* dwarf2read.c (dwarf2_flag_true_p): New function.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
cf5b2f1b 4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
c906108c 51
c906108c
SS
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include <time.h>
c906108c
SS
58
59#ifndef O_BINARY
60#define O_BINARY 0
61#endif
62
63#ifdef HPUXHPPA
64
65/* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
c906108c
SS
68extern int hp_cxx_exception_support_initialized;
69#define RESET_HP_UX_GLOBALS() do {\
f83f82bc 70 deprecated_hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
c906108c
SS
71 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
72 } while (0)
73#endif
74
917317f4 75int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d 76void (*show_load_progress) (const char *section,
5417f6dc
RM
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
c2d11a7d 80 unsigned long total_size);
5417f6dc 81void (*pre_add_symbol_hook) (const char *);
507f3c78
KB
82void (*post_add_symbol_hook) (void);
83void (*target_new_objfile_hook) (struct objfile *);
c906108c 84
74b7792f
AC
85static void clear_symtab_users_cleanup (void *ignore);
86
c906108c 87/* Global variables owned by this file */
c5aa993b 88int readnow_symbol_files; /* Read full symbols immediately */
c906108c 89
c906108c
SS
90/* External variables and functions referenced. */
91
a14ed312 92extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
93
94/* Functions this file defines */
95
96#if 0
a14ed312
KB
97static int simple_read_overlay_region_table (void);
98static void simple_free_overlay_region_table (void);
c906108c
SS
99#endif
100
a14ed312 101static void set_initial_language (void);
c906108c 102
a14ed312 103static void load_command (char *, int);
c906108c 104
d7db6da9
FN
105static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
106
a14ed312 107static void add_symbol_file_command (char *, int);
c906108c 108
a14ed312 109static void add_shared_symbol_files_command (char *, int);
c906108c 110
5b5d99cf
JB
111static void reread_separate_symbols (struct objfile *objfile);
112
a14ed312 113static void cashier_psymtab (struct partial_symtab *);
c906108c 114
a14ed312 115bfd *symfile_bfd_open (char *);
c906108c 116
0e931cf0
JB
117int get_section_index (struct objfile *, char *);
118
a14ed312 119static void find_sym_fns (struct objfile *);
c906108c 120
a14ed312 121static void decrement_reading_symtab (void *);
c906108c 122
a14ed312 123static void overlay_invalidate_all (void);
c906108c 124
a14ed312 125static int overlay_is_mapped (struct obj_section *);
c906108c 126
a14ed312 127void list_overlays_command (char *, int);
c906108c 128
a14ed312 129void map_overlay_command (char *, int);
c906108c 130
a14ed312 131void unmap_overlay_command (char *, int);
c906108c 132
a14ed312 133static void overlay_auto_command (char *, int);
c906108c 134
a14ed312 135static void overlay_manual_command (char *, int);
c906108c 136
a14ed312 137static void overlay_off_command (char *, int);
c906108c 138
a14ed312 139static void overlay_load_command (char *, int);
c906108c 140
a14ed312 141static void overlay_command (char *, int);
c906108c 142
a14ed312 143static void simple_free_overlay_table (void);
c906108c 144
a14ed312 145static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 146
a14ed312 147static int simple_read_overlay_table (void);
c906108c 148
a14ed312 149static int simple_overlay_update_1 (struct obj_section *);
c906108c 150
a14ed312 151static void add_filename_language (char *ext, enum language lang);
392a587b 152
a14ed312 153static void set_ext_lang_command (char *args, int from_tty);
392a587b 154
a14ed312 155static void info_ext_lang_command (char *args, int from_tty);
392a587b 156
5b5d99cf
JB
157static char *find_separate_debug_file (struct objfile *objfile);
158
a14ed312 159static void init_filename_language_table (void);
392a587b 160
a14ed312 161void _initialize_symfile (void);
c906108c
SS
162
163/* List of all available sym_fns. On gdb startup, each object file reader
164 calls add_symtab_fns() to register information on each format it is
165 prepared to read. */
166
167static struct sym_fns *symtab_fns = NULL;
168
169/* Flag for whether user will be reloading symbols multiple times.
170 Defaults to ON for VxWorks, otherwise OFF. */
171
172#ifdef SYMBOL_RELOADING_DEFAULT
173int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
174#else
175int symbol_reloading = 0;
176#endif
177
b7209cb4
FF
178/* If non-zero, shared library symbols will be added automatically
179 when the inferior is created, new libraries are loaded, or when
180 attaching to the inferior. This is almost always what users will
181 want to have happen; but for very large programs, the startup time
182 will be excessive, and so if this is a problem, the user can clear
183 this flag and then add the shared library symbols as needed. Note
184 that there is a potential for confusion, since if the shared
c906108c 185 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 186 report all the functions that are actually present. */
c906108c
SS
187
188int auto_solib_add = 1;
b7209cb4
FF
189
190/* For systems that support it, a threshold size in megabytes. If
191 automatically adding a new library's symbol table to those already
192 known to the debugger would cause the total shared library symbol
193 size to exceed this threshhold, then the shlib's symbols are not
194 added. The threshold is ignored if the user explicitly asks for a
195 shlib to be added, such as when using the "sharedlibrary"
196 command. */
197
198int auto_solib_limit;
c906108c 199\f
c5aa993b 200
0fe19209
DC
201/* This compares two partial symbols by names, using strcmp_iw_ordered
202 for the comparison. */
c906108c
SS
203
204static int
0cd64fe2 205compare_psymbols (const void *s1p, const void *s2p)
c906108c 206{
0fe19209
DC
207 struct partial_symbol *const *s1 = s1p;
208 struct partial_symbol *const *s2 = s2p;
209
c8be8951
DC
210 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
211 SYMBOL_NATURAL_NAME (*s2));
c906108c
SS
212}
213
214void
fba45db2 215sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
216{
217 /* Sort the global list; don't sort the static list */
218
c5aa993b
JM
219 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
220 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
221 compare_psymbols);
222}
223
c906108c
SS
224/* Make a null terminated copy of the string at PTR with SIZE characters in
225 the obstack pointed to by OBSTACKP . Returns the address of the copy.
226 Note that the string at PTR does not have to be null terminated, I.E. it
227 may be part of a larger string and we are only saving a substring. */
228
229char *
63ca651f 230obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 231{
52f0bd74 232 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
233 /* Open-coded memcpy--saves function call time. These strings are usually
234 short. FIXME: Is this really still true with a compiler that can
235 inline memcpy? */
236 {
aa1ee363
AC
237 const char *p1 = ptr;
238 char *p2 = p;
63ca651f 239 const char *end = ptr + size;
c906108c
SS
240 while (p1 != end)
241 *p2++ = *p1++;
242 }
243 p[size] = 0;
244 return p;
245}
246
247/* Concatenate strings S1, S2 and S3; return the new string. Space is found
248 in the obstack pointed to by OBSTACKP. */
249
250char *
fba45db2
KB
251obconcat (struct obstack *obstackp, const char *s1, const char *s2,
252 const char *s3)
c906108c 253{
52f0bd74
AC
254 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
255 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
256 strcpy (val, s1);
257 strcat (val, s2);
258 strcat (val, s3);
259 return val;
260}
261
262/* True if we are nested inside psymtab_to_symtab. */
263
264int currently_reading_symtab = 0;
265
266static void
fba45db2 267decrement_reading_symtab (void *dummy)
c906108c
SS
268{
269 currently_reading_symtab--;
270}
271
272/* Get the symbol table that corresponds to a partial_symtab.
273 This is fast after the first time you do it. In fact, there
274 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
275 case inline. */
276
277struct symtab *
aa1ee363 278psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
279{
280 /* If it's been looked up before, return it. */
281 if (pst->symtab)
282 return pst->symtab;
283
284 /* If it has not yet been read in, read it. */
285 if (!pst->readin)
c5aa993b 286 {
c906108c
SS
287 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
288 currently_reading_symtab++;
289 (*pst->read_symtab) (pst);
290 do_cleanups (back_to);
291 }
292
293 return pst->symtab;
294}
295
5417f6dc
RM
296/* Remember the lowest-addressed loadable section we've seen.
297 This function is called via bfd_map_over_sections.
c906108c
SS
298
299 In case of equal vmas, the section with the largest size becomes the
300 lowest-addressed loadable section.
301
302 If the vmas and sizes are equal, the last section is considered the
303 lowest-addressed loadable section. */
304
305void
4efb68b1 306find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 307{
c5aa993b 308 asection **lowest = (asection **) obj;
c906108c
SS
309
310 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
311 return;
312 if (!*lowest)
313 *lowest = sect; /* First loadable section */
314 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
315 *lowest = sect; /* A lower loadable section */
316 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
317 && (bfd_section_size (abfd, (*lowest))
318 <= bfd_section_size (abfd, sect)))
319 *lowest = sect;
320}
321
a39a16c4
MM
322/* Create a new section_addr_info, with room for NUM_SECTIONS. */
323
324struct section_addr_info *
325alloc_section_addr_info (size_t num_sections)
326{
327 struct section_addr_info *sap;
328 size_t size;
329
330 size = (sizeof (struct section_addr_info)
331 + sizeof (struct other_sections) * (num_sections - 1));
332 sap = (struct section_addr_info *) xmalloc (size);
333 memset (sap, 0, size);
334 sap->num_sections = num_sections;
335
336 return sap;
337}
62557bbc
KB
338
339/* Build (allocate and populate) a section_addr_info struct from
340 an existing section table. */
341
342extern struct section_addr_info *
343build_section_addr_info_from_section_table (const struct section_table *start,
344 const struct section_table *end)
345{
346 struct section_addr_info *sap;
347 const struct section_table *stp;
348 int oidx;
349
a39a16c4 350 sap = alloc_section_addr_info (end - start);
62557bbc
KB
351
352 for (stp = start, oidx = 0; stp != end; stp++)
353 {
5417f6dc 354 if (bfd_get_section_flags (stp->bfd,
fbd35540 355 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 356 && oidx < end - start)
62557bbc
KB
357 {
358 sap->other[oidx].addr = stp->addr;
5417f6dc 359 sap->other[oidx].name
fbd35540 360 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
361 sap->other[oidx].sectindex = stp->the_bfd_section->index;
362 oidx++;
363 }
364 }
365
366 return sap;
367}
368
369
370/* Free all memory allocated by build_section_addr_info_from_section_table. */
371
372extern void
373free_section_addr_info (struct section_addr_info *sap)
374{
375 int idx;
376
a39a16c4 377 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 378 if (sap->other[idx].name)
b8c9b27d
KB
379 xfree (sap->other[idx].name);
380 xfree (sap);
62557bbc
KB
381}
382
383
e8289572
JB
384/* Initialize OBJFILE's sect_index_* members. */
385static void
386init_objfile_sect_indices (struct objfile *objfile)
c906108c 387{
e8289572 388 asection *sect;
c906108c 389 int i;
5417f6dc 390
b8fbeb18 391 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 392 if (sect)
b8fbeb18
EZ
393 objfile->sect_index_text = sect->index;
394
395 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 396 if (sect)
b8fbeb18
EZ
397 objfile->sect_index_data = sect->index;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 400 if (sect)
b8fbeb18
EZ
401 objfile->sect_index_bss = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 404 if (sect)
b8fbeb18
EZ
405 objfile->sect_index_rodata = sect->index;
406
bbcd32ad
FF
407 /* This is where things get really weird... We MUST have valid
408 indices for the various sect_index_* members or gdb will abort.
409 So if for example, there is no ".text" section, we have to
410 accomodate that. Except when explicitly adding symbol files at
411 some address, section_offsets contains nothing but zeros, so it
412 doesn't matter which slot in section_offsets the individual
413 sect_index_* members index into. So if they are all zero, it is
414 safe to just point all the currently uninitialized indices to the
415 first slot. */
416
417 for (i = 0; i < objfile->num_sections; i++)
418 {
419 if (ANOFFSET (objfile->section_offsets, i) != 0)
420 {
421 break;
422 }
423 }
424 if (i == objfile->num_sections)
425 {
426 if (objfile->sect_index_text == -1)
427 objfile->sect_index_text = 0;
428 if (objfile->sect_index_data == -1)
429 objfile->sect_index_data = 0;
430 if (objfile->sect_index_bss == -1)
431 objfile->sect_index_bss = 0;
432 if (objfile->sect_index_rodata == -1)
433 objfile->sect_index_rodata = 0;
434 }
b8fbeb18 435}
c906108c 436
e8289572
JB
437
438/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 439 of how to represent it for fast symbol reading. This is the default
e8289572
JB
440 version of the sym_fns.sym_offsets function for symbol readers that
441 don't need to do anything special. It allocates a section_offsets table
442 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
443
444void
445default_symfile_offsets (struct objfile *objfile,
446 struct section_addr_info *addrs)
447{
448 int i;
449
a39a16c4 450 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 451 objfile->section_offsets = (struct section_offsets *)
5417f6dc 452 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 453 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 454 memset (objfile->section_offsets, 0,
a39a16c4 455 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
456
457 /* Now calculate offsets for section that were specified by the
458 caller. */
a39a16c4 459 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
460 {
461 struct other_sections *osp ;
462
463 osp = &addrs->other[i] ;
464 if (osp->addr == 0)
465 continue;
466
467 /* Record all sections in offsets */
468 /* The section_offsets in the objfile are here filled in using
469 the BFD index. */
470 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
471 }
472
473 /* Remember the bfd indexes for the .text, .data, .bss and
474 .rodata sections. */
475 init_objfile_sect_indices (objfile);
476}
477
478
c906108c
SS
479/* Process a symbol file, as either the main file or as a dynamically
480 loaded file.
481
96baa820
JM
482 OBJFILE is where the symbols are to be read from.
483
7e8580c1
JB
484 ADDRS is the list of section load addresses. If the user has given
485 an 'add-symbol-file' command, then this is the list of offsets and
486 addresses he or she provided as arguments to the command; or, if
487 we're handling a shared library, these are the actual addresses the
488 sections are loaded at, according to the inferior's dynamic linker
489 (as gleaned by GDB's shared library code). We convert each address
490 into an offset from the section VMA's as it appears in the object
491 file, and then call the file's sym_offsets function to convert this
492 into a format-specific offset table --- a `struct section_offsets'.
493 If ADDRS is non-zero, OFFSETS must be zero.
494
495 OFFSETS is a table of section offsets already in the right
496 format-specific representation. NUM_OFFSETS is the number of
497 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
498 assume this is the proper table the call to sym_offsets described
499 above would produce. Instead of calling sym_offsets, we just dump
500 it right into objfile->section_offsets. (When we're re-reading
501 symbols from an objfile, we don't have the original load address
502 list any more; all we have is the section offset table.) If
503 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
504
505 MAINLINE is nonzero if this is the main symbol file, or zero if
506 it's an extra symbol file such as dynamically loaded code.
507
508 VERBO is nonzero if the caller has printed a verbose message about
509 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
510
511void
7e8580c1
JB
512syms_from_objfile (struct objfile *objfile,
513 struct section_addr_info *addrs,
514 struct section_offsets *offsets,
515 int num_offsets,
516 int mainline,
517 int verbo)
c906108c 518{
a39a16c4 519 struct section_addr_info *local_addr = NULL;
c906108c 520 struct cleanup *old_chain;
2acceee2 521
7e8580c1 522 gdb_assert (! (addrs && offsets));
2acceee2 523
c906108c
SS
524 init_entry_point_info (objfile);
525 find_sym_fns (objfile);
526
75245b24
MS
527 if (objfile->sf == NULL)
528 return; /* No symbols. */
529
c906108c
SS
530 /* Make sure that partially constructed symbol tables will be cleaned up
531 if an error occurs during symbol reading. */
74b7792f 532 old_chain = make_cleanup_free_objfile (objfile);
c906108c 533
a39a16c4
MM
534 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
535 list. We now establish the convention that an addr of zero means
536 no load address was specified. */
537 if (! addrs && ! offsets)
538 {
5417f6dc 539 local_addr
a39a16c4
MM
540 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
541 make_cleanup (xfree, local_addr);
542 addrs = local_addr;
543 }
544
545 /* Now either addrs or offsets is non-zero. */
546
c5aa993b 547 if (mainline)
c906108c
SS
548 {
549 /* We will modify the main symbol table, make sure that all its users
c5aa993b 550 will be cleaned up if an error occurs during symbol reading. */
74b7792f 551 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
552
553 /* Since no error yet, throw away the old symbol table. */
554
555 if (symfile_objfile != NULL)
556 {
557 free_objfile (symfile_objfile);
558 symfile_objfile = NULL;
559 }
560
561 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
562 If the user wants to get rid of them, they should do "symbol-file"
563 without arguments first. Not sure this is the best behavior
564 (PR 2207). */
c906108c 565
c5aa993b 566 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
567 }
568
569 /* Convert addr into an offset rather than an absolute address.
570 We find the lowest address of a loaded segment in the objfile,
53a5351d 571 and assume that <addr> is where that got loaded.
c906108c 572
53a5351d
JM
573 We no longer warn if the lowest section is not a text segment (as
574 happens for the PA64 port. */
1549f619 575 if (!mainline && addrs && addrs->other[0].name)
c906108c 576 {
1549f619
EZ
577 asection *lower_sect;
578 asection *sect;
579 CORE_ADDR lower_offset;
580 int i;
581
5417f6dc 582 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
583 continguous sections. FIXME!! won't work without call to find
584 .text first, but this assumes text is lowest section. */
585 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
586 if (lower_sect == NULL)
c906108c 587 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 588 &lower_sect);
2acceee2 589 if (lower_sect == NULL)
c906108c
SS
590 warning ("no loadable sections found in added symbol-file %s",
591 objfile->name);
5417f6dc 592 else
b8fbeb18
EZ
593 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
594 warning ("Lowest section in %s is %s at %s",
595 objfile->name,
596 bfd_section_name (objfile->obfd, lower_sect),
597 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
598 if (lower_sect != NULL)
599 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
600 else
601 lower_offset = 0;
5417f6dc 602
13de58df 603 /* Calculate offsets for the loadable sections.
2acceee2
JM
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
5417f6dc 606
13de58df
JB
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
2acceee2
JM
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
1549f619 613 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
614 {
615 if (addrs->other[i].addr != 0)
616 {
617 sect = bfd_get_section_by_name (objfile->obfd,
618 addrs->other[i].name);
619 if (sect)
620 {
621 addrs->other[i].addr
622 -= bfd_section_vma (objfile->obfd, sect);
623 lower_offset = addrs->other[i].addr;
624 /* This is the index used by BFD. */
625 addrs->other[i].sectindex = sect->index ;
626 }
627 else
628 {
629 warning ("section %s not found in %s",
5417f6dc 630 addrs->other[i].name,
7e8580c1
JB
631 objfile->name);
632 addrs->other[i].addr = 0;
633 }
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
c906108c
SS
638 }
639
640 /* Initialize symbol reading routines for this objfile, allow complaints to
641 appear for this new file, and record how verbose to be, then do the
642 initial symbol reading for this file. */
643
c5aa993b 644 (*objfile->sf->sym_init) (objfile);
b9caf505 645 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 646
7e8580c1
JB
647 if (addrs)
648 (*objfile->sf->sym_offsets) (objfile, addrs);
649 else
650 {
651 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
652
653 /* Just copy in the offset table directly as given to us. */
654 objfile->num_sections = num_offsets;
655 objfile->section_offsets
656 = ((struct section_offsets *)
8b92e4d5 657 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
658 memcpy (objfile->section_offsets, offsets, size);
659
660 init_objfile_sect_indices (objfile);
661 }
c906108c 662
52d16ba8 663#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
664 /* This is a SVR4/SunOS specific hack, I think. In any event, it
665 screws RS/6000. sym_offsets should be doing this sort of thing,
666 because it knows the mapping between bfd sections and
667 section_offsets. */
668 /* This is a hack. As far as I can tell, section offsets are not
669 target dependent. They are all set to addr with a couple of
670 exceptions. The exceptions are sysvr4 shared libraries, whose
671 offsets are kept in solib structures anyway and rs6000 xcoff
672 which handles shared libraries in a completely unique way.
673
674 Section offsets are built similarly, except that they are built
675 by adding addr in all cases because there is no clear mapping
676 from section_offsets into actual sections. Note that solib.c
96baa820 677 has a different algorithm for finding section offsets.
c906108c
SS
678
679 These should probably all be collapsed into some target
680 independent form of shared library support. FIXME. */
681
2acceee2 682 if (addrs)
c906108c
SS
683 {
684 struct obj_section *s;
685
5417f6dc
RM
686 /* Map section offsets in "addr" back to the object's
687 sections by comparing the section names with bfd's
2acceee2
JM
688 section names. Then adjust the section address by
689 the offset. */ /* for gdb/13815 */
5417f6dc 690
96baa820 691 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 692 {
2acceee2
JM
693 CORE_ADDR s_addr = 0;
694 int i;
695
5417f6dc 696 for (i = 0;
a39a16c4 697 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 698 i++)
5417f6dc
RM
699 if (strcmp (bfd_section_name (s->objfile->obfd,
700 s->the_bfd_section),
fbd35540 701 addrs->other[i].name) == 0)
2acceee2 702 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 703
c906108c 704 s->addr -= s->offset;
2acceee2 705 s->addr += s_addr;
c906108c 706 s->endaddr -= s->offset;
2acceee2
JM
707 s->endaddr += s_addr;
708 s->offset += s_addr;
c906108c
SS
709 }
710 }
52d16ba8 711#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 712
96baa820 713 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 714
c906108c
SS
715 /* Don't allow char * to have a typename (else would get caddr_t).
716 Ditto void *. FIXME: Check whether this is now done by all the
717 symbol readers themselves (many of them now do), and if so remove
718 it from here. */
719
720 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
721 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
722
723 /* Mark the objfile has having had initial symbol read attempted. Note
724 that this does not mean we found any symbols... */
725
c5aa993b 726 objfile->flags |= OBJF_SYMS;
c906108c
SS
727
728 /* Discard cleanups as symbol reading was successful. */
729
730 discard_cleanups (old_chain);
c906108c
SS
731}
732
733/* Perform required actions after either reading in the initial
734 symbols for a new objfile, or mapping in the symbols from a reusable
735 objfile. */
c5aa993b 736
c906108c 737void
fba45db2 738new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
739{
740
741 /* If this is the main symbol file we have to clean up all users of the
742 old main symbol file. Otherwise it is sufficient to fixup all the
743 breakpoints that may have been redefined by this symbol file. */
744 if (mainline)
745 {
746 /* OK, make it the "real" symbol file. */
747 symfile_objfile = objfile;
748
749 clear_symtab_users ();
750 }
751 else
752 {
753 breakpoint_re_set ();
754 }
755
756 /* We're done reading the symbol file; finish off complaints. */
b9caf505 757 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
758}
759
760/* Process a symbol file, as either the main file or as a dynamically
761 loaded file.
762
5417f6dc
RM
763 ABFD is a BFD already open on the file, as from symfile_bfd_open.
764 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
765
766 FROM_TTY says how verbose to be.
767
768 MAINLINE specifies whether this is the main symbol file, or whether
769 it's an extra symbol file such as dynamically loaded code.
770
771 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
772 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
773 non-zero.
c906108c 774
c906108c
SS
775 Upon success, returns a pointer to the objfile that was added.
776 Upon failure, jumps back to command level (never returns). */
7904e09f 777static struct objfile *
5417f6dc 778symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
779 struct section_addr_info *addrs,
780 struct section_offsets *offsets,
781 int num_offsets,
782 int mainline, int flags)
c906108c
SS
783{
784 struct objfile *objfile;
785 struct partial_symtab *psymtab;
5b5d99cf 786 char *debugfile;
a39a16c4
MM
787 struct section_addr_info *orig_addrs;
788 struct cleanup *my_cleanups;
5417f6dc 789 const char *name = bfd_get_filename (abfd);
c906108c 790
5417f6dc 791 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 792
5417f6dc
RM
793 /* Give user a chance to burp if we'd be
794 interactively wiping out any existing symbols. */
c906108c
SS
795
796 if ((have_full_symbols () || have_partial_symbols ())
797 && mainline
798 && from_tty
799 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 800 error ("Not confirmed.");
c906108c 801
2df3850c 802 objfile = allocate_objfile (abfd, flags);
5417f6dc 803 discard_cleanups (my_cleanups);
c906108c 804
a39a16c4
MM
805 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
806 my_cleanups = make_cleanup (xfree, orig_addrs);
807 if (addrs)
63cd24fe
EZ
808 {
809 int i;
810 orig_addrs->num_sections = addrs->num_sections;
811 for (i = 0; i < addrs->num_sections; i++)
812 orig_addrs->other[i] = addrs->other[i];
813 }
a39a16c4 814
78a4a9b9
AC
815 /* We either created a new mapped symbol table, mapped an existing
816 symbol table file which has not had initial symbol reading
817 performed, or need to read an unmapped symbol table. */
818 if (from_tty || info_verbose)
c906108c 819 {
78a4a9b9
AC
820 if (pre_add_symbol_hook)
821 pre_add_symbol_hook (name);
822 else
c906108c 823 {
78a4a9b9 824 printf_unfiltered ("Reading symbols from %s...", name);
c906108c
SS
825 wrap_here ("");
826 gdb_flush (gdb_stdout);
827 }
c906108c 828 }
78a4a9b9
AC
829 syms_from_objfile (objfile, addrs, offsets, num_offsets,
830 mainline, from_tty);
c906108c
SS
831
832 /* We now have at least a partial symbol table. Check to see if the
833 user requested that all symbols be read on initial access via either
834 the gdb startup command line or on a per symbol file basis. Expand
835 all partial symbol tables for this objfile if so. */
836
2acceee2 837 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
838 {
839 if (from_tty || info_verbose)
840 {
46f45a4a 841 printf_unfiltered ("expanding to full symbols...");
c906108c
SS
842 wrap_here ("");
843 gdb_flush (gdb_stdout);
844 }
845
c5aa993b 846 for (psymtab = objfile->psymtabs;
c906108c 847 psymtab != NULL;
c5aa993b 848 psymtab = psymtab->next)
c906108c
SS
849 {
850 psymtab_to_symtab (psymtab);
851 }
852 }
853
5b5d99cf
JB
854 debugfile = find_separate_debug_file (objfile);
855 if (debugfile)
856 {
5b5d99cf
JB
857 if (addrs != NULL)
858 {
859 objfile->separate_debug_objfile
a39a16c4 860 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
861 }
862 else
863 {
864 objfile->separate_debug_objfile
865 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
866 }
867 objfile->separate_debug_objfile->separate_debug_objfile_backlink
868 = objfile;
5417f6dc 869
5b5d99cf
JB
870 /* Put the separate debug object before the normal one, this is so that
871 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
872 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 873
5b5d99cf
JB
874 xfree (debugfile);
875 }
5417f6dc 876
cb3c37b2
JB
877 if (!have_partial_symbols () && !have_full_symbols ())
878 {
879 wrap_here ("");
46f45a4a 880 printf_unfiltered ("(no debugging symbols found)...");
cb3c37b2
JB
881 wrap_here ("");
882 }
883
c906108c
SS
884 if (from_tty || info_verbose)
885 {
886 if (post_add_symbol_hook)
c5aa993b 887 post_add_symbol_hook ();
c906108c 888 else
c5aa993b 889 {
46f45a4a 890 printf_unfiltered ("done.\n");
c5aa993b 891 }
c906108c
SS
892 }
893
481d0f41
JB
894 /* We print some messages regardless of whether 'from_tty ||
895 info_verbose' is true, so make sure they go out at the right
896 time. */
897 gdb_flush (gdb_stdout);
898
a39a16c4
MM
899 do_cleanups (my_cleanups);
900
109f874e
MS
901 if (objfile->sf == NULL)
902 return objfile; /* No symbols. */
903
c906108c
SS
904 new_symfile_objfile (objfile, mainline, from_tty);
905
11cf8741
JM
906 if (target_new_objfile_hook)
907 target_new_objfile_hook (objfile);
c906108c
SS
908
909 return (objfile);
910}
911
7904e09f
JB
912
913/* Process a symbol file, as either the main file or as a dynamically
914 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
915 for details. */
916struct objfile *
917symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
918 int mainline, int flags)
919{
5417f6dc
RM
920 return symbol_file_add_with_addrs_or_offsets (symfile_bfd_open (name),
921 from_tty, addrs, 0, 0,
7904e09f
JB
922 mainline, flags);
923}
924
925
d7db6da9
FN
926/* Call symbol_file_add() with default values and update whatever is
927 affected by the loading of a new main().
928 Used when the file is supplied in the gdb command line
929 and by some targets with special loading requirements.
930 The auxiliary function, symbol_file_add_main_1(), has the flags
931 argument for the switches that can only be specified in the symbol_file
932 command itself. */
5417f6dc 933
1adeb98a
FN
934void
935symbol_file_add_main (char *args, int from_tty)
936{
d7db6da9
FN
937 symbol_file_add_main_1 (args, from_tty, 0);
938}
939
940static void
941symbol_file_add_main_1 (char *args, int from_tty, int flags)
942{
943 symbol_file_add (args, from_tty, NULL, 1, flags);
944
945#ifdef HPUXHPPA
946 RESET_HP_UX_GLOBALS ();
947#endif
948
949 /* Getting new symbols may change our opinion about
950 what is frameless. */
951 reinit_frame_cache ();
952
953 set_initial_language ();
1adeb98a
FN
954}
955
956void
957symbol_file_clear (int from_tty)
958{
959 if ((have_full_symbols () || have_partial_symbols ())
960 && from_tty
961 && !query ("Discard symbol table from `%s'? ",
962 symfile_objfile->name))
963 error ("Not confirmed.");
964 free_all_objfiles ();
965
966 /* solib descriptors may have handles to objfiles. Since their
967 storage has just been released, we'd better wipe the solib
968 descriptors as well.
969 */
970#if defined(SOLIB_RESTART)
971 SOLIB_RESTART ();
972#endif
973
974 symfile_objfile = NULL;
975 if (from_tty)
976 printf_unfiltered ("No symbol file now.\n");
977#ifdef HPUXHPPA
978 RESET_HP_UX_GLOBALS ();
979#endif
980}
981
5b5d99cf
JB
982static char *
983get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
984{
985 asection *sect;
986 bfd_size_type debuglink_size;
987 unsigned long crc32;
988 char *contents;
989 int crc_offset;
990 unsigned char *p;
5417f6dc 991
5b5d99cf
JB
992 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
993
994 if (sect == NULL)
995 return NULL;
996
997 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 998
5b5d99cf
JB
999 contents = xmalloc (debuglink_size);
1000 bfd_get_section_contents (objfile->obfd, sect, contents,
1001 (file_ptr)0, (bfd_size_type)debuglink_size);
1002
1003 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1004 crc_offset = strlen (contents) + 1;
1005 crc_offset = (crc_offset + 3) & ~3;
1006
1007 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1008
5b5d99cf
JB
1009 *crc32_out = crc32;
1010 return contents;
1011}
1012
1013static int
1014separate_debug_file_exists (const char *name, unsigned long crc)
1015{
1016 unsigned long file_crc = 0;
1017 int fd;
1018 char buffer[8*1024];
1019 int count;
1020
1021 fd = open (name, O_RDONLY | O_BINARY);
1022 if (fd < 0)
1023 return 0;
1024
1025 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1026 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1027
1028 close (fd);
1029
1030 return crc == file_crc;
1031}
1032
1033static char *debug_file_directory = NULL;
1034
1035#if ! defined (DEBUG_SUBDIRECTORY)
1036#define DEBUG_SUBDIRECTORY ".debug"
1037#endif
1038
1039static char *
1040find_separate_debug_file (struct objfile *objfile)
1041{
1042 asection *sect;
1043 char *basename;
1044 char *dir;
1045 char *debugfile;
1046 char *name_copy;
1047 bfd_size_type debuglink_size;
1048 unsigned long crc32;
1049 int i;
1050
1051 basename = get_debug_link_info (objfile, &crc32);
1052
1053 if (basename == NULL)
1054 return NULL;
5417f6dc 1055
5b5d99cf
JB
1056 dir = xstrdup (objfile->name);
1057
fe36c4f4
JB
1058 /* Strip off the final filename part, leaving the directory name,
1059 followed by a slash. Objfile names should always be absolute and
1060 tilde-expanded, so there should always be a slash in there
1061 somewhere. */
5b5d99cf
JB
1062 for (i = strlen(dir) - 1; i >= 0; i--)
1063 {
1064 if (IS_DIR_SEPARATOR (dir[i]))
1065 break;
1066 }
fe36c4f4 1067 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1068 dir[i+1] = '\0';
5417f6dc 1069
5b5d99cf
JB
1070 debugfile = alloca (strlen (debug_file_directory) + 1
1071 + strlen (dir)
1072 + strlen (DEBUG_SUBDIRECTORY)
1073 + strlen ("/")
5417f6dc 1074 + strlen (basename)
5b5d99cf
JB
1075 + 1);
1076
1077 /* First try in the same directory as the original file. */
1078 strcpy (debugfile, dir);
1079 strcat (debugfile, basename);
1080
1081 if (separate_debug_file_exists (debugfile, crc32))
1082 {
1083 xfree (basename);
1084 xfree (dir);
1085 return xstrdup (debugfile);
1086 }
5417f6dc 1087
5b5d99cf
JB
1088 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1089 strcpy (debugfile, dir);
1090 strcat (debugfile, DEBUG_SUBDIRECTORY);
1091 strcat (debugfile, "/");
1092 strcat (debugfile, basename);
1093
1094 if (separate_debug_file_exists (debugfile, crc32))
1095 {
1096 xfree (basename);
1097 xfree (dir);
1098 return xstrdup (debugfile);
1099 }
5417f6dc 1100
5b5d99cf
JB
1101 /* Then try in the global debugfile directory. */
1102 strcpy (debugfile, debug_file_directory);
1103 strcat (debugfile, "/");
1104 strcat (debugfile, dir);
5b5d99cf
JB
1105 strcat (debugfile, basename);
1106
1107 if (separate_debug_file_exists (debugfile, crc32))
1108 {
1109 xfree (basename);
1110 xfree (dir);
1111 return xstrdup (debugfile);
1112 }
5417f6dc 1113
5b5d99cf
JB
1114 xfree (basename);
1115 xfree (dir);
1116 return NULL;
1117}
1118
1119
c906108c
SS
1120/* This is the symbol-file command. Read the file, analyze its
1121 symbols, and add a struct symtab to a symtab list. The syntax of
1122 the command is rather bizarre--(1) buildargv implements various
1123 quoting conventions which are undocumented and have little or
1124 nothing in common with the way things are quoted (or not quoted)
1125 elsewhere in GDB, (2) options are used, which are not generally
1126 used in GDB (perhaps "set mapped on", "set readnow on" would be
1127 better), (3) the order of options matters, which is contrary to GNU
1128 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1129/* Note: ezannoni 2000-04-17. This function used to have support for
1130 rombug (see remote-os9k.c). It consisted of a call to target_link()
1131 (target.c) to get the address of the text segment from the target,
1132 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1133
1134void
fba45db2 1135symbol_file_command (char *args, int from_tty)
c906108c
SS
1136{
1137 char **argv;
1138 char *name = NULL;
c906108c 1139 struct cleanup *cleanups;
2df3850c 1140 int flags = OBJF_USERLOADED;
c906108c
SS
1141
1142 dont_repeat ();
1143
1144 if (args == NULL)
1145 {
1adeb98a 1146 symbol_file_clear (from_tty);
c906108c
SS
1147 }
1148 else
1149 {
1150 if ((argv = buildargv (args)) == NULL)
1151 {
1152 nomem (0);
1153 }
7a292a7a 1154 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1155 while (*argv != NULL)
1156 {
78a4a9b9
AC
1157 if (strcmp (*argv, "-readnow") == 0)
1158 flags |= OBJF_READNOW;
1159 else if (**argv == '-')
1160 error ("unknown option `%s'", *argv);
1161 else
1162 {
1163 name = *argv;
5417f6dc 1164
78a4a9b9
AC
1165 symbol_file_add_main_1 (name, from_tty, flags);
1166 }
c906108c
SS
1167 argv++;
1168 }
1169
1170 if (name == NULL)
1171 {
1172 error ("no symbol file name was specified");
1173 }
c906108c
SS
1174 do_cleanups (cleanups);
1175 }
1176}
1177
1178/* Set the initial language.
1179
1180 A better solution would be to record the language in the psymtab when reading
1181 partial symbols, and then use it (if known) to set the language. This would
1182 be a win for formats that encode the language in an easily discoverable place,
1183 such as DWARF. For stabs, we can jump through hoops looking for specially
1184 named symbols or try to intuit the language from the specific type of stabs
1185 we find, but we can't do that until later when we read in full symbols.
1186 FIXME. */
1187
1188static void
fba45db2 1189set_initial_language (void)
c906108c
SS
1190{
1191 struct partial_symtab *pst;
c5aa993b 1192 enum language lang = language_unknown;
c906108c
SS
1193
1194 pst = find_main_psymtab ();
1195 if (pst != NULL)
1196 {
c5aa993b 1197 if (pst->filename != NULL)
c906108c 1198 {
c5aa993b
JM
1199 lang = deduce_language_from_filename (pst->filename);
1200 }
c906108c
SS
1201 if (lang == language_unknown)
1202 {
c5aa993b
JM
1203 /* Make C the default language */
1204 lang = language_c;
c906108c
SS
1205 }
1206 set_language (lang);
1207 expected_language = current_language; /* Don't warn the user */
1208 }
1209}
1210
1211/* Open file specified by NAME and hand it off to BFD for preliminary
1212 analysis. Result is a newly initialized bfd *, which includes a newly
1213 malloc'd` copy of NAME (tilde-expanded and made absolute).
1214 In case of trouble, error() is called. */
1215
1216bfd *
fba45db2 1217symfile_bfd_open (char *name)
c906108c
SS
1218{
1219 bfd *sym_bfd;
1220 int desc;
1221 char *absolute_name;
1222
1223
1224
1225 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1226
1227 /* Look down path for it, allocate 2nd new malloc'd copy. */
1228 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1229#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1230 if (desc < 0)
1231 {
1232 char *exename = alloca (strlen (name) + 5);
1233 strcat (strcpy (exename, name), ".exe");
1234 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1235 0, &absolute_name);
c906108c
SS
1236 }
1237#endif
1238 if (desc < 0)
1239 {
b8c9b27d 1240 make_cleanup (xfree, name);
c906108c
SS
1241 perror_with_name (name);
1242 }
b8c9b27d 1243 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1244 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1245 /* It'll be freed in free_objfile(). */
c906108c
SS
1246
1247 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1248 if (!sym_bfd)
1249 {
1250 close (desc);
b8c9b27d 1251 make_cleanup (xfree, name);
c906108c
SS
1252 error ("\"%s\": can't open to read symbols: %s.", name,
1253 bfd_errmsg (bfd_get_error ()));
1254 }
549c1eea 1255 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1256
1257 if (!bfd_check_format (sym_bfd, bfd_object))
1258 {
1259 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1260 on error it does not free all the storage associated with the
1261 bfd). */
c906108c 1262 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1263 make_cleanup (xfree, name);
c906108c
SS
1264 error ("\"%s\": can't read symbols: %s.", name,
1265 bfd_errmsg (bfd_get_error ()));
1266 }
1267 return (sym_bfd);
1268}
1269
0e931cf0
JB
1270/* Return the section index for the given section name. Return -1 if
1271 the section was not found. */
1272int
1273get_section_index (struct objfile *objfile, char *section_name)
1274{
1275 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1276 if (sect)
1277 return sect->index;
1278 else
1279 return -1;
1280}
1281
c906108c
SS
1282/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1283 startup by the _initialize routine in each object file format reader,
1284 to register information about each format the the reader is prepared
1285 to handle. */
1286
1287void
fba45db2 1288add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1289{
1290 sf->next = symtab_fns;
1291 symtab_fns = sf;
1292}
1293
1294
1295/* Initialize to read symbols from the symbol file sym_bfd. It either
1296 returns or calls error(). The result is an initialized struct sym_fns
1297 in the objfile structure, that contains cached information about the
1298 symbol file. */
1299
1300static void
fba45db2 1301find_sym_fns (struct objfile *objfile)
c906108c
SS
1302{
1303 struct sym_fns *sf;
c5aa993b
JM
1304 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1305 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1306
75245b24
MS
1307 if (our_flavour == bfd_target_srec_flavour
1308 || our_flavour == bfd_target_ihex_flavour
1309 || our_flavour == bfd_target_tekhex_flavour)
1310 return; /* No symbols. */
1311
c5aa993b 1312 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1313 {
c5aa993b 1314 if (our_flavour == sf->sym_flavour)
c906108c 1315 {
c5aa993b 1316 objfile->sf = sf;
c906108c
SS
1317 return;
1318 }
1319 }
1320 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1321 bfd_get_target (objfile->obfd));
c906108c
SS
1322}
1323\f
1324/* This function runs the load command of our current target. */
1325
1326static void
fba45db2 1327load_command (char *arg, int from_tty)
c906108c
SS
1328{
1329 if (arg == NULL)
1330 arg = get_exec_file (1);
1331 target_load (arg, from_tty);
2889e661
JB
1332
1333 /* After re-loading the executable, we don't really know which
1334 overlays are mapped any more. */
1335 overlay_cache_invalid = 1;
c906108c
SS
1336}
1337
1338/* This version of "load" should be usable for any target. Currently
1339 it is just used for remote targets, not inftarg.c or core files,
1340 on the theory that only in that case is it useful.
1341
1342 Avoiding xmodem and the like seems like a win (a) because we don't have
1343 to worry about finding it, and (b) On VMS, fork() is very slow and so
1344 we don't want to run a subprocess. On the other hand, I'm not sure how
1345 performance compares. */
917317f4
JM
1346
1347static int download_write_size = 512;
1348static int validate_download = 0;
1349
e4f9b4d5
MS
1350/* Callback service function for generic_load (bfd_map_over_sections). */
1351
1352static void
1353add_section_size_callback (bfd *abfd, asection *asec, void *data)
1354{
1355 bfd_size_type *sum = data;
1356
1357 *sum += bfd_get_section_size_before_reloc (asec);
1358}
1359
1360/* Opaque data for load_section_callback. */
1361struct load_section_data {
1362 unsigned long load_offset;
1363 unsigned long write_count;
1364 unsigned long data_count;
1365 bfd_size_type total_size;
1366};
1367
1368/* Callback service function for generic_load (bfd_map_over_sections). */
1369
1370static void
1371load_section_callback (bfd *abfd, asection *asec, void *data)
1372{
1373 struct load_section_data *args = data;
1374
1375 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1376 {
1377 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1378 if (size > 0)
1379 {
1380 char *buffer;
1381 struct cleanup *old_chain;
1382 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1383 bfd_size_type block_size;
1384 int err;
1385 const char *sect_name = bfd_get_section_name (abfd, asec);
1386 bfd_size_type sent;
1387
1388 if (download_write_size > 0 && size > download_write_size)
1389 block_size = download_write_size;
1390 else
1391 block_size = size;
1392
1393 buffer = xmalloc (size);
1394 old_chain = make_cleanup (xfree, buffer);
1395
1396 /* Is this really necessary? I guess it gives the user something
1397 to look at during a long download. */
e4f9b4d5
MS
1398 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1399 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1400
1401 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1402
1403 sent = 0;
1404 do
1405 {
1406 int len;
1407 bfd_size_type this_transfer = size - sent;
1408
1409 if (this_transfer >= block_size)
1410 this_transfer = block_size;
1411 len = target_write_memory_partial (lma, buffer,
1412 this_transfer, &err);
1413 if (err)
1414 break;
1415 if (validate_download)
1416 {
1417 /* Broken memories and broken monitors manifest
1418 themselves here when bring new computers to
1419 life. This doubles already slow downloads. */
1420 /* NOTE: cagney/1999-10-18: A more efficient
1421 implementation might add a verify_memory()
1422 method to the target vector and then use
1423 that. remote.c could implement that method
1424 using the ``qCRC'' packet. */
1425 char *check = xmalloc (len);
5417f6dc 1426 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1427 make_cleanup (xfree, check);
1428
1429 if (target_read_memory (lma, check, len) != 0)
1430 error ("Download verify read failed at 0x%s",
1431 paddr (lma));
1432 if (memcmp (buffer, check, len) != 0)
1433 error ("Download verify compare failed at 0x%s",
1434 paddr (lma));
1435 do_cleanups (verify_cleanups);
1436 }
1437 args->data_count += len;
1438 lma += len;
1439 buffer += len;
1440 args->write_count += 1;
1441 sent += len;
1442 if (quit_flag
1443 || (ui_load_progress_hook != NULL
1444 && ui_load_progress_hook (sect_name, sent)))
1445 error ("Canceled the download");
1446
1447 if (show_load_progress != NULL)
5417f6dc 1448 show_load_progress (sect_name, sent, size,
e4f9b4d5
MS
1449 args->data_count, args->total_size);
1450 }
1451 while (sent < size);
1452
1453 if (err != 0)
1454 error ("Memory access error while loading section %s.", sect_name);
1455
1456 do_cleanups (old_chain);
1457 }
1458 }
1459}
1460
c906108c 1461void
917317f4 1462generic_load (char *args, int from_tty)
c906108c 1463{
c906108c
SS
1464 asection *s;
1465 bfd *loadfile_bfd;
1466 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1467 char *filename;
1468 struct cleanup *old_cleanups;
1469 char *offptr;
e4f9b4d5
MS
1470 struct load_section_data cbdata;
1471 CORE_ADDR entry;
1472
1473 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1474 cbdata.write_count = 0; /* Number of writes needed. */
1475 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1476 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1477
1478 /* Parse the input argument - the user can specify a load offset as
1479 a second argument. */
1480 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1481 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1482 strcpy (filename, args);
1483 offptr = strchr (filename, ' ');
1484 if (offptr != NULL)
1485 {
1486 char *endptr;
ba5f2f8a 1487
e4f9b4d5 1488 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1489 if (offptr == endptr)
1490 error ("Invalid download offset:%s\n", offptr);
1491 *offptr = '\0';
1492 }
c906108c 1493 else
e4f9b4d5 1494 cbdata.load_offset = 0;
c906108c 1495
917317f4 1496 /* Open the file for loading. */
c906108c
SS
1497 loadfile_bfd = bfd_openr (filename, gnutarget);
1498 if (loadfile_bfd == NULL)
1499 {
1500 perror_with_name (filename);
1501 return;
1502 }
917317f4 1503
c906108c
SS
1504 /* FIXME: should be checking for errors from bfd_close (for one thing,
1505 on error it does not free all the storage associated with the
1506 bfd). */
5c65bbb6 1507 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1508
c5aa993b 1509 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1510 {
1511 error ("\"%s\" is not an object file: %s", filename,
1512 bfd_errmsg (bfd_get_error ()));
1513 }
c5aa993b 1514
5417f6dc 1515 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1516 (void *) &cbdata.total_size);
c2d11a7d 1517
c906108c
SS
1518 start_time = time (NULL);
1519
e4f9b4d5 1520 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1521
1522 end_time = time (NULL);
ba5f2f8a 1523
e4f9b4d5 1524 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1525 ui_out_text (uiout, "Start address ");
1526 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1527 ui_out_text (uiout, ", load size ");
1528 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1529 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1530 /* We were doing this in remote-mips.c, I suspect it is right
1531 for other targets too. */
1532 write_pc (entry);
c906108c 1533
7ca9f392
AC
1534 /* FIXME: are we supposed to call symbol_file_add or not? According
1535 to a comment from remote-mips.c (where a call to symbol_file_add
1536 was commented out), making the call confuses GDB if more than one
1537 file is loaded in. Some targets do (e.g., remote-vx.c) but
1538 others don't (or didn't - perhaphs they have all been deleted). */
c906108c 1539
5417f6dc 1540 print_transfer_performance (gdb_stdout, cbdata.data_count,
e4f9b4d5 1541 cbdata.write_count, end_time - start_time);
c906108c
SS
1542
1543 do_cleanups (old_cleanups);
1544}
1545
1546/* Report how fast the transfer went. */
1547
917317f4
JM
1548/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1549 replaced by print_transfer_performance (with a very different
1550 function signature). */
1551
c906108c 1552void
fba45db2
KB
1553report_transfer_performance (unsigned long data_count, time_t start_time,
1554 time_t end_time)
c906108c 1555{
5417f6dc 1556 print_transfer_performance (gdb_stdout, data_count,
ba5f2f8a 1557 end_time - start_time, 0);
917317f4
JM
1558}
1559
1560void
d9fcf2fb 1561print_transfer_performance (struct ui_file *stream,
917317f4
JM
1562 unsigned long data_count,
1563 unsigned long write_count,
1564 unsigned long time_count)
1565{
8b93c638
JM
1566 ui_out_text (uiout, "Transfer rate: ");
1567 if (time_count > 0)
1568 {
5417f6dc 1569 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1570 (data_count * 8) / time_count);
1571 ui_out_text (uiout, " bits/sec");
1572 }
1573 else
1574 {
ba5f2f8a 1575 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1576 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1577 }
1578 if (write_count > 0)
1579 {
1580 ui_out_text (uiout, ", ");
ba5f2f8a 1581 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1582 ui_out_text (uiout, " bytes/write");
1583 }
1584 ui_out_text (uiout, ".\n");
c906108c
SS
1585}
1586
1587/* This function allows the addition of incrementally linked object files.
1588 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1589/* Note: ezannoni 2000-04-13 This function/command used to have a
1590 special case syntax for the rombug target (Rombug is the boot
1591 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1592 rombug case, the user doesn't need to supply a text address,
1593 instead a call to target_link() (in target.c) would supply the
1594 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1595
c906108c 1596static void
fba45db2 1597add_symbol_file_command (char *args, int from_tty)
c906108c 1598{
db162d44 1599 char *filename = NULL;
2df3850c 1600 int flags = OBJF_USERLOADED;
c906108c 1601 char *arg;
2acceee2 1602 int expecting_option = 0;
db162d44 1603 int section_index = 0;
2acceee2
JM
1604 int argcnt = 0;
1605 int sec_num = 0;
1606 int i;
db162d44
EZ
1607 int expecting_sec_name = 0;
1608 int expecting_sec_addr = 0;
1609
a39a16c4 1610 struct sect_opt
2acceee2 1611 {
2acceee2
JM
1612 char *name;
1613 char *value;
a39a16c4 1614 };
db162d44 1615
a39a16c4
MM
1616 struct section_addr_info *section_addrs;
1617 struct sect_opt *sect_opts = NULL;
1618 size_t num_sect_opts = 0;
3017564a 1619 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1620
a39a16c4 1621 num_sect_opts = 16;
5417f6dc 1622 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1623 * sizeof (struct sect_opt));
1624
c906108c
SS
1625 dont_repeat ();
1626
1627 if (args == NULL)
db162d44 1628 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1629
1630 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1631 args = xstrdup (args);
c906108c 1632
2acceee2 1633 while (*args != '\000')
c906108c 1634 {
db162d44 1635 /* Any leading spaces? */
c5aa993b 1636 while (isspace (*args))
db162d44
EZ
1637 args++;
1638
1639 /* Point arg to the beginning of the argument. */
c906108c 1640 arg = args;
db162d44
EZ
1641
1642 /* Move args pointer over the argument. */
c5aa993b 1643 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1644 args++;
1645
1646 /* If there are more arguments, terminate arg and
1647 proceed past it. */
c906108c 1648 if (*args != '\000')
db162d44
EZ
1649 *args++ = '\000';
1650
1651 /* Now process the argument. */
1652 if (argcnt == 0)
c906108c 1653 {
db162d44
EZ
1654 /* The first argument is the file name. */
1655 filename = tilde_expand (arg);
3017564a 1656 make_cleanup (xfree, filename);
c906108c 1657 }
db162d44 1658 else
7a78ae4e
ND
1659 if (argcnt == 1)
1660 {
1661 /* The second argument is always the text address at which
1662 to load the program. */
1663 sect_opts[section_index].name = ".text";
1664 sect_opts[section_index].value = arg;
5417f6dc 1665 if (++section_index > num_sect_opts)
a39a16c4
MM
1666 {
1667 num_sect_opts *= 2;
5417f6dc 1668 sect_opts = ((struct sect_opt *)
a39a16c4 1669 xrealloc (sect_opts,
5417f6dc 1670 num_sect_opts
a39a16c4
MM
1671 * sizeof (struct sect_opt)));
1672 }
7a78ae4e
ND
1673 }
1674 else
1675 {
1676 /* It's an option (starting with '-') or it's an argument
1677 to an option */
1678
1679 if (*arg == '-')
1680 {
78a4a9b9
AC
1681 if (strcmp (arg, "-readnow") == 0)
1682 flags |= OBJF_READNOW;
1683 else if (strcmp (arg, "-s") == 0)
1684 {
1685 expecting_sec_name = 1;
1686 expecting_sec_addr = 1;
1687 }
7a78ae4e
ND
1688 }
1689 else
1690 {
1691 if (expecting_sec_name)
db162d44 1692 {
7a78ae4e
ND
1693 sect_opts[section_index].name = arg;
1694 expecting_sec_name = 0;
db162d44
EZ
1695 }
1696 else
7a78ae4e
ND
1697 if (expecting_sec_addr)
1698 {
1699 sect_opts[section_index].value = arg;
1700 expecting_sec_addr = 0;
5417f6dc 1701 if (++section_index > num_sect_opts)
a39a16c4
MM
1702 {
1703 num_sect_opts *= 2;
5417f6dc 1704 sect_opts = ((struct sect_opt *)
a39a16c4 1705 xrealloc (sect_opts,
5417f6dc 1706 num_sect_opts
a39a16c4
MM
1707 * sizeof (struct sect_opt)));
1708 }
7a78ae4e
ND
1709 }
1710 else
1711 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1712 }
1713 }
db162d44 1714 argcnt++;
c906108c 1715 }
c906108c 1716
db162d44
EZ
1717 /* Print the prompt for the query below. And save the arguments into
1718 a sect_addr_info structure to be passed around to other
1719 functions. We have to split this up into separate print
1720 statements because local_hex_string returns a local static
1721 string. */
5417f6dc 1722
46f45a4a 1723 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
a39a16c4
MM
1724 section_addrs = alloc_section_addr_info (section_index);
1725 make_cleanup (xfree, section_addrs);
db162d44 1726 for (i = 0; i < section_index; i++)
c906108c 1727 {
db162d44
EZ
1728 CORE_ADDR addr;
1729 char *val = sect_opts[i].value;
1730 char *sec = sect_opts[i].name;
5417f6dc 1731
ae822768 1732 addr = parse_and_eval_address (val);
db162d44 1733
db162d44
EZ
1734 /* Here we store the section offsets in the order they were
1735 entered on the command line. */
a39a16c4
MM
1736 section_addrs->other[sec_num].name = sec;
1737 section_addrs->other[sec_num].addr = addr;
46f45a4a 1738 printf_unfiltered ("\t%s_addr = %s\n",
5417f6dc 1739 sec,
db162d44
EZ
1740 local_hex_string ((unsigned long)addr));
1741 sec_num++;
1742
5417f6dc 1743 /* The object's sections are initialized when a
db162d44 1744 call is made to build_objfile_section_table (objfile).
5417f6dc 1745 This happens in reread_symbols.
db162d44
EZ
1746 At this point, we don't know what file type this is,
1747 so we can't determine what section names are valid. */
2acceee2 1748 }
db162d44 1749
2acceee2 1750 if (from_tty && (!query ("%s", "")))
c906108c
SS
1751 error ("Not confirmed.");
1752
a39a16c4 1753 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1754
1755 /* Getting new symbols may change our opinion about what is
1756 frameless. */
1757 reinit_frame_cache ();
db162d44 1758 do_cleanups (my_cleanups);
c906108c
SS
1759}
1760\f
1761static void
fba45db2 1762add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1763{
1764#ifdef ADD_SHARED_SYMBOL_FILES
1765 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1766#else
1767 error ("This command is not available in this configuration of GDB.");
c5aa993b 1768#endif
c906108c
SS
1769}
1770\f
5417f6dc
RM
1771/* Read inferior memory at ADDR to find the header of a loaded object file
1772 and read its in-core symbols out of inferior memory. TEMPL is a bfd
1773 representing the target's format. */
1774struct objfile *
1775symbol_file_add_from_memory (bfd *templ, CORE_ADDR addr, int from_tty)
1776{
1777 struct objfile *objf;
1778 bfd *nbfd;
1779 asection *sec;
1780 bfd_vma loadbase;
1781 struct section_addr_info *sai;
1782 unsigned int i;
1783
1784 if (bfd_get_flavour (templ) != bfd_target_elf_flavour)
1785 error ("add-symbol-file-from-memory not supported for this target");
1786
1787 nbfd = bfd_elf_bfd_from_remote_memory (templ, addr, &loadbase,
1788 target_read_memory);
1789 if (nbfd == NULL)
1790 {
1791 error ("Failed to read a valid object file image from memory.");
1792 return NULL;
1793 }
1794
1795 nbfd->filename = xstrdup ("shared object read from target memory");
1796
1797 if (!bfd_check_format (nbfd, bfd_object))
1798 {
1799 /* FIXME: should be checking for errors from bfd_close (for one thing,
1800 on error it does not free all the storage associated with the
1801 bfd). */
1802 bfd_close (nbfd);
1803 error ("Got object file from memory but can't read symbols: %s.",
1804 bfd_errmsg (bfd_get_error ()));
1805 return NULL;
1806 }
1807
1808 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
1809 make_cleanup (xfree, sai);
1810 i = 0;
1811 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
1812 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
1813 {
1814 sai->other[i].addr = bfd_get_section_vma (nbfd, sec) + loadbase;
1815 sai->other[i].name = (char *) bfd_get_section_name (nbfd, sec);
1816 sai->other[i].sectindex = sec->index;
1817 ++i;
1818 }
1819
1820 objf = symbol_file_add_with_addrs_or_offsets (nbfd, from_tty,
1821 sai, NULL, 0, 0, OBJF_SHARED);
1822
1823 /* This might change our ideas about frames already looked at. */
1824 reinit_frame_cache ();
1825
1826 return objf;
1827}
1828
1829static void
1830add_symbol_file_from_memory_command (char *args, int from_tty)
1831{
1832 CORE_ADDR addr;
1833 bfd *templ;
1834
1835 if (args == NULL)
1836 error ("add-symbol-file-from-memory requires an expression argument");
1837
1838 addr = parse_and_eval_address (args);
1839
1840 /* We need some representative bfd to know the target we are looking at. */
1841 if (symfile_objfile != NULL)
1842 templ = symfile_objfile->obfd;
1843 else
1844 templ = exec_bfd;
1845 if (templ == NULL)
1846 error ("\
1847Must use symbol-file or exec-file before add-symbol-file-from-memory.");
1848
1849 (void) symbol_file_add_from_memory (templ, addr, from_tty);
1850}
1851\f
c906108c
SS
1852/* Re-read symbols if a symbol-file has changed. */
1853void
fba45db2 1854reread_symbols (void)
c906108c
SS
1855{
1856 struct objfile *objfile;
1857 long new_modtime;
1858 int reread_one = 0;
1859 struct stat new_statbuf;
1860 int res;
1861
1862 /* With the addition of shared libraries, this should be modified,
1863 the load time should be saved in the partial symbol tables, since
1864 different tables may come from different source files. FIXME.
1865 This routine should then walk down each partial symbol table
1866 and see if the symbol table that it originates from has been changed */
1867
c5aa993b
JM
1868 for (objfile = object_files; objfile; objfile = objfile->next)
1869 {
1870 if (objfile->obfd)
1871 {
52d16ba8 1872#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1873 /* If this object is from a shared library, then you should
1874 stat on the library name, not member name. */
c906108c 1875
c5aa993b
JM
1876 if (objfile->obfd->my_archive)
1877 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1878 else
c906108c 1879#endif
c5aa993b
JM
1880 res = stat (objfile->name, &new_statbuf);
1881 if (res != 0)
c906108c 1882 {
c5aa993b 1883 /* FIXME, should use print_sys_errmsg but it's not filtered. */
46f45a4a 1884 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
c5aa993b
JM
1885 objfile->name);
1886 continue;
c906108c 1887 }
c5aa993b
JM
1888 new_modtime = new_statbuf.st_mtime;
1889 if (new_modtime != objfile->mtime)
c906108c 1890 {
c5aa993b
JM
1891 struct cleanup *old_cleanups;
1892 struct section_offsets *offsets;
1893 int num_offsets;
c5aa993b
JM
1894 char *obfd_filename;
1895
46f45a4a 1896 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
c5aa993b
JM
1897 objfile->name);
1898
1899 /* There are various functions like symbol_file_add,
1900 symfile_bfd_open, syms_from_objfile, etc., which might
1901 appear to do what we want. But they have various other
1902 effects which we *don't* want. So we just do stuff
1903 ourselves. We don't worry about mapped files (for one thing,
1904 any mapped file will be out of date). */
1905
1906 /* If we get an error, blow away this objfile (not sure if
1907 that is the correct response for things like shared
1908 libraries). */
74b7792f 1909 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1910 /* We need to do this whenever any symbols go away. */
74b7792f 1911 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1912
1913 /* Clean up any state BFD has sitting around. We don't need
1914 to close the descriptor but BFD lacks a way of closing the
1915 BFD without closing the descriptor. */
1916 obfd_filename = bfd_get_filename (objfile->obfd);
1917 if (!bfd_close (objfile->obfd))
1918 error ("Can't close BFD for %s: %s", objfile->name,
1919 bfd_errmsg (bfd_get_error ()));
1920 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1921 if (objfile->obfd == NULL)
1922 error ("Can't open %s to read symbols.", objfile->name);
1923 /* bfd_openr sets cacheable to true, which is what we want. */
1924 if (!bfd_check_format (objfile->obfd, bfd_object))
1925 error ("Can't read symbols from %s: %s.", objfile->name,
1926 bfd_errmsg (bfd_get_error ()));
1927
1928 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 1929 objfile_obstack. */
c5aa993b 1930 num_offsets = objfile->num_sections;
5417f6dc 1931 offsets = ((struct section_offsets *)
a39a16c4 1932 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 1933 memcpy (offsets, objfile->section_offsets,
a39a16c4 1934 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
1935
1936 /* Nuke all the state that we will re-read. Much of the following
1937 code which sets things to NULL really is necessary to tell
1938 other parts of GDB that there is nothing currently there. */
1939
1940 /* FIXME: Do we have to free a whole linked list, or is this
1941 enough? */
1942 if (objfile->global_psymbols.list)
aac7f4ea 1943 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1944 memset (&objfile->global_psymbols, 0,
1945 sizeof (objfile->global_psymbols));
1946 if (objfile->static_psymbols.list)
aac7f4ea 1947 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1948 memset (&objfile->static_psymbols, 0,
1949 sizeof (objfile->static_psymbols));
1950
1951 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1952 bcache_xfree (objfile->psymbol_cache);
1953 objfile->psymbol_cache = bcache_xmalloc ();
1954 bcache_xfree (objfile->macro_cache);
1955 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
1956 if (objfile->demangled_names_hash != NULL)
1957 {
1958 htab_delete (objfile->demangled_names_hash);
1959 objfile->demangled_names_hash = NULL;
1960 }
b99607ea 1961 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
1962 objfile->sections = NULL;
1963 objfile->symtabs = NULL;
1964 objfile->psymtabs = NULL;
1965 objfile->free_psymtabs = NULL;
a1b8c067 1966 objfile->cp_namespace_symtab = NULL;
c5aa993b 1967 objfile->msymbols = NULL;
29239a8f 1968 objfile->sym_private = NULL;
c5aa993b 1969 objfile->minimal_symbol_count = 0;
0a83117a
MS
1970 memset (&objfile->msymbol_hash, 0,
1971 sizeof (objfile->msymbol_hash));
1972 memset (&objfile->msymbol_demangled_hash, 0,
1973 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 1974 objfile->fundamental_types = NULL;
7b097ae3 1975 clear_objfile_data (objfile);
c5aa993b
JM
1976 if (objfile->sf != NULL)
1977 {
1978 (*objfile->sf->sym_finish) (objfile);
1979 }
1980
1981 /* We never make this a mapped file. */
1982 objfile->md = NULL;
af5f3db6
AC
1983 objfile->psymbol_cache = bcache_xmalloc ();
1984 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
1985 /* obstack_init also initializes the obstack so it is
1986 empty. We could use obstack_specify_allocation but
1987 gdb_obstack.h specifies the alloc/dealloc
1988 functions. */
1989 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
1990 if (build_objfile_section_table (objfile))
1991 {
1992 error ("Can't find the file sections in `%s': %s",
1993 objfile->name, bfd_errmsg (bfd_get_error ()));
1994 }
15831452 1995 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
1996
1997 /* We use the same section offsets as from last time. I'm not
1998 sure whether that is always correct for shared libraries. */
1999 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2000 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2001 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2002 memcpy (objfile->section_offsets, offsets,
a39a16c4 2003 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2004 objfile->num_sections = num_offsets;
2005
2006 /* What the hell is sym_new_init for, anyway? The concept of
2007 distinguishing between the main file and additional files
2008 in this way seems rather dubious. */
2009 if (objfile == symfile_objfile)
2010 {
2011 (*objfile->sf->sym_new_init) (objfile);
c906108c 2012#ifdef HPUXHPPA
c5aa993b 2013 RESET_HP_UX_GLOBALS ();
c906108c 2014#endif
c5aa993b
JM
2015 }
2016
2017 (*objfile->sf->sym_init) (objfile);
b9caf505 2018 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2019 /* The "mainline" parameter is a hideous hack; I think leaving it
2020 zero is OK since dbxread.c also does what it needs to do if
2021 objfile->global_psymbols.size is 0. */
96baa820 2022 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2023 if (!have_partial_symbols () && !have_full_symbols ())
2024 {
2025 wrap_here ("");
46f45a4a 2026 printf_unfiltered ("(no debugging symbols found)\n");
c5aa993b
JM
2027 wrap_here ("");
2028 }
2029 objfile->flags |= OBJF_SYMS;
2030
2031 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2032 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2033
c5aa993b
JM
2034 /* Getting new symbols may change our opinion about what is
2035 frameless. */
c906108c 2036
c5aa993b 2037 reinit_frame_cache ();
c906108c 2038
c5aa993b
JM
2039 /* Discard cleanups as symbol reading was successful. */
2040 discard_cleanups (old_cleanups);
c906108c 2041
c5aa993b
JM
2042 /* If the mtime has changed between the time we set new_modtime
2043 and now, we *want* this to be out of date, so don't call stat
2044 again now. */
2045 objfile->mtime = new_modtime;
2046 reread_one = 1;
5b5d99cf 2047 reread_separate_symbols (objfile);
c5aa993b 2048 }
c906108c
SS
2049 }
2050 }
c906108c
SS
2051
2052 if (reread_one)
2053 clear_symtab_users ();
2054}
5b5d99cf
JB
2055
2056
2057/* Handle separate debug info for OBJFILE, which has just been
2058 re-read:
2059 - If we had separate debug info before, but now we don't, get rid
2060 of the separated objfile.
2061 - If we didn't have separated debug info before, but now we do,
2062 read in the new separated debug info file.
2063 - If the debug link points to a different file, toss the old one
2064 and read the new one.
2065 This function does *not* handle the case where objfile is still
2066 using the same separate debug info file, but that file's timestamp
2067 has changed. That case should be handled by the loop in
2068 reread_symbols already. */
2069static void
2070reread_separate_symbols (struct objfile *objfile)
2071{
2072 char *debug_file;
2073 unsigned long crc32;
2074
2075 /* Does the updated objfile's debug info live in a
2076 separate file? */
2077 debug_file = find_separate_debug_file (objfile);
2078
2079 if (objfile->separate_debug_objfile)
2080 {
2081 /* There are two cases where we need to get rid of
2082 the old separated debug info objfile:
2083 - if the new primary objfile doesn't have
2084 separated debug info, or
2085 - if the new primary objfile has separate debug
2086 info, but it's under a different filename.
5417f6dc 2087
5b5d99cf
JB
2088 If the old and new objfiles both have separate
2089 debug info, under the same filename, then we're
2090 okay --- if the separated file's contents have
2091 changed, we will have caught that when we
2092 visited it in this function's outermost
2093 loop. */
2094 if (! debug_file
2095 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2096 free_objfile (objfile->separate_debug_objfile);
2097 }
2098
2099 /* If the new objfile has separate debug info, and we
2100 haven't loaded it already, do so now. */
2101 if (debug_file
2102 && ! objfile->separate_debug_objfile)
2103 {
2104 /* Use the same section offset table as objfile itself.
2105 Preserve the flags from objfile that make sense. */
2106 objfile->separate_debug_objfile
2107 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2108 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2109 info_verbose, /* from_tty: Don't override the default. */
2110 0, /* No addr table. */
2111 objfile->section_offsets, objfile->num_sections,
2112 0, /* Not mainline. See comments about this above. */
78a4a9b9 2113 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2114 | OBJF_USERLOADED)));
2115 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2116 = objfile;
2117 }
2118}
2119
2120
c906108c
SS
2121\f
2122
c5aa993b
JM
2123
2124typedef struct
2125{
2126 char *ext;
c906108c 2127 enum language lang;
c5aa993b
JM
2128}
2129filename_language;
c906108c 2130
c5aa993b 2131static filename_language *filename_language_table;
c906108c
SS
2132static int fl_table_size, fl_table_next;
2133
2134static void
fba45db2 2135add_filename_language (char *ext, enum language lang)
c906108c
SS
2136{
2137 if (fl_table_next >= fl_table_size)
2138 {
2139 fl_table_size += 10;
5417f6dc 2140 filename_language_table =
25bf3106
PM
2141 xrealloc (filename_language_table,
2142 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2143 }
2144
4fcf66da 2145 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2146 filename_language_table[fl_table_next].lang = lang;
2147 fl_table_next++;
2148}
2149
2150static char *ext_args;
2151
2152static void
fba45db2 2153set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2154{
2155 int i;
2156 char *cp = ext_args;
2157 enum language lang;
2158
2159 /* First arg is filename extension, starting with '.' */
2160 if (*cp != '.')
2161 error ("'%s': Filename extension must begin with '.'", ext_args);
2162
2163 /* Find end of first arg. */
c5aa993b 2164 while (*cp && !isspace (*cp))
c906108c
SS
2165 cp++;
2166
2167 if (*cp == '\0')
2168 error ("'%s': two arguments required -- filename extension and language",
2169 ext_args);
2170
2171 /* Null-terminate first arg */
c5aa993b 2172 *cp++ = '\0';
c906108c
SS
2173
2174 /* Find beginning of second arg, which should be a source language. */
2175 while (*cp && isspace (*cp))
2176 cp++;
2177
2178 if (*cp == '\0')
2179 error ("'%s': two arguments required -- filename extension and language",
2180 ext_args);
2181
2182 /* Lookup the language from among those we know. */
2183 lang = language_enum (cp);
2184
2185 /* Now lookup the filename extension: do we already know it? */
2186 for (i = 0; i < fl_table_next; i++)
2187 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2188 break;
2189
2190 if (i >= fl_table_next)
2191 {
2192 /* new file extension */
2193 add_filename_language (ext_args, lang);
2194 }
2195 else
2196 {
2197 /* redefining a previously known filename extension */
2198
2199 /* if (from_tty) */
2200 /* query ("Really make files of type %s '%s'?", */
2201 /* ext_args, language_str (lang)); */
2202
b8c9b27d 2203 xfree (filename_language_table[i].ext);
4fcf66da 2204 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2205 filename_language_table[i].lang = lang;
2206 }
2207}
2208
2209static void
fba45db2 2210info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2211{
2212 int i;
2213
2214 printf_filtered ("Filename extensions and the languages they represent:");
2215 printf_filtered ("\n\n");
2216 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2217 printf_filtered ("\t%s\t- %s\n",
2218 filename_language_table[i].ext,
c906108c
SS
2219 language_str (filename_language_table[i].lang));
2220}
2221
2222static void
fba45db2 2223init_filename_language_table (void)
c906108c
SS
2224{
2225 if (fl_table_size == 0) /* protect against repetition */
2226 {
2227 fl_table_size = 20;
2228 fl_table_next = 0;
c5aa993b 2229 filename_language_table =
c906108c 2230 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2231 add_filename_language (".c", language_c);
2232 add_filename_language (".C", language_cplus);
2233 add_filename_language (".cc", language_cplus);
2234 add_filename_language (".cp", language_cplus);
2235 add_filename_language (".cpp", language_cplus);
2236 add_filename_language (".cxx", language_cplus);
2237 add_filename_language (".c++", language_cplus);
2238 add_filename_language (".java", language_java);
c906108c 2239 add_filename_language (".class", language_java);
da2cf7e0 2240 add_filename_language (".m", language_objc);
c5aa993b
JM
2241 add_filename_language (".f", language_fortran);
2242 add_filename_language (".F", language_fortran);
2243 add_filename_language (".s", language_asm);
2244 add_filename_language (".S", language_asm);
c6fd39cd
PM
2245 add_filename_language (".pas", language_pascal);
2246 add_filename_language (".p", language_pascal);
2247 add_filename_language (".pp", language_pascal);
c906108c
SS
2248 }
2249}
2250
2251enum language
fba45db2 2252deduce_language_from_filename (char *filename)
c906108c
SS
2253{
2254 int i;
2255 char *cp;
2256
2257 if (filename != NULL)
2258 if ((cp = strrchr (filename, '.')) != NULL)
2259 for (i = 0; i < fl_table_next; i++)
2260 if (strcmp (cp, filename_language_table[i].ext) == 0)
2261 return filename_language_table[i].lang;
2262
2263 return language_unknown;
2264}
2265\f
2266/* allocate_symtab:
2267
2268 Allocate and partly initialize a new symbol table. Return a pointer
2269 to it. error() if no space.
2270
2271 Caller must set these fields:
c5aa993b
JM
2272 LINETABLE(symtab)
2273 symtab->blockvector
2274 symtab->dirname
2275 symtab->free_code
2276 symtab->free_ptr
2277 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2278 */
2279
2280struct symtab *
fba45db2 2281allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2282{
52f0bd74 2283 struct symtab *symtab;
c906108c
SS
2284
2285 symtab = (struct symtab *)
4a146b47 2286 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2287 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2288 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2289 &objfile->objfile_obstack);
c5aa993b
JM
2290 symtab->fullname = NULL;
2291 symtab->language = deduce_language_from_filename (filename);
2292 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2293 &objfile->objfile_obstack);
c906108c
SS
2294
2295 /* Hook it to the objfile it comes from */
2296
c5aa993b
JM
2297 symtab->objfile = objfile;
2298 symtab->next = objfile->symtabs;
2299 objfile->symtabs = symtab;
c906108c
SS
2300
2301 /* FIXME: This should go away. It is only defined for the Z8000,
2302 and the Z8000 definition of this macro doesn't have anything to
2303 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2304 here for convenience. */
2305#ifdef INIT_EXTRA_SYMTAB_INFO
2306 INIT_EXTRA_SYMTAB_INFO (symtab);
2307#endif
2308
2309 return (symtab);
2310}
2311
2312struct partial_symtab *
fba45db2 2313allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2314{
2315 struct partial_symtab *psymtab;
2316
c5aa993b 2317 if (objfile->free_psymtabs)
c906108c 2318 {
c5aa993b
JM
2319 psymtab = objfile->free_psymtabs;
2320 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2321 }
2322 else
2323 psymtab = (struct partial_symtab *)
8b92e4d5 2324 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2325 sizeof (struct partial_symtab));
2326
2327 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2328 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2329 &objfile->objfile_obstack);
c5aa993b 2330 psymtab->symtab = NULL;
c906108c
SS
2331
2332 /* Prepend it to the psymtab list for the objfile it belongs to.
2333 Psymtabs are searched in most recent inserted -> least recent
2334 inserted order. */
2335
c5aa993b
JM
2336 psymtab->objfile = objfile;
2337 psymtab->next = objfile->psymtabs;
2338 objfile->psymtabs = psymtab;
c906108c
SS
2339#if 0
2340 {
2341 struct partial_symtab **prev_pst;
c5aa993b
JM
2342 psymtab->objfile = objfile;
2343 psymtab->next = NULL;
2344 prev_pst = &(objfile->psymtabs);
c906108c 2345 while ((*prev_pst) != NULL)
c5aa993b 2346 prev_pst = &((*prev_pst)->next);
c906108c 2347 (*prev_pst) = psymtab;
c5aa993b 2348 }
c906108c 2349#endif
c5aa993b 2350
c906108c
SS
2351 return (psymtab);
2352}
2353
2354void
fba45db2 2355discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2356{
2357 struct partial_symtab **prev_pst;
2358
2359 /* From dbxread.c:
2360 Empty psymtabs happen as a result of header files which don't
2361 have any symbols in them. There can be a lot of them. But this
2362 check is wrong, in that a psymtab with N_SLINE entries but
2363 nothing else is not empty, but we don't realize that. Fixing
2364 that without slowing things down might be tricky. */
2365
2366 /* First, snip it out of the psymtab chain */
2367
2368 prev_pst = &(pst->objfile->psymtabs);
2369 while ((*prev_pst) != pst)
2370 prev_pst = &((*prev_pst)->next);
2371 (*prev_pst) = pst->next;
2372
2373 /* Next, put it on a free list for recycling */
2374
2375 pst->next = pst->objfile->free_psymtabs;
2376 pst->objfile->free_psymtabs = pst;
2377}
c906108c 2378\f
c5aa993b 2379
c906108c
SS
2380/* Reset all data structures in gdb which may contain references to symbol
2381 table data. */
2382
2383void
fba45db2 2384clear_symtab_users (void)
c906108c
SS
2385{
2386 /* Someday, we should do better than this, by only blowing away
2387 the things that really need to be blown. */
2388 clear_value_history ();
2389 clear_displays ();
2390 clear_internalvars ();
2391 breakpoint_re_set ();
2392 set_default_breakpoint (0, 0, 0, 0);
0378c332 2393 clear_current_source_symtab_and_line ();
c906108c 2394 clear_pc_function_cache ();
11cf8741
JM
2395 if (target_new_objfile_hook)
2396 target_new_objfile_hook (NULL);
c906108c
SS
2397}
2398
74b7792f
AC
2399static void
2400clear_symtab_users_cleanup (void *ignore)
2401{
2402 clear_symtab_users ();
2403}
2404
c906108c
SS
2405/* clear_symtab_users_once:
2406
2407 This function is run after symbol reading, or from a cleanup.
2408 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2409 has been blown away, but the other GDB data structures that may
c906108c
SS
2410 reference it have not yet been cleared or re-directed. (The old
2411 symtab was zapped, and the cleanup queued, in free_named_symtab()
2412 below.)
2413
2414 This function can be queued N times as a cleanup, or called
2415 directly; it will do all the work the first time, and then will be a
2416 no-op until the next time it is queued. This works by bumping a
2417 counter at queueing time. Much later when the cleanup is run, or at
2418 the end of symbol processing (in case the cleanup is discarded), if
2419 the queued count is greater than the "done-count", we do the work
2420 and set the done-count to the queued count. If the queued count is
2421 less than or equal to the done-count, we just ignore the call. This
2422 is needed because reading a single .o file will often replace many
2423 symtabs (one per .h file, for example), and we don't want to reset
2424 the breakpoints N times in the user's face.
2425
2426 The reason we both queue a cleanup, and call it directly after symbol
2427 reading, is because the cleanup protects us in case of errors, but is
2428 discarded if symbol reading is successful. */
2429
2430#if 0
2431/* FIXME: As free_named_symtabs is currently a big noop this function
2432 is no longer needed. */
a14ed312 2433static void clear_symtab_users_once (void);
c906108c
SS
2434
2435static int clear_symtab_users_queued;
2436static int clear_symtab_users_done;
2437
2438static void
fba45db2 2439clear_symtab_users_once (void)
c906108c
SS
2440{
2441 /* Enforce once-per-`do_cleanups'-semantics */
2442 if (clear_symtab_users_queued <= clear_symtab_users_done)
2443 return;
2444 clear_symtab_users_done = clear_symtab_users_queued;
2445
2446 clear_symtab_users ();
2447}
2448#endif
2449
2450/* Delete the specified psymtab, and any others that reference it. */
2451
2452static void
fba45db2 2453cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2454{
2455 struct partial_symtab *ps, *pprev = NULL;
2456 int i;
2457
2458 /* Find its previous psymtab in the chain */
c5aa993b
JM
2459 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2460 {
2461 if (ps == pst)
2462 break;
2463 pprev = ps;
2464 }
c906108c 2465
c5aa993b
JM
2466 if (ps)
2467 {
2468 /* Unhook it from the chain. */
2469 if (ps == pst->objfile->psymtabs)
2470 pst->objfile->psymtabs = ps->next;
2471 else
2472 pprev->next = ps->next;
2473
2474 /* FIXME, we can't conveniently deallocate the entries in the
2475 partial_symbol lists (global_psymbols/static_psymbols) that
2476 this psymtab points to. These just take up space until all
2477 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2478 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2479
2480 /* We need to cashier any psymtab that has this one as a dependency... */
2481 again:
2482 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2483 {
2484 for (i = 0; i < ps->number_of_dependencies; i++)
2485 {
2486 if (ps->dependencies[i] == pst)
2487 {
2488 cashier_psymtab (ps);
2489 goto again; /* Must restart, chain has been munged. */
2490 }
2491 }
c906108c 2492 }
c906108c 2493 }
c906108c
SS
2494}
2495
2496/* If a symtab or psymtab for filename NAME is found, free it along
2497 with any dependent breakpoints, displays, etc.
2498 Used when loading new versions of object modules with the "add-file"
2499 command. This is only called on the top-level symtab or psymtab's name;
2500 it is not called for subsidiary files such as .h files.
2501
2502 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2503 FIXME. The return value appears to never be used.
c906108c
SS
2504
2505 FIXME. I think this is not the best way to do this. We should
2506 work on being gentler to the environment while still cleaning up
2507 all stray pointers into the freed symtab. */
2508
2509int
fba45db2 2510free_named_symtabs (char *name)
c906108c
SS
2511{
2512#if 0
2513 /* FIXME: With the new method of each objfile having it's own
2514 psymtab list, this function needs serious rethinking. In particular,
2515 why was it ever necessary to toss psymtabs with specific compilation
2516 unit filenames, as opposed to all psymtabs from a particular symbol
2517 file? -- fnf
2518 Well, the answer is that some systems permit reloading of particular
2519 compilation units. We want to blow away any old info about these
2520 compilation units, regardless of which objfiles they arrived in. --gnu. */
2521
52f0bd74
AC
2522 struct symtab *s;
2523 struct symtab *prev;
2524 struct partial_symtab *ps;
c906108c
SS
2525 struct blockvector *bv;
2526 int blewit = 0;
2527
2528 /* We only wack things if the symbol-reload switch is set. */
2529 if (!symbol_reloading)
2530 return 0;
2531
2532 /* Some symbol formats have trouble providing file names... */
2533 if (name == 0 || *name == '\0')
2534 return 0;
2535
2536 /* Look for a psymtab with the specified name. */
2537
2538again2:
c5aa993b
JM
2539 for (ps = partial_symtab_list; ps; ps = ps->next)
2540 {
6314a349 2541 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2542 {
2543 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2544 goto again2; /* Must restart, chain has been munged */
2545 }
c906108c 2546 }
c906108c
SS
2547
2548 /* Look for a symtab with the specified name. */
2549
2550 for (s = symtab_list; s; s = s->next)
2551 {
6314a349 2552 if (strcmp (name, s->filename) == 0)
c906108c
SS
2553 break;
2554 prev = s;
2555 }
2556
2557 if (s)
2558 {
2559 if (s == symtab_list)
2560 symtab_list = s->next;
2561 else
2562 prev->next = s->next;
2563
2564 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2565 or not they depend on the symtab being freed. This should be
2566 changed so that only those data structures affected are deleted. */
c906108c
SS
2567
2568 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2569 This test is necessary due to a bug in "dbxread.c" that
2570 causes empty symtabs to be created for N_SO symbols that
2571 contain the pathname of the object file. (This problem
2572 has been fixed in GDB 3.9x). */
c906108c
SS
2573
2574 bv = BLOCKVECTOR (s);
2575 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2576 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2577 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2578 {
b9caf505
AC
2579 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2580 name);
c906108c
SS
2581 clear_symtab_users_queued++;
2582 make_cleanup (clear_symtab_users_once, 0);
2583 blewit = 1;
c5aa993b
JM
2584 }
2585 else
2586 {
b9caf505
AC
2587 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2588 name);
c906108c
SS
2589 }
2590
2591 free_symtab (s);
2592 }
2593 else
2594 {
2595 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2596 even though no symtab was found, since the file might have
2597 been compiled without debugging, and hence not be associated
2598 with a symtab. In order to handle this correctly, we would need
2599 to keep a list of text address ranges for undebuggable files.
2600 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2601 ;
2602 }
2603
2604 /* FIXME, what about the minimal symbol table? */
2605 return blewit;
2606#else
2607 return (0);
2608#endif
2609}
2610\f
2611/* Allocate and partially fill a partial symtab. It will be
2612 completely filled at the end of the symbol list.
2613
d4f3574e 2614 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2615
2616struct partial_symtab *
fba45db2
KB
2617start_psymtab_common (struct objfile *objfile,
2618 struct section_offsets *section_offsets, char *filename,
2619 CORE_ADDR textlow, struct partial_symbol **global_syms,
2620 struct partial_symbol **static_syms)
c906108c
SS
2621{
2622 struct partial_symtab *psymtab;
2623
2624 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2625 psymtab->section_offsets = section_offsets;
2626 psymtab->textlow = textlow;
2627 psymtab->texthigh = psymtab->textlow; /* default */
2628 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2629 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2630 return (psymtab);
2631}
2632\f
2633/* Add a symbol with a long value to a psymtab.
5417f6dc 2634 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2635 Return the partial symbol that has been added. */
2636
2637/* NOTE: carlton/2003-09-11: The reason why we return the partial
2638 symbol is so that callers can get access to the symbol's demangled
2639 name, which they don't have any cheap way to determine otherwise.
2640 (Currenly, dwarf2read.c is the only file who uses that information,
2641 though it's possible that other readers might in the future.)
2642 Elena wasn't thrilled about that, and I don't blame her, but we
2643 couldn't come up with a better way to get that information. If
2644 it's needed in other situations, we could consider breaking up
2645 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2646 cache. */
2647
2648const struct partial_symbol *
176620f1 2649add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2650 enum address_class class,
2651 struct psymbol_allocation_list *list, long val, /* Value as a long */
2652 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2653 enum language language, struct objfile *objfile)
c906108c 2654{
52f0bd74 2655 struct partial_symbol *psym;
c906108c
SS
2656 char *buf = alloca (namelength + 1);
2657 /* psymbol is static so that there will be no uninitialized gaps in the
2658 structure which might contain random data, causing cache misses in
2659 bcache. */
2660 static struct partial_symbol psymbol;
2661
2662 /* Create local copy of the partial symbol */
2663 memcpy (buf, name, namelength);
2664 buf[namelength] = '\0';
c906108c
SS
2665 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2666 if (val != 0)
2667 {
2668 SYMBOL_VALUE (&psymbol) = val;
2669 }
2670 else
2671 {
2672 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2673 }
2674 SYMBOL_SECTION (&psymbol) = 0;
2675 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2676 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2677 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2678
2679 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2680
2681 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2682 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2683 objfile->psymbol_cache);
c906108c
SS
2684
2685 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2686 if (list->next >= list->list + list->size)
2687 {
2688 extend_psymbol_list (list, objfile);
2689 }
2690 *list->next++ = psym;
2691 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2692
2693 return psym;
c906108c
SS
2694}
2695
2696/* Add a symbol with a long value to a psymtab. This differs from
2697 * add_psymbol_to_list above in taking both a mangled and a demangled
2698 * name. */
2699
2700void
fba45db2 2701add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2702 int dem_namelength, domain_enum domain,
fba45db2
KB
2703 enum address_class class,
2704 struct psymbol_allocation_list *list, long val, /* Value as a long */
2705 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2706 enum language language,
2707 struct objfile *objfile)
c906108c 2708{
52f0bd74 2709 struct partial_symbol *psym;
c906108c
SS
2710 char *buf = alloca (namelength + 1);
2711 /* psymbol is static so that there will be no uninitialized gaps in the
2712 structure which might contain random data, causing cache misses in
2713 bcache. */
2714 static struct partial_symbol psymbol;
2715
2716 /* Create local copy of the partial symbol */
2717
2718 memcpy (buf, name, namelength);
2719 buf[namelength] = '\0';
3a16a68c
AC
2720 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2721 objfile->psymbol_cache);
c906108c
SS
2722
2723 buf = alloca (dem_namelength + 1);
2724 memcpy (buf, dem_name, dem_namelength);
2725 buf[dem_namelength] = '\0';
c5aa993b 2726
c906108c
SS
2727 switch (language)
2728 {
c5aa993b
JM
2729 case language_c:
2730 case language_cplus:
2731 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2732 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2733 break;
c906108c
SS
2734 /* FIXME What should be done for the default case? Ignoring for now. */
2735 }
2736
2737 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2738 if (val != 0)
2739 {
2740 SYMBOL_VALUE (&psymbol) = val;
2741 }
2742 else
2743 {
2744 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2745 }
2746 SYMBOL_SECTION (&psymbol) = 0;
2747 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2748 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2749 PSYMBOL_CLASS (&psymbol) = class;
2750 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2751
2752 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2753 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2754 objfile->psymbol_cache);
c906108c
SS
2755
2756 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2757 if (list->next >= list->list + list->size)
2758 {
2759 extend_psymbol_list (list, objfile);
2760 }
2761 *list->next++ = psym;
2762 OBJSTAT (objfile, n_psyms++);
2763}
2764
2765/* Initialize storage for partial symbols. */
2766
2767void
fba45db2 2768init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2769{
2770 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2771
2772 if (objfile->global_psymbols.list)
c906108c 2773 {
4efb68b1 2774 xmfree (objfile->md, objfile->global_psymbols.list);
c906108c 2775 }
c5aa993b 2776 if (objfile->static_psymbols.list)
c906108c 2777 {
4efb68b1 2778 xmfree (objfile->md, objfile->static_psymbols.list);
c906108c 2779 }
c5aa993b 2780
c906108c
SS
2781 /* Current best guess is that approximately a twentieth
2782 of the total symbols (in a debugging file) are global or static
2783 oriented symbols */
c906108c 2784
c5aa993b
JM
2785 objfile->global_psymbols.size = total_symbols / 10;
2786 objfile->static_psymbols.size = total_symbols / 10;
2787
2788 if (objfile->global_psymbols.size > 0)
c906108c 2789 {
c5aa993b
JM
2790 objfile->global_psymbols.next =
2791 objfile->global_psymbols.list = (struct partial_symbol **)
2792 xmmalloc (objfile->md, (objfile->global_psymbols.size
2793 * sizeof (struct partial_symbol *)));
c906108c 2794 }
c5aa993b 2795 if (objfile->static_psymbols.size > 0)
c906108c 2796 {
c5aa993b
JM
2797 objfile->static_psymbols.next =
2798 objfile->static_psymbols.list = (struct partial_symbol **)
2799 xmmalloc (objfile->md, (objfile->static_psymbols.size
2800 * sizeof (struct partial_symbol *)));
c906108c
SS
2801 }
2802}
2803
2804/* OVERLAYS:
2805 The following code implements an abstraction for debugging overlay sections.
2806
2807 The target model is as follows:
2808 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2809 same VMA, each with its own unique LMA (or load address).
c906108c 2810 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2811 sections, one by one, from the load address into the VMA address.
5417f6dc 2812 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2813 sections should be considered to be mapped from the VMA to the LMA.
2814 This information is used for symbol lookup, and memory read/write.
5417f6dc 2815 For instance, if a section has been mapped then its contents
c5aa993b 2816 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2817
2818 Two levels of debugger support for overlays are available. One is
2819 "manual", in which the debugger relies on the user to tell it which
2820 overlays are currently mapped. This level of support is
2821 implemented entirely in the core debugger, and the information about
2822 whether a section is mapped is kept in the objfile->obj_section table.
2823
2824 The second level of support is "automatic", and is only available if
2825 the target-specific code provides functionality to read the target's
2826 overlay mapping table, and translate its contents for the debugger
2827 (by updating the mapped state information in the obj_section tables).
2828
2829 The interface is as follows:
c5aa993b
JM
2830 User commands:
2831 overlay map <name> -- tell gdb to consider this section mapped
2832 overlay unmap <name> -- tell gdb to consider this section unmapped
2833 overlay list -- list the sections that GDB thinks are mapped
2834 overlay read-target -- get the target's state of what's mapped
2835 overlay off/manual/auto -- set overlay debugging state
2836 Functional interface:
2837 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2838 section, return that section.
5417f6dc 2839 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2840 the pc, either in its VMA or its LMA
2841 overlay_is_mapped(sect): true if overlay is marked as mapped
2842 section_is_overlay(sect): true if section's VMA != LMA
2843 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2844 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2845 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2846 overlay_mapped_address(...): map an address from section's LMA to VMA
2847 overlay_unmapped_address(...): map an address from section's VMA to LMA
2848 symbol_overlayed_address(...): Return a "current" address for symbol:
2849 either in VMA or LMA depending on whether
2850 the symbol's section is currently mapped
c906108c
SS
2851 */
2852
2853/* Overlay debugging state: */
2854
d874f1e2 2855enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2856int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2857
2858/* Target vector for refreshing overlay mapped state */
a14ed312 2859static void simple_overlay_update (struct obj_section *);
507f3c78 2860void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2861
2862/* Function: section_is_overlay (SECTION)
5417f6dc 2863 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2864 SECTION is loaded at an address different from where it will "run". */
2865
2866int
fba45db2 2867section_is_overlay (asection *section)
c906108c 2868{
fbd35540
MS
2869 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2870
c906108c
SS
2871 if (overlay_debugging)
2872 if (section && section->lma != 0 &&
2873 section->vma != section->lma)
2874 return 1;
2875
2876 return 0;
2877}
2878
2879/* Function: overlay_invalidate_all (void)
2880 Invalidate the mapped state of all overlay sections (mark it as stale). */
2881
2882static void
fba45db2 2883overlay_invalidate_all (void)
c906108c 2884{
c5aa993b 2885 struct objfile *objfile;
c906108c
SS
2886 struct obj_section *sect;
2887
2888 ALL_OBJSECTIONS (objfile, sect)
2889 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2890 sect->ovly_mapped = -1;
c906108c
SS
2891}
2892
2893/* Function: overlay_is_mapped (SECTION)
5417f6dc 2894 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2895 Private: public access is thru function section_is_mapped.
2896
2897 Access to the ovly_mapped flag is restricted to this function, so
2898 that we can do automatic update. If the global flag
2899 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2900 overlay_invalidate_all. If the mapped state of the particular
2901 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2902
c5aa993b 2903static int
fba45db2 2904overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2905{
2906 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2907 return 0;
2908
c5aa993b 2909 switch (overlay_debugging)
c906108c
SS
2910 {
2911 default:
d874f1e2 2912 case ovly_off:
c5aa993b 2913 return 0; /* overlay debugging off */
d874f1e2 2914 case ovly_auto: /* overlay debugging automatic */
5417f6dc 2915 /* Unles there is a target_overlay_update function,
c5aa993b 2916 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2917 if (target_overlay_update)
2918 {
2919 if (overlay_cache_invalid)
2920 {
2921 overlay_invalidate_all ();
2922 overlay_cache_invalid = 0;
2923 }
2924 if (osect->ovly_mapped == -1)
2925 (*target_overlay_update) (osect);
2926 }
2927 /* fall thru to manual case */
d874f1e2 2928 case ovly_on: /* overlay debugging manual */
c906108c
SS
2929 return osect->ovly_mapped == 1;
2930 }
2931}
2932
2933/* Function: section_is_mapped
2934 Returns true if section is an overlay, and is currently mapped. */
2935
2936int
fba45db2 2937section_is_mapped (asection *section)
c906108c 2938{
c5aa993b 2939 struct objfile *objfile;
c906108c
SS
2940 struct obj_section *osect;
2941
2942 if (overlay_debugging)
2943 if (section && section_is_overlay (section))
2944 ALL_OBJSECTIONS (objfile, osect)
2945 if (osect->the_bfd_section == section)
c5aa993b 2946 return overlay_is_mapped (osect);
c906108c
SS
2947
2948 return 0;
2949}
2950
2951/* Function: pc_in_unmapped_range
2952 If PC falls into the lma range of SECTION, return true, else false. */
2953
2954CORE_ADDR
fba45db2 2955pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2956{
fbd35540
MS
2957 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2958
c906108c
SS
2959 int size;
2960
2961 if (overlay_debugging)
2962 if (section && section_is_overlay (section))
2963 {
2964 size = bfd_get_section_size_before_reloc (section);
2965 if (section->lma <= pc && pc < section->lma + size)
2966 return 1;
2967 }
2968 return 0;
2969}
2970
2971/* Function: pc_in_mapped_range
2972 If PC falls into the vma range of SECTION, return true, else false. */
2973
2974CORE_ADDR
fba45db2 2975pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2976{
fbd35540
MS
2977 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2978
c906108c
SS
2979 int size;
2980
2981 if (overlay_debugging)
2982 if (section && section_is_overlay (section))
2983 {
2984 size = bfd_get_section_size_before_reloc (section);
2985 if (section->vma <= pc && pc < section->vma + size)
2986 return 1;
2987 }
2988 return 0;
2989}
2990
9ec8e6a0
JB
2991
2992/* Return true if the mapped ranges of sections A and B overlap, false
2993 otherwise. */
b9362cc7 2994static int
9ec8e6a0
JB
2995sections_overlap (asection *a, asection *b)
2996{
fbd35540
MS
2997 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2998
9ec8e6a0
JB
2999 CORE_ADDR a_start = a->vma;
3000 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3001 CORE_ADDR b_start = b->vma;
3002 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3003
3004 return (a_start < b_end && b_start < a_end);
3005}
3006
c906108c
SS
3007/* Function: overlay_unmapped_address (PC, SECTION)
3008 Returns the address corresponding to PC in the unmapped (load) range.
3009 May be the same as PC. */
3010
3011CORE_ADDR
fba45db2 3012overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3013{
fbd35540
MS
3014 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3015
c906108c
SS
3016 if (overlay_debugging)
3017 if (section && section_is_overlay (section) &&
3018 pc_in_mapped_range (pc, section))
3019 return pc + section->lma - section->vma;
3020
3021 return pc;
3022}
3023
3024/* Function: overlay_mapped_address (PC, SECTION)
3025 Returns the address corresponding to PC in the mapped (runtime) range.
3026 May be the same as PC. */
3027
3028CORE_ADDR
fba45db2 3029overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3030{
fbd35540
MS
3031 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3032
c906108c
SS
3033 if (overlay_debugging)
3034 if (section && section_is_overlay (section) &&
3035 pc_in_unmapped_range (pc, section))
3036 return pc + section->vma - section->lma;
3037
3038 return pc;
3039}
3040
3041
5417f6dc 3042/* Function: symbol_overlayed_address
c906108c
SS
3043 Return one of two addresses (relative to the VMA or to the LMA),
3044 depending on whether the section is mapped or not. */
3045
c5aa993b 3046CORE_ADDR
fba45db2 3047symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3048{
3049 if (overlay_debugging)
3050 {
3051 /* If the symbol has no section, just return its regular address. */
3052 if (section == 0)
3053 return address;
3054 /* If the symbol's section is not an overlay, just return its address */
3055 if (!section_is_overlay (section))
3056 return address;
3057 /* If the symbol's section is mapped, just return its address */
3058 if (section_is_mapped (section))
3059 return address;
3060 /*
3061 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3062 * then return its LOADED address rather than its vma address!!
3063 */
3064 return overlay_unmapped_address (address, section);
3065 }
3066 return address;
3067}
3068
5417f6dc 3069/* Function: find_pc_overlay (PC)
c906108c
SS
3070 Return the best-match overlay section for PC:
3071 If PC matches a mapped overlay section's VMA, return that section.
3072 Else if PC matches an unmapped section's VMA, return that section.
3073 Else if PC matches an unmapped section's LMA, return that section. */
3074
3075asection *
fba45db2 3076find_pc_overlay (CORE_ADDR pc)
c906108c 3077{
c5aa993b 3078 struct objfile *objfile;
c906108c
SS
3079 struct obj_section *osect, *best_match = NULL;
3080
3081 if (overlay_debugging)
3082 ALL_OBJSECTIONS (objfile, osect)
3083 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3084 {
3085 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3086 {
3087 if (overlay_is_mapped (osect))
3088 return osect->the_bfd_section;
3089 else
3090 best_match = osect;
3091 }
3092 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3093 best_match = osect;
3094 }
c906108c
SS
3095 return best_match ? best_match->the_bfd_section : NULL;
3096}
3097
3098/* Function: find_pc_mapped_section (PC)
5417f6dc 3099 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3100 currently marked as MAPPED, return that section. Else return NULL. */
3101
3102asection *
fba45db2 3103find_pc_mapped_section (CORE_ADDR pc)
c906108c 3104{
c5aa993b 3105 struct objfile *objfile;
c906108c
SS
3106 struct obj_section *osect;
3107
3108 if (overlay_debugging)
3109 ALL_OBJSECTIONS (objfile, osect)
3110 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3111 overlay_is_mapped (osect))
c5aa993b 3112 return osect->the_bfd_section;
c906108c
SS
3113
3114 return NULL;
3115}
3116
3117/* Function: list_overlays_command
3118 Print a list of mapped sections and their PC ranges */
3119
3120void
fba45db2 3121list_overlays_command (char *args, int from_tty)
c906108c 3122{
c5aa993b
JM
3123 int nmapped = 0;
3124 struct objfile *objfile;
c906108c
SS
3125 struct obj_section *osect;
3126
3127 if (overlay_debugging)
3128 ALL_OBJSECTIONS (objfile, osect)
3129 if (overlay_is_mapped (osect))
c5aa993b
JM
3130 {
3131 const char *name;
3132 bfd_vma lma, vma;
3133 int size;
3134
3135 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3136 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3137 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3138 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3139
3140 printf_filtered ("Section %s, loaded at ", name);
3141 print_address_numeric (lma, 1, gdb_stdout);
3142 puts_filtered (" - ");
3143 print_address_numeric (lma + size, 1, gdb_stdout);
3144 printf_filtered (", mapped at ");
3145 print_address_numeric (vma, 1, gdb_stdout);
3146 puts_filtered (" - ");
3147 print_address_numeric (vma + size, 1, gdb_stdout);
3148 puts_filtered ("\n");
3149
3150 nmapped++;
3151 }
c906108c
SS
3152 if (nmapped == 0)
3153 printf_filtered ("No sections are mapped.\n");
3154}
3155
3156/* Function: map_overlay_command
3157 Mark the named section as mapped (ie. residing at its VMA address). */
3158
3159void
fba45db2 3160map_overlay_command (char *args, int from_tty)
c906108c 3161{
c5aa993b
JM
3162 struct objfile *objfile, *objfile2;
3163 struct obj_section *sec, *sec2;
3164 asection *bfdsec;
c906108c
SS
3165
3166 if (!overlay_debugging)
515ad16c
EZ
3167 error ("\
3168Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3169the 'overlay manual' command.");
c906108c
SS
3170
3171 if (args == 0 || *args == 0)
3172 error ("Argument required: name of an overlay section");
3173
3174 /* First, find a section matching the user supplied argument */
3175 ALL_OBJSECTIONS (objfile, sec)
3176 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3177 {
3178 /* Now, check to see if the section is an overlay. */
3179 bfdsec = sec->the_bfd_section;
3180 if (!section_is_overlay (bfdsec))
3181 continue; /* not an overlay section */
3182
3183 /* Mark the overlay as "mapped" */
3184 sec->ovly_mapped = 1;
3185
3186 /* Next, make a pass and unmap any sections that are
3187 overlapped by this new section: */
3188 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3189 if (sec2->ovly_mapped
3190 && sec != sec2
3191 && sec->the_bfd_section != sec2->the_bfd_section
3192 && sections_overlap (sec->the_bfd_section,
3193 sec2->the_bfd_section))
c5aa993b
JM
3194 {
3195 if (info_verbose)
46f45a4a 3196 printf_unfiltered ("Note: section %s unmapped by overlap\n",
c5aa993b
JM
3197 bfd_section_name (objfile->obfd,
3198 sec2->the_bfd_section));
3199 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3200 }
3201 return;
3202 }
c906108c
SS
3203 error ("No overlay section called %s", args);
3204}
3205
3206/* Function: unmap_overlay_command
5417f6dc 3207 Mark the overlay section as unmapped
c906108c
SS
3208 (ie. resident in its LMA address range, rather than the VMA range). */
3209
3210void
fba45db2 3211unmap_overlay_command (char *args, int from_tty)
c906108c 3212{
c5aa993b 3213 struct objfile *objfile;
c906108c
SS
3214 struct obj_section *sec;
3215
3216 if (!overlay_debugging)
515ad16c
EZ
3217 error ("\
3218Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3219the 'overlay manual' command.");
c906108c
SS
3220
3221 if (args == 0 || *args == 0)
3222 error ("Argument required: name of an overlay section");
3223
3224 /* First, find a section matching the user supplied argument */
3225 ALL_OBJSECTIONS (objfile, sec)
3226 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3227 {
3228 if (!sec->ovly_mapped)
3229 error ("Section %s is not mapped", args);
3230 sec->ovly_mapped = 0;
3231 return;
3232 }
c906108c
SS
3233 error ("No overlay section called %s", args);
3234}
3235
3236/* Function: overlay_auto_command
3237 A utility command to turn on overlay debugging.
3238 Possibly this should be done via a set/show command. */
3239
3240static void
fba45db2 3241overlay_auto_command (char *args, int from_tty)
c906108c 3242{
d874f1e2 3243 overlay_debugging = ovly_auto;
1900040c 3244 enable_overlay_breakpoints ();
c906108c 3245 if (info_verbose)
46f45a4a 3246 printf_unfiltered ("Automatic overlay debugging enabled.");
c906108c
SS
3247}
3248
3249/* Function: overlay_manual_command
3250 A utility command to turn on overlay debugging.
3251 Possibly this should be done via a set/show command. */
3252
3253static void
fba45db2 3254overlay_manual_command (char *args, int from_tty)
c906108c 3255{
d874f1e2 3256 overlay_debugging = ovly_on;
1900040c 3257 disable_overlay_breakpoints ();
c906108c 3258 if (info_verbose)
46f45a4a 3259 printf_unfiltered ("Overlay debugging enabled.");
c906108c
SS
3260}
3261
3262/* Function: overlay_off_command
3263 A utility command to turn on overlay debugging.
3264 Possibly this should be done via a set/show command. */
3265
3266static void
fba45db2 3267overlay_off_command (char *args, int from_tty)
c906108c 3268{
d874f1e2 3269 overlay_debugging = ovly_off;
1900040c 3270 disable_overlay_breakpoints ();
c906108c 3271 if (info_verbose)
46f45a4a 3272 printf_unfiltered ("Overlay debugging disabled.");
c906108c
SS
3273}
3274
3275static void
fba45db2 3276overlay_load_command (char *args, int from_tty)
c906108c
SS
3277{
3278 if (target_overlay_update)
3279 (*target_overlay_update) (NULL);
3280 else
3281 error ("This target does not know how to read its overlay state.");
3282}
3283
3284/* Function: overlay_command
3285 A place-holder for a mis-typed command */
3286
3287/* Command list chain containing all defined "overlay" subcommands. */
3288struct cmd_list_element *overlaylist;
3289
3290static void
fba45db2 3291overlay_command (char *args, int from_tty)
c906108c 3292{
c5aa993b 3293 printf_unfiltered
c906108c
SS
3294 ("\"overlay\" must be followed by the name of an overlay command.\n");
3295 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3296}
3297
3298
3299/* Target Overlays for the "Simplest" overlay manager:
3300
5417f6dc
RM
3301 This is GDB's default target overlay layer. It works with the
3302 minimal overlay manager supplied as an example by Cygnus. The
3303 entry point is via a function pointer "target_overlay_update",
3304 so targets that use a different runtime overlay manager can
c906108c
SS
3305 substitute their own overlay_update function and take over the
3306 function pointer.
3307
3308 The overlay_update function pokes around in the target's data structures
3309 to see what overlays are mapped, and updates GDB's overlay mapping with
3310 this information.
3311
3312 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3313 unsigned _novlys; /# number of overlay sections #/
3314 unsigned _ovly_table[_novlys][4] = {
3315 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3316 {..., ..., ..., ...},
3317 }
3318 unsigned _novly_regions; /# number of overlay regions #/
3319 unsigned _ovly_region_table[_novly_regions][3] = {
3320 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3321 {..., ..., ...},
3322 }
c906108c
SS
3323 These functions will attempt to update GDB's mappedness state in the
3324 symbol section table, based on the target's mappedness state.
3325
3326 To do this, we keep a cached copy of the target's _ovly_table, and
3327 attempt to detect when the cached copy is invalidated. The main
3328 entry point is "simple_overlay_update(SECT), which looks up SECT in
3329 the cached table and re-reads only the entry for that section from
3330 the target (whenever possible).
3331 */
3332
3333/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3334static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3335#if 0
c5aa993b 3336static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3337#endif
c5aa993b 3338static unsigned cache_novlys = 0;
c906108c 3339#if 0
c5aa993b 3340static unsigned cache_novly_regions = 0;
c906108c
SS
3341#endif
3342static CORE_ADDR cache_ovly_table_base = 0;
3343#if 0
3344static CORE_ADDR cache_ovly_region_table_base = 0;
3345#endif
c5aa993b
JM
3346enum ovly_index
3347 {
3348 VMA, SIZE, LMA, MAPPED
3349 };
c906108c
SS
3350#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3351
3352/* Throw away the cached copy of _ovly_table */
3353static void
fba45db2 3354simple_free_overlay_table (void)
c906108c
SS
3355{
3356 if (cache_ovly_table)
b8c9b27d 3357 xfree (cache_ovly_table);
c5aa993b 3358 cache_novlys = 0;
c906108c
SS
3359 cache_ovly_table = NULL;
3360 cache_ovly_table_base = 0;
3361}
3362
3363#if 0
3364/* Throw away the cached copy of _ovly_region_table */
3365static void
fba45db2 3366simple_free_overlay_region_table (void)
c906108c
SS
3367{
3368 if (cache_ovly_region_table)
b8c9b27d 3369 xfree (cache_ovly_region_table);
c5aa993b 3370 cache_novly_regions = 0;
c906108c
SS
3371 cache_ovly_region_table = NULL;
3372 cache_ovly_region_table_base = 0;
3373}
3374#endif
3375
3376/* Read an array of ints from the target into a local buffer.
3377 Convert to host order. int LEN is number of ints */
3378static void
fba45db2 3379read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3380{
34c0bd93 3381 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3382 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3383 int i;
c906108c
SS
3384
3385 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3386 for (i = 0; i < len; i++)
c5aa993b 3387 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3388 TARGET_LONG_BYTES);
3389}
3390
3391/* Find and grab a copy of the target _ovly_table
3392 (and _novlys, which is needed for the table's size) */
c5aa993b 3393static int
fba45db2 3394simple_read_overlay_table (void)
c906108c 3395{
0d43edd1 3396 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3397
3398 simple_free_overlay_table ();
9b27852e 3399 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3400 if (! novlys_msym)
c906108c 3401 {
0d43edd1
JB
3402 error ("Error reading inferior's overlay table: "
3403 "couldn't find `_novlys' variable\n"
3404 "in inferior. Use `overlay manual' mode.");
3405 return 0;
c906108c 3406 }
0d43edd1 3407
9b27852e 3408 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3409 if (! ovly_table_msym)
3410 {
3411 error ("Error reading inferior's overlay table: couldn't find "
3412 "`_ovly_table' array\n"
3413 "in inferior. Use `overlay manual' mode.");
3414 return 0;
3415 }
3416
3417 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3418 cache_ovly_table
3419 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3420 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3421 read_target_long_array (cache_ovly_table_base,
3422 (int *) cache_ovly_table,
3423 cache_novlys * 4);
3424
c5aa993b 3425 return 1; /* SUCCESS */
c906108c
SS
3426}
3427
3428#if 0
3429/* Find and grab a copy of the target _ovly_region_table
3430 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3431static int
fba45db2 3432simple_read_overlay_region_table (void)
c906108c
SS
3433{
3434 struct minimal_symbol *msym;
3435
3436 simple_free_overlay_region_table ();
9b27852e 3437 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3438 if (msym != NULL)
3439 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3440 else
3441 return 0; /* failure */
c906108c
SS
3442 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3443 if (cache_ovly_region_table != NULL)
3444 {
9b27852e 3445 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3446 if (msym != NULL)
3447 {
3448 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3449 read_target_long_array (cache_ovly_region_table_base,
3450 (int *) cache_ovly_region_table,
c906108c
SS
3451 cache_novly_regions * 3);
3452 }
c5aa993b
JM
3453 else
3454 return 0; /* failure */
c906108c 3455 }
c5aa993b
JM
3456 else
3457 return 0; /* failure */
3458 return 1; /* SUCCESS */
c906108c
SS
3459}
3460#endif
3461
5417f6dc 3462/* Function: simple_overlay_update_1
c906108c
SS
3463 A helper function for simple_overlay_update. Assuming a cached copy
3464 of _ovly_table exists, look through it to find an entry whose vma,
3465 lma and size match those of OSECT. Re-read the entry and make sure
3466 it still matches OSECT (else the table may no longer be valid).
3467 Set OSECT's mapped state to match the entry. Return: 1 for
3468 success, 0 for failure. */
3469
3470static int
fba45db2 3471simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3472{
3473 int i, size;
fbd35540
MS
3474 bfd *obfd = osect->objfile->obfd;
3475 asection *bsect = osect->the_bfd_section;
c906108c
SS
3476
3477 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3478 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3479 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3480 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3481 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3482 {
3483 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3484 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3485 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3486 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3487 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3488 {
3489 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3490 return 1;
3491 }
fbd35540 3492 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3493 return 0;
3494 }
3495 return 0;
3496}
3497
3498/* Function: simple_overlay_update
5417f6dc
RM
3499 If OSECT is NULL, then update all sections' mapped state
3500 (after re-reading the entire target _ovly_table).
3501 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3502 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3503 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3504 re-read the entire cache, and go ahead and update all sections. */
3505
3506static void
fba45db2 3507simple_overlay_update (struct obj_section *osect)
c906108c 3508{
c5aa993b 3509 struct objfile *objfile;
c906108c
SS
3510
3511 /* Were we given an osect to look up? NULL means do all of them. */
3512 if (osect)
3513 /* Have we got a cached copy of the target's overlay table? */
3514 if (cache_ovly_table != NULL)
3515 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3516 if (cache_ovly_table_base ==
9b27852e 3517 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3518 /* Then go ahead and try to look up this single section in the cache */
3519 if (simple_overlay_update_1 (osect))
3520 /* Found it! We're done. */
3521 return;
3522
3523 /* Cached table no good: need to read the entire table anew.
3524 Or else we want all the sections, in which case it's actually
3525 more efficient to read the whole table in one block anyway. */
3526
0d43edd1
JB
3527 if (! simple_read_overlay_table ())
3528 return;
3529
c906108c
SS
3530 /* Now may as well update all sections, even if only one was requested. */
3531 ALL_OBJSECTIONS (objfile, osect)
3532 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3533 {
3534 int i, size;
fbd35540
MS
3535 bfd *obfd = osect->objfile->obfd;
3536 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3537
3538 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3539 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3540 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3541 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3542 /* && cache_ovly_table[i][SIZE] == size */ )
3543 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3544 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3545 break; /* finished with inner for loop: break out */
3546 }
3547 }
c906108c
SS
3548}
3549
086df311
DJ
3550/* Set the output sections and output offsets for section SECTP in
3551 ABFD. The relocation code in BFD will read these offsets, so we
3552 need to be sure they're initialized. We map each section to itself,
3553 with no offset; this means that SECTP->vma will be honored. */
3554
3555static void
3556symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3557{
3558 sectp->output_section = sectp;
3559 sectp->output_offset = 0;
3560}
3561
3562/* Relocate the contents of a debug section SECTP in ABFD. The
3563 contents are stored in BUF if it is non-NULL, or returned in a
3564 malloc'd buffer otherwise.
3565
3566 For some platforms and debug info formats, shared libraries contain
3567 relocations against the debug sections (particularly for DWARF-2;
3568 one affected platform is PowerPC GNU/Linux, although it depends on
3569 the version of the linker in use). Also, ELF object files naturally
3570 have unresolved relocations for their debug sections. We need to apply
3571 the relocations in order to get the locations of symbols correct. */
3572
3573bfd_byte *
3574symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3575{
3576 /* We're only interested in debugging sections with relocation
3577 information. */
3578 if ((sectp->flags & SEC_RELOC) == 0)
3579 return NULL;
3580 if ((sectp->flags & SEC_DEBUGGING) == 0)
3581 return NULL;
3582
3583 /* We will handle section offsets properly elsewhere, so relocate as if
3584 all sections begin at 0. */
3585 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3586
97606a13 3587 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3588}
c906108c
SS
3589
3590void
fba45db2 3591_initialize_symfile (void)
c906108c
SS
3592{
3593 struct cmd_list_element *c;
c5aa993b 3594
c906108c 3595 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3596 "Load symbol table from executable file FILE.\n\
c906108c
SS
3597The `file' command can also load symbol tables, as well as setting the file\n\
3598to execute.", &cmdlist);
5ba2abeb 3599 set_cmd_completer (c, filename_completer);
c906108c
SS
3600
3601 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3602 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3603Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3604ADDR is the starting address of the file's text.\n\
db162d44
EZ
3605The optional arguments are section-name section-address pairs and\n\
3606should be specified if the data and bss segments are not contiguous\n\
d4654627 3607with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3608 &cmdlist);
5ba2abeb 3609 set_cmd_completer (c, filename_completer);
c906108c 3610
5417f6dc
RM
3611 c = add_cmd ("add-symbol-file-from-memory", class_files,
3612 add_symbol_file_from_memory_command,
3613 "\
3614Load the symbols out of memory from a dynamically loaded object file.\n\
3615Give an expression for the address of the file's shared object file header.",
3616 &cmdlist);
3617
c906108c
SS
3618 c = add_cmd ("add-shared-symbol-files", class_files,
3619 add_shared_symbol_files_command,
3620 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3621 &cmdlist);
c906108c
SS
3622 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3623 &cmdlist);
3624
3625 c = add_cmd ("load", class_files, load_command,
c5aa993b 3626 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3627for access from GDB.", &cmdlist);
5ba2abeb 3628 set_cmd_completer (c, filename_completer);
c906108c
SS
3629
3630 add_show_from_set
3631 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3632 (char *) &symbol_reloading,
3633 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3634 &setlist),
3635 &showlist);
3636
c5aa993b
JM
3637 add_prefix_cmd ("overlay", class_support, overlay_command,
3638 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3639 "overlay ", 0, &cmdlist);
3640
3641 add_com_alias ("ovly", "overlay", class_alias, 1);
3642 add_com_alias ("ov", "overlay", class_alias, 1);
3643
c5aa993b 3644 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3645 "Assert that an overlay section is mapped.", &overlaylist);
3646
c5aa993b 3647 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3648 "Assert that an overlay section is unmapped.", &overlaylist);
3649
c5aa993b 3650 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3651 "List mappings of overlay sections.", &overlaylist);
3652
c5aa993b 3653 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3654 "Enable overlay debugging.", &overlaylist);
c5aa993b 3655 add_cmd ("off", class_support, overlay_off_command,
c906108c 3656 "Disable overlay debugging.", &overlaylist);
c5aa993b 3657 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3658 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3659 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3660 "Read the overlay mapping state from the target.", &overlaylist);
3661
3662 /* Filename extension to source language lookup table: */
3663 init_filename_language_table ();
3664 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3665 (char *) &ext_args,
c906108c
SS
3666 "Set mapping between filename extension and source language.\n\
3667Usage: set extension-language .foo bar",
c5aa993b 3668 &setlist);
9f60d481 3669 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3670
c5aa993b 3671 add_info ("extensions", info_ext_lang_command,
c906108c 3672 "All filename extensions associated with a source language.");
917317f4
JM
3673
3674 add_show_from_set
3675 (add_set_cmd ("download-write-size", class_obscure,
3676 var_integer, (char *) &download_write_size,
3677 "Set the write size used when downloading a program.\n"
3678 "Only used when downloading a program onto a remote\n"
3679 "target. Specify zero, or a negative value, to disable\n"
3680 "blocked writes. The actual size of each transfer is also\n"
3681 "limited by the size of the target packet and the memory\n"
3682 "cache.\n",
3683 &setlist),
3684 &showlist);
5b5d99cf
JB
3685
3686 debug_file_directory = xstrdup (DEBUGDIR);
3687 c = (add_set_cmd
3688 ("debug-file-directory", class_support, var_string,
3689 (char *) &debug_file_directory,
3690 "Set the directory where separate debug symbols are searched for.\n"
3691 "Separate debug symbols are first searched for in the same\n"
5417f6dc 3692 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
5b5d99cf
JB
3693 "' subdirectory,\n"
3694 "and lastly at the path of the directory of the binary with\n"
3695 "the global debug-file directory prepended\n",
3696 &setlist));
3697 add_show_from_set (c, &showlist);
3698 set_cmd_completer (c, filename_completer);
c906108c 3699}
This page took 0.630385 seconds and 4 git commands to generate.