* infrun.c (adjust_pc_after_break): Do not assume software single-step
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
c906108c 56
c906108c
SS
57#include <sys/types.h>
58#include <fcntl.h>
59#include "gdb_string.h"
60#include "gdb_stat.h"
61#include <ctype.h>
62#include <time.h>
2b71414d 63#include <sys/time.h>
c906108c 64
c906108c 65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void set_initial_language (void);
c906108c 92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
a14ed312 99static void add_shared_symbol_files_command (char *, int);
c906108c 100
5b5d99cf
JB
101static void reread_separate_symbols (struct objfile *objfile);
102
a14ed312 103static void cashier_psymtab (struct partial_symtab *);
c906108c 104
a14ed312 105bfd *symfile_bfd_open (char *);
c906108c 106
0e931cf0
JB
107int get_section_index (struct objfile *, char *);
108
31d99776 109static struct sym_fns *find_sym_fns (bfd *);
c906108c 110
a14ed312 111static void decrement_reading_symtab (void *);
c906108c 112
a14ed312 113static void overlay_invalidate_all (void);
c906108c 114
a14ed312 115static int overlay_is_mapped (struct obj_section *);
c906108c 116
a14ed312 117void list_overlays_command (char *, int);
c906108c 118
a14ed312 119void map_overlay_command (char *, int);
c906108c 120
a14ed312 121void unmap_overlay_command (char *, int);
c906108c 122
a14ed312 123static void overlay_auto_command (char *, int);
c906108c 124
a14ed312 125static void overlay_manual_command (char *, int);
c906108c 126
a14ed312 127static void overlay_off_command (char *, int);
c906108c 128
a14ed312 129static void overlay_load_command (char *, int);
c906108c 130
a14ed312 131static void overlay_command (char *, int);
c906108c 132
a14ed312 133static void simple_free_overlay_table (void);
c906108c 134
a14ed312 135static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 136
a14ed312 137static int simple_read_overlay_table (void);
c906108c 138
a14ed312 139static int simple_overlay_update_1 (struct obj_section *);
c906108c 140
a14ed312 141static void add_filename_language (char *ext, enum language lang);
392a587b 142
a14ed312 143static void info_ext_lang_command (char *args, int from_tty);
392a587b 144
5b5d99cf
JB
145static char *find_separate_debug_file (struct objfile *objfile);
146
a14ed312 147static void init_filename_language_table (void);
392a587b 148
31d99776
DJ
149static void symfile_find_segment_sections (struct objfile *objfile);
150
a14ed312 151void _initialize_symfile (void);
c906108c
SS
152
153/* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157static struct sym_fns *symtab_fns = NULL;
158
159/* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162#ifdef SYMBOL_RELOADING_DEFAULT
163int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164#else
165int symbol_reloading = 0;
166#endif
920d2a44
AC
167static void
168show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("\
172Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174}
175
c906108c 176
b7209cb4
FF
177/* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
c906108c 184 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 185 report all the functions that are actually present. */
c906108c
SS
186
187int auto_solib_add = 1;
b7209cb4
FF
188
189/* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197int auto_solib_limit;
c906108c 198\f
c5aa993b 199
0fe19209
DC
200/* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
c906108c
SS
202
203static int
0cd64fe2 204compare_psymbols (const void *s1p, const void *s2p)
c906108c 205{
0fe19209
DC
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
4725b721
PH
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
211}
212
213void
fba45db2 214sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
215{
216 /* Sort the global list; don't sort the static list */
217
c5aa993b
JM
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
220 compare_psymbols);
221}
222
c906108c
SS
223/* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228char *
63ca651f 229obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 230{
52f0bd74 231 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
aa1ee363
AC
236 const char *p1 = ptr;
237 char *p2 = p;
63ca651f 238 const char *end = ptr + size;
c906108c
SS
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244}
245
246/* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249char *
fba45db2
KB
250obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
c906108c 252{
52f0bd74
AC
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259}
260
261/* True if we are nested inside psymtab_to_symtab. */
262
263int currently_reading_symtab = 0;
264
265static void
fba45db2 266decrement_reading_symtab (void *dummy)
c906108c
SS
267{
268 currently_reading_symtab--;
269}
270
271/* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276struct symtab *
aa1ee363 277psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
278{
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
c5aa993b 285 {
c906108c
SS
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293}
294
5417f6dc
RM
295/* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
c906108c
SS
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304void
4efb68b1 305find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 306{
c5aa993b 307 asection **lowest = (asection **) obj;
c906108c
SS
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319}
320
a39a16c4
MM
321/* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323struct section_addr_info *
324alloc_section_addr_info (size_t num_sections)
325{
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336}
62557bbc 337
7b90c3f9
JB
338
339/* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341struct section_addr_info *
342copy_section_addr_info (struct section_addr_info *addrs)
343{
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360}
361
362
363
62557bbc
KB
364/* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367extern struct section_addr_info *
368build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370{
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
a39a16c4 375 sap = alloc_section_addr_info (end - start);
62557bbc
KB
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
5417f6dc 379 if (bfd_get_section_flags (stp->bfd,
fbd35540 380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 381 && oidx < end - start)
62557bbc
KB
382 {
383 sap->other[oidx].addr = stp->addr;
5417f6dc 384 sap->other[oidx].name
fbd35540 385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392}
393
394
395/* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397extern void
398free_section_addr_info (struct section_addr_info *sap)
399{
400 int idx;
401
a39a16c4 402 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 403 if (sap->other[idx].name)
b8c9b27d
KB
404 xfree (sap->other[idx].name);
405 xfree (sap);
62557bbc
KB
406}
407
408
e8289572
JB
409/* Initialize OBJFILE's sect_index_* members. */
410static void
411init_objfile_sect_indices (struct objfile *objfile)
c906108c 412{
e8289572 413 asection *sect;
c906108c 414 int i;
5417f6dc 415
b8fbeb18 416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 417 if (sect)
b8fbeb18
EZ
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_rodata = sect->index;
431
bbcd32ad
FF
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
31d99776
DJ
435 accomodate that. First, check for a file with the standard
436 one or two segments. */
437
438 symfile_find_segment_sections (objfile);
439
440 /* Except when explicitly adding symbol files at some address,
441 section_offsets contains nothing but zeros, so it doesn't matter
442 which slot in section_offsets the individual sect_index_* members
443 index into. So if they are all zero, it is safe to just point
444 all the currently uninitialized indices to the first slot. But
445 beware: if this is the main executable, it may be relocated
446 later, e.g. by the remote qOffsets packet, and then this will
447 be wrong! That's why we try segments first. */
bbcd32ad
FF
448
449 for (i = 0; i < objfile->num_sections; i++)
450 {
451 if (ANOFFSET (objfile->section_offsets, i) != 0)
452 {
453 break;
454 }
455 }
456 if (i == objfile->num_sections)
457 {
458 if (objfile->sect_index_text == -1)
459 objfile->sect_index_text = 0;
460 if (objfile->sect_index_data == -1)
461 objfile->sect_index_data = 0;
462 if (objfile->sect_index_bss == -1)
463 objfile->sect_index_bss = 0;
464 if (objfile->sect_index_rodata == -1)
465 objfile->sect_index_rodata = 0;
466 }
b8fbeb18 467}
c906108c 468
c1bd25fd
DJ
469/* The arguments to place_section. */
470
471struct place_section_arg
472{
473 struct section_offsets *offsets;
474 CORE_ADDR lowest;
475};
476
477/* Find a unique offset to use for loadable section SECT if
478 the user did not provide an offset. */
479
480void
481place_section (bfd *abfd, asection *sect, void *obj)
482{
483 struct place_section_arg *arg = obj;
484 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
485 int done;
3bd72c6f 486 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 487
2711e456
DJ
488 /* We are only interested in allocated sections. */
489 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
490 return;
491
492 /* If the user specified an offset, honor it. */
493 if (offsets[sect->index] != 0)
494 return;
495
496 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
497 start_addr = (arg->lowest + align - 1) & -align;
498
c1bd25fd
DJ
499 do {
500 asection *cur_sec;
c1bd25fd 501
c1bd25fd
DJ
502 done = 1;
503
504 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
505 {
506 int indx = cur_sec->index;
507 CORE_ADDR cur_offset;
508
509 /* We don't need to compare against ourself. */
510 if (cur_sec == sect)
511 continue;
512
2711e456
DJ
513 /* We can only conflict with allocated sections. */
514 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
515 continue;
516
517 /* If the section offset is 0, either the section has not been placed
518 yet, or it was the lowest section placed (in which case LOWEST
519 will be past its end). */
520 if (offsets[indx] == 0)
521 continue;
522
523 /* If this section would overlap us, then we must move up. */
524 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
525 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
526 {
527 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
528 start_addr = (start_addr + align - 1) & -align;
529 done = 0;
3bd72c6f 530 break;
c1bd25fd
DJ
531 }
532
533 /* Otherwise, we appear to be OK. So far. */
534 }
535 }
536 while (!done);
537
538 offsets[sect->index] = start_addr;
539 arg->lowest = start_addr + bfd_get_section_size (sect);
540
541 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
542}
e8289572
JB
543
544/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 545 of how to represent it for fast symbol reading. This is the default
e8289572
JB
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550void
551default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553{
554 int i;
555
a39a16c4 556 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 557 objfile->section_offsets = (struct section_offsets *)
5417f6dc 558 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 560 memset (objfile->section_offsets, 0,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
a39a16c4 565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
c1bd25fd
DJ
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
2711e456
DJ
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
640 offsets[cur_sec->index] = 0;
641 }
642 }
c1bd25fd
DJ
643 }
644
e8289572
JB
645 /* Remember the bfd indexes for the .text, .data, .bss and
646 .rodata sections. */
647 init_objfile_sect_indices (objfile);
648}
649
650
31d99776
DJ
651/* Divide the file into segments, which are individual relocatable units.
652 This is the default version of the sym_fns.sym_segments function for
653 symbol readers that do not have an explicit representation of segments.
654 It assumes that object files do not have segments, and fully linked
655 files have a single segment. */
656
657struct symfile_segment_data *
658default_symfile_segments (bfd *abfd)
659{
660 int num_sections, i;
661 asection *sect;
662 struct symfile_segment_data *data;
663 CORE_ADDR low, high;
664
665 /* Relocatable files contain enough information to position each
666 loadable section independently; they should not be relocated
667 in segments. */
668 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
669 return NULL;
670
671 /* Make sure there is at least one loadable section in the file. */
672 for (sect = abfd->sections; sect != NULL; sect = sect->next)
673 {
674 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
675 continue;
676
677 break;
678 }
679 if (sect == NULL)
680 return NULL;
681
682 low = bfd_get_section_vma (abfd, sect);
683 high = low + bfd_get_section_size (sect);
684
685 data = XZALLOC (struct symfile_segment_data);
686 data->num_segments = 1;
687 data->segment_bases = XCALLOC (1, CORE_ADDR);
688 data->segment_sizes = XCALLOC (1, CORE_ADDR);
689
690 num_sections = bfd_count_sections (abfd);
691 data->segment_info = XCALLOC (num_sections, int);
692
693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
694 {
695 CORE_ADDR vma;
696
697 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
698 continue;
699
700 vma = bfd_get_section_vma (abfd, sect);
701 if (vma < low)
702 low = vma;
703 if (vma + bfd_get_section_size (sect) > high)
704 high = vma + bfd_get_section_size (sect);
705
706 data->segment_info[i] = 1;
707 }
708
709 data->segment_bases[0] = low;
710 data->segment_sizes[0] = high - low;
711
712 return data;
713}
714
c906108c
SS
715/* Process a symbol file, as either the main file or as a dynamically
716 loaded file.
717
96baa820
JM
718 OBJFILE is where the symbols are to be read from.
719
7e8580c1
JB
720 ADDRS is the list of section load addresses. If the user has given
721 an 'add-symbol-file' command, then this is the list of offsets and
722 addresses he or she provided as arguments to the command; or, if
723 we're handling a shared library, these are the actual addresses the
724 sections are loaded at, according to the inferior's dynamic linker
725 (as gleaned by GDB's shared library code). We convert each address
726 into an offset from the section VMA's as it appears in the object
727 file, and then call the file's sym_offsets function to convert this
728 into a format-specific offset table --- a `struct section_offsets'.
729 If ADDRS is non-zero, OFFSETS must be zero.
730
731 OFFSETS is a table of section offsets already in the right
732 format-specific representation. NUM_OFFSETS is the number of
733 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
734 assume this is the proper table the call to sym_offsets described
735 above would produce. Instead of calling sym_offsets, we just dump
736 it right into objfile->section_offsets. (When we're re-reading
737 symbols from an objfile, we don't have the original load address
738 list any more; all we have is the section offset table.) If
739 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
740
741 MAINLINE is nonzero if this is the main symbol file, or zero if
742 it's an extra symbol file such as dynamically loaded code.
743
744 VERBO is nonzero if the caller has printed a verbose message about
745 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
746
747void
7e8580c1
JB
748syms_from_objfile (struct objfile *objfile,
749 struct section_addr_info *addrs,
750 struct section_offsets *offsets,
751 int num_offsets,
752 int mainline,
753 int verbo)
c906108c 754{
a39a16c4 755 struct section_addr_info *local_addr = NULL;
c906108c 756 struct cleanup *old_chain;
2acceee2 757
7e8580c1 758 gdb_assert (! (addrs && offsets));
2acceee2 759
c906108c 760 init_entry_point_info (objfile);
31d99776 761 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 762
75245b24
MS
763 if (objfile->sf == NULL)
764 return; /* No symbols. */
765
c906108c
SS
766 /* Make sure that partially constructed symbol tables will be cleaned up
767 if an error occurs during symbol reading. */
74b7792f 768 old_chain = make_cleanup_free_objfile (objfile);
c906108c 769
a39a16c4
MM
770 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
771 list. We now establish the convention that an addr of zero means
772 no load address was specified. */
773 if (! addrs && ! offsets)
774 {
5417f6dc 775 local_addr
a39a16c4
MM
776 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
777 make_cleanup (xfree, local_addr);
778 addrs = local_addr;
779 }
780
781 /* Now either addrs or offsets is non-zero. */
782
c5aa993b 783 if (mainline)
c906108c
SS
784 {
785 /* We will modify the main symbol table, make sure that all its users
c5aa993b 786 will be cleaned up if an error occurs during symbol reading. */
74b7792f 787 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
788
789 /* Since no error yet, throw away the old symbol table. */
790
791 if (symfile_objfile != NULL)
792 {
793 free_objfile (symfile_objfile);
794 symfile_objfile = NULL;
795 }
796
797 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
798 If the user wants to get rid of them, they should do "symbol-file"
799 without arguments first. Not sure this is the best behavior
800 (PR 2207). */
c906108c 801
c5aa993b 802 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
803 }
804
805 /* Convert addr into an offset rather than an absolute address.
806 We find the lowest address of a loaded segment in the objfile,
53a5351d 807 and assume that <addr> is where that got loaded.
c906108c 808
53a5351d
JM
809 We no longer warn if the lowest section is not a text segment (as
810 happens for the PA64 port. */
1549f619 811 if (!mainline && addrs && addrs->other[0].name)
c906108c 812 {
1549f619
EZ
813 asection *lower_sect;
814 asection *sect;
815 CORE_ADDR lower_offset;
816 int i;
817
5417f6dc 818 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
819 continguous sections. FIXME!! won't work without call to find
820 .text first, but this assumes text is lowest section. */
821 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
822 if (lower_sect == NULL)
c906108c 823 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 824 &lower_sect);
2acceee2 825 if (lower_sect == NULL)
8a3fe4f8 826 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 827 objfile->name);
5417f6dc 828 else
b8fbeb18 829 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 830 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
831 objfile->name,
832 bfd_section_name (objfile->obfd, lower_sect),
833 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
834 if (lower_sect != NULL)
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836 else
837 lower_offset = 0;
5417f6dc 838
13de58df 839 /* Calculate offsets for the loadable sections.
2acceee2
JM
840 FIXME! Sections must be in order of increasing loadable section
841 so that contiguous sections can use the lower-offset!!!
5417f6dc 842
13de58df
JB
843 Adjust offsets if the segments are not contiguous.
844 If the section is contiguous, its offset should be set to
2acceee2
JM
845 the offset of the highest loadable section lower than it
846 (the loadable section directly below it in memory).
847 this_offset = lower_offset = lower_addr - lower_orig_addr */
848
1549f619 849 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
850 {
851 if (addrs->other[i].addr != 0)
852 {
853 sect = bfd_get_section_by_name (objfile->obfd,
854 addrs->other[i].name);
855 if (sect)
856 {
857 addrs->other[i].addr
858 -= bfd_section_vma (objfile->obfd, sect);
859 lower_offset = addrs->other[i].addr;
860 /* This is the index used by BFD. */
861 addrs->other[i].sectindex = sect->index ;
862 }
863 else
864 {
8a3fe4f8 865 warning (_("section %s not found in %s"),
5417f6dc 866 addrs->other[i].name,
7e8580c1
JB
867 objfile->name);
868 addrs->other[i].addr = 0;
869 }
870 }
871 else
872 addrs->other[i].addr = lower_offset;
873 }
c906108c
SS
874 }
875
876 /* Initialize symbol reading routines for this objfile, allow complaints to
877 appear for this new file, and record how verbose to be, then do the
878 initial symbol reading for this file. */
879
c5aa993b 880 (*objfile->sf->sym_init) (objfile);
b9caf505 881 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 882
7e8580c1
JB
883 if (addrs)
884 (*objfile->sf->sym_offsets) (objfile, addrs);
885 else
886 {
887 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
888
889 /* Just copy in the offset table directly as given to us. */
890 objfile->num_sections = num_offsets;
891 objfile->section_offsets
892 = ((struct section_offsets *)
8b92e4d5 893 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
894 memcpy (objfile->section_offsets, offsets, size);
895
896 init_objfile_sect_indices (objfile);
897 }
c906108c 898
52d16ba8 899#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
900 /* This is a SVR4/SunOS specific hack, I think. In any event, it
901 screws RS/6000. sym_offsets should be doing this sort of thing,
902 because it knows the mapping between bfd sections and
903 section_offsets. */
904 /* This is a hack. As far as I can tell, section offsets are not
905 target dependent. They are all set to addr with a couple of
906 exceptions. The exceptions are sysvr4 shared libraries, whose
907 offsets are kept in solib structures anyway and rs6000 xcoff
908 which handles shared libraries in a completely unique way.
909
910 Section offsets are built similarly, except that they are built
911 by adding addr in all cases because there is no clear mapping
912 from section_offsets into actual sections. Note that solib.c
96baa820 913 has a different algorithm for finding section offsets.
c906108c
SS
914
915 These should probably all be collapsed into some target
916 independent form of shared library support. FIXME. */
917
2acceee2 918 if (addrs)
c906108c
SS
919 {
920 struct obj_section *s;
921
5417f6dc
RM
922 /* Map section offsets in "addr" back to the object's
923 sections by comparing the section names with bfd's
2acceee2
JM
924 section names. Then adjust the section address by
925 the offset. */ /* for gdb/13815 */
5417f6dc 926
96baa820 927 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 928 {
2acceee2
JM
929 CORE_ADDR s_addr = 0;
930 int i;
931
5417f6dc 932 for (i = 0;
a39a16c4 933 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 934 i++)
5417f6dc
RM
935 if (strcmp (bfd_section_name (s->objfile->obfd,
936 s->the_bfd_section),
fbd35540 937 addrs->other[i].name) == 0)
2acceee2 938 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 939
c906108c 940 s->addr -= s->offset;
2acceee2 941 s->addr += s_addr;
c906108c 942 s->endaddr -= s->offset;
2acceee2
JM
943 s->endaddr += s_addr;
944 s->offset += s_addr;
c906108c
SS
945 }
946 }
52d16ba8 947#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 948
96baa820 949 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 950
c906108c
SS
951 /* Don't allow char * to have a typename (else would get caddr_t).
952 Ditto void *. FIXME: Check whether this is now done by all the
953 symbol readers themselves (many of them now do), and if so remove
954 it from here. */
955
956 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
957 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
958
959 /* Mark the objfile has having had initial symbol read attempted. Note
960 that this does not mean we found any symbols... */
961
c5aa993b 962 objfile->flags |= OBJF_SYMS;
c906108c
SS
963
964 /* Discard cleanups as symbol reading was successful. */
965
966 discard_cleanups (old_chain);
c906108c
SS
967}
968
969/* Perform required actions after either reading in the initial
970 symbols for a new objfile, or mapping in the symbols from a reusable
971 objfile. */
c5aa993b 972
c906108c 973void
fba45db2 974new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
975{
976
977 /* If this is the main symbol file we have to clean up all users of the
978 old main symbol file. Otherwise it is sufficient to fixup all the
979 breakpoints that may have been redefined by this symbol file. */
980 if (mainline)
981 {
982 /* OK, make it the "real" symbol file. */
983 symfile_objfile = objfile;
984
985 clear_symtab_users ();
986 }
987 else
988 {
989 breakpoint_re_set ();
990 }
991
992 /* We're done reading the symbol file; finish off complaints. */
b9caf505 993 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
994}
995
996/* Process a symbol file, as either the main file or as a dynamically
997 loaded file.
998
5417f6dc
RM
999 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1000 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
1001
1002 FROM_TTY says how verbose to be.
1003
1004 MAINLINE specifies whether this is the main symbol file, or whether
1005 it's an extra symbol file such as dynamically loaded code.
1006
1007 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1008 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1009 non-zero.
c906108c 1010
c906108c
SS
1011 Upon success, returns a pointer to the objfile that was added.
1012 Upon failure, jumps back to command level (never returns). */
7904e09f 1013static struct objfile *
5417f6dc 1014symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
1015 struct section_addr_info *addrs,
1016 struct section_offsets *offsets,
1017 int num_offsets,
1018 int mainline, int flags)
c906108c
SS
1019{
1020 struct objfile *objfile;
1021 struct partial_symtab *psymtab;
5b5d99cf 1022 char *debugfile;
7b90c3f9 1023 struct section_addr_info *orig_addrs = NULL;
a39a16c4 1024 struct cleanup *my_cleanups;
5417f6dc 1025 const char *name = bfd_get_filename (abfd);
c906108c 1026
5417f6dc 1027 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1028
5417f6dc
RM
1029 /* Give user a chance to burp if we'd be
1030 interactively wiping out any existing symbols. */
c906108c
SS
1031
1032 if ((have_full_symbols () || have_partial_symbols ())
1033 && mainline
1034 && from_tty
1035 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 1036 error (_("Not confirmed."));
c906108c 1037
2df3850c 1038 objfile = allocate_objfile (abfd, flags);
5417f6dc 1039 discard_cleanups (my_cleanups);
c906108c 1040
a39a16c4 1041 if (addrs)
63cd24fe 1042 {
7b90c3f9
JB
1043 orig_addrs = copy_section_addr_info (addrs);
1044 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 1045 }
a39a16c4 1046
78a4a9b9
AC
1047 /* We either created a new mapped symbol table, mapped an existing
1048 symbol table file which has not had initial symbol reading
1049 performed, or need to read an unmapped symbol table. */
1050 if (from_tty || info_verbose)
c906108c 1051 {
769d7dc4
AC
1052 if (deprecated_pre_add_symbol_hook)
1053 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1054 else
c906108c 1055 {
a3f17187 1056 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
1057 wrap_here ("");
1058 gdb_flush (gdb_stdout);
1059 }
c906108c 1060 }
78a4a9b9
AC
1061 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1062 mainline, from_tty);
c906108c
SS
1063
1064 /* We now have at least a partial symbol table. Check to see if the
1065 user requested that all symbols be read on initial access via either
1066 the gdb startup command line or on a per symbol file basis. Expand
1067 all partial symbol tables for this objfile if so. */
1068
2acceee2 1069 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
1070 {
1071 if (from_tty || info_verbose)
1072 {
a3f17187 1073 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1074 wrap_here ("");
1075 gdb_flush (gdb_stdout);
1076 }
1077
c5aa993b 1078 for (psymtab = objfile->psymtabs;
c906108c 1079 psymtab != NULL;
c5aa993b 1080 psymtab = psymtab->next)
c906108c
SS
1081 {
1082 psymtab_to_symtab (psymtab);
1083 }
1084 }
1085
5b5d99cf
JB
1086 debugfile = find_separate_debug_file (objfile);
1087 if (debugfile)
1088 {
5b5d99cf
JB
1089 if (addrs != NULL)
1090 {
1091 objfile->separate_debug_objfile
a39a16c4 1092 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1093 }
1094 else
1095 {
1096 objfile->separate_debug_objfile
1097 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1098 }
1099 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1100 = objfile;
5417f6dc 1101
5b5d99cf
JB
1102 /* Put the separate debug object before the normal one, this is so that
1103 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1104 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1105
5b5d99cf
JB
1106 xfree (debugfile);
1107 }
5417f6dc 1108
cb3c37b2
JB
1109 if (!have_partial_symbols () && !have_full_symbols ())
1110 {
1111 wrap_here ("");
a3f17187 1112 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
1113 if (from_tty || info_verbose)
1114 printf_filtered ("...");
1115 else
1116 printf_filtered ("\n");
cb3c37b2
JB
1117 wrap_here ("");
1118 }
1119
c906108c
SS
1120 if (from_tty || info_verbose)
1121 {
769d7dc4
AC
1122 if (deprecated_post_add_symbol_hook)
1123 deprecated_post_add_symbol_hook ();
c906108c 1124 else
c5aa993b 1125 {
a3f17187 1126 printf_unfiltered (_("done.\n"));
c5aa993b 1127 }
c906108c
SS
1128 }
1129
481d0f41
JB
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
a39a16c4
MM
1135 do_cleanups (my_cleanups);
1136
109f874e
MS
1137 if (objfile->sf == NULL)
1138 return objfile; /* No symbols. */
1139
c906108c
SS
1140 new_symfile_objfile (objfile, mainline, from_tty);
1141
06d3b283 1142 observer_notify_new_objfile (objfile);
c906108c 1143
ce7d4522 1144 bfd_cache_close_all ();
c906108c
SS
1145 return (objfile);
1146}
1147
7904e09f 1148
eb4556d7
JB
1149/* Process the symbol file ABFD, as either the main file or as a
1150 dynamically loaded file.
1151
1152 See symbol_file_add_with_addrs_or_offsets's comments for
1153 details. */
1154struct objfile *
1155symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1156 struct section_addr_info *addrs,
1157 int mainline, int flags)
1158{
1159 return symbol_file_add_with_addrs_or_offsets (abfd,
1160 from_tty, addrs, 0, 0,
1161 mainline, flags);
1162}
1163
1164
7904e09f
JB
1165/* Process a symbol file, as either the main file or as a dynamically
1166 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1167 for details. */
1168struct objfile *
1169symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1170 int mainline, int flags)
1171{
eb4556d7
JB
1172 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1173 addrs, mainline, flags);
7904e09f
JB
1174}
1175
1176
d7db6da9
FN
1177/* Call symbol_file_add() with default values and update whatever is
1178 affected by the loading of a new main().
1179 Used when the file is supplied in the gdb command line
1180 and by some targets with special loading requirements.
1181 The auxiliary function, symbol_file_add_main_1(), has the flags
1182 argument for the switches that can only be specified in the symbol_file
1183 command itself. */
5417f6dc 1184
1adeb98a
FN
1185void
1186symbol_file_add_main (char *args, int from_tty)
1187{
d7db6da9
FN
1188 symbol_file_add_main_1 (args, from_tty, 0);
1189}
1190
1191static void
1192symbol_file_add_main_1 (char *args, int from_tty, int flags)
1193{
1194 symbol_file_add (args, from_tty, NULL, 1, flags);
1195
d7db6da9
FN
1196 /* Getting new symbols may change our opinion about
1197 what is frameless. */
1198 reinit_frame_cache ();
1199
1200 set_initial_language ();
1adeb98a
FN
1201}
1202
1203void
1204symbol_file_clear (int from_tty)
1205{
1206 if ((have_full_symbols () || have_partial_symbols ())
1207 && from_tty
0430b0d6
AS
1208 && (symfile_objfile
1209 ? !query (_("Discard symbol table from `%s'? "),
1210 symfile_objfile->name)
1211 : !query (_("Discard symbol table? "))))
8a3fe4f8 1212 error (_("Not confirmed."));
1adeb98a
FN
1213 free_all_objfiles ();
1214
1215 /* solib descriptors may have handles to objfiles. Since their
1216 storage has just been released, we'd better wipe the solib
1217 descriptors as well.
1218 */
1219#if defined(SOLIB_RESTART)
1220 SOLIB_RESTART ();
1221#endif
1222
1223 symfile_objfile = NULL;
1224 if (from_tty)
a3f17187 1225 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1226}
1227
5b5d99cf
JB
1228static char *
1229get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1230{
1231 asection *sect;
1232 bfd_size_type debuglink_size;
1233 unsigned long crc32;
1234 char *contents;
1235 int crc_offset;
1236 unsigned char *p;
5417f6dc 1237
5b5d99cf
JB
1238 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1239
1240 if (sect == NULL)
1241 return NULL;
1242
1243 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1244
5b5d99cf
JB
1245 contents = xmalloc (debuglink_size);
1246 bfd_get_section_contents (objfile->obfd, sect, contents,
1247 (file_ptr)0, (bfd_size_type)debuglink_size);
1248
1249 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1250 crc_offset = strlen (contents) + 1;
1251 crc_offset = (crc_offset + 3) & ~3;
1252
1253 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1254
5b5d99cf
JB
1255 *crc32_out = crc32;
1256 return contents;
1257}
1258
1259static int
1260separate_debug_file_exists (const char *name, unsigned long crc)
1261{
1262 unsigned long file_crc = 0;
1263 int fd;
777ea8f1 1264 gdb_byte buffer[8*1024];
5b5d99cf
JB
1265 int count;
1266
1267 fd = open (name, O_RDONLY | O_BINARY);
1268 if (fd < 0)
1269 return 0;
1270
1271 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1272 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1273
1274 close (fd);
1275
1276 return crc == file_crc;
1277}
1278
aa28a74e 1279char *debug_file_directory = NULL;
920d2a44
AC
1280static void
1281show_debug_file_directory (struct ui_file *file, int from_tty,
1282 struct cmd_list_element *c, const char *value)
1283{
1284 fprintf_filtered (file, _("\
1285The directory where separate debug symbols are searched for is \"%s\".\n"),
1286 value);
1287}
5b5d99cf
JB
1288
1289#if ! defined (DEBUG_SUBDIRECTORY)
1290#define DEBUG_SUBDIRECTORY ".debug"
1291#endif
1292
1293static char *
1294find_separate_debug_file (struct objfile *objfile)
1295{
1296 asection *sect;
1297 char *basename;
1298 char *dir;
1299 char *debugfile;
1300 char *name_copy;
aa28a74e 1301 char *canon_name;
5b5d99cf
JB
1302 bfd_size_type debuglink_size;
1303 unsigned long crc32;
1304 int i;
1305
1306 basename = get_debug_link_info (objfile, &crc32);
1307
1308 if (basename == NULL)
1309 return NULL;
5417f6dc 1310
5b5d99cf
JB
1311 dir = xstrdup (objfile->name);
1312
fe36c4f4
JB
1313 /* Strip off the final filename part, leaving the directory name,
1314 followed by a slash. Objfile names should always be absolute and
1315 tilde-expanded, so there should always be a slash in there
1316 somewhere. */
5b5d99cf
JB
1317 for (i = strlen(dir) - 1; i >= 0; i--)
1318 {
1319 if (IS_DIR_SEPARATOR (dir[i]))
1320 break;
1321 }
fe36c4f4 1322 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1323 dir[i+1] = '\0';
5417f6dc 1324
5b5d99cf
JB
1325 debugfile = alloca (strlen (debug_file_directory) + 1
1326 + strlen (dir)
1327 + strlen (DEBUG_SUBDIRECTORY)
1328 + strlen ("/")
5417f6dc 1329 + strlen (basename)
5b5d99cf
JB
1330 + 1);
1331
1332 /* First try in the same directory as the original file. */
1333 strcpy (debugfile, dir);
1334 strcat (debugfile, basename);
1335
1336 if (separate_debug_file_exists (debugfile, crc32))
1337 {
1338 xfree (basename);
1339 xfree (dir);
1340 return xstrdup (debugfile);
1341 }
5417f6dc 1342
5b5d99cf
JB
1343 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1344 strcpy (debugfile, dir);
1345 strcat (debugfile, DEBUG_SUBDIRECTORY);
1346 strcat (debugfile, "/");
1347 strcat (debugfile, basename);
1348
1349 if (separate_debug_file_exists (debugfile, crc32))
1350 {
1351 xfree (basename);
1352 xfree (dir);
1353 return xstrdup (debugfile);
1354 }
5417f6dc 1355
5b5d99cf
JB
1356 /* Then try in the global debugfile directory. */
1357 strcpy (debugfile, debug_file_directory);
1358 strcat (debugfile, "/");
1359 strcat (debugfile, dir);
5b5d99cf
JB
1360 strcat (debugfile, basename);
1361
1362 if (separate_debug_file_exists (debugfile, crc32))
1363 {
1364 xfree (basename);
1365 xfree (dir);
1366 return xstrdup (debugfile);
1367 }
5417f6dc 1368
aa28a74e
DJ
1369 /* If the file is in the sysroot, try using its base path in the
1370 global debugfile directory. */
1371 canon_name = lrealpath (dir);
1372 if (canon_name
1373 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1374 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1375 {
1376 strcpy (debugfile, debug_file_directory);
1377 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1378 strcat (debugfile, "/");
1379 strcat (debugfile, basename);
1380
1381 if (separate_debug_file_exists (debugfile, crc32))
1382 {
1383 xfree (canon_name);
1384 xfree (basename);
1385 xfree (dir);
1386 return xstrdup (debugfile);
1387 }
1388 }
1389
1390 if (canon_name)
1391 xfree (canon_name);
1392
5b5d99cf
JB
1393 xfree (basename);
1394 xfree (dir);
1395 return NULL;
1396}
1397
1398
c906108c
SS
1399/* This is the symbol-file command. Read the file, analyze its
1400 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1401 the command is rather bizarre:
1402
1403 1. The function buildargv implements various quoting conventions
1404 which are undocumented and have little or nothing in common with
1405 the way things are quoted (or not quoted) elsewhere in GDB.
1406
1407 2. Options are used, which are not generally used in GDB (perhaps
1408 "set mapped on", "set readnow on" would be better)
1409
1410 3. The order of options matters, which is contrary to GNU
c906108c
SS
1411 conventions (because it is confusing and inconvenient). */
1412
1413void
fba45db2 1414symbol_file_command (char *args, int from_tty)
c906108c 1415{
c906108c
SS
1416 dont_repeat ();
1417
1418 if (args == NULL)
1419 {
1adeb98a 1420 symbol_file_clear (from_tty);
c906108c
SS
1421 }
1422 else
1423 {
cb2f3a29
MK
1424 char **argv = buildargv (args);
1425 int flags = OBJF_USERLOADED;
1426 struct cleanup *cleanups;
1427 char *name = NULL;
1428
1429 if (argv == NULL)
1430 nomem (0);
1431
7a292a7a 1432 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1433 while (*argv != NULL)
1434 {
78a4a9b9
AC
1435 if (strcmp (*argv, "-readnow") == 0)
1436 flags |= OBJF_READNOW;
1437 else if (**argv == '-')
8a3fe4f8 1438 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1439 else
1440 {
cb2f3a29 1441 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1442 name = *argv;
78a4a9b9 1443 }
cb2f3a29 1444
c906108c
SS
1445 argv++;
1446 }
1447
1448 if (name == NULL)
cb2f3a29
MK
1449 error (_("no symbol file name was specified"));
1450
c906108c
SS
1451 do_cleanups (cleanups);
1452 }
1453}
1454
1455/* Set the initial language.
1456
cb2f3a29
MK
1457 FIXME: A better solution would be to record the language in the
1458 psymtab when reading partial symbols, and then use it (if known) to
1459 set the language. This would be a win for formats that encode the
1460 language in an easily discoverable place, such as DWARF. For
1461 stabs, we can jump through hoops looking for specially named
1462 symbols or try to intuit the language from the specific type of
1463 stabs we find, but we can't do that until later when we read in
1464 full symbols. */
c906108c
SS
1465
1466static void
fba45db2 1467set_initial_language (void)
c906108c
SS
1468{
1469 struct partial_symtab *pst;
c5aa993b 1470 enum language lang = language_unknown;
c906108c
SS
1471
1472 pst = find_main_psymtab ();
1473 if (pst != NULL)
1474 {
c5aa993b 1475 if (pst->filename != NULL)
cb2f3a29
MK
1476 lang = deduce_language_from_filename (pst->filename);
1477
c906108c
SS
1478 if (lang == language_unknown)
1479 {
c5aa993b
JM
1480 /* Make C the default language */
1481 lang = language_c;
c906108c 1482 }
cb2f3a29 1483
c906108c 1484 set_language (lang);
cb2f3a29 1485 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1486 }
1487}
1488
cb2f3a29
MK
1489/* Open the file specified by NAME and hand it off to BFD for
1490 preliminary analysis. Return a newly initialized bfd *, which
1491 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1492 absolute). In case of trouble, error() is called. */
c906108c
SS
1493
1494bfd *
fba45db2 1495symfile_bfd_open (char *name)
c906108c
SS
1496{
1497 bfd *sym_bfd;
1498 int desc;
1499 char *absolute_name;
1500
cb2f3a29 1501 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1502
1503 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1504 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1505 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1506#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1507 if (desc < 0)
1508 {
1509 char *exename = alloca (strlen (name) + 5);
1510 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1511 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1512 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1513 }
1514#endif
1515 if (desc < 0)
1516 {
b8c9b27d 1517 make_cleanup (xfree, name);
c906108c
SS
1518 perror_with_name (name);
1519 }
cb2f3a29
MK
1520
1521 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1522 bfd. It'll be freed in free_objfile(). */
1523 xfree (name);
1524 name = absolute_name;
c906108c 1525
9f76c2cd 1526 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1527 if (!sym_bfd)
1528 {
1529 close (desc);
b8c9b27d 1530 make_cleanup (xfree, name);
8a3fe4f8 1531 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1532 bfd_errmsg (bfd_get_error ()));
1533 }
549c1eea 1534 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1535
1536 if (!bfd_check_format (sym_bfd, bfd_object))
1537 {
cb2f3a29
MK
1538 /* FIXME: should be checking for errors from bfd_close (for one
1539 thing, on error it does not free all the storage associated
1540 with the bfd). */
1541 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1542 make_cleanup (xfree, name);
8a3fe4f8 1543 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1544 bfd_errmsg (bfd_get_error ()));
1545 }
cb2f3a29
MK
1546
1547 return sym_bfd;
c906108c
SS
1548}
1549
cb2f3a29
MK
1550/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1551 the section was not found. */
1552
0e931cf0
JB
1553int
1554get_section_index (struct objfile *objfile, char *section_name)
1555{
1556 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1557
0e931cf0
JB
1558 if (sect)
1559 return sect->index;
1560 else
1561 return -1;
1562}
1563
cb2f3a29
MK
1564/* Link SF into the global symtab_fns list. Called on startup by the
1565 _initialize routine in each object file format reader, to register
1566 information about each format the the reader is prepared to
1567 handle. */
c906108c
SS
1568
1569void
fba45db2 1570add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1571{
1572 sf->next = symtab_fns;
1573 symtab_fns = sf;
1574}
1575
cb2f3a29
MK
1576/* Initialize OBJFILE to read symbols from its associated BFD. It
1577 either returns or calls error(). The result is an initialized
1578 struct sym_fns in the objfile structure, that contains cached
1579 information about the symbol file. */
c906108c 1580
31d99776
DJ
1581static struct sym_fns *
1582find_sym_fns (bfd *abfd)
c906108c
SS
1583{
1584 struct sym_fns *sf;
31d99776 1585 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1586
75245b24
MS
1587 if (our_flavour == bfd_target_srec_flavour
1588 || our_flavour == bfd_target_ihex_flavour
1589 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1590 return NULL; /* No symbols. */
75245b24 1591
c5aa993b 1592 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1593 if (our_flavour == sf->sym_flavour)
1594 return sf;
cb2f3a29 1595
8a3fe4f8 1596 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1597 bfd_get_target (abfd));
c906108c
SS
1598}
1599\f
cb2f3a29 1600
c906108c
SS
1601/* This function runs the load command of our current target. */
1602
1603static void
fba45db2 1604load_command (char *arg, int from_tty)
c906108c
SS
1605{
1606 if (arg == NULL)
1986bccd
AS
1607 {
1608 char *parg;
1609 int count = 0;
1610
1611 parg = arg = get_exec_file (1);
1612
1613 /* Count how many \ " ' tab space there are in the name. */
1614 while ((parg = strpbrk (parg, "\\\"'\t ")))
1615 {
1616 parg++;
1617 count++;
1618 }
1619
1620 if (count)
1621 {
1622 /* We need to quote this string so buildargv can pull it apart. */
1623 char *temp = xmalloc (strlen (arg) + count + 1 );
1624 char *ptemp = temp;
1625 char *prev;
1626
1627 make_cleanup (xfree, temp);
1628
1629 prev = parg = arg;
1630 while ((parg = strpbrk (parg, "\\\"'\t ")))
1631 {
1632 strncpy (ptemp, prev, parg - prev);
1633 ptemp += parg - prev;
1634 prev = parg++;
1635 *ptemp++ = '\\';
1636 }
1637 strcpy (ptemp, prev);
1638
1639 arg = temp;
1640 }
1641 }
1642
6490cafe
DJ
1643 /* The user might be reloading because the binary has changed. Take
1644 this opportunity to check. */
1645 reopen_exec_file ();
1646 reread_symbols ();
1647
c906108c 1648 target_load (arg, from_tty);
2889e661
JB
1649
1650 /* After re-loading the executable, we don't really know which
1651 overlays are mapped any more. */
1652 overlay_cache_invalid = 1;
c906108c
SS
1653}
1654
1655/* This version of "load" should be usable for any target. Currently
1656 it is just used for remote targets, not inftarg.c or core files,
1657 on the theory that only in that case is it useful.
1658
1659 Avoiding xmodem and the like seems like a win (a) because we don't have
1660 to worry about finding it, and (b) On VMS, fork() is very slow and so
1661 we don't want to run a subprocess. On the other hand, I'm not sure how
1662 performance compares. */
917317f4 1663
917317f4
JM
1664static int validate_download = 0;
1665
e4f9b4d5
MS
1666/* Callback service function for generic_load (bfd_map_over_sections). */
1667
1668static void
1669add_section_size_callback (bfd *abfd, asection *asec, void *data)
1670{
1671 bfd_size_type *sum = data;
1672
2c500098 1673 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1674}
1675
1676/* Opaque data for load_section_callback. */
1677struct load_section_data {
1678 unsigned long load_offset;
a76d924d
DJ
1679 struct load_progress_data *progress_data;
1680 VEC(memory_write_request_s) *requests;
1681};
1682
1683/* Opaque data for load_progress. */
1684struct load_progress_data {
1685 /* Cumulative data. */
e4f9b4d5
MS
1686 unsigned long write_count;
1687 unsigned long data_count;
1688 bfd_size_type total_size;
a76d924d
DJ
1689};
1690
1691/* Opaque data for load_progress for a single section. */
1692struct load_progress_section_data {
1693 struct load_progress_data *cumulative;
cf7a04e8 1694
a76d924d 1695 /* Per-section data. */
cf7a04e8
DJ
1696 const char *section_name;
1697 ULONGEST section_sent;
1698 ULONGEST section_size;
1699 CORE_ADDR lma;
1700 gdb_byte *buffer;
e4f9b4d5
MS
1701};
1702
a76d924d 1703/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1704
1705static void
1706load_progress (ULONGEST bytes, void *untyped_arg)
1707{
a76d924d
DJ
1708 struct load_progress_section_data *args = untyped_arg;
1709 struct load_progress_data *totals;
1710
1711 if (args == NULL)
1712 /* Writing padding data. No easy way to get at the cumulative
1713 stats, so just ignore this. */
1714 return;
1715
1716 totals = args->cumulative;
1717
1718 if (bytes == 0 && args->section_sent == 0)
1719 {
1720 /* The write is just starting. Let the user know we've started
1721 this section. */
1722 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1723 args->section_name, paddr_nz (args->section_size),
1724 paddr_nz (args->lma));
1725 return;
1726 }
cf7a04e8
DJ
1727
1728 if (validate_download)
1729 {
1730 /* Broken memories and broken monitors manifest themselves here
1731 when bring new computers to life. This doubles already slow
1732 downloads. */
1733 /* NOTE: cagney/1999-10-18: A more efficient implementation
1734 might add a verify_memory() method to the target vector and
1735 then use that. remote.c could implement that method using
1736 the ``qCRC'' packet. */
1737 gdb_byte *check = xmalloc (bytes);
1738 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1739
1740 if (target_read_memory (args->lma, check, bytes) != 0)
1741 error (_("Download verify read failed at 0x%s"),
1742 paddr (args->lma));
1743 if (memcmp (args->buffer, check, bytes) != 0)
1744 error (_("Download verify compare failed at 0x%s"),
1745 paddr (args->lma));
1746 do_cleanups (verify_cleanups);
1747 }
a76d924d 1748 totals->data_count += bytes;
cf7a04e8
DJ
1749 args->lma += bytes;
1750 args->buffer += bytes;
a76d924d 1751 totals->write_count += 1;
cf7a04e8
DJ
1752 args->section_sent += bytes;
1753 if (quit_flag
1754 || (deprecated_ui_load_progress_hook != NULL
1755 && deprecated_ui_load_progress_hook (args->section_name,
1756 args->section_sent)))
1757 error (_("Canceled the download"));
1758
1759 if (deprecated_show_load_progress != NULL)
1760 deprecated_show_load_progress (args->section_name,
1761 args->section_sent,
1762 args->section_size,
a76d924d
DJ
1763 totals->data_count,
1764 totals->total_size);
cf7a04e8
DJ
1765}
1766
e4f9b4d5
MS
1767/* Callback service function for generic_load (bfd_map_over_sections). */
1768
1769static void
1770load_section_callback (bfd *abfd, asection *asec, void *data)
1771{
a76d924d 1772 struct memory_write_request *new_request;
e4f9b4d5 1773 struct load_section_data *args = data;
a76d924d 1774 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1775 bfd_size_type size = bfd_get_section_size (asec);
1776 gdb_byte *buffer;
cf7a04e8 1777 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1778
cf7a04e8
DJ
1779 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1780 return;
e4f9b4d5 1781
cf7a04e8
DJ
1782 if (size == 0)
1783 return;
e4f9b4d5 1784
a76d924d
DJ
1785 new_request = VEC_safe_push (memory_write_request_s,
1786 args->requests, NULL);
1787 memset (new_request, 0, sizeof (struct memory_write_request));
1788 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1789 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1790 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1791 new_request->data = xmalloc (size);
1792 new_request->baton = section_data;
cf7a04e8 1793
a76d924d 1794 buffer = new_request->data;
cf7a04e8 1795
a76d924d
DJ
1796 section_data->cumulative = args->progress_data;
1797 section_data->section_name = sect_name;
1798 section_data->section_size = size;
1799 section_data->lma = new_request->begin;
1800 section_data->buffer = buffer;
cf7a04e8
DJ
1801
1802 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1803}
1804
1805/* Clean up an entire memory request vector, including load
1806 data and progress records. */
cf7a04e8 1807
a76d924d
DJ
1808static void
1809clear_memory_write_data (void *arg)
1810{
1811 VEC(memory_write_request_s) **vec_p = arg;
1812 VEC(memory_write_request_s) *vec = *vec_p;
1813 int i;
1814 struct memory_write_request *mr;
cf7a04e8 1815
a76d924d
DJ
1816 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1817 {
1818 xfree (mr->data);
1819 xfree (mr->baton);
1820 }
1821 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1822}
1823
c906108c 1824void
917317f4 1825generic_load (char *args, int from_tty)
c906108c 1826{
c906108c 1827 bfd *loadfile_bfd;
2b71414d 1828 struct timeval start_time, end_time;
917317f4 1829 char *filename;
1986bccd 1830 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1831 struct load_section_data cbdata;
a76d924d
DJ
1832 struct load_progress_data total_progress;
1833
e4f9b4d5 1834 CORE_ADDR entry;
1986bccd 1835 char **argv;
e4f9b4d5 1836
a76d924d
DJ
1837 memset (&cbdata, 0, sizeof (cbdata));
1838 memset (&total_progress, 0, sizeof (total_progress));
1839 cbdata.progress_data = &total_progress;
1840
1841 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1842
1986bccd
AS
1843 argv = buildargv (args);
1844
1845 if (argv == NULL)
1846 nomem(0);
1847
1848 make_cleanup_freeargv (argv);
1849
1850 filename = tilde_expand (argv[0]);
1851 make_cleanup (xfree, filename);
1852
1853 if (argv[1] != NULL)
917317f4
JM
1854 {
1855 char *endptr;
ba5f2f8a 1856
1986bccd
AS
1857 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1858
1859 /* If the last word was not a valid number then
1860 treat it as a file name with spaces in. */
1861 if (argv[1] == endptr)
1862 error (_("Invalid download offset:%s."), argv[1]);
1863
1864 if (argv[2] != NULL)
1865 error (_("Too many parameters."));
917317f4 1866 }
c906108c 1867
917317f4 1868 /* Open the file for loading. */
c906108c
SS
1869 loadfile_bfd = bfd_openr (filename, gnutarget);
1870 if (loadfile_bfd == NULL)
1871 {
1872 perror_with_name (filename);
1873 return;
1874 }
917317f4 1875
c906108c
SS
1876 /* FIXME: should be checking for errors from bfd_close (for one thing,
1877 on error it does not free all the storage associated with the
1878 bfd). */
5c65bbb6 1879 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1880
c5aa993b 1881 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1882 {
8a3fe4f8 1883 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1884 bfd_errmsg (bfd_get_error ()));
1885 }
c5aa993b 1886
5417f6dc 1887 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1888 (void *) &total_progress.total_size);
1889
1890 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1891
2b71414d 1892 gettimeofday (&start_time, NULL);
c906108c 1893
a76d924d
DJ
1894 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1895 load_progress) != 0)
1896 error (_("Load failed"));
c906108c 1897
2b71414d 1898 gettimeofday (&end_time, NULL);
ba5f2f8a 1899
e4f9b4d5 1900 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1901 ui_out_text (uiout, "Start address ");
1902 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1903 ui_out_text (uiout, ", load size ");
a76d924d 1904 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1905 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1906 /* We were doing this in remote-mips.c, I suspect it is right
1907 for other targets too. */
1908 write_pc (entry);
c906108c 1909
7ca9f392
AC
1910 /* FIXME: are we supposed to call symbol_file_add or not? According
1911 to a comment from remote-mips.c (where a call to symbol_file_add
1912 was commented out), making the call confuses GDB if more than one
1913 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1914 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1915
a76d924d
DJ
1916 print_transfer_performance (gdb_stdout, total_progress.data_count,
1917 total_progress.write_count,
1918 &start_time, &end_time);
c906108c
SS
1919
1920 do_cleanups (old_cleanups);
1921}
1922
1923/* Report how fast the transfer went. */
1924
917317f4
JM
1925/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1926 replaced by print_transfer_performance (with a very different
1927 function signature). */
1928
c906108c 1929void
fba45db2
KB
1930report_transfer_performance (unsigned long data_count, time_t start_time,
1931 time_t end_time)
c906108c 1932{
2b71414d
DJ
1933 struct timeval start, end;
1934
1935 start.tv_sec = start_time;
1936 start.tv_usec = 0;
1937 end.tv_sec = end_time;
1938 end.tv_usec = 0;
1939
1940 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1941}
1942
1943void
d9fcf2fb 1944print_transfer_performance (struct ui_file *stream,
917317f4
JM
1945 unsigned long data_count,
1946 unsigned long write_count,
2b71414d
DJ
1947 const struct timeval *start_time,
1948 const struct timeval *end_time)
917317f4 1949{
2b71414d
DJ
1950 unsigned long time_count;
1951
1952 /* Compute the elapsed time in milliseconds, as a tradeoff between
1953 accuracy and overflow. */
1954 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1955 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1956
8b93c638
JM
1957 ui_out_text (uiout, "Transfer rate: ");
1958 if (time_count > 0)
1959 {
5417f6dc 1960 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1961 1000 * (data_count * 8) / time_count);
8b93c638
JM
1962 ui_out_text (uiout, " bits/sec");
1963 }
1964 else
1965 {
ba5f2f8a 1966 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1967 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1968 }
1969 if (write_count > 0)
1970 {
1971 ui_out_text (uiout, ", ");
ba5f2f8a 1972 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1973 ui_out_text (uiout, " bytes/write");
1974 }
1975 ui_out_text (uiout, ".\n");
c906108c
SS
1976}
1977
1978/* This function allows the addition of incrementally linked object files.
1979 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1980/* Note: ezannoni 2000-04-13 This function/command used to have a
1981 special case syntax for the rombug target (Rombug is the boot
1982 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1983 rombug case, the user doesn't need to supply a text address,
1984 instead a call to target_link() (in target.c) would supply the
1985 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1986
c906108c 1987static void
fba45db2 1988add_symbol_file_command (char *args, int from_tty)
c906108c 1989{
db162d44 1990 char *filename = NULL;
2df3850c 1991 int flags = OBJF_USERLOADED;
c906108c 1992 char *arg;
2acceee2 1993 int expecting_option = 0;
db162d44 1994 int section_index = 0;
2acceee2
JM
1995 int argcnt = 0;
1996 int sec_num = 0;
1997 int i;
db162d44
EZ
1998 int expecting_sec_name = 0;
1999 int expecting_sec_addr = 0;
5b96932b 2000 char **argv;
db162d44 2001
a39a16c4 2002 struct sect_opt
2acceee2 2003 {
2acceee2
JM
2004 char *name;
2005 char *value;
a39a16c4 2006 };
db162d44 2007
a39a16c4
MM
2008 struct section_addr_info *section_addrs;
2009 struct sect_opt *sect_opts = NULL;
2010 size_t num_sect_opts = 0;
3017564a 2011 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2012
a39a16c4 2013 num_sect_opts = 16;
5417f6dc 2014 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2015 * sizeof (struct sect_opt));
2016
c906108c
SS
2017 dont_repeat ();
2018
2019 if (args == NULL)
8a3fe4f8 2020 error (_("add-symbol-file takes a file name and an address"));
c906108c 2021
5b96932b
AS
2022 argv = buildargv (args);
2023 make_cleanup_freeargv (argv);
db162d44 2024
5b96932b
AS
2025 if (argv == NULL)
2026 nomem (0);
db162d44 2027
5b96932b
AS
2028 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2029 {
2030 /* Process the argument. */
db162d44 2031 if (argcnt == 0)
c906108c 2032 {
db162d44
EZ
2033 /* The first argument is the file name. */
2034 filename = tilde_expand (arg);
3017564a 2035 make_cleanup (xfree, filename);
c906108c 2036 }
db162d44 2037 else
7a78ae4e
ND
2038 if (argcnt == 1)
2039 {
2040 /* The second argument is always the text address at which
2041 to load the program. */
2042 sect_opts[section_index].name = ".text";
2043 sect_opts[section_index].value = arg;
f414f22f 2044 if (++section_index >= num_sect_opts)
a39a16c4
MM
2045 {
2046 num_sect_opts *= 2;
5417f6dc 2047 sect_opts = ((struct sect_opt *)
a39a16c4 2048 xrealloc (sect_opts,
5417f6dc 2049 num_sect_opts
a39a16c4
MM
2050 * sizeof (struct sect_opt)));
2051 }
7a78ae4e
ND
2052 }
2053 else
2054 {
2055 /* It's an option (starting with '-') or it's an argument
2056 to an option */
2057
2058 if (*arg == '-')
2059 {
78a4a9b9
AC
2060 if (strcmp (arg, "-readnow") == 0)
2061 flags |= OBJF_READNOW;
2062 else if (strcmp (arg, "-s") == 0)
2063 {
2064 expecting_sec_name = 1;
2065 expecting_sec_addr = 1;
2066 }
7a78ae4e
ND
2067 }
2068 else
2069 {
2070 if (expecting_sec_name)
db162d44 2071 {
7a78ae4e
ND
2072 sect_opts[section_index].name = arg;
2073 expecting_sec_name = 0;
db162d44
EZ
2074 }
2075 else
7a78ae4e
ND
2076 if (expecting_sec_addr)
2077 {
2078 sect_opts[section_index].value = arg;
2079 expecting_sec_addr = 0;
f414f22f 2080 if (++section_index >= num_sect_opts)
a39a16c4
MM
2081 {
2082 num_sect_opts *= 2;
5417f6dc 2083 sect_opts = ((struct sect_opt *)
a39a16c4 2084 xrealloc (sect_opts,
5417f6dc 2085 num_sect_opts
a39a16c4
MM
2086 * sizeof (struct sect_opt)));
2087 }
7a78ae4e
ND
2088 }
2089 else
8a3fe4f8 2090 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2091 }
2092 }
c906108c 2093 }
c906108c 2094
927890d0
JB
2095 /* This command takes at least two arguments. The first one is a
2096 filename, and the second is the address where this file has been
2097 loaded. Abort now if this address hasn't been provided by the
2098 user. */
2099 if (section_index < 1)
2100 error (_("The address where %s has been loaded is missing"), filename);
2101
db162d44
EZ
2102 /* Print the prompt for the query below. And save the arguments into
2103 a sect_addr_info structure to be passed around to other
2104 functions. We have to split this up into separate print
bb599908 2105 statements because hex_string returns a local static
db162d44 2106 string. */
5417f6dc 2107
a3f17187 2108 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2109 section_addrs = alloc_section_addr_info (section_index);
2110 make_cleanup (xfree, section_addrs);
db162d44 2111 for (i = 0; i < section_index; i++)
c906108c 2112 {
db162d44
EZ
2113 CORE_ADDR addr;
2114 char *val = sect_opts[i].value;
2115 char *sec = sect_opts[i].name;
5417f6dc 2116
ae822768 2117 addr = parse_and_eval_address (val);
db162d44 2118
db162d44
EZ
2119 /* Here we store the section offsets in the order they were
2120 entered on the command line. */
a39a16c4
MM
2121 section_addrs->other[sec_num].name = sec;
2122 section_addrs->other[sec_num].addr = addr;
46f45a4a 2123 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 2124 sec, hex_string ((unsigned long)addr));
db162d44
EZ
2125 sec_num++;
2126
5417f6dc 2127 /* The object's sections are initialized when a
db162d44 2128 call is made to build_objfile_section_table (objfile).
5417f6dc 2129 This happens in reread_symbols.
db162d44
EZ
2130 At this point, we don't know what file type this is,
2131 so we can't determine what section names are valid. */
2acceee2 2132 }
db162d44 2133
2acceee2 2134 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2135 error (_("Not confirmed."));
c906108c 2136
a39a16c4 2137 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2138
2139 /* Getting new symbols may change our opinion about what is
2140 frameless. */
2141 reinit_frame_cache ();
db162d44 2142 do_cleanups (my_cleanups);
c906108c
SS
2143}
2144\f
2145static void
fba45db2 2146add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2147{
2148#ifdef ADD_SHARED_SYMBOL_FILES
2149 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2150#else
8a3fe4f8 2151 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2152#endif
c906108c
SS
2153}
2154\f
2155/* Re-read symbols if a symbol-file has changed. */
2156void
fba45db2 2157reread_symbols (void)
c906108c
SS
2158{
2159 struct objfile *objfile;
2160 long new_modtime;
2161 int reread_one = 0;
2162 struct stat new_statbuf;
2163 int res;
2164
2165 /* With the addition of shared libraries, this should be modified,
2166 the load time should be saved in the partial symbol tables, since
2167 different tables may come from different source files. FIXME.
2168 This routine should then walk down each partial symbol table
2169 and see if the symbol table that it originates from has been changed */
2170
c5aa993b
JM
2171 for (objfile = object_files; objfile; objfile = objfile->next)
2172 {
2173 if (objfile->obfd)
2174 {
52d16ba8 2175#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2176 /* If this object is from a shared library, then you should
2177 stat on the library name, not member name. */
c906108c 2178
c5aa993b
JM
2179 if (objfile->obfd->my_archive)
2180 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2181 else
c906108c 2182#endif
c5aa993b
JM
2183 res = stat (objfile->name, &new_statbuf);
2184 if (res != 0)
c906108c 2185 {
c5aa993b 2186 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2187 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2188 objfile->name);
2189 continue;
c906108c 2190 }
c5aa993b
JM
2191 new_modtime = new_statbuf.st_mtime;
2192 if (new_modtime != objfile->mtime)
c906108c 2193 {
c5aa993b
JM
2194 struct cleanup *old_cleanups;
2195 struct section_offsets *offsets;
2196 int num_offsets;
c5aa993b
JM
2197 char *obfd_filename;
2198
a3f17187 2199 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2200 objfile->name);
2201
2202 /* There are various functions like symbol_file_add,
2203 symfile_bfd_open, syms_from_objfile, etc., which might
2204 appear to do what we want. But they have various other
2205 effects which we *don't* want. So we just do stuff
2206 ourselves. We don't worry about mapped files (for one thing,
2207 any mapped file will be out of date). */
2208
2209 /* If we get an error, blow away this objfile (not sure if
2210 that is the correct response for things like shared
2211 libraries). */
74b7792f 2212 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2213 /* We need to do this whenever any symbols go away. */
74b7792f 2214 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2215
2216 /* Clean up any state BFD has sitting around. We don't need
2217 to close the descriptor but BFD lacks a way of closing the
2218 BFD without closing the descriptor. */
2219 obfd_filename = bfd_get_filename (objfile->obfd);
2220 if (!bfd_close (objfile->obfd))
8a3fe4f8 2221 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2222 bfd_errmsg (bfd_get_error ()));
2223 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2224 if (objfile->obfd == NULL)
8a3fe4f8 2225 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2226 /* bfd_openr sets cacheable to true, which is what we want. */
2227 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2228 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2229 bfd_errmsg (bfd_get_error ()));
2230
2231 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2232 objfile_obstack. */
c5aa993b 2233 num_offsets = objfile->num_sections;
5417f6dc 2234 offsets = ((struct section_offsets *)
a39a16c4 2235 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2236 memcpy (offsets, objfile->section_offsets,
a39a16c4 2237 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2238
ae5a43e0
DJ
2239 /* Remove any references to this objfile in the global
2240 value lists. */
2241 preserve_values (objfile);
2242
c5aa993b
JM
2243 /* Nuke all the state that we will re-read. Much of the following
2244 code which sets things to NULL really is necessary to tell
2245 other parts of GDB that there is nothing currently there. */
2246
2247 /* FIXME: Do we have to free a whole linked list, or is this
2248 enough? */
2249 if (objfile->global_psymbols.list)
2dc74dc1 2250 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2251 memset (&objfile->global_psymbols, 0,
2252 sizeof (objfile->global_psymbols));
2253 if (objfile->static_psymbols.list)
2dc74dc1 2254 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2255 memset (&objfile->static_psymbols, 0,
2256 sizeof (objfile->static_psymbols));
2257
2258 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2259 bcache_xfree (objfile->psymbol_cache);
2260 objfile->psymbol_cache = bcache_xmalloc ();
2261 bcache_xfree (objfile->macro_cache);
2262 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2263 if (objfile->demangled_names_hash != NULL)
2264 {
2265 htab_delete (objfile->demangled_names_hash);
2266 objfile->demangled_names_hash = NULL;
2267 }
b99607ea 2268 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2269 objfile->sections = NULL;
2270 objfile->symtabs = NULL;
2271 objfile->psymtabs = NULL;
2272 objfile->free_psymtabs = NULL;
a1b8c067 2273 objfile->cp_namespace_symtab = NULL;
c5aa993b 2274 objfile->msymbols = NULL;
0a6ddd08 2275 objfile->deprecated_sym_private = NULL;
c5aa993b 2276 objfile->minimal_symbol_count = 0;
0a83117a
MS
2277 memset (&objfile->msymbol_hash, 0,
2278 sizeof (objfile->msymbol_hash));
2279 memset (&objfile->msymbol_demangled_hash, 0,
2280 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2281 objfile->fundamental_types = NULL;
7b097ae3 2282 clear_objfile_data (objfile);
c5aa993b
JM
2283 if (objfile->sf != NULL)
2284 {
2285 (*objfile->sf->sym_finish) (objfile);
2286 }
2287
2288 /* We never make this a mapped file. */
2289 objfile->md = NULL;
af5f3db6
AC
2290 objfile->psymbol_cache = bcache_xmalloc ();
2291 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2292 /* obstack_init also initializes the obstack so it is
2293 empty. We could use obstack_specify_allocation but
2294 gdb_obstack.h specifies the alloc/dealloc
2295 functions. */
2296 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2297 if (build_objfile_section_table (objfile))
2298 {
8a3fe4f8 2299 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2300 objfile->name, bfd_errmsg (bfd_get_error ()));
2301 }
15831452 2302 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2303
2304 /* We use the same section offsets as from last time. I'm not
2305 sure whether that is always correct for shared libraries. */
2306 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2307 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2308 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2309 memcpy (objfile->section_offsets, offsets,
a39a16c4 2310 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2311 objfile->num_sections = num_offsets;
2312
2313 /* What the hell is sym_new_init for, anyway? The concept of
2314 distinguishing between the main file and additional files
2315 in this way seems rather dubious. */
2316 if (objfile == symfile_objfile)
2317 {
2318 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2319 }
2320
2321 (*objfile->sf->sym_init) (objfile);
b9caf505 2322 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2323 /* The "mainline" parameter is a hideous hack; I think leaving it
2324 zero is OK since dbxread.c also does what it needs to do if
2325 objfile->global_psymbols.size is 0. */
96baa820 2326 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2327 if (!have_partial_symbols () && !have_full_symbols ())
2328 {
2329 wrap_here ("");
a3f17187 2330 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2331 wrap_here ("");
2332 }
2333 objfile->flags |= OBJF_SYMS;
2334
2335 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2336 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2337
c5aa993b
JM
2338 /* Getting new symbols may change our opinion about what is
2339 frameless. */
c906108c 2340
c5aa993b 2341 reinit_frame_cache ();
c906108c 2342
c5aa993b
JM
2343 /* Discard cleanups as symbol reading was successful. */
2344 discard_cleanups (old_cleanups);
c906108c 2345
c5aa993b
JM
2346 /* If the mtime has changed between the time we set new_modtime
2347 and now, we *want* this to be out of date, so don't call stat
2348 again now. */
2349 objfile->mtime = new_modtime;
2350 reread_one = 1;
5b5d99cf 2351 reread_separate_symbols (objfile);
c5aa993b 2352 }
c906108c
SS
2353 }
2354 }
c906108c
SS
2355
2356 if (reread_one)
ea53e89f
JB
2357 {
2358 clear_symtab_users ();
2359 /* At least one objfile has changed, so we can consider that
2360 the executable we're debugging has changed too. */
2361 observer_notify_executable_changed (NULL);
2362 }
2363
c906108c 2364}
5b5d99cf
JB
2365
2366
2367/* Handle separate debug info for OBJFILE, which has just been
2368 re-read:
2369 - If we had separate debug info before, but now we don't, get rid
2370 of the separated objfile.
2371 - If we didn't have separated debug info before, but now we do,
2372 read in the new separated debug info file.
2373 - If the debug link points to a different file, toss the old one
2374 and read the new one.
2375 This function does *not* handle the case where objfile is still
2376 using the same separate debug info file, but that file's timestamp
2377 has changed. That case should be handled by the loop in
2378 reread_symbols already. */
2379static void
2380reread_separate_symbols (struct objfile *objfile)
2381{
2382 char *debug_file;
2383 unsigned long crc32;
2384
2385 /* Does the updated objfile's debug info live in a
2386 separate file? */
2387 debug_file = find_separate_debug_file (objfile);
2388
2389 if (objfile->separate_debug_objfile)
2390 {
2391 /* There are two cases where we need to get rid of
2392 the old separated debug info objfile:
2393 - if the new primary objfile doesn't have
2394 separated debug info, or
2395 - if the new primary objfile has separate debug
2396 info, but it's under a different filename.
5417f6dc 2397
5b5d99cf
JB
2398 If the old and new objfiles both have separate
2399 debug info, under the same filename, then we're
2400 okay --- if the separated file's contents have
2401 changed, we will have caught that when we
2402 visited it in this function's outermost
2403 loop. */
2404 if (! debug_file
2405 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2406 free_objfile (objfile->separate_debug_objfile);
2407 }
2408
2409 /* If the new objfile has separate debug info, and we
2410 haven't loaded it already, do so now. */
2411 if (debug_file
2412 && ! objfile->separate_debug_objfile)
2413 {
2414 /* Use the same section offset table as objfile itself.
2415 Preserve the flags from objfile that make sense. */
2416 objfile->separate_debug_objfile
2417 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2418 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2419 info_verbose, /* from_tty: Don't override the default. */
2420 0, /* No addr table. */
2421 objfile->section_offsets, objfile->num_sections,
2422 0, /* Not mainline. See comments about this above. */
78a4a9b9 2423 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2424 | OBJF_USERLOADED)));
2425 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2426 = objfile;
2427 }
2428}
2429
2430
c906108c
SS
2431\f
2432
c5aa993b
JM
2433
2434typedef struct
2435{
2436 char *ext;
c906108c 2437 enum language lang;
c5aa993b
JM
2438}
2439filename_language;
c906108c 2440
c5aa993b 2441static filename_language *filename_language_table;
c906108c
SS
2442static int fl_table_size, fl_table_next;
2443
2444static void
fba45db2 2445add_filename_language (char *ext, enum language lang)
c906108c
SS
2446{
2447 if (fl_table_next >= fl_table_size)
2448 {
2449 fl_table_size += 10;
5417f6dc 2450 filename_language_table =
25bf3106
PM
2451 xrealloc (filename_language_table,
2452 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2453 }
2454
4fcf66da 2455 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2456 filename_language_table[fl_table_next].lang = lang;
2457 fl_table_next++;
2458}
2459
2460static char *ext_args;
920d2a44
AC
2461static void
2462show_ext_args (struct ui_file *file, int from_tty,
2463 struct cmd_list_element *c, const char *value)
2464{
2465 fprintf_filtered (file, _("\
2466Mapping between filename extension and source language is \"%s\".\n"),
2467 value);
2468}
c906108c
SS
2469
2470static void
26c41df3 2471set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2472{
2473 int i;
2474 char *cp = ext_args;
2475 enum language lang;
2476
2477 /* First arg is filename extension, starting with '.' */
2478 if (*cp != '.')
8a3fe4f8 2479 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2480
2481 /* Find end of first arg. */
c5aa993b 2482 while (*cp && !isspace (*cp))
c906108c
SS
2483 cp++;
2484
2485 if (*cp == '\0')
8a3fe4f8 2486 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2487 ext_args);
2488
2489 /* Null-terminate first arg */
c5aa993b 2490 *cp++ = '\0';
c906108c
SS
2491
2492 /* Find beginning of second arg, which should be a source language. */
2493 while (*cp && isspace (*cp))
2494 cp++;
2495
2496 if (*cp == '\0')
8a3fe4f8 2497 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2498 ext_args);
2499
2500 /* Lookup the language from among those we know. */
2501 lang = language_enum (cp);
2502
2503 /* Now lookup the filename extension: do we already know it? */
2504 for (i = 0; i < fl_table_next; i++)
2505 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2506 break;
2507
2508 if (i >= fl_table_next)
2509 {
2510 /* new file extension */
2511 add_filename_language (ext_args, lang);
2512 }
2513 else
2514 {
2515 /* redefining a previously known filename extension */
2516
2517 /* if (from_tty) */
2518 /* query ("Really make files of type %s '%s'?", */
2519 /* ext_args, language_str (lang)); */
2520
b8c9b27d 2521 xfree (filename_language_table[i].ext);
4fcf66da 2522 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2523 filename_language_table[i].lang = lang;
2524 }
2525}
2526
2527static void
fba45db2 2528info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2529{
2530 int i;
2531
a3f17187 2532 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2533 printf_filtered ("\n\n");
2534 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2535 printf_filtered ("\t%s\t- %s\n",
2536 filename_language_table[i].ext,
c906108c
SS
2537 language_str (filename_language_table[i].lang));
2538}
2539
2540static void
fba45db2 2541init_filename_language_table (void)
c906108c
SS
2542{
2543 if (fl_table_size == 0) /* protect against repetition */
2544 {
2545 fl_table_size = 20;
2546 fl_table_next = 0;
c5aa993b 2547 filename_language_table =
c906108c 2548 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2549 add_filename_language (".c", language_c);
2550 add_filename_language (".C", language_cplus);
2551 add_filename_language (".cc", language_cplus);
2552 add_filename_language (".cp", language_cplus);
2553 add_filename_language (".cpp", language_cplus);
2554 add_filename_language (".cxx", language_cplus);
2555 add_filename_language (".c++", language_cplus);
2556 add_filename_language (".java", language_java);
c906108c 2557 add_filename_language (".class", language_java);
da2cf7e0 2558 add_filename_language (".m", language_objc);
c5aa993b
JM
2559 add_filename_language (".f", language_fortran);
2560 add_filename_language (".F", language_fortran);
2561 add_filename_language (".s", language_asm);
2562 add_filename_language (".S", language_asm);
c6fd39cd
PM
2563 add_filename_language (".pas", language_pascal);
2564 add_filename_language (".p", language_pascal);
2565 add_filename_language (".pp", language_pascal);
963a6417
PH
2566 add_filename_language (".adb", language_ada);
2567 add_filename_language (".ads", language_ada);
2568 add_filename_language (".a", language_ada);
2569 add_filename_language (".ada", language_ada);
c906108c
SS
2570 }
2571}
2572
2573enum language
fba45db2 2574deduce_language_from_filename (char *filename)
c906108c
SS
2575{
2576 int i;
2577 char *cp;
2578
2579 if (filename != NULL)
2580 if ((cp = strrchr (filename, '.')) != NULL)
2581 for (i = 0; i < fl_table_next; i++)
2582 if (strcmp (cp, filename_language_table[i].ext) == 0)
2583 return filename_language_table[i].lang;
2584
2585 return language_unknown;
2586}
2587\f
2588/* allocate_symtab:
2589
2590 Allocate and partly initialize a new symbol table. Return a pointer
2591 to it. error() if no space.
2592
2593 Caller must set these fields:
c5aa993b
JM
2594 LINETABLE(symtab)
2595 symtab->blockvector
2596 symtab->dirname
2597 symtab->free_code
2598 symtab->free_ptr
2599 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2600 */
2601
2602struct symtab *
fba45db2 2603allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2604{
52f0bd74 2605 struct symtab *symtab;
c906108c
SS
2606
2607 symtab = (struct symtab *)
4a146b47 2608 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2609 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2610 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2611 &objfile->objfile_obstack);
c5aa993b
JM
2612 symtab->fullname = NULL;
2613 symtab->language = deduce_language_from_filename (filename);
2614 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2615 &objfile->objfile_obstack);
c906108c
SS
2616
2617 /* Hook it to the objfile it comes from */
2618
c5aa993b
JM
2619 symtab->objfile = objfile;
2620 symtab->next = objfile->symtabs;
2621 objfile->symtabs = symtab;
c906108c 2622
c906108c
SS
2623 return (symtab);
2624}
2625
2626struct partial_symtab *
fba45db2 2627allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2628{
2629 struct partial_symtab *psymtab;
2630
c5aa993b 2631 if (objfile->free_psymtabs)
c906108c 2632 {
c5aa993b
JM
2633 psymtab = objfile->free_psymtabs;
2634 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2635 }
2636 else
2637 psymtab = (struct partial_symtab *)
8b92e4d5 2638 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2639 sizeof (struct partial_symtab));
2640
2641 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2642 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2643 &objfile->objfile_obstack);
c5aa993b 2644 psymtab->symtab = NULL;
c906108c
SS
2645
2646 /* Prepend it to the psymtab list for the objfile it belongs to.
2647 Psymtabs are searched in most recent inserted -> least recent
2648 inserted order. */
2649
c5aa993b
JM
2650 psymtab->objfile = objfile;
2651 psymtab->next = objfile->psymtabs;
2652 objfile->psymtabs = psymtab;
c906108c
SS
2653#if 0
2654 {
2655 struct partial_symtab **prev_pst;
c5aa993b
JM
2656 psymtab->objfile = objfile;
2657 psymtab->next = NULL;
2658 prev_pst = &(objfile->psymtabs);
c906108c 2659 while ((*prev_pst) != NULL)
c5aa993b 2660 prev_pst = &((*prev_pst)->next);
c906108c 2661 (*prev_pst) = psymtab;
c5aa993b 2662 }
c906108c 2663#endif
c5aa993b 2664
c906108c
SS
2665 return (psymtab);
2666}
2667
2668void
fba45db2 2669discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2670{
2671 struct partial_symtab **prev_pst;
2672
2673 /* From dbxread.c:
2674 Empty psymtabs happen as a result of header files which don't
2675 have any symbols in them. There can be a lot of them. But this
2676 check is wrong, in that a psymtab with N_SLINE entries but
2677 nothing else is not empty, but we don't realize that. Fixing
2678 that without slowing things down might be tricky. */
2679
2680 /* First, snip it out of the psymtab chain */
2681
2682 prev_pst = &(pst->objfile->psymtabs);
2683 while ((*prev_pst) != pst)
2684 prev_pst = &((*prev_pst)->next);
2685 (*prev_pst) = pst->next;
2686
2687 /* Next, put it on a free list for recycling */
2688
2689 pst->next = pst->objfile->free_psymtabs;
2690 pst->objfile->free_psymtabs = pst;
2691}
c906108c 2692\f
c5aa993b 2693
c906108c
SS
2694/* Reset all data structures in gdb which may contain references to symbol
2695 table data. */
2696
2697void
fba45db2 2698clear_symtab_users (void)
c906108c
SS
2699{
2700 /* Someday, we should do better than this, by only blowing away
2701 the things that really need to be blown. */
c0501be5
DJ
2702
2703 /* Clear the "current" symtab first, because it is no longer valid.
2704 breakpoint_re_set may try to access the current symtab. */
2705 clear_current_source_symtab_and_line ();
2706
c906108c 2707 clear_displays ();
c906108c
SS
2708 breakpoint_re_set ();
2709 set_default_breakpoint (0, 0, 0, 0);
c906108c 2710 clear_pc_function_cache ();
06d3b283 2711 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2712
2713 /* Clear globals which might have pointed into a removed objfile.
2714 FIXME: It's not clear which of these are supposed to persist
2715 between expressions and which ought to be reset each time. */
2716 expression_context_block = NULL;
2717 innermost_block = NULL;
8756216b
DP
2718
2719 /* Varobj may refer to old symbols, perform a cleanup. */
2720 varobj_invalidate ();
2721
c906108c
SS
2722}
2723
74b7792f
AC
2724static void
2725clear_symtab_users_cleanup (void *ignore)
2726{
2727 clear_symtab_users ();
2728}
2729
c906108c
SS
2730/* clear_symtab_users_once:
2731
2732 This function is run after symbol reading, or from a cleanup.
2733 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2734 has been blown away, but the other GDB data structures that may
c906108c
SS
2735 reference it have not yet been cleared or re-directed. (The old
2736 symtab was zapped, and the cleanup queued, in free_named_symtab()
2737 below.)
2738
2739 This function can be queued N times as a cleanup, or called
2740 directly; it will do all the work the first time, and then will be a
2741 no-op until the next time it is queued. This works by bumping a
2742 counter at queueing time. Much later when the cleanup is run, or at
2743 the end of symbol processing (in case the cleanup is discarded), if
2744 the queued count is greater than the "done-count", we do the work
2745 and set the done-count to the queued count. If the queued count is
2746 less than or equal to the done-count, we just ignore the call. This
2747 is needed because reading a single .o file will often replace many
2748 symtabs (one per .h file, for example), and we don't want to reset
2749 the breakpoints N times in the user's face.
2750
2751 The reason we both queue a cleanup, and call it directly after symbol
2752 reading, is because the cleanup protects us in case of errors, but is
2753 discarded if symbol reading is successful. */
2754
2755#if 0
2756/* FIXME: As free_named_symtabs is currently a big noop this function
2757 is no longer needed. */
a14ed312 2758static void clear_symtab_users_once (void);
c906108c
SS
2759
2760static int clear_symtab_users_queued;
2761static int clear_symtab_users_done;
2762
2763static void
fba45db2 2764clear_symtab_users_once (void)
c906108c
SS
2765{
2766 /* Enforce once-per-`do_cleanups'-semantics */
2767 if (clear_symtab_users_queued <= clear_symtab_users_done)
2768 return;
2769 clear_symtab_users_done = clear_symtab_users_queued;
2770
2771 clear_symtab_users ();
2772}
2773#endif
2774
2775/* Delete the specified psymtab, and any others that reference it. */
2776
2777static void
fba45db2 2778cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2779{
2780 struct partial_symtab *ps, *pprev = NULL;
2781 int i;
2782
2783 /* Find its previous psymtab in the chain */
c5aa993b
JM
2784 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2785 {
2786 if (ps == pst)
2787 break;
2788 pprev = ps;
2789 }
c906108c 2790
c5aa993b
JM
2791 if (ps)
2792 {
2793 /* Unhook it from the chain. */
2794 if (ps == pst->objfile->psymtabs)
2795 pst->objfile->psymtabs = ps->next;
2796 else
2797 pprev->next = ps->next;
2798
2799 /* FIXME, we can't conveniently deallocate the entries in the
2800 partial_symbol lists (global_psymbols/static_psymbols) that
2801 this psymtab points to. These just take up space until all
2802 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2803 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2804
2805 /* We need to cashier any psymtab that has this one as a dependency... */
2806 again:
2807 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2808 {
2809 for (i = 0; i < ps->number_of_dependencies; i++)
2810 {
2811 if (ps->dependencies[i] == pst)
2812 {
2813 cashier_psymtab (ps);
2814 goto again; /* Must restart, chain has been munged. */
2815 }
2816 }
c906108c 2817 }
c906108c 2818 }
c906108c
SS
2819}
2820
2821/* If a symtab or psymtab for filename NAME is found, free it along
2822 with any dependent breakpoints, displays, etc.
2823 Used when loading new versions of object modules with the "add-file"
2824 command. This is only called on the top-level symtab or psymtab's name;
2825 it is not called for subsidiary files such as .h files.
2826
2827 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2828 FIXME. The return value appears to never be used.
c906108c
SS
2829
2830 FIXME. I think this is not the best way to do this. We should
2831 work on being gentler to the environment while still cleaning up
2832 all stray pointers into the freed symtab. */
2833
2834int
fba45db2 2835free_named_symtabs (char *name)
c906108c
SS
2836{
2837#if 0
2838 /* FIXME: With the new method of each objfile having it's own
2839 psymtab list, this function needs serious rethinking. In particular,
2840 why was it ever necessary to toss psymtabs with specific compilation
2841 unit filenames, as opposed to all psymtabs from a particular symbol
2842 file? -- fnf
2843 Well, the answer is that some systems permit reloading of particular
2844 compilation units. We want to blow away any old info about these
2845 compilation units, regardless of which objfiles they arrived in. --gnu. */
2846
52f0bd74
AC
2847 struct symtab *s;
2848 struct symtab *prev;
2849 struct partial_symtab *ps;
c906108c
SS
2850 struct blockvector *bv;
2851 int blewit = 0;
2852
2853 /* We only wack things if the symbol-reload switch is set. */
2854 if (!symbol_reloading)
2855 return 0;
2856
2857 /* Some symbol formats have trouble providing file names... */
2858 if (name == 0 || *name == '\0')
2859 return 0;
2860
2861 /* Look for a psymtab with the specified name. */
2862
2863again2:
c5aa993b
JM
2864 for (ps = partial_symtab_list; ps; ps = ps->next)
2865 {
6314a349 2866 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2867 {
2868 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2869 goto again2; /* Must restart, chain has been munged */
2870 }
c906108c 2871 }
c906108c
SS
2872
2873 /* Look for a symtab with the specified name. */
2874
2875 for (s = symtab_list; s; s = s->next)
2876 {
6314a349 2877 if (strcmp (name, s->filename) == 0)
c906108c
SS
2878 break;
2879 prev = s;
2880 }
2881
2882 if (s)
2883 {
2884 if (s == symtab_list)
2885 symtab_list = s->next;
2886 else
2887 prev->next = s->next;
2888
2889 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2890 or not they depend on the symtab being freed. This should be
2891 changed so that only those data structures affected are deleted. */
c906108c
SS
2892
2893 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2894 This test is necessary due to a bug in "dbxread.c" that
2895 causes empty symtabs to be created for N_SO symbols that
2896 contain the pathname of the object file. (This problem
2897 has been fixed in GDB 3.9x). */
c906108c
SS
2898
2899 bv = BLOCKVECTOR (s);
2900 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2901 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2902 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2903 {
e2e0b3e5 2904 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2905 name);
c906108c
SS
2906 clear_symtab_users_queued++;
2907 make_cleanup (clear_symtab_users_once, 0);
2908 blewit = 1;
c5aa993b
JM
2909 }
2910 else
e2e0b3e5
AC
2911 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2912 name);
c906108c
SS
2913
2914 free_symtab (s);
2915 }
2916 else
2917 {
2918 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2919 even though no symtab was found, since the file might have
2920 been compiled without debugging, and hence not be associated
2921 with a symtab. In order to handle this correctly, we would need
2922 to keep a list of text address ranges for undebuggable files.
2923 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2924 ;
2925 }
2926
2927 /* FIXME, what about the minimal symbol table? */
2928 return blewit;
2929#else
2930 return (0);
2931#endif
2932}
2933\f
2934/* Allocate and partially fill a partial symtab. It will be
2935 completely filled at the end of the symbol list.
2936
d4f3574e 2937 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2938
2939struct partial_symtab *
fba45db2
KB
2940start_psymtab_common (struct objfile *objfile,
2941 struct section_offsets *section_offsets, char *filename,
2942 CORE_ADDR textlow, struct partial_symbol **global_syms,
2943 struct partial_symbol **static_syms)
c906108c
SS
2944{
2945 struct partial_symtab *psymtab;
2946
2947 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2948 psymtab->section_offsets = section_offsets;
2949 psymtab->textlow = textlow;
2950 psymtab->texthigh = psymtab->textlow; /* default */
2951 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2952 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2953 return (psymtab);
2954}
2955\f
2956/* Add a symbol with a long value to a psymtab.
5417f6dc 2957 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2958 Return the partial symbol that has been added. */
2959
2960/* NOTE: carlton/2003-09-11: The reason why we return the partial
2961 symbol is so that callers can get access to the symbol's demangled
2962 name, which they don't have any cheap way to determine otherwise.
2963 (Currenly, dwarf2read.c is the only file who uses that information,
2964 though it's possible that other readers might in the future.)
2965 Elena wasn't thrilled about that, and I don't blame her, but we
2966 couldn't come up with a better way to get that information. If
2967 it's needed in other situations, we could consider breaking up
2968 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2969 cache. */
2970
2971const struct partial_symbol *
176620f1 2972add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2973 enum address_class class,
2974 struct psymbol_allocation_list *list, long val, /* Value as a long */
2975 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2976 enum language language, struct objfile *objfile)
c906108c 2977{
52f0bd74 2978 struct partial_symbol *psym;
c906108c
SS
2979 char *buf = alloca (namelength + 1);
2980 /* psymbol is static so that there will be no uninitialized gaps in the
2981 structure which might contain random data, causing cache misses in
2982 bcache. */
2983 static struct partial_symbol psymbol;
2984
2985 /* Create local copy of the partial symbol */
2986 memcpy (buf, name, namelength);
2987 buf[namelength] = '\0';
c906108c
SS
2988 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2989 if (val != 0)
2990 {
2991 SYMBOL_VALUE (&psymbol) = val;
2992 }
2993 else
2994 {
2995 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2996 }
2997 SYMBOL_SECTION (&psymbol) = 0;
2998 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2999 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 3000 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
3001
3002 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
3003
3004 /* Stash the partial symbol away in the cache */
3a16a68c
AC
3005 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3006 objfile->psymbol_cache);
c906108c
SS
3007
3008 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3009 if (list->next >= list->list + list->size)
3010 {
3011 extend_psymbol_list (list, objfile);
3012 }
3013 *list->next++ = psym;
3014 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
3015
3016 return psym;
c906108c
SS
3017}
3018
c906108c
SS
3019/* Initialize storage for partial symbols. */
3020
3021void
fba45db2 3022init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3023{
3024 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3025
3026 if (objfile->global_psymbols.list)
c906108c 3027 {
2dc74dc1 3028 xfree (objfile->global_psymbols.list);
c906108c 3029 }
c5aa993b 3030 if (objfile->static_psymbols.list)
c906108c 3031 {
2dc74dc1 3032 xfree (objfile->static_psymbols.list);
c906108c 3033 }
c5aa993b 3034
c906108c
SS
3035 /* Current best guess is that approximately a twentieth
3036 of the total symbols (in a debugging file) are global or static
3037 oriented symbols */
c906108c 3038
c5aa993b
JM
3039 objfile->global_psymbols.size = total_symbols / 10;
3040 objfile->static_psymbols.size = total_symbols / 10;
3041
3042 if (objfile->global_psymbols.size > 0)
c906108c 3043 {
c5aa993b
JM
3044 objfile->global_psymbols.next =
3045 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3046 xmalloc ((objfile->global_psymbols.size
3047 * sizeof (struct partial_symbol *)));
c906108c 3048 }
c5aa993b 3049 if (objfile->static_psymbols.size > 0)
c906108c 3050 {
c5aa993b
JM
3051 objfile->static_psymbols.next =
3052 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3053 xmalloc ((objfile->static_psymbols.size
3054 * sizeof (struct partial_symbol *)));
c906108c
SS
3055 }
3056}
3057
3058/* OVERLAYS:
3059 The following code implements an abstraction for debugging overlay sections.
3060
3061 The target model is as follows:
3062 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3063 same VMA, each with its own unique LMA (or load address).
c906108c 3064 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3065 sections, one by one, from the load address into the VMA address.
5417f6dc 3066 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3067 sections should be considered to be mapped from the VMA to the LMA.
3068 This information is used for symbol lookup, and memory read/write.
5417f6dc 3069 For instance, if a section has been mapped then its contents
c5aa993b 3070 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3071
3072 Two levels of debugger support for overlays are available. One is
3073 "manual", in which the debugger relies on the user to tell it which
3074 overlays are currently mapped. This level of support is
3075 implemented entirely in the core debugger, and the information about
3076 whether a section is mapped is kept in the objfile->obj_section table.
3077
3078 The second level of support is "automatic", and is only available if
3079 the target-specific code provides functionality to read the target's
3080 overlay mapping table, and translate its contents for the debugger
3081 (by updating the mapped state information in the obj_section tables).
3082
3083 The interface is as follows:
c5aa993b
JM
3084 User commands:
3085 overlay map <name> -- tell gdb to consider this section mapped
3086 overlay unmap <name> -- tell gdb to consider this section unmapped
3087 overlay list -- list the sections that GDB thinks are mapped
3088 overlay read-target -- get the target's state of what's mapped
3089 overlay off/manual/auto -- set overlay debugging state
3090 Functional interface:
3091 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3092 section, return that section.
5417f6dc 3093 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3094 the pc, either in its VMA or its LMA
3095 overlay_is_mapped(sect): true if overlay is marked as mapped
3096 section_is_overlay(sect): true if section's VMA != LMA
3097 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3098 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3099 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3100 overlay_mapped_address(...): map an address from section's LMA to VMA
3101 overlay_unmapped_address(...): map an address from section's VMA to LMA
3102 symbol_overlayed_address(...): Return a "current" address for symbol:
3103 either in VMA or LMA depending on whether
3104 the symbol's section is currently mapped
c906108c
SS
3105 */
3106
3107/* Overlay debugging state: */
3108
d874f1e2 3109enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3110int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3111
c906108c 3112/* Function: section_is_overlay (SECTION)
5417f6dc 3113 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3114 SECTION is loaded at an address different from where it will "run". */
3115
3116int
fba45db2 3117section_is_overlay (asection *section)
c906108c 3118{
fbd35540
MS
3119 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3120
c906108c
SS
3121 if (overlay_debugging)
3122 if (section && section->lma != 0 &&
3123 section->vma != section->lma)
3124 return 1;
3125
3126 return 0;
3127}
3128
3129/* Function: overlay_invalidate_all (void)
3130 Invalidate the mapped state of all overlay sections (mark it as stale). */
3131
3132static void
fba45db2 3133overlay_invalidate_all (void)
c906108c 3134{
c5aa993b 3135 struct objfile *objfile;
c906108c
SS
3136 struct obj_section *sect;
3137
3138 ALL_OBJSECTIONS (objfile, sect)
3139 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3140 sect->ovly_mapped = -1;
c906108c
SS
3141}
3142
3143/* Function: overlay_is_mapped (SECTION)
5417f6dc 3144 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3145 Private: public access is thru function section_is_mapped.
3146
3147 Access to the ovly_mapped flag is restricted to this function, so
3148 that we can do automatic update. If the global flag
3149 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3150 overlay_invalidate_all. If the mapped state of the particular
3151 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3152
c5aa993b 3153static int
fba45db2 3154overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3155{
3156 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3157 return 0;
3158
c5aa993b 3159 switch (overlay_debugging)
c906108c
SS
3160 {
3161 default:
d874f1e2 3162 case ovly_off:
c5aa993b 3163 return 0; /* overlay debugging off */
d874f1e2 3164 case ovly_auto: /* overlay debugging automatic */
1c772458 3165 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3166 there's really nothing useful to do here (can't really go auto) */
1c772458 3167 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3168 {
3169 if (overlay_cache_invalid)
3170 {
3171 overlay_invalidate_all ();
3172 overlay_cache_invalid = 0;
3173 }
3174 if (osect->ovly_mapped == -1)
1c772458 3175 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3176 }
3177 /* fall thru to manual case */
d874f1e2 3178 case ovly_on: /* overlay debugging manual */
c906108c
SS
3179 return osect->ovly_mapped == 1;
3180 }
3181}
3182
3183/* Function: section_is_mapped
3184 Returns true if section is an overlay, and is currently mapped. */
3185
3186int
fba45db2 3187section_is_mapped (asection *section)
c906108c 3188{
c5aa993b 3189 struct objfile *objfile;
c906108c
SS
3190 struct obj_section *osect;
3191
3192 if (overlay_debugging)
3193 if (section && section_is_overlay (section))
3194 ALL_OBJSECTIONS (objfile, osect)
3195 if (osect->the_bfd_section == section)
c5aa993b 3196 return overlay_is_mapped (osect);
c906108c
SS
3197
3198 return 0;
3199}
3200
3201/* Function: pc_in_unmapped_range
3202 If PC falls into the lma range of SECTION, return true, else false. */
3203
3204CORE_ADDR
fba45db2 3205pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3206{
fbd35540
MS
3207 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3208
c906108c
SS
3209 int size;
3210
3211 if (overlay_debugging)
3212 if (section && section_is_overlay (section))
3213 {
2c500098 3214 size = bfd_get_section_size (section);
c906108c
SS
3215 if (section->lma <= pc && pc < section->lma + size)
3216 return 1;
3217 }
3218 return 0;
3219}
3220
3221/* Function: pc_in_mapped_range
3222 If PC falls into the vma range of SECTION, return true, else false. */
3223
3224CORE_ADDR
fba45db2 3225pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3226{
fbd35540
MS
3227 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3228
c906108c
SS
3229 int size;
3230
3231 if (overlay_debugging)
3232 if (section && section_is_overlay (section))
3233 {
2c500098 3234 size = bfd_get_section_size (section);
c906108c
SS
3235 if (section->vma <= pc && pc < section->vma + size)
3236 return 1;
3237 }
3238 return 0;
3239}
3240
9ec8e6a0
JB
3241
3242/* Return true if the mapped ranges of sections A and B overlap, false
3243 otherwise. */
b9362cc7 3244static int
9ec8e6a0
JB
3245sections_overlap (asection *a, asection *b)
3246{
fbd35540
MS
3247 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3248
9ec8e6a0 3249 CORE_ADDR a_start = a->vma;
2c500098 3250 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3251 CORE_ADDR b_start = b->vma;
2c500098 3252 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3253
3254 return (a_start < b_end && b_start < a_end);
3255}
3256
c906108c
SS
3257/* Function: overlay_unmapped_address (PC, SECTION)
3258 Returns the address corresponding to PC in the unmapped (load) range.
3259 May be the same as PC. */
3260
3261CORE_ADDR
fba45db2 3262overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3263{
fbd35540
MS
3264 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3265
c906108c
SS
3266 if (overlay_debugging)
3267 if (section && section_is_overlay (section) &&
3268 pc_in_mapped_range (pc, section))
3269 return pc + section->lma - section->vma;
3270
3271 return pc;
3272}
3273
3274/* Function: overlay_mapped_address (PC, SECTION)
3275 Returns the address corresponding to PC in the mapped (runtime) range.
3276 May be the same as PC. */
3277
3278CORE_ADDR
fba45db2 3279overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3280{
fbd35540
MS
3281 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3282
c906108c
SS
3283 if (overlay_debugging)
3284 if (section && section_is_overlay (section) &&
3285 pc_in_unmapped_range (pc, section))
3286 return pc + section->vma - section->lma;
3287
3288 return pc;
3289}
3290
3291
5417f6dc 3292/* Function: symbol_overlayed_address
c906108c
SS
3293 Return one of two addresses (relative to the VMA or to the LMA),
3294 depending on whether the section is mapped or not. */
3295
c5aa993b 3296CORE_ADDR
fba45db2 3297symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3298{
3299 if (overlay_debugging)
3300 {
3301 /* If the symbol has no section, just return its regular address. */
3302 if (section == 0)
3303 return address;
3304 /* If the symbol's section is not an overlay, just return its address */
3305 if (!section_is_overlay (section))
3306 return address;
3307 /* If the symbol's section is mapped, just return its address */
3308 if (section_is_mapped (section))
3309 return address;
3310 /*
3311 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3312 * then return its LOADED address rather than its vma address!!
3313 */
3314 return overlay_unmapped_address (address, section);
3315 }
3316 return address;
3317}
3318
5417f6dc 3319/* Function: find_pc_overlay (PC)
c906108c
SS
3320 Return the best-match overlay section for PC:
3321 If PC matches a mapped overlay section's VMA, return that section.
3322 Else if PC matches an unmapped section's VMA, return that section.
3323 Else if PC matches an unmapped section's LMA, return that section. */
3324
3325asection *
fba45db2 3326find_pc_overlay (CORE_ADDR pc)
c906108c 3327{
c5aa993b 3328 struct objfile *objfile;
c906108c
SS
3329 struct obj_section *osect, *best_match = NULL;
3330
3331 if (overlay_debugging)
3332 ALL_OBJSECTIONS (objfile, osect)
3333 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3334 {
3335 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3336 {
3337 if (overlay_is_mapped (osect))
3338 return osect->the_bfd_section;
3339 else
3340 best_match = osect;
3341 }
3342 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3343 best_match = osect;
3344 }
c906108c
SS
3345 return best_match ? best_match->the_bfd_section : NULL;
3346}
3347
3348/* Function: find_pc_mapped_section (PC)
5417f6dc 3349 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3350 currently marked as MAPPED, return that section. Else return NULL. */
3351
3352asection *
fba45db2 3353find_pc_mapped_section (CORE_ADDR pc)
c906108c 3354{
c5aa993b 3355 struct objfile *objfile;
c906108c
SS
3356 struct obj_section *osect;
3357
3358 if (overlay_debugging)
3359 ALL_OBJSECTIONS (objfile, osect)
3360 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3361 overlay_is_mapped (osect))
c5aa993b 3362 return osect->the_bfd_section;
c906108c
SS
3363
3364 return NULL;
3365}
3366
3367/* Function: list_overlays_command
3368 Print a list of mapped sections and their PC ranges */
3369
3370void
fba45db2 3371list_overlays_command (char *args, int from_tty)
c906108c 3372{
c5aa993b
JM
3373 int nmapped = 0;
3374 struct objfile *objfile;
c906108c
SS
3375 struct obj_section *osect;
3376
3377 if (overlay_debugging)
3378 ALL_OBJSECTIONS (objfile, osect)
3379 if (overlay_is_mapped (osect))
c5aa993b
JM
3380 {
3381 const char *name;
3382 bfd_vma lma, vma;
3383 int size;
3384
3385 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3386 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3387 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3388 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3389
3390 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3391 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3392 puts_filtered (" - ");
66bf4b3a 3393 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3394 printf_filtered (", mapped at ");
66bf4b3a 3395 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3396 puts_filtered (" - ");
66bf4b3a 3397 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3398 puts_filtered ("\n");
3399
3400 nmapped++;
3401 }
c906108c 3402 if (nmapped == 0)
a3f17187 3403 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3404}
3405
3406/* Function: map_overlay_command
3407 Mark the named section as mapped (ie. residing at its VMA address). */
3408
3409void
fba45db2 3410map_overlay_command (char *args, int from_tty)
c906108c 3411{
c5aa993b
JM
3412 struct objfile *objfile, *objfile2;
3413 struct obj_section *sec, *sec2;
3414 asection *bfdsec;
c906108c
SS
3415
3416 if (!overlay_debugging)
8a3fe4f8 3417 error (_("\
515ad16c 3418Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3419the 'overlay manual' command."));
c906108c
SS
3420
3421 if (args == 0 || *args == 0)
8a3fe4f8 3422 error (_("Argument required: name of an overlay section"));
c906108c
SS
3423
3424 /* First, find a section matching the user supplied argument */
3425 ALL_OBJSECTIONS (objfile, sec)
3426 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3427 {
3428 /* Now, check to see if the section is an overlay. */
3429 bfdsec = sec->the_bfd_section;
3430 if (!section_is_overlay (bfdsec))
3431 continue; /* not an overlay section */
3432
3433 /* Mark the overlay as "mapped" */
3434 sec->ovly_mapped = 1;
3435
3436 /* Next, make a pass and unmap any sections that are
3437 overlapped by this new section: */
3438 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3439 if (sec2->ovly_mapped
3440 && sec != sec2
3441 && sec->the_bfd_section != sec2->the_bfd_section
3442 && sections_overlap (sec->the_bfd_section,
3443 sec2->the_bfd_section))
c5aa993b
JM
3444 {
3445 if (info_verbose)
a3f17187 3446 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3447 bfd_section_name (objfile->obfd,
3448 sec2->the_bfd_section));
3449 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3450 }
3451 return;
3452 }
8a3fe4f8 3453 error (_("No overlay section called %s"), args);
c906108c
SS
3454}
3455
3456/* Function: unmap_overlay_command
5417f6dc 3457 Mark the overlay section as unmapped
c906108c
SS
3458 (ie. resident in its LMA address range, rather than the VMA range). */
3459
3460void
fba45db2 3461unmap_overlay_command (char *args, int from_tty)
c906108c 3462{
c5aa993b 3463 struct objfile *objfile;
c906108c
SS
3464 struct obj_section *sec;
3465
3466 if (!overlay_debugging)
8a3fe4f8 3467 error (_("\
515ad16c 3468Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3469the 'overlay manual' command."));
c906108c
SS
3470
3471 if (args == 0 || *args == 0)
8a3fe4f8 3472 error (_("Argument required: name of an overlay section"));
c906108c
SS
3473
3474 /* First, find a section matching the user supplied argument */
3475 ALL_OBJSECTIONS (objfile, sec)
3476 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3477 {
3478 if (!sec->ovly_mapped)
8a3fe4f8 3479 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3480 sec->ovly_mapped = 0;
3481 return;
3482 }
8a3fe4f8 3483 error (_("No overlay section called %s"), args);
c906108c
SS
3484}
3485
3486/* Function: overlay_auto_command
3487 A utility command to turn on overlay debugging.
3488 Possibly this should be done via a set/show command. */
3489
3490static void
fba45db2 3491overlay_auto_command (char *args, int from_tty)
c906108c 3492{
d874f1e2 3493 overlay_debugging = ovly_auto;
1900040c 3494 enable_overlay_breakpoints ();
c906108c 3495 if (info_verbose)
a3f17187 3496 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3497}
3498
3499/* Function: overlay_manual_command
3500 A utility command to turn on overlay debugging.
3501 Possibly this should be done via a set/show command. */
3502
3503static void
fba45db2 3504overlay_manual_command (char *args, int from_tty)
c906108c 3505{
d874f1e2 3506 overlay_debugging = ovly_on;
1900040c 3507 disable_overlay_breakpoints ();
c906108c 3508 if (info_verbose)
a3f17187 3509 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3510}
3511
3512/* Function: overlay_off_command
3513 A utility command to turn on overlay debugging.
3514 Possibly this should be done via a set/show command. */
3515
3516static void
fba45db2 3517overlay_off_command (char *args, int from_tty)
c906108c 3518{
d874f1e2 3519 overlay_debugging = ovly_off;
1900040c 3520 disable_overlay_breakpoints ();
c906108c 3521 if (info_verbose)
a3f17187 3522 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3523}
3524
3525static void
fba45db2 3526overlay_load_command (char *args, int from_tty)
c906108c 3527{
1c772458
UW
3528 if (gdbarch_overlay_update_p (current_gdbarch))
3529 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3530 else
8a3fe4f8 3531 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3532}
3533
3534/* Function: overlay_command
3535 A place-holder for a mis-typed command */
3536
3537/* Command list chain containing all defined "overlay" subcommands. */
3538struct cmd_list_element *overlaylist;
3539
3540static void
fba45db2 3541overlay_command (char *args, int from_tty)
c906108c 3542{
c5aa993b 3543 printf_unfiltered
c906108c
SS
3544 ("\"overlay\" must be followed by the name of an overlay command.\n");
3545 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3546}
3547
3548
3549/* Target Overlays for the "Simplest" overlay manager:
3550
5417f6dc
RM
3551 This is GDB's default target overlay layer. It works with the
3552 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3553 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3554 so targets that use a different runtime overlay manager can
c906108c
SS
3555 substitute their own overlay_update function and take over the
3556 function pointer.
3557
3558 The overlay_update function pokes around in the target's data structures
3559 to see what overlays are mapped, and updates GDB's overlay mapping with
3560 this information.
3561
3562 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3563 unsigned _novlys; /# number of overlay sections #/
3564 unsigned _ovly_table[_novlys][4] = {
3565 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3566 {..., ..., ..., ...},
3567 }
3568 unsigned _novly_regions; /# number of overlay regions #/
3569 unsigned _ovly_region_table[_novly_regions][3] = {
3570 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3571 {..., ..., ...},
3572 }
c906108c
SS
3573 These functions will attempt to update GDB's mappedness state in the
3574 symbol section table, based on the target's mappedness state.
3575
3576 To do this, we keep a cached copy of the target's _ovly_table, and
3577 attempt to detect when the cached copy is invalidated. The main
3578 entry point is "simple_overlay_update(SECT), which looks up SECT in
3579 the cached table and re-reads only the entry for that section from
3580 the target (whenever possible).
3581 */
3582
3583/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3584static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3585#if 0
c5aa993b 3586static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3587#endif
c5aa993b 3588static unsigned cache_novlys = 0;
c906108c 3589#if 0
c5aa993b 3590static unsigned cache_novly_regions = 0;
c906108c
SS
3591#endif
3592static CORE_ADDR cache_ovly_table_base = 0;
3593#if 0
3594static CORE_ADDR cache_ovly_region_table_base = 0;
3595#endif
c5aa993b
JM
3596enum ovly_index
3597 {
3598 VMA, SIZE, LMA, MAPPED
3599 };
9a76efb6
UW
3600#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3601 / TARGET_CHAR_BIT)
c906108c
SS
3602
3603/* Throw away the cached copy of _ovly_table */
3604static void
fba45db2 3605simple_free_overlay_table (void)
c906108c
SS
3606{
3607 if (cache_ovly_table)
b8c9b27d 3608 xfree (cache_ovly_table);
c5aa993b 3609 cache_novlys = 0;
c906108c
SS
3610 cache_ovly_table = NULL;
3611 cache_ovly_table_base = 0;
3612}
3613
3614#if 0
3615/* Throw away the cached copy of _ovly_region_table */
3616static void
fba45db2 3617simple_free_overlay_region_table (void)
c906108c
SS
3618{
3619 if (cache_ovly_region_table)
b8c9b27d 3620 xfree (cache_ovly_region_table);
c5aa993b 3621 cache_novly_regions = 0;
c906108c
SS
3622 cache_ovly_region_table = NULL;
3623 cache_ovly_region_table_base = 0;
3624}
3625#endif
3626
3627/* Read an array of ints from the target into a local buffer.
3628 Convert to host order. int LEN is number of ints */
3629static void
fba45db2 3630read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3631{
34c0bd93 3632 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3633 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3634 int i;
c906108c
SS
3635
3636 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3637 for (i = 0; i < len; i++)
c5aa993b 3638 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3639 TARGET_LONG_BYTES);
3640}
3641
3642/* Find and grab a copy of the target _ovly_table
3643 (and _novlys, which is needed for the table's size) */
c5aa993b 3644static int
fba45db2 3645simple_read_overlay_table (void)
c906108c 3646{
0d43edd1 3647 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3648
3649 simple_free_overlay_table ();
9b27852e 3650 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3651 if (! novlys_msym)
c906108c 3652 {
8a3fe4f8 3653 error (_("Error reading inferior's overlay table: "
0d43edd1 3654 "couldn't find `_novlys' variable\n"
8a3fe4f8 3655 "in inferior. Use `overlay manual' mode."));
0d43edd1 3656 return 0;
c906108c 3657 }
0d43edd1 3658
9b27852e 3659 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3660 if (! ovly_table_msym)
3661 {
8a3fe4f8 3662 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3663 "`_ovly_table' array\n"
8a3fe4f8 3664 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3665 return 0;
3666 }
3667
3668 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3669 cache_ovly_table
3670 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3671 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3672 read_target_long_array (cache_ovly_table_base,
777ea8f1 3673 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3674 cache_novlys * 4);
3675
c5aa993b 3676 return 1; /* SUCCESS */
c906108c
SS
3677}
3678
3679#if 0
3680/* Find and grab a copy of the target _ovly_region_table
3681 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3682static int
fba45db2 3683simple_read_overlay_region_table (void)
c906108c
SS
3684{
3685 struct minimal_symbol *msym;
3686
3687 simple_free_overlay_region_table ();
9b27852e 3688 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3689 if (msym != NULL)
3690 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3691 else
3692 return 0; /* failure */
c906108c
SS
3693 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3694 if (cache_ovly_region_table != NULL)
3695 {
9b27852e 3696 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3697 if (msym != NULL)
3698 {
3699 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3700 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3701 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3702 cache_novly_regions * 3);
3703 }
c5aa993b
JM
3704 else
3705 return 0; /* failure */
c906108c 3706 }
c5aa993b
JM
3707 else
3708 return 0; /* failure */
3709 return 1; /* SUCCESS */
c906108c
SS
3710}
3711#endif
3712
5417f6dc 3713/* Function: simple_overlay_update_1
c906108c
SS
3714 A helper function for simple_overlay_update. Assuming a cached copy
3715 of _ovly_table exists, look through it to find an entry whose vma,
3716 lma and size match those of OSECT. Re-read the entry and make sure
3717 it still matches OSECT (else the table may no longer be valid).
3718 Set OSECT's mapped state to match the entry. Return: 1 for
3719 success, 0 for failure. */
3720
3721static int
fba45db2 3722simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3723{
3724 int i, size;
fbd35540
MS
3725 bfd *obfd = osect->objfile->obfd;
3726 asection *bsect = osect->the_bfd_section;
c906108c 3727
2c500098 3728 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3729 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3730 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3731 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3732 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3733 {
3734 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3735 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3736 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3737 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3738 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3739 {
3740 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3741 return 1;
3742 }
fbd35540 3743 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3744 return 0;
3745 }
3746 return 0;
3747}
3748
3749/* Function: simple_overlay_update
5417f6dc
RM
3750 If OSECT is NULL, then update all sections' mapped state
3751 (after re-reading the entire target _ovly_table).
3752 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3753 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3754 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3755 re-read the entire cache, and go ahead and update all sections. */
3756
1c772458 3757void
fba45db2 3758simple_overlay_update (struct obj_section *osect)
c906108c 3759{
c5aa993b 3760 struct objfile *objfile;
c906108c
SS
3761
3762 /* Were we given an osect to look up? NULL means do all of them. */
3763 if (osect)
3764 /* Have we got a cached copy of the target's overlay table? */
3765 if (cache_ovly_table != NULL)
3766 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3767 if (cache_ovly_table_base ==
9b27852e 3768 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3769 /* Then go ahead and try to look up this single section in the cache */
3770 if (simple_overlay_update_1 (osect))
3771 /* Found it! We're done. */
3772 return;
3773
3774 /* Cached table no good: need to read the entire table anew.
3775 Or else we want all the sections, in which case it's actually
3776 more efficient to read the whole table in one block anyway. */
3777
0d43edd1
JB
3778 if (! simple_read_overlay_table ())
3779 return;
3780
c906108c
SS
3781 /* Now may as well update all sections, even if only one was requested. */
3782 ALL_OBJSECTIONS (objfile, osect)
3783 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3784 {
3785 int i, size;
fbd35540
MS
3786 bfd *obfd = osect->objfile->obfd;
3787 asection *bsect = osect->the_bfd_section;
c5aa993b 3788
2c500098 3789 size = bfd_get_section_size (bsect);
c5aa993b 3790 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3791 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3792 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3793 /* && cache_ovly_table[i][SIZE] == size */ )
3794 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3795 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3796 break; /* finished with inner for loop: break out */
3797 }
3798 }
c906108c
SS
3799}
3800
086df311
DJ
3801/* Set the output sections and output offsets for section SECTP in
3802 ABFD. The relocation code in BFD will read these offsets, so we
3803 need to be sure they're initialized. We map each section to itself,
3804 with no offset; this means that SECTP->vma will be honored. */
3805
3806static void
3807symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3808{
3809 sectp->output_section = sectp;
3810 sectp->output_offset = 0;
3811}
3812
3813/* Relocate the contents of a debug section SECTP in ABFD. The
3814 contents are stored in BUF if it is non-NULL, or returned in a
3815 malloc'd buffer otherwise.
3816
3817 For some platforms and debug info formats, shared libraries contain
3818 relocations against the debug sections (particularly for DWARF-2;
3819 one affected platform is PowerPC GNU/Linux, although it depends on
3820 the version of the linker in use). Also, ELF object files naturally
3821 have unresolved relocations for their debug sections. We need to apply
3822 the relocations in order to get the locations of symbols correct. */
3823
3824bfd_byte *
3825symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3826{
3827 /* We're only interested in debugging sections with relocation
3828 information. */
3829 if ((sectp->flags & SEC_RELOC) == 0)
3830 return NULL;
3831 if ((sectp->flags & SEC_DEBUGGING) == 0)
3832 return NULL;
3833
3834 /* We will handle section offsets properly elsewhere, so relocate as if
3835 all sections begin at 0. */
3836 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3837
97606a13 3838 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3839}
c906108c 3840
31d99776
DJ
3841struct symfile_segment_data *
3842get_symfile_segment_data (bfd *abfd)
3843{
3844 struct sym_fns *sf = find_sym_fns (abfd);
3845
3846 if (sf == NULL)
3847 return NULL;
3848
3849 return sf->sym_segments (abfd);
3850}
3851
3852void
3853free_symfile_segment_data (struct symfile_segment_data *data)
3854{
3855 xfree (data->segment_bases);
3856 xfree (data->segment_sizes);
3857 xfree (data->segment_info);
3858 xfree (data);
3859}
3860
3861int
3862symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3863 struct section_offsets *offsets,
3864 int num_segment_bases,
3865 const CORE_ADDR *segment_bases)
3866{
3867 int i;
3868 asection *sect;
3869
3870 /* If we do not have segment mappings for the object file, we
3871 can not relocate it by segments. */
3872 gdb_assert (data != NULL);
3873 gdb_assert (data->num_segments > 0);
3874
3875 /* If more offsets are provided than we have segments, make sure the
3876 excess offsets are all the same as the last segment's offset.
3877 This allows "Text=X;Data=X" for files which have only a single
3878 segment. */
3879 if (num_segment_bases > data->num_segments)
3880 for (i = data->num_segments; i < num_segment_bases; i++)
3881 if (segment_bases[i] != segment_bases[data->num_segments - 1])
3882 return 0;
3883
3884 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3885 {
3886 CORE_ADDR vma;
3887 int which = data->segment_info[i];
3888
3889 if (which > num_segment_bases)
3890 offsets->offsets[i] = segment_bases[num_segment_bases - 1];
3891 else if (which > 0)
3892 offsets->offsets[i] = segment_bases[which - 1];
3893 else
3894 continue;
3895
3896 offsets->offsets[i] -= data->segment_bases[which - 1];
3897 }
3898
3899 return 1;
3900}
3901
3902static void
3903symfile_find_segment_sections (struct objfile *objfile)
3904{
3905 bfd *abfd = objfile->obfd;
3906 int i;
3907 asection *sect;
3908 struct symfile_segment_data *data;
3909
3910 data = get_symfile_segment_data (objfile->obfd);
3911 if (data == NULL)
3912 return;
3913
3914 if (data->num_segments != 1 && data->num_segments != 2)
3915 {
3916 free_symfile_segment_data (data);
3917 return;
3918 }
3919
3920 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3921 {
3922 CORE_ADDR vma;
3923 int which = data->segment_info[i];
3924
3925 if (which == 1)
3926 {
3927 if (objfile->sect_index_text == -1)
3928 objfile->sect_index_text = sect->index;
3929
3930 if (objfile->sect_index_rodata == -1)
3931 objfile->sect_index_rodata = sect->index;
3932 }
3933 else if (which == 2)
3934 {
3935 if (objfile->sect_index_data == -1)
3936 objfile->sect_index_data = sect->index;
3937
3938 if (objfile->sect_index_bss == -1)
3939 objfile->sect_index_bss = sect->index;
3940 }
3941 }
3942
3943 free_symfile_segment_data (data);
3944}
3945
c906108c 3946void
fba45db2 3947_initialize_symfile (void)
c906108c
SS
3948{
3949 struct cmd_list_element *c;
c5aa993b 3950
1a966eab
AC
3951 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3952Load symbol table from executable file FILE.\n\
c906108c 3953The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3954to execute."), &cmdlist);
5ba2abeb 3955 set_cmd_completer (c, filename_completer);
c906108c 3956
1a966eab 3957 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3958Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3959Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3960ADDR is the starting address of the file's text.\n\
db162d44
EZ
3961The optional arguments are section-name section-address pairs and\n\
3962should be specified if the data and bss segments are not contiguous\n\
1a966eab 3963with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3964 &cmdlist);
5ba2abeb 3965 set_cmd_completer (c, filename_completer);
c906108c
SS
3966
3967 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3968 add_shared_symbol_files_command, _("\
3969Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3970 &cmdlist);
c906108c
SS
3971 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3972 &cmdlist);
3973
1a966eab
AC
3974 c = add_cmd ("load", class_files, load_command, _("\
3975Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3976for access from GDB.\n\
3977A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3978 set_cmd_completer (c, filename_completer);
c906108c 3979
5bf193a2
AC
3980 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3981 &symbol_reloading, _("\
3982Set dynamic symbol table reloading multiple times in one run."), _("\
3983Show dynamic symbol table reloading multiple times in one run."), NULL,
3984 NULL,
920d2a44 3985 show_symbol_reloading,
5bf193a2 3986 &setlist, &showlist);
c906108c 3987
c5aa993b 3988 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3989 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3990 "overlay ", 0, &cmdlist);
3991
3992 add_com_alias ("ovly", "overlay", class_alias, 1);
3993 add_com_alias ("ov", "overlay", class_alias, 1);
3994
c5aa993b 3995 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3996 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3997
c5aa993b 3998 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3999 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4000
c5aa993b 4001 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4002 _("List mappings of overlay sections."), &overlaylist);
c906108c 4003
c5aa993b 4004 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4005 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4006 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4007 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4008 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4009 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4010 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4011 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4012
4013 /* Filename extension to source language lookup table: */
4014 init_filename_language_table ();
26c41df3
AC
4015 add_setshow_string_noescape_cmd ("extension-language", class_files,
4016 &ext_args, _("\
4017Set mapping between filename extension and source language."), _("\
4018Show mapping between filename extension and source language."), _("\
4019Usage: set extension-language .foo bar"),
4020 set_ext_lang_command,
920d2a44 4021 show_ext_args,
26c41df3 4022 &setlist, &showlist);
c906108c 4023
c5aa993b 4024 add_info ("extensions", info_ext_lang_command,
1bedd215 4025 _("All filename extensions associated with a source language."));
917317f4 4026
525226b5
AC
4027 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4028 &debug_file_directory, _("\
4029Set the directory where separate debug symbols are searched for."), _("\
4030Show the directory where separate debug symbols are searched for."), _("\
4031Separate debug symbols are first searched for in the same\n\
4032directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4033and lastly at the path of the directory of the binary with\n\
4034the global debug-file directory prepended."),
4035 NULL,
920d2a44 4036 show_debug_file_directory,
525226b5 4037 &setlist, &showlist);
c906108c 4038}
This page took 0.931199 seconds and 4 git commands to generate.