* linespec.c (collect_methods): Delete.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
fb14de7b
UW
40#include "inferior.h"
41#include "regcache.h"
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
ea53e89f 51#include "observer.h"
c1bd25fd 52#include "exec.h"
9bdcbae7 53#include "parser-defs.h"
8756216b 54#include "varobj.h"
77069918 55#include "elf-bfd.h"
e85a822c 56#include "solib.h"
f1838a98 57#include "remote.h"
c906108c 58
c906108c
SS
59#include <sys/types.h>
60#include <fcntl.h>
61#include "gdb_string.h"
62#include "gdb_stat.h"
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
c906108c 67
9a4105ab
AC
68int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
c2d11a7d 73 unsigned long total_size);
769d7dc4
AC
74void (*deprecated_pre_add_symbol_hook) (const char *);
75void (*deprecated_post_add_symbol_hook) (void);
c906108c 76
74b7792f
AC
77static void clear_symtab_users_cleanup (void *ignore);
78
c906108c 79/* Global variables owned by this file */
c5aa993b 80int readnow_symbol_files; /* Read full symbols immediately */
c906108c 81
c906108c
SS
82/* External variables and functions referenced. */
83
a14ed312 84extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
85
86/* Functions this file defines */
87
88#if 0
a14ed312
KB
89static int simple_read_overlay_region_table (void);
90static void simple_free_overlay_region_table (void);
c906108c
SS
91#endif
92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
5b5d99cf
JB
99static void reread_separate_symbols (struct objfile *objfile);
100
a14ed312 101static void cashier_psymtab (struct partial_symtab *);
c906108c 102
a14ed312 103bfd *symfile_bfd_open (char *);
c906108c 104
0e931cf0
JB
105int get_section_index (struct objfile *, char *);
106
31d99776 107static struct sym_fns *find_sym_fns (bfd *);
c906108c 108
a14ed312 109static void decrement_reading_symtab (void *);
c906108c 110
a14ed312 111static void overlay_invalidate_all (void);
c906108c 112
a14ed312 113void list_overlays_command (char *, int);
c906108c 114
a14ed312 115void map_overlay_command (char *, int);
c906108c 116
a14ed312 117void unmap_overlay_command (char *, int);
c906108c 118
a14ed312 119static void overlay_auto_command (char *, int);
c906108c 120
a14ed312 121static void overlay_manual_command (char *, int);
c906108c 122
a14ed312 123static void overlay_off_command (char *, int);
c906108c 124
a14ed312 125static void overlay_load_command (char *, int);
c906108c 126
a14ed312 127static void overlay_command (char *, int);
c906108c 128
a14ed312 129static void simple_free_overlay_table (void);
c906108c 130
a14ed312 131static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 132
a14ed312 133static int simple_read_overlay_table (void);
c906108c 134
a14ed312 135static int simple_overlay_update_1 (struct obj_section *);
c906108c 136
a14ed312 137static void add_filename_language (char *ext, enum language lang);
392a587b 138
a14ed312 139static void info_ext_lang_command (char *args, int from_tty);
392a587b 140
5b5d99cf
JB
141static char *find_separate_debug_file (struct objfile *objfile);
142
a14ed312 143static void init_filename_language_table (void);
392a587b 144
31d99776
DJ
145static void symfile_find_segment_sections (struct objfile *objfile);
146
a14ed312 147void _initialize_symfile (void);
c906108c
SS
148
149/* List of all available sym_fns. On gdb startup, each object file reader
150 calls add_symtab_fns() to register information on each format it is
151 prepared to read. */
152
153static struct sym_fns *symtab_fns = NULL;
154
155/* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158#ifdef SYMBOL_RELOADING_DEFAULT
159int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160#else
161int symbol_reloading = 0;
162#endif
920d2a44
AC
163static void
164show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("\
168Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170}
171
bf250677
DE
172/* If non-zero, gdb will notify the user when it is loading symbols
173 from a file. This is almost always what users will want to have happen;
174 but for programs with lots of dynamically linked libraries, the output
175 can be more noise than signal. */
176
177int print_symbol_loading = 1;
c906108c 178
b7209cb4
FF
179/* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
c906108c 186 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 187 report all the functions that are actually present. */
c906108c
SS
188
189int auto_solib_add = 1;
b7209cb4
FF
190
191/* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199int auto_solib_limit;
c906108c 200\f
c5aa993b 201
0fe19209
DC
202/* This compares two partial symbols by names, using strcmp_iw_ordered
203 for the comparison. */
c906108c
SS
204
205static int
0cd64fe2 206compare_psymbols (const void *s1p, const void *s2p)
c906108c 207{
0fe19209
DC
208 struct partial_symbol *const *s1 = s1p;
209 struct partial_symbol *const *s2 = s2p;
210
4725b721
PH
211 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
212 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
213}
214
215void
fba45db2 216sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
217{
218 /* Sort the global list; don't sort the static list */
219
c5aa993b
JM
220 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
221 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
222 compare_psymbols);
223}
224
c906108c
SS
225/* Make a null terminated copy of the string at PTR with SIZE characters in
226 the obstack pointed to by OBSTACKP . Returns the address of the copy.
227 Note that the string at PTR does not have to be null terminated, I.E. it
228 may be part of a larger string and we are only saving a substring. */
229
230char *
63ca651f 231obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 232{
52f0bd74 233 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
234 /* Open-coded memcpy--saves function call time. These strings are usually
235 short. FIXME: Is this really still true with a compiler that can
236 inline memcpy? */
237 {
aa1ee363
AC
238 const char *p1 = ptr;
239 char *p2 = p;
63ca651f 240 const char *end = ptr + size;
c906108c
SS
241 while (p1 != end)
242 *p2++ = *p1++;
243 }
244 p[size] = 0;
245 return p;
246}
247
248/* Concatenate strings S1, S2 and S3; return the new string. Space is found
249 in the obstack pointed to by OBSTACKP. */
250
251char *
fba45db2
KB
252obconcat (struct obstack *obstackp, const char *s1, const char *s2,
253 const char *s3)
c906108c 254{
52f0bd74
AC
255 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
256 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
257 strcpy (val, s1);
258 strcat (val, s2);
259 strcat (val, s3);
260 return val;
261}
262
263/* True if we are nested inside psymtab_to_symtab. */
264
265int currently_reading_symtab = 0;
266
267static void
fba45db2 268decrement_reading_symtab (void *dummy)
c906108c
SS
269{
270 currently_reading_symtab--;
271}
272
273/* Get the symbol table that corresponds to a partial_symtab.
274 This is fast after the first time you do it. In fact, there
275 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
276 case inline. */
277
278struct symtab *
aa1ee363 279psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
280{
281 /* If it's been looked up before, return it. */
282 if (pst->symtab)
283 return pst->symtab;
284
285 /* If it has not yet been read in, read it. */
286 if (!pst->readin)
c5aa993b 287 {
c906108c
SS
288 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
289 currently_reading_symtab++;
290 (*pst->read_symtab) (pst);
291 do_cleanups (back_to);
292 }
293
294 return pst->symtab;
295}
296
5417f6dc
RM
297/* Remember the lowest-addressed loadable section we've seen.
298 This function is called via bfd_map_over_sections.
c906108c
SS
299
300 In case of equal vmas, the section with the largest size becomes the
301 lowest-addressed loadable section.
302
303 If the vmas and sizes are equal, the last section is considered the
304 lowest-addressed loadable section. */
305
306void
4efb68b1 307find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 308{
c5aa993b 309 asection **lowest = (asection **) obj;
c906108c
SS
310
311 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
312 return;
313 if (!*lowest)
314 *lowest = sect; /* First loadable section */
315 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
316 *lowest = sect; /* A lower loadable section */
317 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
318 && (bfd_section_size (abfd, (*lowest))
319 <= bfd_section_size (abfd, sect)))
320 *lowest = sect;
321}
322
a39a16c4
MM
323/* Create a new section_addr_info, with room for NUM_SECTIONS. */
324
325struct section_addr_info *
326alloc_section_addr_info (size_t num_sections)
327{
328 struct section_addr_info *sap;
329 size_t size;
330
331 size = (sizeof (struct section_addr_info)
332 + sizeof (struct other_sections) * (num_sections - 1));
333 sap = (struct section_addr_info *) xmalloc (size);
334 memset (sap, 0, size);
335 sap->num_sections = num_sections;
336
337 return sap;
338}
62557bbc 339
7b90c3f9
JB
340
341/* Return a freshly allocated copy of ADDRS. The section names, if
342 any, are also freshly allocated copies of those in ADDRS. */
343struct section_addr_info *
344copy_section_addr_info (struct section_addr_info *addrs)
345{
346 struct section_addr_info *copy
347 = alloc_section_addr_info (addrs->num_sections);
348 int i;
349
350 copy->num_sections = addrs->num_sections;
351 for (i = 0; i < addrs->num_sections; i++)
352 {
353 copy->other[i].addr = addrs->other[i].addr;
354 if (addrs->other[i].name)
355 copy->other[i].name = xstrdup (addrs->other[i].name);
356 else
357 copy->other[i].name = NULL;
358 copy->other[i].sectindex = addrs->other[i].sectindex;
359 }
360
361 return copy;
362}
363
364
365
62557bbc
KB
366/* Build (allocate and populate) a section_addr_info struct from
367 an existing section table. */
368
369extern struct section_addr_info *
0542c86d
PA
370build_section_addr_info_from_section_table (const struct target_section *start,
371 const struct target_section *end)
62557bbc
KB
372{
373 struct section_addr_info *sap;
0542c86d 374 const struct target_section *stp;
62557bbc
KB
375 int oidx;
376
a39a16c4 377 sap = alloc_section_addr_info (end - start);
62557bbc
KB
378
379 for (stp = start, oidx = 0; stp != end; stp++)
380 {
5417f6dc 381 if (bfd_get_section_flags (stp->bfd,
fbd35540 382 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 383 && oidx < end - start)
62557bbc
KB
384 {
385 sap->other[oidx].addr = stp->addr;
5417f6dc 386 sap->other[oidx].name
fbd35540 387 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
388 sap->other[oidx].sectindex = stp->the_bfd_section->index;
389 oidx++;
390 }
391 }
392
393 return sap;
394}
395
396
397/* Free all memory allocated by build_section_addr_info_from_section_table. */
398
399extern void
400free_section_addr_info (struct section_addr_info *sap)
401{
402 int idx;
403
a39a16c4 404 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 405 if (sap->other[idx].name)
b8c9b27d
KB
406 xfree (sap->other[idx].name);
407 xfree (sap);
62557bbc
KB
408}
409
410
e8289572
JB
411/* Initialize OBJFILE's sect_index_* members. */
412static void
413init_objfile_sect_indices (struct objfile *objfile)
c906108c 414{
e8289572 415 asection *sect;
c906108c 416 int i;
5417f6dc 417
b8fbeb18 418 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 419 if (sect)
b8fbeb18
EZ
420 objfile->sect_index_text = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 423 if (sect)
b8fbeb18
EZ
424 objfile->sect_index_data = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 427 if (sect)
b8fbeb18
EZ
428 objfile->sect_index_bss = sect->index;
429
430 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 431 if (sect)
b8fbeb18
EZ
432 objfile->sect_index_rodata = sect->index;
433
bbcd32ad
FF
434 /* This is where things get really weird... We MUST have valid
435 indices for the various sect_index_* members or gdb will abort.
436 So if for example, there is no ".text" section, we have to
31d99776
DJ
437 accomodate that. First, check for a file with the standard
438 one or two segments. */
439
440 symfile_find_segment_sections (objfile);
441
442 /* Except when explicitly adding symbol files at some address,
443 section_offsets contains nothing but zeros, so it doesn't matter
444 which slot in section_offsets the individual sect_index_* members
445 index into. So if they are all zero, it is safe to just point
446 all the currently uninitialized indices to the first slot. But
447 beware: if this is the main executable, it may be relocated
448 later, e.g. by the remote qOffsets packet, and then this will
449 be wrong! That's why we try segments first. */
bbcd32ad
FF
450
451 for (i = 0; i < objfile->num_sections; i++)
452 {
453 if (ANOFFSET (objfile->section_offsets, i) != 0)
454 {
455 break;
456 }
457 }
458 if (i == objfile->num_sections)
459 {
460 if (objfile->sect_index_text == -1)
461 objfile->sect_index_text = 0;
462 if (objfile->sect_index_data == -1)
463 objfile->sect_index_data = 0;
464 if (objfile->sect_index_bss == -1)
465 objfile->sect_index_bss = 0;
466 if (objfile->sect_index_rodata == -1)
467 objfile->sect_index_rodata = 0;
468 }
b8fbeb18 469}
c906108c 470
c1bd25fd
DJ
471/* The arguments to place_section. */
472
473struct place_section_arg
474{
475 struct section_offsets *offsets;
476 CORE_ADDR lowest;
477};
478
479/* Find a unique offset to use for loadable section SECT if
480 the user did not provide an offset. */
481
2c0b251b 482static void
c1bd25fd
DJ
483place_section (bfd *abfd, asection *sect, void *obj)
484{
485 struct place_section_arg *arg = obj;
486 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
487 int done;
3bd72c6f 488 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 489
2711e456
DJ
490 /* We are only interested in allocated sections. */
491 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
492 return;
493
494 /* If the user specified an offset, honor it. */
495 if (offsets[sect->index] != 0)
496 return;
497
498 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
499 start_addr = (arg->lowest + align - 1) & -align;
500
c1bd25fd
DJ
501 do {
502 asection *cur_sec;
c1bd25fd 503
c1bd25fd
DJ
504 done = 1;
505
506 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
507 {
508 int indx = cur_sec->index;
509 CORE_ADDR cur_offset;
510
511 /* We don't need to compare against ourself. */
512 if (cur_sec == sect)
513 continue;
514
2711e456
DJ
515 /* We can only conflict with allocated sections. */
516 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
517 continue;
518
519 /* If the section offset is 0, either the section has not been placed
520 yet, or it was the lowest section placed (in which case LOWEST
521 will be past its end). */
522 if (offsets[indx] == 0)
523 continue;
524
525 /* If this section would overlap us, then we must move up. */
526 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
527 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
528 {
529 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
530 start_addr = (start_addr + align - 1) & -align;
531 done = 0;
3bd72c6f 532 break;
c1bd25fd
DJ
533 }
534
535 /* Otherwise, we appear to be OK. So far. */
536 }
537 }
538 while (!done);
539
540 offsets[sect->index] = start_addr;
541 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 542}
e8289572
JB
543
544/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 545 of how to represent it for fast symbol reading. This is the default
e8289572
JB
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550void
551default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553{
554 int i;
555
a39a16c4 556 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 557 objfile->section_offsets = (struct section_offsets *)
5417f6dc 558 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 560 memset (objfile->section_offsets, 0,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
a39a16c4 565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
c1bd25fd
DJ
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
2711e456
DJ
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
640 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
641 offsets[cur_sec->index]);
2711e456
DJ
642 offsets[cur_sec->index] = 0;
643 }
644 }
c1bd25fd
DJ
645 }
646
e8289572
JB
647 /* Remember the bfd indexes for the .text, .data, .bss and
648 .rodata sections. */
649 init_objfile_sect_indices (objfile);
650}
651
652
31d99776
DJ
653/* Divide the file into segments, which are individual relocatable units.
654 This is the default version of the sym_fns.sym_segments function for
655 symbol readers that do not have an explicit representation of segments.
656 It assumes that object files do not have segments, and fully linked
657 files have a single segment. */
658
659struct symfile_segment_data *
660default_symfile_segments (bfd *abfd)
661{
662 int num_sections, i;
663 asection *sect;
664 struct symfile_segment_data *data;
665 CORE_ADDR low, high;
666
667 /* Relocatable files contain enough information to position each
668 loadable section independently; they should not be relocated
669 in segments. */
670 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
671 return NULL;
672
673 /* Make sure there is at least one loadable section in the file. */
674 for (sect = abfd->sections; sect != NULL; sect = sect->next)
675 {
676 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
677 continue;
678
679 break;
680 }
681 if (sect == NULL)
682 return NULL;
683
684 low = bfd_get_section_vma (abfd, sect);
685 high = low + bfd_get_section_size (sect);
686
687 data = XZALLOC (struct symfile_segment_data);
688 data->num_segments = 1;
689 data->segment_bases = XCALLOC (1, CORE_ADDR);
690 data->segment_sizes = XCALLOC (1, CORE_ADDR);
691
692 num_sections = bfd_count_sections (abfd);
693 data->segment_info = XCALLOC (num_sections, int);
694
695 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
696 {
697 CORE_ADDR vma;
698
699 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
700 continue;
701
702 vma = bfd_get_section_vma (abfd, sect);
703 if (vma < low)
704 low = vma;
705 if (vma + bfd_get_section_size (sect) > high)
706 high = vma + bfd_get_section_size (sect);
707
708 data->segment_info[i] = 1;
709 }
710
711 data->segment_bases[0] = low;
712 data->segment_sizes[0] = high - low;
713
714 return data;
715}
716
c906108c
SS
717/* Process a symbol file, as either the main file or as a dynamically
718 loaded file.
719
96baa820
JM
720 OBJFILE is where the symbols are to be read from.
721
7e8580c1
JB
722 ADDRS is the list of section load addresses. If the user has given
723 an 'add-symbol-file' command, then this is the list of offsets and
724 addresses he or she provided as arguments to the command; or, if
725 we're handling a shared library, these are the actual addresses the
726 sections are loaded at, according to the inferior's dynamic linker
727 (as gleaned by GDB's shared library code). We convert each address
728 into an offset from the section VMA's as it appears in the object
729 file, and then call the file's sym_offsets function to convert this
730 into a format-specific offset table --- a `struct section_offsets'.
731 If ADDRS is non-zero, OFFSETS must be zero.
732
733 OFFSETS is a table of section offsets already in the right
734 format-specific representation. NUM_OFFSETS is the number of
735 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
736 assume this is the proper table the call to sym_offsets described
737 above would produce. Instead of calling sym_offsets, we just dump
738 it right into objfile->section_offsets. (When we're re-reading
739 symbols from an objfile, we don't have the original load address
740 list any more; all we have is the section offset table.) If
741 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
742
743 MAINLINE is nonzero if this is the main symbol file, or zero if
744 it's an extra symbol file such as dynamically loaded code.
745
746 VERBO is nonzero if the caller has printed a verbose message about
747 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
748
749void
7e8580c1
JB
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int mainline,
755 int verbo)
c906108c 756{
a39a16c4 757 struct section_addr_info *local_addr = NULL;
c906108c 758 struct cleanup *old_chain;
2acceee2 759
7e8580c1 760 gdb_assert (! (addrs && offsets));
2acceee2 761
c906108c 762 init_entry_point_info (objfile);
31d99776 763 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 764
75245b24
MS
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
c906108c
SS
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
74b7792f 770 old_chain = make_cleanup_free_objfile (objfile);
c906108c 771
a39a16c4
MM
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
5417f6dc 777 local_addr
a39a16c4
MM
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
c5aa993b 785 if (mainline)
c906108c
SS
786 {
787 /* We will modify the main symbol table, make sure that all its users
c5aa993b 788 will be cleaned up if an error occurs during symbol reading. */
74b7792f 789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
c906108c 803
c5aa993b 804 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
53a5351d 809 and assume that <addr> is where that got loaded.
c906108c 810
53a5351d
JM
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
1549f619 813 if (!mainline && addrs && addrs->other[0].name)
c906108c 814 {
1549f619
EZ
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
5417f6dc 820 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
c906108c 825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 826 &lower_sect);
2acceee2 827 if (lower_sect == NULL)
ff8e85c3
PA
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
2acceee2 833 else
ff8e85c3 834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 835
13de58df 836 /* Calculate offsets for the loadable sections.
2acceee2
JM
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
5417f6dc 839
13de58df
JB
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
2acceee2
JM
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
1549f619 846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
8a3fe4f8 862 warning (_("section %s not found in %s"),
5417f6dc 863 addrs->other[i].name,
7e8580c1
JB
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
c906108c
SS
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
c5aa993b 877 (*objfile->sf->sym_init) (objfile);
b9caf505 878 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 879
7e8580c1
JB
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
8b92e4d5 890 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
c906108c 895
96baa820 896 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 897
c906108c
SS
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
f7545552 901 xfree (local_addr);
c906108c
SS
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
c5aa993b 907
c906108c 908void
fba45db2 909new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (mainline)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else
923 {
e62c965a 924 breakpoint_re_set_objfile (objfile);
c906108c
SS
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
b9caf505 928 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
5417f6dc
RM
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
936
937 FROM_TTY says how verbose to be.
938
939 MAINLINE specifies whether this is the main symbol file, or whether
940 it's an extra symbol file such as dynamically loaded code.
941
942 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
943 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
944 non-zero.
c906108c 945
c906108c
SS
946 Upon success, returns a pointer to the objfile that was added.
947 Upon failure, jumps back to command level (never returns). */
7904e09f 948static struct objfile *
5417f6dc 949symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int mainline, int flags)
c906108c
SS
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
77069918 957 char *debugfile = NULL;
7b90c3f9 958 struct section_addr_info *orig_addrs = NULL;
a39a16c4 959 struct cleanup *my_cleanups;
5417f6dc 960 const char *name = bfd_get_filename (abfd);
c906108c 961
5417f6dc 962 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 963
5417f6dc
RM
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
c906108c
SS
966
967 if ((have_full_symbols () || have_partial_symbols ())
968 && mainline
969 && from_tty
9e2f0ad4 970 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 971 error (_("Not confirmed."));
c906108c 972
2df3850c 973 objfile = allocate_objfile (abfd, flags);
5417f6dc 974 discard_cleanups (my_cleanups);
c906108c 975
a39a16c4 976 if (addrs)
63cd24fe 977 {
7b90c3f9
JB
978 orig_addrs = copy_section_addr_info (addrs);
979 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 980 }
a39a16c4 981
78a4a9b9
AC
982 /* We either created a new mapped symbol table, mapped an existing
983 symbol table file which has not had initial symbol reading
984 performed, or need to read an unmapped symbol table. */
985 if (from_tty || info_verbose)
c906108c 986 {
769d7dc4
AC
987 if (deprecated_pre_add_symbol_hook)
988 deprecated_pre_add_symbol_hook (name);
78a4a9b9 989 else
c906108c 990 {
bf250677
DE
991 if (print_symbol_loading)
992 {
993 printf_unfiltered (_("Reading symbols from %s..."), name);
994 wrap_here ("");
995 gdb_flush (gdb_stdout);
996 }
c906108c 997 }
c906108c 998 }
78a4a9b9
AC
999 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1000 mainline, from_tty);
c906108c
SS
1001
1002 /* We now have at least a partial symbol table. Check to see if the
1003 user requested that all symbols be read on initial access via either
1004 the gdb startup command line or on a per symbol file basis. Expand
1005 all partial symbol tables for this objfile if so. */
1006
2acceee2 1007 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1008 {
bf250677 1009 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1010 {
a3f17187 1011 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1012 wrap_here ("");
1013 gdb_flush (gdb_stdout);
1014 }
1015
c5aa993b 1016 for (psymtab = objfile->psymtabs;
c906108c 1017 psymtab != NULL;
c5aa993b 1018 psymtab = psymtab->next)
c906108c
SS
1019 {
1020 psymtab_to_symtab (psymtab);
1021 }
1022 }
1023
77069918
JK
1024 /* If the file has its own symbol tables it has no separate debug info.
1025 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1026 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1027 if (objfile->psymtabs == NULL)
1028 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1029 if (debugfile)
1030 {
5b5d99cf
JB
1031 if (addrs != NULL)
1032 {
1033 objfile->separate_debug_objfile
a39a16c4 1034 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1035 }
1036 else
1037 {
1038 objfile->separate_debug_objfile
1039 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1040 }
1041 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1042 = objfile;
5417f6dc 1043
5b5d99cf
JB
1044 /* Put the separate debug object before the normal one, this is so that
1045 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1046 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1047
5b5d99cf
JB
1048 xfree (debugfile);
1049 }
5417f6dc 1050
bf250677
DE
1051 if (!have_partial_symbols () && !have_full_symbols ()
1052 && print_symbol_loading)
cb3c37b2
JB
1053 {
1054 wrap_here ("");
d4c0a7a0 1055 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1056 if (from_tty || info_verbose)
d4c0a7a0 1057 printf_unfiltered ("...");
8f5ba92b 1058 else
d4c0a7a0 1059 printf_unfiltered ("\n");
cb3c37b2
JB
1060 wrap_here ("");
1061 }
1062
c906108c
SS
1063 if (from_tty || info_verbose)
1064 {
769d7dc4
AC
1065 if (deprecated_post_add_symbol_hook)
1066 deprecated_post_add_symbol_hook ();
c906108c 1067 else
c5aa993b 1068 {
bf250677
DE
1069 if (print_symbol_loading)
1070 printf_unfiltered (_("done.\n"));
c5aa993b 1071 }
c906108c
SS
1072 }
1073
481d0f41
JB
1074 /* We print some messages regardless of whether 'from_tty ||
1075 info_verbose' is true, so make sure they go out at the right
1076 time. */
1077 gdb_flush (gdb_stdout);
1078
a39a16c4
MM
1079 do_cleanups (my_cleanups);
1080
109f874e
MS
1081 if (objfile->sf == NULL)
1082 return objfile; /* No symbols. */
1083
c906108c
SS
1084 new_symfile_objfile (objfile, mainline, from_tty);
1085
06d3b283 1086 observer_notify_new_objfile (objfile);
c906108c 1087
ce7d4522 1088 bfd_cache_close_all ();
c906108c
SS
1089 return (objfile);
1090}
1091
7904e09f 1092
eb4556d7
JB
1093/* Process the symbol file ABFD, as either the main file or as a
1094 dynamically loaded file.
1095
1096 See symbol_file_add_with_addrs_or_offsets's comments for
1097 details. */
1098struct objfile *
1099symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1100 struct section_addr_info *addrs,
1101 int mainline, int flags)
1102{
1103 return symbol_file_add_with_addrs_or_offsets (abfd,
1104 from_tty, addrs, 0, 0,
1105 mainline, flags);
1106}
1107
1108
7904e09f
JB
1109/* Process a symbol file, as either the main file or as a dynamically
1110 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1111 for details. */
1112struct objfile *
1113symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1114 int mainline, int flags)
1115{
eb4556d7
JB
1116 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1117 addrs, mainline, flags);
7904e09f
JB
1118}
1119
1120
d7db6da9
FN
1121/* Call symbol_file_add() with default values and update whatever is
1122 affected by the loading of a new main().
1123 Used when the file is supplied in the gdb command line
1124 and by some targets with special loading requirements.
1125 The auxiliary function, symbol_file_add_main_1(), has the flags
1126 argument for the switches that can only be specified in the symbol_file
1127 command itself. */
5417f6dc 1128
1adeb98a
FN
1129void
1130symbol_file_add_main (char *args, int from_tty)
1131{
d7db6da9
FN
1132 symbol_file_add_main_1 (args, from_tty, 0);
1133}
1134
1135static void
1136symbol_file_add_main_1 (char *args, int from_tty, int flags)
1137{
1138 symbol_file_add (args, from_tty, NULL, 1, flags);
1139
d7db6da9
FN
1140 /* Getting new symbols may change our opinion about
1141 what is frameless. */
1142 reinit_frame_cache ();
1143
1144 set_initial_language ();
1adeb98a
FN
1145}
1146
1147void
1148symbol_file_clear (int from_tty)
1149{
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && from_tty
0430b0d6
AS
1152 && (symfile_objfile
1153 ? !query (_("Discard symbol table from `%s'? "),
1154 symfile_objfile->name)
1155 : !query (_("Discard symbol table? "))))
8a3fe4f8 1156 error (_("Not confirmed."));
1adeb98a 1157
d10c338d 1158 free_all_objfiles ();
1adeb98a 1159
d10c338d
DE
1160 /* solib descriptors may have handles to objfiles. Since their
1161 storage has just been released, we'd better wipe the solib
1162 descriptors as well. */
1163 no_shared_libraries (NULL, from_tty);
1164
1165 symfile_objfile = NULL;
1166 if (from_tty)
1167 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1168}
1169
77069918
JK
1170struct build_id
1171 {
1172 size_t size;
1173 gdb_byte data[1];
1174 };
1175
1176/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1177
1178static struct build_id *
1179build_id_bfd_get (bfd *abfd)
1180{
1181 struct build_id *retval;
1182
1183 if (!bfd_check_format (abfd, bfd_object)
1184 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1185 || elf_tdata (abfd)->build_id == NULL)
1186 return NULL;
1187
1188 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1189 retval->size = elf_tdata (abfd)->build_id_size;
1190 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1191
1192 return retval;
1193}
1194
1195/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1196
1197static int
1198build_id_verify (const char *filename, struct build_id *check)
1199{
1200 bfd *abfd;
1201 struct build_id *found = NULL;
1202 int retval = 0;
1203
1204 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1205 if (remote_filename_p (filename))
1206 abfd = remote_bfd_open (filename, gnutarget);
1207 else
1208 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1209 if (abfd == NULL)
1210 return 0;
1211
1212 found = build_id_bfd_get (abfd);
1213
1214 if (found == NULL)
1215 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1216 else if (found->size != check->size
1217 || memcmp (found->data, check->data, found->size) != 0)
1218 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1219 else
1220 retval = 1;
1221
1222 if (!bfd_close (abfd))
1223 warning (_("cannot close \"%s\": %s"), filename,
1224 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1225
1226 xfree (found);
1227
77069918
JK
1228 return retval;
1229}
1230
1231static char *
1232build_id_to_debug_filename (struct build_id *build_id)
1233{
1234 char *link, *s, *retval = NULL;
1235 gdb_byte *data = build_id->data;
1236 size_t size = build_id->size;
1237
1238 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1239 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1240 + 2 * size + (sizeof ".debug" - 1) + 1);
1241 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1242 if (size > 0)
1243 {
1244 size--;
1245 s += sprintf (s, "%02x", (unsigned) *data++);
1246 }
1247 if (size > 0)
1248 *s++ = '/';
1249 while (size-- > 0)
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 strcpy (s, ".debug");
1252
1253 /* lrealpath() is expensive even for the usually non-existent files. */
1254 if (access (link, F_OK) == 0)
1255 retval = lrealpath (link);
1256 xfree (link);
1257
1258 if (retval != NULL && !build_id_verify (retval, build_id))
1259 {
1260 xfree (retval);
1261 retval = NULL;
1262 }
1263
1264 return retval;
1265}
1266
5b5d99cf
JB
1267static char *
1268get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269{
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275 unsigned char *p;
5417f6dc 1276
5b5d99cf
JB
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1283
5b5d99cf
JB
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1293
5b5d99cf
JB
1294 *crc32_out = crc32;
1295 return contents;
1296}
1297
1298static int
1299separate_debug_file_exists (const char *name, unsigned long crc)
1300{
1301 unsigned long file_crc = 0;
f1838a98 1302 bfd *abfd;
777ea8f1 1303 gdb_byte buffer[8*1024];
5b5d99cf
JB
1304 int count;
1305
f1838a98
UW
1306 if (remote_filename_p (name))
1307 abfd = remote_bfd_open (name, gnutarget);
1308 else
1309 abfd = bfd_openr (name, gnutarget);
1310
1311 if (!abfd)
5b5d99cf
JB
1312 return 0;
1313
f1838a98 1314 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1315 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1316
f1838a98 1317 bfd_close (abfd);
5b5d99cf
JB
1318
1319 return crc == file_crc;
1320}
1321
aa28a74e 1322char *debug_file_directory = NULL;
920d2a44
AC
1323static void
1324show_debug_file_directory (struct ui_file *file, int from_tty,
1325 struct cmd_list_element *c, const char *value)
1326{
1327 fprintf_filtered (file, _("\
1328The directory where separate debug symbols are searched for is \"%s\".\n"),
1329 value);
1330}
5b5d99cf
JB
1331
1332#if ! defined (DEBUG_SUBDIRECTORY)
1333#define DEBUG_SUBDIRECTORY ".debug"
1334#endif
1335
1336static char *
1337find_separate_debug_file (struct objfile *objfile)
1338{
1339 asection *sect;
1340 char *basename;
1341 char *dir;
1342 char *debugfile;
1343 char *name_copy;
aa28a74e 1344 char *canon_name;
5b5d99cf
JB
1345 bfd_size_type debuglink_size;
1346 unsigned long crc32;
1347 int i;
77069918
JK
1348 struct build_id *build_id;
1349
1350 build_id = build_id_bfd_get (objfile->obfd);
1351 if (build_id != NULL)
1352 {
1353 char *build_id_name;
1354
1355 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1356 xfree (build_id);
77069918
JK
1357 /* Prevent looping on a stripped .debug file. */
1358 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1359 {
1360 warning (_("\"%s\": separate debug info file has no debug info"),
1361 build_id_name);
1362 xfree (build_id_name);
1363 }
1364 else if (build_id_name != NULL)
1365 return build_id_name;
1366 }
5b5d99cf
JB
1367
1368 basename = get_debug_link_info (objfile, &crc32);
1369
1370 if (basename == NULL)
1371 return NULL;
5417f6dc 1372
5b5d99cf
JB
1373 dir = xstrdup (objfile->name);
1374
fe36c4f4
JB
1375 /* Strip off the final filename part, leaving the directory name,
1376 followed by a slash. Objfile names should always be absolute and
1377 tilde-expanded, so there should always be a slash in there
1378 somewhere. */
5b5d99cf
JB
1379 for (i = strlen(dir) - 1; i >= 0; i--)
1380 {
1381 if (IS_DIR_SEPARATOR (dir[i]))
1382 break;
1383 }
fe36c4f4 1384 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1385 dir[i+1] = '\0';
5417f6dc 1386
5b5d99cf
JB
1387 debugfile = alloca (strlen (debug_file_directory) + 1
1388 + strlen (dir)
1389 + strlen (DEBUG_SUBDIRECTORY)
1390 + strlen ("/")
5417f6dc 1391 + strlen (basename)
5b5d99cf
JB
1392 + 1);
1393
1394 /* First try in the same directory as the original file. */
1395 strcpy (debugfile, dir);
1396 strcat (debugfile, basename);
1397
1398 if (separate_debug_file_exists (debugfile, crc32))
1399 {
1400 xfree (basename);
1401 xfree (dir);
1402 return xstrdup (debugfile);
1403 }
5417f6dc 1404
5b5d99cf
JB
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32))
1412 {
1413 xfree (basename);
1414 xfree (dir);
1415 return xstrdup (debugfile);
1416 }
5417f6dc 1417
5b5d99cf
JB
1418 /* Then try in the global debugfile directory. */
1419 strcpy (debugfile, debug_file_directory);
1420 strcat (debugfile, "/");
1421 strcat (debugfile, dir);
5b5d99cf
JB
1422 strcat (debugfile, basename);
1423
1424 if (separate_debug_file_exists (debugfile, crc32))
1425 {
1426 xfree (basename);
1427 xfree (dir);
1428 return xstrdup (debugfile);
1429 }
5417f6dc 1430
aa28a74e
DJ
1431 /* If the file is in the sysroot, try using its base path in the
1432 global debugfile directory. */
1433 canon_name = lrealpath (dir);
1434 if (canon_name
1435 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1436 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1437 {
1438 strcpy (debugfile, debug_file_directory);
1439 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32))
1444 {
1445 xfree (canon_name);
1446 xfree (basename);
1447 xfree (dir);
1448 return xstrdup (debugfile);
1449 }
1450 }
1451
1452 if (canon_name)
1453 xfree (canon_name);
1454
5b5d99cf
JB
1455 xfree (basename);
1456 xfree (dir);
1457 return NULL;
1458}
1459
1460
c906108c
SS
1461/* This is the symbol-file command. Read the file, analyze its
1462 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1463 the command is rather bizarre:
1464
1465 1. The function buildargv implements various quoting conventions
1466 which are undocumented and have little or nothing in common with
1467 the way things are quoted (or not quoted) elsewhere in GDB.
1468
1469 2. Options are used, which are not generally used in GDB (perhaps
1470 "set mapped on", "set readnow on" would be better)
1471
1472 3. The order of options matters, which is contrary to GNU
c906108c
SS
1473 conventions (because it is confusing and inconvenient). */
1474
1475void
fba45db2 1476symbol_file_command (char *args, int from_tty)
c906108c 1477{
c906108c
SS
1478 dont_repeat ();
1479
1480 if (args == NULL)
1481 {
1adeb98a 1482 symbol_file_clear (from_tty);
c906108c
SS
1483 }
1484 else
1485 {
d1a41061 1486 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1487 int flags = OBJF_USERLOADED;
1488 struct cleanup *cleanups;
1489 char *name = NULL;
1490
7a292a7a 1491 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1492 while (*argv != NULL)
1493 {
78a4a9b9
AC
1494 if (strcmp (*argv, "-readnow") == 0)
1495 flags |= OBJF_READNOW;
1496 else if (**argv == '-')
8a3fe4f8 1497 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1498 else
1499 {
cb2f3a29 1500 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1501 name = *argv;
78a4a9b9 1502 }
cb2f3a29 1503
c906108c
SS
1504 argv++;
1505 }
1506
1507 if (name == NULL)
cb2f3a29
MK
1508 error (_("no symbol file name was specified"));
1509
c906108c
SS
1510 do_cleanups (cleanups);
1511 }
1512}
1513
1514/* Set the initial language.
1515
cb2f3a29
MK
1516 FIXME: A better solution would be to record the language in the
1517 psymtab when reading partial symbols, and then use it (if known) to
1518 set the language. This would be a win for formats that encode the
1519 language in an easily discoverable place, such as DWARF. For
1520 stabs, we can jump through hoops looking for specially named
1521 symbols or try to intuit the language from the specific type of
1522 stabs we find, but we can't do that until later when we read in
1523 full symbols. */
c906108c 1524
8b60591b 1525void
fba45db2 1526set_initial_language (void)
c906108c
SS
1527{
1528 struct partial_symtab *pst;
c5aa993b 1529 enum language lang = language_unknown;
c906108c
SS
1530
1531 pst = find_main_psymtab ();
1532 if (pst != NULL)
1533 {
c5aa993b 1534 if (pst->filename != NULL)
cb2f3a29
MK
1535 lang = deduce_language_from_filename (pst->filename);
1536
c906108c
SS
1537 if (lang == language_unknown)
1538 {
c5aa993b
JM
1539 /* Make C the default language */
1540 lang = language_c;
c906108c 1541 }
cb2f3a29 1542
c906108c 1543 set_language (lang);
cb2f3a29 1544 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1545 }
1546}
1547
cb2f3a29
MK
1548/* Open the file specified by NAME and hand it off to BFD for
1549 preliminary analysis. Return a newly initialized bfd *, which
1550 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1551 absolute). In case of trouble, error() is called. */
c906108c
SS
1552
1553bfd *
fba45db2 1554symfile_bfd_open (char *name)
c906108c
SS
1555{
1556 bfd *sym_bfd;
1557 int desc;
1558 char *absolute_name;
1559
f1838a98
UW
1560 if (remote_filename_p (name))
1561 {
1562 name = xstrdup (name);
1563 sym_bfd = remote_bfd_open (name, gnutarget);
1564 if (!sym_bfd)
1565 {
1566 make_cleanup (xfree, name);
1567 error (_("`%s': can't open to read symbols: %s."), name,
1568 bfd_errmsg (bfd_get_error ()));
1569 }
1570
1571 if (!bfd_check_format (sym_bfd, bfd_object))
1572 {
1573 bfd_close (sym_bfd);
1574 make_cleanup (xfree, name);
1575 error (_("`%s': can't read symbols: %s."), name,
1576 bfd_errmsg (bfd_get_error ()));
1577 }
1578
1579 return sym_bfd;
1580 }
1581
cb2f3a29 1582 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1583
1584 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1585 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1586 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1587#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1588 if (desc < 0)
1589 {
1590 char *exename = alloca (strlen (name) + 5);
1591 strcat (strcpy (exename, name), ".exe");
014d698b 1592 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1593 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1594 }
1595#endif
1596 if (desc < 0)
1597 {
b8c9b27d 1598 make_cleanup (xfree, name);
c906108c
SS
1599 perror_with_name (name);
1600 }
cb2f3a29
MK
1601
1602 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1603 bfd. It'll be freed in free_objfile(). */
1604 xfree (name);
1605 name = absolute_name;
c906108c 1606
9f76c2cd 1607 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1608 if (!sym_bfd)
1609 {
1610 close (desc);
b8c9b27d 1611 make_cleanup (xfree, name);
f1838a98 1612 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1613 bfd_errmsg (bfd_get_error ()));
1614 }
549c1eea 1615 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1616
1617 if (!bfd_check_format (sym_bfd, bfd_object))
1618 {
cb2f3a29
MK
1619 /* FIXME: should be checking for errors from bfd_close (for one
1620 thing, on error it does not free all the storage associated
1621 with the bfd). */
1622 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1623 make_cleanup (xfree, name);
f1838a98 1624 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1625 bfd_errmsg (bfd_get_error ()));
1626 }
cb2f3a29
MK
1627
1628 return sym_bfd;
c906108c
SS
1629}
1630
cb2f3a29
MK
1631/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1632 the section was not found. */
1633
0e931cf0
JB
1634int
1635get_section_index (struct objfile *objfile, char *section_name)
1636{
1637 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1638
0e931cf0
JB
1639 if (sect)
1640 return sect->index;
1641 else
1642 return -1;
1643}
1644
cb2f3a29
MK
1645/* Link SF into the global symtab_fns list. Called on startup by the
1646 _initialize routine in each object file format reader, to register
1647 information about each format the the reader is prepared to
1648 handle. */
c906108c
SS
1649
1650void
fba45db2 1651add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1652{
1653 sf->next = symtab_fns;
1654 symtab_fns = sf;
1655}
1656
cb2f3a29
MK
1657/* Initialize OBJFILE to read symbols from its associated BFD. It
1658 either returns or calls error(). The result is an initialized
1659 struct sym_fns in the objfile structure, that contains cached
1660 information about the symbol file. */
c906108c 1661
31d99776
DJ
1662static struct sym_fns *
1663find_sym_fns (bfd *abfd)
c906108c
SS
1664{
1665 struct sym_fns *sf;
31d99776 1666 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1667
75245b24
MS
1668 if (our_flavour == bfd_target_srec_flavour
1669 || our_flavour == bfd_target_ihex_flavour
1670 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1671 return NULL; /* No symbols. */
75245b24 1672
c5aa993b 1673 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1674 if (our_flavour == sf->sym_flavour)
1675 return sf;
cb2f3a29 1676
8a3fe4f8 1677 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1678 bfd_get_target (abfd));
c906108c
SS
1679}
1680\f
cb2f3a29 1681
c906108c
SS
1682/* This function runs the load command of our current target. */
1683
1684static void
fba45db2 1685load_command (char *arg, int from_tty)
c906108c 1686{
4487aabf
PA
1687 /* The user might be reloading because the binary has changed. Take
1688 this opportunity to check. */
1689 reopen_exec_file ();
1690 reread_symbols ();
1691
c906108c 1692 if (arg == NULL)
1986bccd
AS
1693 {
1694 char *parg;
1695 int count = 0;
1696
1697 parg = arg = get_exec_file (1);
1698
1699 /* Count how many \ " ' tab space there are in the name. */
1700 while ((parg = strpbrk (parg, "\\\"'\t ")))
1701 {
1702 parg++;
1703 count++;
1704 }
1705
1706 if (count)
1707 {
1708 /* We need to quote this string so buildargv can pull it apart. */
1709 char *temp = xmalloc (strlen (arg) + count + 1 );
1710 char *ptemp = temp;
1711 char *prev;
1712
1713 make_cleanup (xfree, temp);
1714
1715 prev = parg = arg;
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 strncpy (ptemp, prev, parg - prev);
1719 ptemp += parg - prev;
1720 prev = parg++;
1721 *ptemp++ = '\\';
1722 }
1723 strcpy (ptemp, prev);
1724
1725 arg = temp;
1726 }
1727 }
1728
c906108c 1729 target_load (arg, from_tty);
2889e661
JB
1730
1731 /* After re-loading the executable, we don't really know which
1732 overlays are mapped any more. */
1733 overlay_cache_invalid = 1;
c906108c
SS
1734}
1735
1736/* This version of "load" should be usable for any target. Currently
1737 it is just used for remote targets, not inftarg.c or core files,
1738 on the theory that only in that case is it useful.
1739
1740 Avoiding xmodem and the like seems like a win (a) because we don't have
1741 to worry about finding it, and (b) On VMS, fork() is very slow and so
1742 we don't want to run a subprocess. On the other hand, I'm not sure how
1743 performance compares. */
917317f4 1744
917317f4
JM
1745static int validate_download = 0;
1746
e4f9b4d5
MS
1747/* Callback service function for generic_load (bfd_map_over_sections). */
1748
1749static void
1750add_section_size_callback (bfd *abfd, asection *asec, void *data)
1751{
1752 bfd_size_type *sum = data;
1753
2c500098 1754 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1755}
1756
1757/* Opaque data for load_section_callback. */
1758struct load_section_data {
1759 unsigned long load_offset;
a76d924d
DJ
1760 struct load_progress_data *progress_data;
1761 VEC(memory_write_request_s) *requests;
1762};
1763
1764/* Opaque data for load_progress. */
1765struct load_progress_data {
1766 /* Cumulative data. */
e4f9b4d5
MS
1767 unsigned long write_count;
1768 unsigned long data_count;
1769 bfd_size_type total_size;
a76d924d
DJ
1770};
1771
1772/* Opaque data for load_progress for a single section. */
1773struct load_progress_section_data {
1774 struct load_progress_data *cumulative;
cf7a04e8 1775
a76d924d 1776 /* Per-section data. */
cf7a04e8
DJ
1777 const char *section_name;
1778 ULONGEST section_sent;
1779 ULONGEST section_size;
1780 CORE_ADDR lma;
1781 gdb_byte *buffer;
e4f9b4d5
MS
1782};
1783
a76d924d 1784/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1785
1786static void
1787load_progress (ULONGEST bytes, void *untyped_arg)
1788{
a76d924d
DJ
1789 struct load_progress_section_data *args = untyped_arg;
1790 struct load_progress_data *totals;
1791
1792 if (args == NULL)
1793 /* Writing padding data. No easy way to get at the cumulative
1794 stats, so just ignore this. */
1795 return;
1796
1797 totals = args->cumulative;
1798
1799 if (bytes == 0 && args->section_sent == 0)
1800 {
1801 /* The write is just starting. Let the user know we've started
1802 this section. */
1803 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1804 args->section_name, paddr_nz (args->section_size),
1805 paddr_nz (args->lma));
1806 return;
1807 }
cf7a04e8
DJ
1808
1809 if (validate_download)
1810 {
1811 /* Broken memories and broken monitors manifest themselves here
1812 when bring new computers to life. This doubles already slow
1813 downloads. */
1814 /* NOTE: cagney/1999-10-18: A more efficient implementation
1815 might add a verify_memory() method to the target vector and
1816 then use that. remote.c could implement that method using
1817 the ``qCRC'' packet. */
1818 gdb_byte *check = xmalloc (bytes);
1819 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1820
1821 if (target_read_memory (args->lma, check, bytes) != 0)
1822 error (_("Download verify read failed at 0x%s"),
1823 paddr (args->lma));
1824 if (memcmp (args->buffer, check, bytes) != 0)
1825 error (_("Download verify compare failed at 0x%s"),
1826 paddr (args->lma));
1827 do_cleanups (verify_cleanups);
1828 }
a76d924d 1829 totals->data_count += bytes;
cf7a04e8
DJ
1830 args->lma += bytes;
1831 args->buffer += bytes;
a76d924d 1832 totals->write_count += 1;
cf7a04e8
DJ
1833 args->section_sent += bytes;
1834 if (quit_flag
1835 || (deprecated_ui_load_progress_hook != NULL
1836 && deprecated_ui_load_progress_hook (args->section_name,
1837 args->section_sent)))
1838 error (_("Canceled the download"));
1839
1840 if (deprecated_show_load_progress != NULL)
1841 deprecated_show_load_progress (args->section_name,
1842 args->section_sent,
1843 args->section_size,
a76d924d
DJ
1844 totals->data_count,
1845 totals->total_size);
cf7a04e8
DJ
1846}
1847
e4f9b4d5
MS
1848/* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850static void
1851load_section_callback (bfd *abfd, asection *asec, void *data)
1852{
a76d924d 1853 struct memory_write_request *new_request;
e4f9b4d5 1854 struct load_section_data *args = data;
a76d924d 1855 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1856 bfd_size_type size = bfd_get_section_size (asec);
1857 gdb_byte *buffer;
cf7a04e8 1858 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1859
cf7a04e8
DJ
1860 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1861 return;
e4f9b4d5 1862
cf7a04e8
DJ
1863 if (size == 0)
1864 return;
e4f9b4d5 1865
a76d924d
DJ
1866 new_request = VEC_safe_push (memory_write_request_s,
1867 args->requests, NULL);
1868 memset (new_request, 0, sizeof (struct memory_write_request));
1869 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1870 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1871 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1872 new_request->data = xmalloc (size);
1873 new_request->baton = section_data;
cf7a04e8 1874
a76d924d 1875 buffer = new_request->data;
cf7a04e8 1876
a76d924d
DJ
1877 section_data->cumulative = args->progress_data;
1878 section_data->section_name = sect_name;
1879 section_data->section_size = size;
1880 section_data->lma = new_request->begin;
1881 section_data->buffer = buffer;
cf7a04e8
DJ
1882
1883 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1884}
1885
1886/* Clean up an entire memory request vector, including load
1887 data and progress records. */
cf7a04e8 1888
a76d924d
DJ
1889static void
1890clear_memory_write_data (void *arg)
1891{
1892 VEC(memory_write_request_s) **vec_p = arg;
1893 VEC(memory_write_request_s) *vec = *vec_p;
1894 int i;
1895 struct memory_write_request *mr;
cf7a04e8 1896
a76d924d
DJ
1897 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1898 {
1899 xfree (mr->data);
1900 xfree (mr->baton);
1901 }
1902 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1903}
1904
c906108c 1905void
917317f4 1906generic_load (char *args, int from_tty)
c906108c 1907{
c906108c 1908 bfd *loadfile_bfd;
2b71414d 1909 struct timeval start_time, end_time;
917317f4 1910 char *filename;
1986bccd 1911 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1912 struct load_section_data cbdata;
a76d924d
DJ
1913 struct load_progress_data total_progress;
1914
e4f9b4d5 1915 CORE_ADDR entry;
1986bccd 1916 char **argv;
e4f9b4d5 1917
a76d924d
DJ
1918 memset (&cbdata, 0, sizeof (cbdata));
1919 memset (&total_progress, 0, sizeof (total_progress));
1920 cbdata.progress_data = &total_progress;
1921
1922 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1923
d1a41061
PP
1924 if (args == NULL)
1925 error_no_arg (_("file to load"));
1986bccd 1926
d1a41061 1927 argv = gdb_buildargv (args);
1986bccd
AS
1928 make_cleanup_freeargv (argv);
1929
1930 filename = tilde_expand (argv[0]);
1931 make_cleanup (xfree, filename);
1932
1933 if (argv[1] != NULL)
917317f4
JM
1934 {
1935 char *endptr;
ba5f2f8a 1936
1986bccd
AS
1937 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1938
1939 /* If the last word was not a valid number then
1940 treat it as a file name with spaces in. */
1941 if (argv[1] == endptr)
1942 error (_("Invalid download offset:%s."), argv[1]);
1943
1944 if (argv[2] != NULL)
1945 error (_("Too many parameters."));
917317f4 1946 }
c906108c 1947
917317f4 1948 /* Open the file for loading. */
c906108c
SS
1949 loadfile_bfd = bfd_openr (filename, gnutarget);
1950 if (loadfile_bfd == NULL)
1951 {
1952 perror_with_name (filename);
1953 return;
1954 }
917317f4 1955
c906108c
SS
1956 /* FIXME: should be checking for errors from bfd_close (for one thing,
1957 on error it does not free all the storage associated with the
1958 bfd). */
5c65bbb6 1959 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1960
c5aa993b 1961 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1962 {
8a3fe4f8 1963 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1964 bfd_errmsg (bfd_get_error ()));
1965 }
c5aa993b 1966
5417f6dc 1967 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1968 (void *) &total_progress.total_size);
1969
1970 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1971
2b71414d 1972 gettimeofday (&start_time, NULL);
c906108c 1973
a76d924d
DJ
1974 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1975 load_progress) != 0)
1976 error (_("Load failed"));
c906108c 1977
2b71414d 1978 gettimeofday (&end_time, NULL);
ba5f2f8a 1979
e4f9b4d5 1980 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1981 ui_out_text (uiout, "Start address ");
1982 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1983 ui_out_text (uiout, ", load size ");
a76d924d 1984 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1985 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1986 /* We were doing this in remote-mips.c, I suspect it is right
1987 for other targets too. */
fb14de7b 1988 regcache_write_pc (get_current_regcache (), entry);
c906108c 1989
7ca9f392
AC
1990 /* FIXME: are we supposed to call symbol_file_add or not? According
1991 to a comment from remote-mips.c (where a call to symbol_file_add
1992 was commented out), making the call confuses GDB if more than one
1993 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1994 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1995
a76d924d
DJ
1996 print_transfer_performance (gdb_stdout, total_progress.data_count,
1997 total_progress.write_count,
1998 &start_time, &end_time);
c906108c
SS
1999
2000 do_cleanups (old_cleanups);
2001}
2002
2003/* Report how fast the transfer went. */
2004
917317f4
JM
2005/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2006 replaced by print_transfer_performance (with a very different
2007 function signature). */
2008
c906108c 2009void
fba45db2
KB
2010report_transfer_performance (unsigned long data_count, time_t start_time,
2011 time_t end_time)
c906108c 2012{
2b71414d
DJ
2013 struct timeval start, end;
2014
2015 start.tv_sec = start_time;
2016 start.tv_usec = 0;
2017 end.tv_sec = end_time;
2018 end.tv_usec = 0;
2019
2020 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2021}
2022
2023void
d9fcf2fb 2024print_transfer_performance (struct ui_file *stream,
917317f4
JM
2025 unsigned long data_count,
2026 unsigned long write_count,
2b71414d
DJ
2027 const struct timeval *start_time,
2028 const struct timeval *end_time)
917317f4 2029{
9f43d28c 2030 ULONGEST time_count;
2b71414d
DJ
2031
2032 /* Compute the elapsed time in milliseconds, as a tradeoff between
2033 accuracy and overflow. */
2034 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2035 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2036
8b93c638
JM
2037 ui_out_text (uiout, "Transfer rate: ");
2038 if (time_count > 0)
2039 {
9f43d28c
DJ
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2041
2042 if (ui_out_is_mi_like_p (uiout))
2043 {
2044 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2045 ui_out_text (uiout, " bits/sec");
2046 }
2047 else if (rate < 1024)
2048 {
2049 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2050 ui_out_text (uiout, " bytes/sec");
2051 }
2052 else
2053 {
2054 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2055 ui_out_text (uiout, " KB/sec");
2056 }
8b93c638
JM
2057 }
2058 else
2059 {
ba5f2f8a 2060 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2061 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2062 }
2063 if (write_count > 0)
2064 {
2065 ui_out_text (uiout, ", ");
ba5f2f8a 2066 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2067 ui_out_text (uiout, " bytes/write");
2068 }
2069 ui_out_text (uiout, ".\n");
c906108c
SS
2070}
2071
2072/* This function allows the addition of incrementally linked object files.
2073 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2074/* Note: ezannoni 2000-04-13 This function/command used to have a
2075 special case syntax for the rombug target (Rombug is the boot
2076 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2077 rombug case, the user doesn't need to supply a text address,
2078 instead a call to target_link() (in target.c) would supply the
2079 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2080
c906108c 2081static void
fba45db2 2082add_symbol_file_command (char *args, int from_tty)
c906108c 2083{
db162d44 2084 char *filename = NULL;
2df3850c 2085 int flags = OBJF_USERLOADED;
c906108c 2086 char *arg;
2acceee2 2087 int expecting_option = 0;
db162d44 2088 int section_index = 0;
2acceee2
JM
2089 int argcnt = 0;
2090 int sec_num = 0;
2091 int i;
db162d44
EZ
2092 int expecting_sec_name = 0;
2093 int expecting_sec_addr = 0;
5b96932b 2094 char **argv;
db162d44 2095
a39a16c4 2096 struct sect_opt
2acceee2 2097 {
2acceee2
JM
2098 char *name;
2099 char *value;
a39a16c4 2100 };
db162d44 2101
a39a16c4
MM
2102 struct section_addr_info *section_addrs;
2103 struct sect_opt *sect_opts = NULL;
2104 size_t num_sect_opts = 0;
3017564a 2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2106
a39a16c4 2107 num_sect_opts = 16;
5417f6dc 2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2109 * sizeof (struct sect_opt));
2110
c906108c
SS
2111 dont_repeat ();
2112
2113 if (args == NULL)
8a3fe4f8 2114 error (_("add-symbol-file takes a file name and an address"));
c906108c 2115
d1a41061 2116 argv = gdb_buildargv (args);
5b96932b 2117 make_cleanup_freeargv (argv);
db162d44 2118
5b96932b
AS
2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2120 {
2121 /* Process the argument. */
db162d44 2122 if (argcnt == 0)
c906108c 2123 {
db162d44
EZ
2124 /* The first argument is the file name. */
2125 filename = tilde_expand (arg);
3017564a 2126 make_cleanup (xfree, filename);
c906108c 2127 }
db162d44 2128 else
7a78ae4e
ND
2129 if (argcnt == 1)
2130 {
2131 /* The second argument is always the text address at which
2132 to load the program. */
2133 sect_opts[section_index].name = ".text";
2134 sect_opts[section_index].value = arg;
f414f22f 2135 if (++section_index >= num_sect_opts)
a39a16c4
MM
2136 {
2137 num_sect_opts *= 2;
5417f6dc 2138 sect_opts = ((struct sect_opt *)
a39a16c4 2139 xrealloc (sect_opts,
5417f6dc 2140 num_sect_opts
a39a16c4
MM
2141 * sizeof (struct sect_opt)));
2142 }
7a78ae4e
ND
2143 }
2144 else
2145 {
2146 /* It's an option (starting with '-') or it's an argument
2147 to an option */
2148
2149 if (*arg == '-')
2150 {
78a4a9b9
AC
2151 if (strcmp (arg, "-readnow") == 0)
2152 flags |= OBJF_READNOW;
2153 else if (strcmp (arg, "-s") == 0)
2154 {
2155 expecting_sec_name = 1;
2156 expecting_sec_addr = 1;
2157 }
7a78ae4e
ND
2158 }
2159 else
2160 {
2161 if (expecting_sec_name)
db162d44 2162 {
7a78ae4e
ND
2163 sect_opts[section_index].name = arg;
2164 expecting_sec_name = 0;
db162d44
EZ
2165 }
2166 else
7a78ae4e
ND
2167 if (expecting_sec_addr)
2168 {
2169 sect_opts[section_index].value = arg;
2170 expecting_sec_addr = 0;
f414f22f 2171 if (++section_index >= num_sect_opts)
a39a16c4
MM
2172 {
2173 num_sect_opts *= 2;
5417f6dc 2174 sect_opts = ((struct sect_opt *)
a39a16c4 2175 xrealloc (sect_opts,
5417f6dc 2176 num_sect_opts
a39a16c4
MM
2177 * sizeof (struct sect_opt)));
2178 }
7a78ae4e
ND
2179 }
2180 else
8a3fe4f8 2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2182 }
2183 }
c906108c 2184 }
c906108c 2185
927890d0
JB
2186 /* This command takes at least two arguments. The first one is a
2187 filename, and the second is the address where this file has been
2188 loaded. Abort now if this address hasn't been provided by the
2189 user. */
2190 if (section_index < 1)
2191 error (_("The address where %s has been loaded is missing"), filename);
2192
db162d44
EZ
2193 /* Print the prompt for the query below. And save the arguments into
2194 a sect_addr_info structure to be passed around to other
2195 functions. We have to split this up into separate print
bb599908 2196 statements because hex_string returns a local static
db162d44 2197 string. */
5417f6dc 2198
a3f17187 2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2200 section_addrs = alloc_section_addr_info (section_index);
2201 make_cleanup (xfree, section_addrs);
db162d44 2202 for (i = 0; i < section_index; i++)
c906108c 2203 {
db162d44
EZ
2204 CORE_ADDR addr;
2205 char *val = sect_opts[i].value;
2206 char *sec = sect_opts[i].name;
5417f6dc 2207
ae822768 2208 addr = parse_and_eval_address (val);
db162d44 2209
db162d44
EZ
2210 /* Here we store the section offsets in the order they were
2211 entered on the command line. */
a39a16c4
MM
2212 section_addrs->other[sec_num].name = sec;
2213 section_addrs->other[sec_num].addr = addr;
35076fa0 2214 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
db162d44
EZ
2215 sec_num++;
2216
5417f6dc 2217 /* The object's sections are initialized when a
db162d44 2218 call is made to build_objfile_section_table (objfile).
5417f6dc 2219 This happens in reread_symbols.
db162d44
EZ
2220 At this point, we don't know what file type this is,
2221 so we can't determine what section names are valid. */
2acceee2 2222 }
db162d44 2223
2acceee2 2224 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2225 error (_("Not confirmed."));
c906108c 2226
a39a16c4 2227 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2228
2229 /* Getting new symbols may change our opinion about what is
2230 frameless. */
2231 reinit_frame_cache ();
db162d44 2232 do_cleanups (my_cleanups);
c906108c
SS
2233}
2234\f
70992597 2235
c906108c
SS
2236/* Re-read symbols if a symbol-file has changed. */
2237void
fba45db2 2238reread_symbols (void)
c906108c
SS
2239{
2240 struct objfile *objfile;
2241 long new_modtime;
2242 int reread_one = 0;
2243 struct stat new_statbuf;
2244 int res;
2245
2246 /* With the addition of shared libraries, this should be modified,
2247 the load time should be saved in the partial symbol tables, since
2248 different tables may come from different source files. FIXME.
2249 This routine should then walk down each partial symbol table
2250 and see if the symbol table that it originates from has been changed */
2251
c5aa993b
JM
2252 for (objfile = object_files; objfile; objfile = objfile->next)
2253 {
2254 if (objfile->obfd)
2255 {
52d16ba8 2256#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2257 /* If this object is from a shared library, then you should
2258 stat on the library name, not member name. */
c906108c 2259
c5aa993b
JM
2260 if (objfile->obfd->my_archive)
2261 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2262 else
c906108c 2263#endif
c5aa993b
JM
2264 res = stat (objfile->name, &new_statbuf);
2265 if (res != 0)
c906108c 2266 {
c5aa993b 2267 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2268 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2269 objfile->name);
2270 continue;
c906108c 2271 }
c5aa993b
JM
2272 new_modtime = new_statbuf.st_mtime;
2273 if (new_modtime != objfile->mtime)
c906108c 2274 {
c5aa993b
JM
2275 struct cleanup *old_cleanups;
2276 struct section_offsets *offsets;
2277 int num_offsets;
c5aa993b
JM
2278 char *obfd_filename;
2279
a3f17187 2280 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2281 objfile->name);
2282
2283 /* There are various functions like symbol_file_add,
2284 symfile_bfd_open, syms_from_objfile, etc., which might
2285 appear to do what we want. But they have various other
2286 effects which we *don't* want. So we just do stuff
2287 ourselves. We don't worry about mapped files (for one thing,
2288 any mapped file will be out of date). */
2289
2290 /* If we get an error, blow away this objfile (not sure if
2291 that is the correct response for things like shared
2292 libraries). */
74b7792f 2293 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2294 /* We need to do this whenever any symbols go away. */
74b7792f 2295 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2296
b2de52bb
JK
2297 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2298 bfd_get_filename (exec_bfd)) == 0)
2299 {
2300 /* Reload EXEC_BFD without asking anything. */
2301
2302 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2303 }
2304
c5aa993b
JM
2305 /* Clean up any state BFD has sitting around. We don't need
2306 to close the descriptor but BFD lacks a way of closing the
2307 BFD without closing the descriptor. */
2308 obfd_filename = bfd_get_filename (objfile->obfd);
2309 if (!bfd_close (objfile->obfd))
8a3fe4f8 2310 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2311 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2312 if (remote_filename_p (obfd_filename))
2313 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2314 else
2315 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2316 if (objfile->obfd == NULL)
8a3fe4f8 2317 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2318 /* bfd_openr sets cacheable to true, which is what we want. */
2319 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2320 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2321 bfd_errmsg (bfd_get_error ()));
2322
2323 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2324 objfile_obstack. */
c5aa993b 2325 num_offsets = objfile->num_sections;
5417f6dc 2326 offsets = ((struct section_offsets *)
a39a16c4 2327 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2328 memcpy (offsets, objfile->section_offsets,
a39a16c4 2329 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2330
ae5a43e0
DJ
2331 /* Remove any references to this objfile in the global
2332 value lists. */
2333 preserve_values (objfile);
2334
c5aa993b
JM
2335 /* Nuke all the state that we will re-read. Much of the following
2336 code which sets things to NULL really is necessary to tell
2337 other parts of GDB that there is nothing currently there. */
2338
2339 /* FIXME: Do we have to free a whole linked list, or is this
2340 enough? */
2341 if (objfile->global_psymbols.list)
2dc74dc1 2342 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2343 memset (&objfile->global_psymbols, 0,
2344 sizeof (objfile->global_psymbols));
2345 if (objfile->static_psymbols.list)
2dc74dc1 2346 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2347 memset (&objfile->static_psymbols, 0,
2348 sizeof (objfile->static_psymbols));
2349
2350 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2351 bcache_xfree (objfile->psymbol_cache);
2352 objfile->psymbol_cache = bcache_xmalloc ();
2353 bcache_xfree (objfile->macro_cache);
2354 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2355 if (objfile->demangled_names_hash != NULL)
2356 {
2357 htab_delete (objfile->demangled_names_hash);
2358 objfile->demangled_names_hash = NULL;
2359 }
b99607ea 2360 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2361 objfile->sections = NULL;
2362 objfile->symtabs = NULL;
2363 objfile->psymtabs = NULL;
930123b7 2364 objfile->psymtabs_addrmap = NULL;
c5aa993b 2365 objfile->free_psymtabs = NULL;
a1b8c067 2366 objfile->cp_namespace_symtab = NULL;
c5aa993b 2367 objfile->msymbols = NULL;
0a6ddd08 2368 objfile->deprecated_sym_private = NULL;
c5aa993b 2369 objfile->minimal_symbol_count = 0;
0a83117a
MS
2370 memset (&objfile->msymbol_hash, 0,
2371 sizeof (objfile->msymbol_hash));
2372 memset (&objfile->msymbol_demangled_hash, 0,
2373 sizeof (objfile->msymbol_demangled_hash));
7b097ae3 2374 clear_objfile_data (objfile);
c5aa993b
JM
2375 if (objfile->sf != NULL)
2376 {
2377 (*objfile->sf->sym_finish) (objfile);
2378 }
2379
af5f3db6
AC
2380 objfile->psymbol_cache = bcache_xmalloc ();
2381 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2382 /* obstack_init also initializes the obstack so it is
2383 empty. We could use obstack_specify_allocation but
2384 gdb_obstack.h specifies the alloc/dealloc
2385 functions. */
2386 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2387 if (build_objfile_section_table (objfile))
2388 {
8a3fe4f8 2389 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2390 objfile->name, bfd_errmsg (bfd_get_error ()));
2391 }
15831452 2392 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2393
2394 /* We use the same section offsets as from last time. I'm not
2395 sure whether that is always correct for shared libraries. */
2396 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2397 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2398 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2399 memcpy (objfile->section_offsets, offsets,
a39a16c4 2400 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2401 objfile->num_sections = num_offsets;
2402
2403 /* What the hell is sym_new_init for, anyway? The concept of
2404 distinguishing between the main file and additional files
2405 in this way seems rather dubious. */
2406 if (objfile == symfile_objfile)
2407 {
2408 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2409 }
2410
2411 (*objfile->sf->sym_init) (objfile);
b9caf505 2412 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2413 /* The "mainline" parameter is a hideous hack; I think leaving it
2414 zero is OK since dbxread.c also does what it needs to do if
2415 objfile->global_psymbols.size is 0. */
96baa820 2416 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2417 if (!have_partial_symbols () && !have_full_symbols ())
2418 {
2419 wrap_here ("");
a3f17187 2420 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2421 wrap_here ("");
2422 }
c5aa993b
JM
2423
2424 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2425 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2426
c5aa993b
JM
2427 /* Getting new symbols may change our opinion about what is
2428 frameless. */
c906108c 2429
c5aa993b 2430 reinit_frame_cache ();
c906108c 2431
c5aa993b
JM
2432 /* Discard cleanups as symbol reading was successful. */
2433 discard_cleanups (old_cleanups);
c906108c 2434
c5aa993b
JM
2435 /* If the mtime has changed between the time we set new_modtime
2436 and now, we *want* this to be out of date, so don't call stat
2437 again now. */
2438 objfile->mtime = new_modtime;
2439 reread_one = 1;
5b5d99cf 2440 reread_separate_symbols (objfile);
6528a9ea 2441 init_entry_point_info (objfile);
c5aa993b 2442 }
c906108c
SS
2443 }
2444 }
c906108c
SS
2445
2446 if (reread_one)
ea53e89f
JB
2447 {
2448 clear_symtab_users ();
2449 /* At least one objfile has changed, so we can consider that
2450 the executable we're debugging has changed too. */
781b42b0 2451 observer_notify_executable_changed ();
ea53e89f
JB
2452 }
2453
c906108c 2454}
5b5d99cf
JB
2455
2456
2457/* Handle separate debug info for OBJFILE, which has just been
2458 re-read:
2459 - If we had separate debug info before, but now we don't, get rid
2460 of the separated objfile.
2461 - If we didn't have separated debug info before, but now we do,
2462 read in the new separated debug info file.
2463 - If the debug link points to a different file, toss the old one
2464 and read the new one.
2465 This function does *not* handle the case where objfile is still
2466 using the same separate debug info file, but that file's timestamp
2467 has changed. That case should be handled by the loop in
2468 reread_symbols already. */
2469static void
2470reread_separate_symbols (struct objfile *objfile)
2471{
2472 char *debug_file;
2473 unsigned long crc32;
2474
2475 /* Does the updated objfile's debug info live in a
2476 separate file? */
2477 debug_file = find_separate_debug_file (objfile);
2478
2479 if (objfile->separate_debug_objfile)
2480 {
2481 /* There are two cases where we need to get rid of
2482 the old separated debug info objfile:
2483 - if the new primary objfile doesn't have
2484 separated debug info, or
2485 - if the new primary objfile has separate debug
2486 info, but it's under a different filename.
5417f6dc 2487
5b5d99cf
JB
2488 If the old and new objfiles both have separate
2489 debug info, under the same filename, then we're
2490 okay --- if the separated file's contents have
2491 changed, we will have caught that when we
2492 visited it in this function's outermost
2493 loop. */
2494 if (! debug_file
2495 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2496 free_objfile (objfile->separate_debug_objfile);
2497 }
2498
2499 /* If the new objfile has separate debug info, and we
2500 haven't loaded it already, do so now. */
2501 if (debug_file
2502 && ! objfile->separate_debug_objfile)
2503 {
2504 /* Use the same section offset table as objfile itself.
2505 Preserve the flags from objfile that make sense. */
2506 objfile->separate_debug_objfile
2507 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2508 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2509 info_verbose, /* from_tty: Don't override the default. */
2510 0, /* No addr table. */
2511 objfile->section_offsets, objfile->num_sections,
2512 0, /* Not mainline. See comments about this above. */
78a4a9b9 2513 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2514 | OBJF_USERLOADED)));
2515 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2516 = objfile;
2517 }
73780b3c
MS
2518 if (debug_file)
2519 xfree (debug_file);
5b5d99cf
JB
2520}
2521
2522
c906108c
SS
2523\f
2524
c5aa993b
JM
2525
2526typedef struct
2527{
2528 char *ext;
c906108c 2529 enum language lang;
c5aa993b
JM
2530}
2531filename_language;
c906108c 2532
c5aa993b 2533static filename_language *filename_language_table;
c906108c
SS
2534static int fl_table_size, fl_table_next;
2535
2536static void
fba45db2 2537add_filename_language (char *ext, enum language lang)
c906108c
SS
2538{
2539 if (fl_table_next >= fl_table_size)
2540 {
2541 fl_table_size += 10;
5417f6dc 2542 filename_language_table =
25bf3106
PM
2543 xrealloc (filename_language_table,
2544 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2545 }
2546
4fcf66da 2547 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2548 filename_language_table[fl_table_next].lang = lang;
2549 fl_table_next++;
2550}
2551
2552static char *ext_args;
920d2a44
AC
2553static void
2554show_ext_args (struct ui_file *file, int from_tty,
2555 struct cmd_list_element *c, const char *value)
2556{
2557 fprintf_filtered (file, _("\
2558Mapping between filename extension and source language is \"%s\".\n"),
2559 value);
2560}
c906108c
SS
2561
2562static void
26c41df3 2563set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2564{
2565 int i;
2566 char *cp = ext_args;
2567 enum language lang;
2568
2569 /* First arg is filename extension, starting with '.' */
2570 if (*cp != '.')
8a3fe4f8 2571 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2572
2573 /* Find end of first arg. */
c5aa993b 2574 while (*cp && !isspace (*cp))
c906108c
SS
2575 cp++;
2576
2577 if (*cp == '\0')
8a3fe4f8 2578 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2579 ext_args);
2580
2581 /* Null-terminate first arg */
c5aa993b 2582 *cp++ = '\0';
c906108c
SS
2583
2584 /* Find beginning of second arg, which should be a source language. */
2585 while (*cp && isspace (*cp))
2586 cp++;
2587
2588 if (*cp == '\0')
8a3fe4f8 2589 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2590 ext_args);
2591
2592 /* Lookup the language from among those we know. */
2593 lang = language_enum (cp);
2594
2595 /* Now lookup the filename extension: do we already know it? */
2596 for (i = 0; i < fl_table_next; i++)
2597 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2598 break;
2599
2600 if (i >= fl_table_next)
2601 {
2602 /* new file extension */
2603 add_filename_language (ext_args, lang);
2604 }
2605 else
2606 {
2607 /* redefining a previously known filename extension */
2608
2609 /* if (from_tty) */
2610 /* query ("Really make files of type %s '%s'?", */
2611 /* ext_args, language_str (lang)); */
2612
b8c9b27d 2613 xfree (filename_language_table[i].ext);
4fcf66da 2614 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2615 filename_language_table[i].lang = lang;
2616 }
2617}
2618
2619static void
fba45db2 2620info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2621{
2622 int i;
2623
a3f17187 2624 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2625 printf_filtered ("\n\n");
2626 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2627 printf_filtered ("\t%s\t- %s\n",
2628 filename_language_table[i].ext,
c906108c
SS
2629 language_str (filename_language_table[i].lang));
2630}
2631
2632static void
fba45db2 2633init_filename_language_table (void)
c906108c
SS
2634{
2635 if (fl_table_size == 0) /* protect against repetition */
2636 {
2637 fl_table_size = 20;
2638 fl_table_next = 0;
c5aa993b 2639 filename_language_table =
c906108c 2640 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2641 add_filename_language (".c", language_c);
2642 add_filename_language (".C", language_cplus);
2643 add_filename_language (".cc", language_cplus);
2644 add_filename_language (".cp", language_cplus);
2645 add_filename_language (".cpp", language_cplus);
2646 add_filename_language (".cxx", language_cplus);
2647 add_filename_language (".c++", language_cplus);
2648 add_filename_language (".java", language_java);
c906108c 2649 add_filename_language (".class", language_java);
da2cf7e0 2650 add_filename_language (".m", language_objc);
c5aa993b
JM
2651 add_filename_language (".f", language_fortran);
2652 add_filename_language (".F", language_fortran);
2653 add_filename_language (".s", language_asm);
aa707ed0 2654 add_filename_language (".sx", language_asm);
c5aa993b 2655 add_filename_language (".S", language_asm);
c6fd39cd
PM
2656 add_filename_language (".pas", language_pascal);
2657 add_filename_language (".p", language_pascal);
2658 add_filename_language (".pp", language_pascal);
963a6417
PH
2659 add_filename_language (".adb", language_ada);
2660 add_filename_language (".ads", language_ada);
2661 add_filename_language (".a", language_ada);
2662 add_filename_language (".ada", language_ada);
c906108c
SS
2663 }
2664}
2665
2666enum language
fba45db2 2667deduce_language_from_filename (char *filename)
c906108c
SS
2668{
2669 int i;
2670 char *cp;
2671
2672 if (filename != NULL)
2673 if ((cp = strrchr (filename, '.')) != NULL)
2674 for (i = 0; i < fl_table_next; i++)
2675 if (strcmp (cp, filename_language_table[i].ext) == 0)
2676 return filename_language_table[i].lang;
2677
2678 return language_unknown;
2679}
2680\f
2681/* allocate_symtab:
2682
2683 Allocate and partly initialize a new symbol table. Return a pointer
2684 to it. error() if no space.
2685
2686 Caller must set these fields:
c5aa993b
JM
2687 LINETABLE(symtab)
2688 symtab->blockvector
2689 symtab->dirname
2690 symtab->free_code
2691 symtab->free_ptr
2692 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2693 */
2694
2695struct symtab *
fba45db2 2696allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2697{
52f0bd74 2698 struct symtab *symtab;
c906108c
SS
2699
2700 symtab = (struct symtab *)
4a146b47 2701 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2702 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2703 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2704 &objfile->objfile_obstack);
c5aa993b
JM
2705 symtab->fullname = NULL;
2706 symtab->language = deduce_language_from_filename (filename);
2707 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2708 &objfile->objfile_obstack);
c906108c
SS
2709
2710 /* Hook it to the objfile it comes from */
2711
c5aa993b
JM
2712 symtab->objfile = objfile;
2713 symtab->next = objfile->symtabs;
2714 objfile->symtabs = symtab;
c906108c 2715
c906108c
SS
2716 return (symtab);
2717}
2718
2719struct partial_symtab *
fba45db2 2720allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2721{
2722 struct partial_symtab *psymtab;
2723
c5aa993b 2724 if (objfile->free_psymtabs)
c906108c 2725 {
c5aa993b
JM
2726 psymtab = objfile->free_psymtabs;
2727 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2728 }
2729 else
2730 psymtab = (struct partial_symtab *)
8b92e4d5 2731 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2732 sizeof (struct partial_symtab));
2733
2734 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2735 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2736 &objfile->objfile_obstack);
c5aa993b 2737 psymtab->symtab = NULL;
c906108c
SS
2738
2739 /* Prepend it to the psymtab list for the objfile it belongs to.
2740 Psymtabs are searched in most recent inserted -> least recent
2741 inserted order. */
2742
c5aa993b
JM
2743 psymtab->objfile = objfile;
2744 psymtab->next = objfile->psymtabs;
2745 objfile->psymtabs = psymtab;
c906108c
SS
2746#if 0
2747 {
2748 struct partial_symtab **prev_pst;
c5aa993b
JM
2749 psymtab->objfile = objfile;
2750 psymtab->next = NULL;
2751 prev_pst = &(objfile->psymtabs);
c906108c 2752 while ((*prev_pst) != NULL)
c5aa993b 2753 prev_pst = &((*prev_pst)->next);
c906108c 2754 (*prev_pst) = psymtab;
c5aa993b 2755 }
c906108c 2756#endif
c5aa993b 2757
c906108c
SS
2758 return (psymtab);
2759}
2760
2761void
fba45db2 2762discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2763{
2764 struct partial_symtab **prev_pst;
2765
2766 /* From dbxread.c:
2767 Empty psymtabs happen as a result of header files which don't
2768 have any symbols in them. There can be a lot of them. But this
2769 check is wrong, in that a psymtab with N_SLINE entries but
2770 nothing else is not empty, but we don't realize that. Fixing
2771 that without slowing things down might be tricky. */
2772
2773 /* First, snip it out of the psymtab chain */
2774
2775 prev_pst = &(pst->objfile->psymtabs);
2776 while ((*prev_pst) != pst)
2777 prev_pst = &((*prev_pst)->next);
2778 (*prev_pst) = pst->next;
2779
2780 /* Next, put it on a free list for recycling */
2781
2782 pst->next = pst->objfile->free_psymtabs;
2783 pst->objfile->free_psymtabs = pst;
2784}
c906108c 2785\f
c5aa993b 2786
c906108c
SS
2787/* Reset all data structures in gdb which may contain references to symbol
2788 table data. */
2789
2790void
fba45db2 2791clear_symtab_users (void)
c906108c
SS
2792{
2793 /* Someday, we should do better than this, by only blowing away
2794 the things that really need to be blown. */
c0501be5
DJ
2795
2796 /* Clear the "current" symtab first, because it is no longer valid.
2797 breakpoint_re_set may try to access the current symtab. */
2798 clear_current_source_symtab_and_line ();
2799
c906108c 2800 clear_displays ();
c906108c
SS
2801 breakpoint_re_set ();
2802 set_default_breakpoint (0, 0, 0, 0);
c906108c 2803 clear_pc_function_cache ();
06d3b283 2804 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2805
2806 /* Clear globals which might have pointed into a removed objfile.
2807 FIXME: It's not clear which of these are supposed to persist
2808 between expressions and which ought to be reset each time. */
2809 expression_context_block = NULL;
2810 innermost_block = NULL;
8756216b
DP
2811
2812 /* Varobj may refer to old symbols, perform a cleanup. */
2813 varobj_invalidate ();
2814
c906108c
SS
2815}
2816
74b7792f
AC
2817static void
2818clear_symtab_users_cleanup (void *ignore)
2819{
2820 clear_symtab_users ();
2821}
2822
c906108c
SS
2823/* clear_symtab_users_once:
2824
2825 This function is run after symbol reading, or from a cleanup.
2826 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2827 has been blown away, but the other GDB data structures that may
c906108c
SS
2828 reference it have not yet been cleared or re-directed. (The old
2829 symtab was zapped, and the cleanup queued, in free_named_symtab()
2830 below.)
2831
2832 This function can be queued N times as a cleanup, or called
2833 directly; it will do all the work the first time, and then will be a
2834 no-op until the next time it is queued. This works by bumping a
2835 counter at queueing time. Much later when the cleanup is run, or at
2836 the end of symbol processing (in case the cleanup is discarded), if
2837 the queued count is greater than the "done-count", we do the work
2838 and set the done-count to the queued count. If the queued count is
2839 less than or equal to the done-count, we just ignore the call. This
2840 is needed because reading a single .o file will often replace many
2841 symtabs (one per .h file, for example), and we don't want to reset
2842 the breakpoints N times in the user's face.
2843
2844 The reason we both queue a cleanup, and call it directly after symbol
2845 reading, is because the cleanup protects us in case of errors, but is
2846 discarded if symbol reading is successful. */
2847
2848#if 0
2849/* FIXME: As free_named_symtabs is currently a big noop this function
2850 is no longer needed. */
a14ed312 2851static void clear_symtab_users_once (void);
c906108c
SS
2852
2853static int clear_symtab_users_queued;
2854static int clear_symtab_users_done;
2855
2856static void
fba45db2 2857clear_symtab_users_once (void)
c906108c
SS
2858{
2859 /* Enforce once-per-`do_cleanups'-semantics */
2860 if (clear_symtab_users_queued <= clear_symtab_users_done)
2861 return;
2862 clear_symtab_users_done = clear_symtab_users_queued;
2863
2864 clear_symtab_users ();
2865}
2866#endif
2867
2868/* Delete the specified psymtab, and any others that reference it. */
2869
2870static void
fba45db2 2871cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2872{
2873 struct partial_symtab *ps, *pprev = NULL;
2874 int i;
2875
2876 /* Find its previous psymtab in the chain */
c5aa993b
JM
2877 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2878 {
2879 if (ps == pst)
2880 break;
2881 pprev = ps;
2882 }
c906108c 2883
c5aa993b
JM
2884 if (ps)
2885 {
2886 /* Unhook it from the chain. */
2887 if (ps == pst->objfile->psymtabs)
2888 pst->objfile->psymtabs = ps->next;
2889 else
2890 pprev->next = ps->next;
2891
2892 /* FIXME, we can't conveniently deallocate the entries in the
2893 partial_symbol lists (global_psymbols/static_psymbols) that
2894 this psymtab points to. These just take up space until all
2895 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2896 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2897
2898 /* We need to cashier any psymtab that has this one as a dependency... */
2899 again:
2900 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2901 {
2902 for (i = 0; i < ps->number_of_dependencies; i++)
2903 {
2904 if (ps->dependencies[i] == pst)
2905 {
2906 cashier_psymtab (ps);
2907 goto again; /* Must restart, chain has been munged. */
2908 }
2909 }
c906108c 2910 }
c906108c 2911 }
c906108c
SS
2912}
2913
2914/* If a symtab or psymtab for filename NAME is found, free it along
2915 with any dependent breakpoints, displays, etc.
2916 Used when loading new versions of object modules with the "add-file"
2917 command. This is only called on the top-level symtab or psymtab's name;
2918 it is not called for subsidiary files such as .h files.
2919
2920 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2921 FIXME. The return value appears to never be used.
c906108c
SS
2922
2923 FIXME. I think this is not the best way to do this. We should
2924 work on being gentler to the environment while still cleaning up
2925 all stray pointers into the freed symtab. */
2926
2927int
fba45db2 2928free_named_symtabs (char *name)
c906108c
SS
2929{
2930#if 0
2931 /* FIXME: With the new method of each objfile having it's own
2932 psymtab list, this function needs serious rethinking. In particular,
2933 why was it ever necessary to toss psymtabs with specific compilation
2934 unit filenames, as opposed to all psymtabs from a particular symbol
2935 file? -- fnf
2936 Well, the answer is that some systems permit reloading of particular
2937 compilation units. We want to blow away any old info about these
2938 compilation units, regardless of which objfiles they arrived in. --gnu. */
2939
52f0bd74
AC
2940 struct symtab *s;
2941 struct symtab *prev;
2942 struct partial_symtab *ps;
c906108c
SS
2943 struct blockvector *bv;
2944 int blewit = 0;
2945
2946 /* We only wack things if the symbol-reload switch is set. */
2947 if (!symbol_reloading)
2948 return 0;
2949
2950 /* Some symbol formats have trouble providing file names... */
2951 if (name == 0 || *name == '\0')
2952 return 0;
2953
2954 /* Look for a psymtab with the specified name. */
2955
2956again2:
c5aa993b
JM
2957 for (ps = partial_symtab_list; ps; ps = ps->next)
2958 {
6314a349 2959 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2960 {
2961 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2962 goto again2; /* Must restart, chain has been munged */
2963 }
c906108c 2964 }
c906108c
SS
2965
2966 /* Look for a symtab with the specified name. */
2967
2968 for (s = symtab_list; s; s = s->next)
2969 {
6314a349 2970 if (strcmp (name, s->filename) == 0)
c906108c
SS
2971 break;
2972 prev = s;
2973 }
2974
2975 if (s)
2976 {
2977 if (s == symtab_list)
2978 symtab_list = s->next;
2979 else
2980 prev->next = s->next;
2981
2982 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2983 or not they depend on the symtab being freed. This should be
2984 changed so that only those data structures affected are deleted. */
c906108c
SS
2985
2986 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2987 This test is necessary due to a bug in "dbxread.c" that
2988 causes empty symtabs to be created for N_SO symbols that
2989 contain the pathname of the object file. (This problem
2990 has been fixed in GDB 3.9x). */
c906108c
SS
2991
2992 bv = BLOCKVECTOR (s);
2993 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2994 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2995 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2996 {
e2e0b3e5 2997 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2998 name);
c906108c
SS
2999 clear_symtab_users_queued++;
3000 make_cleanup (clear_symtab_users_once, 0);
3001 blewit = 1;
c5aa993b
JM
3002 }
3003 else
e2e0b3e5
AC
3004 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3005 name);
c906108c
SS
3006
3007 free_symtab (s);
3008 }
3009 else
3010 {
3011 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3012 even though no symtab was found, since the file might have
3013 been compiled without debugging, and hence not be associated
3014 with a symtab. In order to handle this correctly, we would need
3015 to keep a list of text address ranges for undebuggable files.
3016 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3017 ;
3018 }
3019
3020 /* FIXME, what about the minimal symbol table? */
3021 return blewit;
3022#else
3023 return (0);
3024#endif
3025}
3026\f
3027/* Allocate and partially fill a partial symtab. It will be
3028 completely filled at the end of the symbol list.
3029
d4f3574e 3030 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3031
3032struct partial_symtab *
fba45db2
KB
3033start_psymtab_common (struct objfile *objfile,
3034 struct section_offsets *section_offsets, char *filename,
3035 CORE_ADDR textlow, struct partial_symbol **global_syms,
3036 struct partial_symbol **static_syms)
c906108c
SS
3037{
3038 struct partial_symtab *psymtab;
3039
3040 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3041 psymtab->section_offsets = section_offsets;
3042 psymtab->textlow = textlow;
3043 psymtab->texthigh = psymtab->textlow; /* default */
3044 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3045 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3046 return (psymtab);
3047}
3048\f
2e618c13
AR
3049/* Helper function, initialises partial symbol structure and stashes
3050 it into objfile's bcache. Note that our caching mechanism will
3051 use all fields of struct partial_symbol to determine hash value of the
3052 structure. In other words, having two symbols with the same name but
3053 different domain (or address) is possible and correct. */
3054
11d31d94 3055static const struct partial_symbol *
2e618c13
AR
3056add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3057 enum address_class class,
3058 long val, /* Value as a long */
3059 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3060 enum language language, struct objfile *objfile,
3061 int *added)
3062{
3063 char *buf = name;
3064 /* psymbol is static so that there will be no uninitialized gaps in the
3065 structure which might contain random data, causing cache misses in
3066 bcache. */
3067 static struct partial_symbol psymbol;
3068
3069 if (name[namelength] != '\0')
3070 {
3071 buf = alloca (namelength + 1);
3072 /* Create local copy of the partial symbol */
3073 memcpy (buf, name, namelength);
3074 buf[namelength] = '\0';
3075 }
3076 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3077 if (val != 0)
3078 {
3079 SYMBOL_VALUE (&psymbol) = val;
3080 }
3081 else
3082 {
3083 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3084 }
3085 SYMBOL_SECTION (&psymbol) = 0;
3086 SYMBOL_LANGUAGE (&psymbol) = language;
3087 PSYMBOL_DOMAIN (&psymbol) = domain;
3088 PSYMBOL_CLASS (&psymbol) = class;
3089
3090 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3091
3092 /* Stash the partial symbol away in the cache */
11d31d94
TT
3093 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3094 objfile->psymbol_cache, added);
2e618c13
AR
3095}
3096
3097/* Helper function, adds partial symbol to the given partial symbol
3098 list. */
3099
3100static void
3101append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3102 const struct partial_symbol *psym,
2e618c13
AR
3103 struct objfile *objfile)
3104{
3105 if (list->next >= list->list + list->size)
3106 extend_psymbol_list (list, objfile);
11d31d94 3107 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3108 OBJSTAT (objfile, n_psyms++);
3109}
3110
c906108c 3111/* Add a symbol with a long value to a psymtab.
5417f6dc 3112 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3113 Return the partial symbol that has been added. */
3114
3115/* NOTE: carlton/2003-09-11: The reason why we return the partial
3116 symbol is so that callers can get access to the symbol's demangled
3117 name, which they don't have any cheap way to determine otherwise.
3118 (Currenly, dwarf2read.c is the only file who uses that information,
3119 though it's possible that other readers might in the future.)
3120 Elena wasn't thrilled about that, and I don't blame her, but we
3121 couldn't come up with a better way to get that information. If
3122 it's needed in other situations, we could consider breaking up
3123 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3124 cache. */
3125
3126const struct partial_symbol *
176620f1 3127add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3128 enum address_class class,
2e618c13
AR
3129 struct psymbol_allocation_list *list,
3130 long val, /* Value as a long */
fba45db2
KB
3131 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3132 enum language language, struct objfile *objfile)
c906108c 3133{
11d31d94 3134 const struct partial_symbol *psym;
2de7ced7 3135
2e618c13 3136 int added;
c906108c
SS
3137
3138 /* Stash the partial symbol away in the cache */
2e618c13
AR
3139 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3140 val, coreaddr, language, objfile, &added);
c906108c 3141
2e618c13
AR
3142 /* Do not duplicate global partial symbols. */
3143 if (list == &objfile->global_psymbols
3144 && !added)
3145 return psym;
5c4e30ca 3146
2e618c13
AR
3147 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3148 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3149 return psym;
c906108c
SS
3150}
3151
c906108c
SS
3152/* Initialize storage for partial symbols. */
3153
3154void
fba45db2 3155init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3156{
3157 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3158
3159 if (objfile->global_psymbols.list)
c906108c 3160 {
2dc74dc1 3161 xfree (objfile->global_psymbols.list);
c906108c 3162 }
c5aa993b 3163 if (objfile->static_psymbols.list)
c906108c 3164 {
2dc74dc1 3165 xfree (objfile->static_psymbols.list);
c906108c 3166 }
c5aa993b 3167
c906108c
SS
3168 /* Current best guess is that approximately a twentieth
3169 of the total symbols (in a debugging file) are global or static
3170 oriented symbols */
c906108c 3171
c5aa993b
JM
3172 objfile->global_psymbols.size = total_symbols / 10;
3173 objfile->static_psymbols.size = total_symbols / 10;
3174
3175 if (objfile->global_psymbols.size > 0)
c906108c 3176 {
c5aa993b
JM
3177 objfile->global_psymbols.next =
3178 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3179 xmalloc ((objfile->global_psymbols.size
3180 * sizeof (struct partial_symbol *)));
c906108c 3181 }
c5aa993b 3182 if (objfile->static_psymbols.size > 0)
c906108c 3183 {
c5aa993b
JM
3184 objfile->static_psymbols.next =
3185 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3186 xmalloc ((objfile->static_psymbols.size
3187 * sizeof (struct partial_symbol *)));
c906108c
SS
3188 }
3189}
3190
3191/* OVERLAYS:
3192 The following code implements an abstraction for debugging overlay sections.
3193
3194 The target model is as follows:
3195 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3196 same VMA, each with its own unique LMA (or load address).
c906108c 3197 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3198 sections, one by one, from the load address into the VMA address.
5417f6dc 3199 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3200 sections should be considered to be mapped from the VMA to the LMA.
3201 This information is used for symbol lookup, and memory read/write.
5417f6dc 3202 For instance, if a section has been mapped then its contents
c5aa993b 3203 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3204
3205 Two levels of debugger support for overlays are available. One is
3206 "manual", in which the debugger relies on the user to tell it which
3207 overlays are currently mapped. This level of support is
3208 implemented entirely in the core debugger, and the information about
3209 whether a section is mapped is kept in the objfile->obj_section table.
3210
3211 The second level of support is "automatic", and is only available if
3212 the target-specific code provides functionality to read the target's
3213 overlay mapping table, and translate its contents for the debugger
3214 (by updating the mapped state information in the obj_section tables).
3215
3216 The interface is as follows:
c5aa993b
JM
3217 User commands:
3218 overlay map <name> -- tell gdb to consider this section mapped
3219 overlay unmap <name> -- tell gdb to consider this section unmapped
3220 overlay list -- list the sections that GDB thinks are mapped
3221 overlay read-target -- get the target's state of what's mapped
3222 overlay off/manual/auto -- set overlay debugging state
3223 Functional interface:
3224 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3225 section, return that section.
5417f6dc 3226 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3227 the pc, either in its VMA or its LMA
714835d5 3228 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3229 section_is_overlay(sect): true if section's VMA != LMA
3230 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3231 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3232 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3233 overlay_mapped_address(...): map an address from section's LMA to VMA
3234 overlay_unmapped_address(...): map an address from section's VMA to LMA
3235 symbol_overlayed_address(...): Return a "current" address for symbol:
3236 either in VMA or LMA depending on whether
3237 the symbol's section is currently mapped
c906108c
SS
3238 */
3239
3240/* Overlay debugging state: */
3241
d874f1e2 3242enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3243int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3244
c906108c 3245/* Function: section_is_overlay (SECTION)
5417f6dc 3246 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3247 SECTION is loaded at an address different from where it will "run". */
3248
3249int
714835d5 3250section_is_overlay (struct obj_section *section)
c906108c 3251{
714835d5
UW
3252 if (overlay_debugging && section)
3253 {
3254 bfd *abfd = section->objfile->obfd;
3255 asection *bfd_section = section->the_bfd_section;
3256
3257 if (bfd_section_lma (abfd, bfd_section) != 0
3258 && bfd_section_lma (abfd, bfd_section)
3259 != bfd_section_vma (abfd, bfd_section))
3260 return 1;
3261 }
c906108c
SS
3262
3263 return 0;
3264}
3265
3266/* Function: overlay_invalidate_all (void)
3267 Invalidate the mapped state of all overlay sections (mark it as stale). */
3268
3269static void
fba45db2 3270overlay_invalidate_all (void)
c906108c 3271{
c5aa993b 3272 struct objfile *objfile;
c906108c
SS
3273 struct obj_section *sect;
3274
3275 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3276 if (section_is_overlay (sect))
3277 sect->ovly_mapped = -1;
c906108c
SS
3278}
3279
714835d5 3280/* Function: section_is_mapped (SECTION)
5417f6dc 3281 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3282
3283 Access to the ovly_mapped flag is restricted to this function, so
3284 that we can do automatic update. If the global flag
3285 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3286 overlay_invalidate_all. If the mapped state of the particular
3287 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3288
714835d5
UW
3289int
3290section_is_mapped (struct obj_section *osect)
c906108c 3291{
714835d5 3292 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3293 return 0;
3294
c5aa993b 3295 switch (overlay_debugging)
c906108c
SS
3296 {
3297 default:
d874f1e2 3298 case ovly_off:
c5aa993b 3299 return 0; /* overlay debugging off */
d874f1e2 3300 case ovly_auto: /* overlay debugging automatic */
1c772458 3301 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3302 there's really nothing useful to do here (can't really go auto) */
1c772458 3303 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3304 {
3305 if (overlay_cache_invalid)
3306 {
3307 overlay_invalidate_all ();
3308 overlay_cache_invalid = 0;
3309 }
3310 if (osect->ovly_mapped == -1)
1c772458 3311 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3312 }
3313 /* fall thru to manual case */
d874f1e2 3314 case ovly_on: /* overlay debugging manual */
c906108c
SS
3315 return osect->ovly_mapped == 1;
3316 }
3317}
3318
c906108c
SS
3319/* Function: pc_in_unmapped_range
3320 If PC falls into the lma range of SECTION, return true, else false. */
3321
3322CORE_ADDR
714835d5 3323pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3324{
714835d5
UW
3325 if (section_is_overlay (section))
3326 {
3327 bfd *abfd = section->objfile->obfd;
3328 asection *bfd_section = section->the_bfd_section;
fbd35540 3329
714835d5
UW
3330 /* We assume the LMA is relocated by the same offset as the VMA. */
3331 bfd_vma size = bfd_get_section_size (bfd_section);
3332 CORE_ADDR offset = obj_section_offset (section);
3333
3334 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3335 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3336 return 1;
3337 }
c906108c 3338
c906108c
SS
3339 return 0;
3340}
3341
3342/* Function: pc_in_mapped_range
3343 If PC falls into the vma range of SECTION, return true, else false. */
3344
3345CORE_ADDR
714835d5 3346pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3347{
714835d5
UW
3348 if (section_is_overlay (section))
3349 {
3350 if (obj_section_addr (section) <= pc
3351 && pc < obj_section_endaddr (section))
3352 return 1;
3353 }
c906108c 3354
c906108c
SS
3355 return 0;
3356}
3357
9ec8e6a0
JB
3358
3359/* Return true if the mapped ranges of sections A and B overlap, false
3360 otherwise. */
b9362cc7 3361static int
714835d5 3362sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3363{
714835d5
UW
3364 CORE_ADDR a_start = obj_section_addr (a);
3365 CORE_ADDR a_end = obj_section_endaddr (a);
3366 CORE_ADDR b_start = obj_section_addr (b);
3367 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3368
3369 return (a_start < b_end && b_start < a_end);
3370}
3371
c906108c
SS
3372/* Function: overlay_unmapped_address (PC, SECTION)
3373 Returns the address corresponding to PC in the unmapped (load) range.
3374 May be the same as PC. */
3375
3376CORE_ADDR
714835d5 3377overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3378{
714835d5
UW
3379 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3380 {
3381 bfd *abfd = section->objfile->obfd;
3382 asection *bfd_section = section->the_bfd_section;
fbd35540 3383
714835d5
UW
3384 return pc + bfd_section_lma (abfd, bfd_section)
3385 - bfd_section_vma (abfd, bfd_section);
3386 }
c906108c
SS
3387
3388 return pc;
3389}
3390
3391/* Function: overlay_mapped_address (PC, SECTION)
3392 Returns the address corresponding to PC in the mapped (runtime) range.
3393 May be the same as PC. */
3394
3395CORE_ADDR
714835d5 3396overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3397{
714835d5
UW
3398 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3399 {
3400 bfd *abfd = section->objfile->obfd;
3401 asection *bfd_section = section->the_bfd_section;
fbd35540 3402
714835d5
UW
3403 return pc + bfd_section_vma (abfd, bfd_section)
3404 - bfd_section_lma (abfd, bfd_section);
3405 }
c906108c
SS
3406
3407 return pc;
3408}
3409
3410
5417f6dc 3411/* Function: symbol_overlayed_address
c906108c
SS
3412 Return one of two addresses (relative to the VMA or to the LMA),
3413 depending on whether the section is mapped or not. */
3414
c5aa993b 3415CORE_ADDR
714835d5 3416symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3417{
3418 if (overlay_debugging)
3419 {
3420 /* If the symbol has no section, just return its regular address. */
3421 if (section == 0)
3422 return address;
3423 /* If the symbol's section is not an overlay, just return its address */
3424 if (!section_is_overlay (section))
3425 return address;
3426 /* If the symbol's section is mapped, just return its address */
3427 if (section_is_mapped (section))
3428 return address;
3429 /*
3430 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3431 * then return its LOADED address rather than its vma address!!
3432 */
3433 return overlay_unmapped_address (address, section);
3434 }
3435 return address;
3436}
3437
5417f6dc 3438/* Function: find_pc_overlay (PC)
c906108c
SS
3439 Return the best-match overlay section for PC:
3440 If PC matches a mapped overlay section's VMA, return that section.
3441 Else if PC matches an unmapped section's VMA, return that section.
3442 Else if PC matches an unmapped section's LMA, return that section. */
3443
714835d5 3444struct obj_section *
fba45db2 3445find_pc_overlay (CORE_ADDR pc)
c906108c 3446{
c5aa993b 3447 struct objfile *objfile;
c906108c
SS
3448 struct obj_section *osect, *best_match = NULL;
3449
3450 if (overlay_debugging)
3451 ALL_OBJSECTIONS (objfile, osect)
714835d5 3452 if (section_is_overlay (osect))
c5aa993b 3453 {
714835d5 3454 if (pc_in_mapped_range (pc, osect))
c5aa993b 3455 {
714835d5
UW
3456 if (section_is_mapped (osect))
3457 return osect;
c5aa993b
JM
3458 else
3459 best_match = osect;
3460 }
714835d5 3461 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3462 best_match = osect;
3463 }
714835d5 3464 return best_match;
c906108c
SS
3465}
3466
3467/* Function: find_pc_mapped_section (PC)
5417f6dc 3468 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3469 currently marked as MAPPED, return that section. Else return NULL. */
3470
714835d5 3471struct obj_section *
fba45db2 3472find_pc_mapped_section (CORE_ADDR pc)
c906108c 3473{
c5aa993b 3474 struct objfile *objfile;
c906108c
SS
3475 struct obj_section *osect;
3476
3477 if (overlay_debugging)
3478 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3479 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3480 return osect;
c906108c
SS
3481
3482 return NULL;
3483}
3484
3485/* Function: list_overlays_command
3486 Print a list of mapped sections and their PC ranges */
3487
3488void
fba45db2 3489list_overlays_command (char *args, int from_tty)
c906108c 3490{
c5aa993b
JM
3491 int nmapped = 0;
3492 struct objfile *objfile;
c906108c
SS
3493 struct obj_section *osect;
3494
3495 if (overlay_debugging)
3496 ALL_OBJSECTIONS (objfile, osect)
714835d5 3497 if (section_is_mapped (osect))
c5aa993b
JM
3498 {
3499 const char *name;
3500 bfd_vma lma, vma;
3501 int size;
3502
3503 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3504 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3505 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3506 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3507
3508 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3509 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3510 puts_filtered (" - ");
ed49a04f 3511 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3512 printf_filtered (", mapped at ");
ed49a04f 3513 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3514 puts_filtered (" - ");
ed49a04f 3515 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3516 puts_filtered ("\n");
3517
3518 nmapped++;
3519 }
c906108c 3520 if (nmapped == 0)
a3f17187 3521 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3522}
3523
3524/* Function: map_overlay_command
3525 Mark the named section as mapped (ie. residing at its VMA address). */
3526
3527void
fba45db2 3528map_overlay_command (char *args, int from_tty)
c906108c 3529{
c5aa993b
JM
3530 struct objfile *objfile, *objfile2;
3531 struct obj_section *sec, *sec2;
c906108c
SS
3532
3533 if (!overlay_debugging)
8a3fe4f8 3534 error (_("\
515ad16c 3535Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3536the 'overlay manual' command."));
c906108c
SS
3537
3538 if (args == 0 || *args == 0)
8a3fe4f8 3539 error (_("Argument required: name of an overlay section"));
c906108c
SS
3540
3541 /* First, find a section matching the user supplied argument */
3542 ALL_OBJSECTIONS (objfile, sec)
3543 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3544 {
3545 /* Now, check to see if the section is an overlay. */
714835d5 3546 if (!section_is_overlay (sec))
c5aa993b
JM
3547 continue; /* not an overlay section */
3548
3549 /* Mark the overlay as "mapped" */
3550 sec->ovly_mapped = 1;
3551
3552 /* Next, make a pass and unmap any sections that are
3553 overlapped by this new section: */
3554 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3555 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3556 {
3557 if (info_verbose)
a3f17187 3558 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3559 bfd_section_name (objfile->obfd,
3560 sec2->the_bfd_section));
3561 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3562 }
3563 return;
3564 }
8a3fe4f8 3565 error (_("No overlay section called %s"), args);
c906108c
SS
3566}
3567
3568/* Function: unmap_overlay_command
5417f6dc 3569 Mark the overlay section as unmapped
c906108c
SS
3570 (ie. resident in its LMA address range, rather than the VMA range). */
3571
3572void
fba45db2 3573unmap_overlay_command (char *args, int from_tty)
c906108c 3574{
c5aa993b 3575 struct objfile *objfile;
c906108c
SS
3576 struct obj_section *sec;
3577
3578 if (!overlay_debugging)
8a3fe4f8 3579 error (_("\
515ad16c 3580Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3581the 'overlay manual' command."));
c906108c
SS
3582
3583 if (args == 0 || *args == 0)
8a3fe4f8 3584 error (_("Argument required: name of an overlay section"));
c906108c
SS
3585
3586 /* First, find a section matching the user supplied argument */
3587 ALL_OBJSECTIONS (objfile, sec)
3588 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3589 {
3590 if (!sec->ovly_mapped)
8a3fe4f8 3591 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3592 sec->ovly_mapped = 0;
3593 return;
3594 }
8a3fe4f8 3595 error (_("No overlay section called %s"), args);
c906108c
SS
3596}
3597
3598/* Function: overlay_auto_command
3599 A utility command to turn on overlay debugging.
3600 Possibly this should be done via a set/show command. */
3601
3602static void
fba45db2 3603overlay_auto_command (char *args, int from_tty)
c906108c 3604{
d874f1e2 3605 overlay_debugging = ovly_auto;
1900040c 3606 enable_overlay_breakpoints ();
c906108c 3607 if (info_verbose)
a3f17187 3608 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3609}
3610
3611/* Function: overlay_manual_command
3612 A utility command to turn on overlay debugging.
3613 Possibly this should be done via a set/show command. */
3614
3615static void
fba45db2 3616overlay_manual_command (char *args, int from_tty)
c906108c 3617{
d874f1e2 3618 overlay_debugging = ovly_on;
1900040c 3619 disable_overlay_breakpoints ();
c906108c 3620 if (info_verbose)
a3f17187 3621 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3622}
3623
3624/* Function: overlay_off_command
3625 A utility command to turn on overlay debugging.
3626 Possibly this should be done via a set/show command. */
3627
3628static void
fba45db2 3629overlay_off_command (char *args, int from_tty)
c906108c 3630{
d874f1e2 3631 overlay_debugging = ovly_off;
1900040c 3632 disable_overlay_breakpoints ();
c906108c 3633 if (info_verbose)
a3f17187 3634 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3635}
3636
3637static void
fba45db2 3638overlay_load_command (char *args, int from_tty)
c906108c 3639{
1c772458
UW
3640 if (gdbarch_overlay_update_p (current_gdbarch))
3641 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3642 else
8a3fe4f8 3643 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3644}
3645
3646/* Function: overlay_command
3647 A place-holder for a mis-typed command */
3648
3649/* Command list chain containing all defined "overlay" subcommands. */
3650struct cmd_list_element *overlaylist;
3651
3652static void
fba45db2 3653overlay_command (char *args, int from_tty)
c906108c 3654{
c5aa993b 3655 printf_unfiltered
c906108c
SS
3656 ("\"overlay\" must be followed by the name of an overlay command.\n");
3657 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3658}
3659
3660
3661/* Target Overlays for the "Simplest" overlay manager:
3662
5417f6dc
RM
3663 This is GDB's default target overlay layer. It works with the
3664 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3665 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3666 so targets that use a different runtime overlay manager can
c906108c
SS
3667 substitute their own overlay_update function and take over the
3668 function pointer.
3669
3670 The overlay_update function pokes around in the target's data structures
3671 to see what overlays are mapped, and updates GDB's overlay mapping with
3672 this information.
3673
3674 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3675 unsigned _novlys; /# number of overlay sections #/
3676 unsigned _ovly_table[_novlys][4] = {
3677 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3678 {..., ..., ..., ...},
3679 }
3680 unsigned _novly_regions; /# number of overlay regions #/
3681 unsigned _ovly_region_table[_novly_regions][3] = {
3682 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3683 {..., ..., ...},
3684 }
c906108c
SS
3685 These functions will attempt to update GDB's mappedness state in the
3686 symbol section table, based on the target's mappedness state.
3687
3688 To do this, we keep a cached copy of the target's _ovly_table, and
3689 attempt to detect when the cached copy is invalidated. The main
3690 entry point is "simple_overlay_update(SECT), which looks up SECT in
3691 the cached table and re-reads only the entry for that section from
3692 the target (whenever possible).
3693 */
3694
3695/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3696static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3697#if 0
c5aa993b 3698static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3699#endif
c5aa993b 3700static unsigned cache_novlys = 0;
c906108c 3701#if 0
c5aa993b 3702static unsigned cache_novly_regions = 0;
c906108c
SS
3703#endif
3704static CORE_ADDR cache_ovly_table_base = 0;
3705#if 0
3706static CORE_ADDR cache_ovly_region_table_base = 0;
3707#endif
c5aa993b
JM
3708enum ovly_index
3709 {
3710 VMA, SIZE, LMA, MAPPED
3711 };
9a76efb6
UW
3712#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3713 / TARGET_CHAR_BIT)
c906108c
SS
3714
3715/* Throw away the cached copy of _ovly_table */
3716static void
fba45db2 3717simple_free_overlay_table (void)
c906108c
SS
3718{
3719 if (cache_ovly_table)
b8c9b27d 3720 xfree (cache_ovly_table);
c5aa993b 3721 cache_novlys = 0;
c906108c
SS
3722 cache_ovly_table = NULL;
3723 cache_ovly_table_base = 0;
3724}
3725
3726#if 0
3727/* Throw away the cached copy of _ovly_region_table */
3728static void
fba45db2 3729simple_free_overlay_region_table (void)
c906108c
SS
3730{
3731 if (cache_ovly_region_table)
b8c9b27d 3732 xfree (cache_ovly_region_table);
c5aa993b 3733 cache_novly_regions = 0;
c906108c
SS
3734 cache_ovly_region_table = NULL;
3735 cache_ovly_region_table_base = 0;
3736}
3737#endif
3738
3739/* Read an array of ints from the target into a local buffer.
3740 Convert to host order. int LEN is number of ints */
3741static void
fba45db2 3742read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3743{
34c0bd93 3744 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3745 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3746 int i;
c906108c
SS
3747
3748 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3749 for (i = 0; i < len; i++)
c5aa993b 3750 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3751 TARGET_LONG_BYTES);
3752}
3753
3754/* Find and grab a copy of the target _ovly_table
3755 (and _novlys, which is needed for the table's size) */
c5aa993b 3756static int
fba45db2 3757simple_read_overlay_table (void)
c906108c 3758{
0d43edd1 3759 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3760
3761 simple_free_overlay_table ();
9b27852e 3762 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3763 if (! novlys_msym)
c906108c 3764 {
8a3fe4f8 3765 error (_("Error reading inferior's overlay table: "
0d43edd1 3766 "couldn't find `_novlys' variable\n"
8a3fe4f8 3767 "in inferior. Use `overlay manual' mode."));
0d43edd1 3768 return 0;
c906108c 3769 }
0d43edd1 3770
9b27852e 3771 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3772 if (! ovly_table_msym)
3773 {
8a3fe4f8 3774 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3775 "`_ovly_table' array\n"
8a3fe4f8 3776 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3777 return 0;
3778 }
3779
3780 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3781 cache_ovly_table
3782 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3783 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3784 read_target_long_array (cache_ovly_table_base,
777ea8f1 3785 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3786 cache_novlys * 4);
3787
c5aa993b 3788 return 1; /* SUCCESS */
c906108c
SS
3789}
3790
3791#if 0
3792/* Find and grab a copy of the target _ovly_region_table
3793 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3794static int
fba45db2 3795simple_read_overlay_region_table (void)
c906108c
SS
3796{
3797 struct minimal_symbol *msym;
3798
3799 simple_free_overlay_region_table ();
9b27852e 3800 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3801 if (msym != NULL)
3802 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3803 else
3804 return 0; /* failure */
c906108c
SS
3805 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3806 if (cache_ovly_region_table != NULL)
3807 {
9b27852e 3808 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3809 if (msym != NULL)
3810 {
3811 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3812 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3813 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3814 cache_novly_regions * 3);
3815 }
c5aa993b
JM
3816 else
3817 return 0; /* failure */
c906108c 3818 }
c5aa993b
JM
3819 else
3820 return 0; /* failure */
3821 return 1; /* SUCCESS */
c906108c
SS
3822}
3823#endif
3824
5417f6dc 3825/* Function: simple_overlay_update_1
c906108c
SS
3826 A helper function for simple_overlay_update. Assuming a cached copy
3827 of _ovly_table exists, look through it to find an entry whose vma,
3828 lma and size match those of OSECT. Re-read the entry and make sure
3829 it still matches OSECT (else the table may no longer be valid).
3830 Set OSECT's mapped state to match the entry. Return: 1 for
3831 success, 0 for failure. */
3832
3833static int
fba45db2 3834simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3835{
3836 int i, size;
fbd35540
MS
3837 bfd *obfd = osect->objfile->obfd;
3838 asection *bsect = osect->the_bfd_section;
c906108c 3839
2c500098 3840 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3841 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3842 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3843 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3844 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3845 {
3846 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3847 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3848 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3849 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3850 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3851 {
3852 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3853 return 1;
3854 }
fbd35540 3855 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3856 return 0;
3857 }
3858 return 0;
3859}
3860
3861/* Function: simple_overlay_update
5417f6dc
RM
3862 If OSECT is NULL, then update all sections' mapped state
3863 (after re-reading the entire target _ovly_table).
3864 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3865 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3866 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3867 re-read the entire cache, and go ahead and update all sections. */
3868
1c772458 3869void
fba45db2 3870simple_overlay_update (struct obj_section *osect)
c906108c 3871{
c5aa993b 3872 struct objfile *objfile;
c906108c
SS
3873
3874 /* Were we given an osect to look up? NULL means do all of them. */
3875 if (osect)
3876 /* Have we got a cached copy of the target's overlay table? */
3877 if (cache_ovly_table != NULL)
3878 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3879 if (cache_ovly_table_base ==
9b27852e 3880 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3881 /* Then go ahead and try to look up this single section in the cache */
3882 if (simple_overlay_update_1 (osect))
3883 /* Found it! We're done. */
3884 return;
3885
3886 /* Cached table no good: need to read the entire table anew.
3887 Or else we want all the sections, in which case it's actually
3888 more efficient to read the whole table in one block anyway. */
3889
0d43edd1
JB
3890 if (! simple_read_overlay_table ())
3891 return;
3892
c906108c
SS
3893 /* Now may as well update all sections, even if only one was requested. */
3894 ALL_OBJSECTIONS (objfile, osect)
714835d5 3895 if (section_is_overlay (osect))
c5aa993b
JM
3896 {
3897 int i, size;
fbd35540
MS
3898 bfd *obfd = osect->objfile->obfd;
3899 asection *bsect = osect->the_bfd_section;
c5aa993b 3900
2c500098 3901 size = bfd_get_section_size (bsect);
c5aa993b 3902 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3903 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3904 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3905 /* && cache_ovly_table[i][SIZE] == size */ )
3906 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3907 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3908 break; /* finished with inner for loop: break out */
3909 }
3910 }
c906108c
SS
3911}
3912
086df311
DJ
3913/* Set the output sections and output offsets for section SECTP in
3914 ABFD. The relocation code in BFD will read these offsets, so we
3915 need to be sure they're initialized. We map each section to itself,
3916 with no offset; this means that SECTP->vma will be honored. */
3917
3918static void
3919symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3920{
3921 sectp->output_section = sectp;
3922 sectp->output_offset = 0;
3923}
3924
3925/* Relocate the contents of a debug section SECTP in ABFD. The
3926 contents are stored in BUF if it is non-NULL, or returned in a
3927 malloc'd buffer otherwise.
3928
3929 For some platforms and debug info formats, shared libraries contain
3930 relocations against the debug sections (particularly for DWARF-2;
3931 one affected platform is PowerPC GNU/Linux, although it depends on
3932 the version of the linker in use). Also, ELF object files naturally
3933 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3934 the relocations in order to get the locations of symbols correct.
3935 Another example that may require relocation processing, is the
3936 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3937 debug section. */
086df311
DJ
3938
3939bfd_byte *
3940symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3941{
065a2c74 3942 /* We're only interested in sections with relocation
086df311
DJ
3943 information. */
3944 if ((sectp->flags & SEC_RELOC) == 0)
3945 return NULL;
086df311
DJ
3946
3947 /* We will handle section offsets properly elsewhere, so relocate as if
3948 all sections begin at 0. */
3949 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3950
97606a13 3951 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3952}
c906108c 3953
31d99776
DJ
3954struct symfile_segment_data *
3955get_symfile_segment_data (bfd *abfd)
3956{
3957 struct sym_fns *sf = find_sym_fns (abfd);
3958
3959 if (sf == NULL)
3960 return NULL;
3961
3962 return sf->sym_segments (abfd);
3963}
3964
3965void
3966free_symfile_segment_data (struct symfile_segment_data *data)
3967{
3968 xfree (data->segment_bases);
3969 xfree (data->segment_sizes);
3970 xfree (data->segment_info);
3971 xfree (data);
3972}
3973
28c32713
JB
3974
3975/* Given:
3976 - DATA, containing segment addresses from the object file ABFD, and
3977 the mapping from ABFD's sections onto the segments that own them,
3978 and
3979 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3980 segment addresses reported by the target,
3981 store the appropriate offsets for each section in OFFSETS.
3982
3983 If there are fewer entries in SEGMENT_BASES than there are segments
3984 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3985
8d385431
DJ
3986 If there are more entries, then ignore the extra. The target may
3987 not be able to distinguish between an empty data segment and a
3988 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3989int
3990symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3991 struct section_offsets *offsets,
3992 int num_segment_bases,
3993 const CORE_ADDR *segment_bases)
3994{
3995 int i;
3996 asection *sect;
3997
28c32713
JB
3998 /* It doesn't make sense to call this function unless you have some
3999 segment base addresses. */
4000 gdb_assert (segment_bases > 0);
4001
31d99776
DJ
4002 /* If we do not have segment mappings for the object file, we
4003 can not relocate it by segments. */
4004 gdb_assert (data != NULL);
4005 gdb_assert (data->num_segments > 0);
4006
31d99776
DJ
4007 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4008 {
31d99776
DJ
4009 int which = data->segment_info[i];
4010
28c32713
JB
4011 gdb_assert (0 <= which && which <= data->num_segments);
4012
4013 /* Don't bother computing offsets for sections that aren't
4014 loaded as part of any segment. */
4015 if (! which)
4016 continue;
4017
4018 /* Use the last SEGMENT_BASES entry as the address of any extra
4019 segments mentioned in DATA->segment_info. */
31d99776 4020 if (which > num_segment_bases)
28c32713 4021 which = num_segment_bases;
31d99776 4022
28c32713
JB
4023 offsets->offsets[i] = (segment_bases[which - 1]
4024 - data->segment_bases[which - 1]);
31d99776
DJ
4025 }
4026
4027 return 1;
4028}
4029
4030static void
4031symfile_find_segment_sections (struct objfile *objfile)
4032{
4033 bfd *abfd = objfile->obfd;
4034 int i;
4035 asection *sect;
4036 struct symfile_segment_data *data;
4037
4038 data = get_symfile_segment_data (objfile->obfd);
4039 if (data == NULL)
4040 return;
4041
4042 if (data->num_segments != 1 && data->num_segments != 2)
4043 {
4044 free_symfile_segment_data (data);
4045 return;
4046 }
4047
4048 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4049 {
4050 CORE_ADDR vma;
4051 int which = data->segment_info[i];
4052
4053 if (which == 1)
4054 {
4055 if (objfile->sect_index_text == -1)
4056 objfile->sect_index_text = sect->index;
4057
4058 if (objfile->sect_index_rodata == -1)
4059 objfile->sect_index_rodata = sect->index;
4060 }
4061 else if (which == 2)
4062 {
4063 if (objfile->sect_index_data == -1)
4064 objfile->sect_index_data = sect->index;
4065
4066 if (objfile->sect_index_bss == -1)
4067 objfile->sect_index_bss = sect->index;
4068 }
4069 }
4070
4071 free_symfile_segment_data (data);
4072}
4073
c906108c 4074void
fba45db2 4075_initialize_symfile (void)
c906108c
SS
4076{
4077 struct cmd_list_element *c;
c5aa993b 4078
1a966eab
AC
4079 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4080Load symbol table from executable file FILE.\n\
c906108c 4081The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4082to execute."), &cmdlist);
5ba2abeb 4083 set_cmd_completer (c, filename_completer);
c906108c 4084
1a966eab 4085 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4086Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4087Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4088ADDR is the starting address of the file's text.\n\
db162d44
EZ
4089The optional arguments are section-name section-address pairs and\n\
4090should be specified if the data and bss segments are not contiguous\n\
1a966eab 4091with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4092 &cmdlist);
5ba2abeb 4093 set_cmd_completer (c, filename_completer);
c906108c 4094
1a966eab
AC
4095 c = add_cmd ("load", class_files, load_command, _("\
4096Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4097for access from GDB.\n\
4098A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4099 set_cmd_completer (c, filename_completer);
c906108c 4100
5bf193a2
AC
4101 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4102 &symbol_reloading, _("\
4103Set dynamic symbol table reloading multiple times in one run."), _("\
4104Show dynamic symbol table reloading multiple times in one run."), NULL,
4105 NULL,
920d2a44 4106 show_symbol_reloading,
5bf193a2 4107 &setlist, &showlist);
c906108c 4108
c5aa993b 4109 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4110 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4111 "overlay ", 0, &cmdlist);
4112
4113 add_com_alias ("ovly", "overlay", class_alias, 1);
4114 add_com_alias ("ov", "overlay", class_alias, 1);
4115
c5aa993b 4116 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4117 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4118
c5aa993b 4119 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4120 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4121
c5aa993b 4122 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4123 _("List mappings of overlay sections."), &overlaylist);
c906108c 4124
c5aa993b 4125 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4126 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4127 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4128 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4129 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4130 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4131 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4132 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4133
4134 /* Filename extension to source language lookup table: */
4135 init_filename_language_table ();
26c41df3
AC
4136 add_setshow_string_noescape_cmd ("extension-language", class_files,
4137 &ext_args, _("\
4138Set mapping between filename extension and source language."), _("\
4139Show mapping between filename extension and source language."), _("\
4140Usage: set extension-language .foo bar"),
4141 set_ext_lang_command,
920d2a44 4142 show_ext_args,
26c41df3 4143 &setlist, &showlist);
c906108c 4144
c5aa993b 4145 add_info ("extensions", info_ext_lang_command,
1bedd215 4146 _("All filename extensions associated with a source language."));
917317f4 4147
525226b5
AC
4148 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4149 &debug_file_directory, _("\
4150Set the directory where separate debug symbols are searched for."), _("\
4151Show the directory where separate debug symbols are searched for."), _("\
4152Separate debug symbols are first searched for in the same\n\
4153directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4154and lastly at the path of the directory of the binary with\n\
4155the global debug-file directory prepended."),
4156 NULL,
920d2a44 4157 show_debug_file_directory,
525226b5 4158 &setlist, &showlist);
bf250677
DE
4159
4160 add_setshow_boolean_cmd ("symbol-loading", no_class,
4161 &print_symbol_loading, _("\
4162Set printing of symbol loading messages."), _("\
4163Show printing of symbol loading messages."), NULL,
4164 NULL,
4165 NULL,
4166 &setprintlist, &showprintlist);
c906108c 4167}
This page took 1.133056 seconds and 4 git commands to generate.