* gdbarch.sh (target_gdbarch): New global variable.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
c5aa993b 40#include "inferior.h" /* for write_pc */
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
c906108c 56
c906108c
SS
57#include <sys/types.h>
58#include <fcntl.h>
59#include "gdb_string.h"
60#include "gdb_stat.h"
61#include <ctype.h>
62#include <time.h>
2b71414d 63#include <sys/time.h>
c906108c 64
c906108c 65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97static void add_shared_symbol_files_command (char *, int);
c906108c 98
5b5d99cf
JB
99static void reread_separate_symbols (struct objfile *objfile);
100
a14ed312 101static void cashier_psymtab (struct partial_symtab *);
c906108c 102
a14ed312 103bfd *symfile_bfd_open (char *);
c906108c 104
0e931cf0
JB
105int get_section_index (struct objfile *, char *);
106
31d99776 107static struct sym_fns *find_sym_fns (bfd *);
c906108c 108
a14ed312 109static void decrement_reading_symtab (void *);
c906108c 110
a14ed312 111static void overlay_invalidate_all (void);
c906108c 112
a14ed312 113static int overlay_is_mapped (struct obj_section *);
c906108c 114
a14ed312 115void list_overlays_command (char *, int);
c906108c 116
a14ed312 117void map_overlay_command (char *, int);
c906108c 118
a14ed312 119void unmap_overlay_command (char *, int);
c906108c 120
a14ed312 121static void overlay_auto_command (char *, int);
c906108c 122
a14ed312 123static void overlay_manual_command (char *, int);
c906108c 124
a14ed312 125static void overlay_off_command (char *, int);
c906108c 126
a14ed312 127static void overlay_load_command (char *, int);
c906108c 128
a14ed312 129static void overlay_command (char *, int);
c906108c 130
a14ed312 131static void simple_free_overlay_table (void);
c906108c 132
a14ed312 133static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
372build_section_addr_info_from_section_table (const struct section_table *start,
373 const struct section_table *end)
374{
375 struct section_addr_info *sap;
376 const struct section_table *stp;
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484void
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
744
745 MAINLINE is nonzero if this is the main symbol file, or zero if
746 it's an extra symbol file such as dynamically loaded code.
747
748 VERBO is nonzero if the caller has printed a verbose message about
749 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
750
751void
7e8580c1
JB
752syms_from_objfile (struct objfile *objfile,
753 struct section_addr_info *addrs,
754 struct section_offsets *offsets,
755 int num_offsets,
756 int mainline,
757 int verbo)
c906108c 758{
a39a16c4 759 struct section_addr_info *local_addr = NULL;
c906108c 760 struct cleanup *old_chain;
2acceee2 761
7e8580c1 762 gdb_assert (! (addrs && offsets));
2acceee2 763
c906108c 764 init_entry_point_info (objfile);
31d99776 765 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 766
75245b24
MS
767 if (objfile->sf == NULL)
768 return; /* No symbols. */
769
c906108c
SS
770 /* Make sure that partially constructed symbol tables will be cleaned up
771 if an error occurs during symbol reading. */
74b7792f 772 old_chain = make_cleanup_free_objfile (objfile);
c906108c 773
a39a16c4
MM
774 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
775 list. We now establish the convention that an addr of zero means
776 no load address was specified. */
777 if (! addrs && ! offsets)
778 {
5417f6dc 779 local_addr
a39a16c4
MM
780 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
781 make_cleanup (xfree, local_addr);
782 addrs = local_addr;
783 }
784
785 /* Now either addrs or offsets is non-zero. */
786
c5aa993b 787 if (mainline)
c906108c
SS
788 {
789 /* We will modify the main symbol table, make sure that all its users
c5aa993b 790 will be cleaned up if an error occurs during symbol reading. */
74b7792f 791 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
792
793 /* Since no error yet, throw away the old symbol table. */
794
795 if (symfile_objfile != NULL)
796 {
797 free_objfile (symfile_objfile);
798 symfile_objfile = NULL;
799 }
800
801 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
802 If the user wants to get rid of them, they should do "symbol-file"
803 without arguments first. Not sure this is the best behavior
804 (PR 2207). */
c906108c 805
c5aa993b 806 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
807 }
808
809 /* Convert addr into an offset rather than an absolute address.
810 We find the lowest address of a loaded segment in the objfile,
53a5351d 811 and assume that <addr> is where that got loaded.
c906108c 812
53a5351d
JM
813 We no longer warn if the lowest section is not a text segment (as
814 happens for the PA64 port. */
1549f619 815 if (!mainline && addrs && addrs->other[0].name)
c906108c 816 {
1549f619
EZ
817 asection *lower_sect;
818 asection *sect;
819 CORE_ADDR lower_offset;
820 int i;
821
5417f6dc 822 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
823 continguous sections. FIXME!! won't work without call to find
824 .text first, but this assumes text is lowest section. */
825 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
826 if (lower_sect == NULL)
c906108c 827 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 828 &lower_sect);
2acceee2 829 if (lower_sect == NULL)
ff8e85c3
PA
830 {
831 warning (_("no loadable sections found in added symbol-file %s"),
832 objfile->name);
833 lower_offset = 0;
834 }
2acceee2 835 else
ff8e85c3 836 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 837
13de58df 838 /* Calculate offsets for the loadable sections.
2acceee2
JM
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
5417f6dc 841
13de58df
JB
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
2acceee2
JM
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
1549f619 848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
8a3fe4f8 864 warning (_("section %s not found in %s"),
5417f6dc 865 addrs->other[i].name,
7e8580c1
JB
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
c906108c
SS
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
c5aa993b 879 (*objfile->sf->sym_init) (objfile);
b9caf505 880 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 881
7e8580c1
JB
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
8b92e4d5 892 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
c906108c 897
96baa820 898 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 899
c906108c
SS
900 /* Don't allow char * to have a typename (else would get caddr_t).
901 Ditto void *. FIXME: Check whether this is now done by all the
902 symbol readers themselves (many of them now do), and if so remove
903 it from here. */
904
905 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
906 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
907
908 /* Mark the objfile has having had initial symbol read attempted. Note
909 that this does not mean we found any symbols... */
910
c5aa993b 911 objfile->flags |= OBJF_SYMS;
c906108c
SS
912
913 /* Discard cleanups as symbol reading was successful. */
914
915 discard_cleanups (old_chain);
c906108c
SS
916}
917
918/* Perform required actions after either reading in the initial
919 symbols for a new objfile, or mapping in the symbols from a reusable
920 objfile. */
c5aa993b 921
c906108c 922void
fba45db2 923new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
924{
925
926 /* If this is the main symbol file we have to clean up all users of the
927 old main symbol file. Otherwise it is sufficient to fixup all the
928 breakpoints that may have been redefined by this symbol file. */
929 if (mainline)
930 {
931 /* OK, make it the "real" symbol file. */
932 symfile_objfile = objfile;
933
934 clear_symtab_users ();
935 }
936 else
937 {
938 breakpoint_re_set ();
939 }
940
941 /* We're done reading the symbol file; finish off complaints. */
b9caf505 942 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
943}
944
945/* Process a symbol file, as either the main file or as a dynamically
946 loaded file.
947
5417f6dc
RM
948 ABFD is a BFD already open on the file, as from symfile_bfd_open.
949 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
950
951 FROM_TTY says how verbose to be.
952
953 MAINLINE specifies whether this is the main symbol file, or whether
954 it's an extra symbol file such as dynamically loaded code.
955
956 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
957 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
958 non-zero.
c906108c 959
c906108c
SS
960 Upon success, returns a pointer to the objfile that was added.
961 Upon failure, jumps back to command level (never returns). */
7904e09f 962static struct objfile *
5417f6dc 963symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
964 struct section_addr_info *addrs,
965 struct section_offsets *offsets,
966 int num_offsets,
967 int mainline, int flags)
c906108c
SS
968{
969 struct objfile *objfile;
970 struct partial_symtab *psymtab;
77069918 971 char *debugfile = NULL;
7b90c3f9 972 struct section_addr_info *orig_addrs = NULL;
a39a16c4 973 struct cleanup *my_cleanups;
5417f6dc 974 const char *name = bfd_get_filename (abfd);
c906108c 975
5417f6dc 976 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 977
5417f6dc
RM
978 /* Give user a chance to burp if we'd be
979 interactively wiping out any existing symbols. */
c906108c
SS
980
981 if ((have_full_symbols () || have_partial_symbols ())
982 && mainline
983 && from_tty
984 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 985 error (_("Not confirmed."));
c906108c 986
2df3850c 987 objfile = allocate_objfile (abfd, flags);
5417f6dc 988 discard_cleanups (my_cleanups);
c906108c 989
a39a16c4 990 if (addrs)
63cd24fe 991 {
7b90c3f9
JB
992 orig_addrs = copy_section_addr_info (addrs);
993 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 994 }
a39a16c4 995
78a4a9b9
AC
996 /* We either created a new mapped symbol table, mapped an existing
997 symbol table file which has not had initial symbol reading
998 performed, or need to read an unmapped symbol table. */
999 if (from_tty || info_verbose)
c906108c 1000 {
769d7dc4
AC
1001 if (deprecated_pre_add_symbol_hook)
1002 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1003 else
c906108c 1004 {
bf250677
DE
1005 if (print_symbol_loading)
1006 {
1007 printf_unfiltered (_("Reading symbols from %s..."), name);
1008 wrap_here ("");
1009 gdb_flush (gdb_stdout);
1010 }
c906108c 1011 }
c906108c 1012 }
78a4a9b9
AC
1013 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1014 mainline, from_tty);
c906108c
SS
1015
1016 /* We now have at least a partial symbol table. Check to see if the
1017 user requested that all symbols be read on initial access via either
1018 the gdb startup command line or on a per symbol file basis. Expand
1019 all partial symbol tables for this objfile if so. */
1020
2acceee2 1021 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1022 {
bf250677 1023 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1024 {
a3f17187 1025 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1026 wrap_here ("");
1027 gdb_flush (gdb_stdout);
1028 }
1029
c5aa993b 1030 for (psymtab = objfile->psymtabs;
c906108c 1031 psymtab != NULL;
c5aa993b 1032 psymtab = psymtab->next)
c906108c
SS
1033 {
1034 psymtab_to_symtab (psymtab);
1035 }
1036 }
1037
77069918
JK
1038 /* If the file has its own symbol tables it has no separate debug info.
1039 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1040 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1041 if (objfile->psymtabs == NULL)
1042 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1043 if (debugfile)
1044 {
5b5d99cf
JB
1045 if (addrs != NULL)
1046 {
1047 objfile->separate_debug_objfile
a39a16c4 1048 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1049 }
1050 else
1051 {
1052 objfile->separate_debug_objfile
1053 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1054 }
1055 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1056 = objfile;
5417f6dc 1057
5b5d99cf
JB
1058 /* Put the separate debug object before the normal one, this is so that
1059 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1060 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1061
5b5d99cf
JB
1062 xfree (debugfile);
1063 }
5417f6dc 1064
bf250677
DE
1065 if (!have_partial_symbols () && !have_full_symbols ()
1066 && print_symbol_loading)
cb3c37b2
JB
1067 {
1068 wrap_here ("");
a3f17187 1069 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
1070 if (from_tty || info_verbose)
1071 printf_filtered ("...");
1072 else
1073 printf_filtered ("\n");
cb3c37b2
JB
1074 wrap_here ("");
1075 }
1076
c906108c
SS
1077 if (from_tty || info_verbose)
1078 {
769d7dc4
AC
1079 if (deprecated_post_add_symbol_hook)
1080 deprecated_post_add_symbol_hook ();
c906108c 1081 else
c5aa993b 1082 {
bf250677
DE
1083 if (print_symbol_loading)
1084 printf_unfiltered (_("done.\n"));
c5aa993b 1085 }
c906108c
SS
1086 }
1087
481d0f41
JB
1088 /* We print some messages regardless of whether 'from_tty ||
1089 info_verbose' is true, so make sure they go out at the right
1090 time. */
1091 gdb_flush (gdb_stdout);
1092
a39a16c4
MM
1093 do_cleanups (my_cleanups);
1094
109f874e
MS
1095 if (objfile->sf == NULL)
1096 return objfile; /* No symbols. */
1097
c906108c
SS
1098 new_symfile_objfile (objfile, mainline, from_tty);
1099
06d3b283 1100 observer_notify_new_objfile (objfile);
c906108c 1101
ce7d4522 1102 bfd_cache_close_all ();
c906108c
SS
1103 return (objfile);
1104}
1105
7904e09f 1106
eb4556d7
JB
1107/* Process the symbol file ABFD, as either the main file or as a
1108 dynamically loaded file.
1109
1110 See symbol_file_add_with_addrs_or_offsets's comments for
1111 details. */
1112struct objfile *
1113symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1114 struct section_addr_info *addrs,
1115 int mainline, int flags)
1116{
1117 return symbol_file_add_with_addrs_or_offsets (abfd,
1118 from_tty, addrs, 0, 0,
1119 mainline, flags);
1120}
1121
1122
7904e09f
JB
1123/* Process a symbol file, as either the main file or as a dynamically
1124 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1125 for details. */
1126struct objfile *
1127symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1128 int mainline, int flags)
1129{
eb4556d7
JB
1130 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1131 addrs, mainline, flags);
7904e09f
JB
1132}
1133
1134
d7db6da9
FN
1135/* Call symbol_file_add() with default values and update whatever is
1136 affected by the loading of a new main().
1137 Used when the file is supplied in the gdb command line
1138 and by some targets with special loading requirements.
1139 The auxiliary function, symbol_file_add_main_1(), has the flags
1140 argument for the switches that can only be specified in the symbol_file
1141 command itself. */
5417f6dc 1142
1adeb98a
FN
1143void
1144symbol_file_add_main (char *args, int from_tty)
1145{
d7db6da9
FN
1146 symbol_file_add_main_1 (args, from_tty, 0);
1147}
1148
1149static void
1150symbol_file_add_main_1 (char *args, int from_tty, int flags)
1151{
1152 symbol_file_add (args, from_tty, NULL, 1, flags);
1153
d7db6da9
FN
1154 /* Getting new symbols may change our opinion about
1155 what is frameless. */
1156 reinit_frame_cache ();
1157
1158 set_initial_language ();
1adeb98a
FN
1159}
1160
1161void
1162symbol_file_clear (int from_tty)
1163{
1164 if ((have_full_symbols () || have_partial_symbols ())
1165 && from_tty
0430b0d6
AS
1166 && (symfile_objfile
1167 ? !query (_("Discard symbol table from `%s'? "),
1168 symfile_objfile->name)
1169 : !query (_("Discard symbol table? "))))
8a3fe4f8 1170 error (_("Not confirmed."));
1adeb98a
FN
1171 free_all_objfiles ();
1172
1173 /* solib descriptors may have handles to objfiles. Since their
1174 storage has just been released, we'd better wipe the solib
1175 descriptors as well.
1176 */
e85a822c 1177 no_shared_libraries (NULL, from_tty);
1adeb98a
FN
1178
1179 symfile_objfile = NULL;
1180 if (from_tty)
a3f17187 1181 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1182}
1183
77069918
JK
1184struct build_id
1185 {
1186 size_t size;
1187 gdb_byte data[1];
1188 };
1189
1190/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1191
1192static struct build_id *
1193build_id_bfd_get (bfd *abfd)
1194{
1195 struct build_id *retval;
1196
1197 if (!bfd_check_format (abfd, bfd_object)
1198 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1199 || elf_tdata (abfd)->build_id == NULL)
1200 return NULL;
1201
1202 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1203 retval->size = elf_tdata (abfd)->build_id_size;
1204 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1205
1206 return retval;
1207}
1208
1209/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1210
1211static int
1212build_id_verify (const char *filename, struct build_id *check)
1213{
1214 bfd *abfd;
1215 struct build_id *found = NULL;
1216 int retval = 0;
1217
1218 /* We expect to be silent on the non-existing files. */
1219 abfd = bfd_openr (filename, gnutarget);
1220 if (abfd == NULL)
1221 return 0;
1222
1223 found = build_id_bfd_get (abfd);
1224
1225 if (found == NULL)
1226 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1227 else if (found->size != check->size
1228 || memcmp (found->data, check->data, found->size) != 0)
1229 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1230 else
1231 retval = 1;
1232
1233 if (!bfd_close (abfd))
1234 warning (_("cannot close \"%s\": %s"), filename,
1235 bfd_errmsg (bfd_get_error ()));
1236 return retval;
1237}
1238
1239static char *
1240build_id_to_debug_filename (struct build_id *build_id)
1241{
1242 char *link, *s, *retval = NULL;
1243 gdb_byte *data = build_id->data;
1244 size_t size = build_id->size;
1245
1246 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1247 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1248 + 2 * size + (sizeof ".debug" - 1) + 1);
1249 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1250 if (size > 0)
1251 {
1252 size--;
1253 s += sprintf (s, "%02x", (unsigned) *data++);
1254 }
1255 if (size > 0)
1256 *s++ = '/';
1257 while (size-- > 0)
1258 s += sprintf (s, "%02x", (unsigned) *data++);
1259 strcpy (s, ".debug");
1260
1261 /* lrealpath() is expensive even for the usually non-existent files. */
1262 if (access (link, F_OK) == 0)
1263 retval = lrealpath (link);
1264 xfree (link);
1265
1266 if (retval != NULL && !build_id_verify (retval, build_id))
1267 {
1268 xfree (retval);
1269 retval = NULL;
1270 }
1271
1272 return retval;
1273}
1274
5b5d99cf
JB
1275static char *
1276get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1277{
1278 asection *sect;
1279 bfd_size_type debuglink_size;
1280 unsigned long crc32;
1281 char *contents;
1282 int crc_offset;
1283 unsigned char *p;
5417f6dc 1284
5b5d99cf
JB
1285 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1286
1287 if (sect == NULL)
1288 return NULL;
1289
1290 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1291
5b5d99cf
JB
1292 contents = xmalloc (debuglink_size);
1293 bfd_get_section_contents (objfile->obfd, sect, contents,
1294 (file_ptr)0, (bfd_size_type)debuglink_size);
1295
1296 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1297 crc_offset = strlen (contents) + 1;
1298 crc_offset = (crc_offset + 3) & ~3;
1299
1300 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1301
5b5d99cf
JB
1302 *crc32_out = crc32;
1303 return contents;
1304}
1305
1306static int
1307separate_debug_file_exists (const char *name, unsigned long crc)
1308{
1309 unsigned long file_crc = 0;
1310 int fd;
777ea8f1 1311 gdb_byte buffer[8*1024];
5b5d99cf
JB
1312 int count;
1313
1314 fd = open (name, O_RDONLY | O_BINARY);
1315 if (fd < 0)
1316 return 0;
1317
1318 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 close (fd);
1322
1323 return crc == file_crc;
1324}
1325
aa28a74e 1326char *debug_file_directory = NULL;
920d2a44
AC
1327static void
1328show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330{
1331 fprintf_filtered (file, _("\
1332The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334}
5b5d99cf
JB
1335
1336#if ! defined (DEBUG_SUBDIRECTORY)
1337#define DEBUG_SUBDIRECTORY ".debug"
1338#endif
1339
1340static char *
1341find_separate_debug_file (struct objfile *objfile)
1342{
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
aa28a74e 1348 char *canon_name;
5b5d99cf
JB
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
77069918
JK
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
1360 free (build_id);
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
5b5d99cf
JB
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
5417f6dc 1376
5b5d99cf
JB
1377 dir = xstrdup (objfile->name);
1378
fe36c4f4
JB
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
5b5d99cf
JB
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
fe36c4f4 1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1389 dir[i+1] = '\0';
5417f6dc 1390
5b5d99cf
JB
1391 debugfile = alloca (strlen (debug_file_directory) + 1
1392 + strlen (dir)
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
5417f6dc 1395 + strlen (basename)
5b5d99cf
JB
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
1402 if (separate_debug_file_exists (debugfile, crc32))
1403 {
1404 xfree (basename);
1405 xfree (dir);
1406 return xstrdup (debugfile);
1407 }
5417f6dc 1408
5b5d99cf
JB
1409 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1410 strcpy (debugfile, dir);
1411 strcat (debugfile, DEBUG_SUBDIRECTORY);
1412 strcat (debugfile, "/");
1413 strcat (debugfile, basename);
1414
1415 if (separate_debug_file_exists (debugfile, crc32))
1416 {
1417 xfree (basename);
1418 xfree (dir);
1419 return xstrdup (debugfile);
1420 }
5417f6dc 1421
5b5d99cf
JB
1422 /* Then try in the global debugfile directory. */
1423 strcpy (debugfile, debug_file_directory);
1424 strcat (debugfile, "/");
1425 strcat (debugfile, dir);
5b5d99cf
JB
1426 strcat (debugfile, basename);
1427
1428 if (separate_debug_file_exists (debugfile, crc32))
1429 {
1430 xfree (basename);
1431 xfree (dir);
1432 return xstrdup (debugfile);
1433 }
5417f6dc 1434
aa28a74e
DJ
1435 /* If the file is in the sysroot, try using its base path in the
1436 global debugfile directory. */
1437 canon_name = lrealpath (dir);
1438 if (canon_name
1439 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1440 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1441 {
1442 strcpy (debugfile, debug_file_directory);
1443 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1444 strcat (debugfile, "/");
1445 strcat (debugfile, basename);
1446
1447 if (separate_debug_file_exists (debugfile, crc32))
1448 {
1449 xfree (canon_name);
1450 xfree (basename);
1451 xfree (dir);
1452 return xstrdup (debugfile);
1453 }
1454 }
1455
1456 if (canon_name)
1457 xfree (canon_name);
1458
5b5d99cf
JB
1459 xfree (basename);
1460 xfree (dir);
1461 return NULL;
1462}
1463
1464
c906108c
SS
1465/* This is the symbol-file command. Read the file, analyze its
1466 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1467 the command is rather bizarre:
1468
1469 1. The function buildargv implements various quoting conventions
1470 which are undocumented and have little or nothing in common with
1471 the way things are quoted (or not quoted) elsewhere in GDB.
1472
1473 2. Options are used, which are not generally used in GDB (perhaps
1474 "set mapped on", "set readnow on" would be better)
1475
1476 3. The order of options matters, which is contrary to GNU
c906108c
SS
1477 conventions (because it is confusing and inconvenient). */
1478
1479void
fba45db2 1480symbol_file_command (char *args, int from_tty)
c906108c 1481{
c906108c
SS
1482 dont_repeat ();
1483
1484 if (args == NULL)
1485 {
1adeb98a 1486 symbol_file_clear (from_tty);
c906108c
SS
1487 }
1488 else
1489 {
cb2f3a29
MK
1490 char **argv = buildargv (args);
1491 int flags = OBJF_USERLOADED;
1492 struct cleanup *cleanups;
1493 char *name = NULL;
1494
1495 if (argv == NULL)
1496 nomem (0);
1497
7a292a7a 1498 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1499 while (*argv != NULL)
1500 {
78a4a9b9
AC
1501 if (strcmp (*argv, "-readnow") == 0)
1502 flags |= OBJF_READNOW;
1503 else if (**argv == '-')
8a3fe4f8 1504 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1505 else
1506 {
cb2f3a29 1507 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1508 name = *argv;
78a4a9b9 1509 }
cb2f3a29 1510
c906108c
SS
1511 argv++;
1512 }
1513
1514 if (name == NULL)
cb2f3a29
MK
1515 error (_("no symbol file name was specified"));
1516
c906108c
SS
1517 do_cleanups (cleanups);
1518 }
1519}
1520
1521/* Set the initial language.
1522
cb2f3a29
MK
1523 FIXME: A better solution would be to record the language in the
1524 psymtab when reading partial symbols, and then use it (if known) to
1525 set the language. This would be a win for formats that encode the
1526 language in an easily discoverable place, such as DWARF. For
1527 stabs, we can jump through hoops looking for specially named
1528 symbols or try to intuit the language from the specific type of
1529 stabs we find, but we can't do that until later when we read in
1530 full symbols. */
c906108c 1531
8b60591b 1532void
fba45db2 1533set_initial_language (void)
c906108c
SS
1534{
1535 struct partial_symtab *pst;
c5aa993b 1536 enum language lang = language_unknown;
c906108c
SS
1537
1538 pst = find_main_psymtab ();
1539 if (pst != NULL)
1540 {
c5aa993b 1541 if (pst->filename != NULL)
cb2f3a29
MK
1542 lang = deduce_language_from_filename (pst->filename);
1543
c906108c
SS
1544 if (lang == language_unknown)
1545 {
c5aa993b
JM
1546 /* Make C the default language */
1547 lang = language_c;
c906108c 1548 }
cb2f3a29 1549
c906108c 1550 set_language (lang);
cb2f3a29 1551 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1552 }
1553}
1554
cb2f3a29
MK
1555/* Open the file specified by NAME and hand it off to BFD for
1556 preliminary analysis. Return a newly initialized bfd *, which
1557 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1558 absolute). In case of trouble, error() is called. */
c906108c
SS
1559
1560bfd *
fba45db2 1561symfile_bfd_open (char *name)
c906108c
SS
1562{
1563 bfd *sym_bfd;
1564 int desc;
1565 char *absolute_name;
1566
cb2f3a29 1567 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1568
1569 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1570 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1571 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1572#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1573 if (desc < 0)
1574 {
1575 char *exename = alloca (strlen (name) + 5);
1576 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1577 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1578 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1579 }
1580#endif
1581 if (desc < 0)
1582 {
b8c9b27d 1583 make_cleanup (xfree, name);
c906108c
SS
1584 perror_with_name (name);
1585 }
cb2f3a29
MK
1586
1587 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1588 bfd. It'll be freed in free_objfile(). */
1589 xfree (name);
1590 name = absolute_name;
c906108c 1591
9f76c2cd 1592 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1593 if (!sym_bfd)
1594 {
1595 close (desc);
b8c9b27d 1596 make_cleanup (xfree, name);
8a3fe4f8 1597 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1598 bfd_errmsg (bfd_get_error ()));
1599 }
549c1eea 1600 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1601
1602 if (!bfd_check_format (sym_bfd, bfd_object))
1603 {
cb2f3a29
MK
1604 /* FIXME: should be checking for errors from bfd_close (for one
1605 thing, on error it does not free all the storage associated
1606 with the bfd). */
1607 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1608 make_cleanup (xfree, name);
8a3fe4f8 1609 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1610 bfd_errmsg (bfd_get_error ()));
1611 }
cb2f3a29
MK
1612
1613 return sym_bfd;
c906108c
SS
1614}
1615
cb2f3a29
MK
1616/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1617 the section was not found. */
1618
0e931cf0
JB
1619int
1620get_section_index (struct objfile *objfile, char *section_name)
1621{
1622 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1623
0e931cf0
JB
1624 if (sect)
1625 return sect->index;
1626 else
1627 return -1;
1628}
1629
cb2f3a29
MK
1630/* Link SF into the global symtab_fns list. Called on startup by the
1631 _initialize routine in each object file format reader, to register
1632 information about each format the the reader is prepared to
1633 handle. */
c906108c
SS
1634
1635void
fba45db2 1636add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1637{
1638 sf->next = symtab_fns;
1639 symtab_fns = sf;
1640}
1641
cb2f3a29
MK
1642/* Initialize OBJFILE to read symbols from its associated BFD. It
1643 either returns or calls error(). The result is an initialized
1644 struct sym_fns in the objfile structure, that contains cached
1645 information about the symbol file. */
c906108c 1646
31d99776
DJ
1647static struct sym_fns *
1648find_sym_fns (bfd *abfd)
c906108c
SS
1649{
1650 struct sym_fns *sf;
31d99776 1651 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1652
75245b24
MS
1653 if (our_flavour == bfd_target_srec_flavour
1654 || our_flavour == bfd_target_ihex_flavour
1655 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1656 return NULL; /* No symbols. */
75245b24 1657
c5aa993b 1658 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1659 if (our_flavour == sf->sym_flavour)
1660 return sf;
cb2f3a29 1661
8a3fe4f8 1662 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1663 bfd_get_target (abfd));
c906108c
SS
1664}
1665\f
cb2f3a29 1666
c906108c
SS
1667/* This function runs the load command of our current target. */
1668
1669static void
fba45db2 1670load_command (char *arg, int from_tty)
c906108c 1671{
4487aabf
PA
1672 /* The user might be reloading because the binary has changed. Take
1673 this opportunity to check. */
1674 reopen_exec_file ();
1675 reread_symbols ();
1676
c906108c 1677 if (arg == NULL)
1986bccd
AS
1678 {
1679 char *parg;
1680 int count = 0;
1681
1682 parg = arg = get_exec_file (1);
1683
1684 /* Count how many \ " ' tab space there are in the name. */
1685 while ((parg = strpbrk (parg, "\\\"'\t ")))
1686 {
1687 parg++;
1688 count++;
1689 }
1690
1691 if (count)
1692 {
1693 /* We need to quote this string so buildargv can pull it apart. */
1694 char *temp = xmalloc (strlen (arg) + count + 1 );
1695 char *ptemp = temp;
1696 char *prev;
1697
1698 make_cleanup (xfree, temp);
1699
1700 prev = parg = arg;
1701 while ((parg = strpbrk (parg, "\\\"'\t ")))
1702 {
1703 strncpy (ptemp, prev, parg - prev);
1704 ptemp += parg - prev;
1705 prev = parg++;
1706 *ptemp++ = '\\';
1707 }
1708 strcpy (ptemp, prev);
1709
1710 arg = temp;
1711 }
1712 }
1713
c906108c 1714 target_load (arg, from_tty);
2889e661
JB
1715
1716 /* After re-loading the executable, we don't really know which
1717 overlays are mapped any more. */
1718 overlay_cache_invalid = 1;
c906108c
SS
1719}
1720
1721/* This version of "load" should be usable for any target. Currently
1722 it is just used for remote targets, not inftarg.c or core files,
1723 on the theory that only in that case is it useful.
1724
1725 Avoiding xmodem and the like seems like a win (a) because we don't have
1726 to worry about finding it, and (b) On VMS, fork() is very slow and so
1727 we don't want to run a subprocess. On the other hand, I'm not sure how
1728 performance compares. */
917317f4 1729
917317f4
JM
1730static int validate_download = 0;
1731
e4f9b4d5
MS
1732/* Callback service function for generic_load (bfd_map_over_sections). */
1733
1734static void
1735add_section_size_callback (bfd *abfd, asection *asec, void *data)
1736{
1737 bfd_size_type *sum = data;
1738
2c500098 1739 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1740}
1741
1742/* Opaque data for load_section_callback. */
1743struct load_section_data {
1744 unsigned long load_offset;
a76d924d
DJ
1745 struct load_progress_data *progress_data;
1746 VEC(memory_write_request_s) *requests;
1747};
1748
1749/* Opaque data for load_progress. */
1750struct load_progress_data {
1751 /* Cumulative data. */
e4f9b4d5
MS
1752 unsigned long write_count;
1753 unsigned long data_count;
1754 bfd_size_type total_size;
a76d924d
DJ
1755};
1756
1757/* Opaque data for load_progress for a single section. */
1758struct load_progress_section_data {
1759 struct load_progress_data *cumulative;
cf7a04e8 1760
a76d924d 1761 /* Per-section data. */
cf7a04e8
DJ
1762 const char *section_name;
1763 ULONGEST section_sent;
1764 ULONGEST section_size;
1765 CORE_ADDR lma;
1766 gdb_byte *buffer;
e4f9b4d5
MS
1767};
1768
a76d924d 1769/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1770
1771static void
1772load_progress (ULONGEST bytes, void *untyped_arg)
1773{
a76d924d
DJ
1774 struct load_progress_section_data *args = untyped_arg;
1775 struct load_progress_data *totals;
1776
1777 if (args == NULL)
1778 /* Writing padding data. No easy way to get at the cumulative
1779 stats, so just ignore this. */
1780 return;
1781
1782 totals = args->cumulative;
1783
1784 if (bytes == 0 && args->section_sent == 0)
1785 {
1786 /* The write is just starting. Let the user know we've started
1787 this section. */
1788 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1789 args->section_name, paddr_nz (args->section_size),
1790 paddr_nz (args->lma));
1791 return;
1792 }
cf7a04e8
DJ
1793
1794 if (validate_download)
1795 {
1796 /* Broken memories and broken monitors manifest themselves here
1797 when bring new computers to life. This doubles already slow
1798 downloads. */
1799 /* NOTE: cagney/1999-10-18: A more efficient implementation
1800 might add a verify_memory() method to the target vector and
1801 then use that. remote.c could implement that method using
1802 the ``qCRC'' packet. */
1803 gdb_byte *check = xmalloc (bytes);
1804 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1805
1806 if (target_read_memory (args->lma, check, bytes) != 0)
1807 error (_("Download verify read failed at 0x%s"),
1808 paddr (args->lma));
1809 if (memcmp (args->buffer, check, bytes) != 0)
1810 error (_("Download verify compare failed at 0x%s"),
1811 paddr (args->lma));
1812 do_cleanups (verify_cleanups);
1813 }
a76d924d 1814 totals->data_count += bytes;
cf7a04e8
DJ
1815 args->lma += bytes;
1816 args->buffer += bytes;
a76d924d 1817 totals->write_count += 1;
cf7a04e8
DJ
1818 args->section_sent += bytes;
1819 if (quit_flag
1820 || (deprecated_ui_load_progress_hook != NULL
1821 && deprecated_ui_load_progress_hook (args->section_name,
1822 args->section_sent)))
1823 error (_("Canceled the download"));
1824
1825 if (deprecated_show_load_progress != NULL)
1826 deprecated_show_load_progress (args->section_name,
1827 args->section_sent,
1828 args->section_size,
a76d924d
DJ
1829 totals->data_count,
1830 totals->total_size);
cf7a04e8
DJ
1831}
1832
e4f9b4d5
MS
1833/* Callback service function for generic_load (bfd_map_over_sections). */
1834
1835static void
1836load_section_callback (bfd *abfd, asection *asec, void *data)
1837{
a76d924d 1838 struct memory_write_request *new_request;
e4f9b4d5 1839 struct load_section_data *args = data;
a76d924d 1840 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1841 bfd_size_type size = bfd_get_section_size (asec);
1842 gdb_byte *buffer;
cf7a04e8 1843 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1844
cf7a04e8
DJ
1845 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1846 return;
e4f9b4d5 1847
cf7a04e8
DJ
1848 if (size == 0)
1849 return;
e4f9b4d5 1850
a76d924d
DJ
1851 new_request = VEC_safe_push (memory_write_request_s,
1852 args->requests, NULL);
1853 memset (new_request, 0, sizeof (struct memory_write_request));
1854 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1855 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1856 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1857 new_request->data = xmalloc (size);
1858 new_request->baton = section_data;
cf7a04e8 1859
a76d924d 1860 buffer = new_request->data;
cf7a04e8 1861
a76d924d
DJ
1862 section_data->cumulative = args->progress_data;
1863 section_data->section_name = sect_name;
1864 section_data->section_size = size;
1865 section_data->lma = new_request->begin;
1866 section_data->buffer = buffer;
cf7a04e8
DJ
1867
1868 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1869}
1870
1871/* Clean up an entire memory request vector, including load
1872 data and progress records. */
cf7a04e8 1873
a76d924d
DJ
1874static void
1875clear_memory_write_data (void *arg)
1876{
1877 VEC(memory_write_request_s) **vec_p = arg;
1878 VEC(memory_write_request_s) *vec = *vec_p;
1879 int i;
1880 struct memory_write_request *mr;
cf7a04e8 1881
a76d924d
DJ
1882 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1883 {
1884 xfree (mr->data);
1885 xfree (mr->baton);
1886 }
1887 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1888}
1889
c906108c 1890void
917317f4 1891generic_load (char *args, int from_tty)
c906108c 1892{
c906108c 1893 bfd *loadfile_bfd;
2b71414d 1894 struct timeval start_time, end_time;
917317f4 1895 char *filename;
1986bccd 1896 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1897 struct load_section_data cbdata;
a76d924d
DJ
1898 struct load_progress_data total_progress;
1899
e4f9b4d5 1900 CORE_ADDR entry;
1986bccd 1901 char **argv;
e4f9b4d5 1902
a76d924d
DJ
1903 memset (&cbdata, 0, sizeof (cbdata));
1904 memset (&total_progress, 0, sizeof (total_progress));
1905 cbdata.progress_data = &total_progress;
1906
1907 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1908
1986bccd
AS
1909 argv = buildargv (args);
1910
1911 if (argv == NULL)
1912 nomem(0);
1913
1914 make_cleanup_freeargv (argv);
1915
1916 filename = tilde_expand (argv[0]);
1917 make_cleanup (xfree, filename);
1918
1919 if (argv[1] != NULL)
917317f4
JM
1920 {
1921 char *endptr;
ba5f2f8a 1922
1986bccd
AS
1923 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1924
1925 /* If the last word was not a valid number then
1926 treat it as a file name with spaces in. */
1927 if (argv[1] == endptr)
1928 error (_("Invalid download offset:%s."), argv[1]);
1929
1930 if (argv[2] != NULL)
1931 error (_("Too many parameters."));
917317f4 1932 }
c906108c 1933
917317f4 1934 /* Open the file for loading. */
c906108c
SS
1935 loadfile_bfd = bfd_openr (filename, gnutarget);
1936 if (loadfile_bfd == NULL)
1937 {
1938 perror_with_name (filename);
1939 return;
1940 }
917317f4 1941
c906108c
SS
1942 /* FIXME: should be checking for errors from bfd_close (for one thing,
1943 on error it does not free all the storage associated with the
1944 bfd). */
5c65bbb6 1945 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1946
c5aa993b 1947 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1948 {
8a3fe4f8 1949 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1950 bfd_errmsg (bfd_get_error ()));
1951 }
c5aa993b 1952
5417f6dc 1953 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1954 (void *) &total_progress.total_size);
1955
1956 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1957
2b71414d 1958 gettimeofday (&start_time, NULL);
c906108c 1959
a76d924d
DJ
1960 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1961 load_progress) != 0)
1962 error (_("Load failed"));
c906108c 1963
2b71414d 1964 gettimeofday (&end_time, NULL);
ba5f2f8a 1965
e4f9b4d5 1966 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1967 ui_out_text (uiout, "Start address ");
1968 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1969 ui_out_text (uiout, ", load size ");
a76d924d 1970 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1971 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1972 /* We were doing this in remote-mips.c, I suspect it is right
1973 for other targets too. */
1974 write_pc (entry);
c906108c 1975
7ca9f392
AC
1976 /* FIXME: are we supposed to call symbol_file_add or not? According
1977 to a comment from remote-mips.c (where a call to symbol_file_add
1978 was commented out), making the call confuses GDB if more than one
1979 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1980 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1981
a76d924d
DJ
1982 print_transfer_performance (gdb_stdout, total_progress.data_count,
1983 total_progress.write_count,
1984 &start_time, &end_time);
c906108c
SS
1985
1986 do_cleanups (old_cleanups);
1987}
1988
1989/* Report how fast the transfer went. */
1990
917317f4
JM
1991/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1992 replaced by print_transfer_performance (with a very different
1993 function signature). */
1994
c906108c 1995void
fba45db2
KB
1996report_transfer_performance (unsigned long data_count, time_t start_time,
1997 time_t end_time)
c906108c 1998{
2b71414d
DJ
1999 struct timeval start, end;
2000
2001 start.tv_sec = start_time;
2002 start.tv_usec = 0;
2003 end.tv_sec = end_time;
2004 end.tv_usec = 0;
2005
2006 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2007}
2008
2009void
d9fcf2fb 2010print_transfer_performance (struct ui_file *stream,
917317f4
JM
2011 unsigned long data_count,
2012 unsigned long write_count,
2b71414d
DJ
2013 const struct timeval *start_time,
2014 const struct timeval *end_time)
917317f4 2015{
9f43d28c 2016 ULONGEST time_count;
2b71414d
DJ
2017
2018 /* Compute the elapsed time in milliseconds, as a tradeoff between
2019 accuracy and overflow. */
2020 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2021 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2022
8b93c638
JM
2023 ui_out_text (uiout, "Transfer rate: ");
2024 if (time_count > 0)
2025 {
9f43d28c
DJ
2026 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2027
2028 if (ui_out_is_mi_like_p (uiout))
2029 {
2030 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2031 ui_out_text (uiout, " bits/sec");
2032 }
2033 else if (rate < 1024)
2034 {
2035 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2036 ui_out_text (uiout, " bytes/sec");
2037 }
2038 else
2039 {
2040 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2041 ui_out_text (uiout, " KB/sec");
2042 }
8b93c638
JM
2043 }
2044 else
2045 {
ba5f2f8a 2046 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2047 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2048 }
2049 if (write_count > 0)
2050 {
2051 ui_out_text (uiout, ", ");
ba5f2f8a 2052 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2053 ui_out_text (uiout, " bytes/write");
2054 }
2055 ui_out_text (uiout, ".\n");
c906108c
SS
2056}
2057
2058/* This function allows the addition of incrementally linked object files.
2059 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2060/* Note: ezannoni 2000-04-13 This function/command used to have a
2061 special case syntax for the rombug target (Rombug is the boot
2062 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2063 rombug case, the user doesn't need to supply a text address,
2064 instead a call to target_link() (in target.c) would supply the
2065 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2066
c906108c 2067static void
fba45db2 2068add_symbol_file_command (char *args, int from_tty)
c906108c 2069{
db162d44 2070 char *filename = NULL;
2df3850c 2071 int flags = OBJF_USERLOADED;
c906108c 2072 char *arg;
2acceee2 2073 int expecting_option = 0;
db162d44 2074 int section_index = 0;
2acceee2
JM
2075 int argcnt = 0;
2076 int sec_num = 0;
2077 int i;
db162d44
EZ
2078 int expecting_sec_name = 0;
2079 int expecting_sec_addr = 0;
5b96932b 2080 char **argv;
db162d44 2081
a39a16c4 2082 struct sect_opt
2acceee2 2083 {
2acceee2
JM
2084 char *name;
2085 char *value;
a39a16c4 2086 };
db162d44 2087
a39a16c4
MM
2088 struct section_addr_info *section_addrs;
2089 struct sect_opt *sect_opts = NULL;
2090 size_t num_sect_opts = 0;
3017564a 2091 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2092
a39a16c4 2093 num_sect_opts = 16;
5417f6dc 2094 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2095 * sizeof (struct sect_opt));
2096
c906108c
SS
2097 dont_repeat ();
2098
2099 if (args == NULL)
8a3fe4f8 2100 error (_("add-symbol-file takes a file name and an address"));
c906108c 2101
5b96932b
AS
2102 argv = buildargv (args);
2103 make_cleanup_freeargv (argv);
db162d44 2104
5b96932b
AS
2105 if (argv == NULL)
2106 nomem (0);
db162d44 2107
5b96932b
AS
2108 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2109 {
2110 /* Process the argument. */
db162d44 2111 if (argcnt == 0)
c906108c 2112 {
db162d44
EZ
2113 /* The first argument is the file name. */
2114 filename = tilde_expand (arg);
3017564a 2115 make_cleanup (xfree, filename);
c906108c 2116 }
db162d44 2117 else
7a78ae4e
ND
2118 if (argcnt == 1)
2119 {
2120 /* The second argument is always the text address at which
2121 to load the program. */
2122 sect_opts[section_index].name = ".text";
2123 sect_opts[section_index].value = arg;
f414f22f 2124 if (++section_index >= num_sect_opts)
a39a16c4
MM
2125 {
2126 num_sect_opts *= 2;
5417f6dc 2127 sect_opts = ((struct sect_opt *)
a39a16c4 2128 xrealloc (sect_opts,
5417f6dc 2129 num_sect_opts
a39a16c4
MM
2130 * sizeof (struct sect_opt)));
2131 }
7a78ae4e
ND
2132 }
2133 else
2134 {
2135 /* It's an option (starting with '-') or it's an argument
2136 to an option */
2137
2138 if (*arg == '-')
2139 {
78a4a9b9
AC
2140 if (strcmp (arg, "-readnow") == 0)
2141 flags |= OBJF_READNOW;
2142 else if (strcmp (arg, "-s") == 0)
2143 {
2144 expecting_sec_name = 1;
2145 expecting_sec_addr = 1;
2146 }
7a78ae4e
ND
2147 }
2148 else
2149 {
2150 if (expecting_sec_name)
db162d44 2151 {
7a78ae4e
ND
2152 sect_opts[section_index].name = arg;
2153 expecting_sec_name = 0;
db162d44
EZ
2154 }
2155 else
7a78ae4e
ND
2156 if (expecting_sec_addr)
2157 {
2158 sect_opts[section_index].value = arg;
2159 expecting_sec_addr = 0;
f414f22f 2160 if (++section_index >= num_sect_opts)
a39a16c4
MM
2161 {
2162 num_sect_opts *= 2;
5417f6dc 2163 sect_opts = ((struct sect_opt *)
a39a16c4 2164 xrealloc (sect_opts,
5417f6dc 2165 num_sect_opts
a39a16c4
MM
2166 * sizeof (struct sect_opt)));
2167 }
7a78ae4e
ND
2168 }
2169 else
8a3fe4f8 2170 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2171 }
2172 }
c906108c 2173 }
c906108c 2174
927890d0
JB
2175 /* This command takes at least two arguments. The first one is a
2176 filename, and the second is the address where this file has been
2177 loaded. Abort now if this address hasn't been provided by the
2178 user. */
2179 if (section_index < 1)
2180 error (_("The address where %s has been loaded is missing"), filename);
2181
db162d44
EZ
2182 /* Print the prompt for the query below. And save the arguments into
2183 a sect_addr_info structure to be passed around to other
2184 functions. We have to split this up into separate print
bb599908 2185 statements because hex_string returns a local static
db162d44 2186 string. */
5417f6dc 2187
a3f17187 2188 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2189 section_addrs = alloc_section_addr_info (section_index);
2190 make_cleanup (xfree, section_addrs);
db162d44 2191 for (i = 0; i < section_index; i++)
c906108c 2192 {
db162d44
EZ
2193 CORE_ADDR addr;
2194 char *val = sect_opts[i].value;
2195 char *sec = sect_opts[i].name;
5417f6dc 2196
ae822768 2197 addr = parse_and_eval_address (val);
db162d44 2198
db162d44
EZ
2199 /* Here we store the section offsets in the order they were
2200 entered on the command line. */
a39a16c4
MM
2201 section_addrs->other[sec_num].name = sec;
2202 section_addrs->other[sec_num].addr = addr;
35076fa0 2203 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
db162d44
EZ
2204 sec_num++;
2205
5417f6dc 2206 /* The object's sections are initialized when a
db162d44 2207 call is made to build_objfile_section_table (objfile).
5417f6dc 2208 This happens in reread_symbols.
db162d44
EZ
2209 At this point, we don't know what file type this is,
2210 so we can't determine what section names are valid. */
2acceee2 2211 }
db162d44 2212
2acceee2 2213 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2214 error (_("Not confirmed."));
c906108c 2215
a39a16c4 2216 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2217
2218 /* Getting new symbols may change our opinion about what is
2219 frameless. */
2220 reinit_frame_cache ();
db162d44 2221 do_cleanups (my_cleanups);
c906108c
SS
2222}
2223\f
2224static void
fba45db2 2225add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2226{
2227#ifdef ADD_SHARED_SYMBOL_FILES
2228 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2229#else
8a3fe4f8 2230 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2231#endif
c906108c
SS
2232}
2233\f
2234/* Re-read symbols if a symbol-file has changed. */
2235void
fba45db2 2236reread_symbols (void)
c906108c
SS
2237{
2238 struct objfile *objfile;
2239 long new_modtime;
2240 int reread_one = 0;
2241 struct stat new_statbuf;
2242 int res;
2243
2244 /* With the addition of shared libraries, this should be modified,
2245 the load time should be saved in the partial symbol tables, since
2246 different tables may come from different source files. FIXME.
2247 This routine should then walk down each partial symbol table
2248 and see if the symbol table that it originates from has been changed */
2249
c5aa993b
JM
2250 for (objfile = object_files; objfile; objfile = objfile->next)
2251 {
2252 if (objfile->obfd)
2253 {
52d16ba8 2254#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2255 /* If this object is from a shared library, then you should
2256 stat on the library name, not member name. */
c906108c 2257
c5aa993b
JM
2258 if (objfile->obfd->my_archive)
2259 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2260 else
c906108c 2261#endif
c5aa993b
JM
2262 res = stat (objfile->name, &new_statbuf);
2263 if (res != 0)
c906108c 2264 {
c5aa993b 2265 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2266 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2267 objfile->name);
2268 continue;
c906108c 2269 }
c5aa993b
JM
2270 new_modtime = new_statbuf.st_mtime;
2271 if (new_modtime != objfile->mtime)
c906108c 2272 {
c5aa993b
JM
2273 struct cleanup *old_cleanups;
2274 struct section_offsets *offsets;
2275 int num_offsets;
c5aa993b
JM
2276 char *obfd_filename;
2277
a3f17187 2278 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2279 objfile->name);
2280
2281 /* There are various functions like symbol_file_add,
2282 symfile_bfd_open, syms_from_objfile, etc., which might
2283 appear to do what we want. But they have various other
2284 effects which we *don't* want. So we just do stuff
2285 ourselves. We don't worry about mapped files (for one thing,
2286 any mapped file will be out of date). */
2287
2288 /* If we get an error, blow away this objfile (not sure if
2289 that is the correct response for things like shared
2290 libraries). */
74b7792f 2291 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2292 /* We need to do this whenever any symbols go away. */
74b7792f 2293 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2294
b2de52bb
JK
2295 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2296 bfd_get_filename (exec_bfd)) == 0)
2297 {
2298 /* Reload EXEC_BFD without asking anything. */
2299
2300 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2301 }
2302
c5aa993b
JM
2303 /* Clean up any state BFD has sitting around. We don't need
2304 to close the descriptor but BFD lacks a way of closing the
2305 BFD without closing the descriptor. */
2306 obfd_filename = bfd_get_filename (objfile->obfd);
2307 if (!bfd_close (objfile->obfd))
8a3fe4f8 2308 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2309 bfd_errmsg (bfd_get_error ()));
2310 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2311 if (objfile->obfd == NULL)
8a3fe4f8 2312 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2313 /* bfd_openr sets cacheable to true, which is what we want. */
2314 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2315 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2316 bfd_errmsg (bfd_get_error ()));
2317
2318 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2319 objfile_obstack. */
c5aa993b 2320 num_offsets = objfile->num_sections;
5417f6dc 2321 offsets = ((struct section_offsets *)
a39a16c4 2322 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2323 memcpy (offsets, objfile->section_offsets,
a39a16c4 2324 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2325
ae5a43e0
DJ
2326 /* Remove any references to this objfile in the global
2327 value lists. */
2328 preserve_values (objfile);
2329
c5aa993b
JM
2330 /* Nuke all the state that we will re-read. Much of the following
2331 code which sets things to NULL really is necessary to tell
2332 other parts of GDB that there is nothing currently there. */
2333
2334 /* FIXME: Do we have to free a whole linked list, or is this
2335 enough? */
2336 if (objfile->global_psymbols.list)
2dc74dc1 2337 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2338 memset (&objfile->global_psymbols, 0,
2339 sizeof (objfile->global_psymbols));
2340 if (objfile->static_psymbols.list)
2dc74dc1 2341 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2342 memset (&objfile->static_psymbols, 0,
2343 sizeof (objfile->static_psymbols));
2344
2345 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2346 bcache_xfree (objfile->psymbol_cache);
2347 objfile->psymbol_cache = bcache_xmalloc ();
2348 bcache_xfree (objfile->macro_cache);
2349 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2350 if (objfile->demangled_names_hash != NULL)
2351 {
2352 htab_delete (objfile->demangled_names_hash);
2353 objfile->demangled_names_hash = NULL;
2354 }
b99607ea 2355 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2356 objfile->sections = NULL;
2357 objfile->symtabs = NULL;
2358 objfile->psymtabs = NULL;
2359 objfile->free_psymtabs = NULL;
a1b8c067 2360 objfile->cp_namespace_symtab = NULL;
c5aa993b 2361 objfile->msymbols = NULL;
0a6ddd08 2362 objfile->deprecated_sym_private = NULL;
c5aa993b 2363 objfile->minimal_symbol_count = 0;
0a83117a
MS
2364 memset (&objfile->msymbol_hash, 0,
2365 sizeof (objfile->msymbol_hash));
2366 memset (&objfile->msymbol_demangled_hash, 0,
2367 sizeof (objfile->msymbol_demangled_hash));
7b097ae3 2368 clear_objfile_data (objfile);
c5aa993b
JM
2369 if (objfile->sf != NULL)
2370 {
2371 (*objfile->sf->sym_finish) (objfile);
2372 }
2373
af5f3db6
AC
2374 objfile->psymbol_cache = bcache_xmalloc ();
2375 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2376 /* obstack_init also initializes the obstack so it is
2377 empty. We could use obstack_specify_allocation but
2378 gdb_obstack.h specifies the alloc/dealloc
2379 functions. */
2380 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2381 if (build_objfile_section_table (objfile))
2382 {
8a3fe4f8 2383 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2384 objfile->name, bfd_errmsg (bfd_get_error ()));
2385 }
15831452 2386 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2387
2388 /* We use the same section offsets as from last time. I'm not
2389 sure whether that is always correct for shared libraries. */
2390 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2391 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2392 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2393 memcpy (objfile->section_offsets, offsets,
a39a16c4 2394 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2395 objfile->num_sections = num_offsets;
2396
2397 /* What the hell is sym_new_init for, anyway? The concept of
2398 distinguishing between the main file and additional files
2399 in this way seems rather dubious. */
2400 if (objfile == symfile_objfile)
2401 {
2402 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2403 }
2404
2405 (*objfile->sf->sym_init) (objfile);
b9caf505 2406 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2407 /* The "mainline" parameter is a hideous hack; I think leaving it
2408 zero is OK since dbxread.c also does what it needs to do if
2409 objfile->global_psymbols.size is 0. */
96baa820 2410 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2411 if (!have_partial_symbols () && !have_full_symbols ())
2412 {
2413 wrap_here ("");
a3f17187 2414 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2415 wrap_here ("");
2416 }
2417 objfile->flags |= OBJF_SYMS;
2418
2419 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2420 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2421
c5aa993b
JM
2422 /* Getting new symbols may change our opinion about what is
2423 frameless. */
c906108c 2424
c5aa993b 2425 reinit_frame_cache ();
c906108c 2426
c5aa993b
JM
2427 /* Discard cleanups as symbol reading was successful. */
2428 discard_cleanups (old_cleanups);
c906108c 2429
c5aa993b
JM
2430 /* If the mtime has changed between the time we set new_modtime
2431 and now, we *want* this to be out of date, so don't call stat
2432 again now. */
2433 objfile->mtime = new_modtime;
2434 reread_one = 1;
5b5d99cf 2435 reread_separate_symbols (objfile);
6528a9ea 2436 init_entry_point_info (objfile);
c5aa993b 2437 }
c906108c
SS
2438 }
2439 }
c906108c
SS
2440
2441 if (reread_one)
ea53e89f
JB
2442 {
2443 clear_symtab_users ();
2444 /* At least one objfile has changed, so we can consider that
2445 the executable we're debugging has changed too. */
781b42b0 2446 observer_notify_executable_changed ();
ea53e89f
JB
2447 }
2448
c906108c 2449}
5b5d99cf
JB
2450
2451
2452/* Handle separate debug info for OBJFILE, which has just been
2453 re-read:
2454 - If we had separate debug info before, but now we don't, get rid
2455 of the separated objfile.
2456 - If we didn't have separated debug info before, but now we do,
2457 read in the new separated debug info file.
2458 - If the debug link points to a different file, toss the old one
2459 and read the new one.
2460 This function does *not* handle the case where objfile is still
2461 using the same separate debug info file, but that file's timestamp
2462 has changed. That case should be handled by the loop in
2463 reread_symbols already. */
2464static void
2465reread_separate_symbols (struct objfile *objfile)
2466{
2467 char *debug_file;
2468 unsigned long crc32;
2469
2470 /* Does the updated objfile's debug info live in a
2471 separate file? */
2472 debug_file = find_separate_debug_file (objfile);
2473
2474 if (objfile->separate_debug_objfile)
2475 {
2476 /* There are two cases where we need to get rid of
2477 the old separated debug info objfile:
2478 - if the new primary objfile doesn't have
2479 separated debug info, or
2480 - if the new primary objfile has separate debug
2481 info, but it's under a different filename.
5417f6dc 2482
5b5d99cf
JB
2483 If the old and new objfiles both have separate
2484 debug info, under the same filename, then we're
2485 okay --- if the separated file's contents have
2486 changed, we will have caught that when we
2487 visited it in this function's outermost
2488 loop. */
2489 if (! debug_file
2490 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2491 free_objfile (objfile->separate_debug_objfile);
2492 }
2493
2494 /* If the new objfile has separate debug info, and we
2495 haven't loaded it already, do so now. */
2496 if (debug_file
2497 && ! objfile->separate_debug_objfile)
2498 {
2499 /* Use the same section offset table as objfile itself.
2500 Preserve the flags from objfile that make sense. */
2501 objfile->separate_debug_objfile
2502 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2503 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2504 info_verbose, /* from_tty: Don't override the default. */
2505 0, /* No addr table. */
2506 objfile->section_offsets, objfile->num_sections,
2507 0, /* Not mainline. See comments about this above. */
78a4a9b9 2508 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2509 | OBJF_USERLOADED)));
2510 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2511 = objfile;
2512 }
73780b3c
MS
2513 if (debug_file)
2514 xfree (debug_file);
5b5d99cf
JB
2515}
2516
2517
c906108c
SS
2518\f
2519
c5aa993b
JM
2520
2521typedef struct
2522{
2523 char *ext;
c906108c 2524 enum language lang;
c5aa993b
JM
2525}
2526filename_language;
c906108c 2527
c5aa993b 2528static filename_language *filename_language_table;
c906108c
SS
2529static int fl_table_size, fl_table_next;
2530
2531static void
fba45db2 2532add_filename_language (char *ext, enum language lang)
c906108c
SS
2533{
2534 if (fl_table_next >= fl_table_size)
2535 {
2536 fl_table_size += 10;
5417f6dc 2537 filename_language_table =
25bf3106
PM
2538 xrealloc (filename_language_table,
2539 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2540 }
2541
4fcf66da 2542 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2543 filename_language_table[fl_table_next].lang = lang;
2544 fl_table_next++;
2545}
2546
2547static char *ext_args;
920d2a44
AC
2548static void
2549show_ext_args (struct ui_file *file, int from_tty,
2550 struct cmd_list_element *c, const char *value)
2551{
2552 fprintf_filtered (file, _("\
2553Mapping between filename extension and source language is \"%s\".\n"),
2554 value);
2555}
c906108c
SS
2556
2557static void
26c41df3 2558set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2559{
2560 int i;
2561 char *cp = ext_args;
2562 enum language lang;
2563
2564 /* First arg is filename extension, starting with '.' */
2565 if (*cp != '.')
8a3fe4f8 2566 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2567
2568 /* Find end of first arg. */
c5aa993b 2569 while (*cp && !isspace (*cp))
c906108c
SS
2570 cp++;
2571
2572 if (*cp == '\0')
8a3fe4f8 2573 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2574 ext_args);
2575
2576 /* Null-terminate first arg */
c5aa993b 2577 *cp++ = '\0';
c906108c
SS
2578
2579 /* Find beginning of second arg, which should be a source language. */
2580 while (*cp && isspace (*cp))
2581 cp++;
2582
2583 if (*cp == '\0')
8a3fe4f8 2584 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2585 ext_args);
2586
2587 /* Lookup the language from among those we know. */
2588 lang = language_enum (cp);
2589
2590 /* Now lookup the filename extension: do we already know it? */
2591 for (i = 0; i < fl_table_next; i++)
2592 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2593 break;
2594
2595 if (i >= fl_table_next)
2596 {
2597 /* new file extension */
2598 add_filename_language (ext_args, lang);
2599 }
2600 else
2601 {
2602 /* redefining a previously known filename extension */
2603
2604 /* if (from_tty) */
2605 /* query ("Really make files of type %s '%s'?", */
2606 /* ext_args, language_str (lang)); */
2607
b8c9b27d 2608 xfree (filename_language_table[i].ext);
4fcf66da 2609 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2610 filename_language_table[i].lang = lang;
2611 }
2612}
2613
2614static void
fba45db2 2615info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2616{
2617 int i;
2618
a3f17187 2619 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2620 printf_filtered ("\n\n");
2621 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2622 printf_filtered ("\t%s\t- %s\n",
2623 filename_language_table[i].ext,
c906108c
SS
2624 language_str (filename_language_table[i].lang));
2625}
2626
2627static void
fba45db2 2628init_filename_language_table (void)
c906108c
SS
2629{
2630 if (fl_table_size == 0) /* protect against repetition */
2631 {
2632 fl_table_size = 20;
2633 fl_table_next = 0;
c5aa993b 2634 filename_language_table =
c906108c 2635 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2636 add_filename_language (".c", language_c);
2637 add_filename_language (".C", language_cplus);
2638 add_filename_language (".cc", language_cplus);
2639 add_filename_language (".cp", language_cplus);
2640 add_filename_language (".cpp", language_cplus);
2641 add_filename_language (".cxx", language_cplus);
2642 add_filename_language (".c++", language_cplus);
2643 add_filename_language (".java", language_java);
c906108c 2644 add_filename_language (".class", language_java);
da2cf7e0 2645 add_filename_language (".m", language_objc);
c5aa993b
JM
2646 add_filename_language (".f", language_fortran);
2647 add_filename_language (".F", language_fortran);
2648 add_filename_language (".s", language_asm);
aa707ed0 2649 add_filename_language (".sx", language_asm);
c5aa993b 2650 add_filename_language (".S", language_asm);
c6fd39cd
PM
2651 add_filename_language (".pas", language_pascal);
2652 add_filename_language (".p", language_pascal);
2653 add_filename_language (".pp", language_pascal);
963a6417
PH
2654 add_filename_language (".adb", language_ada);
2655 add_filename_language (".ads", language_ada);
2656 add_filename_language (".a", language_ada);
2657 add_filename_language (".ada", language_ada);
c906108c
SS
2658 }
2659}
2660
2661enum language
fba45db2 2662deduce_language_from_filename (char *filename)
c906108c
SS
2663{
2664 int i;
2665 char *cp;
2666
2667 if (filename != NULL)
2668 if ((cp = strrchr (filename, '.')) != NULL)
2669 for (i = 0; i < fl_table_next; i++)
2670 if (strcmp (cp, filename_language_table[i].ext) == 0)
2671 return filename_language_table[i].lang;
2672
2673 return language_unknown;
2674}
2675\f
2676/* allocate_symtab:
2677
2678 Allocate and partly initialize a new symbol table. Return a pointer
2679 to it. error() if no space.
2680
2681 Caller must set these fields:
c5aa993b
JM
2682 LINETABLE(symtab)
2683 symtab->blockvector
2684 symtab->dirname
2685 symtab->free_code
2686 symtab->free_ptr
2687 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2688 */
2689
2690struct symtab *
fba45db2 2691allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2692{
52f0bd74 2693 struct symtab *symtab;
c906108c
SS
2694
2695 symtab = (struct symtab *)
4a146b47 2696 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2697 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2698 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2699 &objfile->objfile_obstack);
c5aa993b
JM
2700 symtab->fullname = NULL;
2701 symtab->language = deduce_language_from_filename (filename);
2702 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2703 &objfile->objfile_obstack);
c906108c
SS
2704
2705 /* Hook it to the objfile it comes from */
2706
c5aa993b
JM
2707 symtab->objfile = objfile;
2708 symtab->next = objfile->symtabs;
2709 objfile->symtabs = symtab;
c906108c 2710
c906108c
SS
2711 return (symtab);
2712}
2713
2714struct partial_symtab *
fba45db2 2715allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2716{
2717 struct partial_symtab *psymtab;
2718
c5aa993b 2719 if (objfile->free_psymtabs)
c906108c 2720 {
c5aa993b
JM
2721 psymtab = objfile->free_psymtabs;
2722 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2723 }
2724 else
2725 psymtab = (struct partial_symtab *)
8b92e4d5 2726 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2727 sizeof (struct partial_symtab));
2728
2729 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2730 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2731 &objfile->objfile_obstack);
c5aa993b 2732 psymtab->symtab = NULL;
c906108c
SS
2733
2734 /* Prepend it to the psymtab list for the objfile it belongs to.
2735 Psymtabs are searched in most recent inserted -> least recent
2736 inserted order. */
2737
c5aa993b
JM
2738 psymtab->objfile = objfile;
2739 psymtab->next = objfile->psymtabs;
2740 objfile->psymtabs = psymtab;
c906108c
SS
2741#if 0
2742 {
2743 struct partial_symtab **prev_pst;
c5aa993b
JM
2744 psymtab->objfile = objfile;
2745 psymtab->next = NULL;
2746 prev_pst = &(objfile->psymtabs);
c906108c 2747 while ((*prev_pst) != NULL)
c5aa993b 2748 prev_pst = &((*prev_pst)->next);
c906108c 2749 (*prev_pst) = psymtab;
c5aa993b 2750 }
c906108c 2751#endif
c5aa993b 2752
c906108c
SS
2753 return (psymtab);
2754}
2755
2756void
fba45db2 2757discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2758{
2759 struct partial_symtab **prev_pst;
2760
2761 /* From dbxread.c:
2762 Empty psymtabs happen as a result of header files which don't
2763 have any symbols in them. There can be a lot of them. But this
2764 check is wrong, in that a psymtab with N_SLINE entries but
2765 nothing else is not empty, but we don't realize that. Fixing
2766 that without slowing things down might be tricky. */
2767
2768 /* First, snip it out of the psymtab chain */
2769
2770 prev_pst = &(pst->objfile->psymtabs);
2771 while ((*prev_pst) != pst)
2772 prev_pst = &((*prev_pst)->next);
2773 (*prev_pst) = pst->next;
2774
2775 /* Next, put it on a free list for recycling */
2776
2777 pst->next = pst->objfile->free_psymtabs;
2778 pst->objfile->free_psymtabs = pst;
2779}
c906108c 2780\f
c5aa993b 2781
c906108c
SS
2782/* Reset all data structures in gdb which may contain references to symbol
2783 table data. */
2784
2785void
fba45db2 2786clear_symtab_users (void)
c906108c
SS
2787{
2788 /* Someday, we should do better than this, by only blowing away
2789 the things that really need to be blown. */
c0501be5
DJ
2790
2791 /* Clear the "current" symtab first, because it is no longer valid.
2792 breakpoint_re_set may try to access the current symtab. */
2793 clear_current_source_symtab_and_line ();
2794
c906108c 2795 clear_displays ();
c906108c
SS
2796 breakpoint_re_set ();
2797 set_default_breakpoint (0, 0, 0, 0);
c906108c 2798 clear_pc_function_cache ();
06d3b283 2799 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2800
2801 /* Clear globals which might have pointed into a removed objfile.
2802 FIXME: It's not clear which of these are supposed to persist
2803 between expressions and which ought to be reset each time. */
2804 expression_context_block = NULL;
2805 innermost_block = NULL;
8756216b
DP
2806
2807 /* Varobj may refer to old symbols, perform a cleanup. */
2808 varobj_invalidate ();
2809
c906108c
SS
2810}
2811
74b7792f
AC
2812static void
2813clear_symtab_users_cleanup (void *ignore)
2814{
2815 clear_symtab_users ();
2816}
2817
c906108c
SS
2818/* clear_symtab_users_once:
2819
2820 This function is run after symbol reading, or from a cleanup.
2821 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2822 has been blown away, but the other GDB data structures that may
c906108c
SS
2823 reference it have not yet been cleared or re-directed. (The old
2824 symtab was zapped, and the cleanup queued, in free_named_symtab()
2825 below.)
2826
2827 This function can be queued N times as a cleanup, or called
2828 directly; it will do all the work the first time, and then will be a
2829 no-op until the next time it is queued. This works by bumping a
2830 counter at queueing time. Much later when the cleanup is run, or at
2831 the end of symbol processing (in case the cleanup is discarded), if
2832 the queued count is greater than the "done-count", we do the work
2833 and set the done-count to the queued count. If the queued count is
2834 less than or equal to the done-count, we just ignore the call. This
2835 is needed because reading a single .o file will often replace many
2836 symtabs (one per .h file, for example), and we don't want to reset
2837 the breakpoints N times in the user's face.
2838
2839 The reason we both queue a cleanup, and call it directly after symbol
2840 reading, is because the cleanup protects us in case of errors, but is
2841 discarded if symbol reading is successful. */
2842
2843#if 0
2844/* FIXME: As free_named_symtabs is currently a big noop this function
2845 is no longer needed. */
a14ed312 2846static void clear_symtab_users_once (void);
c906108c
SS
2847
2848static int clear_symtab_users_queued;
2849static int clear_symtab_users_done;
2850
2851static void
fba45db2 2852clear_symtab_users_once (void)
c906108c
SS
2853{
2854 /* Enforce once-per-`do_cleanups'-semantics */
2855 if (clear_symtab_users_queued <= clear_symtab_users_done)
2856 return;
2857 clear_symtab_users_done = clear_symtab_users_queued;
2858
2859 clear_symtab_users ();
2860}
2861#endif
2862
2863/* Delete the specified psymtab, and any others that reference it. */
2864
2865static void
fba45db2 2866cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2867{
2868 struct partial_symtab *ps, *pprev = NULL;
2869 int i;
2870
2871 /* Find its previous psymtab in the chain */
c5aa993b
JM
2872 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2873 {
2874 if (ps == pst)
2875 break;
2876 pprev = ps;
2877 }
c906108c 2878
c5aa993b
JM
2879 if (ps)
2880 {
2881 /* Unhook it from the chain. */
2882 if (ps == pst->objfile->psymtabs)
2883 pst->objfile->psymtabs = ps->next;
2884 else
2885 pprev->next = ps->next;
2886
2887 /* FIXME, we can't conveniently deallocate the entries in the
2888 partial_symbol lists (global_psymbols/static_psymbols) that
2889 this psymtab points to. These just take up space until all
2890 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2891 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2892
2893 /* We need to cashier any psymtab that has this one as a dependency... */
2894 again:
2895 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2896 {
2897 for (i = 0; i < ps->number_of_dependencies; i++)
2898 {
2899 if (ps->dependencies[i] == pst)
2900 {
2901 cashier_psymtab (ps);
2902 goto again; /* Must restart, chain has been munged. */
2903 }
2904 }
c906108c 2905 }
c906108c 2906 }
c906108c
SS
2907}
2908
2909/* If a symtab or psymtab for filename NAME is found, free it along
2910 with any dependent breakpoints, displays, etc.
2911 Used when loading new versions of object modules with the "add-file"
2912 command. This is only called on the top-level symtab or psymtab's name;
2913 it is not called for subsidiary files such as .h files.
2914
2915 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2916 FIXME. The return value appears to never be used.
c906108c
SS
2917
2918 FIXME. I think this is not the best way to do this. We should
2919 work on being gentler to the environment while still cleaning up
2920 all stray pointers into the freed symtab. */
2921
2922int
fba45db2 2923free_named_symtabs (char *name)
c906108c
SS
2924{
2925#if 0
2926 /* FIXME: With the new method of each objfile having it's own
2927 psymtab list, this function needs serious rethinking. In particular,
2928 why was it ever necessary to toss psymtabs with specific compilation
2929 unit filenames, as opposed to all psymtabs from a particular symbol
2930 file? -- fnf
2931 Well, the answer is that some systems permit reloading of particular
2932 compilation units. We want to blow away any old info about these
2933 compilation units, regardless of which objfiles they arrived in. --gnu. */
2934
52f0bd74
AC
2935 struct symtab *s;
2936 struct symtab *prev;
2937 struct partial_symtab *ps;
c906108c
SS
2938 struct blockvector *bv;
2939 int blewit = 0;
2940
2941 /* We only wack things if the symbol-reload switch is set. */
2942 if (!symbol_reloading)
2943 return 0;
2944
2945 /* Some symbol formats have trouble providing file names... */
2946 if (name == 0 || *name == '\0')
2947 return 0;
2948
2949 /* Look for a psymtab with the specified name. */
2950
2951again2:
c5aa993b
JM
2952 for (ps = partial_symtab_list; ps; ps = ps->next)
2953 {
6314a349 2954 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2955 {
2956 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2957 goto again2; /* Must restart, chain has been munged */
2958 }
c906108c 2959 }
c906108c
SS
2960
2961 /* Look for a symtab with the specified name. */
2962
2963 for (s = symtab_list; s; s = s->next)
2964 {
6314a349 2965 if (strcmp (name, s->filename) == 0)
c906108c
SS
2966 break;
2967 prev = s;
2968 }
2969
2970 if (s)
2971 {
2972 if (s == symtab_list)
2973 symtab_list = s->next;
2974 else
2975 prev->next = s->next;
2976
2977 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2978 or not they depend on the symtab being freed. This should be
2979 changed so that only those data structures affected are deleted. */
c906108c
SS
2980
2981 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2982 This test is necessary due to a bug in "dbxread.c" that
2983 causes empty symtabs to be created for N_SO symbols that
2984 contain the pathname of the object file. (This problem
2985 has been fixed in GDB 3.9x). */
c906108c
SS
2986
2987 bv = BLOCKVECTOR (s);
2988 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2989 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2990 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2991 {
e2e0b3e5 2992 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2993 name);
c906108c
SS
2994 clear_symtab_users_queued++;
2995 make_cleanup (clear_symtab_users_once, 0);
2996 blewit = 1;
c5aa993b
JM
2997 }
2998 else
e2e0b3e5
AC
2999 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3000 name);
c906108c
SS
3001
3002 free_symtab (s);
3003 }
3004 else
3005 {
3006 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3007 even though no symtab was found, since the file might have
3008 been compiled without debugging, and hence not be associated
3009 with a symtab. In order to handle this correctly, we would need
3010 to keep a list of text address ranges for undebuggable files.
3011 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3012 ;
3013 }
3014
3015 /* FIXME, what about the minimal symbol table? */
3016 return blewit;
3017#else
3018 return (0);
3019#endif
3020}
3021\f
3022/* Allocate and partially fill a partial symtab. It will be
3023 completely filled at the end of the symbol list.
3024
d4f3574e 3025 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3026
3027struct partial_symtab *
fba45db2
KB
3028start_psymtab_common (struct objfile *objfile,
3029 struct section_offsets *section_offsets, char *filename,
3030 CORE_ADDR textlow, struct partial_symbol **global_syms,
3031 struct partial_symbol **static_syms)
c906108c
SS
3032{
3033 struct partial_symtab *psymtab;
3034
3035 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3036 psymtab->section_offsets = section_offsets;
3037 psymtab->textlow = textlow;
3038 psymtab->texthigh = psymtab->textlow; /* default */
3039 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3040 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3041 return (psymtab);
3042}
3043\f
2e618c13
AR
3044/* Helper function, initialises partial symbol structure and stashes
3045 it into objfile's bcache. Note that our caching mechanism will
3046 use all fields of struct partial_symbol to determine hash value of the
3047 structure. In other words, having two symbols with the same name but
3048 different domain (or address) is possible and correct. */
3049
11d31d94 3050static const struct partial_symbol *
2e618c13
AR
3051add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3052 enum address_class class,
3053 long val, /* Value as a long */
3054 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3055 enum language language, struct objfile *objfile,
3056 int *added)
3057{
3058 char *buf = name;
3059 /* psymbol is static so that there will be no uninitialized gaps in the
3060 structure which might contain random data, causing cache misses in
3061 bcache. */
3062 static struct partial_symbol psymbol;
3063
3064 if (name[namelength] != '\0')
3065 {
3066 buf = alloca (namelength + 1);
3067 /* Create local copy of the partial symbol */
3068 memcpy (buf, name, namelength);
3069 buf[namelength] = '\0';
3070 }
3071 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3072 if (val != 0)
3073 {
3074 SYMBOL_VALUE (&psymbol) = val;
3075 }
3076 else
3077 {
3078 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3079 }
3080 SYMBOL_SECTION (&psymbol) = 0;
3081 SYMBOL_LANGUAGE (&psymbol) = language;
3082 PSYMBOL_DOMAIN (&psymbol) = domain;
3083 PSYMBOL_CLASS (&psymbol) = class;
3084
3085 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3086
3087 /* Stash the partial symbol away in the cache */
11d31d94
TT
3088 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3089 objfile->psymbol_cache, added);
2e618c13
AR
3090}
3091
3092/* Helper function, adds partial symbol to the given partial symbol
3093 list. */
3094
3095static void
3096append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3097 const struct partial_symbol *psym,
2e618c13
AR
3098 struct objfile *objfile)
3099{
3100 if (list->next >= list->list + list->size)
3101 extend_psymbol_list (list, objfile);
11d31d94 3102 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3103 OBJSTAT (objfile, n_psyms++);
3104}
3105
c906108c 3106/* Add a symbol with a long value to a psymtab.
5417f6dc 3107 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3108 Return the partial symbol that has been added. */
3109
3110/* NOTE: carlton/2003-09-11: The reason why we return the partial
3111 symbol is so that callers can get access to the symbol's demangled
3112 name, which they don't have any cheap way to determine otherwise.
3113 (Currenly, dwarf2read.c is the only file who uses that information,
3114 though it's possible that other readers might in the future.)
3115 Elena wasn't thrilled about that, and I don't blame her, but we
3116 couldn't come up with a better way to get that information. If
3117 it's needed in other situations, we could consider breaking up
3118 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3119 cache. */
3120
3121const struct partial_symbol *
176620f1 3122add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3123 enum address_class class,
2e618c13
AR
3124 struct psymbol_allocation_list *list,
3125 long val, /* Value as a long */
fba45db2
KB
3126 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3127 enum language language, struct objfile *objfile)
c906108c 3128{
11d31d94 3129 const struct partial_symbol *psym;
2de7ced7 3130
2e618c13 3131 int added;
c906108c
SS
3132
3133 /* Stash the partial symbol away in the cache */
2e618c13
AR
3134 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3135 val, coreaddr, language, objfile, &added);
c906108c 3136
2e618c13
AR
3137 /* Do not duplicate global partial symbols. */
3138 if (list == &objfile->global_psymbols
3139 && !added)
3140 return psym;
5c4e30ca 3141
2e618c13
AR
3142 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3143 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3144 return psym;
c906108c
SS
3145}
3146
c906108c
SS
3147/* Initialize storage for partial symbols. */
3148
3149void
fba45db2 3150init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3151{
3152 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3153
3154 if (objfile->global_psymbols.list)
c906108c 3155 {
2dc74dc1 3156 xfree (objfile->global_psymbols.list);
c906108c 3157 }
c5aa993b 3158 if (objfile->static_psymbols.list)
c906108c 3159 {
2dc74dc1 3160 xfree (objfile->static_psymbols.list);
c906108c 3161 }
c5aa993b 3162
c906108c
SS
3163 /* Current best guess is that approximately a twentieth
3164 of the total symbols (in a debugging file) are global or static
3165 oriented symbols */
c906108c 3166
c5aa993b
JM
3167 objfile->global_psymbols.size = total_symbols / 10;
3168 objfile->static_psymbols.size = total_symbols / 10;
3169
3170 if (objfile->global_psymbols.size > 0)
c906108c 3171 {
c5aa993b
JM
3172 objfile->global_psymbols.next =
3173 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3174 xmalloc ((objfile->global_psymbols.size
3175 * sizeof (struct partial_symbol *)));
c906108c 3176 }
c5aa993b 3177 if (objfile->static_psymbols.size > 0)
c906108c 3178 {
c5aa993b
JM
3179 objfile->static_psymbols.next =
3180 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3181 xmalloc ((objfile->static_psymbols.size
3182 * sizeof (struct partial_symbol *)));
c906108c
SS
3183 }
3184}
3185
3186/* OVERLAYS:
3187 The following code implements an abstraction for debugging overlay sections.
3188
3189 The target model is as follows:
3190 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3191 same VMA, each with its own unique LMA (or load address).
c906108c 3192 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3193 sections, one by one, from the load address into the VMA address.
5417f6dc 3194 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3195 sections should be considered to be mapped from the VMA to the LMA.
3196 This information is used for symbol lookup, and memory read/write.
5417f6dc 3197 For instance, if a section has been mapped then its contents
c5aa993b 3198 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3199
3200 Two levels of debugger support for overlays are available. One is
3201 "manual", in which the debugger relies on the user to tell it which
3202 overlays are currently mapped. This level of support is
3203 implemented entirely in the core debugger, and the information about
3204 whether a section is mapped is kept in the objfile->obj_section table.
3205
3206 The second level of support is "automatic", and is only available if
3207 the target-specific code provides functionality to read the target's
3208 overlay mapping table, and translate its contents for the debugger
3209 (by updating the mapped state information in the obj_section tables).
3210
3211 The interface is as follows:
c5aa993b
JM
3212 User commands:
3213 overlay map <name> -- tell gdb to consider this section mapped
3214 overlay unmap <name> -- tell gdb to consider this section unmapped
3215 overlay list -- list the sections that GDB thinks are mapped
3216 overlay read-target -- get the target's state of what's mapped
3217 overlay off/manual/auto -- set overlay debugging state
3218 Functional interface:
3219 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3220 section, return that section.
5417f6dc 3221 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3222 the pc, either in its VMA or its LMA
3223 overlay_is_mapped(sect): true if overlay is marked as mapped
3224 section_is_overlay(sect): true if section's VMA != LMA
3225 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3226 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3227 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3228 overlay_mapped_address(...): map an address from section's LMA to VMA
3229 overlay_unmapped_address(...): map an address from section's VMA to LMA
3230 symbol_overlayed_address(...): Return a "current" address for symbol:
3231 either in VMA or LMA depending on whether
3232 the symbol's section is currently mapped
c906108c
SS
3233 */
3234
3235/* Overlay debugging state: */
3236
d874f1e2 3237enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3238int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3239
c906108c 3240/* Function: section_is_overlay (SECTION)
5417f6dc 3241 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3242 SECTION is loaded at an address different from where it will "run". */
3243
3244int
fba45db2 3245section_is_overlay (asection *section)
c906108c 3246{
fbd35540
MS
3247 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3248
c906108c
SS
3249 if (overlay_debugging)
3250 if (section && section->lma != 0 &&
3251 section->vma != section->lma)
3252 return 1;
3253
3254 return 0;
3255}
3256
3257/* Function: overlay_invalidate_all (void)
3258 Invalidate the mapped state of all overlay sections (mark it as stale). */
3259
3260static void
fba45db2 3261overlay_invalidate_all (void)
c906108c 3262{
c5aa993b 3263 struct objfile *objfile;
c906108c
SS
3264 struct obj_section *sect;
3265
3266 ALL_OBJSECTIONS (objfile, sect)
3267 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3268 sect->ovly_mapped = -1;
c906108c
SS
3269}
3270
3271/* Function: overlay_is_mapped (SECTION)
5417f6dc 3272 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3273 Private: public access is thru function section_is_mapped.
3274
3275 Access to the ovly_mapped flag is restricted to this function, so
3276 that we can do automatic update. If the global flag
3277 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3278 overlay_invalidate_all. If the mapped state of the particular
3279 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3280
c5aa993b 3281static int
fba45db2 3282overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3283{
3284 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3285 return 0;
3286
c5aa993b 3287 switch (overlay_debugging)
c906108c
SS
3288 {
3289 default:
d874f1e2 3290 case ovly_off:
c5aa993b 3291 return 0; /* overlay debugging off */
d874f1e2 3292 case ovly_auto: /* overlay debugging automatic */
1c772458 3293 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3294 there's really nothing useful to do here (can't really go auto) */
1c772458 3295 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3296 {
3297 if (overlay_cache_invalid)
3298 {
3299 overlay_invalidate_all ();
3300 overlay_cache_invalid = 0;
3301 }
3302 if (osect->ovly_mapped == -1)
1c772458 3303 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3304 }
3305 /* fall thru to manual case */
d874f1e2 3306 case ovly_on: /* overlay debugging manual */
c906108c
SS
3307 return osect->ovly_mapped == 1;
3308 }
3309}
3310
3311/* Function: section_is_mapped
3312 Returns true if section is an overlay, and is currently mapped. */
3313
3314int
fba45db2 3315section_is_mapped (asection *section)
c906108c 3316{
c5aa993b 3317 struct objfile *objfile;
c906108c
SS
3318 struct obj_section *osect;
3319
3320 if (overlay_debugging)
3321 if (section && section_is_overlay (section))
3322 ALL_OBJSECTIONS (objfile, osect)
3323 if (osect->the_bfd_section == section)
c5aa993b 3324 return overlay_is_mapped (osect);
c906108c
SS
3325
3326 return 0;
3327}
3328
3329/* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332CORE_ADDR
fba45db2 3333pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3334{
fbd35540
MS
3335 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3336
c906108c
SS
3337 int size;
3338
3339 if (overlay_debugging)
3340 if (section && section_is_overlay (section))
3341 {
2c500098 3342 size = bfd_get_section_size (section);
c906108c
SS
3343 if (section->lma <= pc && pc < section->lma + size)
3344 return 1;
3345 }
3346 return 0;
3347}
3348
3349/* Function: pc_in_mapped_range
3350 If PC falls into the vma range of SECTION, return true, else false. */
3351
3352CORE_ADDR
fba45db2 3353pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3354{
fbd35540
MS
3355 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3356
c906108c
SS
3357 int size;
3358
3359 if (overlay_debugging)
3360 if (section && section_is_overlay (section))
3361 {
2c500098 3362 size = bfd_get_section_size (section);
c906108c
SS
3363 if (section->vma <= pc && pc < section->vma + size)
3364 return 1;
3365 }
3366 return 0;
3367}
3368
9ec8e6a0
JB
3369
3370/* Return true if the mapped ranges of sections A and B overlap, false
3371 otherwise. */
b9362cc7 3372static int
9ec8e6a0
JB
3373sections_overlap (asection *a, asection *b)
3374{
fbd35540
MS
3375 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3376
9ec8e6a0 3377 CORE_ADDR a_start = a->vma;
2c500098 3378 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3379 CORE_ADDR b_start = b->vma;
2c500098 3380 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3381
3382 return (a_start < b_end && b_start < a_end);
3383}
3384
c906108c
SS
3385/* Function: overlay_unmapped_address (PC, SECTION)
3386 Returns the address corresponding to PC in the unmapped (load) range.
3387 May be the same as PC. */
3388
3389CORE_ADDR
fba45db2 3390overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3391{
fbd35540
MS
3392 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3393
c906108c
SS
3394 if (overlay_debugging)
3395 if (section && section_is_overlay (section) &&
3396 pc_in_mapped_range (pc, section))
3397 return pc + section->lma - section->vma;
3398
3399 return pc;
3400}
3401
3402/* Function: overlay_mapped_address (PC, SECTION)
3403 Returns the address corresponding to PC in the mapped (runtime) range.
3404 May be the same as PC. */
3405
3406CORE_ADDR
fba45db2 3407overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3408{
fbd35540
MS
3409 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3410
c906108c
SS
3411 if (overlay_debugging)
3412 if (section && section_is_overlay (section) &&
3413 pc_in_unmapped_range (pc, section))
3414 return pc + section->vma - section->lma;
3415
3416 return pc;
3417}
3418
3419
5417f6dc 3420/* Function: symbol_overlayed_address
c906108c
SS
3421 Return one of two addresses (relative to the VMA or to the LMA),
3422 depending on whether the section is mapped or not. */
3423
c5aa993b 3424CORE_ADDR
fba45db2 3425symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3426{
3427 if (overlay_debugging)
3428 {
3429 /* If the symbol has no section, just return its regular address. */
3430 if (section == 0)
3431 return address;
3432 /* If the symbol's section is not an overlay, just return its address */
3433 if (!section_is_overlay (section))
3434 return address;
3435 /* If the symbol's section is mapped, just return its address */
3436 if (section_is_mapped (section))
3437 return address;
3438 /*
3439 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3440 * then return its LOADED address rather than its vma address!!
3441 */
3442 return overlay_unmapped_address (address, section);
3443 }
3444 return address;
3445}
3446
5417f6dc 3447/* Function: find_pc_overlay (PC)
c906108c
SS
3448 Return the best-match overlay section for PC:
3449 If PC matches a mapped overlay section's VMA, return that section.
3450 Else if PC matches an unmapped section's VMA, return that section.
3451 Else if PC matches an unmapped section's LMA, return that section. */
3452
3453asection *
fba45db2 3454find_pc_overlay (CORE_ADDR pc)
c906108c 3455{
c5aa993b 3456 struct objfile *objfile;
c906108c
SS
3457 struct obj_section *osect, *best_match = NULL;
3458
3459 if (overlay_debugging)
3460 ALL_OBJSECTIONS (objfile, osect)
3461 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3462 {
3463 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3464 {
3465 if (overlay_is_mapped (osect))
3466 return osect->the_bfd_section;
3467 else
3468 best_match = osect;
3469 }
3470 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3471 best_match = osect;
3472 }
c906108c
SS
3473 return best_match ? best_match->the_bfd_section : NULL;
3474}
3475
3476/* Function: find_pc_mapped_section (PC)
5417f6dc 3477 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3478 currently marked as MAPPED, return that section. Else return NULL. */
3479
3480asection *
fba45db2 3481find_pc_mapped_section (CORE_ADDR pc)
c906108c 3482{
c5aa993b 3483 struct objfile *objfile;
c906108c
SS
3484 struct obj_section *osect;
3485
3486 if (overlay_debugging)
3487 ALL_OBJSECTIONS (objfile, osect)
3488 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3489 overlay_is_mapped (osect))
c5aa993b 3490 return osect->the_bfd_section;
c906108c
SS
3491
3492 return NULL;
3493}
3494
3495/* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498void
fba45db2 3499list_overlays_command (char *args, int from_tty)
c906108c 3500{
c5aa993b
JM
3501 int nmapped = 0;
3502 struct objfile *objfile;
c906108c
SS
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (overlay_is_mapped (osect))
c5aa993b
JM
3508 {
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3515 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3519 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3520 puts_filtered (" - ");
ed49a04f 3521 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3522 printf_filtered (", mapped at ");
ed49a04f 3523 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3524 puts_filtered (" - ");
ed49a04f 3525 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
c906108c 3530 if (nmapped == 0)
a3f17187 3531 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3532}
3533
3534/* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537void
fba45db2 3538map_overlay_command (char *args, int from_tty)
c906108c 3539{
c5aa993b
JM
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3542 asection *bfdsec;
c906108c
SS
3543
3544 if (!overlay_debugging)
8a3fe4f8 3545 error (_("\
515ad16c 3546Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3547the 'overlay manual' command."));
c906108c
SS
3548
3549 if (args == 0 || *args == 0)
8a3fe4f8 3550 error (_("Argument required: name of an overlay section"));
c906108c
SS
3551
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3555 {
3556 /* Now, check to see if the section is an overlay. */
3557 bfdsec = sec->the_bfd_section;
3558 if (!section_is_overlay (bfdsec))
3559 continue; /* not an overlay section */
3560
3561 /* Mark the overlay as "mapped" */
3562 sec->ovly_mapped = 1;
3563
3564 /* Next, make a pass and unmap any sections that are
3565 overlapped by this new section: */
3566 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3567 if (sec2->ovly_mapped
3568 && sec != sec2
3569 && sec->the_bfd_section != sec2->the_bfd_section
3570 && sections_overlap (sec->the_bfd_section,
3571 sec2->the_bfd_section))
c5aa993b
JM
3572 {
3573 if (info_verbose)
a3f17187 3574 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3575 bfd_section_name (objfile->obfd,
3576 sec2->the_bfd_section));
3577 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3578 }
3579 return;
3580 }
8a3fe4f8 3581 error (_("No overlay section called %s"), args);
c906108c
SS
3582}
3583
3584/* Function: unmap_overlay_command
5417f6dc 3585 Mark the overlay section as unmapped
c906108c
SS
3586 (ie. resident in its LMA address range, rather than the VMA range). */
3587
3588void
fba45db2 3589unmap_overlay_command (char *args, int from_tty)
c906108c 3590{
c5aa993b 3591 struct objfile *objfile;
c906108c
SS
3592 struct obj_section *sec;
3593
3594 if (!overlay_debugging)
8a3fe4f8 3595 error (_("\
515ad16c 3596Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3597the 'overlay manual' command."));
c906108c
SS
3598
3599 if (args == 0 || *args == 0)
8a3fe4f8 3600 error (_("Argument required: name of an overlay section"));
c906108c
SS
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3605 {
3606 if (!sec->ovly_mapped)
8a3fe4f8 3607 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3608 sec->ovly_mapped = 0;
3609 return;
3610 }
8a3fe4f8 3611 error (_("No overlay section called %s"), args);
c906108c
SS
3612}
3613
3614/* Function: overlay_auto_command
3615 A utility command to turn on overlay debugging.
3616 Possibly this should be done via a set/show command. */
3617
3618static void
fba45db2 3619overlay_auto_command (char *args, int from_tty)
c906108c 3620{
d874f1e2 3621 overlay_debugging = ovly_auto;
1900040c 3622 enable_overlay_breakpoints ();
c906108c 3623 if (info_verbose)
a3f17187 3624 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3625}
3626
3627/* Function: overlay_manual_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631static void
fba45db2 3632overlay_manual_command (char *args, int from_tty)
c906108c 3633{
d874f1e2 3634 overlay_debugging = ovly_on;
1900040c 3635 disable_overlay_breakpoints ();
c906108c 3636 if (info_verbose)
a3f17187 3637 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3638}
3639
3640/* Function: overlay_off_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644static void
fba45db2 3645overlay_off_command (char *args, int from_tty)
c906108c 3646{
d874f1e2 3647 overlay_debugging = ovly_off;
1900040c 3648 disable_overlay_breakpoints ();
c906108c 3649 if (info_verbose)
a3f17187 3650 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3651}
3652
3653static void
fba45db2 3654overlay_load_command (char *args, int from_tty)
c906108c 3655{
1c772458
UW
3656 if (gdbarch_overlay_update_p (current_gdbarch))
3657 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3658 else
8a3fe4f8 3659 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3660}
3661
3662/* Function: overlay_command
3663 A place-holder for a mis-typed command */
3664
3665/* Command list chain containing all defined "overlay" subcommands. */
3666struct cmd_list_element *overlaylist;
3667
3668static void
fba45db2 3669overlay_command (char *args, int from_tty)
c906108c 3670{
c5aa993b 3671 printf_unfiltered
c906108c
SS
3672 ("\"overlay\" must be followed by the name of an overlay command.\n");
3673 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674}
3675
3676
3677/* Target Overlays for the "Simplest" overlay manager:
3678
5417f6dc
RM
3679 This is GDB's default target overlay layer. It works with the
3680 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3681 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3682 so targets that use a different runtime overlay manager can
c906108c
SS
3683 substitute their own overlay_update function and take over the
3684 function pointer.
3685
3686 The overlay_update function pokes around in the target's data structures
3687 to see what overlays are mapped, and updates GDB's overlay mapping with
3688 this information.
3689
3690 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3691 unsigned _novlys; /# number of overlay sections #/
3692 unsigned _ovly_table[_novlys][4] = {
3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3694 {..., ..., ..., ...},
3695 }
3696 unsigned _novly_regions; /# number of overlay regions #/
3697 unsigned _ovly_region_table[_novly_regions][3] = {
3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3699 {..., ..., ...},
3700 }
c906108c
SS
3701 These functions will attempt to update GDB's mappedness state in the
3702 symbol section table, based on the target's mappedness state.
3703
3704 To do this, we keep a cached copy of the target's _ovly_table, and
3705 attempt to detect when the cached copy is invalidated. The main
3706 entry point is "simple_overlay_update(SECT), which looks up SECT in
3707 the cached table and re-reads only the entry for that section from
3708 the target (whenever possible).
3709 */
3710
3711/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3712static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3713#if 0
c5aa993b 3714static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3715#endif
c5aa993b 3716static unsigned cache_novlys = 0;
c906108c 3717#if 0
c5aa993b 3718static unsigned cache_novly_regions = 0;
c906108c
SS
3719#endif
3720static CORE_ADDR cache_ovly_table_base = 0;
3721#if 0
3722static CORE_ADDR cache_ovly_region_table_base = 0;
3723#endif
c5aa993b
JM
3724enum ovly_index
3725 {
3726 VMA, SIZE, LMA, MAPPED
3727 };
9a76efb6
UW
3728#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3729 / TARGET_CHAR_BIT)
c906108c
SS
3730
3731/* Throw away the cached copy of _ovly_table */
3732static void
fba45db2 3733simple_free_overlay_table (void)
c906108c
SS
3734{
3735 if (cache_ovly_table)
b8c9b27d 3736 xfree (cache_ovly_table);
c5aa993b 3737 cache_novlys = 0;
c906108c
SS
3738 cache_ovly_table = NULL;
3739 cache_ovly_table_base = 0;
3740}
3741
3742#if 0
3743/* Throw away the cached copy of _ovly_region_table */
3744static void
fba45db2 3745simple_free_overlay_region_table (void)
c906108c
SS
3746{
3747 if (cache_ovly_region_table)
b8c9b27d 3748 xfree (cache_ovly_region_table);
c5aa993b 3749 cache_novly_regions = 0;
c906108c
SS
3750 cache_ovly_region_table = NULL;
3751 cache_ovly_region_table_base = 0;
3752}
3753#endif
3754
3755/* Read an array of ints from the target into a local buffer.
3756 Convert to host order. int LEN is number of ints */
3757static void
fba45db2 3758read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3759{
34c0bd93 3760 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3761 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3762 int i;
c906108c
SS
3763
3764 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3765 for (i = 0; i < len; i++)
c5aa993b 3766 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3767 TARGET_LONG_BYTES);
3768}
3769
3770/* Find and grab a copy of the target _ovly_table
3771 (and _novlys, which is needed for the table's size) */
c5aa993b 3772static int
fba45db2 3773simple_read_overlay_table (void)
c906108c 3774{
0d43edd1 3775 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3776
3777 simple_free_overlay_table ();
9b27852e 3778 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3779 if (! novlys_msym)
c906108c 3780 {
8a3fe4f8 3781 error (_("Error reading inferior's overlay table: "
0d43edd1 3782 "couldn't find `_novlys' variable\n"
8a3fe4f8 3783 "in inferior. Use `overlay manual' mode."));
0d43edd1 3784 return 0;
c906108c 3785 }
0d43edd1 3786
9b27852e 3787 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3788 if (! ovly_table_msym)
3789 {
8a3fe4f8 3790 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3791 "`_ovly_table' array\n"
8a3fe4f8 3792 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3793 return 0;
3794 }
3795
3796 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3797 cache_ovly_table
3798 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3799 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3800 read_target_long_array (cache_ovly_table_base,
777ea8f1 3801 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3802 cache_novlys * 4);
3803
c5aa993b 3804 return 1; /* SUCCESS */
c906108c
SS
3805}
3806
3807#if 0
3808/* Find and grab a copy of the target _ovly_region_table
3809 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3810static int
fba45db2 3811simple_read_overlay_region_table (void)
c906108c
SS
3812{
3813 struct minimal_symbol *msym;
3814
3815 simple_free_overlay_region_table ();
9b27852e 3816 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3817 if (msym != NULL)
3818 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3819 else
3820 return 0; /* failure */
c906108c
SS
3821 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3822 if (cache_ovly_region_table != NULL)
3823 {
9b27852e 3824 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3825 if (msym != NULL)
3826 {
3827 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3828 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3829 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3830 cache_novly_regions * 3);
3831 }
c5aa993b
JM
3832 else
3833 return 0; /* failure */
c906108c 3834 }
c5aa993b
JM
3835 else
3836 return 0; /* failure */
3837 return 1; /* SUCCESS */
c906108c
SS
3838}
3839#endif
3840
5417f6dc 3841/* Function: simple_overlay_update_1
c906108c
SS
3842 A helper function for simple_overlay_update. Assuming a cached copy
3843 of _ovly_table exists, look through it to find an entry whose vma,
3844 lma and size match those of OSECT. Re-read the entry and make sure
3845 it still matches OSECT (else the table may no longer be valid).
3846 Set OSECT's mapped state to match the entry. Return: 1 for
3847 success, 0 for failure. */
3848
3849static int
fba45db2 3850simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3851{
3852 int i, size;
fbd35540
MS
3853 bfd *obfd = osect->objfile->obfd;
3854 asection *bsect = osect->the_bfd_section;
c906108c 3855
2c500098 3856 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3857 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3861 {
3862 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3863 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3864 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3865 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3866 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3867 {
3868 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3869 return 1;
3870 }
fbd35540 3871 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3872 return 0;
3873 }
3874 return 0;
3875}
3876
3877/* Function: simple_overlay_update
5417f6dc
RM
3878 If OSECT is NULL, then update all sections' mapped state
3879 (after re-reading the entire target _ovly_table).
3880 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3881 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3882 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3883 re-read the entire cache, and go ahead and update all sections. */
3884
1c772458 3885void
fba45db2 3886simple_overlay_update (struct obj_section *osect)
c906108c 3887{
c5aa993b 3888 struct objfile *objfile;
c906108c
SS
3889
3890 /* Were we given an osect to look up? NULL means do all of them. */
3891 if (osect)
3892 /* Have we got a cached copy of the target's overlay table? */
3893 if (cache_ovly_table != NULL)
3894 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3895 if (cache_ovly_table_base ==
9b27852e 3896 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3897 /* Then go ahead and try to look up this single section in the cache */
3898 if (simple_overlay_update_1 (osect))
3899 /* Found it! We're done. */
3900 return;
3901
3902 /* Cached table no good: need to read the entire table anew.
3903 Or else we want all the sections, in which case it's actually
3904 more efficient to read the whole table in one block anyway. */
3905
0d43edd1
JB
3906 if (! simple_read_overlay_table ())
3907 return;
3908
c906108c
SS
3909 /* Now may as well update all sections, even if only one was requested. */
3910 ALL_OBJSECTIONS (objfile, osect)
3911 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3912 {
3913 int i, size;
fbd35540
MS
3914 bfd *obfd = osect->objfile->obfd;
3915 asection *bsect = osect->the_bfd_section;
c5aa993b 3916
2c500098 3917 size = bfd_get_section_size (bsect);
c5aa993b 3918 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3919 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3920 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3921 /* && cache_ovly_table[i][SIZE] == size */ )
3922 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3923 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3924 break; /* finished with inner for loop: break out */
3925 }
3926 }
c906108c
SS
3927}
3928
086df311
DJ
3929/* Set the output sections and output offsets for section SECTP in
3930 ABFD. The relocation code in BFD will read these offsets, so we
3931 need to be sure they're initialized. We map each section to itself,
3932 with no offset; this means that SECTP->vma will be honored. */
3933
3934static void
3935symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3936{
3937 sectp->output_section = sectp;
3938 sectp->output_offset = 0;
3939}
3940
3941/* Relocate the contents of a debug section SECTP in ABFD. The
3942 contents are stored in BUF if it is non-NULL, or returned in a
3943 malloc'd buffer otherwise.
3944
3945 For some platforms and debug info formats, shared libraries contain
3946 relocations against the debug sections (particularly for DWARF-2;
3947 one affected platform is PowerPC GNU/Linux, although it depends on
3948 the version of the linker in use). Also, ELF object files naturally
3949 have unresolved relocations for their debug sections. We need to apply
3950 the relocations in order to get the locations of symbols correct. */
3951
3952bfd_byte *
3953symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3954{
3955 /* We're only interested in debugging sections with relocation
3956 information. */
3957 if ((sectp->flags & SEC_RELOC) == 0)
3958 return NULL;
3959 if ((sectp->flags & SEC_DEBUGGING) == 0)
3960 return NULL;
3961
3962 /* We will handle section offsets properly elsewhere, so relocate as if
3963 all sections begin at 0. */
3964 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3965
97606a13 3966 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3967}
c906108c 3968
31d99776
DJ
3969struct symfile_segment_data *
3970get_symfile_segment_data (bfd *abfd)
3971{
3972 struct sym_fns *sf = find_sym_fns (abfd);
3973
3974 if (sf == NULL)
3975 return NULL;
3976
3977 return sf->sym_segments (abfd);
3978}
3979
3980void
3981free_symfile_segment_data (struct symfile_segment_data *data)
3982{
3983 xfree (data->segment_bases);
3984 xfree (data->segment_sizes);
3985 xfree (data->segment_info);
3986 xfree (data);
3987}
3988
28c32713
JB
3989
3990/* Given:
3991 - DATA, containing segment addresses from the object file ABFD, and
3992 the mapping from ABFD's sections onto the segments that own them,
3993 and
3994 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3995 segment addresses reported by the target,
3996 store the appropriate offsets for each section in OFFSETS.
3997
3998 If there are fewer entries in SEGMENT_BASES than there are segments
3999 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4000
8d385431
DJ
4001 If there are more entries, then ignore the extra. The target may
4002 not be able to distinguish between an empty data segment and a
4003 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4004int
4005symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4006 struct section_offsets *offsets,
4007 int num_segment_bases,
4008 const CORE_ADDR *segment_bases)
4009{
4010 int i;
4011 asection *sect;
4012
28c32713
JB
4013 /* It doesn't make sense to call this function unless you have some
4014 segment base addresses. */
4015 gdb_assert (segment_bases > 0);
4016
31d99776
DJ
4017 /* If we do not have segment mappings for the object file, we
4018 can not relocate it by segments. */
4019 gdb_assert (data != NULL);
4020 gdb_assert (data->num_segments > 0);
4021
31d99776
DJ
4022 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4023 {
31d99776
DJ
4024 int which = data->segment_info[i];
4025
28c32713
JB
4026 gdb_assert (0 <= which && which <= data->num_segments);
4027
4028 /* Don't bother computing offsets for sections that aren't
4029 loaded as part of any segment. */
4030 if (! which)
4031 continue;
4032
4033 /* Use the last SEGMENT_BASES entry as the address of any extra
4034 segments mentioned in DATA->segment_info. */
31d99776 4035 if (which > num_segment_bases)
28c32713 4036 which = num_segment_bases;
31d99776 4037
28c32713
JB
4038 offsets->offsets[i] = (segment_bases[which - 1]
4039 - data->segment_bases[which - 1]);
31d99776
DJ
4040 }
4041
4042 return 1;
4043}
4044
4045static void
4046symfile_find_segment_sections (struct objfile *objfile)
4047{
4048 bfd *abfd = objfile->obfd;
4049 int i;
4050 asection *sect;
4051 struct symfile_segment_data *data;
4052
4053 data = get_symfile_segment_data (objfile->obfd);
4054 if (data == NULL)
4055 return;
4056
4057 if (data->num_segments != 1 && data->num_segments != 2)
4058 {
4059 free_symfile_segment_data (data);
4060 return;
4061 }
4062
4063 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4064 {
4065 CORE_ADDR vma;
4066 int which = data->segment_info[i];
4067
4068 if (which == 1)
4069 {
4070 if (objfile->sect_index_text == -1)
4071 objfile->sect_index_text = sect->index;
4072
4073 if (objfile->sect_index_rodata == -1)
4074 objfile->sect_index_rodata = sect->index;
4075 }
4076 else if (which == 2)
4077 {
4078 if (objfile->sect_index_data == -1)
4079 objfile->sect_index_data = sect->index;
4080
4081 if (objfile->sect_index_bss == -1)
4082 objfile->sect_index_bss = sect->index;
4083 }
4084 }
4085
4086 free_symfile_segment_data (data);
4087}
4088
c906108c 4089void
fba45db2 4090_initialize_symfile (void)
c906108c
SS
4091{
4092 struct cmd_list_element *c;
c5aa993b 4093
1a966eab
AC
4094 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4095Load symbol table from executable file FILE.\n\
c906108c 4096The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4097to execute."), &cmdlist);
5ba2abeb 4098 set_cmd_completer (c, filename_completer);
c906108c 4099
1a966eab 4100 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4101Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4102Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4103ADDR is the starting address of the file's text.\n\
db162d44
EZ
4104The optional arguments are section-name section-address pairs and\n\
4105should be specified if the data and bss segments are not contiguous\n\
1a966eab 4106with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4107 &cmdlist);
5ba2abeb 4108 set_cmd_completer (c, filename_completer);
c906108c
SS
4109
4110 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
4111 add_shared_symbol_files_command, _("\
4112Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 4113 &cmdlist);
c906108c
SS
4114 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4115 &cmdlist);
4116
1a966eab
AC
4117 c = add_cmd ("load", class_files, load_command, _("\
4118Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4119for access from GDB.\n\
4120A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4121 set_cmd_completer (c, filename_completer);
c906108c 4122
5bf193a2
AC
4123 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4124 &symbol_reloading, _("\
4125Set dynamic symbol table reloading multiple times in one run."), _("\
4126Show dynamic symbol table reloading multiple times in one run."), NULL,
4127 NULL,
920d2a44 4128 show_symbol_reloading,
5bf193a2 4129 &setlist, &showlist);
c906108c 4130
c5aa993b 4131 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4132 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4133 "overlay ", 0, &cmdlist);
4134
4135 add_com_alias ("ovly", "overlay", class_alias, 1);
4136 add_com_alias ("ov", "overlay", class_alias, 1);
4137
c5aa993b 4138 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4139 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4140
c5aa993b 4141 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4142 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4143
c5aa993b 4144 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4145 _("List mappings of overlay sections."), &overlaylist);
c906108c 4146
c5aa993b 4147 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4148 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4149 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4150 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4151 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4152 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4153 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4154 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4155
4156 /* Filename extension to source language lookup table: */
4157 init_filename_language_table ();
26c41df3
AC
4158 add_setshow_string_noescape_cmd ("extension-language", class_files,
4159 &ext_args, _("\
4160Set mapping between filename extension and source language."), _("\
4161Show mapping between filename extension and source language."), _("\
4162Usage: set extension-language .foo bar"),
4163 set_ext_lang_command,
920d2a44 4164 show_ext_args,
26c41df3 4165 &setlist, &showlist);
c906108c 4166
c5aa993b 4167 add_info ("extensions", info_ext_lang_command,
1bedd215 4168 _("All filename extensions associated with a source language."));
917317f4 4169
525226b5
AC
4170 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4171 &debug_file_directory, _("\
4172Set the directory where separate debug symbols are searched for."), _("\
4173Show the directory where separate debug symbols are searched for."), _("\
4174Separate debug symbols are first searched for in the same\n\
4175directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4176and lastly at the path of the directory of the binary with\n\
4177the global debug-file directory prepended."),
4178 NULL,
920d2a44 4179 show_debug_file_directory,
525226b5 4180 &setlist, &showlist);
bf250677
DE
4181
4182 add_setshow_boolean_cmd ("symbol-loading", no_class,
4183 &print_symbol_loading, _("\
4184Set printing of symbol loading messages."), _("\
4185Show printing of symbol loading messages."), NULL,
4186 NULL,
4187 NULL,
4188 &setprintlist, &showprintlist);
c906108c 4189}
This page took 1.101655 seconds and 4 git commands to generate.