Add usage to printf command
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 84int readnever_symbol_files; /* Never read full symbols. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
ecf45d2c 88static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 89 objfile_flags flags);
d7db6da9 90
00b5771c 91static const struct sym_fns *find_sym_fns (bfd *);
c906108c 92
a14ed312 93static void overlay_invalidate_all (void);
c906108c 94
a14ed312 95static void simple_free_overlay_table (void);
c906108c 96
e17a4113
UW
97static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
c906108c 99
a14ed312 100static int simple_read_overlay_table (void);
c906108c 101
a14ed312 102static int simple_overlay_update_1 (struct obj_section *);
c906108c 103
31d99776
DJ
104static void symfile_find_segment_sections (struct objfile *objfile);
105
c906108c
SS
106/* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
c378eb4e 108 prepared to read. */
c906108c 109
905014d7 110struct registered_sym_fns
c256e171 111{
905014d7
SM
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
c256e171
DE
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
905014d7 121};
c256e171 122
905014d7 123static std::vector<registered_sym_fns> symtab_fns;
c906108c 124
770e7fc7
DE
125/* Values for "set print symbol-loading". */
126
127const char print_symbol_loading_off[] = "off";
128const char print_symbol_loading_brief[] = "brief";
129const char print_symbol_loading_full[] = "full";
130static const char *print_symbol_loading_enums[] =
131{
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136};
137static const char *print_symbol_loading = print_symbol_loading_full;
138
b7209cb4
FF
139/* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
c906108c 146 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 147 report all the functions that are actually present. */
c906108c
SS
148
149int auto_solib_add = 1;
c906108c 150\f
c5aa993b 151
770e7fc7
DE
152/* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160int
161print_symbol_loading_p (int from_tty, int exec, int full)
162{
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175}
176
0d14a781 177/* True if we are reading a symbol table. */
c906108c
SS
178
179int currently_reading_symtab = 0;
180
ccefe4c4
TT
181/* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
3b7bacac 183
c83dd867 184scoped_restore_tmpl<int>
ccefe4c4 185increment_reading_symtab (void)
c906108c 186{
c83dd867
TT
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
c906108c
SS
190}
191
5417f6dc
RM
192/* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
c906108c
SS
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201void
4efb68b1 202find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 203{
c5aa993b 204 asection **lowest = (asection **) obj;
c906108c 205
eb73e134 206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216}
217
d76488d8
TT
218/* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
a39a16c4
MM
221
222struct section_addr_info *
223alloc_section_addr_info (size_t num_sections)
224{
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
a39a16c4
MM
232
233 return sap;
234}
62557bbc
KB
235
236/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 237 an existing section table. */
62557bbc
KB
238
239extern struct section_addr_info *
0542c86d
PA
240build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
62557bbc
KB
242{
243 struct section_addr_info *sap;
0542c86d 244 const struct target_section *stp;
62557bbc
KB
245 int oidx;
246
a39a16c4 247 sap = alloc_section_addr_info (end - start);
62557bbc
KB
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
2b2848e2
DE
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 255 && oidx < end - start)
62557bbc
KB
256 {
257 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
260 oidx++;
261 }
262 }
263
d76488d8
TT
264 sap->num_sections = oidx;
265
62557bbc
KB
266 return sap;
267}
268
82ccf5a5 269/* Create a section_addr_info from section offsets in ABFD. */
089b4803 270
82ccf5a5
JK
271static struct section_addr_info *
272build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
273{
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
82ccf5a5
JK
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 281 {
82ccf5a5
JK
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
285 i++;
286 }
d76488d8
TT
287
288 sap->num_sections = i;
289
089b4803
TG
290 return sap;
291}
292
82ccf5a5
JK
293/* Create a section_addr_info from section offsets in OBJFILE. */
294
295struct section_addr_info *
296build_section_addr_info_from_objfile (const struct objfile *objfile)
297{
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 305 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312}
62557bbc 313
c378eb4e 314/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
315
316extern void
317free_section_addr_info (struct section_addr_info *sap)
318{
319 int idx;
320
a39a16c4 321 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 322 xfree (sap->other[idx].name);
b8c9b27d 323 xfree (sap);
62557bbc
KB
324}
325
e8289572 326/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 327
e8289572
JB
328static void
329init_objfile_sect_indices (struct objfile *objfile)
c906108c 330{
e8289572 331 asection *sect;
c906108c 332 int i;
5417f6dc 333
b8fbeb18 334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 335 if (sect)
b8fbeb18
EZ
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 339 if (sect)
b8fbeb18
EZ
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 343 if (sect)
b8fbeb18
EZ
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 347 if (sect)
b8fbeb18
EZ
348 objfile->sect_index_rodata = sect->index;
349
bbcd32ad
FF
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
31d99776
DJ
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
bbcd32ad
FF
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
b8fbeb18 385}
c906108c 386
c1bd25fd
DJ
387/* The arguments to place_section. */
388
389struct place_section_arg
390{
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393};
394
395/* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
2c0b251b 398static void
c1bd25fd
DJ
399place_section (bfd *abfd, asection *sect, void *obj)
400{
19ba03f4 401 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
3bd72c6f 404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 405
2711e456
DJ
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
408 return;
409
410 /* If the user specified an offset, honor it. */
65cf3563 411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
415 start_addr = (arg->lowest + align - 1) & -align;
416
c1bd25fd
DJ
417 do {
418 asection *cur_sec;
c1bd25fd 419
c1bd25fd
DJ
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
c1bd25fd
DJ
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
2711e456
DJ
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
3bd72c6f 447 break;
c1bd25fd
DJ
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
65cf3563 455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 456 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 457}
e8289572 458
75242ef4
JK
459/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
e8289572
JB
462
463void
75242ef4
JK
464relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
3189cb12 466 const struct section_addr_info *addrs)
e8289572
JB
467{
468 int i;
469
75242ef4 470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 471
c378eb4e 472 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 473 for (i = 0; i < addrs->num_sections; i++)
e8289572 474 {
3189cb12 475 const struct other_sections *osp;
e8289572 476
75242ef4 477 osp = &addrs->other[i];
5488dafb 478 if (osp->sectindex == -1)
e8289572
JB
479 continue;
480
c378eb4e 481 /* Record all sections in offsets. */
e8289572 482 /* The section_offsets in the objfile are here filled in using
c378eb4e 483 the BFD index. */
75242ef4
JK
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486}
487
1276c759
JK
488/* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494static const char *
495addr_section_name (const char *s)
496{
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503}
504
82ccf5a5
JK
505/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508static int
509addrs_section_compar (const void *ap, const void *bp)
510{
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 513 int retval;
82ccf5a5 514
1276c759 515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
516 if (retval)
517 return retval;
518
5488dafb 519 return a->sectindex - b->sectindex;
82ccf5a5
JK
520}
521
522/* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525static struct other_sections **
526addrs_section_sort (struct section_addr_info *addrs)
527{
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
8d749320 532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 533 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540}
541
75242ef4 542/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
545
546void
547addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548{
549 asection *lower_sect;
75242ef4
JK
550 CORE_ADDR lower_offset;
551 int i;
82ccf5a5
JK
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
556
557 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
e8289572 566 }
75242ef4
JK
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
82ccf5a5
JK
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
c378eb4e
MS
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
82ccf5a5 590
8d749320 591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
1276c759 596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
597
598 while (*abfd_addrs_sorted
1276c759
JK
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
82ccf5a5
JK
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
1276c759
JK
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
82ccf5a5
JK
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
75242ef4
JK
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
d76488d8 631 for (i = 0; i < addrs->num_sections; i++)
75242ef4 632 {
82ccf5a5 633 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
634
635 if (sect)
75242ef4 636 {
c378eb4e 637 /* This is the index used by BFD. */
82ccf5a5 638 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
639
640 if (addrs->other[i].addr != 0)
75242ef4 641 {
82ccf5a5 642 addrs->other[i].addr -= sect->addr;
75242ef4 643 lower_offset = addrs->other[i].addr;
75242ef4
JK
644 }
645 else
672d9c23 646 addrs->other[i].addr = lower_offset;
75242ef4
JK
647 }
648 else
672d9c23 649 {
1276c759
JK
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
b0fcb67f
JK
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
4d9743af
JK
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
1276c759
JK
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 668 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
672d9c23 680 addrs->other[i].addr = 0;
5488dafb 681 addrs->other[i].sectindex = -1;
672d9c23 682 }
75242ef4 683 }
82ccf5a5
JK
684
685 do_cleanups (my_cleanup);
75242ef4
JK
686}
687
688/* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694void
695default_symfile_offsets (struct objfile *objfile,
3189cb12 696 const struct section_addr_info *addrs)
75242ef4 697{
d445b2f6 698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
e8289572 704
c1bd25fd
DJ
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
2711e456
DJ
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
2711e456
DJ
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
30510692 767 offsets[cur_sec->index]);
2711e456
DJ
768 offsets[cur_sec->index] = 0;
769 }
770 }
c1bd25fd
DJ
771 }
772
e8289572 773 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 774 .rodata sections. */
e8289572
JB
775 init_objfile_sect_indices (objfile);
776}
777
31d99776
DJ
778/* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784struct symfile_segment_data *
785default_symfile_segments (bfd *abfd)
786{
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
41bf6aca 812 data = XCNEW (struct symfile_segment_data);
31d99776 813 data->num_segments = 1;
fc270c35
TT
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
816
817 num_sections = bfd_count_sections (abfd);
fc270c35 818 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840}
841
608e2dbb
TT
842/* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845static void
b15cc25c 846read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
847{
848 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 849 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 856 {
192b62ce 857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
858
859 if (abfd != NULL)
24ba069a
JK
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
192b62ce
TT
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
24ba069a 867 }
608e2dbb
TT
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871}
872
3d6e24f0
JB
873/* Initialize entry point information for this objfile. */
874
875static void
876init_entry_point_info (struct objfile *objfile)
877{
6ef55de7
TT
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
3d6e24f0
JB
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
6ef55de7
TT
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
3d6e24f0
JB
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
6ef55de7
TT
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
3d6e24f0
JB
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 906 ei->entry_point_p = 0;
3d6e24f0
JB
907 }
908
6ef55de7 909 if (ei->entry_point_p)
3d6e24f0 910 {
53eddfa6 911 struct obj_section *osect;
6ef55de7 912 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 913 int found;
3d6e24f0
JB
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
df6d5441 918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
6ef55de7 924 ei->entry_point
df6d5441 925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
6ef55de7 936 ei->the_bfd_section_index
53eddfa6
TT
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
6ef55de7 944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
945 }
946}
947
c906108c
SS
948/* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
36e4d068
JB
951 This function does not set the OBJFILE's entry-point info.
952
96baa820
JM
953 OBJFILE is where the symbols are to be read from.
954
7e8580c1
JB
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
96baa820 964
7eedccfa
PP
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
c906108c 968
36e4d068
JB
969static void
970syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
b15cc25c 972 symfile_add_flags add_flags)
c906108c 973{
a39a16c4 974 struct section_addr_info *local_addr = NULL;
c906108c 975 struct cleanup *old_chain;
7eedccfa 976 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 977
8fb8eb5c 978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 979
75245b24 980 if (objfile->sf == NULL)
36e4d068
JB
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
d445b2f6 984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
224c3ddb
SM
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
36e4d068
JB
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
75245b24 994
c906108c
SS
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
ed2b3126
TT
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 999
6bf667bb
DE
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
c378eb4e 1002 no load address was specified. */
6bf667bb 1003 if (! addrs)
a39a16c4 1004 {
d445b2f6 1005 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
c5aa993b 1010 if (mainline)
c906108c
SS
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1013 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
9e86da07 1020 delete symfile_objfile;
adb7f338 1021 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
53a5351d 1034 and assume that <addr> is where that got loaded.
c906108c 1035
53a5351d
JM
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
6bf667bb 1038 if (addrs->num_sections > 0)
75242ef4 1039 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
c378eb4e 1043 initial symbol reading for this file. */
c906108c 1044
c5aa993b 1045 (*objfile->sf->sym_init) (objfile);
7eedccfa 1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1047
6bf667bb 1048 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1049
608e2dbb 1050 read_symbols (objfile, add_flags);
b11896a5 1051
c906108c
SS
1052 /* Discard cleanups as symbol reading was successful. */
1053
ed2b3126 1054 objfile_holder.release ();
c906108c 1055 discard_cleanups (old_chain);
f7545552 1056 xfree (local_addr);
c906108c
SS
1057}
1058
36e4d068
JB
1059/* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
6bf667bb 1062static void
36e4d068
JB
1063syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
b15cc25c 1065 symfile_add_flags add_flags)
36e4d068 1066{
6bf667bb 1067 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1068 init_entry_point_info (objfile);
1069}
1070
c906108c
SS
1071/* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1074
e7d52ed3 1075static void
b15cc25c 1076finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1077{
c906108c 1078 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1079 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1080 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1081 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
c1e56572 1086 clear_symtab_users (add_flags);
c906108c 1087 }
7eedccfa 1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1089 {
69de3c6a 1090 breakpoint_re_set ();
c906108c
SS
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1095}
1096
1097/* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
5417f6dc 1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1101 A new reference is acquired by this function.
7904e09f 1102
9e86da07 1103 For NAME description see the objfile constructor.
24ba069a 1104
7eedccfa
PP
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1107
6bf667bb 1108 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1110
63524580
JK
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
c906108c 1114 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1115 Upon failure, jumps back to command level (never returns). */
7eedccfa 1116
7904e09f 1117static struct objfile *
b15cc25c
PA
1118symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
6bf667bb 1120 struct section_addr_info *addrs,
b15cc25c 1121 objfile_flags flags, struct objfile *parent)
c906108c
SS
1122{
1123 struct objfile *objfile;
7eedccfa 1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1125 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1129
9291a0cd 1130 if (readnow_symbol_files)
b11896a5
TT
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
97cbe998
SDJ
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
9291a0cd 1141
5417f6dc
RM
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
c906108c
SS
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1146 && mainline
c906108c 1147 && from_tty
9e2f0ad4 1148 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1149 error (_("Not confirmed."));
c906108c 1150
b15cc25c
PA
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
9e86da07 1153 objfile = new struct objfile (abfd, name, flags);
c906108c 1154
63524580
JK
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
78a4a9b9
AC
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
c378eb4e 1160 performed, or need to read an unmapped symbol table. */
b11896a5 1161 if (should_print)
c906108c 1162 {
769d7dc4
AC
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1165 else
c906108c 1166 {
55333a84
DE
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
c906108c 1170 }
c906108c 1171 }
6bf667bb 1172 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1177 all partial symbol tables for this objfile if so. */
c906108c 1178
9291a0cd 1179 if ((flags & OBJF_READNOW))
c906108c 1180 {
b11896a5 1181 if (should_print)
c906108c 1182 {
a3f17187 1183 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
ccefe4c4
TT
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1190 }
1191
b11896a5 1192 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1193 {
1194 wrap_here ("");
55333a84 1195 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1196 wrap_here ("");
1197 }
1198
b11896a5 1199 if (should_print)
c906108c 1200 {
769d7dc4
AC
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
c906108c 1203 else
55333a84 1204 printf_unfiltered (_("done.\n"));
c906108c
SS
1205 }
1206
481d0f41
JB
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
109f874e 1212 if (objfile->sf == NULL)
8caee43b
PP
1213 {
1214 observer_notify_new_objfile (objfile);
c378eb4e 1215 return objfile; /* No symbols. */
8caee43b 1216 }
109f874e 1217
e7d52ed3 1218 finish_new_objfile (objfile, add_flags);
c906108c 1219
06d3b283 1220 observer_notify_new_objfile (objfile);
c906108c 1221
ce7d4522 1222 bfd_cache_close_all ();
c906108c
SS
1223 return (objfile);
1224}
1225
24ba069a 1226/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1227 see the objfile constructor. */
9cce227f
TG
1228
1229void
b15cc25c
PA
1230symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
24ba069a 1232 struct objfile *objfile)
9cce227f 1233{
089b4803
TG
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1242
870f88f7 1243 symbol_file_add_with_addrs
24ba069a 1244 (bfd, name, symfile_flags, sap,
9cce227f 1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1246 | OBJF_USERLOADED),
1247 objfile);
089b4803
TG
1248
1249 do_cleanups (my_cleanup);
9cce227f 1250}
7904e09f 1251
eb4556d7
JB
1252/* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
6bf667bb 1254 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1255
eb4556d7 1256struct objfile *
b15cc25c
PA
1257symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
eb4556d7 1259 struct section_addr_info *addrs,
b15cc25c 1260 objfile_flags flags, struct objfile *parent)
eb4556d7 1261{
24ba069a
JK
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
eb4556d7
JB
1264}
1265
7904e09f 1266/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1268
7904e09f 1269struct objfile *
b15cc25c
PA
1270symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1272{
192b62ce 1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1274
192b62ce
TT
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
7904e09f
JB
1277}
1278
d7db6da9
FN
1279/* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
5417f6dc 1286
1adeb98a 1287void
ecf45d2c 1288symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1289{
ecf45d2c 1290 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1291}
1292
1293static void
ecf45d2c
SL
1294symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
d7db6da9 1296{
ecf45d2c 1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1298
7eedccfa 1299 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1300
d7db6da9
FN
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
b15cc25c 1305 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1306 set_initial_language ();
1adeb98a
FN
1307}
1308
1309void
1310symbol_file_clear (int from_tty)
1311{
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
0430b0d6
AS
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1316 objfile_name (symfile_objfile))
0430b0d6 1317 : !query (_("Discard symbol table? "))))
8a3fe4f8 1318 error (_("Not confirmed."));
1adeb98a 1319
0133421a
JK
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1322 no_shared_libraries (NULL, from_tty);
1323
0133421a
JK
1324 free_all_objfiles ();
1325
adb7f338 1326 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1329}
1330
c4dcb155
SM
1331/* See symfile.h. */
1332
1333int separate_debug_file_debug = 0;
1334
5b5d99cf 1335static int
a8dbfd58 1336separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
32a0e547 1341 struct stat parent_stat, abfd_stat;
904578ed 1342 int verified_as_different;
32a0e547
JK
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1348 the separate debug infos with the same basename can exist. */
32a0e547 1349
a8dbfd58 1350 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1351 return 0;
5b5d99cf 1352
c4dcb155 1353 if (separate_debug_file_debug)
a8dbfd58 1354 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
c4dcb155 1355
a8dbfd58 1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1357
192b62ce 1358 if (abfd == NULL)
5b5d99cf
JB
1359 return 0;
1360
0ba1096a 1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
32a0e547 1371
192b62ce 1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1375 {
904578ed
JK
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1378 return 0;
904578ed 1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
192b62ce 1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1385
904578ed
JK
1386 if (!file_crc_p)
1387 return 0;
1388
287ccc17
JK
1389 if (crc != file_crc)
1390 {
dccee2de
TT
1391 unsigned long parent_crc;
1392
0a93529c
GB
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
904578ed 1396
dccee2de 1397 if (!verified_as_different)
904578ed 1398 {
dccee2de 1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1400 return 0;
1401 }
1402
dccee2de 1403 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1406 name.c_str (), objfile_name (parent_objfile));
904578ed 1407
287ccc17
JK
1408 return 0;
1409 }
1410
1411 return 1;
5b5d99cf
JB
1412}
1413
aa28a74e 1414char *debug_file_directory = NULL;
920d2a44
AC
1415static void
1416show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418{
3e43a32a
MS
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1422 value);
1423}
5b5d99cf
JB
1424
1425#if ! defined (DEBUG_SUBDIRECTORY)
1426#define DEBUG_SUBDIRECTORY ".debug"
1427#endif
1428
1db33378
PP
1429/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
a8dbfd58
SM
1434 Returns the path of the file with separate debug info, or an empty
1435 string. */
1db33378 1436
a8dbfd58 1437static std::string
1db33378
PP
1438find_separate_debug_file (const char *dir,
1439 const char *canon_dir,
1440 const char *debuglink,
1441 unsigned long crc32, struct objfile *objfile)
9cce227f 1442{
c4dcb155
SM
1443 if (separate_debug_file_debug)
1444 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1445 "%s\n"), objfile_name (objfile));
1446
5b5d99cf 1447 /* First try in the same directory as the original file. */
a8dbfd58
SM
1448 std::string debugfile = dir;
1449 debugfile += debuglink;
5b5d99cf 1450
32a0e547 1451 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1452 return debugfile;
5417f6dc 1453
5b5d99cf 1454 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1455 debugfile = dir;
1456 debugfile += DEBUG_SUBDIRECTORY;
1457 debugfile += "/";
1458 debugfile += debuglink;
5b5d99cf 1459
32a0e547 1460 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1461 return debugfile;
5417f6dc 1462
24ddea62 1463 /* Then try in the global debugfile directories.
f888f159 1464
24ddea62
JK
1465 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1466 cause "/..." lookups. */
5417f6dc 1467
e80aaf61
SM
1468 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1469 = dirnames_to_char_ptr_vec (debug_file_directory);
24ddea62 1470
e80aaf61 1471 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1472 {
a8dbfd58
SM
1473 debugfile = debugdir.get ();
1474 debugfile += "/";
1475 debugfile += dir;
1476 debugfile += debuglink;
aa28a74e 1477
32a0e547 1478 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1479 return debugfile;
24ddea62
JK
1480
1481 /* If the file is in the sysroot, try using its base path in the
1482 global debugfile directory. */
1db33378
PP
1483 if (canon_dir != NULL
1484 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1485 strlen (gdb_sysroot)) == 0
1db33378 1486 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1487 {
a8dbfd58
SM
1488 debugfile = debugdir.get ();
1489 debugfile += (canon_dir + strlen (gdb_sysroot));
1490 debugfile += "/";
1491 debugfile += debuglink;
24ddea62 1492
32a0e547 1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1494 return debugfile;
24ddea62 1495 }
aa28a74e 1496 }
f888f159 1497
a8dbfd58 1498 return std::string ();
1db33378
PP
1499}
1500
7edbb660 1501/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1502 If there were no directory separators in PATH, PATH will be empty
1503 string on return. */
1504
1505static void
1506terminate_after_last_dir_separator (char *path)
1507{
1508 int i;
1509
1510 /* Strip off the final filename part, leaving the directory name,
1511 followed by a slash. The directory can be relative or absolute. */
1512 for (i = strlen(path) - 1; i >= 0; i--)
1513 if (IS_DIR_SEPARATOR (path[i]))
1514 break;
1515
1516 /* If I is -1 then no directory is present there and DIR will be "". */
1517 path[i + 1] = '\0';
1518}
1519
1520/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1521 Returns pathname, or an empty string. */
1db33378 1522
a8dbfd58 1523std::string
1db33378
PP
1524find_separate_debug_file_by_debuglink (struct objfile *objfile)
1525{
1db33378 1526 unsigned long crc32;
1db33378 1527
5eae7aea
TT
1528 gdb::unique_xmalloc_ptr<char> debuglink
1529 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1530
1531 if (debuglink == NULL)
1532 {
1533 /* There's no separate debug info, hence there's no way we could
1534 load it => no warning. */
a8dbfd58 1535 return std::string ();
1db33378
PP
1536 }
1537
5eae7aea
TT
1538 std::string dir = objfile_name (objfile);
1539 terminate_after_last_dir_separator (&dir[0]);
1540 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1541
a8dbfd58
SM
1542 std::string debugfile
1543 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1544 debuglink.get (), crc32, objfile);
1db33378 1545
a8dbfd58 1546 if (debugfile.empty ())
1db33378 1547 {
1db33378
PP
1548 /* For PR gdb/9538, try again with realpath (if different from the
1549 original). */
1550
1551 struct stat st_buf;
1552
4262abfb
JK
1553 if (lstat (objfile_name (objfile), &st_buf) == 0
1554 && S_ISLNK (st_buf.st_mode))
1db33378 1555 {
5eae7aea
TT
1556 gdb::unique_xmalloc_ptr<char> symlink_dir
1557 (lrealpath (objfile_name (objfile)));
1db33378
PP
1558 if (symlink_dir != NULL)
1559 {
5eae7aea
TT
1560 terminate_after_last_dir_separator (symlink_dir.get ());
1561 if (dir != symlink_dir.get ())
1db33378
PP
1562 {
1563 /* Different directory, so try using it. */
5eae7aea
TT
1564 debugfile = find_separate_debug_file (symlink_dir.get (),
1565 symlink_dir.get (),
1566 debuglink.get (),
1db33378
PP
1567 crc32,
1568 objfile);
1569 }
1570 }
1571 }
1db33378 1572 }
aa28a74e 1573
25522fae 1574 return debugfile;
5b5d99cf
JB
1575}
1576
97cbe998
SDJ
1577/* Make sure that OBJF_{READNOW,READNEVER} are not set
1578 simultaneously. */
1579
1580static void
1581validate_readnow_readnever (objfile_flags flags)
1582{
1583 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1584 error (_("-readnow and -readnever cannot be used simultaneously"));
1585}
1586
c906108c
SS
1587/* This is the symbol-file command. Read the file, analyze its
1588 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1589 the command is rather bizarre:
1590
1591 1. The function buildargv implements various quoting conventions
1592 which are undocumented and have little or nothing in common with
1593 the way things are quoted (or not quoted) elsewhere in GDB.
1594
1595 2. Options are used, which are not generally used in GDB (perhaps
1596 "set mapped on", "set readnow on" would be better)
1597
1598 3. The order of options matters, which is contrary to GNU
c906108c
SS
1599 conventions (because it is confusing and inconvenient). */
1600
1601void
1d8b34a7 1602symbol_file_command (const char *args, int from_tty)
c906108c 1603{
c906108c
SS
1604 dont_repeat ();
1605
1606 if (args == NULL)
1607 {
1adeb98a 1608 symbol_file_clear (from_tty);
c906108c
SS
1609 }
1610 else
1611 {
b15cc25c 1612 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1613 symfile_add_flags add_flags = 0;
cb2f3a29 1614 char *name = NULL;
40fc416f
SDJ
1615 bool stop_processing_options = false;
1616 int idx;
1617 char *arg;
cb2f3a29 1618
ecf45d2c
SL
1619 if (from_tty)
1620 add_flags |= SYMFILE_VERBOSE;
1621
773a1edc 1622 gdb_argv built_argv (args);
40fc416f 1623 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1624 {
40fc416f 1625 if (stop_processing_options || *arg != '-')
7f0f8ac8 1626 {
40fc416f
SDJ
1627 if (name == NULL)
1628 name = arg;
1629 else
1630 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1631 }
40fc416f
SDJ
1632 else if (strcmp (arg, "-readnow") == 0)
1633 flags |= OBJF_READNOW;
97cbe998
SDJ
1634 else if (strcmp (arg, "-readnever") == 0)
1635 flags |= OBJF_READNEVER;
40fc416f
SDJ
1636 else if (strcmp (arg, "--") == 0)
1637 stop_processing_options = true;
1638 else
1639 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1640 }
1641
1642 if (name == NULL)
cb2f3a29 1643 error (_("no symbol file name was specified"));
40fc416f 1644
97cbe998
SDJ
1645 validate_readnow_readnever (flags);
1646
40fc416f 1647 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1648 }
1649}
1650
1651/* Set the initial language.
1652
cb2f3a29
MK
1653 FIXME: A better solution would be to record the language in the
1654 psymtab when reading partial symbols, and then use it (if known) to
1655 set the language. This would be a win for formats that encode the
1656 language in an easily discoverable place, such as DWARF. For
1657 stabs, we can jump through hoops looking for specially named
1658 symbols or try to intuit the language from the specific type of
1659 stabs we find, but we can't do that until later when we read in
1660 full symbols. */
c906108c 1661
8b60591b 1662void
fba45db2 1663set_initial_language (void)
c906108c 1664{
9e6c82ad 1665 enum language lang = main_language ();
c906108c 1666
9e6c82ad 1667 if (lang == language_unknown)
01f8c46d 1668 {
bf6d8a91 1669 char *name = main_name ();
d12307c1 1670 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1671
bf6d8a91
TT
1672 if (sym != NULL)
1673 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1674 }
cb2f3a29 1675
ccefe4c4
TT
1676 if (lang == language_unknown)
1677 {
1678 /* Make C the default language */
1679 lang = language_c;
c906108c 1680 }
ccefe4c4
TT
1681
1682 set_language (lang);
1683 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1684}
1685
cb2f3a29
MK
1686/* Open the file specified by NAME and hand it off to BFD for
1687 preliminary analysis. Return a newly initialized bfd *, which
1688 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1689 absolute). In case of trouble, error() is called. */
c906108c 1690
192b62ce 1691gdb_bfd_ref_ptr
97a41605 1692symfile_bfd_open (const char *name)
c906108c 1693{
97a41605 1694 int desc = -1;
c906108c 1695
e0cc99a6 1696 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1697 if (!is_target_filename (name))
f1838a98 1698 {
ee0c3293 1699 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1700
97a41605
GB
1701 /* Look down path for it, allocate 2nd new malloc'd copy. */
1702 desc = openp (getenv ("PATH"),
1703 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1704 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1705#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1706 if (desc < 0)
1707 {
ee0c3293 1708 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1709
ee0c3293 1710 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1711 desc = openp (getenv ("PATH"),
1712 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1713 exename, O_RDONLY | O_BINARY, &absolute_name);
1714 }
c906108c 1715#endif
97a41605 1716 if (desc < 0)
ee0c3293 1717 perror_with_name (expanded_name.get ());
cb2f3a29 1718
e0cc99a6 1719 name = absolute_name.get ();
97a41605 1720 }
c906108c 1721
192b62ce
TT
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
faab9922
JK
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
97a41605 1726
192b62ce
TT
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1729
192b62ce
TT
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1733
1734 return sym_bfd;
c906108c
SS
1735}
1736
cb2f3a29
MK
1737/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1738 the section was not found. */
1739
0e931cf0 1740int
a121b7c1 1741get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1742{
1743 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1744
0e931cf0
JB
1745 if (sect)
1746 return sect->index;
1747 else
1748 return -1;
1749}
1750
c256e171
DE
1751/* Link SF into the global symtab_fns list.
1752 FLAVOUR is the file format that SF handles.
1753 Called on startup by the _initialize routine in each object file format
1754 reader, to register information about each format the reader is prepared
1755 to handle. */
c906108c
SS
1756
1757void
c256e171 1758add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1759{
905014d7 1760 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1761}
1762
cb2f3a29
MK
1763/* Initialize OBJFILE to read symbols from its associated BFD. It
1764 either returns or calls error(). The result is an initialized
1765 struct sym_fns in the objfile structure, that contains cached
1766 information about the symbol file. */
c906108c 1767
00b5771c 1768static const struct sym_fns *
31d99776 1769find_sym_fns (bfd *abfd)
c906108c 1770{
31d99776 1771 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1772
75245b24
MS
1773 if (our_flavour == bfd_target_srec_flavour
1774 || our_flavour == bfd_target_ihex_flavour
1775 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1776 return NULL; /* No symbols. */
75245b24 1777
905014d7
SM
1778 for (const registered_sym_fns &rsf : symtab_fns)
1779 if (our_flavour == rsf.sym_flavour)
1780 return rsf.sym_fns;
cb2f3a29 1781
8a3fe4f8 1782 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1783 bfd_get_target (abfd));
c906108c
SS
1784}
1785\f
cb2f3a29 1786
c906108c
SS
1787/* This function runs the load command of our current target. */
1788
1789static void
5fed81ff 1790load_command (const char *arg, int from_tty)
c906108c 1791{
e5cc9f32
JB
1792 dont_repeat ();
1793
4487aabf
PA
1794 /* The user might be reloading because the binary has changed. Take
1795 this opportunity to check. */
1796 reopen_exec_file ();
1797 reread_symbols ();
1798
b577b6af 1799 std::string temp;
c906108c 1800 if (arg == NULL)
1986bccd 1801 {
b577b6af 1802 const char *parg, *prev;
1986bccd 1803
b577b6af 1804 arg = get_exec_file (1);
1986bccd 1805
b577b6af
TT
1806 /* We may need to quote this string so buildargv can pull it
1807 apart. */
1808 prev = parg = arg;
1986bccd
AS
1809 while ((parg = strpbrk (parg, "\\\"'\t ")))
1810 {
b577b6af
TT
1811 temp.append (prev, parg - prev);
1812 prev = parg++;
1813 temp.push_back ('\\');
1986bccd 1814 }
b577b6af
TT
1815 /* If we have not copied anything yet, then we didn't see a
1816 character to quote, and we can just leave ARG unchanged. */
1817 if (!temp.empty ())
1986bccd 1818 {
b577b6af
TT
1819 temp.append (prev);
1820 arg = temp.c_str ();
1986bccd
AS
1821 }
1822 }
1823
c906108c 1824 target_load (arg, from_tty);
2889e661
JB
1825
1826 /* After re-loading the executable, we don't really know which
1827 overlays are mapped any more. */
1828 overlay_cache_invalid = 1;
c906108c
SS
1829}
1830
1831/* This version of "load" should be usable for any target. Currently
1832 it is just used for remote targets, not inftarg.c or core files,
1833 on the theory that only in that case is it useful.
1834
1835 Avoiding xmodem and the like seems like a win (a) because we don't have
1836 to worry about finding it, and (b) On VMS, fork() is very slow and so
1837 we don't want to run a subprocess. On the other hand, I'm not sure how
1838 performance compares. */
917317f4 1839
917317f4
JM
1840static int validate_download = 0;
1841
e4f9b4d5
MS
1842/* Callback service function for generic_load (bfd_map_over_sections). */
1843
1844static void
1845add_section_size_callback (bfd *abfd, asection *asec, void *data)
1846{
19ba03f4 1847 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1848
2c500098 1849 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1850}
1851
a76d924d 1852/* Opaque data for load_progress. */
55089490
TT
1853struct load_progress_data
1854{
a76d924d 1855 /* Cumulative data. */
55089490
TT
1856 unsigned long write_count = 0;
1857 unsigned long data_count = 0;
1858 bfd_size_type total_size = 0;
a76d924d
DJ
1859};
1860
1861/* Opaque data for load_progress for a single section. */
55089490
TT
1862struct load_progress_section_data
1863{
1864 load_progress_section_data (load_progress_data *cumulative_,
1865 const char *section_name_, ULONGEST section_size_,
1866 CORE_ADDR lma_, gdb_byte *buffer_)
1867 : cumulative (cumulative_), section_name (section_name_),
1868 section_size (section_size_), lma (lma_), buffer (buffer_)
1869 {}
1870
a76d924d 1871 struct load_progress_data *cumulative;
cf7a04e8 1872
a76d924d 1873 /* Per-section data. */
cf7a04e8 1874 const char *section_name;
55089490 1875 ULONGEST section_sent = 0;
cf7a04e8
DJ
1876 ULONGEST section_size;
1877 CORE_ADDR lma;
1878 gdb_byte *buffer;
e4f9b4d5
MS
1879};
1880
55089490
TT
1881/* Opaque data for load_section_callback. */
1882struct load_section_data
1883{
1884 load_section_data (load_progress_data *progress_data_)
1885 : progress_data (progress_data_)
1886 {}
1887
1888 ~load_section_data ()
1889 {
1890 for (auto &&request : requests)
1891 {
1892 xfree (request.data);
1893 delete ((load_progress_section_data *) request.baton);
1894 }
1895 }
1896
1897 CORE_ADDR load_offset = 0;
1898 struct load_progress_data *progress_data;
1899 std::vector<struct memory_write_request> requests;
1900};
1901
a76d924d 1902/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1903
1904static void
1905load_progress (ULONGEST bytes, void *untyped_arg)
1906{
19ba03f4
SM
1907 struct load_progress_section_data *args
1908 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1909 struct load_progress_data *totals;
1910
1911 if (args == NULL)
1912 /* Writing padding data. No easy way to get at the cumulative
1913 stats, so just ignore this. */
1914 return;
1915
1916 totals = args->cumulative;
1917
1918 if (bytes == 0 && args->section_sent == 0)
1919 {
1920 /* The write is just starting. Let the user know we've started
1921 this section. */
112e8700
SM
1922 current_uiout->message ("Loading section %s, size %s lma %s\n",
1923 args->section_name,
1924 hex_string (args->section_size),
1925 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1926 return;
1927 }
cf7a04e8
DJ
1928
1929 if (validate_download)
1930 {
1931 /* Broken memories and broken monitors manifest themselves here
1932 when bring new computers to life. This doubles already slow
1933 downloads. */
1934 /* NOTE: cagney/1999-10-18: A more efficient implementation
1935 might add a verify_memory() method to the target vector and
1936 then use that. remote.c could implement that method using
1937 the ``qCRC'' packet. */
0efef640 1938 gdb::byte_vector check (bytes);
cf7a04e8 1939
0efef640 1940 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1941 error (_("Download verify read failed at %s"),
f5656ead 1942 paddress (target_gdbarch (), args->lma));
0efef640 1943 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1944 error (_("Download verify compare failed at %s"),
f5656ead 1945 paddress (target_gdbarch (), args->lma));
cf7a04e8 1946 }
a76d924d 1947 totals->data_count += bytes;
cf7a04e8
DJ
1948 args->lma += bytes;
1949 args->buffer += bytes;
a76d924d 1950 totals->write_count += 1;
cf7a04e8 1951 args->section_sent += bytes;
522002f9 1952 if (check_quit_flag ()
cf7a04e8
DJ
1953 || (deprecated_ui_load_progress_hook != NULL
1954 && deprecated_ui_load_progress_hook (args->section_name,
1955 args->section_sent)))
1956 error (_("Canceled the download"));
1957
1958 if (deprecated_show_load_progress != NULL)
1959 deprecated_show_load_progress (args->section_name,
1960 args->section_sent,
1961 args->section_size,
a76d924d
DJ
1962 totals->data_count,
1963 totals->total_size);
cf7a04e8
DJ
1964}
1965
e4f9b4d5
MS
1966/* Callback service function for generic_load (bfd_map_over_sections). */
1967
1968static void
1969load_section_callback (bfd *abfd, asection *asec, void *data)
1970{
19ba03f4 1971 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1972 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1973 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1974
cf7a04e8
DJ
1975 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1976 return;
e4f9b4d5 1977
cf7a04e8
DJ
1978 if (size == 0)
1979 return;
e4f9b4d5 1980
55089490
TT
1981 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1982 ULONGEST end = begin + size;
1983 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 1984 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 1985
55089490
TT
1986 load_progress_section_data *section_data
1987 = new load_progress_section_data (args->progress_data, sect_name, size,
1988 begin, buffer);
cf7a04e8 1989
55089490 1990 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
1991}
1992
dcb07cfa
PA
1993static void print_transfer_performance (struct ui_file *stream,
1994 unsigned long data_count,
1995 unsigned long write_count,
1996 std::chrono::steady_clock::duration d);
1997
c906108c 1998void
9cbe5fff 1999generic_load (const char *args, int from_tty)
c906108c 2000{
a76d924d 2001 struct load_progress_data total_progress;
55089490 2002 struct load_section_data cbdata (&total_progress);
79a45e25 2003 struct ui_out *uiout = current_uiout;
a76d924d 2004
d1a41061
PP
2005 if (args == NULL)
2006 error_no_arg (_("file to load"));
1986bccd 2007
773a1edc 2008 gdb_argv argv (args);
1986bccd 2009
ee0c3293 2010 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2011
2012 if (argv[1] != NULL)
917317f4 2013 {
f698ca8e 2014 const char *endptr;
ba5f2f8a 2015
f698ca8e 2016 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2017
2018 /* If the last word was not a valid number then
2019 treat it as a file name with spaces in. */
2020 if (argv[1] == endptr)
2021 error (_("Invalid download offset:%s."), argv[1]);
2022
2023 if (argv[2] != NULL)
2024 error (_("Too many parameters."));
917317f4 2025 }
c906108c 2026
c378eb4e 2027 /* Open the file for loading. */
ee0c3293 2028 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2029 if (loadfile_bfd == NULL)
ee0c3293 2030 perror_with_name (filename.get ());
917317f4 2031
192b62ce 2032 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2033 {
ee0c3293 2034 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2035 bfd_errmsg (bfd_get_error ()));
2036 }
c5aa993b 2037
192b62ce 2038 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2039 (void *) &total_progress.total_size);
2040
192b62ce 2041 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2042
dcb07cfa
PA
2043 using namespace std::chrono;
2044
2045 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2046
a76d924d
DJ
2047 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2048 load_progress) != 0)
2049 error (_("Load failed"));
c906108c 2050
dcb07cfa 2051 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2052
55089490 2053 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2054 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2055 uiout->text ("Start address ");
2056 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2057 uiout->text (", load size ");
2058 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2059 uiout->text ("\n");
fb14de7b 2060 regcache_write_pc (get_current_regcache (), entry);
c906108c 2061
38963c97
DJ
2062 /* Reset breakpoints, now that we have changed the load image. For
2063 instance, breakpoints may have been set (or reset, by
2064 post_create_inferior) while connected to the target but before we
2065 loaded the program. In that case, the prologue analyzer could
2066 have read instructions from the target to find the right
2067 breakpoint locations. Loading has changed the contents of that
2068 memory. */
2069
2070 breakpoint_re_set ();
2071
a76d924d
DJ
2072 print_transfer_performance (gdb_stdout, total_progress.data_count,
2073 total_progress.write_count,
dcb07cfa 2074 end_time - start_time);
c906108c
SS
2075}
2076
dcb07cfa
PA
2077/* Report on STREAM the performance of a memory transfer operation,
2078 such as 'load'. DATA_COUNT is the number of bytes transferred.
2079 WRITE_COUNT is the number of separate write operations, or 0, if
2080 that information is not available. TIME is how long the operation
2081 lasted. */
c906108c 2082
dcb07cfa 2083static void
d9fcf2fb 2084print_transfer_performance (struct ui_file *stream,
917317f4
JM
2085 unsigned long data_count,
2086 unsigned long write_count,
dcb07cfa 2087 std::chrono::steady_clock::duration time)
917317f4 2088{
dcb07cfa 2089 using namespace std::chrono;
79a45e25 2090 struct ui_out *uiout = current_uiout;
2b71414d 2091
dcb07cfa 2092 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2093
112e8700 2094 uiout->text ("Transfer rate: ");
dcb07cfa 2095 if (ms.count () > 0)
8b93c638 2096 {
dcb07cfa 2097 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2098
112e8700 2099 if (uiout->is_mi_like_p ())
9f43d28c 2100 {
112e8700
SM
2101 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2102 uiout->text (" bits/sec");
9f43d28c
DJ
2103 }
2104 else if (rate < 1024)
2105 {
112e8700
SM
2106 uiout->field_fmt ("transfer-rate", "%lu", rate);
2107 uiout->text (" bytes/sec");
9f43d28c
DJ
2108 }
2109 else
2110 {
112e8700
SM
2111 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2112 uiout->text (" KB/sec");
9f43d28c 2113 }
8b93c638
JM
2114 }
2115 else
2116 {
112e8700
SM
2117 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2118 uiout->text (" bits in <1 sec");
8b93c638
JM
2119 }
2120 if (write_count > 0)
2121 {
112e8700
SM
2122 uiout->text (", ");
2123 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2124 uiout->text (" bytes/write");
8b93c638 2125 }
112e8700 2126 uiout->text (".\n");
c906108c
SS
2127}
2128
2129/* This function allows the addition of incrementally linked object files.
2130 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2131/* Note: ezannoni 2000-04-13 This function/command used to have a
2132 special case syntax for the rombug target (Rombug is the boot
2133 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2134 rombug case, the user doesn't need to supply a text address,
2135 instead a call to target_link() (in target.c) would supply the
c378eb4e 2136 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2137
c906108c 2138static void
2cf311eb 2139add_symbol_file_command (const char *args, int from_tty)
c906108c 2140{
5af949e3 2141 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2142 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2143 char *arg;
2acceee2
JM
2144 int argcnt = 0;
2145 int sec_num = 0;
76ad5e1e 2146 struct objfile *objf;
b15cc25c
PA
2147 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2148 symfile_add_flags add_flags = 0;
2149
2150 if (from_tty)
2151 add_flags |= SYMFILE_VERBOSE;
db162d44 2152
a39a16c4 2153 struct sect_opt
2acceee2 2154 {
a121b7c1
PA
2155 const char *name;
2156 const char *value;
a39a16c4 2157 };
db162d44 2158
a39a16c4 2159 struct section_addr_info *section_addrs;
40fc416f
SDJ
2160 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2161 bool stop_processing_options = false;
3017564a 2162 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2163
c906108c
SS
2164 dont_repeat ();
2165
2166 if (args == NULL)
8a3fe4f8 2167 error (_("add-symbol-file takes a file name and an address"));
c906108c 2168
40fc416f 2169 bool seen_addr = false;
773a1edc 2170 gdb_argv argv (args);
db162d44 2171
5b96932b
AS
2172 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2173 {
40fc416f 2174 if (stop_processing_options || *arg != '-')
41dc8db8 2175 {
40fc416f 2176 if (filename == NULL)
41dc8db8 2177 {
40fc416f
SDJ
2178 /* First non-option argument is always the filename. */
2179 filename.reset (tilde_expand (arg));
41dc8db8 2180 }
40fc416f 2181 else if (!seen_addr)
41dc8db8 2182 {
40fc416f
SDJ
2183 /* The second non-option argument is always the text
2184 address at which to load the program. */
2185 sect_opts[0].value = arg;
2186 seen_addr = true;
41dc8db8
MB
2187 }
2188 else
02ca603a 2189 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2190 }
40fc416f
SDJ
2191 else if (strcmp (arg, "-readnow") == 0)
2192 flags |= OBJF_READNOW;
97cbe998
SDJ
2193 else if (strcmp (arg, "-readnever") == 0)
2194 flags |= OBJF_READNEVER;
40fc416f
SDJ
2195 else if (strcmp (arg, "-s") == 0)
2196 {
2197 if (argv[argcnt + 1] == NULL)
2198 error (_("Missing section name after \"-s\""));
2199 else if (argv[argcnt + 2] == NULL)
2200 error (_("Missing section address after \"-s\""));
2201
2202 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2203
2204 sect_opts.push_back (sect);
2205 argcnt += 2;
2206 }
2207 else if (strcmp (arg, "--") == 0)
2208 stop_processing_options = true;
2209 else
2210 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2211 }
c906108c 2212
40fc416f
SDJ
2213 if (filename == NULL)
2214 error (_("You must provide a filename to be loaded."));
2215
97cbe998
SDJ
2216 validate_readnow_readnever (flags);
2217
927890d0
JB
2218 /* This command takes at least two arguments. The first one is a
2219 filename, and the second is the address where this file has been
2220 loaded. Abort now if this address hasn't been provided by the
2221 user. */
40fc416f 2222 if (!seen_addr)
ee0c3293
TT
2223 error (_("The address where %s has been loaded is missing"),
2224 filename.get ());
927890d0 2225
c378eb4e 2226 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2227 a sect_addr_info structure to be passed around to other
2228 functions. We have to split this up into separate print
bb599908 2229 statements because hex_string returns a local static
c378eb4e 2230 string. */
5417f6dc 2231
ee0c3293
TT
2232 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2233 filename.get ());
f978cb06 2234 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2235 make_cleanup (xfree, section_addrs);
f978cb06 2236 for (sect_opt &sect : sect_opts)
c906108c 2237 {
db162d44 2238 CORE_ADDR addr;
f978cb06
TT
2239 const char *val = sect.value;
2240 const char *sec = sect.name;
5417f6dc 2241
ae822768 2242 addr = parse_and_eval_address (val);
db162d44 2243
db162d44 2244 /* Here we store the section offsets in the order they were
c378eb4e 2245 entered on the command line. */
a121b7c1 2246 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2247 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2248 printf_unfiltered ("\t%s_addr = %s\n", sec,
2249 paddress (gdbarch, addr));
db162d44
EZ
2250 sec_num++;
2251
5417f6dc 2252 /* The object's sections are initialized when a
db162d44 2253 call is made to build_objfile_section_table (objfile).
5417f6dc 2254 This happens in reread_symbols.
db162d44
EZ
2255 At this point, we don't know what file type this is,
2256 so we can't determine what section names are valid. */
2acceee2 2257 }
d76488d8 2258 section_addrs->num_sections = sec_num;
db162d44 2259
2acceee2 2260 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2261 error (_("Not confirmed."));
c906108c 2262
ee0c3293 2263 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2264
2265 add_target_sections_of_objfile (objf);
c906108c
SS
2266
2267 /* Getting new symbols may change our opinion about what is
2268 frameless. */
2269 reinit_frame_cache ();
db162d44 2270 do_cleanups (my_cleanups);
c906108c
SS
2271}
2272\f
70992597 2273
63644780
NB
2274/* This function removes a symbol file that was added via add-symbol-file. */
2275
2276static void
2cf311eb 2277remove_symbol_file_command (const char *args, int from_tty)
63644780 2278{
63644780 2279 struct objfile *objf = NULL;
63644780 2280 struct program_space *pspace = current_program_space;
63644780
NB
2281
2282 dont_repeat ();
2283
2284 if (args == NULL)
2285 error (_("remove-symbol-file: no symbol file provided"));
2286
773a1edc 2287 gdb_argv argv (args);
63644780
NB
2288
2289 if (strcmp (argv[0], "-a") == 0)
2290 {
2291 /* Interpret the next argument as an address. */
2292 CORE_ADDR addr;
2293
2294 if (argv[1] == NULL)
2295 error (_("Missing address argument"));
2296
2297 if (argv[2] != NULL)
2298 error (_("Junk after %s"), argv[1]);
2299
2300 addr = parse_and_eval_address (argv[1]);
2301
2302 ALL_OBJFILES (objf)
2303 {
d03de421
PA
2304 if ((objf->flags & OBJF_USERLOADED) != 0
2305 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2306 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2307 break;
2308 }
2309 }
2310 else if (argv[0] != NULL)
2311 {
2312 /* Interpret the current argument as a file name. */
63644780
NB
2313
2314 if (argv[1] != NULL)
2315 error (_("Junk after %s"), argv[0]);
2316
ee0c3293 2317 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2318
2319 ALL_OBJFILES (objf)
2320 {
d03de421
PA
2321 if ((objf->flags & OBJF_USERLOADED) != 0
2322 && (objf->flags & OBJF_SHARED) != 0
63644780 2323 && objf->pspace == pspace
ee0c3293 2324 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2325 break;
2326 }
2327 }
2328
2329 if (objf == NULL)
2330 error (_("No symbol file found"));
2331
2332 if (from_tty
2333 && !query (_("Remove symbol table from file \"%s\"? "),
2334 objfile_name (objf)))
2335 error (_("Not confirmed."));
2336
9e86da07 2337 delete objf;
63644780 2338 clear_symtab_users (0);
63644780
NB
2339}
2340
c906108c 2341/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2342
c906108c 2343void
fba45db2 2344reread_symbols (void)
c906108c
SS
2345{
2346 struct objfile *objfile;
2347 long new_modtime;
c906108c
SS
2348 struct stat new_statbuf;
2349 int res;
4c404b8b 2350 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2351
2352 /* With the addition of shared libraries, this should be modified,
2353 the load time should be saved in the partial symbol tables, since
2354 different tables may come from different source files. FIXME.
2355 This routine should then walk down each partial symbol table
c378eb4e 2356 and see if the symbol table that it originates from has been changed. */
c906108c 2357
c5aa993b
JM
2358 for (objfile = object_files; objfile; objfile = objfile->next)
2359 {
9cce227f
TG
2360 if (objfile->obfd == NULL)
2361 continue;
2362
2363 /* Separate debug objfiles are handled in the main objfile. */
2364 if (objfile->separate_debug_objfile_backlink)
2365 continue;
2366
02aeec7b
JB
2367 /* If this object is from an archive (what you usually create with
2368 `ar', often called a `static library' on most systems, though
2369 a `shared library' on AIX is also an archive), then you should
2370 stat on the archive name, not member name. */
9cce227f
TG
2371 if (objfile->obfd->my_archive)
2372 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2373 else
4262abfb 2374 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2375 if (res != 0)
2376 {
c378eb4e 2377 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2378 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2379 objfile_name (objfile));
9cce227f
TG
2380 continue;
2381 }
2382 new_modtime = new_statbuf.st_mtime;
2383 if (new_modtime != objfile->mtime)
2384 {
2385 struct cleanup *old_cleanups;
2386 struct section_offsets *offsets;
2387 int num_offsets;
24ba069a 2388 char *original_name;
9cce227f
TG
2389
2390 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2391 objfile_name (objfile));
9cce227f
TG
2392
2393 /* There are various functions like symbol_file_add,
2394 symfile_bfd_open, syms_from_objfile, etc., which might
2395 appear to do what we want. But they have various other
2396 effects which we *don't* want. So we just do stuff
2397 ourselves. We don't worry about mapped files (for one thing,
2398 any mapped file will be out of date). */
2399
2400 /* If we get an error, blow away this objfile (not sure if
2401 that is the correct response for things like shared
2402 libraries). */
ed2b3126
TT
2403 std::unique_ptr<struct objfile> objfile_holder (objfile);
2404
9cce227f 2405 /* We need to do this whenever any symbols go away. */
ed2b3126 2406 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2407
0ba1096a
KT
2408 if (exec_bfd != NULL
2409 && filename_cmp (bfd_get_filename (objfile->obfd),
2410 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2411 {
2412 /* Reload EXEC_BFD without asking anything. */
2413
2414 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2415 }
2416
f6eeced0
JK
2417 /* Keep the calls order approx. the same as in free_objfile. */
2418
2419 /* Free the separate debug objfiles. It will be
2420 automatically recreated by sym_read. */
2421 free_objfile_separate_debug (objfile);
2422
2423 /* Remove any references to this objfile in the global
2424 value lists. */
2425 preserve_values (objfile);
2426
2427 /* Nuke all the state that we will re-read. Much of the following
2428 code which sets things to NULL really is necessary to tell
2429 other parts of GDB that there is nothing currently there.
2430
2431 Try to keep the freeing order compatible with free_objfile. */
2432
2433 if (objfile->sf != NULL)
2434 {
2435 (*objfile->sf->sym_finish) (objfile);
2436 }
2437
2438 clear_objfile_data (objfile);
2439
e1507e95 2440 /* Clean up any state BFD has sitting around. */
a4453b7e 2441 {
192b62ce 2442 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2443 char *obfd_filename;
a4453b7e
TT
2444
2445 obfd_filename = bfd_get_filename (objfile->obfd);
2446 /* Open the new BFD before freeing the old one, so that
2447 the filename remains live. */
192b62ce
TT
2448 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2449 objfile->obfd = temp.release ();
e1507e95 2450 if (objfile->obfd == NULL)
192b62ce 2451 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2452 }
2453
24ba069a
JK
2454 original_name = xstrdup (objfile->original_name);
2455 make_cleanup (xfree, original_name);
2456
9cce227f
TG
2457 /* bfd_openr sets cacheable to true, which is what we want. */
2458 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2459 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2460 bfd_errmsg (bfd_get_error ()));
2461
2462 /* Save the offsets, we will nuke them with the rest of the
2463 objfile_obstack. */
2464 num_offsets = objfile->num_sections;
2465 offsets = ((struct section_offsets *)
2466 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2467 memcpy (offsets, objfile->section_offsets,
2468 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2469
9cce227f
TG
2470 /* FIXME: Do we have to free a whole linked list, or is this
2471 enough? */
af5bf4ad
SM
2472 objfile->global_psymbols.clear ();
2473 objfile->static_psymbols.clear ();
9cce227f 2474
c378eb4e 2475 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2476 psymbol_bcache_free (objfile->psymbol_cache);
2477 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2478
2479 /* NB: after this call to obstack_free, objfiles_changed
2480 will need to be called (see discussion below). */
9cce227f
TG
2481 obstack_free (&objfile->objfile_obstack, 0);
2482 objfile->sections = NULL;
43f3e411 2483 objfile->compunit_symtabs = NULL;
9cce227f
TG
2484 objfile->psymtabs = NULL;
2485 objfile->psymtabs_addrmap = NULL;
2486 objfile->free_psymtabs = NULL;
34eaf542 2487 objfile->template_symbols = NULL;
9cce227f 2488
9cce227f
TG
2489 /* obstack_init also initializes the obstack so it is
2490 empty. We could use obstack_specify_allocation but
d82ea6a8 2491 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2492 obstack_init (&objfile->objfile_obstack);
779bd270 2493
846060df
JB
2494 /* set_objfile_per_bfd potentially allocates the per-bfd
2495 data on the objfile's obstack (if sharing data across
2496 multiple users is not possible), so it's important to
2497 do it *after* the obstack has been initialized. */
2498 set_objfile_per_bfd (objfile);
2499
224c3ddb
SM
2500 objfile->original_name
2501 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2502 strlen (original_name));
24ba069a 2503
779bd270
DE
2504 /* Reset the sym_fns pointer. The ELF reader can change it
2505 based on whether .gdb_index is present, and we need it to
2506 start over. PR symtab/15885 */
8fb8eb5c 2507 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2508
d82ea6a8 2509 build_objfile_section_table (objfile);
9cce227f
TG
2510 terminate_minimal_symbol_table (objfile);
2511
2512 /* We use the same section offsets as from last time. I'm not
2513 sure whether that is always correct for shared libraries. */
2514 objfile->section_offsets = (struct section_offsets *)
2515 obstack_alloc (&objfile->objfile_obstack,
2516 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2517 memcpy (objfile->section_offsets, offsets,
2518 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2519 objfile->num_sections = num_offsets;
2520
2521 /* What the hell is sym_new_init for, anyway? The concept of
2522 distinguishing between the main file and additional files
2523 in this way seems rather dubious. */
2524 if (objfile == symfile_objfile)
c906108c 2525 {
9cce227f 2526 (*objfile->sf->sym_new_init) (objfile);
c906108c 2527 }
9cce227f
TG
2528
2529 (*objfile->sf->sym_init) (objfile);
2530 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2531
2532 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2533
2534 /* We are about to read new symbols and potentially also
2535 DWARF information. Some targets may want to pass addresses
2536 read from DWARF DIE's through an adjustment function before
2537 saving them, like MIPS, which may call into
2538 "find_pc_section". When called, that function will make
2539 use of per-objfile program space data.
2540
2541 Since we discarded our section information above, we have
2542 dangling pointers in the per-objfile program space data
2543 structure. Force GDB to update the section mapping
2544 information by letting it know the objfile has changed,
2545 making the dangling pointers point to correct data
2546 again. */
2547
2548 objfiles_changed ();
2549
608e2dbb 2550 read_symbols (objfile, 0);
b11896a5 2551
9cce227f 2552 if (!objfile_has_symbols (objfile))
c906108c 2553 {
9cce227f
TG
2554 wrap_here ("");
2555 printf_unfiltered (_("(no debugging symbols found)\n"));
2556 wrap_here ("");
c5aa993b 2557 }
9cce227f
TG
2558
2559 /* We're done reading the symbol file; finish off complaints. */
2560 clear_complaints (&symfile_complaints, 0, 1);
2561
2562 /* Getting new symbols may change our opinion about what is
2563 frameless. */
2564
2565 reinit_frame_cache ();
2566
2567 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2568 objfile_holder.release ();
9cce227f
TG
2569 discard_cleanups (old_cleanups);
2570
2571 /* If the mtime has changed between the time we set new_modtime
2572 and now, we *want* this to be out of date, so don't call stat
2573 again now. */
2574 objfile->mtime = new_modtime;
9cce227f 2575 init_entry_point_info (objfile);
4ac39b97 2576
4c404b8b 2577 new_objfiles.push_back (objfile);
c906108c
SS
2578 }
2579 }
c906108c 2580
4c404b8b 2581 if (!new_objfiles.empty ())
ea53e89f 2582 {
c1e56572 2583 clear_symtab_users (0);
4ac39b97
JK
2584
2585 /* clear_objfile_data for each objfile was called before freeing it and
2586 observer_notify_new_objfile (NULL) has been called by
2587 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2588 for (auto iter : new_objfiles)
2589 observer_notify_new_objfile (iter);
4ac39b97 2590
ea53e89f
JB
2591 /* At least one objfile has changed, so we can consider that
2592 the executable we're debugging has changed too. */
781b42b0 2593 observer_notify_executable_changed ();
ea53e89f 2594 }
c906108c 2595}
c906108c
SS
2596\f
2597
593e3209 2598struct filename_language
c5aa993b 2599{
593e3209
SM
2600 filename_language (const std::string &ext_, enum language lang_)
2601 : ext (ext_), lang (lang_)
2602 {}
3fcf0b0d 2603
593e3209
SM
2604 std::string ext;
2605 enum language lang;
2606};
c906108c 2607
593e3209 2608static std::vector<filename_language> filename_language_table;
c906108c 2609
56618e20
TT
2610/* See symfile.h. */
2611
2612void
2613add_filename_language (const char *ext, enum language lang)
c906108c 2614{
593e3209 2615 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2616}
2617
2618static char *ext_args;
920d2a44
AC
2619static void
2620show_ext_args (struct ui_file *file, int from_tty,
2621 struct cmd_list_element *c, const char *value)
2622{
3e43a32a
MS
2623 fprintf_filtered (file,
2624 _("Mapping between filename extension "
2625 "and source language is \"%s\".\n"),
920d2a44
AC
2626 value);
2627}
c906108c
SS
2628
2629static void
eb4c3f4a
TT
2630set_ext_lang_command (const char *args,
2631 int from_tty, struct cmd_list_element *e)
c906108c 2632{
c906108c
SS
2633 char *cp = ext_args;
2634 enum language lang;
2635
c378eb4e 2636 /* First arg is filename extension, starting with '.' */
c906108c 2637 if (*cp != '.')
8a3fe4f8 2638 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2639
2640 /* Find end of first arg. */
c5aa993b 2641 while (*cp && !isspace (*cp))
c906108c
SS
2642 cp++;
2643
2644 if (*cp == '\0')
3e43a32a
MS
2645 error (_("'%s': two arguments required -- "
2646 "filename extension and language"),
c906108c
SS
2647 ext_args);
2648
c378eb4e 2649 /* Null-terminate first arg. */
c5aa993b 2650 *cp++ = '\0';
c906108c
SS
2651
2652 /* Find beginning of second arg, which should be a source language. */
529480d0 2653 cp = skip_spaces (cp);
c906108c
SS
2654
2655 if (*cp == '\0')
3e43a32a
MS
2656 error (_("'%s': two arguments required -- "
2657 "filename extension and language"),
c906108c
SS
2658 ext_args);
2659
2660 /* Lookup the language from among those we know. */
2661 lang = language_enum (cp);
2662
593e3209 2663 auto it = filename_language_table.begin ();
c906108c 2664 /* Now lookup the filename extension: do we already know it? */
593e3209 2665 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2666 {
593e3209 2667 if (it->ext == ext_args)
3fcf0b0d
TT
2668 break;
2669 }
c906108c 2670
593e3209 2671 if (it == filename_language_table.end ())
c906108c 2672 {
c378eb4e 2673 /* New file extension. */
c906108c
SS
2674 add_filename_language (ext_args, lang);
2675 }
2676 else
2677 {
c378eb4e 2678 /* Redefining a previously known filename extension. */
c906108c
SS
2679
2680 /* if (from_tty) */
2681 /* query ("Really make files of type %s '%s'?", */
2682 /* ext_args, language_str (lang)); */
2683
593e3209 2684 it->lang = lang;
c906108c
SS
2685 }
2686}
2687
2688static void
1d12d88f 2689info_ext_lang_command (const char *args, int from_tty)
c906108c 2690{
a3f17187 2691 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2692 printf_filtered ("\n\n");
593e3209
SM
2693 for (const filename_language &entry : filename_language_table)
2694 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2695 language_str (entry.lang));
c906108c
SS
2696}
2697
c906108c 2698enum language
dd786858 2699deduce_language_from_filename (const char *filename)
c906108c 2700{
e6a959d6 2701 const char *cp;
c906108c
SS
2702
2703 if (filename != NULL)
2704 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2705 {
593e3209
SM
2706 for (const filename_language &entry : filename_language_table)
2707 if (entry.ext == cp)
2708 return entry.lang;
3fcf0b0d 2709 }
c906108c
SS
2710
2711 return language_unknown;
2712}
2713\f
43f3e411
DE
2714/* Allocate and initialize a new symbol table.
2715 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2716
2717struct symtab *
43f3e411 2718allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2719{
43f3e411
DE
2720 struct objfile *objfile = cust->objfile;
2721 struct symtab *symtab
2722 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2723
19ba03f4
SM
2724 symtab->filename
2725 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2726 objfile->per_bfd->filename_cache);
c5aa993b
JM
2727 symtab->fullname = NULL;
2728 symtab->language = deduce_language_from_filename (filename);
c906108c 2729
db0fec5c
DE
2730 /* This can be very verbose with lots of headers.
2731 Only print at higher debug levels. */
2732 if (symtab_create_debug >= 2)
45cfd468
DE
2733 {
2734 /* Be a bit clever with debugging messages, and don't print objfile
2735 every time, only when it changes. */
2736 static char *last_objfile_name = NULL;
2737
2738 if (last_objfile_name == NULL
4262abfb 2739 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2740 {
2741 xfree (last_objfile_name);
4262abfb 2742 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2743 fprintf_unfiltered (gdb_stdlog,
2744 "Creating one or more symtabs for objfile %s ...\n",
2745 last_objfile_name);
2746 }
2747 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2748 "Created symtab %s for module %s.\n",
2749 host_address_to_string (symtab), filename);
45cfd468
DE
2750 }
2751
43f3e411
DE
2752 /* Add it to CUST's list of symtabs. */
2753 if (cust->filetabs == NULL)
2754 {
2755 cust->filetabs = symtab;
2756 cust->last_filetab = symtab;
2757 }
2758 else
2759 {
2760 cust->last_filetab->next = symtab;
2761 cust->last_filetab = symtab;
2762 }
2763
2764 /* Backlink to the containing compunit symtab. */
2765 symtab->compunit_symtab = cust;
2766
2767 return symtab;
2768}
2769
2770/* Allocate and initialize a new compunit.
2771 NAME is the name of the main source file, if there is one, or some
2772 descriptive text if there are no source files. */
2773
2774struct compunit_symtab *
2775allocate_compunit_symtab (struct objfile *objfile, const char *name)
2776{
2777 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2778 struct compunit_symtab);
2779 const char *saved_name;
2780
2781 cu->objfile = objfile;
2782
2783 /* The name we record here is only for display/debugging purposes.
2784 Just save the basename to avoid path issues (too long for display,
2785 relative vs absolute, etc.). */
2786 saved_name = lbasename (name);
224c3ddb
SM
2787 cu->name
2788 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2789 strlen (saved_name));
43f3e411
DE
2790
2791 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2792
2793 if (symtab_create_debug)
2794 {
2795 fprintf_unfiltered (gdb_stdlog,
2796 "Created compunit symtab %s for %s.\n",
2797 host_address_to_string (cu),
2798 cu->name);
2799 }
2800
2801 return cu;
2802}
2803
2804/* Hook CU to the objfile it comes from. */
2805
2806void
2807add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2808{
2809 cu->next = cu->objfile->compunit_symtabs;
2810 cu->objfile->compunit_symtabs = cu;
c906108c 2811}
c906108c 2812\f
c5aa993b 2813
b15cc25c
PA
2814/* Reset all data structures in gdb which may contain references to
2815 symbol table data. */
c906108c
SS
2816
2817void
b15cc25c 2818clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2819{
2820 /* Someday, we should do better than this, by only blowing away
2821 the things that really need to be blown. */
c0501be5
DJ
2822
2823 /* Clear the "current" symtab first, because it is no longer valid.
2824 breakpoint_re_set may try to access the current symtab. */
2825 clear_current_source_symtab_and_line ();
2826
c906108c 2827 clear_displays ();
1bfeeb0f 2828 clear_last_displayed_sal ();
c906108c 2829 clear_pc_function_cache ();
06d3b283 2830 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2831
2832 /* Clear globals which might have pointed into a removed objfile.
2833 FIXME: It's not clear which of these are supposed to persist
2834 between expressions and which ought to be reset each time. */
2835 expression_context_block = NULL;
aee1fcdf 2836 innermost_block.reset ();
8756216b
DP
2837
2838 /* Varobj may refer to old symbols, perform a cleanup. */
2839 varobj_invalidate ();
2840
e700d1b2
JB
2841 /* Now that the various caches have been cleared, we can re_set
2842 our breakpoints without risking it using stale data. */
2843 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2844 breakpoint_re_set ();
c906108c
SS
2845}
2846
74b7792f
AC
2847static void
2848clear_symtab_users_cleanup (void *ignore)
2849{
c1e56572 2850 clear_symtab_users (0);
74b7792f 2851}
c906108c 2852\f
c906108c
SS
2853/* OVERLAYS:
2854 The following code implements an abstraction for debugging overlay sections.
2855
2856 The target model is as follows:
2857 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2858 same VMA, each with its own unique LMA (or load address).
c906108c 2859 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2860 sections, one by one, from the load address into the VMA address.
5417f6dc 2861 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2862 sections should be considered to be mapped from the VMA to the LMA.
2863 This information is used for symbol lookup, and memory read/write.
5417f6dc 2864 For instance, if a section has been mapped then its contents
c5aa993b 2865 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2866
2867 Two levels of debugger support for overlays are available. One is
2868 "manual", in which the debugger relies on the user to tell it which
2869 overlays are currently mapped. This level of support is
2870 implemented entirely in the core debugger, and the information about
2871 whether a section is mapped is kept in the objfile->obj_section table.
2872
2873 The second level of support is "automatic", and is only available if
2874 the target-specific code provides functionality to read the target's
2875 overlay mapping table, and translate its contents for the debugger
2876 (by updating the mapped state information in the obj_section tables).
2877
2878 The interface is as follows:
c5aa993b
JM
2879 User commands:
2880 overlay map <name> -- tell gdb to consider this section mapped
2881 overlay unmap <name> -- tell gdb to consider this section unmapped
2882 overlay list -- list the sections that GDB thinks are mapped
2883 overlay read-target -- get the target's state of what's mapped
2884 overlay off/manual/auto -- set overlay debugging state
2885 Functional interface:
2886 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2887 section, return that section.
5417f6dc 2888 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2889 the pc, either in its VMA or its LMA
714835d5 2890 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2891 section_is_overlay(sect): true if section's VMA != LMA
2892 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2893 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2894 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2895 overlay_mapped_address(...): map an address from section's LMA to VMA
2896 overlay_unmapped_address(...): map an address from section's VMA to LMA
2897 symbol_overlayed_address(...): Return a "current" address for symbol:
2898 either in VMA or LMA depending on whether
c378eb4e 2899 the symbol's section is currently mapped. */
c906108c
SS
2900
2901/* Overlay debugging state: */
2902
d874f1e2 2903enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2904int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2905
c906108c 2906/* Function: section_is_overlay (SECTION)
5417f6dc 2907 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2908 SECTION is loaded at an address different from where it will "run". */
2909
2910int
714835d5 2911section_is_overlay (struct obj_section *section)
c906108c 2912{
714835d5
UW
2913 if (overlay_debugging && section)
2914 {
714835d5 2915 asection *bfd_section = section->the_bfd_section;
f888f159 2916
714835d5
UW
2917 if (bfd_section_lma (abfd, bfd_section) != 0
2918 && bfd_section_lma (abfd, bfd_section)
2919 != bfd_section_vma (abfd, bfd_section))
2920 return 1;
2921 }
c906108c
SS
2922
2923 return 0;
2924}
2925
2926/* Function: overlay_invalidate_all (void)
2927 Invalidate the mapped state of all overlay sections (mark it as stale). */
2928
2929static void
fba45db2 2930overlay_invalidate_all (void)
c906108c 2931{
c5aa993b 2932 struct objfile *objfile;
c906108c
SS
2933 struct obj_section *sect;
2934
2935 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2936 if (section_is_overlay (sect))
2937 sect->ovly_mapped = -1;
c906108c
SS
2938}
2939
714835d5 2940/* Function: section_is_mapped (SECTION)
5417f6dc 2941 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2942
2943 Access to the ovly_mapped flag is restricted to this function, so
2944 that we can do automatic update. If the global flag
2945 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2946 overlay_invalidate_all. If the mapped state of the particular
2947 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2948
714835d5
UW
2949int
2950section_is_mapped (struct obj_section *osect)
c906108c 2951{
9216df95
UW
2952 struct gdbarch *gdbarch;
2953
714835d5 2954 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2955 return 0;
2956
c5aa993b 2957 switch (overlay_debugging)
c906108c
SS
2958 {
2959 default:
d874f1e2 2960 case ovly_off:
c5aa993b 2961 return 0; /* overlay debugging off */
d874f1e2 2962 case ovly_auto: /* overlay debugging automatic */
1c772458 2963 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2964 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2965 gdbarch = get_objfile_arch (osect->objfile);
2966 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2967 {
2968 if (overlay_cache_invalid)
2969 {
2970 overlay_invalidate_all ();
2971 overlay_cache_invalid = 0;
2972 }
2973 if (osect->ovly_mapped == -1)
9216df95 2974 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2975 }
2976 /* fall thru to manual case */
d874f1e2 2977 case ovly_on: /* overlay debugging manual */
c906108c
SS
2978 return osect->ovly_mapped == 1;
2979 }
2980}
2981
c906108c
SS
2982/* Function: pc_in_unmapped_range
2983 If PC falls into the lma range of SECTION, return true, else false. */
2984
2985CORE_ADDR
714835d5 2986pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2987{
714835d5
UW
2988 if (section_is_overlay (section))
2989 {
2990 bfd *abfd = section->objfile->obfd;
2991 asection *bfd_section = section->the_bfd_section;
fbd35540 2992
714835d5
UW
2993 /* We assume the LMA is relocated by the same offset as the VMA. */
2994 bfd_vma size = bfd_get_section_size (bfd_section);
2995 CORE_ADDR offset = obj_section_offset (section);
2996
2997 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2998 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2999 return 1;
3000 }
c906108c 3001
c906108c
SS
3002 return 0;
3003}
3004
3005/* Function: pc_in_mapped_range
3006 If PC falls into the vma range of SECTION, return true, else false. */
3007
3008CORE_ADDR
714835d5 3009pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3010{
714835d5
UW
3011 if (section_is_overlay (section))
3012 {
3013 if (obj_section_addr (section) <= pc
3014 && pc < obj_section_endaddr (section))
3015 return 1;
3016 }
c906108c 3017
c906108c
SS
3018 return 0;
3019}
3020
9ec8e6a0
JB
3021/* Return true if the mapped ranges of sections A and B overlap, false
3022 otherwise. */
3b7bacac 3023
b9362cc7 3024static int
714835d5 3025sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3026{
714835d5
UW
3027 CORE_ADDR a_start = obj_section_addr (a);
3028 CORE_ADDR a_end = obj_section_endaddr (a);
3029 CORE_ADDR b_start = obj_section_addr (b);
3030 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3031
3032 return (a_start < b_end && b_start < a_end);
3033}
3034
c906108c
SS
3035/* Function: overlay_unmapped_address (PC, SECTION)
3036 Returns the address corresponding to PC in the unmapped (load) range.
3037 May be the same as PC. */
3038
3039CORE_ADDR
714835d5 3040overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3041{
714835d5
UW
3042 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3043 {
714835d5 3044 asection *bfd_section = section->the_bfd_section;
fbd35540 3045
714835d5
UW
3046 return pc + bfd_section_lma (abfd, bfd_section)
3047 - bfd_section_vma (abfd, bfd_section);
3048 }
c906108c
SS
3049
3050 return pc;
3051}
3052
3053/* Function: overlay_mapped_address (PC, SECTION)
3054 Returns the address corresponding to PC in the mapped (runtime) range.
3055 May be the same as PC. */
3056
3057CORE_ADDR
714835d5 3058overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3059{
714835d5
UW
3060 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3061 {
714835d5 3062 asection *bfd_section = section->the_bfd_section;
fbd35540 3063
714835d5
UW
3064 return pc + bfd_section_vma (abfd, bfd_section)
3065 - bfd_section_lma (abfd, bfd_section);
3066 }
c906108c
SS
3067
3068 return pc;
3069}
3070
5417f6dc 3071/* Function: symbol_overlayed_address
c906108c
SS
3072 Return one of two addresses (relative to the VMA or to the LMA),
3073 depending on whether the section is mapped or not. */
3074
c5aa993b 3075CORE_ADDR
714835d5 3076symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3077{
3078 if (overlay_debugging)
3079 {
c378eb4e 3080 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3081 if (section == 0)
3082 return address;
c378eb4e
MS
3083 /* If the symbol's section is not an overlay, just return its
3084 address. */
c906108c
SS
3085 if (!section_is_overlay (section))
3086 return address;
c378eb4e 3087 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3088 if (section_is_mapped (section))
3089 return address;
3090 /*
3091 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3092 * then return its LOADED address rather than its vma address!!
3093 */
3094 return overlay_unmapped_address (address, section);
3095 }
3096 return address;
3097}
3098
5417f6dc 3099/* Function: find_pc_overlay (PC)
c906108c
SS
3100 Return the best-match overlay section for PC:
3101 If PC matches a mapped overlay section's VMA, return that section.
3102 Else if PC matches an unmapped section's VMA, return that section.
3103 Else if PC matches an unmapped section's LMA, return that section. */
3104
714835d5 3105struct obj_section *
fba45db2 3106find_pc_overlay (CORE_ADDR pc)
c906108c 3107{
c5aa993b 3108 struct objfile *objfile;
c906108c
SS
3109 struct obj_section *osect, *best_match = NULL;
3110
3111 if (overlay_debugging)
b631e59b
KT
3112 {
3113 ALL_OBJSECTIONS (objfile, osect)
3114 if (section_is_overlay (osect))
c5aa993b 3115 {
b631e59b
KT
3116 if (pc_in_mapped_range (pc, osect))
3117 {
3118 if (section_is_mapped (osect))
3119 return osect;
3120 else
3121 best_match = osect;
3122 }
3123 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3124 best_match = osect;
3125 }
b631e59b 3126 }
714835d5 3127 return best_match;
c906108c
SS
3128}
3129
3130/* Function: find_pc_mapped_section (PC)
5417f6dc 3131 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3132 currently marked as MAPPED, return that section. Else return NULL. */
3133
714835d5 3134struct obj_section *
fba45db2 3135find_pc_mapped_section (CORE_ADDR pc)
c906108c 3136{
c5aa993b 3137 struct objfile *objfile;
c906108c
SS
3138 struct obj_section *osect;
3139
3140 if (overlay_debugging)
b631e59b
KT
3141 {
3142 ALL_OBJSECTIONS (objfile, osect)
3143 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3144 return osect;
3145 }
c906108c
SS
3146
3147 return NULL;
3148}
3149
3150/* Function: list_overlays_command
c378eb4e 3151 Print a list of mapped sections and their PC ranges. */
c906108c 3152
5d3055ad 3153static void
2cf311eb 3154list_overlays_command (const char *args, int from_tty)
c906108c 3155{
c5aa993b
JM
3156 int nmapped = 0;
3157 struct objfile *objfile;
c906108c
SS
3158 struct obj_section *osect;
3159
3160 if (overlay_debugging)
b631e59b
KT
3161 {
3162 ALL_OBJSECTIONS (objfile, osect)
714835d5 3163 if (section_is_mapped (osect))
b631e59b
KT
3164 {
3165 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3166 const char *name;
3167 bfd_vma lma, vma;
3168 int size;
3169
3170 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3171 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3172 size = bfd_get_section_size (osect->the_bfd_section);
3173 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3174
3175 printf_filtered ("Section %s, loaded at ", name);
3176 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3177 puts_filtered (" - ");
3178 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3179 printf_filtered (", mapped at ");
3180 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3181 puts_filtered (" - ");
3182 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3183 puts_filtered ("\n");
3184
3185 nmapped++;
3186 }
3187 }
c906108c 3188 if (nmapped == 0)
a3f17187 3189 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3190}
3191
3192/* Function: map_overlay_command
3193 Mark the named section as mapped (ie. residing at its VMA address). */
3194
5d3055ad 3195static void
2cf311eb 3196map_overlay_command (const char *args, int from_tty)
c906108c 3197{
c5aa993b
JM
3198 struct objfile *objfile, *objfile2;
3199 struct obj_section *sec, *sec2;
c906108c
SS
3200
3201 if (!overlay_debugging)
3e43a32a
MS
3202 error (_("Overlay debugging not enabled. Use "
3203 "either the 'overlay auto' or\n"
3204 "the 'overlay manual' command."));
c906108c
SS
3205
3206 if (args == 0 || *args == 0)
8a3fe4f8 3207 error (_("Argument required: name of an overlay section"));
c906108c 3208
c378eb4e 3209 /* First, find a section matching the user supplied argument. */
c906108c
SS
3210 ALL_OBJSECTIONS (objfile, sec)
3211 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3212 {
c378eb4e 3213 /* Now, check to see if the section is an overlay. */
714835d5 3214 if (!section_is_overlay (sec))
c5aa993b
JM
3215 continue; /* not an overlay section */
3216
c378eb4e 3217 /* Mark the overlay as "mapped". */
c5aa993b
JM
3218 sec->ovly_mapped = 1;
3219
3220 /* Next, make a pass and unmap any sections that are
3221 overlapped by this new section: */
3222 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3223 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3224 {
3225 if (info_verbose)
a3f17187 3226 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3227 bfd_section_name (objfile->obfd,
3228 sec2->the_bfd_section));
c378eb4e 3229 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3230 }
3231 return;
3232 }
8a3fe4f8 3233 error (_("No overlay section called %s"), args);
c906108c
SS
3234}
3235
3236/* Function: unmap_overlay_command
5417f6dc 3237 Mark the overlay section as unmapped
c906108c
SS
3238 (ie. resident in its LMA address range, rather than the VMA range). */
3239
5d3055ad 3240static void
2cf311eb 3241unmap_overlay_command (const char *args, int from_tty)
c906108c 3242{
c5aa993b 3243 struct objfile *objfile;
7a270e0c 3244 struct obj_section *sec = NULL;
c906108c
SS
3245
3246 if (!overlay_debugging)
3e43a32a
MS
3247 error (_("Overlay debugging not enabled. "
3248 "Use either the 'overlay auto' or\n"
3249 "the 'overlay manual' command."));
c906108c
SS
3250
3251 if (args == 0 || *args == 0)
8a3fe4f8 3252 error (_("Argument required: name of an overlay section"));
c906108c 3253
c378eb4e 3254 /* First, find a section matching the user supplied argument. */
c906108c
SS
3255 ALL_OBJSECTIONS (objfile, sec)
3256 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3257 {
3258 if (!sec->ovly_mapped)
8a3fe4f8 3259 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3260 sec->ovly_mapped = 0;
3261 return;
3262 }
8a3fe4f8 3263 error (_("No overlay section called %s"), args);
c906108c
SS
3264}
3265
3266/* Function: overlay_auto_command
3267 A utility command to turn on overlay debugging.
c378eb4e 3268 Possibly this should be done via a set/show command. */
c906108c
SS
3269
3270static void
2cf311eb 3271overlay_auto_command (const char *args, int from_tty)
c906108c 3272{
d874f1e2 3273 overlay_debugging = ovly_auto;
1900040c 3274 enable_overlay_breakpoints ();
c906108c 3275 if (info_verbose)
a3f17187 3276 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3277}
3278
3279/* Function: overlay_manual_command
3280 A utility command to turn on overlay debugging.
c378eb4e 3281 Possibly this should be done via a set/show command. */
c906108c
SS
3282
3283static void
2cf311eb 3284overlay_manual_command (const char *args, int from_tty)
c906108c 3285{
d874f1e2 3286 overlay_debugging = ovly_on;
1900040c 3287 disable_overlay_breakpoints ();
c906108c 3288 if (info_verbose)
a3f17187 3289 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3290}
3291
3292/* Function: overlay_off_command
3293 A utility command to turn on overlay debugging.
c378eb4e 3294 Possibly this should be done via a set/show command. */
c906108c
SS
3295
3296static void
2cf311eb 3297overlay_off_command (const char *args, int from_tty)
c906108c 3298{
d874f1e2 3299 overlay_debugging = ovly_off;
1900040c 3300 disable_overlay_breakpoints ();
c906108c 3301 if (info_verbose)
a3f17187 3302 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3303}
3304
3305static void
2cf311eb 3306overlay_load_command (const char *args, int from_tty)
c906108c 3307{
e17c207e
UW
3308 struct gdbarch *gdbarch = get_current_arch ();
3309
3310 if (gdbarch_overlay_update_p (gdbarch))
3311 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3312 else
8a3fe4f8 3313 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3314}
3315
3316/* Function: overlay_command
c378eb4e 3317 A place-holder for a mis-typed command. */
c906108c 3318
c378eb4e 3319/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3320static struct cmd_list_element *overlaylist;
c906108c
SS
3321
3322static void
981a3fb3 3323overlay_command (const char *args, int from_tty)
c906108c 3324{
c5aa993b 3325 printf_unfiltered
c906108c 3326 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3327 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3328}
3329
c906108c
SS
3330/* Target Overlays for the "Simplest" overlay manager:
3331
5417f6dc
RM
3332 This is GDB's default target overlay layer. It works with the
3333 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3334 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3335 so targets that use a different runtime overlay manager can
c906108c
SS
3336 substitute their own overlay_update function and take over the
3337 function pointer.
3338
3339 The overlay_update function pokes around in the target's data structures
3340 to see what overlays are mapped, and updates GDB's overlay mapping with
3341 this information.
3342
3343 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3344 unsigned _novlys; /# number of overlay sections #/
3345 unsigned _ovly_table[_novlys][4] = {
438e1e42 3346 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3347 {..., ..., ..., ...},
3348 }
3349 unsigned _novly_regions; /# number of overlay regions #/
3350 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3351 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3352 {..., ..., ...},
3353 }
c906108c
SS
3354 These functions will attempt to update GDB's mappedness state in the
3355 symbol section table, based on the target's mappedness state.
3356
3357 To do this, we keep a cached copy of the target's _ovly_table, and
3358 attempt to detect when the cached copy is invalidated. The main
3359 entry point is "simple_overlay_update(SECT), which looks up SECT in
3360 the cached table and re-reads only the entry for that section from
c378eb4e 3361 the target (whenever possible). */
c906108c
SS
3362
3363/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3364static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3365static unsigned cache_novlys = 0;
c906108c 3366static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3367enum ovly_index
3368 {
438e1e42 3369 VMA, OSIZE, LMA, MAPPED
c5aa993b 3370 };
c906108c 3371
c378eb4e 3372/* Throw away the cached copy of _ovly_table. */
3b7bacac 3373
c906108c 3374static void
fba45db2 3375simple_free_overlay_table (void)
c906108c
SS
3376{
3377 if (cache_ovly_table)
b8c9b27d 3378 xfree (cache_ovly_table);
c5aa993b 3379 cache_novlys = 0;
c906108c
SS
3380 cache_ovly_table = NULL;
3381 cache_ovly_table_base = 0;
3382}
3383
9216df95 3384/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3385 Convert to host order. int LEN is number of ints. */
3b7bacac 3386
c906108c 3387static void
9216df95 3388read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3389 int len, int size, enum bfd_endian byte_order)
c906108c 3390{
c378eb4e 3391 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3392 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3393 int i;
c906108c 3394
9216df95 3395 read_memory (memaddr, buf, len * size);
c906108c 3396 for (i = 0; i < len; i++)
e17a4113 3397 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3398}
3399
3400/* Find and grab a copy of the target _ovly_table
c378eb4e 3401 (and _novlys, which is needed for the table's size). */
3b7bacac 3402
c5aa993b 3403static int
fba45db2 3404simple_read_overlay_table (void)
c906108c 3405{
3b7344d5 3406 struct bound_minimal_symbol novlys_msym;
7c7b6655 3407 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3408 struct gdbarch *gdbarch;
3409 int word_size;
e17a4113 3410 enum bfd_endian byte_order;
c906108c
SS
3411
3412 simple_free_overlay_table ();
9b27852e 3413 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3414 if (! novlys_msym.minsym)
c906108c 3415 {
8a3fe4f8 3416 error (_("Error reading inferior's overlay table: "
0d43edd1 3417 "couldn't find `_novlys' variable\n"
8a3fe4f8 3418 "in inferior. Use `overlay manual' mode."));
0d43edd1 3419 return 0;
c906108c 3420 }
0d43edd1 3421
7c7b6655
TT
3422 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3423 if (! ovly_table_msym.minsym)
0d43edd1 3424 {
8a3fe4f8 3425 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3426 "`_ovly_table' array\n"
8a3fe4f8 3427 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3428 return 0;
3429 }
3430
7c7b6655 3431 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3432 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3433 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3434
77e371c0
TT
3435 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3436 4, byte_order);
0d43edd1 3437 cache_ovly_table
224c3ddb 3438 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3439 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3440 read_target_long_array (cache_ovly_table_base,
777ea8f1 3441 (unsigned int *) cache_ovly_table,
e17a4113 3442 cache_novlys * 4, word_size, byte_order);
0d43edd1 3443
c5aa993b 3444 return 1; /* SUCCESS */
c906108c
SS
3445}
3446
5417f6dc 3447/* Function: simple_overlay_update_1
c906108c
SS
3448 A helper function for simple_overlay_update. Assuming a cached copy
3449 of _ovly_table exists, look through it to find an entry whose vma,
3450 lma and size match those of OSECT. Re-read the entry and make sure
3451 it still matches OSECT (else the table may no longer be valid).
3452 Set OSECT's mapped state to match the entry. Return: 1 for
3453 success, 0 for failure. */
3454
3455static int
fba45db2 3456simple_overlay_update_1 (struct obj_section *osect)
c906108c 3457{
764c99c1 3458 int i;
fbd35540 3459 asection *bsect = osect->the_bfd_section;
9216df95
UW
3460 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3461 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3463
c906108c 3464 for (i = 0; i < cache_novlys; i++)
fbd35540 3465 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3466 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3467 {
9216df95
UW
3468 read_target_long_array (cache_ovly_table_base + i * word_size,
3469 (unsigned int *) cache_ovly_table[i],
e17a4113 3470 4, word_size, byte_order);
fbd35540 3471 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3472 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3473 {
3474 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3475 return 1;
3476 }
c378eb4e 3477 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3478 return 0;
3479 }
3480 return 0;
3481}
3482
3483/* Function: simple_overlay_update
5417f6dc
RM
3484 If OSECT is NULL, then update all sections' mapped state
3485 (after re-reading the entire target _ovly_table).
3486 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3487 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3488 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3489 re-read the entire cache, and go ahead and update all sections. */
3490
1c772458 3491void
fba45db2 3492simple_overlay_update (struct obj_section *osect)
c906108c 3493{
c5aa993b 3494 struct objfile *objfile;
c906108c 3495
c378eb4e 3496 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3497 if (osect)
c378eb4e 3498 /* Have we got a cached copy of the target's overlay table? */
c906108c 3499 if (cache_ovly_table != NULL)
9cc89665
MS
3500 {
3501 /* Does its cached location match what's currently in the
3502 symtab? */
3b7344d5 3503 struct bound_minimal_symbol minsym
9cc89665
MS
3504 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3505
3b7344d5 3506 if (minsym.minsym == NULL)
9cc89665
MS
3507 error (_("Error reading inferior's overlay table: couldn't "
3508 "find `_ovly_table' array\n"
3509 "in inferior. Use `overlay manual' mode."));
3510
77e371c0 3511 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3512 /* Then go ahead and try to look up this single section in
3513 the cache. */
3514 if (simple_overlay_update_1 (osect))
3515 /* Found it! We're done. */
3516 return;
3517 }
c906108c
SS
3518
3519 /* Cached table no good: need to read the entire table anew.
3520 Or else we want all the sections, in which case it's actually
3521 more efficient to read the whole table in one block anyway. */
3522
0d43edd1
JB
3523 if (! simple_read_overlay_table ())
3524 return;
3525
c378eb4e 3526 /* Now may as well update all sections, even if only one was requested. */
c906108c 3527 ALL_OBJSECTIONS (objfile, osect)
714835d5 3528 if (section_is_overlay (osect))
c5aa993b 3529 {
764c99c1 3530 int i;
fbd35540 3531 asection *bsect = osect->the_bfd_section;
c5aa993b 3532
c5aa993b 3533 for (i = 0; i < cache_novlys; i++)
fbd35540 3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3536 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3537 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3538 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3539 }
3540 }
c906108c
SS
3541}
3542
086df311
DJ
3543/* Set the output sections and output offsets for section SECTP in
3544 ABFD. The relocation code in BFD will read these offsets, so we
3545 need to be sure they're initialized. We map each section to itself,
3546 with no offset; this means that SECTP->vma will be honored. */
3547
3548static void
3549symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3550{
3551 sectp->output_section = sectp;
3552 sectp->output_offset = 0;
3553}
3554
ac8035ab
TG
3555/* Default implementation for sym_relocate. */
3556
ac8035ab
TG
3557bfd_byte *
3558default_symfile_relocate (struct objfile *objfile, asection *sectp,
3559 bfd_byte *buf)
3560{
3019eac3
DE
3561 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3562 DWO file. */
3563 bfd *abfd = sectp->owner;
ac8035ab
TG
3564
3565 /* We're only interested in sections with relocation
3566 information. */
3567 if ((sectp->flags & SEC_RELOC) == 0)
3568 return NULL;
3569
3570 /* We will handle section offsets properly elsewhere, so relocate as if
3571 all sections begin at 0. */
3572 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3573
3574 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3575}
3576
086df311
DJ
3577/* Relocate the contents of a debug section SECTP in ABFD. The
3578 contents are stored in BUF if it is non-NULL, or returned in a
3579 malloc'd buffer otherwise.
3580
3581 For some platforms and debug info formats, shared libraries contain
3582 relocations against the debug sections (particularly for DWARF-2;
3583 one affected platform is PowerPC GNU/Linux, although it depends on
3584 the version of the linker in use). Also, ELF object files naturally
3585 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3586 the relocations in order to get the locations of symbols correct.
3587 Another example that may require relocation processing, is the
3588 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3589 debug section. */
086df311
DJ
3590
3591bfd_byte *
ac8035ab
TG
3592symfile_relocate_debug_section (struct objfile *objfile,
3593 asection *sectp, bfd_byte *buf)
086df311 3594{
ac8035ab 3595 gdb_assert (objfile->sf->sym_relocate);
086df311 3596
ac8035ab 3597 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3598}
c906108c 3599
31d99776
DJ
3600struct symfile_segment_data *
3601get_symfile_segment_data (bfd *abfd)
3602{
00b5771c 3603 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3604
3605 if (sf == NULL)
3606 return NULL;
3607
3608 return sf->sym_segments (abfd);
3609}
3610
3611void
3612free_symfile_segment_data (struct symfile_segment_data *data)
3613{
3614 xfree (data->segment_bases);
3615 xfree (data->segment_sizes);
3616 xfree (data->segment_info);
3617 xfree (data);
3618}
3619
28c32713
JB
3620/* Given:
3621 - DATA, containing segment addresses from the object file ABFD, and
3622 the mapping from ABFD's sections onto the segments that own them,
3623 and
3624 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3625 segment addresses reported by the target,
3626 store the appropriate offsets for each section in OFFSETS.
3627
3628 If there are fewer entries in SEGMENT_BASES than there are segments
3629 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3630
8d385431
DJ
3631 If there are more entries, then ignore the extra. The target may
3632 not be able to distinguish between an empty data segment and a
3633 missing data segment; a missing text segment is less plausible. */
3b7bacac 3634
31d99776 3635int
3189cb12
DE
3636symfile_map_offsets_to_segments (bfd *abfd,
3637 const struct symfile_segment_data *data,
31d99776
DJ
3638 struct section_offsets *offsets,
3639 int num_segment_bases,
3640 const CORE_ADDR *segment_bases)
3641{
3642 int i;
3643 asection *sect;
3644
28c32713
JB
3645 /* It doesn't make sense to call this function unless you have some
3646 segment base addresses. */
202b96c1 3647 gdb_assert (num_segment_bases > 0);
28c32713 3648
31d99776
DJ
3649 /* If we do not have segment mappings for the object file, we
3650 can not relocate it by segments. */
3651 gdb_assert (data != NULL);
3652 gdb_assert (data->num_segments > 0);
3653
31d99776
DJ
3654 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3655 {
31d99776
DJ
3656 int which = data->segment_info[i];
3657
28c32713
JB
3658 gdb_assert (0 <= which && which <= data->num_segments);
3659
3660 /* Don't bother computing offsets for sections that aren't
3661 loaded as part of any segment. */
3662 if (! which)
3663 continue;
3664
3665 /* Use the last SEGMENT_BASES entry as the address of any extra
3666 segments mentioned in DATA->segment_info. */
31d99776 3667 if (which > num_segment_bases)
28c32713 3668 which = num_segment_bases;
31d99776 3669
28c32713
JB
3670 offsets->offsets[i] = (segment_bases[which - 1]
3671 - data->segment_bases[which - 1]);
31d99776
DJ
3672 }
3673
3674 return 1;
3675}
3676
3677static void
3678symfile_find_segment_sections (struct objfile *objfile)
3679{
3680 bfd *abfd = objfile->obfd;
3681 int i;
3682 asection *sect;
3683 struct symfile_segment_data *data;
3684
3685 data = get_symfile_segment_data (objfile->obfd);
3686 if (data == NULL)
3687 return;
3688
3689 if (data->num_segments != 1 && data->num_segments != 2)
3690 {
3691 free_symfile_segment_data (data);
3692 return;
3693 }
3694
3695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3696 {
31d99776
DJ
3697 int which = data->segment_info[i];
3698
3699 if (which == 1)
3700 {
3701 if (objfile->sect_index_text == -1)
3702 objfile->sect_index_text = sect->index;
3703
3704 if (objfile->sect_index_rodata == -1)
3705 objfile->sect_index_rodata = sect->index;
3706 }
3707 else if (which == 2)
3708 {
3709 if (objfile->sect_index_data == -1)
3710 objfile->sect_index_data = sect->index;
3711
3712 if (objfile->sect_index_bss == -1)
3713 objfile->sect_index_bss = sect->index;
3714 }
3715 }
3716
3717 free_symfile_segment_data (data);
3718}
3719
76ad5e1e
NB
3720/* Listen for free_objfile events. */
3721
3722static void
3723symfile_free_objfile (struct objfile *objfile)
3724{
c33b2f12
MM
3725 /* Remove the target sections owned by this objfile. */
3726 if (objfile != NULL)
76ad5e1e
NB
3727 remove_target_sections ((void *) objfile);
3728}
3729
540c2971
DE
3730/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3731 Expand all symtabs that match the specified criteria.
3732 See quick_symbol_functions.expand_symtabs_matching for details. */
3733
3734void
14bc53a8
PA
3735expand_symtabs_matching
3736 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3737 const lookup_name_info &lookup_name,
14bc53a8
PA
3738 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3739 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3740 enum search_domain kind)
540c2971
DE
3741{
3742 struct objfile *objfile;
3743
3744 ALL_OBJFILES (objfile)
3745 {
3746 if (objfile->sf)
bb4142cf 3747 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3748 lookup_name,
276d885b 3749 symbol_matcher,
14bc53a8 3750 expansion_notify, kind);
540c2971
DE
3751 }
3752}
3753
3754/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3755 Map function FUN over every file.
3756 See quick_symbol_functions.map_symbol_filenames for details. */
3757
3758void
bb4142cf
DE
3759map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3760 int need_fullname)
540c2971
DE
3761{
3762 struct objfile *objfile;
3763
3764 ALL_OBJFILES (objfile)
3765 {
3766 if (objfile->sf)
3767 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3768 need_fullname);
3769 }
3770}
3771
32fa66eb
SM
3772#if GDB_SELF_TEST
3773
3774namespace selftests {
3775namespace filename_language {
3776
32fa66eb
SM
3777static void test_filename_language ()
3778{
3779 /* This test messes up the filename_language_table global. */
593e3209 3780 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3781
3782 /* Test deducing an unknown extension. */
3783 language lang = deduce_language_from_filename ("myfile.blah");
3784 SELF_CHECK (lang == language_unknown);
3785
3786 /* Test deducing a known extension. */
3787 lang = deduce_language_from_filename ("myfile.c");
3788 SELF_CHECK (lang == language_c);
3789
3790 /* Test adding a new extension using the internal API. */
3791 add_filename_language (".blah", language_pascal);
3792 lang = deduce_language_from_filename ("myfile.blah");
3793 SELF_CHECK (lang == language_pascal);
3794}
3795
3796static void
3797test_set_ext_lang_command ()
3798{
3799 /* This test messes up the filename_language_table global. */
593e3209 3800 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3801
3802 /* Confirm that the .hello extension is not known. */
3803 language lang = deduce_language_from_filename ("cake.hello");
3804 SELF_CHECK (lang == language_unknown);
3805
3806 /* Test adding a new extension using the CLI command. */
3807 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3808 ext_args = args_holder.get ();
3809 set_ext_lang_command (NULL, 1, NULL);
3810
3811 lang = deduce_language_from_filename ("cake.hello");
3812 SELF_CHECK (lang == language_rust);
3813
3814 /* Test overriding an existing extension using the CLI command. */
593e3209 3815 int size_before = filename_language_table.size ();
32fa66eb
SM
3816 args_holder.reset (xstrdup (".hello pascal"));
3817 ext_args = args_holder.get ();
3818 set_ext_lang_command (NULL, 1, NULL);
593e3209 3819 int size_after = filename_language_table.size ();
32fa66eb
SM
3820
3821 lang = deduce_language_from_filename ("cake.hello");
3822 SELF_CHECK (lang == language_pascal);
3823 SELF_CHECK (size_before == size_after);
3824}
3825
3826} /* namespace filename_language */
3827} /* namespace selftests */
3828
3829#endif /* GDB_SELF_TEST */
3830
c906108c 3831void
fba45db2 3832_initialize_symfile (void)
c906108c
SS
3833{
3834 struct cmd_list_element *c;
c5aa993b 3835
76ad5e1e
NB
3836 observer_attach_free_objfile (symfile_free_objfile);
3837
97cbe998 3838#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3839 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3840immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3841faster.\n\
3842The '-readnever' option will prevent GDB from reading the symbol file's\n\
3843symbolic debug information."
8ca2f0b9 3844
1a966eab
AC
3845 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3846Load symbol table from executable file FILE.\n\
97cbe998 3847Usage: symbol-file [-readnow | -readnever] FILE\n\
c906108c 3848The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3849to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3850 set_cmd_completer (c, filename_completer);
c906108c 3851
1a966eab 3852 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3853Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
97cbe998
SDJ
3854Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3855-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3856ADDR is the starting address of the file's text.\n\
3857Each '-s' argument provides a section name and address, and\n\
db162d44 3858should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3859with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
97cbe998 3860READNOW_READNEVER_HELP),
c906108c 3861 &cmdlist);
5ba2abeb 3862 set_cmd_completer (c, filename_completer);
c906108c 3863
63644780
NB
3864 c = add_cmd ("remove-symbol-file", class_files,
3865 remove_symbol_file_command, _("\
3866Remove a symbol file added via the add-symbol-file command.\n\
3867Usage: remove-symbol-file FILENAME\n\
3868 remove-symbol-file -a ADDRESS\n\
3869The file to remove can be identified by its filename or by an address\n\
3870that lies within the boundaries of this symbol file in memory."),
3871 &cmdlist);
3872
1a966eab
AC
3873 c = add_cmd ("load", class_files, load_command, _("\
3874Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3875for access from GDB.\n\
8ca2f0b9 3876Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3877An optional load OFFSET may also be given as a literal address.\n\
3878When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3879on its own."), &cmdlist);
5ba2abeb 3880 set_cmd_completer (c, filename_completer);
c906108c 3881
c5aa993b 3882 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3883 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3884 "overlay ", 0, &cmdlist);
3885
3886 add_com_alias ("ovly", "overlay", class_alias, 1);
3887 add_com_alias ("ov", "overlay", class_alias, 1);
3888
c5aa993b 3889 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3890 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3891
c5aa993b 3892 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3893 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3894
c5aa993b 3895 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3896 _("List mappings of overlay sections."), &overlaylist);
c906108c 3897
c5aa993b 3898 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3899 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3900 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3901 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3902 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3903 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3904 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3905 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3906
3907 /* Filename extension to source language lookup table: */
26c41df3
AC
3908 add_setshow_string_noescape_cmd ("extension-language", class_files,
3909 &ext_args, _("\
3910Set mapping between filename extension and source language."), _("\
3911Show mapping between filename extension and source language."), _("\
3912Usage: set extension-language .foo bar"),
3913 set_ext_lang_command,
920d2a44 3914 show_ext_args,
26c41df3 3915 &setlist, &showlist);
c906108c 3916
c5aa993b 3917 add_info ("extensions", info_ext_lang_command,
1bedd215 3918 _("All filename extensions associated with a source language."));
917317f4 3919
525226b5
AC
3920 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3921 &debug_file_directory, _("\
24ddea62
JK
3922Set the directories where separate debug symbols are searched for."), _("\
3923Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3924Separate debug symbols are first searched for in the same\n\
3925directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3926and lastly at the path of the directory of the binary with\n\
24ddea62 3927each global debug-file-directory component prepended."),
525226b5 3928 NULL,
920d2a44 3929 show_debug_file_directory,
525226b5 3930 &setlist, &showlist);
770e7fc7
DE
3931
3932 add_setshow_enum_cmd ("symbol-loading", no_class,
3933 print_symbol_loading_enums, &print_symbol_loading,
3934 _("\
3935Set printing of symbol loading messages."), _("\
3936Show printing of symbol loading messages."), _("\
3937off == turn all messages off\n\
3938brief == print messages for the executable,\n\
3939 and brief messages for shared libraries\n\
3940full == print messages for the executable,\n\
3941 and messages for each shared library."),
3942 NULL,
3943 NULL,
3944 &setprintlist, &showprintlist);
c4dcb155
SM
3945
3946 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3947 &separate_debug_file_debug, _("\
3948Set printing of separate debug info file search debug."), _("\
3949Show printing of separate debug info file search debug."), _("\
3950When on, GDB prints the searched locations while looking for separate debug \
3951info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3952
3953#if GDB_SELF_TEST
3954 selftests::register_test
3955 ("filename_language", selftests::filename_language::test_filename_language);
3956 selftests::register_test
3957 ("set_ext_lang_command",
3958 selftests::filename_language::test_set_ext_lang_command);
3959#endif
c906108c 3960}
This page took 2.360308 seconds and 4 git commands to generate.