeargv (argv);
db162d44 2267
5b96932b
AS
2268 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2269 {
c378eb4e 2270 /* Process the argument. */
db162d44 2271 if (argcnt == 0)
c906108c 2272 {
c378eb4e 2273 /* The first argument is the file name. */
db162d44 2274 filename = tilde_expand (arg);
3017564a 2275 make_cleanup (xfree, filename);
c906108c 2276 }
41dc8db8
MB
2277 else if (argcnt == 1)
2278 {
2279 /* The second argument is always the text address at which
2280 to load the program. */
2281 sect_opts[section_index].name = ".text";
2282 sect_opts[section_index].value = arg;
2283 if (++section_index >= num_sect_opts)
2284 {
2285 num_sect_opts *= 2;
2286 sect_opts = ((struct sect_opt *)
2287 xrealloc (sect_opts,
2288 num_sect_opts
2289 * sizeof (struct sect_opt)));
2290 }
2291 }
db162d44 2292 else
41dc8db8
MB
2293 {
2294 /* It's an option (starting with '-') or it's an argument
2295 to an option. */
41dc8db8
MB
2296 if (expecting_sec_name)
2297 {
2298 sect_opts[section_index].name = arg;
2299 expecting_sec_name = 0;
2300 }
2301 else if (expecting_sec_addr)
2302 {
2303 sect_opts[section_index].value = arg;
2304 expecting_sec_addr = 0;
2305 if (++section_index >= num_sect_opts)
2306 {
2307 num_sect_opts *= 2;
2308 sect_opts = ((struct sect_opt *)
2309 xrealloc (sect_opts,
2310 num_sect_opts
2311 * sizeof (struct sect_opt)));
2312 }
2313 }
2314 else if (strcmp (arg, "-readnow") == 0)
2315 flags |= OBJF_READNOW;
2316 else if (strcmp (arg, "-s") == 0)
2317 {
2318 expecting_sec_name = 1;
2319 expecting_sec_addr = 1;
2320 }
2321 else
2322 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2323 " [-readnow] [-s <secname> <addr>]*"));
2324 }
c906108c 2325 }
c906108c 2326
927890d0
JB
2327 /* This command takes at least two arguments. The first one is a
2328 filename, and the second is the address where this file has been
2329 loaded. Abort now if this address hasn't been provided by the
2330 user. */
2331 if (section_index < 1)
2332 error (_("The address where %s has been loaded is missing"), filename);
2333
c378eb4e 2334 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2335 a sect_addr_info structure to be passed around to other
2336 functions. We have to split this up into separate print
bb599908 2337 statements because hex_string returns a local static
c378eb4e 2338 string. */
5417f6dc 2339
a3f17187 2340 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2341 section_addrs = alloc_section_addr_info (section_index);
2342 make_cleanup (xfree, section_addrs);
db162d44 2343 for (i = 0; i < section_index; i++)
c906108c 2344 {
db162d44
EZ
2345 CORE_ADDR addr;
2346 char *val = sect_opts[i].value;
2347 char *sec = sect_opts[i].name;
5417f6dc 2348
ae822768 2349 addr = parse_and_eval_address (val);
db162d44 2350
db162d44 2351 /* Here we store the section offsets in the order they were
c378eb4e 2352 entered on the command line. */
a39a16c4
MM
2353 section_addrs->other[sec_num].name = sec;
2354 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2355 printf_unfiltered ("\t%s_addr = %s\n", sec,
2356 paddress (gdbarch, addr));
db162d44
EZ
2357 sec_num++;
2358
5417f6dc 2359 /* The object's sections are initialized when a
db162d44 2360 call is made to build_objfile_section_table (objfile).
5417f6dc 2361 This happens in reread_symbols.
db162d44
EZ
2362 At this point, we don't know what file type this is,
2363 so we can't determine what section names are valid. */
2acceee2 2364 }
d76488d8 2365 section_addrs->num_sections = sec_num;
db162d44 2366
2acceee2 2367 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2368 error (_("Not confirmed."));
c906108c 2369
76ad5e1e
NB
2370 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2371 section_addrs, flags);
2372
2373 add_target_sections_of_objfile (objf);
c906108c
SS
2374
2375 /* Getting new symbols may change our opinion about what is
2376 frameless. */
2377 reinit_frame_cache ();
db162d44 2378 do_cleanups (my_cleanups);
c906108c
SS
2379}
2380\f
70992597 2381
63644780
NB
2382/* This function removes a symbol file that was added via add-symbol-file. */
2383
2384static void
2385remove_symbol_file_command (char *args, int from_tty)
2386{
2387 char **argv;
2388 struct objfile *objf = NULL;
2389 struct cleanup *my_cleanups;
2390 struct program_space *pspace = current_program_space;
2391 struct gdbarch *gdbarch = get_current_arch ();
2392
2393 dont_repeat ();
2394
2395 if (args == NULL)
2396 error (_("remove-symbol-file: no symbol file provided"));
2397
2398 my_cleanups = make_cleanup (null_cleanup, NULL);
2399
2400 argv = gdb_buildargv (args);
2401
2402 if (strcmp (argv[0], "-a") == 0)
2403 {
2404 /* Interpret the next argument as an address. */
2405 CORE_ADDR addr;
2406
2407 if (argv[1] == NULL)
2408 error (_("Missing address argument"));
2409
2410 if (argv[2] != NULL)
2411 error (_("Junk after %s"), argv[1]);
2412
2413 addr = parse_and_eval_address (argv[1]);
2414
2415 ALL_OBJFILES (objf)
2416 {
d03de421
PA
2417 if ((objf->flags & OBJF_USERLOADED) != 0
2418 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2419 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2420 break;
2421 }
2422 }
2423 else if (argv[0] != NULL)
2424 {
2425 /* Interpret the current argument as a file name. */
2426 char *filename;
2427
2428 if (argv[1] != NULL)
2429 error (_("Junk after %s"), argv[0]);
2430
2431 filename = tilde_expand (argv[0]);
2432 make_cleanup (xfree, filename);
2433
2434 ALL_OBJFILES (objf)
2435 {
d03de421
PA
2436 if ((objf->flags & OBJF_USERLOADED) != 0
2437 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2438 && objf->pspace == pspace
2439 && filename_cmp (filename, objfile_name (objf)) == 0)
2440 break;
2441 }
2442 }
2443
2444 if (objf == NULL)
2445 error (_("No symbol file found"));
2446
2447 if (from_tty
2448 && !query (_("Remove symbol table from file \"%s\"? "),
2449 objfile_name (objf)))
2450 error (_("Not confirmed."));
2451
2452 free_objfile (objf);
2453 clear_symtab_users (0);
2454
2455 do_cleanups (my_cleanups);
2456}
2457
4ac39b97
JK
2458typedef struct objfile *objfilep;
2459
2460DEF_VEC_P (objfilep);
2461
c906108c 2462/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2463
c906108c 2464void
fba45db2 2465reread_symbols (void)
c906108c
SS
2466{
2467 struct objfile *objfile;
2468 long new_modtime;
c906108c
SS
2469 struct stat new_statbuf;
2470 int res;
4ac39b97
JK
2471 VEC (objfilep) *new_objfiles = NULL;
2472 struct cleanup *all_cleanups;
2473
2474 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2475
2476 /* With the addition of shared libraries, this should be modified,
2477 the load time should be saved in the partial symbol tables, since
2478 different tables may come from different source files. FIXME.
2479 This routine should then walk down each partial symbol table
c378eb4e 2480 and see if the symbol table that it originates from has been changed. */
c906108c 2481
c5aa993b
JM
2482 for (objfile = object_files; objfile; objfile = objfile->next)
2483 {
9cce227f
TG
2484 if (objfile->obfd == NULL)
2485 continue;
2486
2487 /* Separate debug objfiles are handled in the main objfile. */
2488 if (objfile->separate_debug_objfile_backlink)
2489 continue;
2490
02aeec7b
JB
2491 /* If this object is from an archive (what you usually create with
2492 `ar', often called a `static library' on most systems, though
2493 a `shared library' on AIX is also an archive), then you should
2494 stat on the archive name, not member name. */
9cce227f
TG
2495 if (objfile->obfd->my_archive)
2496 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2497 else
4262abfb 2498 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2499 if (res != 0)
2500 {
c378eb4e 2501 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2502 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2503 objfile_name (objfile));
9cce227f
TG
2504 continue;
2505 }
2506 new_modtime = new_statbuf.st_mtime;
2507 if (new_modtime != objfile->mtime)
2508 {
2509 struct cleanup *old_cleanups;
2510 struct section_offsets *offsets;
2511 int num_offsets;
24ba069a 2512 char *original_name;
9cce227f
TG
2513
2514 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2515 objfile_name (objfile));
9cce227f
TG
2516
2517 /* There are various functions like symbol_file_add,
2518 symfile_bfd_open, syms_from_objfile, etc., which might
2519 appear to do what we want. But they have various other
2520 effects which we *don't* want. So we just do stuff
2521 ourselves. We don't worry about mapped files (for one thing,
2522 any mapped file will be out of date). */
2523
2524 /* If we get an error, blow away this objfile (not sure if
2525 that is the correct response for things like shared
2526 libraries). */
2527 old_cleanups = make_cleanup_free_objfile (objfile);
2528 /* We need to do this whenever any symbols go away. */
2529 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2530
0ba1096a
KT
2531 if (exec_bfd != NULL
2532 && filename_cmp (bfd_get_filename (objfile->obfd),
2533 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2534 {
2535 /* Reload EXEC_BFD without asking anything. */
2536
2537 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2538 }
2539
f6eeced0
JK
2540 /* Keep the calls order approx. the same as in free_objfile. */
2541
2542 /* Free the separate debug objfiles. It will be
2543 automatically recreated by sym_read. */
2544 free_objfile_separate_debug (objfile);
2545
2546 /* Remove any references to this objfile in the global
2547 value lists. */
2548 preserve_values (objfile);
2549
2550 /* Nuke all the state that we will re-read. Much of the following
2551 code which sets things to NULL really is necessary to tell
2552 other parts of GDB that there is nothing currently there.
2553
2554 Try to keep the freeing order compatible with free_objfile. */
2555
2556 if (objfile->sf != NULL)
2557 {
2558 (*objfile->sf->sym_finish) (objfile);
2559 }
2560
2561 clear_objfile_data (objfile);
2562
e1507e95 2563 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2564 {
2565 struct bfd *obfd = objfile->obfd;
d3846e71 2566 char *obfd_filename;
a4453b7e
TT
2567
2568 obfd_filename = bfd_get_filename (objfile->obfd);
2569 /* Open the new BFD before freeing the old one, so that
2570 the filename remains live. */
2938e6cf 2571 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2572 if (objfile->obfd == NULL)
2573 {
2574 /* We have to make a cleanup and error here, rather
2575 than erroring later, because once we unref OBFD,
2576 OBFD_FILENAME will be freed. */
2577 make_cleanup_bfd_unref (obfd);
2578 error (_("Can't open %s to read symbols."), obfd_filename);
2579 }
a4453b7e
TT
2580 gdb_bfd_unref (obfd);
2581 }
2582
24ba069a
JK
2583 original_name = xstrdup (objfile->original_name);
2584 make_cleanup (xfree, original_name);
2585
9cce227f
TG
2586 /* bfd_openr sets cacheable to true, which is what we want. */
2587 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2588 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2589 bfd_errmsg (bfd_get_error ()));
2590
2591 /* Save the offsets, we will nuke them with the rest of the
2592 objfile_obstack. */
2593 num_offsets = objfile->num_sections;
2594 offsets = ((struct section_offsets *)
2595 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2596 memcpy (offsets, objfile->section_offsets,
2597 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2598
9cce227f
TG
2599 /* FIXME: Do we have to free a whole linked list, or is this
2600 enough? */
2601 if (objfile->global_psymbols.list)
2602 xfree (objfile->global_psymbols.list);
2603 memset (&objfile->global_psymbols, 0,
2604 sizeof (objfile->global_psymbols));
2605 if (objfile->static_psymbols.list)
2606 xfree (objfile->static_psymbols.list);
2607 memset (&objfile->static_psymbols, 0,
2608 sizeof (objfile->static_psymbols));
2609
c378eb4e 2610 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2611 psymbol_bcache_free (objfile->psymbol_cache);
2612 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2613 obstack_free (&objfile->objfile_obstack, 0);
2614 objfile->sections = NULL;
43f3e411 2615 objfile->compunit_symtabs = NULL;
9cce227f
TG
2616 objfile->psymtabs = NULL;
2617 objfile->psymtabs_addrmap = NULL;
2618 objfile->free_psymtabs = NULL;
34eaf542 2619 objfile->template_symbols = NULL;
9cce227f 2620
9cce227f
TG
2621 /* obstack_init also initializes the obstack so it is
2622 empty. We could use obstack_specify_allocation but
d82ea6a8 2623 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2624 obstack_init (&objfile->objfile_obstack);
779bd270 2625
846060df
JB
2626 /* set_objfile_per_bfd potentially allocates the per-bfd
2627 data on the objfile's obstack (if sharing data across
2628 multiple users is not possible), so it's important to
2629 do it *after* the obstack has been initialized. */
2630 set_objfile_per_bfd (objfile);
2631
24ba069a
JK
2632 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2633 original_name,
2634 strlen (original_name));
2635
779bd270
DE
2636 /* Reset the sym_fns pointer. The ELF reader can change it
2637 based on whether .gdb_index is present, and we need it to
2638 start over. PR symtab/15885 */
8fb8eb5c 2639 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2640
d82ea6a8 2641 build_objfile_section_table (objfile);
9cce227f
TG
2642 terminate_minimal_symbol_table (objfile);
2643
2644 /* We use the same section offsets as from last time. I'm not
2645 sure whether that is always correct for shared libraries. */
2646 objfile->section_offsets = (struct section_offsets *)
2647 obstack_alloc (&objfile->objfile_obstack,
2648 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2649 memcpy (objfile->section_offsets, offsets,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 objfile->num_sections = num_offsets;
2652
2653 /* What the hell is sym_new_init for, anyway? The concept of
2654 distinguishing between the main file and additional files
2655 in this way seems rather dubious. */
2656 if (objfile == symfile_objfile)
c906108c 2657 {
9cce227f 2658 (*objfile->sf->sym_new_init) (objfile);
c906108c 2659 }
9cce227f
TG
2660
2661 (*objfile->sf->sym_init) (objfile);
2662 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2663
2664 objfile->flags &= ~OBJF_PSYMTABS_READ;
2665 read_symbols (objfile, 0);
b11896a5 2666
9cce227f 2667 if (!objfile_has_symbols (objfile))
c906108c 2668 {
9cce227f
TG
2669 wrap_here ("");
2670 printf_unfiltered (_("(no debugging symbols found)\n"));
2671 wrap_here ("");
c5aa993b 2672 }
9cce227f
TG
2673
2674 /* We're done reading the symbol file; finish off complaints. */
2675 clear_complaints (&symfile_complaints, 0, 1);
2676
2677 /* Getting new symbols may change our opinion about what is
2678 frameless. */
2679
2680 reinit_frame_cache ();
2681
2682 /* Discard cleanups as symbol reading was successful. */
2683 discard_cleanups (old_cleanups);
2684
2685 /* If the mtime has changed between the time we set new_modtime
2686 and now, we *want* this to be out of date, so don't call stat
2687 again now. */
2688 objfile->mtime = new_modtime;
9cce227f 2689 init_entry_point_info (objfile);
4ac39b97
JK
2690
2691 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2692 }
2693 }
c906108c 2694
4ac39b97 2695 if (new_objfiles)
ea53e89f 2696 {
4ac39b97
JK
2697 int ix;
2698
ff3536bc
UW
2699 /* Notify objfiles that we've modified objfile sections. */
2700 objfiles_changed ();
2701
c1e56572 2702 clear_symtab_users (0);
4ac39b97
JK
2703
2704 /* clear_objfile_data for each objfile was called before freeing it and
2705 observer_notify_new_objfile (NULL) has been called by
2706 clear_symtab_users above. Notify the new files now. */
2707 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2708 observer_notify_new_objfile (objfile);
2709
ea53e89f
JB
2710 /* At least one objfile has changed, so we can consider that
2711 the executable we're debugging has changed too. */
781b42b0 2712 observer_notify_executable_changed ();
ea53e89f 2713 }
4ac39b97
JK
2714
2715 do_cleanups (all_cleanups);
c906108c 2716}
c906108c
SS
2717\f
2718
c5aa993b
JM
2719typedef struct
2720{
2721 char *ext;
c906108c 2722 enum language lang;
c5aa993b
JM
2723}
2724filename_language;
c906108c 2725
c5aa993b 2726static filename_language *filename_language_table;
c906108c
SS
2727static int fl_table_size, fl_table_next;
2728
2729static void
fba45db2 2730add_filename_language (char *ext, enum language lang)
c906108c
SS
2731{
2732 if (fl_table_next >= fl_table_size)
2733 {
2734 fl_table_size += 10;
5417f6dc 2735 filename_language_table =
25bf3106
PM
2736 xrealloc (filename_language_table,
2737 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2738 }
2739
4fcf66da 2740 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2741 filename_language_table[fl_table_next].lang = lang;
2742 fl_table_next++;
2743}
2744
2745static char *ext_args;
920d2a44
AC
2746static void
2747show_ext_args (struct ui_file *file, int from_tty,
2748 struct cmd_list_element *c, const char *value)
2749{
3e43a32a
MS
2750 fprintf_filtered (file,
2751 _("Mapping between filename extension "
2752 "and source language is \"%s\".\n"),
920d2a44
AC
2753 value);
2754}
c906108c
SS
2755
2756static void
26c41df3 2757set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2758{
2759 int i;
2760 char *cp = ext_args;
2761 enum language lang;
2762
c378eb4e 2763 /* First arg is filename extension, starting with '.' */
c906108c 2764 if (*cp != '.')
8a3fe4f8 2765 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2766
2767 /* Find end of first arg. */
c5aa993b 2768 while (*cp && !isspace (*cp))
c906108c
SS
2769 cp++;
2770
2771 if (*cp == '\0')
3e43a32a
MS
2772 error (_("'%s': two arguments required -- "
2773 "filename extension and language"),
c906108c
SS
2774 ext_args);
2775
c378eb4e 2776 /* Null-terminate first arg. */
c5aa993b 2777 *cp++ = '\0';
c906108c
SS
2778
2779 /* Find beginning of second arg, which should be a source language. */
529480d0 2780 cp = skip_spaces (cp);
c906108c
SS
2781
2782 if (*cp == '\0')
3e43a32a
MS
2783 error (_("'%s': two arguments required -- "
2784 "filename extension and language"),
c906108c
SS
2785 ext_args);
2786
2787 /* Lookup the language from among those we know. */
2788 lang = language_enum (cp);
2789
2790 /* Now lookup the filename extension: do we already know it? */
2791 for (i = 0; i < fl_table_next; i++)
2792 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2793 break;
2794
2795 if (i >= fl_table_next)
2796 {
c378eb4e 2797 /* New file extension. */
c906108c
SS
2798 add_filename_language (ext_args, lang);
2799 }
2800 else
2801 {
c378eb4e 2802 /* Redefining a previously known filename extension. */
c906108c
SS
2803
2804 /* if (from_tty) */
2805 /* query ("Really make files of type %s '%s'?", */
2806 /* ext_args, language_str (lang)); */
2807
b8c9b27d 2808 xfree (filename_language_table[i].ext);
4fcf66da 2809 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2810 filename_language_table[i].lang = lang;
2811 }
2812}
2813
2814static void
fba45db2 2815info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2816{
2817 int i;
2818
a3f17187 2819 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2820 printf_filtered ("\n\n");
2821 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2822 printf_filtered ("\t%s\t- %s\n",
2823 filename_language_table[i].ext,
c906108c
SS
2824 language_str (filename_language_table[i].lang));
2825}
2826
2827static void
fba45db2 2828init_filename_language_table (void)
c906108c 2829{
c378eb4e 2830 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2831 {
2832 fl_table_size = 20;
2833 fl_table_next = 0;
8d749320
SM
2834 filename_language_table = XNEWVEC (filename_language, fl_table_size);
2835
c5aa993b 2836 add_filename_language (".c", language_c);
6aecb9c2 2837 add_filename_language (".d", language_d);
c5aa993b
JM
2838 add_filename_language (".C", language_cplus);
2839 add_filename_language (".cc", language_cplus);
2840 add_filename_language (".cp", language_cplus);
2841 add_filename_language (".cpp", language_cplus);
2842 add_filename_language (".cxx", language_cplus);
2843 add_filename_language (".c++", language_cplus);
2844 add_filename_language (".java", language_java);
c906108c 2845 add_filename_language (".class", language_java);
da2cf7e0 2846 add_filename_language (".m", language_objc);
c5aa993b
JM
2847 add_filename_language (".f", language_fortran);
2848 add_filename_language (".F", language_fortran);
fd5700c7
JK
2849 add_filename_language (".for", language_fortran);
2850 add_filename_language (".FOR", language_fortran);
2851 add_filename_language (".ftn", language_fortran);
2852 add_filename_language (".FTN", language_fortran);
2853 add_filename_language (".fpp", language_fortran);
2854 add_filename_language (".FPP", language_fortran);
2855 add_filename_language (".f90", language_fortran);
2856 add_filename_language (".F90", language_fortran);
2857 add_filename_language (".f95", language_fortran);
2858 add_filename_language (".F95", language_fortran);
2859 add_filename_language (".f03", language_fortran);
2860 add_filename_language (".F03", language_fortran);
2861 add_filename_language (".f08", language_fortran);
2862 add_filename_language (".F08", language_fortran);
c5aa993b 2863 add_filename_language (".s", language_asm);
aa707ed0 2864 add_filename_language (".sx", language_asm);
c5aa993b 2865 add_filename_language (".S", language_asm);
c6fd39cd
PM
2866 add_filename_language (".pas", language_pascal);
2867 add_filename_language (".p", language_pascal);
2868 add_filename_language (".pp", language_pascal);
963a6417
PH
2869 add_filename_language (".adb", language_ada);
2870 add_filename_language (".ads", language_ada);
2871 add_filename_language (".a", language_ada);
2872 add_filename_language (".ada", language_ada);
dde59185 2873 add_filename_language (".dg", language_ada);
c906108c
SS
2874 }
2875}
2876
2877enum language
dd786858 2878deduce_language_from_filename (const char *filename)
c906108c
SS
2879{
2880 int i;
2881 char *cp;
2882
2883 if (filename != NULL)
2884 if ((cp = strrchr (filename, '.')) != NULL)
2885 for (i = 0; i < fl_table_next; i++)
2886 if (strcmp (cp, filename_language_table[i].ext) == 0)
2887 return filename_language_table[i].lang;
2888
2889 return language_unknown;
2890}
2891\f
43f3e411
DE
2892/* Allocate and initialize a new symbol table.
2893 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2894
2895struct symtab *
43f3e411 2896allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2897{
43f3e411
DE
2898 struct objfile *objfile = cust->objfile;
2899 struct symtab *symtab
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2901
21ea9eec
TT
2902 symtab->filename = bcache (filename, strlen (filename) + 1,
2903 objfile->per_bfd->filename_cache);
c5aa993b
JM
2904 symtab->fullname = NULL;
2905 symtab->language = deduce_language_from_filename (filename);
c906108c 2906
db0fec5c
DE
2907 /* This can be very verbose with lots of headers.
2908 Only print at higher debug levels. */
2909 if (symtab_create_debug >= 2)
45cfd468
DE
2910 {
2911 /* Be a bit clever with debugging messages, and don't print objfile
2912 every time, only when it changes. */
2913 static char *last_objfile_name = NULL;
2914
2915 if (last_objfile_name == NULL
4262abfb 2916 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2917 {
2918 xfree (last_objfile_name);
4262abfb 2919 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2920 fprintf_unfiltered (gdb_stdlog,
2921 "Creating one or more symtabs for objfile %s ...\n",
2922 last_objfile_name);
2923 }
2924 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2925 "Created symtab %s for module %s.\n",
2926 host_address_to_string (symtab), filename);
45cfd468
DE
2927 }
2928
43f3e411
DE
2929 /* Add it to CUST's list of symtabs. */
2930 if (cust->filetabs == NULL)
2931 {
2932 cust->filetabs = symtab;
2933 cust->last_filetab = symtab;
2934 }
2935 else
2936 {
2937 cust->last_filetab->next = symtab;
2938 cust->last_filetab = symtab;
2939 }
2940
2941 /* Backlink to the containing compunit symtab. */
2942 symtab->compunit_symtab = cust;
2943
2944 return symtab;
2945}
2946
2947/* Allocate and initialize a new compunit.
2948 NAME is the name of the main source file, if there is one, or some
2949 descriptive text if there are no source files. */
2950
2951struct compunit_symtab *
2952allocate_compunit_symtab (struct objfile *objfile, const char *name)
2953{
2954 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2955 struct compunit_symtab);
2956 const char *saved_name;
2957
2958 cu->objfile = objfile;
2959
2960 /* The name we record here is only for display/debugging purposes.
2961 Just save the basename to avoid path issues (too long for display,
2962 relative vs absolute, etc.). */
2963 saved_name = lbasename (name);
2964 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2965 strlen (saved_name));
2966
2967 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2968
2969 if (symtab_create_debug)
2970 {
2971 fprintf_unfiltered (gdb_stdlog,
2972 "Created compunit symtab %s for %s.\n",
2973 host_address_to_string (cu),
2974 cu->name);
2975 }
2976
2977 return cu;
2978}
2979
2980/* Hook CU to the objfile it comes from. */
2981
2982void
2983add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2984{
2985 cu->next = cu->objfile->compunit_symtabs;
2986 cu->objfile->compunit_symtabs = cu;
c906108c 2987}
c906108c 2988\f
c5aa993b 2989
c906108c 2990/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2991 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2992
2993void
c1e56572 2994clear_symtab_users (int add_flags)
c906108c
SS
2995{
2996 /* Someday, we should do better than this, by only blowing away
2997 the things that really need to be blown. */
c0501be5
DJ
2998
2999 /* Clear the "current" symtab first, because it is no longer valid.
3000 breakpoint_re_set may try to access the current symtab. */
3001 clear_current_source_symtab_and_line ();
3002
c906108c 3003 clear_displays ();
1bfeeb0f 3004 clear_last_displayed_sal ();
c906108c 3005 clear_pc_function_cache ();
06d3b283 3006 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
3007
3008 /* Clear globals which might have pointed into a removed objfile.
3009 FIXME: It's not clear which of these are supposed to persist
3010 between expressions and which ought to be reset each time. */
3011 expression_context_block = NULL;
3012 innermost_block = NULL;
8756216b
DP
3013
3014 /* Varobj may refer to old symbols, perform a cleanup. */
3015 varobj_invalidate ();
3016
e700d1b2
JB
3017 /* Now that the various caches have been cleared, we can re_set
3018 our breakpoints without risking it using stale data. */
3019 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3020 breakpoint_re_set ();
c906108c
SS
3021}
3022
74b7792f
AC
3023static void
3024clear_symtab_users_cleanup (void *ignore)
3025{
c1e56572 3026 clear_symtab_users (0);
74b7792f 3027}
c906108c 3028\f
c906108c
SS
3029/* OVERLAYS:
3030 The following code implements an abstraction for debugging overlay sections.
3031
3032 The target model is as follows:
3033 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3034 same VMA, each with its own unique LMA (or load address).
c906108c 3035 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3036 sections, one by one, from the load address into the VMA address.
5417f6dc 3037 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3038 sections should be considered to be mapped from the VMA to the LMA.
3039 This information is used for symbol lookup, and memory read/write.
5417f6dc 3040 For instance, if a section has been mapped then its contents
c5aa993b 3041 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3042
3043 Two levels of debugger support for overlays are available. One is
3044 "manual", in which the debugger relies on the user to tell it which
3045 overlays are currently mapped. This level of support is
3046 implemented entirely in the core debugger, and the information about
3047 whether a section is mapped is kept in the objfile->obj_section table.
3048
3049 The second level of support is "automatic", and is only available if
3050 the target-specific code provides functionality to read the target's
3051 overlay mapping table, and translate its contents for the debugger
3052 (by updating the mapped state information in the obj_section tables).
3053
3054 The interface is as follows:
c5aa993b
JM
3055 User commands:
3056 overlay map <name> -- tell gdb to consider this section mapped
3057 overlay unmap <name> -- tell gdb to consider this section unmapped
3058 overlay list -- list the sections that GDB thinks are mapped
3059 overlay read-target -- get the target's state of what's mapped
3060 overlay off/manual/auto -- set overlay debugging state
3061 Functional interface:
3062 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3063 section, return that section.
5417f6dc 3064 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3065 the pc, either in its VMA or its LMA
714835d5 3066 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3067 section_is_overlay(sect): true if section's VMA != LMA
3068 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3069 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3070 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3071 overlay_mapped_address(...): map an address from section's LMA to VMA
3072 overlay_unmapped_address(...): map an address from section's VMA to LMA
3073 symbol_overlayed_address(...): Return a "current" address for symbol:
3074 either in VMA or LMA depending on whether
c378eb4e 3075 the symbol's section is currently mapped. */
c906108c
SS
3076
3077/* Overlay debugging state: */
3078
d874f1e2 3079enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3080int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3081
c906108c 3082/* Function: section_is_overlay (SECTION)
5417f6dc 3083 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3084 SECTION is loaded at an address different from where it will "run". */
3085
3086int
714835d5 3087section_is_overlay (struct obj_section *section)
c906108c 3088{
714835d5
UW
3089 if (overlay_debugging && section)
3090 {
3091 bfd *abfd = section->objfile->obfd;
3092 asection *bfd_section = section->the_bfd_section;
f888f159 3093
714835d5
UW
3094 if (bfd_section_lma (abfd, bfd_section) != 0
3095 && bfd_section_lma (abfd, bfd_section)
3096 != bfd_section_vma (abfd, bfd_section))
3097 return 1;
3098 }
c906108c
SS
3099
3100 return 0;
3101}
3102
3103/* Function: overlay_invalidate_all (void)
3104 Invalidate the mapped state of all overlay sections (mark it as stale). */
3105
3106static void
fba45db2 3107overlay_invalidate_all (void)
c906108c 3108{
c5aa993b 3109 struct objfile *objfile;
c906108c
SS
3110 struct obj_section *sect;
3111
3112 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3113 if (section_is_overlay (sect))
3114 sect->ovly_mapped = -1;
c906108c
SS
3115}
3116
714835d5 3117/* Function: section_is_mapped (SECTION)
5417f6dc 3118 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3119
3120 Access to the ovly_mapped flag is restricted to this function, so
3121 that we can do automatic update. If the global flag
3122 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3123 overlay_invalidate_all. If the mapped state of the particular
3124 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3125
714835d5
UW
3126int
3127section_is_mapped (struct obj_section *osect)
c906108c 3128{
9216df95
UW
3129 struct gdbarch *gdbarch;
3130
714835d5 3131 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3132 return 0;
3133
c5aa993b 3134 switch (overlay_debugging)
c906108c
SS
3135 {
3136 default:
d874f1e2 3137 case ovly_off:
c5aa993b 3138 return 0; /* overlay debugging off */
d874f1e2 3139 case ovly_auto: /* overlay debugging automatic */
1c772458 3140 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3141 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3142 gdbarch = get_objfile_arch (osect->objfile);
3143 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3144 {
3145 if (overlay_cache_invalid)
3146 {
3147 overlay_invalidate_all ();
3148 overlay_cache_invalid = 0;
3149 }
3150 if (osect->ovly_mapped == -1)
9216df95 3151 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3152 }
3153 /* fall thru to manual case */
d874f1e2 3154 case ovly_on: /* overlay debugging manual */
c906108c
SS
3155 return osect->ovly_mapped == 1;
3156 }
3157}
3158
c906108c
SS
3159/* Function: pc_in_unmapped_range
3160 If PC falls into the lma range of SECTION, return true, else false. */
3161
3162CORE_ADDR
714835d5 3163pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3164{
714835d5
UW
3165 if (section_is_overlay (section))
3166 {
3167 bfd *abfd = section->objfile->obfd;
3168 asection *bfd_section = section->the_bfd_section;
fbd35540 3169
714835d5
UW
3170 /* We assume the LMA is relocated by the same offset as the VMA. */
3171 bfd_vma size = bfd_get_section_size (bfd_section);
3172 CORE_ADDR offset = obj_section_offset (section);
3173
3174 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3175 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3176 return 1;
3177 }
c906108c 3178
c906108c
SS
3179 return 0;
3180}
3181
3182/* Function: pc_in_mapped_range
3183 If PC falls into the vma range of SECTION, return true, else false. */
3184
3185CORE_ADDR
714835d5 3186pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3187{
714835d5
UW
3188 if (section_is_overlay (section))
3189 {
3190 if (obj_section_addr (section) <= pc
3191 && pc < obj_section_endaddr (section))
3192 return 1;
3193 }
c906108c 3194
c906108c
SS
3195 return 0;
3196}
3197
9ec8e6a0
JB
3198/* Return true if the mapped ranges of sections A and B overlap, false
3199 otherwise. */
3b7bacac 3200
b9362cc7 3201static int
714835d5 3202sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3203{
714835d5
UW
3204 CORE_ADDR a_start = obj_section_addr (a);
3205 CORE_ADDR a_end = obj_section_endaddr (a);
3206 CORE_ADDR b_start = obj_section_addr (b);
3207 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3208
3209 return (a_start < b_end && b_start < a_end);
3210}
3211
c906108c
SS
3212/* Function: overlay_unmapped_address (PC, SECTION)
3213 Returns the address corresponding to PC in the unmapped (load) range.
3214 May be the same as PC. */
3215
3216CORE_ADDR
714835d5 3217overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3218{
714835d5
UW
3219 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3220 {
3221 bfd *abfd = section->objfile->obfd;
3222 asection *bfd_section = section->the_bfd_section;
fbd35540 3223
714835d5
UW
3224 return pc + bfd_section_lma (abfd, bfd_section)
3225 - bfd_section_vma (abfd, bfd_section);
3226 }
c906108c
SS
3227
3228 return pc;
3229}
3230
3231/* Function: overlay_mapped_address (PC, SECTION)
3232 Returns the address corresponding to PC in the mapped (runtime) range.
3233 May be the same as PC. */
3234
3235CORE_ADDR
714835d5 3236overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3237{
714835d5
UW
3238 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3239 {
3240 bfd *abfd = section->objfile->obfd;
3241 asection *bfd_section = section->the_bfd_section;
fbd35540 3242
714835d5
UW
3243 return pc + bfd_section_vma (abfd, bfd_section)
3244 - bfd_section_lma (abfd, bfd_section);
3245 }
c906108c
SS
3246
3247 return pc;
3248}
3249
5417f6dc 3250/* Function: symbol_overlayed_address
c906108c
SS
3251 Return one of two addresses (relative to the VMA or to the LMA),
3252 depending on whether the section is mapped or not. */
3253
c5aa993b 3254CORE_ADDR
714835d5 3255symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3256{
3257 if (overlay_debugging)
3258 {
c378eb4e 3259 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3260 if (section == 0)
3261 return address;
c378eb4e
MS
3262 /* If the symbol's section is not an overlay, just return its
3263 address. */
c906108c
SS
3264 if (!section_is_overlay (section))
3265 return address;
c378eb4e 3266 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3267 if (section_is_mapped (section))
3268 return address;
3269 /*
3270 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3271 * then return its LOADED address rather than its vma address!!
3272 */
3273 return overlay_unmapped_address (address, section);
3274 }
3275 return address;
3276}
3277
5417f6dc 3278/* Function: find_pc_overlay (PC)
c906108c
SS
3279 Return the best-match overlay section for PC:
3280 If PC matches a mapped overlay section's VMA, return that section.
3281 Else if PC matches an unmapped section's VMA, return that section.
3282 Else if PC matches an unmapped section's LMA, return that section. */
3283
714835d5 3284struct obj_section *
fba45db2 3285find_pc_overlay (CORE_ADDR pc)
c906108c 3286{
c5aa993b 3287 struct objfile *objfile;
c906108c
SS
3288 struct obj_section *osect, *best_match = NULL;
3289
3290 if (overlay_debugging)
3291 ALL_OBJSECTIONS (objfile, osect)
714835d5 3292 if (section_is_overlay (osect))
c5aa993b 3293 {
714835d5 3294 if (pc_in_mapped_range (pc, osect))
c5aa993b 3295 {
714835d5
UW
3296 if (section_is_mapped (osect))
3297 return osect;
c5aa993b
JM
3298 else
3299 best_match = osect;
3300 }
714835d5 3301 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3302 best_match = osect;
3303 }
714835d5 3304 return best_match;
c906108c
SS
3305}
3306
3307/* Function: find_pc_mapped_section (PC)
5417f6dc 3308 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3309 currently marked as MAPPED, return that section. Else return NULL. */
3310
714835d5 3311struct obj_section *
fba45db2 3312find_pc_mapped_section (CORE_ADDR pc)
c906108c 3313{
c5aa993b 3314 struct objfile *objfile;
c906108c
SS
3315 struct obj_section *osect;
3316
3317 if (overlay_debugging)
3318 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3319 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3320 return osect;
c906108c
SS
3321
3322 return NULL;
3323}
3324
3325/* Function: list_overlays_command
c378eb4e 3326 Print a list of mapped sections and their PC ranges. */
c906108c 3327
5d3055ad 3328static void
fba45db2 3329list_overlays_command (char *args, int from_tty)
c906108c 3330{
c5aa993b
JM
3331 int nmapped = 0;
3332 struct objfile *objfile;
c906108c
SS
3333 struct obj_section *osect;
3334
3335 if (overlay_debugging)
3336 ALL_OBJSECTIONS (objfile, osect)
714835d5 3337 if (section_is_mapped (osect))
c5aa993b 3338 {
5af949e3 3339 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3340 const char *name;
3341 bfd_vma lma, vma;
3342 int size;
3343
3344 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3345 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3346 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3347 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3348
3349 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3350 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3351 puts_filtered (" - ");
5af949e3 3352 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3353 printf_filtered (", mapped at ");
5af949e3 3354 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3355 puts_filtered (" - ");
5af949e3 3356 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3357 puts_filtered ("\n");
3358
3359 nmapped++;
3360 }
c906108c 3361 if (nmapped == 0)
a3f17187 3362 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3363}
3364
3365/* Function: map_overlay_command
3366 Mark the named section as mapped (ie. residing at its VMA address). */
3367
5d3055ad 3368static void
fba45db2 3369map_overlay_command (char *args, int from_tty)
c906108c 3370{
c5aa993b
JM
3371 struct objfile *objfile, *objfile2;
3372 struct obj_section *sec, *sec2;
c906108c
SS
3373
3374 if (!overlay_debugging)
3e43a32a
MS
3375 error (_("Overlay debugging not enabled. Use "
3376 "either the 'overlay auto' or\n"
3377 "the 'overlay manual' command."));
c906108c
SS
3378
3379 if (args == 0 || *args == 0)
8a3fe4f8 3380 error (_("Argument required: name of an overlay section"));
c906108c 3381
c378eb4e 3382 /* First, find a section matching the user supplied argument. */
c906108c
SS
3383 ALL_OBJSECTIONS (objfile, sec)
3384 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3385 {
c378eb4e 3386 /* Now, check to see if the section is an overlay. */
714835d5 3387 if (!section_is_overlay (sec))
c5aa993b
JM
3388 continue; /* not an overlay section */
3389
c378eb4e 3390 /* Mark the overlay as "mapped". */
c5aa993b
JM
3391 sec->ovly_mapped = 1;
3392
3393 /* Next, make a pass and unmap any sections that are
3394 overlapped by this new section: */
3395 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3396 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3397 {
3398 if (info_verbose)
a3f17187 3399 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3400 bfd_section_name (objfile->obfd,
3401 sec2->the_bfd_section));
c378eb4e 3402 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3403 }
3404 return;
3405 }
8a3fe4f8 3406 error (_("No overlay section called %s"), args);
c906108c
SS
3407}
3408
3409/* Function: unmap_overlay_command
5417f6dc 3410 Mark the overlay section as unmapped
c906108c
SS
3411 (ie. resident in its LMA address range, rather than the VMA range). */
3412
5d3055ad 3413static void
fba45db2 3414unmap_overlay_command (char *args, int from_tty)
c906108c 3415{
c5aa993b 3416 struct objfile *objfile;
7a270e0c 3417 struct obj_section *sec = NULL;
c906108c
SS
3418
3419 if (!overlay_debugging)
3e43a32a
MS
3420 error (_("Overlay debugging not enabled. "
3421 "Use either the 'overlay auto' or\n"
3422 "the 'overlay manual' command."));
c906108c
SS
3423
3424 if (args == 0 || *args == 0)
8a3fe4f8 3425 error (_("Argument required: name of an overlay section"));
c906108c 3426
c378eb4e 3427 /* First, find a section matching the user supplied argument. */
c906108c
SS
3428 ALL_OBJSECTIONS (objfile, sec)
3429 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3430 {
3431 if (!sec->ovly_mapped)
8a3fe4f8 3432 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3433 sec->ovly_mapped = 0;
3434 return;
3435 }
8a3fe4f8 3436 error (_("No overlay section called %s"), args);
c906108c
SS
3437}
3438
3439/* Function: overlay_auto_command
3440 A utility command to turn on overlay debugging.
c378eb4e 3441 Possibly this should be done via a set/show command. */
c906108c
SS
3442
3443static void
fba45db2 3444overlay_auto_command (char *args, int from_tty)
c906108c 3445{
d874f1e2 3446 overlay_debugging = ovly_auto;
1900040c 3447 enable_overlay_breakpoints ();
c906108c 3448 if (info_verbose)
a3f17187 3449 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3450}
3451
3452/* Function: overlay_manual_command
3453 A utility command to turn on overlay debugging.
c378eb4e 3454 Possibly this should be done via a set/show command. */
c906108c
SS
3455
3456static void
fba45db2 3457overlay_manual_command (char *args, int from_tty)
c906108c 3458{
d874f1e2 3459 overlay_debugging = ovly_on;
1900040c 3460 disable_overlay_breakpoints ();
c906108c 3461 if (info_verbose)
a3f17187 3462 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3463}
3464
3465/* Function: overlay_off_command
3466 A utility command to turn on overlay debugging.
c378eb4e 3467 Possibly this should be done via a set/show command. */
c906108c
SS
3468
3469static void
fba45db2 3470overlay_off_command (char *args, int from_tty)
c906108c 3471{
d874f1e2 3472 overlay_debugging = ovly_off;
1900040c 3473 disable_overlay_breakpoints ();
c906108c 3474 if (info_verbose)
a3f17187 3475 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3476}
3477
3478static void
fba45db2 3479overlay_load_command (char *args, int from_tty)
c906108c 3480{
e17c207e
UW
3481 struct gdbarch *gdbarch = get_current_arch ();
3482
3483 if (gdbarch_overlay_update_p (gdbarch))
3484 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3485 else
8a3fe4f8 3486 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3487}
3488
3489/* Function: overlay_command
c378eb4e 3490 A place-holder for a mis-typed command. */
c906108c 3491
c378eb4e 3492/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3493static struct cmd_list_element *overlaylist;
c906108c
SS
3494
3495static void
fba45db2 3496overlay_command (char *args, int from_tty)
c906108c 3497{
c5aa993b 3498 printf_unfiltered
c906108c 3499 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3500 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3501}
3502
c906108c
SS
3503/* Target Overlays for the "Simplest" overlay manager:
3504
5417f6dc
RM
3505 This is GDB's default target overlay layer. It works with the
3506 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3507 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3508 so targets that use a different runtime overlay manager can
c906108c
SS
3509 substitute their own overlay_update function and take over the
3510 function pointer.
3511
3512 The overlay_update function pokes around in the target's data structures
3513 to see what overlays are mapped, and updates GDB's overlay mapping with
3514 this information.
3515
3516 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3517 unsigned _novlys; /# number of overlay sections #/
3518 unsigned _ovly_table[_novlys][4] = {
438e1e42 3519 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3520 {..., ..., ..., ...},
3521 }
3522 unsigned _novly_regions; /# number of overlay regions #/
3523 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3524 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3525 {..., ..., ...},
3526 }
c906108c
SS
3527 These functions will attempt to update GDB's mappedness state in the
3528 symbol section table, based on the target's mappedness state.
3529
3530 To do this, we keep a cached copy of the target's _ovly_table, and
3531 attempt to detect when the cached copy is invalidated. The main
3532 entry point is "simple_overlay_update(SECT), which looks up SECT in
3533 the cached table and re-reads only the entry for that section from
c378eb4e 3534 the target (whenever possible). */
c906108c
SS
3535
3536/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3537static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3538static unsigned cache_novlys = 0;
c906108c 3539static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3540enum ovly_index
3541 {
438e1e42 3542 VMA, OSIZE, LMA, MAPPED
c5aa993b 3543 };
c906108c 3544
c378eb4e 3545/* Throw away the cached copy of _ovly_table. */
3b7bacac 3546
c906108c 3547static void
fba45db2 3548simple_free_overlay_table (void)
c906108c
SS
3549{
3550 if (cache_ovly_table)
b8c9b27d 3551 xfree (cache_ovly_table);
c5aa993b 3552 cache_novlys = 0;
c906108c
SS
3553 cache_ovly_table = NULL;
3554 cache_ovly_table_base = 0;
3555}
3556
9216df95 3557/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3558 Convert to host order. int LEN is number of ints. */
3b7bacac 3559
c906108c 3560static void
9216df95 3561read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3562 int len, int size, enum bfd_endian byte_order)
c906108c 3563{
c378eb4e 3564 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3565 gdb_byte *buf = alloca (len * size);
c5aa993b 3566 int i;
c906108c 3567
9216df95 3568 read_memory (memaddr, buf, len * size);
c906108c 3569 for (i = 0; i < len; i++)
e17a4113 3570 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3571}
3572
3573/* Find and grab a copy of the target _ovly_table
c378eb4e 3574 (and _novlys, which is needed for the table's size). */
3b7bacac 3575
c5aa993b 3576static int
fba45db2 3577simple_read_overlay_table (void)
c906108c 3578{
3b7344d5 3579 struct bound_minimal_symbol novlys_msym;
7c7b6655 3580 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3581 struct gdbarch *gdbarch;
3582 int word_size;
e17a4113 3583 enum bfd_endian byte_order;
c906108c
SS
3584
3585 simple_free_overlay_table ();
9b27852e 3586 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3587 if (! novlys_msym.minsym)
c906108c 3588 {
8a3fe4f8 3589 error (_("Error reading inferior's overlay table: "
0d43edd1 3590 "couldn't find `_novlys' variable\n"
8a3fe4f8 3591 "in inferior. Use `overlay manual' mode."));
0d43edd1 3592 return 0;
c906108c 3593 }
0d43edd1 3594
7c7b6655
TT
3595 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3596 if (! ovly_table_msym.minsym)
0d43edd1 3597 {
8a3fe4f8 3598 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3599 "`_ovly_table' array\n"
8a3fe4f8 3600 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3601 return 0;
3602 }
3603
7c7b6655 3604 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3605 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3606 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3607
77e371c0
TT
3608 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3609 4, byte_order);
0d43edd1
JB
3610 cache_ovly_table
3611 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3612 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3613 read_target_long_array (cache_ovly_table_base,
777ea8f1 3614 (unsigned int *) cache_ovly_table,
e17a4113 3615 cache_novlys * 4, word_size, byte_order);
0d43edd1 3616
c5aa993b 3617 return 1; /* SUCCESS */
c906108c
SS
3618}
3619
5417f6dc 3620/* Function: simple_overlay_update_1
c906108c
SS
3621 A helper function for simple_overlay_update. Assuming a cached copy
3622 of _ovly_table exists, look through it to find an entry whose vma,
3623 lma and size match those of OSECT. Re-read the entry and make sure
3624 it still matches OSECT (else the table may no longer be valid).
3625 Set OSECT's mapped state to match the entry. Return: 1 for
3626 success, 0 for failure. */
3627
3628static int
fba45db2 3629simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3630{
3631 int i, size;
fbd35540
MS
3632 bfd *obfd = osect->objfile->obfd;
3633 asection *bsect = osect->the_bfd_section;
9216df95
UW
3634 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3635 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3637
2c500098 3638 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3639 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3640 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3641 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3642 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c 3643 {
9216df95
UW
3644 read_target_long_array (cache_ovly_table_base + i * word_size,
3645 (unsigned int *) cache_ovly_table[i],
e17a4113 3646 4, word_size, byte_order);
fbd35540
MS
3647 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3648 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3649 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c
SS
3650 {
3651 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3652 return 1;
3653 }
c378eb4e 3654 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3655 return 0;
3656 }
3657 return 0;
3658}
3659
3660/* Function: simple_overlay_update
5417f6dc
RM
3661 If OSECT is NULL, then update all sections' mapped state
3662 (after re-reading the entire target _ovly_table).
3663 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3664 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3665 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3666 re-read the entire cache, and go ahead and update all sections. */
3667
1c772458 3668void
fba45db2 3669simple_overlay_update (struct obj_section *osect)
c906108c 3670{
c5aa993b 3671 struct objfile *objfile;
c906108c 3672
c378eb4e 3673 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3674 if (osect)
c378eb4e 3675 /* Have we got a cached copy of the target's overlay table? */
c906108c 3676 if (cache_ovly_table != NULL)
9cc89665
MS
3677 {
3678 /* Does its cached location match what's currently in the
3679 symtab? */
3b7344d5 3680 struct bound_minimal_symbol minsym
9cc89665
MS
3681 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3682
3b7344d5 3683 if (minsym.minsym == NULL)
9cc89665
MS
3684 error (_("Error reading inferior's overlay table: couldn't "
3685 "find `_ovly_table' array\n"
3686 "in inferior. Use `overlay manual' mode."));
3687
77e371c0 3688 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3689 /* Then go ahead and try to look up this single section in
3690 the cache. */
3691 if (simple_overlay_update_1 (osect))
3692 /* Found it! We're done. */
3693 return;
3694 }
c906108c
SS
3695
3696 /* Cached table no good: need to read the entire table anew.
3697 Or else we want all the sections, in which case it's actually
3698 more efficient to read the whole table in one block anyway. */
3699
0d43edd1
JB
3700 if (! simple_read_overlay_table ())
3701 return;
3702
c378eb4e 3703 /* Now may as well update all sections, even if only one was requested. */
c906108c 3704 ALL_OBJSECTIONS (objfile, osect)
714835d5 3705 if (section_is_overlay (osect))
c5aa993b
JM
3706 {
3707 int i, size;
fbd35540
MS
3708 bfd *obfd = osect->objfile->obfd;
3709 asection *bsect = osect->the_bfd_section;
c5aa993b 3710
2c500098 3711 size = bfd_get_section_size (bsect);
c5aa993b 3712 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3713 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3714 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3715 /* && cache_ovly_table[i][OSIZE] == size */ )
c378eb4e 3716 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3717 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3718 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3719 }
3720 }
c906108c
SS
3721}
3722
086df311
DJ
3723/* Set the output sections and output offsets for section SECTP in
3724 ABFD. The relocation code in BFD will read these offsets, so we
3725 need to be sure they're initialized. We map each section to itself,
3726 with no offset; this means that SECTP->vma will be honored. */
3727
3728static void
3729symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3730{
3731 sectp->output_section = sectp;
3732 sectp->output_offset = 0;
3733}
3734
ac8035ab
TG
3735/* Default implementation for sym_relocate. */
3736
ac8035ab
TG
3737bfd_byte *
3738default_symfile_relocate (struct objfile *objfile, asection *sectp,
3739 bfd_byte *buf)
3740{
3019eac3
DE
3741 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3742 DWO file. */
3743 bfd *abfd = sectp->owner;
ac8035ab
TG
3744
3745 /* We're only interested in sections with relocation
3746 information. */
3747 if ((sectp->flags & SEC_RELOC) == 0)
3748 return NULL;
3749
3750 /* We will handle section offsets properly elsewhere, so relocate as if
3751 all sections begin at 0. */
3752 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3753
3754 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3755}
3756
086df311
DJ
3757/* Relocate the contents of a debug section SECTP in ABFD. The
3758 contents are stored in BUF if it is non-NULL, or returned in a
3759 malloc'd buffer otherwise.
3760
3761 For some platforms and debug info formats, shared libraries contain
3762 relocations against the debug sections (particularly for DWARF-2;
3763 one affected platform is PowerPC GNU/Linux, although it depends on
3764 the version of the linker in use). Also, ELF object files naturally
3765 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3766 the relocations in order to get the locations of symbols correct.
3767 Another example that may require relocation processing, is the
3768 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3769 debug section. */
086df311
DJ
3770
3771bfd_byte *
ac8035ab
TG
3772symfile_relocate_debug_section (struct objfile *objfile,
3773 asection *sectp, bfd_byte *buf)
086df311 3774{
ac8035ab 3775 gdb_assert (objfile->sf->sym_relocate);
086df311 3776
ac8035ab 3777 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3778}
c906108c 3779
31d99776
DJ
3780struct symfile_segment_data *
3781get_symfile_segment_data (bfd *abfd)
3782{
00b5771c 3783 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3784
3785 if (sf == NULL)
3786 return NULL;
3787
3788 return sf->sym_segments (abfd);
3789}
3790
3791void
3792free_symfile_segment_data (struct symfile_segment_data *data)
3793{
3794 xfree (data->segment_bases);
3795 xfree (data->segment_sizes);
3796 xfree (data->segment_info);
3797 xfree (data);
3798}
3799
28c32713
JB
3800/* Given:
3801 - DATA, containing segment addresses from the object file ABFD, and
3802 the mapping from ABFD's sections onto the segments that own them,
3803 and
3804 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3805 segment addresses reported by the target,
3806 store the appropriate offsets for each section in OFFSETS.
3807
3808 If there are fewer entries in SEGMENT_BASES than there are segments
3809 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3810
8d385431
DJ
3811 If there are more entries, then ignore the extra. The target may
3812 not be able to distinguish between an empty data segment and a
3813 missing data segment; a missing text segment is less plausible. */
3b7bacac 3814
31d99776 3815int
3189cb12
DE
3816symfile_map_offsets_to_segments (bfd *abfd,
3817 const struct symfile_segment_data *data,
31d99776
DJ
3818 struct section_offsets *offsets,
3819 int num_segment_bases,
3820 const CORE_ADDR *segment_bases)
3821{
3822 int i;
3823 asection *sect;
3824
28c32713
JB
3825 /* It doesn't make sense to call this function unless you have some
3826 segment base addresses. */
202b96c1 3827 gdb_assert (num_segment_bases > 0);
28c32713 3828
31d99776
DJ
3829 /* If we do not have segment mappings for the object file, we
3830 can not relocate it by segments. */
3831 gdb_assert (data != NULL);
3832 gdb_assert (data->num_segments > 0);
3833
31d99776
DJ
3834 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3835 {
31d99776
DJ
3836 int which = data->segment_info[i];
3837
28c32713
JB
3838 gdb_assert (0 <= which && which <= data->num_segments);
3839
3840 /* Don't bother computing offsets for sections that aren't
3841 loaded as part of any segment. */
3842 if (! which)
3843 continue;
3844
3845 /* Use the last SEGMENT_BASES entry as the address of any extra
3846 segments mentioned in DATA->segment_info. */
31d99776 3847 if (which > num_segment_bases)
28c32713 3848 which = num_segment_bases;
31d99776 3849
28c32713
JB
3850 offsets->offsets[i] = (segment_bases[which - 1]
3851 - data->segment_bases[which - 1]);
31d99776
DJ
3852 }
3853
3854 return 1;
3855}
3856
3857static void
3858symfile_find_segment_sections (struct objfile *objfile)
3859{
3860 bfd *abfd = objfile->obfd;
3861 int i;
3862 asection *sect;
3863 struct symfile_segment_data *data;
3864
3865 data = get_symfile_segment_data (objfile->obfd);
3866 if (data == NULL)
3867 return;
3868
3869 if (data->num_segments != 1 && data->num_segments != 2)
3870 {
3871 free_symfile_segment_data (data);
3872 return;
3873 }
3874
3875 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3876 {
31d99776
DJ
3877 int which = data->segment_info[i];
3878
3879 if (which == 1)
3880 {
3881 if (objfile->sect_index_text == -1)
3882 objfile->sect_index_text = sect->index;
3883
3884 if (objfile->sect_index_rodata == -1)
3885 objfile->sect_index_rodata = sect->index;
3886 }
3887 else if (which == 2)
3888 {
3889 if (objfile->sect_index_data == -1)
3890 objfile->sect_index_data = sect->index;
3891
3892 if (objfile->sect_index_bss == -1)
3893 objfile->sect_index_bss = sect->index;
3894 }
3895 }
3896
3897 free_symfile_segment_data (data);
3898}
3899
76ad5e1e
NB
3900/* Listen for free_objfile events. */
3901
3902static void
3903symfile_free_objfile (struct objfile *objfile)
3904{
c33b2f12
MM
3905 /* Remove the target sections owned by this objfile. */
3906 if (objfile != NULL)
76ad5e1e
NB
3907 remove_target_sections ((void *) objfile);
3908}
3909
540c2971
DE
3910/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3911 Expand all symtabs that match the specified criteria.
3912 See quick_symbol_functions.expand_symtabs_matching for details. */
3913
3914void
bb4142cf
DE
3915expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3916 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3917 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3918 enum search_domain kind,
3919 void *data)
540c2971
DE
3920{
3921 struct objfile *objfile;
3922
3923 ALL_OBJFILES (objfile)
3924 {
3925 if (objfile->sf)
bb4142cf 3926 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3927 symbol_matcher,
3928 expansion_notify, kind,
bb4142cf 3929 data);
540c2971
DE
3930 }
3931}
3932
3933/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3934 Map function FUN over every file.
3935 See quick_symbol_functions.map_symbol_filenames for details. */
3936
3937void
bb4142cf
DE
3938map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3939 int need_fullname)
540c2971
DE
3940{
3941 struct objfile *objfile;
3942
3943 ALL_OBJFILES (objfile)
3944 {
3945 if (objfile->sf)
3946 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3947 need_fullname);
3948 }
3949}
3950
c906108c 3951void
fba45db2 3952_initialize_symfile (void)
c906108c
SS
3953{
3954 struct cmd_list_element *c;
c5aa993b 3955
76ad5e1e
NB
3956 observer_attach_free_objfile (symfile_free_objfile);
3957
1a966eab
AC
3958 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3959Load symbol table from executable file FILE.\n\
c906108c 3960The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3961to execute."), &cmdlist);
5ba2abeb 3962 set_cmd_completer (c, filename_completer);
c906108c 3963
1a966eab 3964 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3965Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3966Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3967 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3968The optional arguments are section-name section-address pairs and\n\
3969should be specified if the data and bss segments are not contiguous\n\
1a966eab 3970with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3971 &cmdlist);
5ba2abeb 3972 set_cmd_completer (c, filename_completer);
c906108c 3973
63644780
NB
3974 c = add_cmd ("remove-symbol-file", class_files,
3975 remove_symbol_file_command, _("\
3976Remove a symbol file added via the add-symbol-file command.\n\
3977Usage: remove-symbol-file FILENAME\n\
3978 remove-symbol-file -a ADDRESS\n\
3979The file to remove can be identified by its filename or by an address\n\
3980that lies within the boundaries of this symbol file in memory."),
3981 &cmdlist);
3982
1a966eab
AC
3983 c = add_cmd ("load", class_files, load_command, _("\
3984Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3985for access from GDB.\n\
3986A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3987 set_cmd_completer (c, filename_completer);
c906108c 3988
c5aa993b 3989 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3990 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3991 "overlay ", 0, &cmdlist);
3992
3993 add_com_alias ("ovly", "overlay", class_alias, 1);
3994 add_com_alias ("ov", "overlay", class_alias, 1);
3995
c5aa993b 3996 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3997 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3998
c5aa993b 3999 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4000 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4001
c5aa993b 4002 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4003 _("List mappings of overlay sections."), &overlaylist);
c906108c 4004
c5aa993b 4005 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4006 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4007 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4008 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4009 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4010 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4011 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4012 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4013
4014 /* Filename extension to source language lookup table: */
4015 init_filename_language_table ();
26c41df3
AC
4016 add_setshow_string_noescape_cmd ("extension-language", class_files,
4017 &ext_args, _("\
4018Set mapping between filename extension and source language."), _("\
4019Show mapping between filename extension and source language."), _("\
4020Usage: set extension-language .foo bar"),
4021 set_ext_lang_command,
920d2a44 4022 show_ext_args,
26c41df3 4023 &setlist, &showlist);
c906108c 4024
c5aa993b 4025 add_info ("extensions", info_ext_lang_command,
1bedd215 4026 _("All filename extensions associated with a source language."));
917317f4 4027
525226b5
AC
4028 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4029 &debug_file_directory, _("\
24ddea62
JK
4030Set the directories where separate debug symbols are searched for."), _("\
4031Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4032Separate debug symbols are first searched for in the same\n\
4033directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4034and lastly at the path of the directory of the binary with\n\
24ddea62 4035each global debug-file-directory component prepended."),
525226b5 4036 NULL,
920d2a44 4037 show_debug_file_directory,
525226b5 4038 &setlist, &showlist);
770e7fc7
DE
4039
4040 add_setshow_enum_cmd ("symbol-loading", no_class,
4041 print_symbol_loading_enums, &print_symbol_loading,
4042 _("\
4043Set printing of symbol loading messages."), _("\
4044Show printing of symbol loading messages."), _("\
4045off == turn all messages off\n\
4046brief == print messages for the executable,\n\
4047 and brief messages for shared libraries\n\
4048full == print messages for the executable,\n\
4049 and messages for each shared library."),
4050 NULL,
4051 NULL,
4052 &setprintlist, &showprintlist);
c906108c 4053}
This page took 1.936666 seconds and 4 git commands to generate.