* bfd-target.c (target_bfd_reopen): Update.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 150
b7209cb4
FF
151/* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
c906108c 158 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 159 report all the functions that are actually present. */
c906108c
SS
160
161int auto_solib_add = 1;
c906108c 162\f
c5aa993b 163
c906108c
SS
164/* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 166 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 167 may be part of a larger string and we are only saving a substring. */
c906108c
SS
168
169char *
63ca651f 170obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 171{
52f0bd74 172 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
c378eb4e 175 inline memcpy? */
c906108c 176 {
aa1ee363
AC
177 const char *p1 = ptr;
178 char *p2 = p;
63ca651f 179 const char *end = ptr + size;
433759f7 180
c906108c
SS
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186}
187
3e43a32a
MS
188/* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
c906108c
SS
192
193char *
48cb83fd 194obconcat (struct obstack *obstackp, ...)
c906108c 195{
48cb83fd
JK
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
c906108c
SS
212}
213
0d14a781 214/* True if we are reading a symbol table. */
c906108c
SS
215
216int currently_reading_symtab = 0;
217
218static void
fba45db2 219decrement_reading_symtab (void *dummy)
c906108c
SS
220{
221 currently_reading_symtab--;
222}
223
ccefe4c4
TT
224/* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226struct cleanup *
227increment_reading_symtab (void)
c906108c 228{
ccefe4c4
TT
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
231}
232
5417f6dc
RM
233/* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
c906108c
SS
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242void
4efb68b1 243find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 244{
c5aa993b 245 asection **lowest = (asection **) obj;
c906108c 246
eb73e134 247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257}
258
a39a16c4
MM
259/* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261struct section_addr_info *
262alloc_section_addr_info (size_t num_sections)
263{
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274}
62557bbc
KB
275
276/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 277 an existing section table. */
62557bbc
KB
278
279extern struct section_addr_info *
0542c86d
PA
280build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
62557bbc
KB
282{
283 struct section_addr_info *sap;
0542c86d 284 const struct target_section *stp;
62557bbc
KB
285 int oidx;
286
a39a16c4 287 sap = alloc_section_addr_info (end - start);
62557bbc
KB
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
5417f6dc 291 if (bfd_get_section_flags (stp->bfd,
fbd35540 292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 293 && oidx < end - start)
62557bbc
KB
294 {
295 sap->other[oidx].addr = stp->addr;
5417f6dc 296 sap->other[oidx].name
fbd35540 297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304}
305
82ccf5a5 306/* Create a section_addr_info from section offsets in ABFD. */
089b4803 307
82ccf5a5
JK
308static struct section_addr_info *
309build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
310{
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
82ccf5a5
JK
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 318 {
82ccf5a5
JK
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
089b4803
TG
324 return sap;
325}
326
82ccf5a5
JK
327/* Create a section_addr_info from section offsets in OBJFILE. */
328
329struct section_addr_info *
330build_section_addr_info_from_objfile (const struct objfile *objfile)
331{
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346}
62557bbc 347
c378eb4e 348/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
349
350extern void
351free_section_addr_info (struct section_addr_info *sap)
352{
353 int idx;
354
a39a16c4 355 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 356 if (sap->other[idx].name)
b8c9b27d
KB
357 xfree (sap->other[idx].name);
358 xfree (sap);
62557bbc
KB
359}
360
361
e8289572
JB
362/* Initialize OBJFILE's sect_index_* members. */
363static void
364init_objfile_sect_indices (struct objfile *objfile)
c906108c 365{
e8289572 366 asection *sect;
c906108c 367 int i;
5417f6dc 368
b8fbeb18 369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 382 if (sect)
b8fbeb18
EZ
383 objfile->sect_index_rodata = sect->index;
384
bbcd32ad
FF
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
31d99776
DJ
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
bbcd32ad
FF
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
b8fbeb18 420}
c906108c 421
c1bd25fd
DJ
422/* The arguments to place_section. */
423
424struct place_section_arg
425{
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428};
429
430/* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
2c0b251b 433static void
c1bd25fd
DJ
434place_section (bfd *abfd, asection *sect, void *obj)
435{
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
3bd72c6f 439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 440
2711e456
DJ
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
450 start_addr = (arg->lowest + align - 1) & -align;
451
c1bd25fd
DJ
452 do {
453 asection *cur_sec;
c1bd25fd 454
c1bd25fd
DJ
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
c1bd25fd
DJ
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
2711e456
DJ
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
3bd72c6f 482 break;
c1bd25fd
DJ
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 492}
e8289572 493
75242ef4
JK
494/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
e8289572
JB
497
498void
75242ef4
JK
499relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
e8289572
JB
502{
503 int i;
504
75242ef4 505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 506
c378eb4e 507 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 509 {
75242ef4 510 struct other_sections *osp;
e8289572 511
75242ef4 512 osp = &addrs->other[i];
5488dafb 513 if (osp->sectindex == -1)
e8289572
JB
514 continue;
515
c378eb4e 516 /* Record all sections in offsets. */
e8289572 517 /* The section_offsets in the objfile are here filled in using
c378eb4e 518 the BFD index. */
75242ef4
JK
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521}
522
1276c759
JK
523/* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529static const char *
530addr_section_name (const char *s)
531{
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538}
539
82ccf5a5
JK
540/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543static int
544addrs_section_compar (const void *ap, const void *bp)
545{
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 548 int retval;
82ccf5a5 549
1276c759 550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
551 if (retval)
552 return retval;
553
5488dafb 554 return a->sectindex - b->sectindex;
82ccf5a5
JK
555}
556
557/* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560static struct other_sections **
561addrs_section_sort (struct section_addr_info *addrs)
562{
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575}
576
75242ef4 577/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
580
581void
582addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583{
584 asection *lower_sect;
75242ef4
JK
585 CORE_ADDR lower_offset;
586 int i;
82ccf5a5
JK
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
591
592 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
e8289572 601 }
75242ef4
JK
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
82ccf5a5
JK
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
c378eb4e
MS
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
1276c759 632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
633
634 while (*abfd_addrs_sorted
1276c759
JK
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
82ccf5a5
JK
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
1276c759
JK
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
82ccf5a5
JK
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
75242ef4
JK
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
82ccf5a5 669 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
670
671 if (sect)
75242ef4 672 {
c378eb4e 673 /* This is the index used by BFD. */
82ccf5a5 674 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
675
676 if (addrs->other[i].addr != 0)
75242ef4 677 {
82ccf5a5 678 addrs->other[i].addr -= sect->addr;
75242ef4 679 lower_offset = addrs->other[i].addr;
75242ef4
JK
680 }
681 else
672d9c23 682 addrs->other[i].addr = lower_offset;
75242ef4
JK
683 }
684 else
672d9c23 685 {
1276c759
JK
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
b0fcb67f
JK
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
4d9743af
JK
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
1276c759
JK
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 704 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
672d9c23 716 addrs->other[i].addr = 0;
5488dafb 717 addrs->other[i].sectindex = -1;
672d9c23 718 }
75242ef4 719 }
82ccf5a5
JK
720
721 do_cleanups (my_cleanup);
75242ef4
JK
722}
723
724/* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730void
731default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733{
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
e8289572 740
c1bd25fd
DJ
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
2711e456
DJ
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
2711e456
DJ
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
30510692 803 offsets[cur_sec->index]);
2711e456
DJ
804 offsets[cur_sec->index] = 0;
805 }
806 }
c1bd25fd
DJ
807 }
808
e8289572 809 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 810 .rodata sections. */
e8289572
JB
811 init_objfile_sect_indices (objfile);
812}
813
814
31d99776
DJ
815/* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821struct symfile_segment_data *
822default_symfile_segments (bfd *abfd)
823{
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877}
878
c906108c
SS
879/* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
96baa820
JM
882 OBJFILE is where the symbols are to be read from.
883
7e8580c1
JB
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
96baa820 904
7eedccfa
PP
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
c906108c
SS
908
909void
7e8580c1
JB
910syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
7eedccfa 914 int add_flags)
c906108c 915{
a39a16c4 916 struct section_addr_info *local_addr = NULL;
c906108c 917 struct cleanup *old_chain;
7eedccfa 918 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 919
7e8580c1 920 gdb_assert (! (addrs && offsets));
2acceee2 921
c906108c 922 init_entry_point_info (objfile);
31d99776 923 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 924
75245b24 925 if (objfile->sf == NULL)
c378eb4e 926 return; /* No symbols. */
75245b24 927
c906108c
SS
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
74b7792f 930 old_chain = make_cleanup_free_objfile (objfile);
c906108c 931
a39a16c4
MM
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
c378eb4e 934 no load address was specified. */
a39a16c4
MM
935 if (! addrs && ! offsets)
936 {
5417f6dc 937 local_addr
a39a16c4
MM
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
c5aa993b 945 if (mainline)
c906108c
SS
946 {
947 /* We will modify the main symbol table, make sure that all its users
c5aa993b 948 will be cleaned up if an error occurs during symbol reading. */
74b7792f 949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
adb7f338 956 gdb_assert (symfile_objfile == NULL);
c906108c
SS
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
c906108c 963
c5aa993b 964 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
53a5351d 969 and assume that <addr> is where that got loaded.
c906108c 970
53a5351d
JM
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
0d15807d 973 if (addrs && addrs->other[0].name)
75242ef4 974 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
c378eb4e 978 initial symbol reading for this file. */
c906108c 979
c5aa993b 980 (*objfile->sf->sym_init) (objfile);
7eedccfa 981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 982
7e8580c1
JB
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
8b92e4d5 993 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
c906108c 998
f4352531 999 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1000
b11896a5
TT
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
1010/* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1013
c906108c 1014void
7eedccfa 1015new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1016{
c906108c 1017 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1018 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1019 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1020 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
c1e56572 1025 clear_symtab_users (add_flags);
c906108c 1026 }
7eedccfa 1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1028 {
69de3c6a 1029 breakpoint_re_set ();
c906108c
SS
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1034}
1035
1036/* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
5417f6dc
RM
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1041
7eedccfa
PP
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1048
63524580
JK
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
c906108c 1052 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1053 Upon failure, jumps back to command level (never returns). */
7eedccfa 1054
7904e09f 1055static struct objfile *
7eedccfa
PP
1056symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
7904e09f
JB
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
63524580 1061 int flags, struct objfile *parent)
c906108c
SS
1062{
1063 struct objfile *objfile;
a39a16c4 1064 struct cleanup *my_cleanups;
5417f6dc 1065 const char *name = bfd_get_filename (abfd);
7eedccfa 1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1067 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1068 const int should_print = ((from_tty || info_verbose)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1071
9291a0cd 1072 if (readnow_symbol_files)
b11896a5
TT
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
9291a0cd 1077
f9a062ff 1078 my_cleanups = make_cleanup_bfd_unref (abfd);
c906108c 1079
5417f6dc
RM
1080 /* Give user a chance to burp if we'd be
1081 interactively wiping out any existing symbols. */
c906108c
SS
1082
1083 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1084 && mainline
c906108c 1085 && from_tty
9e2f0ad4 1086 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1087 error (_("Not confirmed."));
c906108c 1088
0838fb57 1089 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1090 discard_cleanups (my_cleanups);
c906108c 1091
63524580
JK
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
78a4a9b9
AC
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
c378eb4e 1097 performed, or need to read an unmapped symbol table. */
b11896a5 1098 if (should_print)
c906108c 1099 {
769d7dc4
AC
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1102 else
c906108c 1103 {
55333a84
DE
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
c906108c 1107 }
c906108c 1108 }
78a4a9b9 1109 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1110 add_flags);
c906108c
SS
1111
1112 /* We now have at least a partial symbol table. Check to see if the
1113 user requested that all symbols be read on initial access via either
1114 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1115 all partial symbol tables for this objfile if so. */
c906108c 1116
9291a0cd 1117 if ((flags & OBJF_READNOW))
c906108c 1118 {
b11896a5 1119 if (should_print)
c906108c 1120 {
a3f17187 1121 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125
ccefe4c4
TT
1126 if (objfile->sf)
1127 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1128 }
1129
b11896a5 1130 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1131 {
1132 wrap_here ("");
55333a84 1133 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1134 wrap_here ("");
1135 }
1136
b11896a5 1137 if (should_print)
c906108c 1138 {
769d7dc4
AC
1139 if (deprecated_post_add_symbol_hook)
1140 deprecated_post_add_symbol_hook ();
c906108c 1141 else
55333a84 1142 printf_unfiltered (_("done.\n"));
c906108c
SS
1143 }
1144
481d0f41
JB
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
109f874e 1150 if (objfile->sf == NULL)
8caee43b
PP
1151 {
1152 observer_notify_new_objfile (objfile);
c378eb4e 1153 return objfile; /* No symbols. */
8caee43b 1154 }
109f874e 1155
7eedccfa 1156 new_symfile_objfile (objfile, add_flags);
c906108c 1157
06d3b283 1158 observer_notify_new_objfile (objfile);
c906108c 1159
ce7d4522 1160 bfd_cache_close_all ();
c906108c
SS
1161 return (objfile);
1162}
1163
9cce227f
TG
1164/* Add BFD as a separate debug file for OBJFILE. */
1165
1166void
1167symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1168{
15d123c9 1169 struct objfile *new_objfile;
089b4803
TG
1170 struct section_addr_info *sap;
1171 struct cleanup *my_cleanup;
1172
1173 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1174 because sections of BFD may not match sections of OBJFILE and because
1175 vma may have been modified by tools such as prelink. */
1176 sap = build_section_addr_info_from_objfile (objfile);
1177 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1178
15d123c9 1179 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1180 (bfd, symfile_flags,
089b4803 1181 sap, NULL, 0,
9cce227f 1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1183 | OBJF_USERLOADED),
1184 objfile);
089b4803
TG
1185
1186 do_cleanups (my_cleanup);
9cce227f 1187}
7904e09f 1188
eb4556d7
JB
1189/* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191
1192 See symbol_file_add_with_addrs_or_offsets's comments for
1193 details. */
1194struct objfile *
7eedccfa 1195symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1196 struct section_addr_info *addrs,
63524580 1197 int flags, struct objfile *parent)
eb4556d7 1198{
7eedccfa 1199 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1200 flags, parent);
eb4556d7
JB
1201}
1202
1203
7904e09f
JB
1204/* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1206 for details. */
1207struct objfile *
7eedccfa
PP
1208symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1209 int flags)
7904e09f 1210{
7eedccfa 1211 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1212 flags, NULL);
7904e09f
JB
1213}
1214
1215
d7db6da9
FN
1216/* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
5417f6dc 1223
1adeb98a
FN
1224void
1225symbol_file_add_main (char *args, int from_tty)
1226{
d7db6da9
FN
1227 symbol_file_add_main_1 (args, from_tty, 0);
1228}
1229
1230static void
1231symbol_file_add_main_1 (char *args, int from_tty, int flags)
1232{
7dcd53a0
TT
1233 const int add_flags = (current_inferior ()->symfile_flags
1234 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1235
7eedccfa 1236 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1237
d7db6da9
FN
1238 /* Getting new symbols may change our opinion about
1239 what is frameless. */
1240 reinit_frame_cache ();
1241
7dcd53a0
TT
1242 if ((flags & SYMFILE_NO_READ) == 0)
1243 set_initial_language ();
1adeb98a
FN
1244}
1245
1246void
1247symbol_file_clear (int from_tty)
1248{
1249 if ((have_full_symbols () || have_partial_symbols ())
1250 && from_tty
0430b0d6
AS
1251 && (symfile_objfile
1252 ? !query (_("Discard symbol table from `%s'? "),
1253 symfile_objfile->name)
1254 : !query (_("Discard symbol table? "))))
8a3fe4f8 1255 error (_("Not confirmed."));
1adeb98a 1256
0133421a
JK
1257 /* solib descriptors may have handles to objfiles. Wipe them before their
1258 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1259 no_shared_libraries (NULL, from_tty);
1260
0133421a
JK
1261 free_all_objfiles ();
1262
adb7f338 1263 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1264 if (from_tty)
1265 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1266}
1267
5b5d99cf
JB
1268static char *
1269get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270{
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
5417f6dc 1276
5b5d99cf
JB
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1283
5b5d99cf
JB
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
c378eb4e 1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1293
5b5d99cf
JB
1294 *crc32_out = crc32;
1295 return contents;
1296}
1297
904578ed
JK
1298/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1299 return 1. Otherwise print a warning and return 0. ABFD seek position is
1300 not preserved. */
1301
1302static int
1303get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1304{
1305 unsigned long file_crc = 0;
1306
1307 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1308 {
1309 warning (_("Problem reading \"%s\" for CRC: %s"),
1310 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1311 return 0;
1312 }
1313
1314 for (;;)
1315 {
1316 gdb_byte buffer[8 * 1024];
1317 bfd_size_type count;
1318
1319 count = bfd_bread (buffer, sizeof (buffer), abfd);
1320 if (count == (bfd_size_type) -1)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326 if (count == 0)
1327 break;
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 }
1330
1331 *file_crc_return = file_crc;
1332 return 1;
1333}
1334
5b5d99cf 1335static int
287ccc17 1336separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
f1838a98 1341 bfd *abfd;
32a0e547 1342 struct stat parent_stat, abfd_stat;
904578ed 1343 int verified_as_different;
32a0e547
JK
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1349 the separate debug infos with the same basename can exist. */
32a0e547 1350
0ba1096a 1351 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1352 return 0;
5b5d99cf 1353
874f5765 1354 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1355
1356 if (!abfd)
5b5d99cf
JB
1357 return 0;
1358
0ba1096a 1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Do not indicate a duplicate library in that
1364 case. While there is no guarantee that a system that provides
1365 meaningful inode numbers will never set st_ino to zero, this is
1366 merely an optimization, so we do not need to worry about false
1367 negatives. */
1368
1369 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1370 && abfd_stat.st_ino != 0
1371 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1372 {
904578ed
JK
1373 if (abfd_stat.st_dev == parent_stat.st_dev
1374 && abfd_stat.st_ino == parent_stat.st_ino)
1375 {
cbb099e8 1376 gdb_bfd_unref (abfd);
904578ed
JK
1377 return 0;
1378 }
1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
904578ed 1384 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1385
cbb099e8 1386 gdb_bfd_unref (abfd);
5b5d99cf 1387
904578ed
JK
1388 if (!file_crc_p)
1389 return 0;
1390
287ccc17
JK
1391 if (crc != file_crc)
1392 {
904578ed
JK
1393 /* If one (or both) the files are accessed for example the via "remote:"
1394 gdbserver way it does not support the bfd_stat operation. Verify
1395 whether those two files are not the same manually. */
1396
1397 if (!verified_as_different && !parent_objfile->crc32_p)
1398 {
1399 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1400 &parent_objfile->crc32);
1401 if (!parent_objfile->crc32_p)
1402 return 0;
1403 }
1404
0e8aefe7 1405 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1406 warning (_("the debug information found in \"%s\""
1407 " does not match \"%s\" (CRC mismatch).\n"),
1408 name, parent_objfile->name);
1409
287ccc17
JK
1410 return 0;
1411 }
1412
1413 return 1;
5b5d99cf
JB
1414}
1415
aa28a74e 1416char *debug_file_directory = NULL;
920d2a44
AC
1417static void
1418show_debug_file_directory (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420{
3e43a32a
MS
1421 fprintf_filtered (file,
1422 _("The directory where separate debug "
1423 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1424 value);
1425}
5b5d99cf
JB
1426
1427#if ! defined (DEBUG_SUBDIRECTORY)
1428#define DEBUG_SUBDIRECTORY ".debug"
1429#endif
1430
1db33378
PP
1431/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1432 where the original file resides (may not be the same as
1433 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1434 looking for. Returns the name of the debuginfo, of NULL. */
1435
1436static char *
1437find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
9cce227f 1441{
1db33378
PP
1442 char *debugdir;
1443 char *debugfile;
9cce227f 1444 int i;
e4ab2fad
JK
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
5b5d99cf 1448
1db33378 1449 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1450 i = strlen (dir);
1db33378
PP
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1ffa32ee 1453
25522fae
JK
1454 debugfile = xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1db33378 1458 + strlen (debuglink)
25522fae 1459 + 1);
5b5d99cf
JB
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1db33378 1463 strcat (debugfile, debuglink);
5b5d99cf 1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1466 return debugfile;
5417f6dc 1467
5b5d99cf
JB
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1db33378 1472 strcat (debugfile, debuglink);
5b5d99cf 1473
32a0e547 1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1475 return debugfile;
5417f6dc 1476
24ddea62 1477 /* Then try in the global debugfile directories.
f888f159 1478
24ddea62
JK
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
5417f6dc 1481
e4ab2fad
JK
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1484
e4ab2fad
JK
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
aa28a74e 1488 strcat (debugfile, "/");
24ddea62 1489 strcat (debugfile, dir);
1db33378 1490 strcat (debugfile, debuglink);
aa28a74e 1491
32a0e547 1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1493 return debugfile;
24ddea62
JK
1494
1495 /* If the file is in the sysroot, try using its base path in the
1496 global debugfile directory. */
1db33378
PP
1497 if (canon_dir != NULL
1498 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1499 strlen (gdb_sysroot)) == 0
1db33378 1500 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1501 {
e4ab2fad 1502 strcpy (debugfile, debugdir);
1db33378 1503 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1504 strcat (debugfile, "/");
1db33378 1505 strcat (debugfile, debuglink);
24ddea62 1506
32a0e547 1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1508 return debugfile;
24ddea62 1509 }
aa28a74e 1510 }
f888f159 1511
e4ab2fad 1512 do_cleanups (back_to);
25522fae 1513 xfree (debugfile);
1db33378
PP
1514 return NULL;
1515}
1516
1517/* Modify PATH to contain only "directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521static void
1522terminate_after_last_dir_separator (char *path)
1523{
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534}
1535
1536/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539char *
1540find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541{
1542 char *debuglink;
1543 char *dir, *canon_dir;
1544 char *debugfile;
1545 unsigned long crc32;
1546 struct cleanup *cleanups;
1547
1548 debuglink = get_debug_link_info (objfile, &crc32);
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return NULL;
1555 }
1556
71bdabee 1557 cleanups = make_cleanup (xfree, debuglink);
1db33378 1558 dir = xstrdup (objfile->name);
71bdabee 1559 make_cleanup (xfree, dir);
1db33378
PP
1560 terminate_after_last_dir_separator (dir);
1561 canon_dir = lrealpath (dir);
1562
1563 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1564 crc32, objfile);
1565 xfree (canon_dir);
1566
1567 if (debugfile == NULL)
1568 {
1569#ifdef HAVE_LSTAT
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1576 {
1577 char *symlink_dir;
1578
1579 symlink_dir = lrealpath (objfile->name);
1580 if (symlink_dir != NULL)
1581 {
1582 make_cleanup (xfree, symlink_dir);
1583 terminate_after_last_dir_separator (symlink_dir);
1584 if (strcmp (dir, symlink_dir) != 0)
1585 {
1586 /* Different directory, so try using it. */
1587 debugfile = find_separate_debug_file (symlink_dir,
1588 symlink_dir,
1589 debuglink,
1590 crc32,
1591 objfile);
1592 }
1593 }
1594 }
1595#endif /* HAVE_LSTAT */
1596 }
aa28a74e 1597
1db33378 1598 do_cleanups (cleanups);
25522fae 1599 return debugfile;
5b5d99cf
JB
1600}
1601
1602
c906108c
SS
1603/* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
c906108c
SS
1615 conventions (because it is confusing and inconvenient). */
1616
1617void
fba45db2 1618symbol_file_command (char *args, int from_tty)
c906108c 1619{
c906108c
SS
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1adeb98a 1624 symbol_file_clear (from_tty);
c906108c
SS
1625 }
1626 else
1627 {
d1a41061 1628 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1629 int flags = OBJF_USERLOADED;
1630 struct cleanup *cleanups;
1631 char *name = NULL;
1632
7a292a7a 1633 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1634 while (*argv != NULL)
1635 {
78a4a9b9
AC
1636 if (strcmp (*argv, "-readnow") == 0)
1637 flags |= OBJF_READNOW;
1638 else if (**argv == '-')
8a3fe4f8 1639 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1640 else
1641 {
cb2f3a29 1642 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1643 name = *argv;
78a4a9b9 1644 }
cb2f3a29 1645
c906108c
SS
1646 argv++;
1647 }
1648
1649 if (name == NULL)
cb2f3a29
MK
1650 error (_("no symbol file name was specified"));
1651
c906108c
SS
1652 do_cleanups (cleanups);
1653 }
1654}
1655
1656/* Set the initial language.
1657
cb2f3a29
MK
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
c906108c 1666
8b60591b 1667void
fba45db2 1668set_initial_language (void)
c906108c 1669{
c5aa993b 1670 enum language lang = language_unknown;
c906108c 1671
01f8c46d
JK
1672 if (language_of_main != language_unknown)
1673 lang = language_of_main;
1674 else
1675 {
1676 const char *filename;
f888f159 1677
01f8c46d
JK
1678 filename = find_main_filename ();
1679 if (filename != NULL)
1680 lang = deduce_language_from_filename (filename);
1681 }
cb2f3a29 1682
ccefe4c4
TT
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
c906108c 1687 }
ccefe4c4
TT
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1691}
1692
874f5765 1693/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1694 open it normally. Returns a new reference to the BFD. On error,
1695 returns NULL with the BFD error set. */
874f5765
TG
1696
1697bfd *
1698bfd_open_maybe_remote (const char *name)
1699{
520b0001
TT
1700 bfd *result;
1701
874f5765 1702 if (remote_filename_p (name))
520b0001 1703 result = remote_bfd_open (name, gnutarget);
874f5765 1704 else
a4453b7e 1705 {
520b0001 1706 result = bfd_openr (name, gnutarget);
a4453b7e
TT
1707 if (result != NULL)
1708 gdb_bfd_stash_filename (result);
a4453b7e 1709 }
520b0001
TT
1710
1711 gdb_bfd_ref (result);
1712 return result;
874f5765
TG
1713}
1714
1715
cb2f3a29
MK
1716/* Open the file specified by NAME and hand it off to BFD for
1717 preliminary analysis. Return a newly initialized bfd *, which
1718 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1719 absolute). In case of trouble, error() is called. */
c906108c
SS
1720
1721bfd *
fba45db2 1722symfile_bfd_open (char *name)
c906108c
SS
1723{
1724 bfd *sym_bfd;
1725 int desc;
1726 char *absolute_name;
1727
f1838a98
UW
1728 if (remote_filename_p (name))
1729 {
520b0001
TT
1730 sym_bfd = remote_bfd_open (name, gnutarget);
1731 gdb_bfd_ref (sym_bfd);
f1838a98 1732 if (!sym_bfd)
a4453b7e
TT
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1735
1736 if (!bfd_check_format (sym_bfd, bfd_object))
1737 {
f9a062ff 1738 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1739 error (_("`%s': can't read symbols: %s."), name,
1740 bfd_errmsg (bfd_get_error ()));
1741 }
1742
1743 return sym_bfd;
1744 }
1745
cb2f3a29 1746 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1747
1748 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1749 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1750 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1751#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1752 if (desc < 0)
1753 {
1754 char *exename = alloca (strlen (name) + 5);
433759f7 1755
c906108c 1756 strcat (strcpy (exename, name), ".exe");
014d698b 1757 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1758 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1759 }
1760#endif
1761 if (desc < 0)
1762 {
b8c9b27d 1763 make_cleanup (xfree, name);
c906108c
SS
1764 perror_with_name (name);
1765 }
cb2f3a29 1766
cb2f3a29
MK
1767 xfree (name);
1768 name = absolute_name;
a4453b7e 1769 make_cleanup (xfree, name);
c906108c 1770
520b0001
TT
1771 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1772 gdb_bfd_ref (sym_bfd);
c906108c
SS
1773 if (!sym_bfd)
1774 {
b8c9b27d 1775 make_cleanup (xfree, name);
f1838a98 1776 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1777 bfd_errmsg (bfd_get_error ()));
1778 }
549c1eea 1779 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1780
1781 if (!bfd_check_format (sym_bfd, bfd_object))
1782 {
f9a062ff 1783 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1784 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1785 bfd_errmsg (bfd_get_error ()));
1786 }
cb2f3a29 1787
a4453b7e
TT
1788 gdb_bfd_stash_filename (sym_bfd);
1789
cb2f3a29 1790 return sym_bfd;
c906108c
SS
1791}
1792
cb2f3a29
MK
1793/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1794 the section was not found. */
1795
0e931cf0
JB
1796int
1797get_section_index (struct objfile *objfile, char *section_name)
1798{
1799 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1800
0e931cf0
JB
1801 if (sect)
1802 return sect->index;
1803 else
1804 return -1;
1805}
1806
cb2f3a29
MK
1807/* Link SF into the global symtab_fns list. Called on startup by the
1808 _initialize routine in each object file format reader, to register
b021a221 1809 information about each format the reader is prepared to handle. */
c906108c
SS
1810
1811void
00b5771c 1812add_symtab_fns (const struct sym_fns *sf)
c906108c 1813{
00b5771c 1814 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1815}
1816
cb2f3a29
MK
1817/* Initialize OBJFILE to read symbols from its associated BFD. It
1818 either returns or calls error(). The result is an initialized
1819 struct sym_fns in the objfile structure, that contains cached
1820 information about the symbol file. */
c906108c 1821
00b5771c 1822static const struct sym_fns *
31d99776 1823find_sym_fns (bfd *abfd)
c906108c 1824{
00b5771c 1825 const struct sym_fns *sf;
31d99776 1826 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1827 int i;
c906108c 1828
75245b24
MS
1829 if (our_flavour == bfd_target_srec_flavour
1830 || our_flavour == bfd_target_ihex_flavour
1831 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1832 return NULL; /* No symbols. */
75245b24 1833
00b5771c 1834 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1835 if (our_flavour == sf->sym_flavour)
1836 return sf;
cb2f3a29 1837
8a3fe4f8 1838 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1839 bfd_get_target (abfd));
c906108c
SS
1840}
1841\f
cb2f3a29 1842
c906108c
SS
1843/* This function runs the load command of our current target. */
1844
1845static void
fba45db2 1846load_command (char *arg, int from_tty)
c906108c 1847{
e5cc9f32
JB
1848 dont_repeat ();
1849
4487aabf
PA
1850 /* The user might be reloading because the binary has changed. Take
1851 this opportunity to check. */
1852 reopen_exec_file ();
1853 reread_symbols ();
1854
c906108c 1855 if (arg == NULL)
1986bccd
AS
1856 {
1857 char *parg;
1858 int count = 0;
1859
1860 parg = arg = get_exec_file (1);
1861
1862 /* Count how many \ " ' tab space there are in the name. */
1863 while ((parg = strpbrk (parg, "\\\"'\t ")))
1864 {
1865 parg++;
1866 count++;
1867 }
1868
1869 if (count)
1870 {
1871 /* We need to quote this string so buildargv can pull it apart. */
1872 char *temp = xmalloc (strlen (arg) + count + 1 );
1873 char *ptemp = temp;
1874 char *prev;
1875
1876 make_cleanup (xfree, temp);
1877
1878 prev = parg = arg;
1879 while ((parg = strpbrk (parg, "\\\"'\t ")))
1880 {
1881 strncpy (ptemp, prev, parg - prev);
1882 ptemp += parg - prev;
1883 prev = parg++;
1884 *ptemp++ = '\\';
1885 }
1886 strcpy (ptemp, prev);
1887
1888 arg = temp;
1889 }
1890 }
1891
c906108c 1892 target_load (arg, from_tty);
2889e661
JB
1893
1894 /* After re-loading the executable, we don't really know which
1895 overlays are mapped any more. */
1896 overlay_cache_invalid = 1;
c906108c
SS
1897}
1898
1899/* This version of "load" should be usable for any target. Currently
1900 it is just used for remote targets, not inftarg.c or core files,
1901 on the theory that only in that case is it useful.
1902
1903 Avoiding xmodem and the like seems like a win (a) because we don't have
1904 to worry about finding it, and (b) On VMS, fork() is very slow and so
1905 we don't want to run a subprocess. On the other hand, I'm not sure how
1906 performance compares. */
917317f4 1907
917317f4
JM
1908static int validate_download = 0;
1909
e4f9b4d5
MS
1910/* Callback service function for generic_load (bfd_map_over_sections). */
1911
1912static void
1913add_section_size_callback (bfd *abfd, asection *asec, void *data)
1914{
1915 bfd_size_type *sum = data;
1916
2c500098 1917 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1918}
1919
1920/* Opaque data for load_section_callback. */
1921struct load_section_data {
1922 unsigned long load_offset;
a76d924d
DJ
1923 struct load_progress_data *progress_data;
1924 VEC(memory_write_request_s) *requests;
1925};
1926
1927/* Opaque data for load_progress. */
1928struct load_progress_data {
1929 /* Cumulative data. */
e4f9b4d5
MS
1930 unsigned long write_count;
1931 unsigned long data_count;
1932 bfd_size_type total_size;
a76d924d
DJ
1933};
1934
1935/* Opaque data for load_progress for a single section. */
1936struct load_progress_section_data {
1937 struct load_progress_data *cumulative;
cf7a04e8 1938
a76d924d 1939 /* Per-section data. */
cf7a04e8
DJ
1940 const char *section_name;
1941 ULONGEST section_sent;
1942 ULONGEST section_size;
1943 CORE_ADDR lma;
1944 gdb_byte *buffer;
e4f9b4d5
MS
1945};
1946
a76d924d 1947/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1948
1949static void
1950load_progress (ULONGEST bytes, void *untyped_arg)
1951{
a76d924d
DJ
1952 struct load_progress_section_data *args = untyped_arg;
1953 struct load_progress_data *totals;
1954
1955 if (args == NULL)
1956 /* Writing padding data. No easy way to get at the cumulative
1957 stats, so just ignore this. */
1958 return;
1959
1960 totals = args->cumulative;
1961
1962 if (bytes == 0 && args->section_sent == 0)
1963 {
1964 /* The write is just starting. Let the user know we've started
1965 this section. */
79a45e25 1966 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1967 args->section_name, hex_string (args->section_size),
1968 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1969 return;
1970 }
cf7a04e8
DJ
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
1981 gdb_byte *check = xmalloc (bytes);
1982 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1983
1984 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1985 error (_("Download verify read failed at %s"),
1986 paddress (target_gdbarch, args->lma));
cf7a04e8 1987 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1988 error (_("Download verify compare failed at %s"),
1989 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1990 do_cleanups (verify_cleanups);
1991 }
a76d924d 1992 totals->data_count += bytes;
cf7a04e8
DJ
1993 args->lma += bytes;
1994 args->buffer += bytes;
a76d924d 1995 totals->write_count += 1;
cf7a04e8
DJ
1996 args->section_sent += bytes;
1997 if (quit_flag
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
a76d924d
DJ
2007 totals->data_count,
2008 totals->total_size);
cf7a04e8
DJ
2009}
2010
e4f9b4d5
MS
2011/* Callback service function for generic_load (bfd_map_over_sections). */
2012
2013static void
2014load_section_callback (bfd *abfd, asection *asec, void *data)
2015{
a76d924d 2016 struct memory_write_request *new_request;
e4f9b4d5 2017 struct load_section_data *args = data;
a76d924d 2018 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2019 bfd_size_type size = bfd_get_section_size (asec);
2020 gdb_byte *buffer;
cf7a04e8 2021 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2022
cf7a04e8
DJ
2023 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 return;
e4f9b4d5 2025
cf7a04e8
DJ
2026 if (size == 0)
2027 return;
e4f9b4d5 2028
a76d924d
DJ
2029 new_request = VEC_safe_push (memory_write_request_s,
2030 args->requests, NULL);
2031 memset (new_request, 0, sizeof (struct memory_write_request));
2032 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2033 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2034 new_request->end = new_request->begin + size; /* FIXME Should size
2035 be in instead? */
a76d924d
DJ
2036 new_request->data = xmalloc (size);
2037 new_request->baton = section_data;
cf7a04e8 2038
a76d924d 2039 buffer = new_request->data;
cf7a04e8 2040
a76d924d
DJ
2041 section_data->cumulative = args->progress_data;
2042 section_data->section_name = sect_name;
2043 section_data->section_size = size;
2044 section_data->lma = new_request->begin;
2045 section_data->buffer = buffer;
cf7a04e8
DJ
2046
2047 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2048}
2049
2050/* Clean up an entire memory request vector, including load
2051 data and progress records. */
cf7a04e8 2052
a76d924d
DJ
2053static void
2054clear_memory_write_data (void *arg)
2055{
2056 VEC(memory_write_request_s) **vec_p = arg;
2057 VEC(memory_write_request_s) *vec = *vec_p;
2058 int i;
2059 struct memory_write_request *mr;
cf7a04e8 2060
a76d924d
DJ
2061 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2062 {
2063 xfree (mr->data);
2064 xfree (mr->baton);
2065 }
2066 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2067}
2068
c906108c 2069void
917317f4 2070generic_load (char *args, int from_tty)
c906108c 2071{
c906108c 2072 bfd *loadfile_bfd;
2b71414d 2073 struct timeval start_time, end_time;
917317f4 2074 char *filename;
1986bccd 2075 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2076 struct load_section_data cbdata;
a76d924d 2077 struct load_progress_data total_progress;
79a45e25 2078 struct ui_out *uiout = current_uiout;
a76d924d 2079
e4f9b4d5 2080 CORE_ADDR entry;
1986bccd 2081 char **argv;
e4f9b4d5 2082
a76d924d
DJ
2083 memset (&cbdata, 0, sizeof (cbdata));
2084 memset (&total_progress, 0, sizeof (total_progress));
2085 cbdata.progress_data = &total_progress;
2086
2087 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2088
d1a41061
PP
2089 if (args == NULL)
2090 error_no_arg (_("file to load"));
1986bccd 2091
d1a41061 2092 argv = gdb_buildargv (args);
1986bccd
AS
2093 make_cleanup_freeargv (argv);
2094
2095 filename = tilde_expand (argv[0]);
2096 make_cleanup (xfree, filename);
2097
2098 if (argv[1] != NULL)
917317f4
JM
2099 {
2100 char *endptr;
ba5f2f8a 2101
1986bccd
AS
2102 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2103
2104 /* If the last word was not a valid number then
2105 treat it as a file name with spaces in. */
2106 if (argv[1] == endptr)
2107 error (_("Invalid download offset:%s."), argv[1]);
2108
2109 if (argv[2] != NULL)
2110 error (_("Too many parameters."));
917317f4 2111 }
c906108c 2112
c378eb4e 2113 /* Open the file for loading. */
520b0001
TT
2114 loadfile_bfd = bfd_openr (filename, gnutarget);
2115 gdb_bfd_ref (loadfile_bfd);
c906108c
SS
2116 if (loadfile_bfd == NULL)
2117 {
2118 perror_with_name (filename);
2119 return;
2120 }
917317f4 2121
f9a062ff 2122 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2123
c5aa993b 2124 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2125 {
8a3fe4f8 2126 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2127 bfd_errmsg (bfd_get_error ()));
2128 }
c5aa993b 2129
5417f6dc 2130 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2131 (void *) &total_progress.total_size);
2132
2133 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2134
2b71414d 2135 gettimeofday (&start_time, NULL);
c906108c 2136
a76d924d
DJ
2137 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2138 load_progress) != 0)
2139 error (_("Load failed"));
c906108c 2140
2b71414d 2141 gettimeofday (&end_time, NULL);
ba5f2f8a 2142
e4f9b4d5 2143 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2144 ui_out_text (uiout, "Start address ");
5af949e3 2145 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2146 ui_out_text (uiout, ", load size ");
a76d924d 2147 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2148 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2149 /* We were doing this in remote-mips.c, I suspect it is right
2150 for other targets too. */
fb14de7b 2151 regcache_write_pc (get_current_regcache (), entry);
c906108c 2152
38963c97
DJ
2153 /* Reset breakpoints, now that we have changed the load image. For
2154 instance, breakpoints may have been set (or reset, by
2155 post_create_inferior) while connected to the target but before we
2156 loaded the program. In that case, the prologue analyzer could
2157 have read instructions from the target to find the right
2158 breakpoint locations. Loading has changed the contents of that
2159 memory. */
2160
2161 breakpoint_re_set ();
2162
7ca9f392
AC
2163 /* FIXME: are we supposed to call symbol_file_add or not? According
2164 to a comment from remote-mips.c (where a call to symbol_file_add
2165 was commented out), making the call confuses GDB if more than one
2166 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2167 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2168
a76d924d
DJ
2169 print_transfer_performance (gdb_stdout, total_progress.data_count,
2170 total_progress.write_count,
2171 &start_time, &end_time);
c906108c
SS
2172
2173 do_cleanups (old_cleanups);
2174}
2175
c378eb4e 2176/* Report how fast the transfer went. */
c906108c 2177
917317f4
JM
2178/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2179 replaced by print_transfer_performance (with a very different
c378eb4e 2180 function signature). */
917317f4 2181
c906108c 2182void
fba45db2
KB
2183report_transfer_performance (unsigned long data_count, time_t start_time,
2184 time_t end_time)
c906108c 2185{
2b71414d
DJ
2186 struct timeval start, end;
2187
2188 start.tv_sec = start_time;
2189 start.tv_usec = 0;
2190 end.tv_sec = end_time;
2191 end.tv_usec = 0;
2192
2193 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2194}
2195
2196void
d9fcf2fb 2197print_transfer_performance (struct ui_file *stream,
917317f4
JM
2198 unsigned long data_count,
2199 unsigned long write_count,
2b71414d
DJ
2200 const struct timeval *start_time,
2201 const struct timeval *end_time)
917317f4 2202{
9f43d28c 2203 ULONGEST time_count;
79a45e25 2204 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2205
2206 /* Compute the elapsed time in milliseconds, as a tradeoff between
2207 accuracy and overflow. */
2208 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2209 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2210
8b93c638
JM
2211 ui_out_text (uiout, "Transfer rate: ");
2212 if (time_count > 0)
2213 {
9f43d28c
DJ
2214 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2215
2216 if (ui_out_is_mi_like_p (uiout))
2217 {
2218 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2219 ui_out_text (uiout, " bits/sec");
2220 }
2221 else if (rate < 1024)
2222 {
2223 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2224 ui_out_text (uiout, " bytes/sec");
2225 }
2226 else
2227 {
2228 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2229 ui_out_text (uiout, " KB/sec");
2230 }
8b93c638
JM
2231 }
2232 else
2233 {
ba5f2f8a 2234 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2235 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2236 }
2237 if (write_count > 0)
2238 {
2239 ui_out_text (uiout, ", ");
ba5f2f8a 2240 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2241 ui_out_text (uiout, " bytes/write");
2242 }
2243 ui_out_text (uiout, ".\n");
c906108c
SS
2244}
2245
2246/* This function allows the addition of incrementally linked object files.
2247 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2248/* Note: ezannoni 2000-04-13 This function/command used to have a
2249 special case syntax for the rombug target (Rombug is the boot
2250 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2251 rombug case, the user doesn't need to supply a text address,
2252 instead a call to target_link() (in target.c) would supply the
c378eb4e 2253 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2254
c906108c 2255static void
fba45db2 2256add_symbol_file_command (char *args, int from_tty)
c906108c 2257{
5af949e3 2258 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2259 char *filename = NULL;
2df3850c 2260 int flags = OBJF_USERLOADED;
c906108c 2261 char *arg;
db162d44 2262 int section_index = 0;
2acceee2
JM
2263 int argcnt = 0;
2264 int sec_num = 0;
2265 int i;
db162d44
EZ
2266 int expecting_sec_name = 0;
2267 int expecting_sec_addr = 0;
5b96932b 2268 char **argv;
db162d44 2269
a39a16c4 2270 struct sect_opt
2acceee2 2271 {
2acceee2
JM
2272 char *name;
2273 char *value;
a39a16c4 2274 };
db162d44 2275
a39a16c4
MM
2276 struct section_addr_info *section_addrs;
2277 struct sect_opt *sect_opts = NULL;
2278 size_t num_sect_opts = 0;
3017564a 2279 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2280
a39a16c4 2281 num_sect_opts = 16;
5417f6dc 2282 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2283 * sizeof (struct sect_opt));
2284
c906108c
SS
2285 dont_repeat ();
2286
2287 if (args == NULL)
8a3fe4f8 2288 error (_("add-symbol-file takes a file name and an address"));
c906108c 2289
d1a41061 2290 argv = gdb_buildargv (args);
5b96932b 2291 make_cleanup_freeargv (argv);
db162d44 2292
5b96932b
AS
2293 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2294 {
c378eb4e 2295 /* Process the argument. */
db162d44 2296 if (argcnt == 0)
c906108c 2297 {
c378eb4e 2298 /* The first argument is the file name. */
db162d44 2299 filename = tilde_expand (arg);
3017564a 2300 make_cleanup (xfree, filename);
c906108c 2301 }
db162d44 2302 else
7a78ae4e
ND
2303 if (argcnt == 1)
2304 {
2305 /* The second argument is always the text address at which
c378eb4e 2306 to load the program. */
7a78ae4e
ND
2307 sect_opts[section_index].name = ".text";
2308 sect_opts[section_index].value = arg;
f414f22f 2309 if (++section_index >= num_sect_opts)
a39a16c4
MM
2310 {
2311 num_sect_opts *= 2;
5417f6dc 2312 sect_opts = ((struct sect_opt *)
a39a16c4 2313 xrealloc (sect_opts,
5417f6dc 2314 num_sect_opts
a39a16c4
MM
2315 * sizeof (struct sect_opt)));
2316 }
7a78ae4e
ND
2317 }
2318 else
2319 {
2320 /* It's an option (starting with '-') or it's an argument
c378eb4e 2321 to an option. */
7a78ae4e
ND
2322
2323 if (*arg == '-')
2324 {
78a4a9b9
AC
2325 if (strcmp (arg, "-readnow") == 0)
2326 flags |= OBJF_READNOW;
2327 else if (strcmp (arg, "-s") == 0)
2328 {
2329 expecting_sec_name = 1;
2330 expecting_sec_addr = 1;
2331 }
7a78ae4e
ND
2332 }
2333 else
2334 {
2335 if (expecting_sec_name)
db162d44 2336 {
7a78ae4e
ND
2337 sect_opts[section_index].name = arg;
2338 expecting_sec_name = 0;
db162d44
EZ
2339 }
2340 else
7a78ae4e
ND
2341 if (expecting_sec_addr)
2342 {
2343 sect_opts[section_index].value = arg;
2344 expecting_sec_addr = 0;
f414f22f 2345 if (++section_index >= num_sect_opts)
a39a16c4
MM
2346 {
2347 num_sect_opts *= 2;
5417f6dc 2348 sect_opts = ((struct sect_opt *)
a39a16c4 2349 xrealloc (sect_opts,
5417f6dc 2350 num_sect_opts
a39a16c4
MM
2351 * sizeof (struct sect_opt)));
2352 }
7a78ae4e
ND
2353 }
2354 else
3e43a32a 2355 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2356 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2357 }
2358 }
c906108c 2359 }
c906108c 2360
927890d0
JB
2361 /* This command takes at least two arguments. The first one is a
2362 filename, and the second is the address where this file has been
2363 loaded. Abort now if this address hasn't been provided by the
2364 user. */
2365 if (section_index < 1)
2366 error (_("The address where %s has been loaded is missing"), filename);
2367
c378eb4e 2368 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2369 a sect_addr_info structure to be passed around to other
2370 functions. We have to split this up into separate print
bb599908 2371 statements because hex_string returns a local static
c378eb4e 2372 string. */
5417f6dc 2373
a3f17187 2374 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2375 section_addrs = alloc_section_addr_info (section_index);
2376 make_cleanup (xfree, section_addrs);
db162d44 2377 for (i = 0; i < section_index; i++)
c906108c 2378 {
db162d44
EZ
2379 CORE_ADDR addr;
2380 char *val = sect_opts[i].value;
2381 char *sec = sect_opts[i].name;
5417f6dc 2382
ae822768 2383 addr = parse_and_eval_address (val);
db162d44 2384
db162d44 2385 /* Here we store the section offsets in the order they were
c378eb4e 2386 entered on the command line. */
a39a16c4
MM
2387 section_addrs->other[sec_num].name = sec;
2388 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2389 printf_unfiltered ("\t%s_addr = %s\n", sec,
2390 paddress (gdbarch, addr));
db162d44
EZ
2391 sec_num++;
2392
5417f6dc 2393 /* The object's sections are initialized when a
db162d44 2394 call is made to build_objfile_section_table (objfile).
5417f6dc 2395 This happens in reread_symbols.
db162d44
EZ
2396 At this point, we don't know what file type this is,
2397 so we can't determine what section names are valid. */
2acceee2 2398 }
db162d44 2399
2acceee2 2400 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2401 error (_("Not confirmed."));
c906108c 2402
7eedccfa
PP
2403 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2404 section_addrs, flags);
c906108c
SS
2405
2406 /* Getting new symbols may change our opinion about what is
2407 frameless. */
2408 reinit_frame_cache ();
db162d44 2409 do_cleanups (my_cleanups);
c906108c
SS
2410}
2411\f
70992597 2412
4ac39b97
JK
2413typedef struct objfile *objfilep;
2414
2415DEF_VEC_P (objfilep);
2416
c906108c
SS
2417/* Re-read symbols if a symbol-file has changed. */
2418void
fba45db2 2419reread_symbols (void)
c906108c
SS
2420{
2421 struct objfile *objfile;
2422 long new_modtime;
c906108c
SS
2423 struct stat new_statbuf;
2424 int res;
4ac39b97
JK
2425 VEC (objfilep) *new_objfiles = NULL;
2426 struct cleanup *all_cleanups;
2427
2428 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2429
2430 /* With the addition of shared libraries, this should be modified,
2431 the load time should be saved in the partial symbol tables, since
2432 different tables may come from different source files. FIXME.
2433 This routine should then walk down each partial symbol table
c378eb4e 2434 and see if the symbol table that it originates from has been changed. */
c906108c 2435
c5aa993b
JM
2436 for (objfile = object_files; objfile; objfile = objfile->next)
2437 {
9cce227f
TG
2438 /* solib-sunos.c creates one objfile with obfd. */
2439 if (objfile->obfd == NULL)
2440 continue;
2441
2442 /* Separate debug objfiles are handled in the main objfile. */
2443 if (objfile->separate_debug_objfile_backlink)
2444 continue;
2445
02aeec7b
JB
2446 /* If this object is from an archive (what you usually create with
2447 `ar', often called a `static library' on most systems, though
2448 a `shared library' on AIX is also an archive), then you should
2449 stat on the archive name, not member name. */
9cce227f
TG
2450 if (objfile->obfd->my_archive)
2451 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2452 else
9cce227f
TG
2453 res = stat (objfile->name, &new_statbuf);
2454 if (res != 0)
2455 {
c378eb4e 2456 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2457 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2458 objfile->name);
2459 continue;
2460 }
2461 new_modtime = new_statbuf.st_mtime;
2462 if (new_modtime != objfile->mtime)
2463 {
2464 struct cleanup *old_cleanups;
2465 struct section_offsets *offsets;
2466 int num_offsets;
2467 char *obfd_filename;
2468
2469 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2470 objfile->name);
2471
2472 /* There are various functions like symbol_file_add,
2473 symfile_bfd_open, syms_from_objfile, etc., which might
2474 appear to do what we want. But they have various other
2475 effects which we *don't* want. So we just do stuff
2476 ourselves. We don't worry about mapped files (for one thing,
2477 any mapped file will be out of date). */
2478
2479 /* If we get an error, blow away this objfile (not sure if
2480 that is the correct response for things like shared
2481 libraries). */
2482 old_cleanups = make_cleanup_free_objfile (objfile);
2483 /* We need to do this whenever any symbols go away. */
2484 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2485
0ba1096a
KT
2486 if (exec_bfd != NULL
2487 && filename_cmp (bfd_get_filename (objfile->obfd),
2488 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2489 {
2490 /* Reload EXEC_BFD without asking anything. */
2491
2492 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2493 }
2494
f6eeced0
JK
2495 /* Keep the calls order approx. the same as in free_objfile. */
2496
2497 /* Free the separate debug objfiles. It will be
2498 automatically recreated by sym_read. */
2499 free_objfile_separate_debug (objfile);
2500
2501 /* Remove any references to this objfile in the global
2502 value lists. */
2503 preserve_values (objfile);
2504
2505 /* Nuke all the state that we will re-read. Much of the following
2506 code which sets things to NULL really is necessary to tell
2507 other parts of GDB that there is nothing currently there.
2508
2509 Try to keep the freeing order compatible with free_objfile. */
2510
2511 if (objfile->sf != NULL)
2512 {
2513 (*objfile->sf->sym_finish) (objfile);
2514 }
2515
2516 clear_objfile_data (objfile);
2517
9cce227f
TG
2518 /* Clean up any state BFD has sitting around. We don't need
2519 to close the descriptor but BFD lacks a way of closing the
2520 BFD without closing the descriptor. */
a4453b7e
TT
2521 {
2522 struct bfd *obfd = objfile->obfd;
2523
2524 obfd_filename = bfd_get_filename (objfile->obfd);
2525 /* Open the new BFD before freeing the old one, so that
2526 the filename remains live. */
2527 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2528 gdb_bfd_unref (obfd);
2529 }
2530
9cce227f
TG
2531 if (objfile->obfd == NULL)
2532 error (_("Can't open %s to read symbols."), objfile->name);
9cce227f
TG
2533 /* bfd_openr sets cacheable to true, which is what we want. */
2534 if (!bfd_check_format (objfile->obfd, bfd_object))
2535 error (_("Can't read symbols from %s: %s."), objfile->name,
2536 bfd_errmsg (bfd_get_error ()));
2537
2538 /* Save the offsets, we will nuke them with the rest of the
2539 objfile_obstack. */
2540 num_offsets = objfile->num_sections;
2541 offsets = ((struct section_offsets *)
2542 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2543 memcpy (offsets, objfile->section_offsets,
2544 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2545
9cce227f
TG
2546 /* FIXME: Do we have to free a whole linked list, or is this
2547 enough? */
2548 if (objfile->global_psymbols.list)
2549 xfree (objfile->global_psymbols.list);
2550 memset (&objfile->global_psymbols, 0,
2551 sizeof (objfile->global_psymbols));
2552 if (objfile->static_psymbols.list)
2553 xfree (objfile->static_psymbols.list);
2554 memset (&objfile->static_psymbols, 0,
2555 sizeof (objfile->static_psymbols));
2556
c378eb4e 2557 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2558 psymbol_bcache_free (objfile->psymbol_cache);
2559 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2560 bcache_xfree (objfile->macro_cache);
cbd70537 2561 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2562 bcache_xfree (objfile->filename_cache);
cbd70537 2563 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2564 if (objfile->demangled_names_hash != NULL)
2565 {
2566 htab_delete (objfile->demangled_names_hash);
2567 objfile->demangled_names_hash = NULL;
2568 }
2569 obstack_free (&objfile->objfile_obstack, 0);
2570 objfile->sections = NULL;
2571 objfile->symtabs = NULL;
2572 objfile->psymtabs = NULL;
2573 objfile->psymtabs_addrmap = NULL;
2574 objfile->free_psymtabs = NULL;
34eaf542 2575 objfile->template_symbols = NULL;
9cce227f
TG
2576 objfile->msymbols = NULL;
2577 objfile->deprecated_sym_private = NULL;
2578 objfile->minimal_symbol_count = 0;
2579 memset (&objfile->msymbol_hash, 0,
2580 sizeof (objfile->msymbol_hash));
2581 memset (&objfile->msymbol_demangled_hash, 0,
2582 sizeof (objfile->msymbol_demangled_hash));
2583
9cce227f
TG
2584 /* obstack_init also initializes the obstack so it is
2585 empty. We could use obstack_specify_allocation but
d82ea6a8 2586 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2587 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2588 build_objfile_section_table (objfile);
9cce227f
TG
2589 terminate_minimal_symbol_table (objfile);
2590
2591 /* We use the same section offsets as from last time. I'm not
2592 sure whether that is always correct for shared libraries. */
2593 objfile->section_offsets = (struct section_offsets *)
2594 obstack_alloc (&objfile->objfile_obstack,
2595 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2596 memcpy (objfile->section_offsets, offsets,
2597 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2598 objfile->num_sections = num_offsets;
2599
2600 /* What the hell is sym_new_init for, anyway? The concept of
2601 distinguishing between the main file and additional files
2602 in this way seems rather dubious. */
2603 if (objfile == symfile_objfile)
c906108c 2604 {
9cce227f 2605 (*objfile->sf->sym_new_init) (objfile);
c906108c 2606 }
9cce227f
TG
2607
2608 (*objfile->sf->sym_init) (objfile);
2609 clear_complaints (&symfile_complaints, 1, 1);
2610 /* Do not set flags as this is safe and we don't want to be
2611 verbose. */
2612 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2613 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2614 {
2615 objfile->flags &= ~OBJF_PSYMTABS_READ;
2616 require_partial_symbols (objfile, 0);
2617 }
2618
9cce227f 2619 if (!objfile_has_symbols (objfile))
c906108c 2620 {
9cce227f
TG
2621 wrap_here ("");
2622 printf_unfiltered (_("(no debugging symbols found)\n"));
2623 wrap_here ("");
c5aa993b 2624 }
9cce227f
TG
2625
2626 /* We're done reading the symbol file; finish off complaints. */
2627 clear_complaints (&symfile_complaints, 0, 1);
2628
2629 /* Getting new symbols may change our opinion about what is
2630 frameless. */
2631
2632 reinit_frame_cache ();
2633
2634 /* Discard cleanups as symbol reading was successful. */
2635 discard_cleanups (old_cleanups);
2636
2637 /* If the mtime has changed between the time we set new_modtime
2638 and now, we *want* this to be out of date, so don't call stat
2639 again now. */
2640 objfile->mtime = new_modtime;
9cce227f 2641 init_entry_point_info (objfile);
4ac39b97
JK
2642
2643 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2644 }
2645 }
c906108c 2646
4ac39b97 2647 if (new_objfiles)
ea53e89f 2648 {
4ac39b97
JK
2649 int ix;
2650
ff3536bc
UW
2651 /* Notify objfiles that we've modified objfile sections. */
2652 objfiles_changed ();
2653
c1e56572 2654 clear_symtab_users (0);
4ac39b97
JK
2655
2656 /* clear_objfile_data for each objfile was called before freeing it and
2657 observer_notify_new_objfile (NULL) has been called by
2658 clear_symtab_users above. Notify the new files now. */
2659 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2660 observer_notify_new_objfile (objfile);
2661
ea53e89f
JB
2662 /* At least one objfile has changed, so we can consider that
2663 the executable we're debugging has changed too. */
781b42b0 2664 observer_notify_executable_changed ();
ea53e89f 2665 }
4ac39b97
JK
2666
2667 do_cleanups (all_cleanups);
c906108c 2668}
c906108c
SS
2669\f
2670
c5aa993b
JM
2671
2672typedef struct
2673{
2674 char *ext;
c906108c 2675 enum language lang;
c5aa993b
JM
2676}
2677filename_language;
c906108c 2678
c5aa993b 2679static filename_language *filename_language_table;
c906108c
SS
2680static int fl_table_size, fl_table_next;
2681
2682static void
fba45db2 2683add_filename_language (char *ext, enum language lang)
c906108c
SS
2684{
2685 if (fl_table_next >= fl_table_size)
2686 {
2687 fl_table_size += 10;
5417f6dc 2688 filename_language_table =
25bf3106
PM
2689 xrealloc (filename_language_table,
2690 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2691 }
2692
4fcf66da 2693 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2694 filename_language_table[fl_table_next].lang = lang;
2695 fl_table_next++;
2696}
2697
2698static char *ext_args;
920d2a44
AC
2699static void
2700show_ext_args (struct ui_file *file, int from_tty,
2701 struct cmd_list_element *c, const char *value)
2702{
3e43a32a
MS
2703 fprintf_filtered (file,
2704 _("Mapping between filename extension "
2705 "and source language is \"%s\".\n"),
920d2a44
AC
2706 value);
2707}
c906108c
SS
2708
2709static void
26c41df3 2710set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2711{
2712 int i;
2713 char *cp = ext_args;
2714 enum language lang;
2715
c378eb4e 2716 /* First arg is filename extension, starting with '.' */
c906108c 2717 if (*cp != '.')
8a3fe4f8 2718 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2719
2720 /* Find end of first arg. */
c5aa993b 2721 while (*cp && !isspace (*cp))
c906108c
SS
2722 cp++;
2723
2724 if (*cp == '\0')
3e43a32a
MS
2725 error (_("'%s': two arguments required -- "
2726 "filename extension and language"),
c906108c
SS
2727 ext_args);
2728
c378eb4e 2729 /* Null-terminate first arg. */
c5aa993b 2730 *cp++ = '\0';
c906108c
SS
2731
2732 /* Find beginning of second arg, which should be a source language. */
2733 while (*cp && isspace (*cp))
2734 cp++;
2735
2736 if (*cp == '\0')
3e43a32a
MS
2737 error (_("'%s': two arguments required -- "
2738 "filename extension and language"),
c906108c
SS
2739 ext_args);
2740
2741 /* Lookup the language from among those we know. */
2742 lang = language_enum (cp);
2743
2744 /* Now lookup the filename extension: do we already know it? */
2745 for (i = 0; i < fl_table_next; i++)
2746 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2747 break;
2748
2749 if (i >= fl_table_next)
2750 {
c378eb4e 2751 /* New file extension. */
c906108c
SS
2752 add_filename_language (ext_args, lang);
2753 }
2754 else
2755 {
c378eb4e 2756 /* Redefining a previously known filename extension. */
c906108c
SS
2757
2758 /* if (from_tty) */
2759 /* query ("Really make files of type %s '%s'?", */
2760 /* ext_args, language_str (lang)); */
2761
b8c9b27d 2762 xfree (filename_language_table[i].ext);
4fcf66da 2763 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2764 filename_language_table[i].lang = lang;
2765 }
2766}
2767
2768static void
fba45db2 2769info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2770{
2771 int i;
2772
a3f17187 2773 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2774 printf_filtered ("\n\n");
2775 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2776 printf_filtered ("\t%s\t- %s\n",
2777 filename_language_table[i].ext,
c906108c
SS
2778 language_str (filename_language_table[i].lang));
2779}
2780
2781static void
fba45db2 2782init_filename_language_table (void)
c906108c 2783{
c378eb4e 2784 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2785 {
2786 fl_table_size = 20;
2787 fl_table_next = 0;
c5aa993b 2788 filename_language_table =
c906108c 2789 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2790 add_filename_language (".c", language_c);
6aecb9c2 2791 add_filename_language (".d", language_d);
c5aa993b
JM
2792 add_filename_language (".C", language_cplus);
2793 add_filename_language (".cc", language_cplus);
2794 add_filename_language (".cp", language_cplus);
2795 add_filename_language (".cpp", language_cplus);
2796 add_filename_language (".cxx", language_cplus);
2797 add_filename_language (".c++", language_cplus);
2798 add_filename_language (".java", language_java);
c906108c 2799 add_filename_language (".class", language_java);
da2cf7e0 2800 add_filename_language (".m", language_objc);
c5aa993b
JM
2801 add_filename_language (".f", language_fortran);
2802 add_filename_language (".F", language_fortran);
fd5700c7
JK
2803 add_filename_language (".for", language_fortran);
2804 add_filename_language (".FOR", language_fortran);
2805 add_filename_language (".ftn", language_fortran);
2806 add_filename_language (".FTN", language_fortran);
2807 add_filename_language (".fpp", language_fortran);
2808 add_filename_language (".FPP", language_fortran);
2809 add_filename_language (".f90", language_fortran);
2810 add_filename_language (".F90", language_fortran);
2811 add_filename_language (".f95", language_fortran);
2812 add_filename_language (".F95", language_fortran);
2813 add_filename_language (".f03", language_fortran);
2814 add_filename_language (".F03", language_fortran);
2815 add_filename_language (".f08", language_fortran);
2816 add_filename_language (".F08", language_fortran);
c5aa993b 2817 add_filename_language (".s", language_asm);
aa707ed0 2818 add_filename_language (".sx", language_asm);
c5aa993b 2819 add_filename_language (".S", language_asm);
c6fd39cd
PM
2820 add_filename_language (".pas", language_pascal);
2821 add_filename_language (".p", language_pascal);
2822 add_filename_language (".pp", language_pascal);
963a6417
PH
2823 add_filename_language (".adb", language_ada);
2824 add_filename_language (".ads", language_ada);
2825 add_filename_language (".a", language_ada);
2826 add_filename_language (".ada", language_ada);
dde59185 2827 add_filename_language (".dg", language_ada);
c906108c
SS
2828 }
2829}
2830
2831enum language
dd786858 2832deduce_language_from_filename (const char *filename)
c906108c
SS
2833{
2834 int i;
2835 char *cp;
2836
2837 if (filename != NULL)
2838 if ((cp = strrchr (filename, '.')) != NULL)
2839 for (i = 0; i < fl_table_next; i++)
2840 if (strcmp (cp, filename_language_table[i].ext) == 0)
2841 return filename_language_table[i].lang;
2842
2843 return language_unknown;
2844}
2845\f
2846/* allocate_symtab:
2847
2848 Allocate and partly initialize a new symbol table. Return a pointer
2849 to it. error() if no space.
2850
2851 Caller must set these fields:
c5aa993b
JM
2852 LINETABLE(symtab)
2853 symtab->blockvector
2854 symtab->dirname
2855 symtab->free_code
2856 symtab->free_ptr
c906108c
SS
2857 */
2858
2859struct symtab *
72b9f47f 2860allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2861{
52f0bd74 2862 struct symtab *symtab;
c906108c
SS
2863
2864 symtab = (struct symtab *)
4a146b47 2865 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2866 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2867 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2868 objfile->filename_cache);
c5aa993b
JM
2869 symtab->fullname = NULL;
2870 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2871 symtab->debugformat = "unknown";
c906108c 2872
c378eb4e 2873 /* Hook it to the objfile it comes from. */
c906108c 2874
c5aa993b
JM
2875 symtab->objfile = objfile;
2876 symtab->next = objfile->symtabs;
2877 objfile->symtabs = symtab;
c906108c 2878
45cfd468
DE
2879 if (symtab_create_debug)
2880 {
2881 /* Be a bit clever with debugging messages, and don't print objfile
2882 every time, only when it changes. */
2883 static char *last_objfile_name = NULL;
2884
2885 if (last_objfile_name == NULL
2886 || strcmp (last_objfile_name, objfile->name) != 0)
2887 {
2888 xfree (last_objfile_name);
2889 last_objfile_name = xstrdup (objfile->name);
2890 fprintf_unfiltered (gdb_stdlog,
2891 "Creating one or more symtabs for objfile %s ...\n",
2892 last_objfile_name);
2893 }
2894 fprintf_unfiltered (gdb_stdlog,
2895 "Created symtab 0x%lx for module %s.\n",
2896 (long) symtab, filename);
2897 }
2898
c906108c
SS
2899 return (symtab);
2900}
c906108c 2901\f
c5aa993b 2902
c906108c 2903/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2904 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2905
2906void
c1e56572 2907clear_symtab_users (int add_flags)
c906108c
SS
2908{
2909 /* Someday, we should do better than this, by only blowing away
2910 the things that really need to be blown. */
c0501be5
DJ
2911
2912 /* Clear the "current" symtab first, because it is no longer valid.
2913 breakpoint_re_set may try to access the current symtab. */
2914 clear_current_source_symtab_and_line ();
2915
c906108c 2916 clear_displays ();
c1e56572
JK
2917 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2918 breakpoint_re_set ();
1bfeeb0f 2919 clear_last_displayed_sal ();
c906108c 2920 clear_pc_function_cache ();
06d3b283 2921 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2922
2923 /* Clear globals which might have pointed into a removed objfile.
2924 FIXME: It's not clear which of these are supposed to persist
2925 between expressions and which ought to be reset each time. */
2926 expression_context_block = NULL;
2927 innermost_block = NULL;
8756216b
DP
2928
2929 /* Varobj may refer to old symbols, perform a cleanup. */
2930 varobj_invalidate ();
2931
c906108c
SS
2932}
2933
74b7792f
AC
2934static void
2935clear_symtab_users_cleanup (void *ignore)
2936{
c1e56572 2937 clear_symtab_users (0);
74b7792f 2938}
c906108c 2939\f
c906108c
SS
2940/* OVERLAYS:
2941 The following code implements an abstraction for debugging overlay sections.
2942
2943 The target model is as follows:
2944 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2945 same VMA, each with its own unique LMA (or load address).
c906108c 2946 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2947 sections, one by one, from the load address into the VMA address.
5417f6dc 2948 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2949 sections should be considered to be mapped from the VMA to the LMA.
2950 This information is used for symbol lookup, and memory read/write.
5417f6dc 2951 For instance, if a section has been mapped then its contents
c5aa993b 2952 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2953
2954 Two levels of debugger support for overlays are available. One is
2955 "manual", in which the debugger relies on the user to tell it which
2956 overlays are currently mapped. This level of support is
2957 implemented entirely in the core debugger, and the information about
2958 whether a section is mapped is kept in the objfile->obj_section table.
2959
2960 The second level of support is "automatic", and is only available if
2961 the target-specific code provides functionality to read the target's
2962 overlay mapping table, and translate its contents for the debugger
2963 (by updating the mapped state information in the obj_section tables).
2964
2965 The interface is as follows:
c5aa993b
JM
2966 User commands:
2967 overlay map <name> -- tell gdb to consider this section mapped
2968 overlay unmap <name> -- tell gdb to consider this section unmapped
2969 overlay list -- list the sections that GDB thinks are mapped
2970 overlay read-target -- get the target's state of what's mapped
2971 overlay off/manual/auto -- set overlay debugging state
2972 Functional interface:
2973 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2974 section, return that section.
5417f6dc 2975 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2976 the pc, either in its VMA or its LMA
714835d5 2977 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2978 section_is_overlay(sect): true if section's VMA != LMA
2979 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2980 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2981 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2982 overlay_mapped_address(...): map an address from section's LMA to VMA
2983 overlay_unmapped_address(...): map an address from section's VMA to LMA
2984 symbol_overlayed_address(...): Return a "current" address for symbol:
2985 either in VMA or LMA depending on whether
c378eb4e 2986 the symbol's section is currently mapped. */
c906108c
SS
2987
2988/* Overlay debugging state: */
2989
d874f1e2 2990enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2991int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2992
c906108c 2993/* Function: section_is_overlay (SECTION)
5417f6dc 2994 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2995 SECTION is loaded at an address different from where it will "run". */
2996
2997int
714835d5 2998section_is_overlay (struct obj_section *section)
c906108c 2999{
714835d5
UW
3000 if (overlay_debugging && section)
3001 {
3002 bfd *abfd = section->objfile->obfd;
3003 asection *bfd_section = section->the_bfd_section;
f888f159 3004
714835d5
UW
3005 if (bfd_section_lma (abfd, bfd_section) != 0
3006 && bfd_section_lma (abfd, bfd_section)
3007 != bfd_section_vma (abfd, bfd_section))
3008 return 1;
3009 }
c906108c
SS
3010
3011 return 0;
3012}
3013
3014/* Function: overlay_invalidate_all (void)
3015 Invalidate the mapped state of all overlay sections (mark it as stale). */
3016
3017static void
fba45db2 3018overlay_invalidate_all (void)
c906108c 3019{
c5aa993b 3020 struct objfile *objfile;
c906108c
SS
3021 struct obj_section *sect;
3022
3023 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3024 if (section_is_overlay (sect))
3025 sect->ovly_mapped = -1;
c906108c
SS
3026}
3027
714835d5 3028/* Function: section_is_mapped (SECTION)
5417f6dc 3029 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3030
3031 Access to the ovly_mapped flag is restricted to this function, so
3032 that we can do automatic update. If the global flag
3033 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3034 overlay_invalidate_all. If the mapped state of the particular
3035 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3036
714835d5
UW
3037int
3038section_is_mapped (struct obj_section *osect)
c906108c 3039{
9216df95
UW
3040 struct gdbarch *gdbarch;
3041
714835d5 3042 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3043 return 0;
3044
c5aa993b 3045 switch (overlay_debugging)
c906108c
SS
3046 {
3047 default:
d874f1e2 3048 case ovly_off:
c5aa993b 3049 return 0; /* overlay debugging off */
d874f1e2 3050 case ovly_auto: /* overlay debugging automatic */
1c772458 3051 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3052 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3053 gdbarch = get_objfile_arch (osect->objfile);
3054 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3055 {
3056 if (overlay_cache_invalid)
3057 {
3058 overlay_invalidate_all ();
3059 overlay_cache_invalid = 0;
3060 }
3061 if (osect->ovly_mapped == -1)
9216df95 3062 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3063 }
3064 /* fall thru to manual case */
d874f1e2 3065 case ovly_on: /* overlay debugging manual */
c906108c
SS
3066 return osect->ovly_mapped == 1;
3067 }
3068}
3069
c906108c
SS
3070/* Function: pc_in_unmapped_range
3071 If PC falls into the lma range of SECTION, return true, else false. */
3072
3073CORE_ADDR
714835d5 3074pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3075{
714835d5
UW
3076 if (section_is_overlay (section))
3077 {
3078 bfd *abfd = section->objfile->obfd;
3079 asection *bfd_section = section->the_bfd_section;
fbd35540 3080
714835d5
UW
3081 /* We assume the LMA is relocated by the same offset as the VMA. */
3082 bfd_vma size = bfd_get_section_size (bfd_section);
3083 CORE_ADDR offset = obj_section_offset (section);
3084
3085 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3086 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3087 return 1;
3088 }
c906108c 3089
c906108c
SS
3090 return 0;
3091}
3092
3093/* Function: pc_in_mapped_range
3094 If PC falls into the vma range of SECTION, return true, else false. */
3095
3096CORE_ADDR
714835d5 3097pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3098{
714835d5
UW
3099 if (section_is_overlay (section))
3100 {
3101 if (obj_section_addr (section) <= pc
3102 && pc < obj_section_endaddr (section))
3103 return 1;
3104 }
c906108c 3105
c906108c
SS
3106 return 0;
3107}
3108
9ec8e6a0
JB
3109
3110/* Return true if the mapped ranges of sections A and B overlap, false
3111 otherwise. */
b9362cc7 3112static int
714835d5 3113sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3114{
714835d5
UW
3115 CORE_ADDR a_start = obj_section_addr (a);
3116 CORE_ADDR a_end = obj_section_endaddr (a);
3117 CORE_ADDR b_start = obj_section_addr (b);
3118 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3119
3120 return (a_start < b_end && b_start < a_end);
3121}
3122
c906108c
SS
3123/* Function: overlay_unmapped_address (PC, SECTION)
3124 Returns the address corresponding to PC in the unmapped (load) range.
3125 May be the same as PC. */
3126
3127CORE_ADDR
714835d5 3128overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3129{
714835d5
UW
3130 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3131 {
3132 bfd *abfd = section->objfile->obfd;
3133 asection *bfd_section = section->the_bfd_section;
fbd35540 3134
714835d5
UW
3135 return pc + bfd_section_lma (abfd, bfd_section)
3136 - bfd_section_vma (abfd, bfd_section);
3137 }
c906108c
SS
3138
3139 return pc;
3140}
3141
3142/* Function: overlay_mapped_address (PC, SECTION)
3143 Returns the address corresponding to PC in the mapped (runtime) range.
3144 May be the same as PC. */
3145
3146CORE_ADDR
714835d5 3147overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3148{
714835d5
UW
3149 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3150 {
3151 bfd *abfd = section->objfile->obfd;
3152 asection *bfd_section = section->the_bfd_section;
fbd35540 3153
714835d5
UW
3154 return pc + bfd_section_vma (abfd, bfd_section)
3155 - bfd_section_lma (abfd, bfd_section);
3156 }
c906108c
SS
3157
3158 return pc;
3159}
3160
3161
5417f6dc 3162/* Function: symbol_overlayed_address
c906108c
SS
3163 Return one of two addresses (relative to the VMA or to the LMA),
3164 depending on whether the section is mapped or not. */
3165
c5aa993b 3166CORE_ADDR
714835d5 3167symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3168{
3169 if (overlay_debugging)
3170 {
c378eb4e 3171 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3172 if (section == 0)
3173 return address;
c378eb4e
MS
3174 /* If the symbol's section is not an overlay, just return its
3175 address. */
c906108c
SS
3176 if (!section_is_overlay (section))
3177 return address;
c378eb4e 3178 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3179 if (section_is_mapped (section))
3180 return address;
3181 /*
3182 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3183 * then return its LOADED address rather than its vma address!!
3184 */
3185 return overlay_unmapped_address (address, section);
3186 }
3187 return address;
3188}
3189
5417f6dc 3190/* Function: find_pc_overlay (PC)
c906108c
SS
3191 Return the best-match overlay section for PC:
3192 If PC matches a mapped overlay section's VMA, return that section.
3193 Else if PC matches an unmapped section's VMA, return that section.
3194 Else if PC matches an unmapped section's LMA, return that section. */
3195
714835d5 3196struct obj_section *
fba45db2 3197find_pc_overlay (CORE_ADDR pc)
c906108c 3198{
c5aa993b 3199 struct objfile *objfile;
c906108c
SS
3200 struct obj_section *osect, *best_match = NULL;
3201
3202 if (overlay_debugging)
3203 ALL_OBJSECTIONS (objfile, osect)
714835d5 3204 if (section_is_overlay (osect))
c5aa993b 3205 {
714835d5 3206 if (pc_in_mapped_range (pc, osect))
c5aa993b 3207 {
714835d5
UW
3208 if (section_is_mapped (osect))
3209 return osect;
c5aa993b
JM
3210 else
3211 best_match = osect;
3212 }
714835d5 3213 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3214 best_match = osect;
3215 }
714835d5 3216 return best_match;
c906108c
SS
3217}
3218
3219/* Function: find_pc_mapped_section (PC)
5417f6dc 3220 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3221 currently marked as MAPPED, return that section. Else return NULL. */
3222
714835d5 3223struct obj_section *
fba45db2 3224find_pc_mapped_section (CORE_ADDR pc)
c906108c 3225{
c5aa993b 3226 struct objfile *objfile;
c906108c
SS
3227 struct obj_section *osect;
3228
3229 if (overlay_debugging)
3230 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3231 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3232 return osect;
c906108c
SS
3233
3234 return NULL;
3235}
3236
3237/* Function: list_overlays_command
c378eb4e 3238 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3239
3240void
fba45db2 3241list_overlays_command (char *args, int from_tty)
c906108c 3242{
c5aa993b
JM
3243 int nmapped = 0;
3244 struct objfile *objfile;
c906108c
SS
3245 struct obj_section *osect;
3246
3247 if (overlay_debugging)
3248 ALL_OBJSECTIONS (objfile, osect)
714835d5 3249 if (section_is_mapped (osect))
c5aa993b 3250 {
5af949e3 3251 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3252 const char *name;
3253 bfd_vma lma, vma;
3254 int size;
3255
3256 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3257 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3258 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3259 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3260
3261 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3262 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3263 puts_filtered (" - ");
5af949e3 3264 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3265 printf_filtered (", mapped at ");
5af949e3 3266 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3267 puts_filtered (" - ");
5af949e3 3268 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3269 puts_filtered ("\n");
3270
3271 nmapped++;
3272 }
c906108c 3273 if (nmapped == 0)
a3f17187 3274 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3275}
3276
3277/* Function: map_overlay_command
3278 Mark the named section as mapped (ie. residing at its VMA address). */
3279
3280void
fba45db2 3281map_overlay_command (char *args, int from_tty)
c906108c 3282{
c5aa993b
JM
3283 struct objfile *objfile, *objfile2;
3284 struct obj_section *sec, *sec2;
c906108c
SS
3285
3286 if (!overlay_debugging)
3e43a32a
MS
3287 error (_("Overlay debugging not enabled. Use "
3288 "either the 'overlay auto' or\n"
3289 "the 'overlay manual' command."));
c906108c
SS
3290
3291 if (args == 0 || *args == 0)
8a3fe4f8 3292 error (_("Argument required: name of an overlay section"));
c906108c 3293
c378eb4e 3294 /* First, find a section matching the user supplied argument. */
c906108c
SS
3295 ALL_OBJSECTIONS (objfile, sec)
3296 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3297 {
c378eb4e 3298 /* Now, check to see if the section is an overlay. */
714835d5 3299 if (!section_is_overlay (sec))
c5aa993b
JM
3300 continue; /* not an overlay section */
3301
c378eb4e 3302 /* Mark the overlay as "mapped". */
c5aa993b
JM
3303 sec->ovly_mapped = 1;
3304
3305 /* Next, make a pass and unmap any sections that are
3306 overlapped by this new section: */
3307 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3308 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3309 {
3310 if (info_verbose)
a3f17187 3311 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3312 bfd_section_name (objfile->obfd,
3313 sec2->the_bfd_section));
c378eb4e 3314 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3315 }
3316 return;
3317 }
8a3fe4f8 3318 error (_("No overlay section called %s"), args);
c906108c
SS
3319}
3320
3321/* Function: unmap_overlay_command
5417f6dc 3322 Mark the overlay section as unmapped
c906108c
SS
3323 (ie. resident in its LMA address range, rather than the VMA range). */
3324
3325void
fba45db2 3326unmap_overlay_command (char *args, int from_tty)
c906108c 3327{
c5aa993b 3328 struct objfile *objfile;
c906108c
SS
3329 struct obj_section *sec;
3330
3331 if (!overlay_debugging)
3e43a32a
MS
3332 error (_("Overlay debugging not enabled. "
3333 "Use either the 'overlay auto' or\n"
3334 "the 'overlay manual' command."));
c906108c
SS
3335
3336 if (args == 0 || *args == 0)
8a3fe4f8 3337 error (_("Argument required: name of an overlay section"));
c906108c 3338
c378eb4e 3339 /* First, find a section matching the user supplied argument. */
c906108c
SS
3340 ALL_OBJSECTIONS (objfile, sec)
3341 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3342 {
3343 if (!sec->ovly_mapped)
8a3fe4f8 3344 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3345 sec->ovly_mapped = 0;
3346 return;
3347 }
8a3fe4f8 3348 error (_("No overlay section called %s"), args);
c906108c
SS
3349}
3350
3351/* Function: overlay_auto_command
3352 A utility command to turn on overlay debugging.
c378eb4e 3353 Possibly this should be done via a set/show command. */
c906108c
SS
3354
3355static void
fba45db2 3356overlay_auto_command (char *args, int from_tty)
c906108c 3357{
d874f1e2 3358 overlay_debugging = ovly_auto;
1900040c 3359 enable_overlay_breakpoints ();
c906108c 3360 if (info_verbose)
a3f17187 3361 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3362}
3363
3364/* Function: overlay_manual_command
3365 A utility command to turn on overlay debugging.
c378eb4e 3366 Possibly this should be done via a set/show command. */
c906108c
SS
3367
3368static void
fba45db2 3369overlay_manual_command (char *args, int from_tty)
c906108c 3370{
d874f1e2 3371 overlay_debugging = ovly_on;
1900040c 3372 disable_overlay_breakpoints ();
c906108c 3373 if (info_verbose)
a3f17187 3374 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3375}
3376
3377/* Function: overlay_off_command
3378 A utility command to turn on overlay debugging.
c378eb4e 3379 Possibly this should be done via a set/show command. */
c906108c
SS
3380
3381static void
fba45db2 3382overlay_off_command (char *args, int from_tty)
c906108c 3383{
d874f1e2 3384 overlay_debugging = ovly_off;
1900040c 3385 disable_overlay_breakpoints ();
c906108c 3386 if (info_verbose)
a3f17187 3387 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3388}
3389
3390static void
fba45db2 3391overlay_load_command (char *args, int from_tty)
c906108c 3392{
e17c207e
UW
3393 struct gdbarch *gdbarch = get_current_arch ();
3394
3395 if (gdbarch_overlay_update_p (gdbarch))
3396 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3397 else
8a3fe4f8 3398 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3399}
3400
3401/* Function: overlay_command
c378eb4e 3402 A place-holder for a mis-typed command. */
c906108c 3403
c378eb4e 3404/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3405struct cmd_list_element *overlaylist;
3406
3407static void
fba45db2 3408overlay_command (char *args, int from_tty)
c906108c 3409{
c5aa993b 3410 printf_unfiltered
c906108c
SS
3411 ("\"overlay\" must be followed by the name of an overlay command.\n");
3412 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3413}
3414
3415
3416/* Target Overlays for the "Simplest" overlay manager:
3417
5417f6dc
RM
3418 This is GDB's default target overlay layer. It works with the
3419 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3420 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3421 so targets that use a different runtime overlay manager can
c906108c
SS
3422 substitute their own overlay_update function and take over the
3423 function pointer.
3424
3425 The overlay_update function pokes around in the target's data structures
3426 to see what overlays are mapped, and updates GDB's overlay mapping with
3427 this information.
3428
3429 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3430 unsigned _novlys; /# number of overlay sections #/
3431 unsigned _ovly_table[_novlys][4] = {
3432 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3433 {..., ..., ..., ...},
3434 }
3435 unsigned _novly_regions; /# number of overlay regions #/
3436 unsigned _ovly_region_table[_novly_regions][3] = {
3437 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3438 {..., ..., ...},
3439 }
c906108c
SS
3440 These functions will attempt to update GDB's mappedness state in the
3441 symbol section table, based on the target's mappedness state.
3442
3443 To do this, we keep a cached copy of the target's _ovly_table, and
3444 attempt to detect when the cached copy is invalidated. The main
3445 entry point is "simple_overlay_update(SECT), which looks up SECT in
3446 the cached table and re-reads only the entry for that section from
c378eb4e 3447 the target (whenever possible). */
c906108c
SS
3448
3449/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3450static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3451static unsigned cache_novlys = 0;
c906108c 3452static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3453enum ovly_index
3454 {
3455 VMA, SIZE, LMA, MAPPED
3456 };
c906108c 3457
c378eb4e 3458/* Throw away the cached copy of _ovly_table. */
c906108c 3459static void
fba45db2 3460simple_free_overlay_table (void)
c906108c
SS
3461{
3462 if (cache_ovly_table)
b8c9b27d 3463 xfree (cache_ovly_table);
c5aa993b 3464 cache_novlys = 0;
c906108c
SS
3465 cache_ovly_table = NULL;
3466 cache_ovly_table_base = 0;
3467}
3468
9216df95 3469/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3470 Convert to host order. int LEN is number of ints. */
c906108c 3471static void
9216df95 3472read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3473 int len, int size, enum bfd_endian byte_order)
c906108c 3474{
c378eb4e 3475 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3476 gdb_byte *buf = alloca (len * size);
c5aa993b 3477 int i;
c906108c 3478
9216df95 3479 read_memory (memaddr, buf, len * size);
c906108c 3480 for (i = 0; i < len; i++)
e17a4113 3481 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3482}
3483
3484/* Find and grab a copy of the target _ovly_table
c378eb4e 3485 (and _novlys, which is needed for the table's size). */
c5aa993b 3486static int
fba45db2 3487simple_read_overlay_table (void)
c906108c 3488{
0d43edd1 3489 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3490 struct gdbarch *gdbarch;
3491 int word_size;
e17a4113 3492 enum bfd_endian byte_order;
c906108c
SS
3493
3494 simple_free_overlay_table ();
9b27852e 3495 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3496 if (! novlys_msym)
c906108c 3497 {
8a3fe4f8 3498 error (_("Error reading inferior's overlay table: "
0d43edd1 3499 "couldn't find `_novlys' variable\n"
8a3fe4f8 3500 "in inferior. Use `overlay manual' mode."));
0d43edd1 3501 return 0;
c906108c 3502 }
0d43edd1 3503
9b27852e 3504 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3505 if (! ovly_table_msym)
3506 {
8a3fe4f8 3507 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3508 "`_ovly_table' array\n"
8a3fe4f8 3509 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3510 return 0;
3511 }
3512
9216df95
UW
3513 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3514 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3515 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3516
e17a4113
UW
3517 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3518 4, byte_order);
0d43edd1
JB
3519 cache_ovly_table
3520 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3521 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3522 read_target_long_array (cache_ovly_table_base,
777ea8f1 3523 (unsigned int *) cache_ovly_table,
e17a4113 3524 cache_novlys * 4, word_size, byte_order);
0d43edd1 3525
c5aa993b 3526 return 1; /* SUCCESS */
c906108c
SS
3527}
3528
5417f6dc 3529/* Function: simple_overlay_update_1
c906108c
SS
3530 A helper function for simple_overlay_update. Assuming a cached copy
3531 of _ovly_table exists, look through it to find an entry whose vma,
3532 lma and size match those of OSECT. Re-read the entry and make sure
3533 it still matches OSECT (else the table may no longer be valid).
3534 Set OSECT's mapped state to match the entry. Return: 1 for
3535 success, 0 for failure. */
3536
3537static int
fba45db2 3538simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3539{
3540 int i, size;
fbd35540
MS
3541 bfd *obfd = osect->objfile->obfd;
3542 asection *bsect = osect->the_bfd_section;
9216df95
UW
3543 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3544 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3546
2c500098 3547 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3548 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3549 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3550 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3551 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3552 {
9216df95
UW
3553 read_target_long_array (cache_ovly_table_base + i * word_size,
3554 (unsigned int *) cache_ovly_table[i],
e17a4113 3555 4, word_size, byte_order);
fbd35540
MS
3556 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3557 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3558 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3559 {
3560 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3561 return 1;
3562 }
c378eb4e 3563 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3564 return 0;
3565 }
3566 return 0;
3567}
3568
3569/* Function: simple_overlay_update
5417f6dc
RM
3570 If OSECT is NULL, then update all sections' mapped state
3571 (after re-reading the entire target _ovly_table).
3572 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3573 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3574 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3575 re-read the entire cache, and go ahead and update all sections. */
3576
1c772458 3577void
fba45db2 3578simple_overlay_update (struct obj_section *osect)
c906108c 3579{
c5aa993b 3580 struct objfile *objfile;
c906108c 3581
c378eb4e 3582 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3583 if (osect)
c378eb4e 3584 /* Have we got a cached copy of the target's overlay table? */
c906108c 3585 if (cache_ovly_table != NULL)
9cc89665
MS
3586 {
3587 /* Does its cached location match what's currently in the
3588 symtab? */
3589 struct minimal_symbol *minsym
3590 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3591
3592 if (minsym == NULL)
3593 error (_("Error reading inferior's overlay table: couldn't "
3594 "find `_ovly_table' array\n"
3595 "in inferior. Use `overlay manual' mode."));
3596
3597 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3598 /* Then go ahead and try to look up this single section in
3599 the cache. */
3600 if (simple_overlay_update_1 (osect))
3601 /* Found it! We're done. */
3602 return;
3603 }
c906108c
SS
3604
3605 /* Cached table no good: need to read the entire table anew.
3606 Or else we want all the sections, in which case it's actually
3607 more efficient to read the whole table in one block anyway. */
3608
0d43edd1
JB
3609 if (! simple_read_overlay_table ())
3610 return;
3611
c378eb4e 3612 /* Now may as well update all sections, even if only one was requested. */
c906108c 3613 ALL_OBJSECTIONS (objfile, osect)
714835d5 3614 if (section_is_overlay (osect))
c5aa993b
JM
3615 {
3616 int i, size;
fbd35540
MS
3617 bfd *obfd = osect->objfile->obfd;
3618 asection *bsect = osect->the_bfd_section;
c5aa993b 3619
2c500098 3620 size = bfd_get_section_size (bsect);
c5aa993b 3621 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3622 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3623 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3624 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3625 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3626 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3627 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3628 }
3629 }
c906108c
SS
3630}
3631
086df311
DJ
3632/* Set the output sections and output offsets for section SECTP in
3633 ABFD. The relocation code in BFD will read these offsets, so we
3634 need to be sure they're initialized. We map each section to itself,
3635 with no offset; this means that SECTP->vma will be honored. */
3636
3637static void
3638symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3639{
3640 sectp->output_section = sectp;
3641 sectp->output_offset = 0;
3642}
3643
ac8035ab
TG
3644/* Default implementation for sym_relocate. */
3645
3646
3647bfd_byte *
3648default_symfile_relocate (struct objfile *objfile, asection *sectp,
3649 bfd_byte *buf)
3650{
3019eac3
DE
3651 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3652 DWO file. */
3653 bfd *abfd = sectp->owner;
ac8035ab
TG
3654
3655 /* We're only interested in sections with relocation
3656 information. */
3657 if ((sectp->flags & SEC_RELOC) == 0)
3658 return NULL;
3659
3660 /* We will handle section offsets properly elsewhere, so relocate as if
3661 all sections begin at 0. */
3662 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3663
3664 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3665}
3666
086df311
DJ
3667/* Relocate the contents of a debug section SECTP in ABFD. The
3668 contents are stored in BUF if it is non-NULL, or returned in a
3669 malloc'd buffer otherwise.
3670
3671 For some platforms and debug info formats, shared libraries contain
3672 relocations against the debug sections (particularly for DWARF-2;
3673 one affected platform is PowerPC GNU/Linux, although it depends on
3674 the version of the linker in use). Also, ELF object files naturally
3675 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3676 the relocations in order to get the locations of symbols correct.
3677 Another example that may require relocation processing, is the
3678 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3679 debug section. */
086df311
DJ
3680
3681bfd_byte *
ac8035ab
TG
3682symfile_relocate_debug_section (struct objfile *objfile,
3683 asection *sectp, bfd_byte *buf)
086df311 3684{
ac8035ab 3685 gdb_assert (objfile->sf->sym_relocate);
086df311 3686
ac8035ab 3687 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3688}
c906108c 3689
31d99776
DJ
3690struct symfile_segment_data *
3691get_symfile_segment_data (bfd *abfd)
3692{
00b5771c 3693 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3694
3695 if (sf == NULL)
3696 return NULL;
3697
3698 return sf->sym_segments (abfd);
3699}
3700
3701void
3702free_symfile_segment_data (struct symfile_segment_data *data)
3703{
3704 xfree (data->segment_bases);
3705 xfree (data->segment_sizes);
3706 xfree (data->segment_info);
3707 xfree (data);
3708}
3709
28c32713
JB
3710
3711/* Given:
3712 - DATA, containing segment addresses from the object file ABFD, and
3713 the mapping from ABFD's sections onto the segments that own them,
3714 and
3715 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3716 segment addresses reported by the target,
3717 store the appropriate offsets for each section in OFFSETS.
3718
3719 If there are fewer entries in SEGMENT_BASES than there are segments
3720 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3721
8d385431
DJ
3722 If there are more entries, then ignore the extra. The target may
3723 not be able to distinguish between an empty data segment and a
3724 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3725int
3726symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3727 struct section_offsets *offsets,
3728 int num_segment_bases,
3729 const CORE_ADDR *segment_bases)
3730{
3731 int i;
3732 asection *sect;
3733
28c32713
JB
3734 /* It doesn't make sense to call this function unless you have some
3735 segment base addresses. */
202b96c1 3736 gdb_assert (num_segment_bases > 0);
28c32713 3737
31d99776
DJ
3738 /* If we do not have segment mappings for the object file, we
3739 can not relocate it by segments. */
3740 gdb_assert (data != NULL);
3741 gdb_assert (data->num_segments > 0);
3742
31d99776
DJ
3743 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3744 {
31d99776
DJ
3745 int which = data->segment_info[i];
3746
28c32713
JB
3747 gdb_assert (0 <= which && which <= data->num_segments);
3748
3749 /* Don't bother computing offsets for sections that aren't
3750 loaded as part of any segment. */
3751 if (! which)
3752 continue;
3753
3754 /* Use the last SEGMENT_BASES entry as the address of any extra
3755 segments mentioned in DATA->segment_info. */
31d99776 3756 if (which > num_segment_bases)
28c32713 3757 which = num_segment_bases;
31d99776 3758
28c32713
JB
3759 offsets->offsets[i] = (segment_bases[which - 1]
3760 - data->segment_bases[which - 1]);
31d99776
DJ
3761 }
3762
3763 return 1;
3764}
3765
3766static void
3767symfile_find_segment_sections (struct objfile *objfile)
3768{
3769 bfd *abfd = objfile->obfd;
3770 int i;
3771 asection *sect;
3772 struct symfile_segment_data *data;
3773
3774 data = get_symfile_segment_data (objfile->obfd);
3775 if (data == NULL)
3776 return;
3777
3778 if (data->num_segments != 1 && data->num_segments != 2)
3779 {
3780 free_symfile_segment_data (data);
3781 return;
3782 }
3783
3784 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3785 {
31d99776
DJ
3786 int which = data->segment_info[i];
3787
3788 if (which == 1)
3789 {
3790 if (objfile->sect_index_text == -1)
3791 objfile->sect_index_text = sect->index;
3792
3793 if (objfile->sect_index_rodata == -1)
3794 objfile->sect_index_rodata = sect->index;
3795 }
3796 else if (which == 2)
3797 {
3798 if (objfile->sect_index_data == -1)
3799 objfile->sect_index_data = sect->index;
3800
3801 if (objfile->sect_index_bss == -1)
3802 objfile->sect_index_bss = sect->index;
3803 }
3804 }
3805
3806 free_symfile_segment_data (data);
3807}
3808
c906108c 3809void
fba45db2 3810_initialize_symfile (void)
c906108c
SS
3811{
3812 struct cmd_list_element *c;
c5aa993b 3813
1a966eab
AC
3814 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3815Load symbol table from executable file FILE.\n\
c906108c 3816The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3817to execute."), &cmdlist);
5ba2abeb 3818 set_cmd_completer (c, filename_completer);
c906108c 3819
1a966eab 3820 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3821Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3822Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3823 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3824The optional arguments are section-name section-address pairs and\n\
3825should be specified if the data and bss segments are not contiguous\n\
1a966eab 3826with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3827 &cmdlist);
5ba2abeb 3828 set_cmd_completer (c, filename_completer);
c906108c 3829
1a966eab
AC
3830 c = add_cmd ("load", class_files, load_command, _("\
3831Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3832for access from GDB.\n\
3833A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3834 set_cmd_completer (c, filename_completer);
c906108c 3835
c5aa993b 3836 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3837 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3838 "overlay ", 0, &cmdlist);
3839
3840 add_com_alias ("ovly", "overlay", class_alias, 1);
3841 add_com_alias ("ov", "overlay", class_alias, 1);
3842
c5aa993b 3843 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3844 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3845
c5aa993b 3846 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3847 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3848
c5aa993b 3849 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3850 _("List mappings of overlay sections."), &overlaylist);
c906108c 3851
c5aa993b 3852 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3853 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3854 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3855 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3856 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3857 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3858 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3859 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3860
3861 /* Filename extension to source language lookup table: */
3862 init_filename_language_table ();
26c41df3
AC
3863 add_setshow_string_noescape_cmd ("extension-language", class_files,
3864 &ext_args, _("\
3865Set mapping between filename extension and source language."), _("\
3866Show mapping between filename extension and source language."), _("\
3867Usage: set extension-language .foo bar"),
3868 set_ext_lang_command,
920d2a44 3869 show_ext_args,
26c41df3 3870 &setlist, &showlist);
c906108c 3871
c5aa993b 3872 add_info ("extensions", info_ext_lang_command,
1bedd215 3873 _("All filename extensions associated with a source language."));
917317f4 3874
525226b5
AC
3875 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3876 &debug_file_directory, _("\
24ddea62
JK
3877Set the directories where separate debug symbols are searched for."), _("\
3878Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3879Separate debug symbols are first searched for in the same\n\
3880directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3881and lastly at the path of the directory of the binary with\n\
24ddea62 3882each global debug-file-directory component prepended."),
525226b5 3883 NULL,
920d2a44 3884 show_debug_file_directory,
525226b5 3885 &setlist, &showlist);
c906108c 3886}
This page took 1.539235 seconds and 4 git commands to generate.