* dwarf2read.c (create_partial_symtab): Add forward decl.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
d7db6da9
FN
90static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
a14ed312 94bfd *symfile_bfd_open (char *);
c906108c 95
0e931cf0
JB
96int get_section_index (struct objfile *, char *);
97
00b5771c 98static const struct sym_fns *find_sym_fns (bfd *);
c906108c 99
a14ed312 100static void decrement_reading_symtab (void *);
c906108c 101
a14ed312 102static void overlay_invalidate_all (void);
c906108c 103
a14ed312 104static void overlay_auto_command (char *, int);
c906108c 105
a14ed312 106static void overlay_manual_command (char *, int);
c906108c 107
a14ed312 108static void overlay_off_command (char *, int);
c906108c 109
a14ed312 110static void overlay_load_command (char *, int);
c906108c 111
a14ed312 112static void overlay_command (char *, int);
c906108c 113
a14ed312 114static void simple_free_overlay_table (void);
c906108c 115
e17a4113
UW
116static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
c906108c 118
a14ed312 119static int simple_read_overlay_table (void);
c906108c 120
a14ed312 121static int simple_overlay_update_1 (struct obj_section *);
c906108c 122
a14ed312 123static void add_filename_language (char *ext, enum language lang);
392a587b 124
a14ed312 125static void info_ext_lang_command (char *args, int from_tty);
392a587b 126
a14ed312 127static void init_filename_language_table (void);
392a587b 128
31d99776
DJ
129static void symfile_find_segment_sections (struct objfile *objfile);
130
a14ed312 131void _initialize_symfile (void);
c906108c
SS
132
133/* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
c378eb4e 135 prepared to read. */
c906108c 136
00b5771c
TT
137typedef const struct sym_fns *sym_fns_ptr;
138DEF_VEC_P (sym_fns_ptr);
139
140static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 141
b7209cb4
FF
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
c906108c 149 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 150 report all the functions that are actually present. */
c906108c
SS
151
152int auto_solib_add = 1;
c906108c 153\f
c5aa993b 154
0d14a781 155/* True if we are reading a symbol table. */
c906108c
SS
156
157int currently_reading_symtab = 0;
158
159static void
fba45db2 160decrement_reading_symtab (void *dummy)
c906108c
SS
161{
162 currently_reading_symtab--;
163}
164
ccefe4c4
TT
165/* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
167struct cleanup *
168increment_reading_symtab (void)
c906108c 169{
ccefe4c4
TT
170 ++currently_reading_symtab;
171 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
172}
173
5417f6dc
RM
174/* Remember the lowest-addressed loadable section we've seen.
175 This function is called via bfd_map_over_sections.
c906108c
SS
176
177 In case of equal vmas, the section with the largest size becomes the
178 lowest-addressed loadable section.
179
180 If the vmas and sizes are equal, the last section is considered the
181 lowest-addressed loadable section. */
182
183void
4efb68b1 184find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 185{
c5aa993b 186 asection **lowest = (asection **) obj;
c906108c 187
eb73e134 188 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
189 return;
190 if (!*lowest)
191 *lowest = sect; /* First loadable section */
192 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
193 *lowest = sect; /* A lower loadable section */
194 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
195 && (bfd_section_size (abfd, (*lowest))
196 <= bfd_section_size (abfd, sect)))
197 *lowest = sect;
198}
199
d76488d8
TT
200/* Create a new section_addr_info, with room for NUM_SECTIONS. The
201 new object's 'num_sections' field is set to 0; it must be updated
202 by the caller. */
a39a16c4
MM
203
204struct section_addr_info *
205alloc_section_addr_info (size_t num_sections)
206{
207 struct section_addr_info *sap;
208 size_t size;
209
210 size = (sizeof (struct section_addr_info)
211 + sizeof (struct other_sections) * (num_sections - 1));
212 sap = (struct section_addr_info *) xmalloc (size);
213 memset (sap, 0, size);
a39a16c4
MM
214
215 return sap;
216}
62557bbc
KB
217
218/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 219 an existing section table. */
62557bbc
KB
220
221extern struct section_addr_info *
0542c86d
PA
222build_section_addr_info_from_section_table (const struct target_section *start,
223 const struct target_section *end)
62557bbc
KB
224{
225 struct section_addr_info *sap;
0542c86d 226 const struct target_section *stp;
62557bbc
KB
227 int oidx;
228
a39a16c4 229 sap = alloc_section_addr_info (end - start);
62557bbc
KB
230
231 for (stp = start, oidx = 0; stp != end; stp++)
232 {
5417f6dc 233 if (bfd_get_section_flags (stp->bfd,
fbd35540 234 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 235 && oidx < end - start)
62557bbc
KB
236 {
237 sap->other[oidx].addr = stp->addr;
5417f6dc 238 sap->other[oidx].name
fbd35540 239 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
240 sap->other[oidx].sectindex = stp->the_bfd_section->index;
241 oidx++;
242 }
243 }
244
d76488d8
TT
245 sap->num_sections = oidx;
246
62557bbc
KB
247 return sap;
248}
249
82ccf5a5 250/* Create a section_addr_info from section offsets in ABFD. */
089b4803 251
82ccf5a5
JK
252static struct section_addr_info *
253build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
254{
255 struct section_addr_info *sap;
256 int i;
257 struct bfd_section *sec;
258
82ccf5a5
JK
259 sap = alloc_section_addr_info (bfd_count_sections (abfd));
260 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
261 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 262 {
82ccf5a5
JK
263 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
264 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
265 sap->other[i].sectindex = sec->index;
266 i++;
267 }
d76488d8
TT
268
269 sap->num_sections = i;
270
089b4803
TG
271 return sap;
272}
273
82ccf5a5
JK
274/* Create a section_addr_info from section offsets in OBJFILE. */
275
276struct section_addr_info *
277build_section_addr_info_from_objfile (const struct objfile *objfile)
278{
279 struct section_addr_info *sap;
280 int i;
281
282 /* Before reread_symbols gets rewritten it is not safe to call:
283 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
284 */
285 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 286 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
287 {
288 int sectindex = sap->other[i].sectindex;
289
290 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
291 }
292 return sap;
293}
62557bbc 294
c378eb4e 295/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
296
297extern void
298free_section_addr_info (struct section_addr_info *sap)
299{
300 int idx;
301
a39a16c4 302 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 303 xfree (sap->other[idx].name);
b8c9b27d 304 xfree (sap);
62557bbc
KB
305}
306
307
e8289572
JB
308/* Initialize OBJFILE's sect_index_* members. */
309static void
310init_objfile_sect_indices (struct objfile *objfile)
c906108c 311{
e8289572 312 asection *sect;
c906108c 313 int i;
5417f6dc 314
b8fbeb18 315 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 316 if (sect)
b8fbeb18
EZ
317 objfile->sect_index_text = sect->index;
318
319 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 320 if (sect)
b8fbeb18
EZ
321 objfile->sect_index_data = sect->index;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_bss = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_rodata = sect->index;
330
bbcd32ad
FF
331 /* This is where things get really weird... We MUST have valid
332 indices for the various sect_index_* members or gdb will abort.
333 So if for example, there is no ".text" section, we have to
31d99776
DJ
334 accomodate that. First, check for a file with the standard
335 one or two segments. */
336
337 symfile_find_segment_sections (objfile);
338
339 /* Except when explicitly adding symbol files at some address,
340 section_offsets contains nothing but zeros, so it doesn't matter
341 which slot in section_offsets the individual sect_index_* members
342 index into. So if they are all zero, it is safe to just point
343 all the currently uninitialized indices to the first slot. But
344 beware: if this is the main executable, it may be relocated
345 later, e.g. by the remote qOffsets packet, and then this will
346 be wrong! That's why we try segments first. */
bbcd32ad
FF
347
348 for (i = 0; i < objfile->num_sections; i++)
349 {
350 if (ANOFFSET (objfile->section_offsets, i) != 0)
351 {
352 break;
353 }
354 }
355 if (i == objfile->num_sections)
356 {
357 if (objfile->sect_index_text == -1)
358 objfile->sect_index_text = 0;
359 if (objfile->sect_index_data == -1)
360 objfile->sect_index_data = 0;
361 if (objfile->sect_index_bss == -1)
362 objfile->sect_index_bss = 0;
363 if (objfile->sect_index_rodata == -1)
364 objfile->sect_index_rodata = 0;
365 }
b8fbeb18 366}
c906108c 367
c1bd25fd
DJ
368/* The arguments to place_section. */
369
370struct place_section_arg
371{
372 struct section_offsets *offsets;
373 CORE_ADDR lowest;
374};
375
376/* Find a unique offset to use for loadable section SECT if
377 the user did not provide an offset. */
378
2c0b251b 379static void
c1bd25fd
DJ
380place_section (bfd *abfd, asection *sect, void *obj)
381{
382 struct place_section_arg *arg = obj;
383 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
384 int done;
3bd72c6f 385 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 386
2711e456
DJ
387 /* We are only interested in allocated sections. */
388 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
389 return;
390
391 /* If the user specified an offset, honor it. */
392 if (offsets[sect->index] != 0)
393 return;
394
395 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
396 start_addr = (arg->lowest + align - 1) & -align;
397
c1bd25fd
DJ
398 do {
399 asection *cur_sec;
c1bd25fd 400
c1bd25fd
DJ
401 done = 1;
402
403 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
404 {
405 int indx = cur_sec->index;
c1bd25fd
DJ
406
407 /* We don't need to compare against ourself. */
408 if (cur_sec == sect)
409 continue;
410
2711e456
DJ
411 /* We can only conflict with allocated sections. */
412 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
413 continue;
414
415 /* If the section offset is 0, either the section has not been placed
416 yet, or it was the lowest section placed (in which case LOWEST
417 will be past its end). */
418 if (offsets[indx] == 0)
419 continue;
420
421 /* If this section would overlap us, then we must move up. */
422 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
423 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
424 {
425 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
426 start_addr = (start_addr + align - 1) & -align;
427 done = 0;
3bd72c6f 428 break;
c1bd25fd
DJ
429 }
430
431 /* Otherwise, we appear to be OK. So far. */
432 }
433 }
434 while (!done);
435
436 offsets[sect->index] = start_addr;
437 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 438}
e8289572 439
75242ef4
JK
440/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
441 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
442 entries. */
e8289572
JB
443
444void
75242ef4
JK
445relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
446 int num_sections,
447 struct section_addr_info *addrs)
e8289572
JB
448{
449 int i;
450
75242ef4 451 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 452
c378eb4e 453 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 454 for (i = 0; i < addrs->num_sections; i++)
e8289572 455 {
75242ef4 456 struct other_sections *osp;
e8289572 457
75242ef4 458 osp = &addrs->other[i];
5488dafb 459 if (osp->sectindex == -1)
e8289572
JB
460 continue;
461
c378eb4e 462 /* Record all sections in offsets. */
e8289572 463 /* The section_offsets in the objfile are here filled in using
c378eb4e 464 the BFD index. */
75242ef4
JK
465 section_offsets->offsets[osp->sectindex] = osp->addr;
466 }
467}
468
1276c759
JK
469/* Transform section name S for a name comparison. prelink can split section
470 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
471 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
472 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
473 (`.sbss') section has invalid (increased) virtual address. */
474
475static const char *
476addr_section_name (const char *s)
477{
478 if (strcmp (s, ".dynbss") == 0)
479 return ".bss";
480 if (strcmp (s, ".sdynbss") == 0)
481 return ".sbss";
482
483 return s;
484}
485
82ccf5a5
JK
486/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
487 their (name, sectindex) pair. sectindex makes the sort by name stable. */
488
489static int
490addrs_section_compar (const void *ap, const void *bp)
491{
492 const struct other_sections *a = *((struct other_sections **) ap);
493 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 494 int retval;
82ccf5a5 495
1276c759 496 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
497 if (retval)
498 return retval;
499
5488dafb 500 return a->sectindex - b->sectindex;
82ccf5a5
JK
501}
502
503/* Provide sorted array of pointers to sections of ADDRS. The array is
504 terminated by NULL. Caller is responsible to call xfree for it. */
505
506static struct other_sections **
507addrs_section_sort (struct section_addr_info *addrs)
508{
509 struct other_sections **array;
510 int i;
511
512 /* `+ 1' for the NULL terminator. */
513 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 514 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
515 array[i] = &addrs->other[i];
516 array[i] = NULL;
517
518 qsort (array, i, sizeof (*array), addrs_section_compar);
519
520 return array;
521}
522
75242ef4 523/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
524 also SECTINDEXes specific to ABFD there. This function can be used to
525 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
526
527void
528addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
529{
530 asection *lower_sect;
75242ef4
JK
531 CORE_ADDR lower_offset;
532 int i;
82ccf5a5
JK
533 struct cleanup *my_cleanup;
534 struct section_addr_info *abfd_addrs;
535 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
536 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
537
538 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
539 continguous sections. */
540 lower_sect = NULL;
541 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
542 if (lower_sect == NULL)
543 {
544 warning (_("no loadable sections found in added symbol-file %s"),
545 bfd_get_filename (abfd));
546 lower_offset = 0;
e8289572 547 }
75242ef4
JK
548 else
549 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
550
82ccf5a5
JK
551 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
552 in ABFD. Section names are not unique - there can be multiple sections of
553 the same name. Also the sections of the same name do not have to be
554 adjacent to each other. Some sections may be present only in one of the
555 files. Even sections present in both files do not have to be in the same
556 order.
557
558 Use stable sort by name for the sections in both files. Then linearly
559 scan both lists matching as most of the entries as possible. */
560
561 addrs_sorted = addrs_section_sort (addrs);
562 my_cleanup = make_cleanup (xfree, addrs_sorted);
563
564 abfd_addrs = build_section_addr_info_from_bfd (abfd);
565 make_cleanup_free_section_addr_info (abfd_addrs);
566 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
567 make_cleanup (xfree, abfd_addrs_sorted);
568
c378eb4e
MS
569 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
570 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
571
572 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
573 * addrs->num_sections);
574 make_cleanup (xfree, addrs_to_abfd_addrs);
575
576 while (*addrs_sorted)
577 {
1276c759 578 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
579
580 while (*abfd_addrs_sorted
1276c759
JK
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
582 sect_name) < 0)
82ccf5a5
JK
583 abfd_addrs_sorted++;
584
585 if (*abfd_addrs_sorted
1276c759
JK
586 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
587 sect_name) == 0)
82ccf5a5
JK
588 {
589 int index_in_addrs;
590
591 /* Make the found item directly addressable from ADDRS. */
592 index_in_addrs = *addrs_sorted - addrs->other;
593 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
594 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
595
596 /* Never use the same ABFD entry twice. */
597 abfd_addrs_sorted++;
598 }
599
600 addrs_sorted++;
601 }
602
75242ef4
JK
603 /* Calculate offsets for the loadable sections.
604 FIXME! Sections must be in order of increasing loadable section
605 so that contiguous sections can use the lower-offset!!!
606
607 Adjust offsets if the segments are not contiguous.
608 If the section is contiguous, its offset should be set to
609 the offset of the highest loadable section lower than it
610 (the loadable section directly below it in memory).
611 this_offset = lower_offset = lower_addr - lower_orig_addr */
612
d76488d8 613 for (i = 0; i < addrs->num_sections; i++)
75242ef4 614 {
82ccf5a5 615 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
616
617 if (sect)
75242ef4 618 {
c378eb4e 619 /* This is the index used by BFD. */
82ccf5a5 620 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
621
622 if (addrs->other[i].addr != 0)
75242ef4 623 {
82ccf5a5 624 addrs->other[i].addr -= sect->addr;
75242ef4 625 lower_offset = addrs->other[i].addr;
75242ef4
JK
626 }
627 else
672d9c23 628 addrs->other[i].addr = lower_offset;
75242ef4
JK
629 }
630 else
672d9c23 631 {
1276c759
JK
632 /* addr_section_name transformation is not used for SECT_NAME. */
633 const char *sect_name = addrs->other[i].name;
634
b0fcb67f
JK
635 /* This section does not exist in ABFD, which is normally
636 unexpected and we want to issue a warning.
637
4d9743af
JK
638 However, the ELF prelinker does create a few sections which are
639 marked in the main executable as loadable (they are loaded in
640 memory from the DYNAMIC segment) and yet are not present in
641 separate debug info files. This is fine, and should not cause
642 a warning. Shared libraries contain just the section
643 ".gnu.liblist" but it is not marked as loadable there. There is
644 no other way to identify them than by their name as the sections
1276c759
JK
645 created by prelink have no special flags.
646
647 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
648
649 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 650 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
651 || (strcmp (sect_name, ".bss") == 0
652 && i > 0
653 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
654 && addrs_to_abfd_addrs[i - 1] != NULL)
655 || (strcmp (sect_name, ".sbss") == 0
656 && i > 0
657 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
658 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
659 warning (_("section %s not found in %s"), sect_name,
660 bfd_get_filename (abfd));
661
672d9c23 662 addrs->other[i].addr = 0;
5488dafb 663 addrs->other[i].sectindex = -1;
672d9c23 664 }
75242ef4 665 }
82ccf5a5
JK
666
667 do_cleanups (my_cleanup);
75242ef4
JK
668}
669
670/* Parse the user's idea of an offset for dynamic linking, into our idea
671 of how to represent it for fast symbol reading. This is the default
672 version of the sym_fns.sym_offsets function for symbol readers that
673 don't need to do anything special. It allocates a section_offsets table
674 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
675
676void
677default_symfile_offsets (struct objfile *objfile,
678 struct section_addr_info *addrs)
679{
680 objfile->num_sections = bfd_count_sections (objfile->obfd);
681 objfile->section_offsets = (struct section_offsets *)
682 obstack_alloc (&objfile->objfile_obstack,
683 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
684 relative_addr_info_to_section_offsets (objfile->section_offsets,
685 objfile->num_sections, addrs);
e8289572 686
c1bd25fd
DJ
687 /* For relocatable files, all loadable sections will start at zero.
688 The zero is meaningless, so try to pick arbitrary addresses such
689 that no loadable sections overlap. This algorithm is quadratic,
690 but the number of sections in a single object file is generally
691 small. */
692 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
693 {
694 struct place_section_arg arg;
2711e456
DJ
695 bfd *abfd = objfile->obfd;
696 asection *cur_sec;
2711e456
DJ
697
698 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
699 /* We do not expect this to happen; just skip this step if the
700 relocatable file has a section with an assigned VMA. */
701 if (bfd_section_vma (abfd, cur_sec) != 0)
702 break;
703
704 if (cur_sec == NULL)
705 {
706 CORE_ADDR *offsets = objfile->section_offsets->offsets;
707
708 /* Pick non-overlapping offsets for sections the user did not
709 place explicitly. */
710 arg.offsets = objfile->section_offsets;
711 arg.lowest = 0;
712 bfd_map_over_sections (objfile->obfd, place_section, &arg);
713
714 /* Correctly filling in the section offsets is not quite
715 enough. Relocatable files have two properties that
716 (most) shared objects do not:
717
718 - Their debug information will contain relocations. Some
719 shared libraries do also, but many do not, so this can not
720 be assumed.
721
722 - If there are multiple code sections they will be loaded
723 at different relative addresses in memory than they are
724 in the objfile, since all sections in the file will start
725 at address zero.
726
727 Because GDB has very limited ability to map from an
728 address in debug info to the correct code section,
729 it relies on adding SECT_OFF_TEXT to things which might be
730 code. If we clear all the section offsets, and set the
731 section VMAs instead, then symfile_relocate_debug_section
732 will return meaningful debug information pointing at the
733 correct sections.
734
735 GDB has too many different data structures for section
736 addresses - a bfd, objfile, and so_list all have section
737 tables, as does exec_ops. Some of these could probably
738 be eliminated. */
739
740 for (cur_sec = abfd->sections; cur_sec != NULL;
741 cur_sec = cur_sec->next)
742 {
743 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
744 continue;
745
746 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
747 exec_set_section_address (bfd_get_filename (abfd),
748 cur_sec->index,
30510692 749 offsets[cur_sec->index]);
2711e456
DJ
750 offsets[cur_sec->index] = 0;
751 }
752 }
c1bd25fd
DJ
753 }
754
e8289572 755 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 756 .rodata sections. */
e8289572
JB
757 init_objfile_sect_indices (objfile);
758}
759
760
31d99776
DJ
761/* Divide the file into segments, which are individual relocatable units.
762 This is the default version of the sym_fns.sym_segments function for
763 symbol readers that do not have an explicit representation of segments.
764 It assumes that object files do not have segments, and fully linked
765 files have a single segment. */
766
767struct symfile_segment_data *
768default_symfile_segments (bfd *abfd)
769{
770 int num_sections, i;
771 asection *sect;
772 struct symfile_segment_data *data;
773 CORE_ADDR low, high;
774
775 /* Relocatable files contain enough information to position each
776 loadable section independently; they should not be relocated
777 in segments. */
778 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
779 return NULL;
780
781 /* Make sure there is at least one loadable section in the file. */
782 for (sect = abfd->sections; sect != NULL; sect = sect->next)
783 {
784 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
785 continue;
786
787 break;
788 }
789 if (sect == NULL)
790 return NULL;
791
792 low = bfd_get_section_vma (abfd, sect);
793 high = low + bfd_get_section_size (sect);
794
795 data = XZALLOC (struct symfile_segment_data);
796 data->num_segments = 1;
797 data->segment_bases = XCALLOC (1, CORE_ADDR);
798 data->segment_sizes = XCALLOC (1, CORE_ADDR);
799
800 num_sections = bfd_count_sections (abfd);
801 data->segment_info = XCALLOC (num_sections, int);
802
803 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
804 {
805 CORE_ADDR vma;
806
807 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
808 continue;
809
810 vma = bfd_get_section_vma (abfd, sect);
811 if (vma < low)
812 low = vma;
813 if (vma + bfd_get_section_size (sect) > high)
814 high = vma + bfd_get_section_size (sect);
815
816 data->segment_info[i] = 1;
817 }
818
819 data->segment_bases[0] = low;
820 data->segment_sizes[0] = high - low;
821
822 return data;
823}
824
608e2dbb
TT
825/* This is a convenience function to call sym_read for OBJFILE and
826 possibly force the partial symbols to be read. */
827
828static void
829read_symbols (struct objfile *objfile, int add_flags)
830{
831 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
832
833 /* find_separate_debug_file_in_section should be called only if there is
834 single binary with no existing separate debug info file. */
835 if (!objfile_has_partial_symbols (objfile)
836 && objfile->separate_debug_objfile == NULL
837 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
838 {
839 bfd *abfd = find_separate_debug_file_in_section (objfile);
840 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
841
842 if (abfd != NULL)
843 symbol_file_add_separate (abfd, add_flags, objfile);
844
845 do_cleanups (cleanup);
846 }
847 if ((add_flags & SYMFILE_NO_READ) == 0)
848 require_partial_symbols (objfile, 0);
849}
850
3d6e24f0
JB
851/* Initialize entry point information for this objfile. */
852
853static void
854init_entry_point_info (struct objfile *objfile)
855{
856 /* Save startup file's range of PC addresses to help blockframe.c
857 decide where the bottom of the stack is. */
858
859 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
860 {
861 /* Executable file -- record its entry point so we'll recognize
862 the startup file because it contains the entry point. */
863 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
864 objfile->ei.entry_point_p = 1;
865 }
866 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
867 && bfd_get_start_address (objfile->obfd) != 0)
868 {
869 /* Some shared libraries may have entry points set and be
870 runnable. There's no clear way to indicate this, so just check
871 for values other than zero. */
872 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
873 objfile->ei.entry_point_p = 1;
874 }
875 else
876 {
877 /* Examination of non-executable.o files. Short-circuit this stuff. */
878 objfile->ei.entry_point_p = 0;
879 }
880
881 if (objfile->ei.entry_point_p)
882 {
883 CORE_ADDR entry_point = objfile->ei.entry_point;
884
885 /* Make certain that the address points at real code, and not a
886 function descriptor. */
887 entry_point
888 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
889 entry_point,
890 &current_target);
891
892 /* Remove any ISA markers, so that this matches entries in the
893 symbol table. */
894 objfile->ei.entry_point
895 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
896 }
897}
898
c906108c
SS
899/* Process a symbol file, as either the main file or as a dynamically
900 loaded file.
901
36e4d068
JB
902 This function does not set the OBJFILE's entry-point info.
903
96baa820
JM
904 OBJFILE is where the symbols are to be read from.
905
7e8580c1
JB
906 ADDRS is the list of section load addresses. If the user has given
907 an 'add-symbol-file' command, then this is the list of offsets and
908 addresses he or she provided as arguments to the command; or, if
909 we're handling a shared library, these are the actual addresses the
910 sections are loaded at, according to the inferior's dynamic linker
911 (as gleaned by GDB's shared library code). We convert each address
912 into an offset from the section VMA's as it appears in the object
913 file, and then call the file's sym_offsets function to convert this
914 into a format-specific offset table --- a `struct section_offsets'.
915 If ADDRS is non-zero, OFFSETS must be zero.
916
917 OFFSETS is a table of section offsets already in the right
918 format-specific representation. NUM_OFFSETS is the number of
919 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
920 assume this is the proper table the call to sym_offsets described
921 above would produce. Instead of calling sym_offsets, we just dump
922 it right into objfile->section_offsets. (When we're re-reading
923 symbols from an objfile, we don't have the original load address
924 list any more; all we have is the section offset table.) If
925 OFFSETS is non-zero, ADDRS must be zero.
96baa820 926
7eedccfa
PP
927 ADD_FLAGS encodes verbosity level, whether this is main symbol or
928 an extra symbol file such as dynamically loaded code, and wether
929 breakpoint reset should be deferred. */
c906108c 930
36e4d068
JB
931static void
932syms_from_objfile_1 (struct objfile *objfile,
933 struct section_addr_info *addrs,
934 struct section_offsets *offsets,
935 int num_offsets,
936 int add_flags)
c906108c 937{
a39a16c4 938 struct section_addr_info *local_addr = NULL;
c906108c 939 struct cleanup *old_chain;
7eedccfa 940 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 941
7e8580c1 942 gdb_assert (! (addrs && offsets));
2acceee2 943
31d99776 944 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 945
75245b24 946 if (objfile->sf == NULL)
36e4d068
JB
947 {
948 /* No symbols to load, but we still need to make sure
949 that the section_offsets table is allocated. */
950 int num_sections = bfd_count_sections (objfile->obfd);
951 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
952
953 objfile->num_sections = num_sections;
954 objfile->section_offsets
955 = obstack_alloc (&objfile->objfile_obstack, size);
956 memset (objfile->section_offsets, 0, size);
957 return;
958 }
75245b24 959
c906108c
SS
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
74b7792f 962 old_chain = make_cleanup_free_objfile (objfile);
c906108c 963
a39a16c4
MM
964 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
965 list. We now establish the convention that an addr of zero means
c378eb4e 966 no load address was specified. */
a39a16c4
MM
967 if (! addrs && ! offsets)
968 {
5417f6dc 969 local_addr
a39a16c4
MM
970 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
c5aa993b 977 if (mainline)
c906108c
SS
978 {
979 /* We will modify the main symbol table, make sure that all its users
c5aa993b 980 will be cleaned up if an error occurs during symbol reading. */
74b7792f 981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
adb7f338 988 gdb_assert (symfile_objfile == NULL);
c906108c
SS
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
c906108c 995
c5aa993b 996 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
53a5351d 1001 and assume that <addr> is where that got loaded.
c906108c 1002
53a5351d
JM
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
d76488d8 1005 if (addrs && addrs->num_sections > 0)
75242ef4 1006 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
c378eb4e 1010 initial symbol reading for this file. */
c906108c 1011
c5aa993b 1012 (*objfile->sf->sym_init) (objfile);
7eedccfa 1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1014
7e8580c1
JB
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
8b92e4d5 1025 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
c906108c 1030
608e2dbb 1031 read_symbols (objfile, add_flags);
b11896a5 1032
c906108c
SS
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
f7545552 1036 xfree (local_addr);
c906108c
SS
1037}
1038
36e4d068
JB
1039/* Same as syms_from_objfile_1, but also initializes the objfile
1040 entry-point info. */
1041
1042void
1043syms_from_objfile (struct objfile *objfile,
1044 struct section_addr_info *addrs,
1045 struct section_offsets *offsets,
1046 int num_offsets,
1047 int add_flags)
1048{
1049 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1050 init_entry_point_info (objfile);
1051}
1052
c906108c
SS
1053/* Perform required actions after either reading in the initial
1054 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1055 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1056
c906108c 1057void
7eedccfa 1058new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1059{
c906108c 1060 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1061 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1062 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1063 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1064 {
1065 /* OK, make it the "real" symbol file. */
1066 symfile_objfile = objfile;
1067
c1e56572 1068 clear_symtab_users (add_flags);
c906108c 1069 }
7eedccfa 1070 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1071 {
69de3c6a 1072 breakpoint_re_set ();
c906108c
SS
1073 }
1074
1075 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1076 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1077}
1078
1079/* Process a symbol file, as either the main file or as a dynamically
1080 loaded file.
1081
5417f6dc 1082 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1083 A new reference is acquired by this function.
7904e09f 1084
7eedccfa
PP
1085 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1086 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1087
1088 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1089 syms_from_objfile, above.
1090 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1091
63524580
JK
1092 PARENT is the original objfile if ABFD is a separate debug info file.
1093 Otherwise PARENT is NULL.
1094
c906108c 1095 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1096 Upon failure, jumps back to command level (never returns). */
7eedccfa 1097
7904e09f 1098static struct objfile *
7eedccfa
PP
1099symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1100 int add_flags,
7904e09f
JB
1101 struct section_addr_info *addrs,
1102 struct section_offsets *offsets,
1103 int num_offsets,
63524580 1104 int flags, struct objfile *parent)
c906108c
SS
1105{
1106 struct objfile *objfile;
5417f6dc 1107 const char *name = bfd_get_filename (abfd);
7eedccfa 1108 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1109 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1110 const int should_print = ((from_tty || info_verbose)
1111 && (readnow_symbol_files
1112 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1113
9291a0cd 1114 if (readnow_symbol_files)
b11896a5
TT
1115 {
1116 flags |= OBJF_READNOW;
1117 add_flags &= ~SYMFILE_NO_READ;
1118 }
9291a0cd 1119
5417f6dc
RM
1120 /* Give user a chance to burp if we'd be
1121 interactively wiping out any existing symbols. */
c906108c
SS
1122
1123 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1124 && mainline
c906108c 1125 && from_tty
9e2f0ad4 1126 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1127 error (_("Not confirmed."));
c906108c 1128
0838fb57 1129 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1130
63524580
JK
1131 if (parent)
1132 add_separate_debug_objfile (objfile, parent);
1133
78a4a9b9
AC
1134 /* We either created a new mapped symbol table, mapped an existing
1135 symbol table file which has not had initial symbol reading
c378eb4e 1136 performed, or need to read an unmapped symbol table. */
b11896a5 1137 if (should_print)
c906108c 1138 {
769d7dc4
AC
1139 if (deprecated_pre_add_symbol_hook)
1140 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1141 else
c906108c 1142 {
55333a84
DE
1143 printf_unfiltered (_("Reading symbols from %s..."), name);
1144 wrap_here ("");
1145 gdb_flush (gdb_stdout);
c906108c 1146 }
c906108c 1147 }
78a4a9b9 1148 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1149 add_flags);
c906108c
SS
1150
1151 /* We now have at least a partial symbol table. Check to see if the
1152 user requested that all symbols be read on initial access via either
1153 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1154 all partial symbol tables for this objfile if so. */
c906108c 1155
9291a0cd 1156 if ((flags & OBJF_READNOW))
c906108c 1157 {
b11896a5 1158 if (should_print)
c906108c 1159 {
a3f17187 1160 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
1163 }
1164
ccefe4c4
TT
1165 if (objfile->sf)
1166 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1167 }
1168
b11896a5 1169 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1170 {
1171 wrap_here ("");
55333a84 1172 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1173 wrap_here ("");
1174 }
1175
b11896a5 1176 if (should_print)
c906108c 1177 {
769d7dc4
AC
1178 if (deprecated_post_add_symbol_hook)
1179 deprecated_post_add_symbol_hook ();
c906108c 1180 else
55333a84 1181 printf_unfiltered (_("done.\n"));
c906108c
SS
1182 }
1183
481d0f41
JB
1184 /* We print some messages regardless of whether 'from_tty ||
1185 info_verbose' is true, so make sure they go out at the right
1186 time. */
1187 gdb_flush (gdb_stdout);
1188
109f874e 1189 if (objfile->sf == NULL)
8caee43b
PP
1190 {
1191 observer_notify_new_objfile (objfile);
c378eb4e 1192 return objfile; /* No symbols. */
8caee43b 1193 }
109f874e 1194
7eedccfa 1195 new_symfile_objfile (objfile, add_flags);
c906108c 1196
06d3b283 1197 observer_notify_new_objfile (objfile);
c906108c 1198
ce7d4522 1199 bfd_cache_close_all ();
c906108c
SS
1200 return (objfile);
1201}
1202
9cce227f
TG
1203/* Add BFD as a separate debug file for OBJFILE. */
1204
1205void
1206symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1207{
15d123c9 1208 struct objfile *new_objfile;
089b4803
TG
1209 struct section_addr_info *sap;
1210 struct cleanup *my_cleanup;
1211
1212 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1213 because sections of BFD may not match sections of OBJFILE and because
1214 vma may have been modified by tools such as prelink. */
1215 sap = build_section_addr_info_from_objfile (objfile);
1216 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1217
15d123c9 1218 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1219 (bfd, symfile_flags,
089b4803 1220 sap, NULL, 0,
9cce227f 1221 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1222 | OBJF_USERLOADED),
1223 objfile);
089b4803
TG
1224
1225 do_cleanups (my_cleanup);
9cce227f 1226}
7904e09f 1227
eb4556d7
JB
1228/* Process the symbol file ABFD, as either the main file or as a
1229 dynamically loaded file.
1230
1231 See symbol_file_add_with_addrs_or_offsets's comments for
1232 details. */
1233struct objfile *
7eedccfa 1234symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1235 struct section_addr_info *addrs,
63524580 1236 int flags, struct objfile *parent)
eb4556d7 1237{
7eedccfa 1238 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1239 flags, parent);
eb4556d7
JB
1240}
1241
1242
7904e09f
JB
1243/* Process a symbol file, as either the main file or as a dynamically
1244 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1245 for details. */
1246struct objfile *
7eedccfa
PP
1247symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1248 int flags)
7904e09f 1249{
8ac244b4
TT
1250 bfd *bfd = symfile_bfd_open (name);
1251 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1252 struct objfile *objf;
1253
882f447f 1254 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1255 do_cleanups (cleanup);
1256 return objf;
7904e09f
JB
1257}
1258
1259
d7db6da9
FN
1260/* Call symbol_file_add() with default values and update whatever is
1261 affected by the loading of a new main().
1262 Used when the file is supplied in the gdb command line
1263 and by some targets with special loading requirements.
1264 The auxiliary function, symbol_file_add_main_1(), has the flags
1265 argument for the switches that can only be specified in the symbol_file
1266 command itself. */
5417f6dc 1267
1adeb98a
FN
1268void
1269symbol_file_add_main (char *args, int from_tty)
1270{
d7db6da9
FN
1271 symbol_file_add_main_1 (args, from_tty, 0);
1272}
1273
1274static void
1275symbol_file_add_main_1 (char *args, int from_tty, int flags)
1276{
7dcd53a0
TT
1277 const int add_flags = (current_inferior ()->symfile_flags
1278 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1279
7eedccfa 1280 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1281
d7db6da9
FN
1282 /* Getting new symbols may change our opinion about
1283 what is frameless. */
1284 reinit_frame_cache ();
1285
7dcd53a0
TT
1286 if ((flags & SYMFILE_NO_READ) == 0)
1287 set_initial_language ();
1adeb98a
FN
1288}
1289
1290void
1291symbol_file_clear (int from_tty)
1292{
1293 if ((have_full_symbols () || have_partial_symbols ())
1294 && from_tty
0430b0d6
AS
1295 && (symfile_objfile
1296 ? !query (_("Discard symbol table from `%s'? "),
1297 symfile_objfile->name)
1298 : !query (_("Discard symbol table? "))))
8a3fe4f8 1299 error (_("Not confirmed."));
1adeb98a 1300
0133421a
JK
1301 /* solib descriptors may have handles to objfiles. Wipe them before their
1302 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1303 no_shared_libraries (NULL, from_tty);
1304
0133421a
JK
1305 free_all_objfiles ();
1306
adb7f338 1307 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1308 if (from_tty)
1309 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1310}
1311
5b5d99cf 1312static int
287ccc17 1313separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1314 struct objfile *parent_objfile)
5b5d99cf 1315{
904578ed
JK
1316 unsigned long file_crc;
1317 int file_crc_p;
f1838a98 1318 bfd *abfd;
32a0e547 1319 struct stat parent_stat, abfd_stat;
904578ed 1320 int verified_as_different;
32a0e547
JK
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1326 the separate debug infos with the same basename can exist. */
32a0e547 1327
0ba1096a 1328 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1329 return 0;
5b5d99cf 1330
08d2cd74 1331 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1332
1333 if (!abfd)
5b5d99cf
JB
1334 return 0;
1335
0ba1096a 1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1347 && abfd_stat.st_ino != 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1349 {
904578ed
JK
1350 if (abfd_stat.st_dev == parent_stat.st_dev
1351 && abfd_stat.st_ino == parent_stat.st_ino)
1352 {
cbb099e8 1353 gdb_bfd_unref (abfd);
904578ed
JK
1354 return 0;
1355 }
1356 verified_as_different = 1;
32a0e547 1357 }
904578ed
JK
1358 else
1359 verified_as_different = 0;
32a0e547 1360
dccee2de 1361 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1362
cbb099e8 1363 gdb_bfd_unref (abfd);
5b5d99cf 1364
904578ed
JK
1365 if (!file_crc_p)
1366 return 0;
1367
287ccc17
JK
1368 if (crc != file_crc)
1369 {
dccee2de
TT
1370 unsigned long parent_crc;
1371
904578ed
JK
1372 /* If one (or both) the files are accessed for example the via "remote:"
1373 gdbserver way it does not support the bfd_stat operation. Verify
1374 whether those two files are not the same manually. */
1375
dccee2de 1376 if (!verified_as_different)
904578ed 1377 {
dccee2de 1378 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1379 return 0;
1380 }
1381
dccee2de 1382 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1383 warning (_("the debug information found in \"%s\""
1384 " does not match \"%s\" (CRC mismatch).\n"),
1385 name, parent_objfile->name);
1386
287ccc17
JK
1387 return 0;
1388 }
1389
1390 return 1;
5b5d99cf
JB
1391}
1392
aa28a74e 1393char *debug_file_directory = NULL;
920d2a44
AC
1394static void
1395show_debug_file_directory (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c, const char *value)
1397{
3e43a32a
MS
1398 fprintf_filtered (file,
1399 _("The directory where separate debug "
1400 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1401 value);
1402}
5b5d99cf
JB
1403
1404#if ! defined (DEBUG_SUBDIRECTORY)
1405#define DEBUG_SUBDIRECTORY ".debug"
1406#endif
1407
1db33378
PP
1408/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1409 where the original file resides (may not be the same as
1410 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1411 looking for. Returns the name of the debuginfo, of NULL. */
1412
1413static char *
1414find_separate_debug_file (const char *dir,
1415 const char *canon_dir,
1416 const char *debuglink,
1417 unsigned long crc32, struct objfile *objfile)
9cce227f 1418{
1db33378
PP
1419 char *debugdir;
1420 char *debugfile;
9cce227f 1421 int i;
e4ab2fad
JK
1422 VEC (char_ptr) *debugdir_vec;
1423 struct cleanup *back_to;
1424 int ix;
5b5d99cf 1425
1db33378 1426 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1427 i = strlen (dir);
1db33378
PP
1428 if (canon_dir != NULL && strlen (canon_dir) > i)
1429 i = strlen (canon_dir);
1ffa32ee 1430
25522fae
JK
1431 debugfile = xmalloc (strlen (debug_file_directory) + 1
1432 + i
1433 + strlen (DEBUG_SUBDIRECTORY)
1434 + strlen ("/")
1db33378 1435 + strlen (debuglink)
25522fae 1436 + 1);
5b5d99cf
JB
1437
1438 /* First try in the same directory as the original file. */
1439 strcpy (debugfile, dir);
1db33378 1440 strcat (debugfile, debuglink);
5b5d99cf 1441
32a0e547 1442 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1443 return debugfile;
5417f6dc 1444
5b5d99cf
JB
1445 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1446 strcpy (debugfile, dir);
1447 strcat (debugfile, DEBUG_SUBDIRECTORY);
1448 strcat (debugfile, "/");
1db33378 1449 strcat (debugfile, debuglink);
5b5d99cf 1450
32a0e547 1451 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1452 return debugfile;
5417f6dc 1453
24ddea62 1454 /* Then try in the global debugfile directories.
f888f159 1455
24ddea62
JK
1456 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1457 cause "/..." lookups. */
5417f6dc 1458
e4ab2fad
JK
1459 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1460 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1461
e4ab2fad
JK
1462 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1463 {
1464 strcpy (debugfile, debugdir);
aa28a74e 1465 strcat (debugfile, "/");
24ddea62 1466 strcat (debugfile, dir);
1db33378 1467 strcat (debugfile, debuglink);
aa28a74e 1468
32a0e547 1469 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1470 return debugfile;
24ddea62
JK
1471
1472 /* If the file is in the sysroot, try using its base path in the
1473 global debugfile directory. */
1db33378
PP
1474 if (canon_dir != NULL
1475 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1476 strlen (gdb_sysroot)) == 0
1db33378 1477 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1478 {
e4ab2fad 1479 strcpy (debugfile, debugdir);
1db33378 1480 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1481 strcat (debugfile, "/");
1db33378 1482 strcat (debugfile, debuglink);
24ddea62 1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1485 return debugfile;
24ddea62 1486 }
aa28a74e 1487 }
f888f159 1488
e4ab2fad 1489 do_cleanups (back_to);
25522fae 1490 xfree (debugfile);
1db33378
PP
1491 return NULL;
1492}
1493
1494/* Modify PATH to contain only "directory/" part of PATH.
1495 If there were no directory separators in PATH, PATH will be empty
1496 string on return. */
1497
1498static void
1499terminate_after_last_dir_separator (char *path)
1500{
1501 int i;
1502
1503 /* Strip off the final filename part, leaving the directory name,
1504 followed by a slash. The directory can be relative or absolute. */
1505 for (i = strlen(path) - 1; i >= 0; i--)
1506 if (IS_DIR_SEPARATOR (path[i]))
1507 break;
1508
1509 /* If I is -1 then no directory is present there and DIR will be "". */
1510 path[i + 1] = '\0';
1511}
1512
1513/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1514 Returns pathname, or NULL. */
1515
1516char *
1517find_separate_debug_file_by_debuglink (struct objfile *objfile)
1518{
1519 char *debuglink;
1520 char *dir, *canon_dir;
1521 char *debugfile;
1522 unsigned long crc32;
1523 struct cleanup *cleanups;
1524
cc0ea93c 1525 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1526
1527 if (debuglink == NULL)
1528 {
1529 /* There's no separate debug info, hence there's no way we could
1530 load it => no warning. */
1531 return NULL;
1532 }
1533
71bdabee 1534 cleanups = make_cleanup (xfree, debuglink);
1db33378 1535 dir = xstrdup (objfile->name);
71bdabee 1536 make_cleanup (xfree, dir);
1db33378
PP
1537 terminate_after_last_dir_separator (dir);
1538 canon_dir = lrealpath (dir);
1539
1540 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1541 crc32, objfile);
1542 xfree (canon_dir);
1543
1544 if (debugfile == NULL)
1545 {
1546#ifdef HAVE_LSTAT
1547 /* For PR gdb/9538, try again with realpath (if different from the
1548 original). */
1549
1550 struct stat st_buf;
1551
1552 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1553 {
1554 char *symlink_dir;
1555
1556 symlink_dir = lrealpath (objfile->name);
1557 if (symlink_dir != NULL)
1558 {
1559 make_cleanup (xfree, symlink_dir);
1560 terminate_after_last_dir_separator (symlink_dir);
1561 if (strcmp (dir, symlink_dir) != 0)
1562 {
1563 /* Different directory, so try using it. */
1564 debugfile = find_separate_debug_file (symlink_dir,
1565 symlink_dir,
1566 debuglink,
1567 crc32,
1568 objfile);
1569 }
1570 }
1571 }
1572#endif /* HAVE_LSTAT */
1573 }
aa28a74e 1574
1db33378 1575 do_cleanups (cleanups);
25522fae 1576 return debugfile;
5b5d99cf
JB
1577}
1578
1579
c906108c
SS
1580/* This is the symbol-file command. Read the file, analyze its
1581 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1582 the command is rather bizarre:
1583
1584 1. The function buildargv implements various quoting conventions
1585 which are undocumented and have little or nothing in common with
1586 the way things are quoted (or not quoted) elsewhere in GDB.
1587
1588 2. Options are used, which are not generally used in GDB (perhaps
1589 "set mapped on", "set readnow on" would be better)
1590
1591 3. The order of options matters, which is contrary to GNU
c906108c
SS
1592 conventions (because it is confusing and inconvenient). */
1593
1594void
fba45db2 1595symbol_file_command (char *args, int from_tty)
c906108c 1596{
c906108c
SS
1597 dont_repeat ();
1598
1599 if (args == NULL)
1600 {
1adeb98a 1601 symbol_file_clear (from_tty);
c906108c
SS
1602 }
1603 else
1604 {
d1a41061 1605 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1606 int flags = OBJF_USERLOADED;
1607 struct cleanup *cleanups;
1608 char *name = NULL;
1609
7a292a7a 1610 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1611 while (*argv != NULL)
1612 {
78a4a9b9
AC
1613 if (strcmp (*argv, "-readnow") == 0)
1614 flags |= OBJF_READNOW;
1615 else if (**argv == '-')
8a3fe4f8 1616 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1617 else
1618 {
cb2f3a29 1619 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1620 name = *argv;
78a4a9b9 1621 }
cb2f3a29 1622
c906108c
SS
1623 argv++;
1624 }
1625
1626 if (name == NULL)
cb2f3a29
MK
1627 error (_("no symbol file name was specified"));
1628
c906108c
SS
1629 do_cleanups (cleanups);
1630 }
1631}
1632
1633/* Set the initial language.
1634
cb2f3a29
MK
1635 FIXME: A better solution would be to record the language in the
1636 psymtab when reading partial symbols, and then use it (if known) to
1637 set the language. This would be a win for formats that encode the
1638 language in an easily discoverable place, such as DWARF. For
1639 stabs, we can jump through hoops looking for specially named
1640 symbols or try to intuit the language from the specific type of
1641 stabs we find, but we can't do that until later when we read in
1642 full symbols. */
c906108c 1643
8b60591b 1644void
fba45db2 1645set_initial_language (void)
c906108c 1646{
c5aa993b 1647 enum language lang = language_unknown;
c906108c 1648
01f8c46d
JK
1649 if (language_of_main != language_unknown)
1650 lang = language_of_main;
1651 else
1652 {
1653 const char *filename;
f888f159 1654
01f8c46d
JK
1655 filename = find_main_filename ();
1656 if (filename != NULL)
1657 lang = deduce_language_from_filename (filename);
1658 }
cb2f3a29 1659
ccefe4c4
TT
1660 if (lang == language_unknown)
1661 {
1662 /* Make C the default language */
1663 lang = language_c;
c906108c 1664 }
ccefe4c4
TT
1665
1666 set_language (lang);
1667 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1668}
1669
874f5765 1670/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1671 open it normally. Returns a new reference to the BFD. On error,
1672 returns NULL with the BFD error set. */
874f5765
TG
1673
1674bfd *
08d2cd74 1675gdb_bfd_open_maybe_remote (const char *name)
874f5765 1676{
520b0001
TT
1677 bfd *result;
1678
874f5765 1679 if (remote_filename_p (name))
520b0001 1680 result = remote_bfd_open (name, gnutarget);
874f5765 1681 else
1c00ec6b 1682 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1683
520b0001 1684 return result;
874f5765
TG
1685}
1686
1687
cb2f3a29
MK
1688/* Open the file specified by NAME and hand it off to BFD for
1689 preliminary analysis. Return a newly initialized bfd *, which
1690 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1691 absolute). In case of trouble, error() is called. */
c906108c
SS
1692
1693bfd *
fba45db2 1694symfile_bfd_open (char *name)
c906108c
SS
1695{
1696 bfd *sym_bfd;
1697 int desc;
1698 char *absolute_name;
1699
f1838a98
UW
1700 if (remote_filename_p (name))
1701 {
520b0001 1702 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1703 if (!sym_bfd)
a4453b7e
TT
1704 error (_("`%s': can't open to read symbols: %s."), name,
1705 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1706
1707 if (!bfd_check_format (sym_bfd, bfd_object))
1708 {
f9a062ff 1709 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1710 error (_("`%s': can't read symbols: %s."), name,
1711 bfd_errmsg (bfd_get_error ()));
1712 }
1713
1714 return sym_bfd;
1715 }
1716
cb2f3a29 1717 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1718
1719 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1720 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1721 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1722#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1723 if (desc < 0)
1724 {
1725 char *exename = alloca (strlen (name) + 5);
433759f7 1726
c906108c 1727 strcat (strcpy (exename, name), ".exe");
014d698b 1728 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1729 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1730 }
1731#endif
1732 if (desc < 0)
1733 {
b8c9b27d 1734 make_cleanup (xfree, name);
c906108c
SS
1735 perror_with_name (name);
1736 }
cb2f3a29 1737
cb2f3a29
MK
1738 xfree (name);
1739 name = absolute_name;
a4453b7e 1740 make_cleanup (xfree, name);
c906108c 1741
1c00ec6b 1742 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c
SS
1743 if (!sym_bfd)
1744 {
b8c9b27d 1745 make_cleanup (xfree, name);
f1838a98 1746 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1747 bfd_errmsg (bfd_get_error ()));
1748 }
549c1eea 1749 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1750
1751 if (!bfd_check_format (sym_bfd, bfd_object))
1752 {
f9a062ff 1753 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1754 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1755 bfd_errmsg (bfd_get_error ()));
1756 }
cb2f3a29
MK
1757
1758 return sym_bfd;
c906108c
SS
1759}
1760
cb2f3a29
MK
1761/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1762 the section was not found. */
1763
0e931cf0
JB
1764int
1765get_section_index (struct objfile *objfile, char *section_name)
1766{
1767 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1768
0e931cf0
JB
1769 if (sect)
1770 return sect->index;
1771 else
1772 return -1;
1773}
1774
cb2f3a29
MK
1775/* Link SF into the global symtab_fns list. Called on startup by the
1776 _initialize routine in each object file format reader, to register
b021a221 1777 information about each format the reader is prepared to handle. */
c906108c
SS
1778
1779void
00b5771c 1780add_symtab_fns (const struct sym_fns *sf)
c906108c 1781{
00b5771c 1782 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1783}
1784
cb2f3a29
MK
1785/* Initialize OBJFILE to read symbols from its associated BFD. It
1786 either returns or calls error(). The result is an initialized
1787 struct sym_fns in the objfile structure, that contains cached
1788 information about the symbol file. */
c906108c 1789
00b5771c 1790static const struct sym_fns *
31d99776 1791find_sym_fns (bfd *abfd)
c906108c 1792{
00b5771c 1793 const struct sym_fns *sf;
31d99776 1794 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1795 int i;
c906108c 1796
75245b24
MS
1797 if (our_flavour == bfd_target_srec_flavour
1798 || our_flavour == bfd_target_ihex_flavour
1799 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1800 return NULL; /* No symbols. */
75245b24 1801
00b5771c 1802 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1803 if (our_flavour == sf->sym_flavour)
1804 return sf;
cb2f3a29 1805
8a3fe4f8 1806 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1807 bfd_get_target (abfd));
c906108c
SS
1808}
1809\f
cb2f3a29 1810
c906108c
SS
1811/* This function runs the load command of our current target. */
1812
1813static void
fba45db2 1814load_command (char *arg, int from_tty)
c906108c 1815{
e5cc9f32
JB
1816 dont_repeat ();
1817
4487aabf
PA
1818 /* The user might be reloading because the binary has changed. Take
1819 this opportunity to check. */
1820 reopen_exec_file ();
1821 reread_symbols ();
1822
c906108c 1823 if (arg == NULL)
1986bccd
AS
1824 {
1825 char *parg;
1826 int count = 0;
1827
1828 parg = arg = get_exec_file (1);
1829
1830 /* Count how many \ " ' tab space there are in the name. */
1831 while ((parg = strpbrk (parg, "\\\"'\t ")))
1832 {
1833 parg++;
1834 count++;
1835 }
1836
1837 if (count)
1838 {
1839 /* We need to quote this string so buildargv can pull it apart. */
1840 char *temp = xmalloc (strlen (arg) + count + 1 );
1841 char *ptemp = temp;
1842 char *prev;
1843
1844 make_cleanup (xfree, temp);
1845
1846 prev = parg = arg;
1847 while ((parg = strpbrk (parg, "\\\"'\t ")))
1848 {
1849 strncpy (ptemp, prev, parg - prev);
1850 ptemp += parg - prev;
1851 prev = parg++;
1852 *ptemp++ = '\\';
1853 }
1854 strcpy (ptemp, prev);
1855
1856 arg = temp;
1857 }
1858 }
1859
c906108c 1860 target_load (arg, from_tty);
2889e661
JB
1861
1862 /* After re-loading the executable, we don't really know which
1863 overlays are mapped any more. */
1864 overlay_cache_invalid = 1;
c906108c
SS
1865}
1866
1867/* This version of "load" should be usable for any target. Currently
1868 it is just used for remote targets, not inftarg.c or core files,
1869 on the theory that only in that case is it useful.
1870
1871 Avoiding xmodem and the like seems like a win (a) because we don't have
1872 to worry about finding it, and (b) On VMS, fork() is very slow and so
1873 we don't want to run a subprocess. On the other hand, I'm not sure how
1874 performance compares. */
917317f4 1875
917317f4
JM
1876static int validate_download = 0;
1877
e4f9b4d5
MS
1878/* Callback service function for generic_load (bfd_map_over_sections). */
1879
1880static void
1881add_section_size_callback (bfd *abfd, asection *asec, void *data)
1882{
1883 bfd_size_type *sum = data;
1884
2c500098 1885 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1886}
1887
1888/* Opaque data for load_section_callback. */
1889struct load_section_data {
f698ca8e 1890 CORE_ADDR load_offset;
a76d924d
DJ
1891 struct load_progress_data *progress_data;
1892 VEC(memory_write_request_s) *requests;
1893};
1894
1895/* Opaque data for load_progress. */
1896struct load_progress_data {
1897 /* Cumulative data. */
e4f9b4d5
MS
1898 unsigned long write_count;
1899 unsigned long data_count;
1900 bfd_size_type total_size;
a76d924d
DJ
1901};
1902
1903/* Opaque data for load_progress for a single section. */
1904struct load_progress_section_data {
1905 struct load_progress_data *cumulative;
cf7a04e8 1906
a76d924d 1907 /* Per-section data. */
cf7a04e8
DJ
1908 const char *section_name;
1909 ULONGEST section_sent;
1910 ULONGEST section_size;
1911 CORE_ADDR lma;
1912 gdb_byte *buffer;
e4f9b4d5
MS
1913};
1914
a76d924d 1915/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1916
1917static void
1918load_progress (ULONGEST bytes, void *untyped_arg)
1919{
a76d924d
DJ
1920 struct load_progress_section_data *args = untyped_arg;
1921 struct load_progress_data *totals;
1922
1923 if (args == NULL)
1924 /* Writing padding data. No easy way to get at the cumulative
1925 stats, so just ignore this. */
1926 return;
1927
1928 totals = args->cumulative;
1929
1930 if (bytes == 0 && args->section_sent == 0)
1931 {
1932 /* The write is just starting. Let the user know we've started
1933 this section. */
79a45e25 1934 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1935 args->section_name, hex_string (args->section_size),
f5656ead 1936 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1937 return;
1938 }
cf7a04e8
DJ
1939
1940 if (validate_download)
1941 {
1942 /* Broken memories and broken monitors manifest themselves here
1943 when bring new computers to life. This doubles already slow
1944 downloads. */
1945 /* NOTE: cagney/1999-10-18: A more efficient implementation
1946 might add a verify_memory() method to the target vector and
1947 then use that. remote.c could implement that method using
1948 the ``qCRC'' packet. */
1949 gdb_byte *check = xmalloc (bytes);
1950 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1951
1952 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1953 error (_("Download verify read failed at %s"),
f5656ead 1954 paddress (target_gdbarch (), args->lma));
cf7a04e8 1955 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1956 error (_("Download verify compare failed at %s"),
f5656ead 1957 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1958 do_cleanups (verify_cleanups);
1959 }
a76d924d 1960 totals->data_count += bytes;
cf7a04e8
DJ
1961 args->lma += bytes;
1962 args->buffer += bytes;
a76d924d 1963 totals->write_count += 1;
cf7a04e8 1964 args->section_sent += bytes;
522002f9 1965 if (check_quit_flag ()
cf7a04e8
DJ
1966 || (deprecated_ui_load_progress_hook != NULL
1967 && deprecated_ui_load_progress_hook (args->section_name,
1968 args->section_sent)))
1969 error (_("Canceled the download"));
1970
1971 if (deprecated_show_load_progress != NULL)
1972 deprecated_show_load_progress (args->section_name,
1973 args->section_sent,
1974 args->section_size,
a76d924d
DJ
1975 totals->data_count,
1976 totals->total_size);
cf7a04e8
DJ
1977}
1978
e4f9b4d5
MS
1979/* Callback service function for generic_load (bfd_map_over_sections). */
1980
1981static void
1982load_section_callback (bfd *abfd, asection *asec, void *data)
1983{
a76d924d 1984 struct memory_write_request *new_request;
e4f9b4d5 1985 struct load_section_data *args = data;
a76d924d 1986 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1987 bfd_size_type size = bfd_get_section_size (asec);
1988 gdb_byte *buffer;
cf7a04e8 1989 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1990
cf7a04e8
DJ
1991 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1992 return;
e4f9b4d5 1993
cf7a04e8
DJ
1994 if (size == 0)
1995 return;
e4f9b4d5 1996
a76d924d
DJ
1997 new_request = VEC_safe_push (memory_write_request_s,
1998 args->requests, NULL);
1999 memset (new_request, 0, sizeof (struct memory_write_request));
2000 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2001 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2002 new_request->end = new_request->begin + size; /* FIXME Should size
2003 be in instead? */
a76d924d
DJ
2004 new_request->data = xmalloc (size);
2005 new_request->baton = section_data;
cf7a04e8 2006
a76d924d 2007 buffer = new_request->data;
cf7a04e8 2008
a76d924d
DJ
2009 section_data->cumulative = args->progress_data;
2010 section_data->section_name = sect_name;
2011 section_data->section_size = size;
2012 section_data->lma = new_request->begin;
2013 section_data->buffer = buffer;
cf7a04e8
DJ
2014
2015 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2016}
2017
2018/* Clean up an entire memory request vector, including load
2019 data and progress records. */
cf7a04e8 2020
a76d924d
DJ
2021static void
2022clear_memory_write_data (void *arg)
2023{
2024 VEC(memory_write_request_s) **vec_p = arg;
2025 VEC(memory_write_request_s) *vec = *vec_p;
2026 int i;
2027 struct memory_write_request *mr;
cf7a04e8 2028
a76d924d
DJ
2029 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2030 {
2031 xfree (mr->data);
2032 xfree (mr->baton);
2033 }
2034 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2035}
2036
c906108c 2037void
917317f4 2038generic_load (char *args, int from_tty)
c906108c 2039{
c906108c 2040 bfd *loadfile_bfd;
2b71414d 2041 struct timeval start_time, end_time;
917317f4 2042 char *filename;
1986bccd 2043 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2044 struct load_section_data cbdata;
a76d924d 2045 struct load_progress_data total_progress;
79a45e25 2046 struct ui_out *uiout = current_uiout;
a76d924d 2047
e4f9b4d5 2048 CORE_ADDR entry;
1986bccd 2049 char **argv;
e4f9b4d5 2050
a76d924d
DJ
2051 memset (&cbdata, 0, sizeof (cbdata));
2052 memset (&total_progress, 0, sizeof (total_progress));
2053 cbdata.progress_data = &total_progress;
2054
2055 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2056
d1a41061
PP
2057 if (args == NULL)
2058 error_no_arg (_("file to load"));
1986bccd 2059
d1a41061 2060 argv = gdb_buildargv (args);
1986bccd
AS
2061 make_cleanup_freeargv (argv);
2062
2063 filename = tilde_expand (argv[0]);
2064 make_cleanup (xfree, filename);
2065
2066 if (argv[1] != NULL)
917317f4 2067 {
f698ca8e 2068 const char *endptr;
ba5f2f8a 2069
f698ca8e 2070 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2071
2072 /* If the last word was not a valid number then
2073 treat it as a file name with spaces in. */
2074 if (argv[1] == endptr)
2075 error (_("Invalid download offset:%s."), argv[1]);
2076
2077 if (argv[2] != NULL)
2078 error (_("Too many parameters."));
917317f4 2079 }
c906108c 2080
c378eb4e 2081 /* Open the file for loading. */
1c00ec6b 2082 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2083 if (loadfile_bfd == NULL)
2084 {
2085 perror_with_name (filename);
2086 return;
2087 }
917317f4 2088
f9a062ff 2089 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2090
c5aa993b 2091 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2092 {
8a3fe4f8 2093 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2094 bfd_errmsg (bfd_get_error ()));
2095 }
c5aa993b 2096
5417f6dc 2097 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2098 (void *) &total_progress.total_size);
2099
2100 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2101
2b71414d 2102 gettimeofday (&start_time, NULL);
c906108c 2103
a76d924d
DJ
2104 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2105 load_progress) != 0)
2106 error (_("Load failed"));
c906108c 2107
2b71414d 2108 gettimeofday (&end_time, NULL);
ba5f2f8a 2109
e4f9b4d5 2110 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2111 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2112 ui_out_text (uiout, "Start address ");
f5656ead 2113 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2114 ui_out_text (uiout, ", load size ");
a76d924d 2115 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2116 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2117 /* We were doing this in remote-mips.c, I suspect it is right
2118 for other targets too. */
fb14de7b 2119 regcache_write_pc (get_current_regcache (), entry);
c906108c 2120
38963c97
DJ
2121 /* Reset breakpoints, now that we have changed the load image. For
2122 instance, breakpoints may have been set (or reset, by
2123 post_create_inferior) while connected to the target but before we
2124 loaded the program. In that case, the prologue analyzer could
2125 have read instructions from the target to find the right
2126 breakpoint locations. Loading has changed the contents of that
2127 memory. */
2128
2129 breakpoint_re_set ();
2130
7ca9f392
AC
2131 /* FIXME: are we supposed to call symbol_file_add or not? According
2132 to a comment from remote-mips.c (where a call to symbol_file_add
2133 was commented out), making the call confuses GDB if more than one
2134 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2135 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2136
a76d924d
DJ
2137 print_transfer_performance (gdb_stdout, total_progress.data_count,
2138 total_progress.write_count,
2139 &start_time, &end_time);
c906108c
SS
2140
2141 do_cleanups (old_cleanups);
2142}
2143
c378eb4e 2144/* Report how fast the transfer went. */
c906108c 2145
917317f4 2146void
d9fcf2fb 2147print_transfer_performance (struct ui_file *stream,
917317f4
JM
2148 unsigned long data_count,
2149 unsigned long write_count,
2b71414d
DJ
2150 const struct timeval *start_time,
2151 const struct timeval *end_time)
917317f4 2152{
9f43d28c 2153 ULONGEST time_count;
79a45e25 2154 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2155
2156 /* Compute the elapsed time in milliseconds, as a tradeoff between
2157 accuracy and overflow. */
2158 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2159 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2160
8b93c638
JM
2161 ui_out_text (uiout, "Transfer rate: ");
2162 if (time_count > 0)
2163 {
9f43d28c
DJ
2164 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2165
2166 if (ui_out_is_mi_like_p (uiout))
2167 {
2168 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2169 ui_out_text (uiout, " bits/sec");
2170 }
2171 else if (rate < 1024)
2172 {
2173 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2174 ui_out_text (uiout, " bytes/sec");
2175 }
2176 else
2177 {
2178 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2179 ui_out_text (uiout, " KB/sec");
2180 }
8b93c638
JM
2181 }
2182 else
2183 {
ba5f2f8a 2184 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2185 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2186 }
2187 if (write_count > 0)
2188 {
2189 ui_out_text (uiout, ", ");
ba5f2f8a 2190 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2191 ui_out_text (uiout, " bytes/write");
2192 }
2193 ui_out_text (uiout, ".\n");
c906108c
SS
2194}
2195
2196/* This function allows the addition of incrementally linked object files.
2197 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2198/* Note: ezannoni 2000-04-13 This function/command used to have a
2199 special case syntax for the rombug target (Rombug is the boot
2200 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2201 rombug case, the user doesn't need to supply a text address,
2202 instead a call to target_link() (in target.c) would supply the
c378eb4e 2203 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2204
c906108c 2205static void
fba45db2 2206add_symbol_file_command (char *args, int from_tty)
c906108c 2207{
5af949e3 2208 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2209 char *filename = NULL;
2df3850c 2210 int flags = OBJF_USERLOADED;
c906108c 2211 char *arg;
db162d44 2212 int section_index = 0;
2acceee2
JM
2213 int argcnt = 0;
2214 int sec_num = 0;
2215 int i;
db162d44
EZ
2216 int expecting_sec_name = 0;
2217 int expecting_sec_addr = 0;
5b96932b 2218 char **argv;
db162d44 2219
a39a16c4 2220 struct sect_opt
2acceee2 2221 {
2acceee2
JM
2222 char *name;
2223 char *value;
a39a16c4 2224 };
db162d44 2225
a39a16c4
MM
2226 struct section_addr_info *section_addrs;
2227 struct sect_opt *sect_opts = NULL;
2228 size_t num_sect_opts = 0;
3017564a 2229 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2230
a39a16c4 2231 num_sect_opts = 16;
5417f6dc 2232 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2233 * sizeof (struct sect_opt));
2234
c906108c
SS
2235 dont_repeat ();
2236
2237 if (args == NULL)
8a3fe4f8 2238 error (_("add-symbol-file takes a file name and an address"));
c906108c 2239
d1a41061 2240 argv = gdb_buildargv (args);
5b96932b 2241 make_cleanup_freeargv (argv);
db162d44 2242
5b96932b
AS
2243 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2244 {
c378eb4e 2245 /* Process the argument. */
db162d44 2246 if (argcnt == 0)
c906108c 2247 {
c378eb4e 2248 /* The first argument is the file name. */
db162d44 2249 filename = tilde_expand (arg);
3017564a 2250 make_cleanup (xfree, filename);
c906108c 2251 }
db162d44 2252 else
7a78ae4e
ND
2253 if (argcnt == 1)
2254 {
2255 /* The second argument is always the text address at which
c378eb4e 2256 to load the program. */
7a78ae4e
ND
2257 sect_opts[section_index].name = ".text";
2258 sect_opts[section_index].value = arg;
f414f22f 2259 if (++section_index >= num_sect_opts)
a39a16c4
MM
2260 {
2261 num_sect_opts *= 2;
5417f6dc 2262 sect_opts = ((struct sect_opt *)
a39a16c4 2263 xrealloc (sect_opts,
5417f6dc 2264 num_sect_opts
a39a16c4
MM
2265 * sizeof (struct sect_opt)));
2266 }
7a78ae4e
ND
2267 }
2268 else
2269 {
2270 /* It's an option (starting with '-') or it's an argument
c378eb4e 2271 to an option. */
7a78ae4e
ND
2272
2273 if (*arg == '-')
2274 {
78a4a9b9
AC
2275 if (strcmp (arg, "-readnow") == 0)
2276 flags |= OBJF_READNOW;
2277 else if (strcmp (arg, "-s") == 0)
2278 {
2279 expecting_sec_name = 1;
2280 expecting_sec_addr = 1;
2281 }
7a78ae4e
ND
2282 }
2283 else
2284 {
2285 if (expecting_sec_name)
db162d44 2286 {
7a78ae4e
ND
2287 sect_opts[section_index].name = arg;
2288 expecting_sec_name = 0;
db162d44
EZ
2289 }
2290 else
7a78ae4e
ND
2291 if (expecting_sec_addr)
2292 {
2293 sect_opts[section_index].value = arg;
2294 expecting_sec_addr = 0;
f414f22f 2295 if (++section_index >= num_sect_opts)
a39a16c4
MM
2296 {
2297 num_sect_opts *= 2;
5417f6dc 2298 sect_opts = ((struct sect_opt *)
a39a16c4 2299 xrealloc (sect_opts,
5417f6dc 2300 num_sect_opts
a39a16c4
MM
2301 * sizeof (struct sect_opt)));
2302 }
7a78ae4e
ND
2303 }
2304 else
3e43a32a 2305 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2306 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2307 }
2308 }
c906108c 2309 }
c906108c 2310
927890d0
JB
2311 /* This command takes at least two arguments. The first one is a
2312 filename, and the second is the address where this file has been
2313 loaded. Abort now if this address hasn't been provided by the
2314 user. */
2315 if (section_index < 1)
2316 error (_("The address where %s has been loaded is missing"), filename);
2317
c378eb4e 2318 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2319 a sect_addr_info structure to be passed around to other
2320 functions. We have to split this up into separate print
bb599908 2321 statements because hex_string returns a local static
c378eb4e 2322 string. */
5417f6dc 2323
a3f17187 2324 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2325 section_addrs = alloc_section_addr_info (section_index);
2326 make_cleanup (xfree, section_addrs);
db162d44 2327 for (i = 0; i < section_index; i++)
c906108c 2328 {
db162d44
EZ
2329 CORE_ADDR addr;
2330 char *val = sect_opts[i].value;
2331 char *sec = sect_opts[i].name;
5417f6dc 2332
ae822768 2333 addr = parse_and_eval_address (val);
db162d44 2334
db162d44 2335 /* Here we store the section offsets in the order they were
c378eb4e 2336 entered on the command line. */
a39a16c4
MM
2337 section_addrs->other[sec_num].name = sec;
2338 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2339 printf_unfiltered ("\t%s_addr = %s\n", sec,
2340 paddress (gdbarch, addr));
db162d44
EZ
2341 sec_num++;
2342
5417f6dc 2343 /* The object's sections are initialized when a
db162d44 2344 call is made to build_objfile_section_table (objfile).
5417f6dc 2345 This happens in reread_symbols.
db162d44
EZ
2346 At this point, we don't know what file type this is,
2347 so we can't determine what section names are valid. */
2acceee2 2348 }
d76488d8 2349 section_addrs->num_sections = sec_num;
db162d44 2350
2acceee2 2351 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2352 error (_("Not confirmed."));
c906108c 2353
7eedccfa
PP
2354 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2355 section_addrs, flags);
c906108c
SS
2356
2357 /* Getting new symbols may change our opinion about what is
2358 frameless. */
2359 reinit_frame_cache ();
db162d44 2360 do_cleanups (my_cleanups);
c906108c
SS
2361}
2362\f
70992597 2363
4ac39b97
JK
2364typedef struct objfile *objfilep;
2365
2366DEF_VEC_P (objfilep);
2367
c906108c
SS
2368/* Re-read symbols if a symbol-file has changed. */
2369void
fba45db2 2370reread_symbols (void)
c906108c
SS
2371{
2372 struct objfile *objfile;
2373 long new_modtime;
c906108c
SS
2374 struct stat new_statbuf;
2375 int res;
4ac39b97
JK
2376 VEC (objfilep) *new_objfiles = NULL;
2377 struct cleanup *all_cleanups;
2378
2379 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2380
2381 /* With the addition of shared libraries, this should be modified,
2382 the load time should be saved in the partial symbol tables, since
2383 different tables may come from different source files. FIXME.
2384 This routine should then walk down each partial symbol table
c378eb4e 2385 and see if the symbol table that it originates from has been changed. */
c906108c 2386
c5aa993b
JM
2387 for (objfile = object_files; objfile; objfile = objfile->next)
2388 {
9cce227f
TG
2389 /* solib-sunos.c creates one objfile with obfd. */
2390 if (objfile->obfd == NULL)
2391 continue;
2392
2393 /* Separate debug objfiles are handled in the main objfile. */
2394 if (objfile->separate_debug_objfile_backlink)
2395 continue;
2396
02aeec7b
JB
2397 /* If this object is from an archive (what you usually create with
2398 `ar', often called a `static library' on most systems, though
2399 a `shared library' on AIX is also an archive), then you should
2400 stat on the archive name, not member name. */
9cce227f
TG
2401 if (objfile->obfd->my_archive)
2402 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2403 else
9cce227f
TG
2404 res = stat (objfile->name, &new_statbuf);
2405 if (res != 0)
2406 {
c378eb4e 2407 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2408 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2409 objfile->name);
2410 continue;
2411 }
2412 new_modtime = new_statbuf.st_mtime;
2413 if (new_modtime != objfile->mtime)
2414 {
2415 struct cleanup *old_cleanups;
2416 struct section_offsets *offsets;
2417 int num_offsets;
2418 char *obfd_filename;
2419
2420 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2421 objfile->name);
2422
2423 /* There are various functions like symbol_file_add,
2424 symfile_bfd_open, syms_from_objfile, etc., which might
2425 appear to do what we want. But they have various other
2426 effects which we *don't* want. So we just do stuff
2427 ourselves. We don't worry about mapped files (for one thing,
2428 any mapped file will be out of date). */
2429
2430 /* If we get an error, blow away this objfile (not sure if
2431 that is the correct response for things like shared
2432 libraries). */
2433 old_cleanups = make_cleanup_free_objfile (objfile);
2434 /* We need to do this whenever any symbols go away. */
2435 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2436
0ba1096a
KT
2437 if (exec_bfd != NULL
2438 && filename_cmp (bfd_get_filename (objfile->obfd),
2439 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2440 {
2441 /* Reload EXEC_BFD without asking anything. */
2442
2443 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2444 }
2445
f6eeced0
JK
2446 /* Keep the calls order approx. the same as in free_objfile. */
2447
2448 /* Free the separate debug objfiles. It will be
2449 automatically recreated by sym_read. */
2450 free_objfile_separate_debug (objfile);
2451
2452 /* Remove any references to this objfile in the global
2453 value lists. */
2454 preserve_values (objfile);
2455
2456 /* Nuke all the state that we will re-read. Much of the following
2457 code which sets things to NULL really is necessary to tell
2458 other parts of GDB that there is nothing currently there.
2459
2460 Try to keep the freeing order compatible with free_objfile. */
2461
2462 if (objfile->sf != NULL)
2463 {
2464 (*objfile->sf->sym_finish) (objfile);
2465 }
2466
2467 clear_objfile_data (objfile);
2468
e1507e95 2469 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2470 {
2471 struct bfd *obfd = objfile->obfd;
2472
2473 obfd_filename = bfd_get_filename (objfile->obfd);
2474 /* Open the new BFD before freeing the old one, so that
2475 the filename remains live. */
08d2cd74 2476 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2477 if (objfile->obfd == NULL)
2478 {
2479 /* We have to make a cleanup and error here, rather
2480 than erroring later, because once we unref OBFD,
2481 OBFD_FILENAME will be freed. */
2482 make_cleanup_bfd_unref (obfd);
2483 error (_("Can't open %s to read symbols."), obfd_filename);
2484 }
a4453b7e
TT
2485 gdb_bfd_unref (obfd);
2486 }
2487
e1507e95 2488 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2489 /* bfd_openr sets cacheable to true, which is what we want. */
2490 if (!bfd_check_format (objfile->obfd, bfd_object))
2491 error (_("Can't read symbols from %s: %s."), objfile->name,
2492 bfd_errmsg (bfd_get_error ()));
2493
2494 /* Save the offsets, we will nuke them with the rest of the
2495 objfile_obstack. */
2496 num_offsets = objfile->num_sections;
2497 offsets = ((struct section_offsets *)
2498 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2499 memcpy (offsets, objfile->section_offsets,
2500 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2501
9cce227f
TG
2502 /* FIXME: Do we have to free a whole linked list, or is this
2503 enough? */
2504 if (objfile->global_psymbols.list)
2505 xfree (objfile->global_psymbols.list);
2506 memset (&objfile->global_psymbols, 0,
2507 sizeof (objfile->global_psymbols));
2508 if (objfile->static_psymbols.list)
2509 xfree (objfile->static_psymbols.list);
2510 memset (&objfile->static_psymbols, 0,
2511 sizeof (objfile->static_psymbols));
2512
c378eb4e 2513 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2514 psymbol_bcache_free (objfile->psymbol_cache);
2515 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2516 if (objfile->demangled_names_hash != NULL)
2517 {
2518 htab_delete (objfile->demangled_names_hash);
2519 objfile->demangled_names_hash = NULL;
2520 }
2521 obstack_free (&objfile->objfile_obstack, 0);
2522 objfile->sections = NULL;
2523 objfile->symtabs = NULL;
2524 objfile->psymtabs = NULL;
2525 objfile->psymtabs_addrmap = NULL;
2526 objfile->free_psymtabs = NULL;
34eaf542 2527 objfile->template_symbols = NULL;
9cce227f 2528 objfile->msymbols = NULL;
9cce227f
TG
2529 objfile->minimal_symbol_count = 0;
2530 memset (&objfile->msymbol_hash, 0,
2531 sizeof (objfile->msymbol_hash));
2532 memset (&objfile->msymbol_demangled_hash, 0,
2533 sizeof (objfile->msymbol_demangled_hash));
2534
706e3705
TT
2535 set_objfile_per_bfd (objfile);
2536
9cce227f
TG
2537 /* obstack_init also initializes the obstack so it is
2538 empty. We could use obstack_specify_allocation but
d82ea6a8 2539 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2540 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2541 build_objfile_section_table (objfile);
9cce227f
TG
2542 terminate_minimal_symbol_table (objfile);
2543
2544 /* We use the same section offsets as from last time. I'm not
2545 sure whether that is always correct for shared libraries. */
2546 objfile->section_offsets = (struct section_offsets *)
2547 obstack_alloc (&objfile->objfile_obstack,
2548 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2549 memcpy (objfile->section_offsets, offsets,
2550 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2551 objfile->num_sections = num_offsets;
2552
2553 /* What the hell is sym_new_init for, anyway? The concept of
2554 distinguishing between the main file and additional files
2555 in this way seems rather dubious. */
2556 if (objfile == symfile_objfile)
c906108c 2557 {
9cce227f 2558 (*objfile->sf->sym_new_init) (objfile);
c906108c 2559 }
9cce227f
TG
2560
2561 (*objfile->sf->sym_init) (objfile);
2562 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2563
2564 objfile->flags &= ~OBJF_PSYMTABS_READ;
2565 read_symbols (objfile, 0);
b11896a5 2566
9cce227f 2567 if (!objfile_has_symbols (objfile))
c906108c 2568 {
9cce227f
TG
2569 wrap_here ("");
2570 printf_unfiltered (_("(no debugging symbols found)\n"));
2571 wrap_here ("");
c5aa993b 2572 }
9cce227f
TG
2573
2574 /* We're done reading the symbol file; finish off complaints. */
2575 clear_complaints (&symfile_complaints, 0, 1);
2576
2577 /* Getting new symbols may change our opinion about what is
2578 frameless. */
2579
2580 reinit_frame_cache ();
2581
2582 /* Discard cleanups as symbol reading was successful. */
2583 discard_cleanups (old_cleanups);
2584
2585 /* If the mtime has changed between the time we set new_modtime
2586 and now, we *want* this to be out of date, so don't call stat
2587 again now. */
2588 objfile->mtime = new_modtime;
9cce227f 2589 init_entry_point_info (objfile);
4ac39b97
JK
2590
2591 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2592 }
2593 }
c906108c 2594
4ac39b97 2595 if (new_objfiles)
ea53e89f 2596 {
4ac39b97
JK
2597 int ix;
2598
ff3536bc
UW
2599 /* Notify objfiles that we've modified objfile sections. */
2600 objfiles_changed ();
2601
c1e56572 2602 clear_symtab_users (0);
4ac39b97
JK
2603
2604 /* clear_objfile_data for each objfile was called before freeing it and
2605 observer_notify_new_objfile (NULL) has been called by
2606 clear_symtab_users above. Notify the new files now. */
2607 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2608 observer_notify_new_objfile (objfile);
2609
ea53e89f
JB
2610 /* At least one objfile has changed, so we can consider that
2611 the executable we're debugging has changed too. */
781b42b0 2612 observer_notify_executable_changed ();
ea53e89f 2613 }
4ac39b97
JK
2614
2615 do_cleanups (all_cleanups);
c906108c 2616}
c906108c
SS
2617\f
2618
c5aa993b
JM
2619
2620typedef struct
2621{
2622 char *ext;
c906108c 2623 enum language lang;
c5aa993b
JM
2624}
2625filename_language;
c906108c 2626
c5aa993b 2627static filename_language *filename_language_table;
c906108c
SS
2628static int fl_table_size, fl_table_next;
2629
2630static void
fba45db2 2631add_filename_language (char *ext, enum language lang)
c906108c
SS
2632{
2633 if (fl_table_next >= fl_table_size)
2634 {
2635 fl_table_size += 10;
5417f6dc 2636 filename_language_table =
25bf3106
PM
2637 xrealloc (filename_language_table,
2638 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2639 }
2640
4fcf66da 2641 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2642 filename_language_table[fl_table_next].lang = lang;
2643 fl_table_next++;
2644}
2645
2646static char *ext_args;
920d2a44
AC
2647static void
2648show_ext_args (struct ui_file *file, int from_tty,
2649 struct cmd_list_element *c, const char *value)
2650{
3e43a32a
MS
2651 fprintf_filtered (file,
2652 _("Mapping between filename extension "
2653 "and source language is \"%s\".\n"),
920d2a44
AC
2654 value);
2655}
c906108c
SS
2656
2657static void
26c41df3 2658set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2659{
2660 int i;
2661 char *cp = ext_args;
2662 enum language lang;
2663
c378eb4e 2664 /* First arg is filename extension, starting with '.' */
c906108c 2665 if (*cp != '.')
8a3fe4f8 2666 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2667
2668 /* Find end of first arg. */
c5aa993b 2669 while (*cp && !isspace (*cp))
c906108c
SS
2670 cp++;
2671
2672 if (*cp == '\0')
3e43a32a
MS
2673 error (_("'%s': two arguments required -- "
2674 "filename extension and language"),
c906108c
SS
2675 ext_args);
2676
c378eb4e 2677 /* Null-terminate first arg. */
c5aa993b 2678 *cp++ = '\0';
c906108c
SS
2679
2680 /* Find beginning of second arg, which should be a source language. */
529480d0 2681 cp = skip_spaces (cp);
c906108c
SS
2682
2683 if (*cp == '\0')
3e43a32a
MS
2684 error (_("'%s': two arguments required -- "
2685 "filename extension and language"),
c906108c
SS
2686 ext_args);
2687
2688 /* Lookup the language from among those we know. */
2689 lang = language_enum (cp);
2690
2691 /* Now lookup the filename extension: do we already know it? */
2692 for (i = 0; i < fl_table_next; i++)
2693 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2694 break;
2695
2696 if (i >= fl_table_next)
2697 {
c378eb4e 2698 /* New file extension. */
c906108c
SS
2699 add_filename_language (ext_args, lang);
2700 }
2701 else
2702 {
c378eb4e 2703 /* Redefining a previously known filename extension. */
c906108c
SS
2704
2705 /* if (from_tty) */
2706 /* query ("Really make files of type %s '%s'?", */
2707 /* ext_args, language_str (lang)); */
2708
b8c9b27d 2709 xfree (filename_language_table[i].ext);
4fcf66da 2710 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2711 filename_language_table[i].lang = lang;
2712 }
2713}
2714
2715static void
fba45db2 2716info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2717{
2718 int i;
2719
a3f17187 2720 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2721 printf_filtered ("\n\n");
2722 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2723 printf_filtered ("\t%s\t- %s\n",
2724 filename_language_table[i].ext,
c906108c
SS
2725 language_str (filename_language_table[i].lang));
2726}
2727
2728static void
fba45db2 2729init_filename_language_table (void)
c906108c 2730{
c378eb4e 2731 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2732 {
2733 fl_table_size = 20;
2734 fl_table_next = 0;
c5aa993b 2735 filename_language_table =
c906108c 2736 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2737 add_filename_language (".c", language_c);
6aecb9c2 2738 add_filename_language (".d", language_d);
c5aa993b
JM
2739 add_filename_language (".C", language_cplus);
2740 add_filename_language (".cc", language_cplus);
2741 add_filename_language (".cp", language_cplus);
2742 add_filename_language (".cpp", language_cplus);
2743 add_filename_language (".cxx", language_cplus);
2744 add_filename_language (".c++", language_cplus);
2745 add_filename_language (".java", language_java);
c906108c 2746 add_filename_language (".class", language_java);
da2cf7e0 2747 add_filename_language (".m", language_objc);
c5aa993b
JM
2748 add_filename_language (".f", language_fortran);
2749 add_filename_language (".F", language_fortran);
fd5700c7
JK
2750 add_filename_language (".for", language_fortran);
2751 add_filename_language (".FOR", language_fortran);
2752 add_filename_language (".ftn", language_fortran);
2753 add_filename_language (".FTN", language_fortran);
2754 add_filename_language (".fpp", language_fortran);
2755 add_filename_language (".FPP", language_fortran);
2756 add_filename_language (".f90", language_fortran);
2757 add_filename_language (".F90", language_fortran);
2758 add_filename_language (".f95", language_fortran);
2759 add_filename_language (".F95", language_fortran);
2760 add_filename_language (".f03", language_fortran);
2761 add_filename_language (".F03", language_fortran);
2762 add_filename_language (".f08", language_fortran);
2763 add_filename_language (".F08", language_fortran);
c5aa993b 2764 add_filename_language (".s", language_asm);
aa707ed0 2765 add_filename_language (".sx", language_asm);
c5aa993b 2766 add_filename_language (".S", language_asm);
c6fd39cd
PM
2767 add_filename_language (".pas", language_pascal);
2768 add_filename_language (".p", language_pascal);
2769 add_filename_language (".pp", language_pascal);
963a6417
PH
2770 add_filename_language (".adb", language_ada);
2771 add_filename_language (".ads", language_ada);
2772 add_filename_language (".a", language_ada);
2773 add_filename_language (".ada", language_ada);
dde59185 2774 add_filename_language (".dg", language_ada);
c906108c
SS
2775 }
2776}
2777
2778enum language
dd786858 2779deduce_language_from_filename (const char *filename)
c906108c
SS
2780{
2781 int i;
2782 char *cp;
2783
2784 if (filename != NULL)
2785 if ((cp = strrchr (filename, '.')) != NULL)
2786 for (i = 0; i < fl_table_next; i++)
2787 if (strcmp (cp, filename_language_table[i].ext) == 0)
2788 return filename_language_table[i].lang;
2789
2790 return language_unknown;
2791}
2792\f
2793/* allocate_symtab:
2794
2795 Allocate and partly initialize a new symbol table. Return a pointer
2796 to it. error() if no space.
2797
2798 Caller must set these fields:
c5aa993b
JM
2799 LINETABLE(symtab)
2800 symtab->blockvector
2801 symtab->dirname
2802 symtab->free_code
2803 symtab->free_ptr
c906108c
SS
2804 */
2805
2806struct symtab *
72b9f47f 2807allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2808{
52f0bd74 2809 struct symtab *symtab;
c906108c
SS
2810
2811 symtab = (struct symtab *)
4a146b47 2812 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2813 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2814 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2815 objfile->per_bfd->filename_cache);
c5aa993b
JM
2816 symtab->fullname = NULL;
2817 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2818 symtab->debugformat = "unknown";
c906108c 2819
c378eb4e 2820 /* Hook it to the objfile it comes from. */
c906108c 2821
c5aa993b
JM
2822 symtab->objfile = objfile;
2823 symtab->next = objfile->symtabs;
2824 objfile->symtabs = symtab;
c906108c 2825
45cfd468
DE
2826 if (symtab_create_debug)
2827 {
2828 /* Be a bit clever with debugging messages, and don't print objfile
2829 every time, only when it changes. */
2830 static char *last_objfile_name = NULL;
2831
2832 if (last_objfile_name == NULL
2833 || strcmp (last_objfile_name, objfile->name) != 0)
2834 {
2835 xfree (last_objfile_name);
2836 last_objfile_name = xstrdup (objfile->name);
2837 fprintf_unfiltered (gdb_stdlog,
2838 "Creating one or more symtabs for objfile %s ...\n",
2839 last_objfile_name);
2840 }
2841 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2842 "Created symtab %s for module %s.\n",
2843 host_address_to_string (symtab), filename);
45cfd468
DE
2844 }
2845
c906108c
SS
2846 return (symtab);
2847}
c906108c 2848\f
c5aa993b 2849
c906108c 2850/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2851 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2852
2853void
c1e56572 2854clear_symtab_users (int add_flags)
c906108c
SS
2855{
2856 /* Someday, we should do better than this, by only blowing away
2857 the things that really need to be blown. */
c0501be5
DJ
2858
2859 /* Clear the "current" symtab first, because it is no longer valid.
2860 breakpoint_re_set may try to access the current symtab. */
2861 clear_current_source_symtab_and_line ();
2862
c906108c 2863 clear_displays ();
c1e56572
JK
2864 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2865 breakpoint_re_set ();
1bfeeb0f 2866 clear_last_displayed_sal ();
c906108c 2867 clear_pc_function_cache ();
06d3b283 2868 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2869
2870 /* Clear globals which might have pointed into a removed objfile.
2871 FIXME: It's not clear which of these are supposed to persist
2872 between expressions and which ought to be reset each time. */
2873 expression_context_block = NULL;
2874 innermost_block = NULL;
8756216b
DP
2875
2876 /* Varobj may refer to old symbols, perform a cleanup. */
2877 varobj_invalidate ();
2878
c906108c
SS
2879}
2880
74b7792f
AC
2881static void
2882clear_symtab_users_cleanup (void *ignore)
2883{
c1e56572 2884 clear_symtab_users (0);
74b7792f 2885}
c906108c 2886\f
c906108c
SS
2887/* OVERLAYS:
2888 The following code implements an abstraction for debugging overlay sections.
2889
2890 The target model is as follows:
2891 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2892 same VMA, each with its own unique LMA (or load address).
c906108c 2893 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2894 sections, one by one, from the load address into the VMA address.
5417f6dc 2895 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2896 sections should be considered to be mapped from the VMA to the LMA.
2897 This information is used for symbol lookup, and memory read/write.
5417f6dc 2898 For instance, if a section has been mapped then its contents
c5aa993b 2899 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2900
2901 Two levels of debugger support for overlays are available. One is
2902 "manual", in which the debugger relies on the user to tell it which
2903 overlays are currently mapped. This level of support is
2904 implemented entirely in the core debugger, and the information about
2905 whether a section is mapped is kept in the objfile->obj_section table.
2906
2907 The second level of support is "automatic", and is only available if
2908 the target-specific code provides functionality to read the target's
2909 overlay mapping table, and translate its contents for the debugger
2910 (by updating the mapped state information in the obj_section tables).
2911
2912 The interface is as follows:
c5aa993b
JM
2913 User commands:
2914 overlay map <name> -- tell gdb to consider this section mapped
2915 overlay unmap <name> -- tell gdb to consider this section unmapped
2916 overlay list -- list the sections that GDB thinks are mapped
2917 overlay read-target -- get the target's state of what's mapped
2918 overlay off/manual/auto -- set overlay debugging state
2919 Functional interface:
2920 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2921 section, return that section.
5417f6dc 2922 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2923 the pc, either in its VMA or its LMA
714835d5 2924 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2925 section_is_overlay(sect): true if section's VMA != LMA
2926 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2927 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2928 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2929 overlay_mapped_address(...): map an address from section's LMA to VMA
2930 overlay_unmapped_address(...): map an address from section's VMA to LMA
2931 symbol_overlayed_address(...): Return a "current" address for symbol:
2932 either in VMA or LMA depending on whether
c378eb4e 2933 the symbol's section is currently mapped. */
c906108c
SS
2934
2935/* Overlay debugging state: */
2936
d874f1e2 2937enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2938int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2939
c906108c 2940/* Function: section_is_overlay (SECTION)
5417f6dc 2941 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2942 SECTION is loaded at an address different from where it will "run". */
2943
2944int
714835d5 2945section_is_overlay (struct obj_section *section)
c906108c 2946{
714835d5
UW
2947 if (overlay_debugging && section)
2948 {
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
f888f159 2951
714835d5
UW
2952 if (bfd_section_lma (abfd, bfd_section) != 0
2953 && bfd_section_lma (abfd, bfd_section)
2954 != bfd_section_vma (abfd, bfd_section))
2955 return 1;
2956 }
c906108c
SS
2957
2958 return 0;
2959}
2960
2961/* Function: overlay_invalidate_all (void)
2962 Invalidate the mapped state of all overlay sections (mark it as stale). */
2963
2964static void
fba45db2 2965overlay_invalidate_all (void)
c906108c 2966{
c5aa993b 2967 struct objfile *objfile;
c906108c
SS
2968 struct obj_section *sect;
2969
2970 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2971 if (section_is_overlay (sect))
2972 sect->ovly_mapped = -1;
c906108c
SS
2973}
2974
714835d5 2975/* Function: section_is_mapped (SECTION)
5417f6dc 2976 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2977
2978 Access to the ovly_mapped flag is restricted to this function, so
2979 that we can do automatic update. If the global flag
2980 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2981 overlay_invalidate_all. If the mapped state of the particular
2982 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2983
714835d5
UW
2984int
2985section_is_mapped (struct obj_section *osect)
c906108c 2986{
9216df95
UW
2987 struct gdbarch *gdbarch;
2988
714835d5 2989 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2990 return 0;
2991
c5aa993b 2992 switch (overlay_debugging)
c906108c
SS
2993 {
2994 default:
d874f1e2 2995 case ovly_off:
c5aa993b 2996 return 0; /* overlay debugging off */
d874f1e2 2997 case ovly_auto: /* overlay debugging automatic */
1c772458 2998 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2999 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3000 gdbarch = get_objfile_arch (osect->objfile);
3001 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3002 {
3003 if (overlay_cache_invalid)
3004 {
3005 overlay_invalidate_all ();
3006 overlay_cache_invalid = 0;
3007 }
3008 if (osect->ovly_mapped == -1)
9216df95 3009 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3010 }
3011 /* fall thru to manual case */
d874f1e2 3012 case ovly_on: /* overlay debugging manual */
c906108c
SS
3013 return osect->ovly_mapped == 1;
3014 }
3015}
3016
c906108c
SS
3017/* Function: pc_in_unmapped_range
3018 If PC falls into the lma range of SECTION, return true, else false. */
3019
3020CORE_ADDR
714835d5 3021pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3022{
714835d5
UW
3023 if (section_is_overlay (section))
3024 {
3025 bfd *abfd = section->objfile->obfd;
3026 asection *bfd_section = section->the_bfd_section;
fbd35540 3027
714835d5
UW
3028 /* We assume the LMA is relocated by the same offset as the VMA. */
3029 bfd_vma size = bfd_get_section_size (bfd_section);
3030 CORE_ADDR offset = obj_section_offset (section);
3031
3032 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3033 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3034 return 1;
3035 }
c906108c 3036
c906108c
SS
3037 return 0;
3038}
3039
3040/* Function: pc_in_mapped_range
3041 If PC falls into the vma range of SECTION, return true, else false. */
3042
3043CORE_ADDR
714835d5 3044pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3045{
714835d5
UW
3046 if (section_is_overlay (section))
3047 {
3048 if (obj_section_addr (section) <= pc
3049 && pc < obj_section_endaddr (section))
3050 return 1;
3051 }
c906108c 3052
c906108c
SS
3053 return 0;
3054}
3055
9ec8e6a0
JB
3056
3057/* Return true if the mapped ranges of sections A and B overlap, false
3058 otherwise. */
b9362cc7 3059static int
714835d5 3060sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3061{
714835d5
UW
3062 CORE_ADDR a_start = obj_section_addr (a);
3063 CORE_ADDR a_end = obj_section_endaddr (a);
3064 CORE_ADDR b_start = obj_section_addr (b);
3065 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3066
3067 return (a_start < b_end && b_start < a_end);
3068}
3069
c906108c
SS
3070/* Function: overlay_unmapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the unmapped (load) range.
3072 May be the same as PC. */
3073
3074CORE_ADDR
714835d5 3075overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3076{
714835d5
UW
3077 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3078 {
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
fbd35540 3081
714835d5
UW
3082 return pc + bfd_section_lma (abfd, bfd_section)
3083 - bfd_section_vma (abfd, bfd_section);
3084 }
c906108c
SS
3085
3086 return pc;
3087}
3088
3089/* Function: overlay_mapped_address (PC, SECTION)
3090 Returns the address corresponding to PC in the mapped (runtime) range.
3091 May be the same as PC. */
3092
3093CORE_ADDR
714835d5 3094overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3095{
714835d5
UW
3096 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3097 {
3098 bfd *abfd = section->objfile->obfd;
3099 asection *bfd_section = section->the_bfd_section;
fbd35540 3100
714835d5
UW
3101 return pc + bfd_section_vma (abfd, bfd_section)
3102 - bfd_section_lma (abfd, bfd_section);
3103 }
c906108c
SS
3104
3105 return pc;
3106}
3107
3108
5417f6dc 3109/* Function: symbol_overlayed_address
c906108c
SS
3110 Return one of two addresses (relative to the VMA or to the LMA),
3111 depending on whether the section is mapped or not. */
3112
c5aa993b 3113CORE_ADDR
714835d5 3114symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3115{
3116 if (overlay_debugging)
3117 {
c378eb4e 3118 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3119 if (section == 0)
3120 return address;
c378eb4e
MS
3121 /* If the symbol's section is not an overlay, just return its
3122 address. */
c906108c
SS
3123 if (!section_is_overlay (section))
3124 return address;
c378eb4e 3125 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3126 if (section_is_mapped (section))
3127 return address;
3128 /*
3129 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3130 * then return its LOADED address rather than its vma address!!
3131 */
3132 return overlay_unmapped_address (address, section);
3133 }
3134 return address;
3135}
3136
5417f6dc 3137/* Function: find_pc_overlay (PC)
c906108c
SS
3138 Return the best-match overlay section for PC:
3139 If PC matches a mapped overlay section's VMA, return that section.
3140 Else if PC matches an unmapped section's VMA, return that section.
3141 Else if PC matches an unmapped section's LMA, return that section. */
3142
714835d5 3143struct obj_section *
fba45db2 3144find_pc_overlay (CORE_ADDR pc)
c906108c 3145{
c5aa993b 3146 struct objfile *objfile;
c906108c
SS
3147 struct obj_section *osect, *best_match = NULL;
3148
3149 if (overlay_debugging)
3150 ALL_OBJSECTIONS (objfile, osect)
714835d5 3151 if (section_is_overlay (osect))
c5aa993b 3152 {
714835d5 3153 if (pc_in_mapped_range (pc, osect))
c5aa993b 3154 {
714835d5
UW
3155 if (section_is_mapped (osect))
3156 return osect;
c5aa993b
JM
3157 else
3158 best_match = osect;
3159 }
714835d5 3160 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3161 best_match = osect;
3162 }
714835d5 3163 return best_match;
c906108c
SS
3164}
3165
3166/* Function: find_pc_mapped_section (PC)
5417f6dc 3167 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3168 currently marked as MAPPED, return that section. Else return NULL. */
3169
714835d5 3170struct obj_section *
fba45db2 3171find_pc_mapped_section (CORE_ADDR pc)
c906108c 3172{
c5aa993b 3173 struct objfile *objfile;
c906108c
SS
3174 struct obj_section *osect;
3175
3176 if (overlay_debugging)
3177 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3178 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3179 return osect;
c906108c
SS
3180
3181 return NULL;
3182}
3183
3184/* Function: list_overlays_command
c378eb4e 3185 Print a list of mapped sections and their PC ranges. */
c906108c 3186
5d3055ad 3187static void
fba45db2 3188list_overlays_command (char *args, int from_tty)
c906108c 3189{
c5aa993b
JM
3190 int nmapped = 0;
3191 struct objfile *objfile;
c906108c
SS
3192 struct obj_section *osect;
3193
3194 if (overlay_debugging)
3195 ALL_OBJSECTIONS (objfile, osect)
714835d5 3196 if (section_is_mapped (osect))
c5aa993b 3197 {
5af949e3 3198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3199 const char *name;
3200 bfd_vma lma, vma;
3201 int size;
3202
3203 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3204 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3205 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3206 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3207
3208 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3209 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3210 puts_filtered (" - ");
5af949e3 3211 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3212 printf_filtered (", mapped at ");
5af949e3 3213 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3214 puts_filtered (" - ");
5af949e3 3215 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3216 puts_filtered ("\n");
3217
3218 nmapped++;
3219 }
c906108c 3220 if (nmapped == 0)
a3f17187 3221 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3222}
3223
3224/* Function: map_overlay_command
3225 Mark the named section as mapped (ie. residing at its VMA address). */
3226
5d3055ad 3227static void
fba45db2 3228map_overlay_command (char *args, int from_tty)
c906108c 3229{
c5aa993b
JM
3230 struct objfile *objfile, *objfile2;
3231 struct obj_section *sec, *sec2;
c906108c
SS
3232
3233 if (!overlay_debugging)
3e43a32a
MS
3234 error (_("Overlay debugging not enabled. Use "
3235 "either the 'overlay auto' or\n"
3236 "the 'overlay manual' command."));
c906108c
SS
3237
3238 if (args == 0 || *args == 0)
8a3fe4f8 3239 error (_("Argument required: name of an overlay section"));
c906108c 3240
c378eb4e 3241 /* First, find a section matching the user supplied argument. */
c906108c
SS
3242 ALL_OBJSECTIONS (objfile, sec)
3243 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3244 {
c378eb4e 3245 /* Now, check to see if the section is an overlay. */
714835d5 3246 if (!section_is_overlay (sec))
c5aa993b
JM
3247 continue; /* not an overlay section */
3248
c378eb4e 3249 /* Mark the overlay as "mapped". */
c5aa993b
JM
3250 sec->ovly_mapped = 1;
3251
3252 /* Next, make a pass and unmap any sections that are
3253 overlapped by this new section: */
3254 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3255 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3256 {
3257 if (info_verbose)
a3f17187 3258 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3259 bfd_section_name (objfile->obfd,
3260 sec2->the_bfd_section));
c378eb4e 3261 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3262 }
3263 return;
3264 }
8a3fe4f8 3265 error (_("No overlay section called %s"), args);
c906108c
SS
3266}
3267
3268/* Function: unmap_overlay_command
5417f6dc 3269 Mark the overlay section as unmapped
c906108c
SS
3270 (ie. resident in its LMA address range, rather than the VMA range). */
3271
5d3055ad 3272static void
fba45db2 3273unmap_overlay_command (char *args, int from_tty)
c906108c 3274{
c5aa993b 3275 struct objfile *objfile;
c906108c
SS
3276 struct obj_section *sec;
3277
3278 if (!overlay_debugging)
3e43a32a
MS
3279 error (_("Overlay debugging not enabled. "
3280 "Use either the 'overlay auto' or\n"
3281 "the 'overlay manual' command."));
c906108c
SS
3282
3283 if (args == 0 || *args == 0)
8a3fe4f8 3284 error (_("Argument required: name of an overlay section"));
c906108c 3285
c378eb4e 3286 /* First, find a section matching the user supplied argument. */
c906108c
SS
3287 ALL_OBJSECTIONS (objfile, sec)
3288 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3289 {
3290 if (!sec->ovly_mapped)
8a3fe4f8 3291 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3292 sec->ovly_mapped = 0;
3293 return;
3294 }
8a3fe4f8 3295 error (_("No overlay section called %s"), args);
c906108c
SS
3296}
3297
3298/* Function: overlay_auto_command
3299 A utility command to turn on overlay debugging.
c378eb4e 3300 Possibly this should be done via a set/show command. */
c906108c
SS
3301
3302static void
fba45db2 3303overlay_auto_command (char *args, int from_tty)
c906108c 3304{
d874f1e2 3305 overlay_debugging = ovly_auto;
1900040c 3306 enable_overlay_breakpoints ();
c906108c 3307 if (info_verbose)
a3f17187 3308 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3309}
3310
3311/* Function: overlay_manual_command
3312 A utility command to turn on overlay debugging.
c378eb4e 3313 Possibly this should be done via a set/show command. */
c906108c
SS
3314
3315static void
fba45db2 3316overlay_manual_command (char *args, int from_tty)
c906108c 3317{
d874f1e2 3318 overlay_debugging = ovly_on;
1900040c 3319 disable_overlay_breakpoints ();
c906108c 3320 if (info_verbose)
a3f17187 3321 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3322}
3323
3324/* Function: overlay_off_command
3325 A utility command to turn on overlay debugging.
c378eb4e 3326 Possibly this should be done via a set/show command. */
c906108c
SS
3327
3328static void
fba45db2 3329overlay_off_command (char *args, int from_tty)
c906108c 3330{
d874f1e2 3331 overlay_debugging = ovly_off;
1900040c 3332 disable_overlay_breakpoints ();
c906108c 3333 if (info_verbose)
a3f17187 3334 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3335}
3336
3337static void
fba45db2 3338overlay_load_command (char *args, int from_tty)
c906108c 3339{
e17c207e
UW
3340 struct gdbarch *gdbarch = get_current_arch ();
3341
3342 if (gdbarch_overlay_update_p (gdbarch))
3343 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3344 else
8a3fe4f8 3345 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3346}
3347
3348/* Function: overlay_command
c378eb4e 3349 A place-holder for a mis-typed command. */
c906108c 3350
c378eb4e 3351/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3352static struct cmd_list_element *overlaylist;
c906108c
SS
3353
3354static void
fba45db2 3355overlay_command (char *args, int from_tty)
c906108c 3356{
c5aa993b 3357 printf_unfiltered
c906108c
SS
3358 ("\"overlay\" must be followed by the name of an overlay command.\n");
3359 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3360}
3361
3362
3363/* Target Overlays for the "Simplest" overlay manager:
3364
5417f6dc
RM
3365 This is GDB's default target overlay layer. It works with the
3366 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3367 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3368 so targets that use a different runtime overlay manager can
c906108c
SS
3369 substitute their own overlay_update function and take over the
3370 function pointer.
3371
3372 The overlay_update function pokes around in the target's data structures
3373 to see what overlays are mapped, and updates GDB's overlay mapping with
3374 this information.
3375
3376 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3377 unsigned _novlys; /# number of overlay sections #/
3378 unsigned _ovly_table[_novlys][4] = {
3379 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3380 {..., ..., ..., ...},
3381 }
3382 unsigned _novly_regions; /# number of overlay regions #/
3383 unsigned _ovly_region_table[_novly_regions][3] = {
3384 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3385 {..., ..., ...},
3386 }
c906108c
SS
3387 These functions will attempt to update GDB's mappedness state in the
3388 symbol section table, based on the target's mappedness state.
3389
3390 To do this, we keep a cached copy of the target's _ovly_table, and
3391 attempt to detect when the cached copy is invalidated. The main
3392 entry point is "simple_overlay_update(SECT), which looks up SECT in
3393 the cached table and re-reads only the entry for that section from
c378eb4e 3394 the target (whenever possible). */
c906108c
SS
3395
3396/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3397static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3398static unsigned cache_novlys = 0;
c906108c 3399static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3400enum ovly_index
3401 {
3402 VMA, SIZE, LMA, MAPPED
3403 };
c906108c 3404
c378eb4e 3405/* Throw away the cached copy of _ovly_table. */
c906108c 3406static void
fba45db2 3407simple_free_overlay_table (void)
c906108c
SS
3408{
3409 if (cache_ovly_table)
b8c9b27d 3410 xfree (cache_ovly_table);
c5aa993b 3411 cache_novlys = 0;
c906108c
SS
3412 cache_ovly_table = NULL;
3413 cache_ovly_table_base = 0;
3414}
3415
9216df95 3416/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3417 Convert to host order. int LEN is number of ints. */
c906108c 3418static void
9216df95 3419read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3420 int len, int size, enum bfd_endian byte_order)
c906108c 3421{
c378eb4e 3422 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3423 gdb_byte *buf = alloca (len * size);
c5aa993b 3424 int i;
c906108c 3425
9216df95 3426 read_memory (memaddr, buf, len * size);
c906108c 3427 for (i = 0; i < len; i++)
e17a4113 3428 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3429}
3430
3431/* Find and grab a copy of the target _ovly_table
c378eb4e 3432 (and _novlys, which is needed for the table's size). */
c5aa993b 3433static int
fba45db2 3434simple_read_overlay_table (void)
c906108c 3435{
0d43edd1 3436 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3437 struct gdbarch *gdbarch;
3438 int word_size;
e17a4113 3439 enum bfd_endian byte_order;
c906108c
SS
3440
3441 simple_free_overlay_table ();
9b27852e 3442 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3443 if (! novlys_msym)
c906108c 3444 {
8a3fe4f8 3445 error (_("Error reading inferior's overlay table: "
0d43edd1 3446 "couldn't find `_novlys' variable\n"
8a3fe4f8 3447 "in inferior. Use `overlay manual' mode."));
0d43edd1 3448 return 0;
c906108c 3449 }
0d43edd1 3450
9b27852e 3451 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3452 if (! ovly_table_msym)
3453 {
8a3fe4f8 3454 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3455 "`_ovly_table' array\n"
8a3fe4f8 3456 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3457 return 0;
3458 }
3459
9216df95
UW
3460 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3461 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3462 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3463
e17a4113
UW
3464 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3465 4, byte_order);
0d43edd1
JB
3466 cache_ovly_table
3467 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3468 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3469 read_target_long_array (cache_ovly_table_base,
777ea8f1 3470 (unsigned int *) cache_ovly_table,
e17a4113 3471 cache_novlys * 4, word_size, byte_order);
0d43edd1 3472
c5aa993b 3473 return 1; /* SUCCESS */
c906108c
SS
3474}
3475
5417f6dc 3476/* Function: simple_overlay_update_1
c906108c
SS
3477 A helper function for simple_overlay_update. Assuming a cached copy
3478 of _ovly_table exists, look through it to find an entry whose vma,
3479 lma and size match those of OSECT. Re-read the entry and make sure
3480 it still matches OSECT (else the table may no longer be valid).
3481 Set OSECT's mapped state to match the entry. Return: 1 for
3482 success, 0 for failure. */
3483
3484static int
fba45db2 3485simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3486{
3487 int i, size;
fbd35540
MS
3488 bfd *obfd = osect->objfile->obfd;
3489 asection *bsect = osect->the_bfd_section;
9216df95
UW
3490 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3491 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3493
2c500098 3494 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3495 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3496 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3497 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3498 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3499 {
9216df95
UW
3500 read_target_long_array (cache_ovly_table_base + i * word_size,
3501 (unsigned int *) cache_ovly_table[i],
e17a4113 3502 4, word_size, byte_order);
fbd35540
MS
3503 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3504 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3505 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3506 {
3507 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3508 return 1;
3509 }
c378eb4e 3510 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3511 return 0;
3512 }
3513 return 0;
3514}
3515
3516/* Function: simple_overlay_update
5417f6dc
RM
3517 If OSECT is NULL, then update all sections' mapped state
3518 (after re-reading the entire target _ovly_table).
3519 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3520 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3521 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3522 re-read the entire cache, and go ahead and update all sections. */
3523
1c772458 3524void
fba45db2 3525simple_overlay_update (struct obj_section *osect)
c906108c 3526{
c5aa993b 3527 struct objfile *objfile;
c906108c 3528
c378eb4e 3529 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3530 if (osect)
c378eb4e 3531 /* Have we got a cached copy of the target's overlay table? */
c906108c 3532 if (cache_ovly_table != NULL)
9cc89665
MS
3533 {
3534 /* Does its cached location match what's currently in the
3535 symtab? */
3536 struct minimal_symbol *minsym
3537 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3538
3539 if (minsym == NULL)
3540 error (_("Error reading inferior's overlay table: couldn't "
3541 "find `_ovly_table' array\n"
3542 "in inferior. Use `overlay manual' mode."));
3543
3544 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3545 /* Then go ahead and try to look up this single section in
3546 the cache. */
3547 if (simple_overlay_update_1 (osect))
3548 /* Found it! We're done. */
3549 return;
3550 }
c906108c
SS
3551
3552 /* Cached table no good: need to read the entire table anew.
3553 Or else we want all the sections, in which case it's actually
3554 more efficient to read the whole table in one block anyway. */
3555
0d43edd1
JB
3556 if (! simple_read_overlay_table ())
3557 return;
3558
c378eb4e 3559 /* Now may as well update all sections, even if only one was requested. */
c906108c 3560 ALL_OBJSECTIONS (objfile, osect)
714835d5 3561 if (section_is_overlay (osect))
c5aa993b
JM
3562 {
3563 int i, size;
fbd35540
MS
3564 bfd *obfd = osect->objfile->obfd;
3565 asection *bsect = osect->the_bfd_section;
c5aa993b 3566
2c500098 3567 size = bfd_get_section_size (bsect);
c5aa993b 3568 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3569 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3570 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3571 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3572 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3573 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3574 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3575 }
3576 }
c906108c
SS
3577}
3578
086df311
DJ
3579/* Set the output sections and output offsets for section SECTP in
3580 ABFD. The relocation code in BFD will read these offsets, so we
3581 need to be sure they're initialized. We map each section to itself,
3582 with no offset; this means that SECTP->vma will be honored. */
3583
3584static void
3585symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3586{
3587 sectp->output_section = sectp;
3588 sectp->output_offset = 0;
3589}
3590
ac8035ab
TG
3591/* Default implementation for sym_relocate. */
3592
3593
3594bfd_byte *
3595default_symfile_relocate (struct objfile *objfile, asection *sectp,
3596 bfd_byte *buf)
3597{
3019eac3
DE
3598 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3599 DWO file. */
3600 bfd *abfd = sectp->owner;
ac8035ab
TG
3601
3602 /* We're only interested in sections with relocation
3603 information. */
3604 if ((sectp->flags & SEC_RELOC) == 0)
3605 return NULL;
3606
3607 /* We will handle section offsets properly elsewhere, so relocate as if
3608 all sections begin at 0. */
3609 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3610
3611 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3612}
3613
086df311
DJ
3614/* Relocate the contents of a debug section SECTP in ABFD. The
3615 contents are stored in BUF if it is non-NULL, or returned in a
3616 malloc'd buffer otherwise.
3617
3618 For some platforms and debug info formats, shared libraries contain
3619 relocations against the debug sections (particularly for DWARF-2;
3620 one affected platform is PowerPC GNU/Linux, although it depends on
3621 the version of the linker in use). Also, ELF object files naturally
3622 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3623 the relocations in order to get the locations of symbols correct.
3624 Another example that may require relocation processing, is the
3625 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3626 debug section. */
086df311
DJ
3627
3628bfd_byte *
ac8035ab
TG
3629symfile_relocate_debug_section (struct objfile *objfile,
3630 asection *sectp, bfd_byte *buf)
086df311 3631{
ac8035ab 3632 gdb_assert (objfile->sf->sym_relocate);
086df311 3633
ac8035ab 3634 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3635}
c906108c 3636
31d99776
DJ
3637struct symfile_segment_data *
3638get_symfile_segment_data (bfd *abfd)
3639{
00b5771c 3640 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3641
3642 if (sf == NULL)
3643 return NULL;
3644
3645 return sf->sym_segments (abfd);
3646}
3647
3648void
3649free_symfile_segment_data (struct symfile_segment_data *data)
3650{
3651 xfree (data->segment_bases);
3652 xfree (data->segment_sizes);
3653 xfree (data->segment_info);
3654 xfree (data);
3655}
3656
28c32713
JB
3657
3658/* Given:
3659 - DATA, containing segment addresses from the object file ABFD, and
3660 the mapping from ABFD's sections onto the segments that own them,
3661 and
3662 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3663 segment addresses reported by the target,
3664 store the appropriate offsets for each section in OFFSETS.
3665
3666 If there are fewer entries in SEGMENT_BASES than there are segments
3667 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3668
8d385431
DJ
3669 If there are more entries, then ignore the extra. The target may
3670 not be able to distinguish between an empty data segment and a
3671 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3672int
3673symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3674 struct section_offsets *offsets,
3675 int num_segment_bases,
3676 const CORE_ADDR *segment_bases)
3677{
3678 int i;
3679 asection *sect;
3680
28c32713
JB
3681 /* It doesn't make sense to call this function unless you have some
3682 segment base addresses. */
202b96c1 3683 gdb_assert (num_segment_bases > 0);
28c32713 3684
31d99776
DJ
3685 /* If we do not have segment mappings for the object file, we
3686 can not relocate it by segments. */
3687 gdb_assert (data != NULL);
3688 gdb_assert (data->num_segments > 0);
3689
31d99776
DJ
3690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3691 {
31d99776
DJ
3692 int which = data->segment_info[i];
3693
28c32713
JB
3694 gdb_assert (0 <= which && which <= data->num_segments);
3695
3696 /* Don't bother computing offsets for sections that aren't
3697 loaded as part of any segment. */
3698 if (! which)
3699 continue;
3700
3701 /* Use the last SEGMENT_BASES entry as the address of any extra
3702 segments mentioned in DATA->segment_info. */
31d99776 3703 if (which > num_segment_bases)
28c32713 3704 which = num_segment_bases;
31d99776 3705
28c32713
JB
3706 offsets->offsets[i] = (segment_bases[which - 1]
3707 - data->segment_bases[which - 1]);
31d99776
DJ
3708 }
3709
3710 return 1;
3711}
3712
3713static void
3714symfile_find_segment_sections (struct objfile *objfile)
3715{
3716 bfd *abfd = objfile->obfd;
3717 int i;
3718 asection *sect;
3719 struct symfile_segment_data *data;
3720
3721 data = get_symfile_segment_data (objfile->obfd);
3722 if (data == NULL)
3723 return;
3724
3725 if (data->num_segments != 1 && data->num_segments != 2)
3726 {
3727 free_symfile_segment_data (data);
3728 return;
3729 }
3730
3731 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3732 {
31d99776
DJ
3733 int which = data->segment_info[i];
3734
3735 if (which == 1)
3736 {
3737 if (objfile->sect_index_text == -1)
3738 objfile->sect_index_text = sect->index;
3739
3740 if (objfile->sect_index_rodata == -1)
3741 objfile->sect_index_rodata = sect->index;
3742 }
3743 else if (which == 2)
3744 {
3745 if (objfile->sect_index_data == -1)
3746 objfile->sect_index_data = sect->index;
3747
3748 if (objfile->sect_index_bss == -1)
3749 objfile->sect_index_bss = sect->index;
3750 }
3751 }
3752
3753 free_symfile_segment_data (data);
3754}
3755
c906108c 3756void
fba45db2 3757_initialize_symfile (void)
c906108c
SS
3758{
3759 struct cmd_list_element *c;
c5aa993b 3760
1a966eab
AC
3761 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3762Load symbol table from executable file FILE.\n\
c906108c 3763The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3764to execute."), &cmdlist);
5ba2abeb 3765 set_cmd_completer (c, filename_completer);
c906108c 3766
1a966eab 3767 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3768Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3769Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3770 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3771The optional arguments are section-name section-address pairs and\n\
3772should be specified if the data and bss segments are not contiguous\n\
1a966eab 3773with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3774 &cmdlist);
5ba2abeb 3775 set_cmd_completer (c, filename_completer);
c906108c 3776
1a966eab
AC
3777 c = add_cmd ("load", class_files, load_command, _("\
3778Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3779for access from GDB.\n\
3780A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3781 set_cmd_completer (c, filename_completer);
c906108c 3782
c5aa993b 3783 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3784 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3785 "overlay ", 0, &cmdlist);
3786
3787 add_com_alias ("ovly", "overlay", class_alias, 1);
3788 add_com_alias ("ov", "overlay", class_alias, 1);
3789
c5aa993b 3790 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3791 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3792
c5aa993b 3793 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3794 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3795
c5aa993b 3796 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3797 _("List mappings of overlay sections."), &overlaylist);
c906108c 3798
c5aa993b 3799 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3800 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3801 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3802 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3803 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3804 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3805 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3806 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3807
3808 /* Filename extension to source language lookup table: */
3809 init_filename_language_table ();
26c41df3
AC
3810 add_setshow_string_noescape_cmd ("extension-language", class_files,
3811 &ext_args, _("\
3812Set mapping between filename extension and source language."), _("\
3813Show mapping between filename extension and source language."), _("\
3814Usage: set extension-language .foo bar"),
3815 set_ext_lang_command,
920d2a44 3816 show_ext_args,
26c41df3 3817 &setlist, &showlist);
c906108c 3818
c5aa993b 3819 add_info ("extensions", info_ext_lang_command,
1bedd215 3820 _("All filename extensions associated with a source language."));
917317f4 3821
525226b5
AC
3822 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3823 &debug_file_directory, _("\
24ddea62
JK
3824Set the directories where separate debug symbols are searched for."), _("\
3825Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3826Separate debug symbols are first searched for in the same\n\
3827directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3828and lastly at the path of the directory of the binary with\n\
24ddea62 3829each global debug-file-directory component prepended."),
525226b5 3830 NULL,
920d2a44 3831 show_debug_file_directory,
525226b5 3832 &setlist, &showlist);
c906108c 3833}
This page took 3.031211 seconds and 4 git commands to generate.