2006-02-21 Andrew Stubbs <andrew.stubbs@st.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
777ea8f1
DJ
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
c906108c 54
c906108c
SS
55#include <sys/types.h>
56#include <fcntl.h>
57#include "gdb_string.h"
58#include "gdb_stat.h"
59#include <ctype.h>
60#include <time.h>
2b71414d 61#include <sys/time.h>
c906108c
SS
62
63#ifndef O_BINARY
64#define O_BINARY 0
65#endif
66
9a4105ab
AC
67int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
c2d11a7d 72 unsigned long total_size);
769d7dc4
AC
73void (*deprecated_pre_add_symbol_hook) (const char *);
74void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 75void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 76
74b7792f
AC
77static void clear_symtab_users_cleanup (void *ignore);
78
c906108c 79/* Global variables owned by this file */
c5aa993b 80int readnow_symbol_files; /* Read full symbols immediately */
c906108c 81
c906108c
SS
82/* External variables and functions referenced. */
83
a14ed312 84extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
85
86/* Functions this file defines */
87
88#if 0
a14ed312
KB
89static int simple_read_overlay_region_table (void);
90static void simple_free_overlay_region_table (void);
c906108c
SS
91#endif
92
a14ed312 93static void set_initial_language (void);
c906108c 94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101static void add_shared_symbol_files_command (char *, int);
c906108c 102
5b5d99cf
JB
103static void reread_separate_symbols (struct objfile *objfile);
104
a14ed312 105static void cashier_psymtab (struct partial_symtab *);
c906108c 106
a14ed312 107bfd *symfile_bfd_open (char *);
c906108c 108
0e931cf0
JB
109int get_section_index (struct objfile *, char *);
110
a14ed312 111static void find_sym_fns (struct objfile *);
c906108c 112
a14ed312 113static void decrement_reading_symtab (void *);
c906108c 114
a14ed312 115static void overlay_invalidate_all (void);
c906108c 116
a14ed312 117static int overlay_is_mapped (struct obj_section *);
c906108c 118
a14ed312 119void list_overlays_command (char *, int);
c906108c 120
a14ed312 121void map_overlay_command (char *, int);
c906108c 122
a14ed312 123void unmap_overlay_command (char *, int);
c906108c 124
a14ed312 125static void overlay_auto_command (char *, int);
c906108c 126
a14ed312 127static void overlay_manual_command (char *, int);
c906108c 128
a14ed312 129static void overlay_off_command (char *, int);
c906108c 130
a14ed312 131static void overlay_load_command (char *, int);
c906108c 132
a14ed312 133static void overlay_command (char *, int);
c906108c 134
a14ed312 135static void simple_free_overlay_table (void);
c906108c 136
a14ed312 137static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 138
a14ed312 139static int simple_read_overlay_table (void);
c906108c 140
a14ed312 141static int simple_overlay_update_1 (struct obj_section *);
c906108c 142
a14ed312 143static void add_filename_language (char *ext, enum language lang);
392a587b 144
a14ed312 145static void info_ext_lang_command (char *args, int from_tty);
392a587b 146
5b5d99cf
JB
147static char *find_separate_debug_file (struct objfile *objfile);
148
a14ed312 149static void init_filename_language_table (void);
392a587b 150
a14ed312 151void _initialize_symfile (void);
c906108c
SS
152
153/* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157static struct sym_fns *symtab_fns = NULL;
158
159/* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162#ifdef SYMBOL_RELOADING_DEFAULT
163int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164#else
165int symbol_reloading = 0;
166#endif
920d2a44
AC
167static void
168show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("\
172Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174}
175
c906108c 176
b7209cb4
FF
177/* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
c906108c 184 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 185 report all the functions that are actually present. */
c906108c
SS
186
187int auto_solib_add = 1;
b7209cb4
FF
188
189/* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197int auto_solib_limit;
c906108c 198\f
c5aa993b 199
0fe19209
DC
200/* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
c906108c
SS
202
203static int
0cd64fe2 204compare_psymbols (const void *s1p, const void *s2p)
c906108c 205{
0fe19209
DC
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
4725b721
PH
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
211}
212
213void
fba45db2 214sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
215{
216 /* Sort the global list; don't sort the static list */
217
c5aa993b
JM
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
220 compare_psymbols);
221}
222
c906108c
SS
223/* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228char *
63ca651f 229obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 230{
52f0bd74 231 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
aa1ee363
AC
236 const char *p1 = ptr;
237 char *p2 = p;
63ca651f 238 const char *end = ptr + size;
c906108c
SS
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244}
245
246/* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249char *
fba45db2
KB
250obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
c906108c 252{
52f0bd74
AC
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259}
260
261/* True if we are nested inside psymtab_to_symtab. */
262
263int currently_reading_symtab = 0;
264
265static void
fba45db2 266decrement_reading_symtab (void *dummy)
c906108c
SS
267{
268 currently_reading_symtab--;
269}
270
271/* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276struct symtab *
aa1ee363 277psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
278{
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
c5aa993b 285 {
c906108c
SS
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293}
294
5417f6dc
RM
295/* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
c906108c
SS
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304void
4efb68b1 305find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 306{
c5aa993b 307 asection **lowest = (asection **) obj;
c906108c
SS
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319}
320
a39a16c4
MM
321/* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323struct section_addr_info *
324alloc_section_addr_info (size_t num_sections)
325{
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336}
62557bbc 337
7b90c3f9
JB
338
339/* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341struct section_addr_info *
342copy_section_addr_info (struct section_addr_info *addrs)
343{
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360}
361
362
363
62557bbc
KB
364/* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367extern struct section_addr_info *
368build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370{
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
a39a16c4 375 sap = alloc_section_addr_info (end - start);
62557bbc
KB
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
5417f6dc 379 if (bfd_get_section_flags (stp->bfd,
fbd35540 380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 381 && oidx < end - start)
62557bbc
KB
382 {
383 sap->other[oidx].addr = stp->addr;
5417f6dc 384 sap->other[oidx].name
fbd35540 385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392}
393
394
395/* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397extern void
398free_section_addr_info (struct section_addr_info *sap)
399{
400 int idx;
401
a39a16c4 402 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 403 if (sap->other[idx].name)
b8c9b27d
KB
404 xfree (sap->other[idx].name);
405 xfree (sap);
62557bbc
KB
406}
407
408
e8289572
JB
409/* Initialize OBJFILE's sect_index_* members. */
410static void
411init_objfile_sect_indices (struct objfile *objfile)
c906108c 412{
e8289572 413 asection *sect;
c906108c 414 int i;
5417f6dc 415
b8fbeb18 416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 417 if (sect)
b8fbeb18
EZ
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_rodata = sect->index;
431
bbcd32ad
FF
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
b8fbeb18 460}
c906108c 461
c1bd25fd
DJ
462/* The arguments to place_section. */
463
464struct place_section_arg
465{
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468};
469
470/* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473void
474place_section (bfd *abfd, asection *sect, void *obj)
475{
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
3bd72c6f 479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd
DJ
480
481 /* We are only interested in loadable sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
483 return;
484
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
487 return;
488
489 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
490 start_addr = (arg->lowest + align - 1) & -align;
491
c1bd25fd
DJ
492 do {
493 asection *cur_sec;
c1bd25fd 494
c1bd25fd
DJ
495 done = 1;
496
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 {
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
501
502 /* We don't need to compare against ourself. */
503 if (cur_sec == sect)
504 continue;
505
506 /* We can only conflict with loadable sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
508 continue;
509
510 /* We do not expect this to happen; just ignore sections in a
511 relocatable file with an assigned VMA. */
512 if (bfd_section_vma (abfd, cur_sec) != 0)
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
3bd72c6f 528 break;
c1bd25fd
DJ
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538
539 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
540}
e8289572
JB
541
542/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 543 of how to represent it for fast symbol reading. This is the default
e8289572
JB
544 version of the sym_fns.sym_offsets function for symbol readers that
545 don't need to do anything special. It allocates a section_offsets table
546 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
547
548void
549default_symfile_offsets (struct objfile *objfile,
550 struct section_addr_info *addrs)
551{
552 int i;
553
a39a16c4 554 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 555 objfile->section_offsets = (struct section_offsets *)
5417f6dc 556 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 558 memset (objfile->section_offsets, 0,
a39a16c4 559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
560
561 /* Now calculate offsets for section that were specified by the
562 caller. */
a39a16c4 563 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
564 {
565 struct other_sections *osp ;
566
567 osp = &addrs->other[i] ;
568 if (osp->addr == 0)
569 continue;
570
571 /* Record all sections in offsets */
572 /* The section_offsets in the objfile are here filled in using
573 the BFD index. */
574 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
575 }
576
c1bd25fd
DJ
577 /* For relocatable files, all loadable sections will start at zero.
578 The zero is meaningless, so try to pick arbitrary addresses such
579 that no loadable sections overlap. This algorithm is quadratic,
580 but the number of sections in a single object file is generally
581 small. */
582 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
583 {
584 struct place_section_arg arg;
585 arg.offsets = objfile->section_offsets;
586 arg.lowest = 0;
587 bfd_map_over_sections (objfile->obfd, place_section, &arg);
588 }
589
e8289572
JB
590 /* Remember the bfd indexes for the .text, .data, .bss and
591 .rodata sections. */
592 init_objfile_sect_indices (objfile);
593}
594
595
c906108c
SS
596/* Process a symbol file, as either the main file or as a dynamically
597 loaded file.
598
96baa820
JM
599 OBJFILE is where the symbols are to be read from.
600
7e8580c1
JB
601 ADDRS is the list of section load addresses. If the user has given
602 an 'add-symbol-file' command, then this is the list of offsets and
603 addresses he or she provided as arguments to the command; or, if
604 we're handling a shared library, these are the actual addresses the
605 sections are loaded at, according to the inferior's dynamic linker
606 (as gleaned by GDB's shared library code). We convert each address
607 into an offset from the section VMA's as it appears in the object
608 file, and then call the file's sym_offsets function to convert this
609 into a format-specific offset table --- a `struct section_offsets'.
610 If ADDRS is non-zero, OFFSETS must be zero.
611
612 OFFSETS is a table of section offsets already in the right
613 format-specific representation. NUM_OFFSETS is the number of
614 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
615 assume this is the proper table the call to sym_offsets described
616 above would produce. Instead of calling sym_offsets, we just dump
617 it right into objfile->section_offsets. (When we're re-reading
618 symbols from an objfile, we don't have the original load address
619 list any more; all we have is the section offset table.) If
620 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
621
622 MAINLINE is nonzero if this is the main symbol file, or zero if
623 it's an extra symbol file such as dynamically loaded code.
624
625 VERBO is nonzero if the caller has printed a verbose message about
626 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
627
628void
7e8580c1
JB
629syms_from_objfile (struct objfile *objfile,
630 struct section_addr_info *addrs,
631 struct section_offsets *offsets,
632 int num_offsets,
633 int mainline,
634 int verbo)
c906108c 635{
a39a16c4 636 struct section_addr_info *local_addr = NULL;
c906108c 637 struct cleanup *old_chain;
2acceee2 638
7e8580c1 639 gdb_assert (! (addrs && offsets));
2acceee2 640
c906108c
SS
641 init_entry_point_info (objfile);
642 find_sym_fns (objfile);
643
75245b24
MS
644 if (objfile->sf == NULL)
645 return; /* No symbols. */
646
c906108c
SS
647 /* Make sure that partially constructed symbol tables will be cleaned up
648 if an error occurs during symbol reading. */
74b7792f 649 old_chain = make_cleanup_free_objfile (objfile);
c906108c 650
a39a16c4
MM
651 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
652 list. We now establish the convention that an addr of zero means
653 no load address was specified. */
654 if (! addrs && ! offsets)
655 {
5417f6dc 656 local_addr
a39a16c4
MM
657 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
658 make_cleanup (xfree, local_addr);
659 addrs = local_addr;
660 }
661
662 /* Now either addrs or offsets is non-zero. */
663
c5aa993b 664 if (mainline)
c906108c
SS
665 {
666 /* We will modify the main symbol table, make sure that all its users
c5aa993b 667 will be cleaned up if an error occurs during symbol reading. */
74b7792f 668 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
669
670 /* Since no error yet, throw away the old symbol table. */
671
672 if (symfile_objfile != NULL)
673 {
674 free_objfile (symfile_objfile);
675 symfile_objfile = NULL;
676 }
677
678 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
679 If the user wants to get rid of them, they should do "symbol-file"
680 without arguments first. Not sure this is the best behavior
681 (PR 2207). */
c906108c 682
c5aa993b 683 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
684 }
685
686 /* Convert addr into an offset rather than an absolute address.
687 We find the lowest address of a loaded segment in the objfile,
53a5351d 688 and assume that <addr> is where that got loaded.
c906108c 689
53a5351d
JM
690 We no longer warn if the lowest section is not a text segment (as
691 happens for the PA64 port. */
1549f619 692 if (!mainline && addrs && addrs->other[0].name)
c906108c 693 {
1549f619
EZ
694 asection *lower_sect;
695 asection *sect;
696 CORE_ADDR lower_offset;
697 int i;
698
5417f6dc 699 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
700 continguous sections. FIXME!! won't work without call to find
701 .text first, but this assumes text is lowest section. */
702 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
703 if (lower_sect == NULL)
c906108c 704 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 705 &lower_sect);
2acceee2 706 if (lower_sect == NULL)
8a3fe4f8 707 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 708 objfile->name);
5417f6dc 709 else
b8fbeb18 710 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 711 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
712 objfile->name,
713 bfd_section_name (objfile->obfd, lower_sect),
714 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
715 if (lower_sect != NULL)
716 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
717 else
718 lower_offset = 0;
5417f6dc 719
13de58df 720 /* Calculate offsets for the loadable sections.
2acceee2
JM
721 FIXME! Sections must be in order of increasing loadable section
722 so that contiguous sections can use the lower-offset!!!
5417f6dc 723
13de58df
JB
724 Adjust offsets if the segments are not contiguous.
725 If the section is contiguous, its offset should be set to
2acceee2
JM
726 the offset of the highest loadable section lower than it
727 (the loadable section directly below it in memory).
728 this_offset = lower_offset = lower_addr - lower_orig_addr */
729
1549f619 730 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
731 {
732 if (addrs->other[i].addr != 0)
733 {
734 sect = bfd_get_section_by_name (objfile->obfd,
735 addrs->other[i].name);
736 if (sect)
737 {
738 addrs->other[i].addr
739 -= bfd_section_vma (objfile->obfd, sect);
740 lower_offset = addrs->other[i].addr;
741 /* This is the index used by BFD. */
742 addrs->other[i].sectindex = sect->index ;
743 }
744 else
745 {
8a3fe4f8 746 warning (_("section %s not found in %s"),
5417f6dc 747 addrs->other[i].name,
7e8580c1
JB
748 objfile->name);
749 addrs->other[i].addr = 0;
750 }
751 }
752 else
753 addrs->other[i].addr = lower_offset;
754 }
c906108c
SS
755 }
756
757 /* Initialize symbol reading routines for this objfile, allow complaints to
758 appear for this new file, and record how verbose to be, then do the
759 initial symbol reading for this file. */
760
c5aa993b 761 (*objfile->sf->sym_init) (objfile);
b9caf505 762 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 763
7e8580c1
JB
764 if (addrs)
765 (*objfile->sf->sym_offsets) (objfile, addrs);
766 else
767 {
768 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
769
770 /* Just copy in the offset table directly as given to us. */
771 objfile->num_sections = num_offsets;
772 objfile->section_offsets
773 = ((struct section_offsets *)
8b92e4d5 774 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
775 memcpy (objfile->section_offsets, offsets, size);
776
777 init_objfile_sect_indices (objfile);
778 }
c906108c 779
52d16ba8 780#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
781 /* This is a SVR4/SunOS specific hack, I think. In any event, it
782 screws RS/6000. sym_offsets should be doing this sort of thing,
783 because it knows the mapping between bfd sections and
784 section_offsets. */
785 /* This is a hack. As far as I can tell, section offsets are not
786 target dependent. They are all set to addr with a couple of
787 exceptions. The exceptions are sysvr4 shared libraries, whose
788 offsets are kept in solib structures anyway and rs6000 xcoff
789 which handles shared libraries in a completely unique way.
790
791 Section offsets are built similarly, except that they are built
792 by adding addr in all cases because there is no clear mapping
793 from section_offsets into actual sections. Note that solib.c
96baa820 794 has a different algorithm for finding section offsets.
c906108c
SS
795
796 These should probably all be collapsed into some target
797 independent form of shared library support. FIXME. */
798
2acceee2 799 if (addrs)
c906108c
SS
800 {
801 struct obj_section *s;
802
5417f6dc
RM
803 /* Map section offsets in "addr" back to the object's
804 sections by comparing the section names with bfd's
2acceee2
JM
805 section names. Then adjust the section address by
806 the offset. */ /* for gdb/13815 */
5417f6dc 807
96baa820 808 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 809 {
2acceee2
JM
810 CORE_ADDR s_addr = 0;
811 int i;
812
5417f6dc 813 for (i = 0;
a39a16c4 814 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 815 i++)
5417f6dc
RM
816 if (strcmp (bfd_section_name (s->objfile->obfd,
817 s->the_bfd_section),
fbd35540 818 addrs->other[i].name) == 0)
2acceee2 819 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 820
c906108c 821 s->addr -= s->offset;
2acceee2 822 s->addr += s_addr;
c906108c 823 s->endaddr -= s->offset;
2acceee2
JM
824 s->endaddr += s_addr;
825 s->offset += s_addr;
c906108c
SS
826 }
827 }
52d16ba8 828#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 829
96baa820 830 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 831
c906108c
SS
832 /* Don't allow char * to have a typename (else would get caddr_t).
833 Ditto void *. FIXME: Check whether this is now done by all the
834 symbol readers themselves (many of them now do), and if so remove
835 it from here. */
836
837 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
838 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
839
840 /* Mark the objfile has having had initial symbol read attempted. Note
841 that this does not mean we found any symbols... */
842
c5aa993b 843 objfile->flags |= OBJF_SYMS;
c906108c
SS
844
845 /* Discard cleanups as symbol reading was successful. */
846
847 discard_cleanups (old_chain);
c906108c
SS
848}
849
850/* Perform required actions after either reading in the initial
851 symbols for a new objfile, or mapping in the symbols from a reusable
852 objfile. */
c5aa993b 853
c906108c 854void
fba45db2 855new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
856{
857
858 /* If this is the main symbol file we have to clean up all users of the
859 old main symbol file. Otherwise it is sufficient to fixup all the
860 breakpoints that may have been redefined by this symbol file. */
861 if (mainline)
862 {
863 /* OK, make it the "real" symbol file. */
864 symfile_objfile = objfile;
865
866 clear_symtab_users ();
867 }
868 else
869 {
870 breakpoint_re_set ();
871 }
872
873 /* We're done reading the symbol file; finish off complaints. */
b9caf505 874 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
875}
876
877/* Process a symbol file, as either the main file or as a dynamically
878 loaded file.
879
5417f6dc
RM
880 ABFD is a BFD already open on the file, as from symfile_bfd_open.
881 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
882
883 FROM_TTY says how verbose to be.
884
885 MAINLINE specifies whether this is the main symbol file, or whether
886 it's an extra symbol file such as dynamically loaded code.
887
888 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
889 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
890 non-zero.
c906108c 891
c906108c
SS
892 Upon success, returns a pointer to the objfile that was added.
893 Upon failure, jumps back to command level (never returns). */
7904e09f 894static struct objfile *
5417f6dc 895symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
896 struct section_addr_info *addrs,
897 struct section_offsets *offsets,
898 int num_offsets,
899 int mainline, int flags)
c906108c
SS
900{
901 struct objfile *objfile;
902 struct partial_symtab *psymtab;
5b5d99cf 903 char *debugfile;
7b90c3f9 904 struct section_addr_info *orig_addrs = NULL;
a39a16c4 905 struct cleanup *my_cleanups;
5417f6dc 906 const char *name = bfd_get_filename (abfd);
c906108c 907
5417f6dc 908 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 909
5417f6dc
RM
910 /* Give user a chance to burp if we'd be
911 interactively wiping out any existing symbols. */
c906108c
SS
912
913 if ((have_full_symbols () || have_partial_symbols ())
914 && mainline
915 && from_tty
916 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 917 error (_("Not confirmed."));
c906108c 918
2df3850c 919 objfile = allocate_objfile (abfd, flags);
5417f6dc 920 discard_cleanups (my_cleanups);
c906108c 921
a39a16c4 922 if (addrs)
63cd24fe 923 {
7b90c3f9
JB
924 orig_addrs = copy_section_addr_info (addrs);
925 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 926 }
a39a16c4 927
78a4a9b9
AC
928 /* We either created a new mapped symbol table, mapped an existing
929 symbol table file which has not had initial symbol reading
930 performed, or need to read an unmapped symbol table. */
931 if (from_tty || info_verbose)
c906108c 932 {
769d7dc4
AC
933 if (deprecated_pre_add_symbol_hook)
934 deprecated_pre_add_symbol_hook (name);
78a4a9b9 935 else
c906108c 936 {
a3f17187 937 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
938 wrap_here ("");
939 gdb_flush (gdb_stdout);
940 }
c906108c 941 }
78a4a9b9
AC
942 syms_from_objfile (objfile, addrs, offsets, num_offsets,
943 mainline, from_tty);
c906108c
SS
944
945 /* We now have at least a partial symbol table. Check to see if the
946 user requested that all symbols be read on initial access via either
947 the gdb startup command line or on a per symbol file basis. Expand
948 all partial symbol tables for this objfile if so. */
949
2acceee2 950 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
951 {
952 if (from_tty || info_verbose)
953 {
a3f17187 954 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
955 wrap_here ("");
956 gdb_flush (gdb_stdout);
957 }
958
c5aa993b 959 for (psymtab = objfile->psymtabs;
c906108c 960 psymtab != NULL;
c5aa993b 961 psymtab = psymtab->next)
c906108c
SS
962 {
963 psymtab_to_symtab (psymtab);
964 }
965 }
966
5b5d99cf
JB
967 debugfile = find_separate_debug_file (objfile);
968 if (debugfile)
969 {
5b5d99cf
JB
970 if (addrs != NULL)
971 {
972 objfile->separate_debug_objfile
a39a16c4 973 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
974 }
975 else
976 {
977 objfile->separate_debug_objfile
978 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
979 }
980 objfile->separate_debug_objfile->separate_debug_objfile_backlink
981 = objfile;
5417f6dc 982
5b5d99cf
JB
983 /* Put the separate debug object before the normal one, this is so that
984 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
985 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 986
5b5d99cf
JB
987 xfree (debugfile);
988 }
5417f6dc 989
cb3c37b2
JB
990 if (!have_partial_symbols () && !have_full_symbols ())
991 {
992 wrap_here ("");
a3f17187 993 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
994 if (from_tty || info_verbose)
995 printf_filtered ("...");
996 else
997 printf_filtered ("\n");
cb3c37b2
JB
998 wrap_here ("");
999 }
1000
c906108c
SS
1001 if (from_tty || info_verbose)
1002 {
769d7dc4
AC
1003 if (deprecated_post_add_symbol_hook)
1004 deprecated_post_add_symbol_hook ();
c906108c 1005 else
c5aa993b 1006 {
a3f17187 1007 printf_unfiltered (_("done.\n"));
c5aa993b 1008 }
c906108c
SS
1009 }
1010
481d0f41
JB
1011 /* We print some messages regardless of whether 'from_tty ||
1012 info_verbose' is true, so make sure they go out at the right
1013 time. */
1014 gdb_flush (gdb_stdout);
1015
a39a16c4
MM
1016 do_cleanups (my_cleanups);
1017
109f874e
MS
1018 if (objfile->sf == NULL)
1019 return objfile; /* No symbols. */
1020
c906108c
SS
1021 new_symfile_objfile (objfile, mainline, from_tty);
1022
9a4105ab
AC
1023 if (deprecated_target_new_objfile_hook)
1024 deprecated_target_new_objfile_hook (objfile);
c906108c 1025
ce7d4522 1026 bfd_cache_close_all ();
c906108c
SS
1027 return (objfile);
1028}
1029
7904e09f 1030
eb4556d7
JB
1031/* Process the symbol file ABFD, as either the main file or as a
1032 dynamically loaded file.
1033
1034 See symbol_file_add_with_addrs_or_offsets's comments for
1035 details. */
1036struct objfile *
1037symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1038 struct section_addr_info *addrs,
1039 int mainline, int flags)
1040{
1041 return symbol_file_add_with_addrs_or_offsets (abfd,
1042 from_tty, addrs, 0, 0,
1043 mainline, flags);
1044}
1045
1046
7904e09f
JB
1047/* Process a symbol file, as either the main file or as a dynamically
1048 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1049 for details. */
1050struct objfile *
1051symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1052 int mainline, int flags)
1053{
eb4556d7
JB
1054 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1055 addrs, mainline, flags);
7904e09f
JB
1056}
1057
1058
d7db6da9
FN
1059/* Call symbol_file_add() with default values and update whatever is
1060 affected by the loading of a new main().
1061 Used when the file is supplied in the gdb command line
1062 and by some targets with special loading requirements.
1063 The auxiliary function, symbol_file_add_main_1(), has the flags
1064 argument for the switches that can only be specified in the symbol_file
1065 command itself. */
5417f6dc 1066
1adeb98a
FN
1067void
1068symbol_file_add_main (char *args, int from_tty)
1069{
d7db6da9
FN
1070 symbol_file_add_main_1 (args, from_tty, 0);
1071}
1072
1073static void
1074symbol_file_add_main_1 (char *args, int from_tty, int flags)
1075{
1076 symbol_file_add (args, from_tty, NULL, 1, flags);
1077
d7db6da9
FN
1078 /* Getting new symbols may change our opinion about
1079 what is frameless. */
1080 reinit_frame_cache ();
1081
1082 set_initial_language ();
1adeb98a
FN
1083}
1084
1085void
1086symbol_file_clear (int from_tty)
1087{
1088 if ((have_full_symbols () || have_partial_symbols ())
1089 && from_tty
0430b0d6
AS
1090 && (symfile_objfile
1091 ? !query (_("Discard symbol table from `%s'? "),
1092 symfile_objfile->name)
1093 : !query (_("Discard symbol table? "))))
8a3fe4f8 1094 error (_("Not confirmed."));
1adeb98a
FN
1095 free_all_objfiles ();
1096
1097 /* solib descriptors may have handles to objfiles. Since their
1098 storage has just been released, we'd better wipe the solib
1099 descriptors as well.
1100 */
1101#if defined(SOLIB_RESTART)
1102 SOLIB_RESTART ();
1103#endif
1104
1105 symfile_objfile = NULL;
1106 if (from_tty)
a3f17187 1107 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1108}
1109
5b5d99cf
JB
1110static char *
1111get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1112{
1113 asection *sect;
1114 bfd_size_type debuglink_size;
1115 unsigned long crc32;
1116 char *contents;
1117 int crc_offset;
1118 unsigned char *p;
5417f6dc 1119
5b5d99cf
JB
1120 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1121
1122 if (sect == NULL)
1123 return NULL;
1124
1125 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1126
5b5d99cf
JB
1127 contents = xmalloc (debuglink_size);
1128 bfd_get_section_contents (objfile->obfd, sect, contents,
1129 (file_ptr)0, (bfd_size_type)debuglink_size);
1130
1131 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1132 crc_offset = strlen (contents) + 1;
1133 crc_offset = (crc_offset + 3) & ~3;
1134
1135 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1136
5b5d99cf
JB
1137 *crc32_out = crc32;
1138 return contents;
1139}
1140
1141static int
1142separate_debug_file_exists (const char *name, unsigned long crc)
1143{
1144 unsigned long file_crc = 0;
1145 int fd;
777ea8f1 1146 gdb_byte buffer[8*1024];
5b5d99cf
JB
1147 int count;
1148
1149 fd = open (name, O_RDONLY | O_BINARY);
1150 if (fd < 0)
1151 return 0;
1152
1153 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1154 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1155
1156 close (fd);
1157
1158 return crc == file_crc;
1159}
1160
1161static char *debug_file_directory = NULL;
920d2a44
AC
1162static void
1163show_debug_file_directory (struct ui_file *file, int from_tty,
1164 struct cmd_list_element *c, const char *value)
1165{
1166 fprintf_filtered (file, _("\
1167The directory where separate debug symbols are searched for is \"%s\".\n"),
1168 value);
1169}
5b5d99cf
JB
1170
1171#if ! defined (DEBUG_SUBDIRECTORY)
1172#define DEBUG_SUBDIRECTORY ".debug"
1173#endif
1174
1175static char *
1176find_separate_debug_file (struct objfile *objfile)
1177{
1178 asection *sect;
1179 char *basename;
1180 char *dir;
1181 char *debugfile;
1182 char *name_copy;
1183 bfd_size_type debuglink_size;
1184 unsigned long crc32;
1185 int i;
1186
1187 basename = get_debug_link_info (objfile, &crc32);
1188
1189 if (basename == NULL)
1190 return NULL;
5417f6dc 1191
5b5d99cf
JB
1192 dir = xstrdup (objfile->name);
1193
fe36c4f4
JB
1194 /* Strip off the final filename part, leaving the directory name,
1195 followed by a slash. Objfile names should always be absolute and
1196 tilde-expanded, so there should always be a slash in there
1197 somewhere. */
5b5d99cf
JB
1198 for (i = strlen(dir) - 1; i >= 0; i--)
1199 {
1200 if (IS_DIR_SEPARATOR (dir[i]))
1201 break;
1202 }
fe36c4f4 1203 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1204 dir[i+1] = '\0';
5417f6dc 1205
5b5d99cf
JB
1206 debugfile = alloca (strlen (debug_file_directory) + 1
1207 + strlen (dir)
1208 + strlen (DEBUG_SUBDIRECTORY)
1209 + strlen ("/")
5417f6dc 1210 + strlen (basename)
5b5d99cf
JB
1211 + 1);
1212
1213 /* First try in the same directory as the original file. */
1214 strcpy (debugfile, dir);
1215 strcat (debugfile, basename);
1216
1217 if (separate_debug_file_exists (debugfile, crc32))
1218 {
1219 xfree (basename);
1220 xfree (dir);
1221 return xstrdup (debugfile);
1222 }
5417f6dc 1223
5b5d99cf
JB
1224 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1225 strcpy (debugfile, dir);
1226 strcat (debugfile, DEBUG_SUBDIRECTORY);
1227 strcat (debugfile, "/");
1228 strcat (debugfile, basename);
1229
1230 if (separate_debug_file_exists (debugfile, crc32))
1231 {
1232 xfree (basename);
1233 xfree (dir);
1234 return xstrdup (debugfile);
1235 }
5417f6dc 1236
5b5d99cf
JB
1237 /* Then try in the global debugfile directory. */
1238 strcpy (debugfile, debug_file_directory);
1239 strcat (debugfile, "/");
1240 strcat (debugfile, dir);
5b5d99cf
JB
1241 strcat (debugfile, basename);
1242
1243 if (separate_debug_file_exists (debugfile, crc32))
1244 {
1245 xfree (basename);
1246 xfree (dir);
1247 return xstrdup (debugfile);
1248 }
5417f6dc 1249
5b5d99cf
JB
1250 xfree (basename);
1251 xfree (dir);
1252 return NULL;
1253}
1254
1255
c906108c
SS
1256/* This is the symbol-file command. Read the file, analyze its
1257 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1258 the command is rather bizarre:
1259
1260 1. The function buildargv implements various quoting conventions
1261 which are undocumented and have little or nothing in common with
1262 the way things are quoted (or not quoted) elsewhere in GDB.
1263
1264 2. Options are used, which are not generally used in GDB (perhaps
1265 "set mapped on", "set readnow on" would be better)
1266
1267 3. The order of options matters, which is contrary to GNU
c906108c
SS
1268 conventions (because it is confusing and inconvenient). */
1269
1270void
fba45db2 1271symbol_file_command (char *args, int from_tty)
c906108c 1272{
c906108c
SS
1273 dont_repeat ();
1274
1275 if (args == NULL)
1276 {
1adeb98a 1277 symbol_file_clear (from_tty);
c906108c
SS
1278 }
1279 else
1280 {
cb2f3a29
MK
1281 char **argv = buildargv (args);
1282 int flags = OBJF_USERLOADED;
1283 struct cleanup *cleanups;
1284 char *name = NULL;
1285
1286 if (argv == NULL)
1287 nomem (0);
1288
7a292a7a 1289 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1290 while (*argv != NULL)
1291 {
78a4a9b9
AC
1292 if (strcmp (*argv, "-readnow") == 0)
1293 flags |= OBJF_READNOW;
1294 else if (**argv == '-')
8a3fe4f8 1295 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1296 else
1297 {
cb2f3a29 1298 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1299 name = *argv;
78a4a9b9 1300 }
cb2f3a29 1301
c906108c
SS
1302 argv++;
1303 }
1304
1305 if (name == NULL)
cb2f3a29
MK
1306 error (_("no symbol file name was specified"));
1307
c906108c
SS
1308 do_cleanups (cleanups);
1309 }
1310}
1311
1312/* Set the initial language.
1313
cb2f3a29
MK
1314 FIXME: A better solution would be to record the language in the
1315 psymtab when reading partial symbols, and then use it (if known) to
1316 set the language. This would be a win for formats that encode the
1317 language in an easily discoverable place, such as DWARF. For
1318 stabs, we can jump through hoops looking for specially named
1319 symbols or try to intuit the language from the specific type of
1320 stabs we find, but we can't do that until later when we read in
1321 full symbols. */
c906108c
SS
1322
1323static void
fba45db2 1324set_initial_language (void)
c906108c
SS
1325{
1326 struct partial_symtab *pst;
c5aa993b 1327 enum language lang = language_unknown;
c906108c
SS
1328
1329 pst = find_main_psymtab ();
1330 if (pst != NULL)
1331 {
c5aa993b 1332 if (pst->filename != NULL)
cb2f3a29
MK
1333 lang = deduce_language_from_filename (pst->filename);
1334
c906108c
SS
1335 if (lang == language_unknown)
1336 {
c5aa993b
JM
1337 /* Make C the default language */
1338 lang = language_c;
c906108c 1339 }
cb2f3a29 1340
c906108c 1341 set_language (lang);
cb2f3a29 1342 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1343 }
1344}
1345
cb2f3a29
MK
1346/* Open the file specified by NAME and hand it off to BFD for
1347 preliminary analysis. Return a newly initialized bfd *, which
1348 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1349 absolute). In case of trouble, error() is called. */
c906108c
SS
1350
1351bfd *
fba45db2 1352symfile_bfd_open (char *name)
c906108c
SS
1353{
1354 bfd *sym_bfd;
1355 int desc;
1356 char *absolute_name;
1357
cb2f3a29 1358 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1359
1360 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1361 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1362 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1363#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1364 if (desc < 0)
1365 {
1366 char *exename = alloca (strlen (name) + 5);
1367 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1368 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1369 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1370 }
1371#endif
1372 if (desc < 0)
1373 {
b8c9b27d 1374 make_cleanup (xfree, name);
c906108c
SS
1375 perror_with_name (name);
1376 }
cb2f3a29
MK
1377
1378 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1379 bfd. It'll be freed in free_objfile(). */
1380 xfree (name);
1381 name = absolute_name;
c906108c 1382
9f76c2cd 1383 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1384 if (!sym_bfd)
1385 {
1386 close (desc);
b8c9b27d 1387 make_cleanup (xfree, name);
8a3fe4f8 1388 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1389 bfd_errmsg (bfd_get_error ()));
1390 }
549c1eea 1391 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1392
1393 if (!bfd_check_format (sym_bfd, bfd_object))
1394 {
cb2f3a29
MK
1395 /* FIXME: should be checking for errors from bfd_close (for one
1396 thing, on error it does not free all the storage associated
1397 with the bfd). */
1398 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1399 make_cleanup (xfree, name);
8a3fe4f8 1400 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1401 bfd_errmsg (bfd_get_error ()));
1402 }
cb2f3a29
MK
1403
1404 return sym_bfd;
c906108c
SS
1405}
1406
cb2f3a29
MK
1407/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1408 the section was not found. */
1409
0e931cf0
JB
1410int
1411get_section_index (struct objfile *objfile, char *section_name)
1412{
1413 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1414
0e931cf0
JB
1415 if (sect)
1416 return sect->index;
1417 else
1418 return -1;
1419}
1420
cb2f3a29
MK
1421/* Link SF into the global symtab_fns list. Called on startup by the
1422 _initialize routine in each object file format reader, to register
1423 information about each format the the reader is prepared to
1424 handle. */
c906108c
SS
1425
1426void
fba45db2 1427add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1428{
1429 sf->next = symtab_fns;
1430 symtab_fns = sf;
1431}
1432
cb2f3a29
MK
1433/* Initialize OBJFILE to read symbols from its associated BFD. It
1434 either returns or calls error(). The result is an initialized
1435 struct sym_fns in the objfile structure, that contains cached
1436 information about the symbol file. */
c906108c
SS
1437
1438static void
fba45db2 1439find_sym_fns (struct objfile *objfile)
c906108c
SS
1440{
1441 struct sym_fns *sf;
c5aa993b
JM
1442 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1443 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1444
75245b24
MS
1445 if (our_flavour == bfd_target_srec_flavour
1446 || our_flavour == bfd_target_ihex_flavour
1447 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1448 return; /* No symbols. */
75245b24 1449
c5aa993b 1450 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1451 {
c5aa993b 1452 if (our_flavour == sf->sym_flavour)
c906108c 1453 {
c5aa993b 1454 objfile->sf = sf;
c906108c
SS
1455 return;
1456 }
1457 }
cb2f3a29 1458
8a3fe4f8 1459 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1460 bfd_get_target (objfile->obfd));
c906108c
SS
1461}
1462\f
cb2f3a29 1463
c906108c
SS
1464/* This function runs the load command of our current target. */
1465
1466static void
fba45db2 1467load_command (char *arg, int from_tty)
c906108c
SS
1468{
1469 if (arg == NULL)
1986bccd
AS
1470 {
1471 char *parg;
1472 int count = 0;
1473
1474 parg = arg = get_exec_file (1);
1475
1476 /* Count how many \ " ' tab space there are in the name. */
1477 while ((parg = strpbrk (parg, "\\\"'\t ")))
1478 {
1479 parg++;
1480 count++;
1481 }
1482
1483 if (count)
1484 {
1485 /* We need to quote this string so buildargv can pull it apart. */
1486 char *temp = xmalloc (strlen (arg) + count + 1 );
1487 char *ptemp = temp;
1488 char *prev;
1489
1490 make_cleanup (xfree, temp);
1491
1492 prev = parg = arg;
1493 while ((parg = strpbrk (parg, "\\\"'\t ")))
1494 {
1495 strncpy (ptemp, prev, parg - prev);
1496 ptemp += parg - prev;
1497 prev = parg++;
1498 *ptemp++ = '\\';
1499 }
1500 strcpy (ptemp, prev);
1501
1502 arg = temp;
1503 }
1504 }
1505
c906108c 1506 target_load (arg, from_tty);
2889e661
JB
1507
1508 /* After re-loading the executable, we don't really know which
1509 overlays are mapped any more. */
1510 overlay_cache_invalid = 1;
c906108c
SS
1511}
1512
1513/* This version of "load" should be usable for any target. Currently
1514 it is just used for remote targets, not inftarg.c or core files,
1515 on the theory that only in that case is it useful.
1516
1517 Avoiding xmodem and the like seems like a win (a) because we don't have
1518 to worry about finding it, and (b) On VMS, fork() is very slow and so
1519 we don't want to run a subprocess. On the other hand, I'm not sure how
1520 performance compares. */
917317f4
JM
1521
1522static int download_write_size = 512;
920d2a44
AC
1523static void
1524show_download_write_size (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c, const char *value)
1526{
1527 fprintf_filtered (file, _("\
1528The write size used when downloading a program is %s.\n"),
1529 value);
1530}
917317f4
JM
1531static int validate_download = 0;
1532
e4f9b4d5
MS
1533/* Callback service function for generic_load (bfd_map_over_sections). */
1534
1535static void
1536add_section_size_callback (bfd *abfd, asection *asec, void *data)
1537{
1538 bfd_size_type *sum = data;
1539
2c500098 1540 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1541}
1542
1543/* Opaque data for load_section_callback. */
1544struct load_section_data {
1545 unsigned long load_offset;
1546 unsigned long write_count;
1547 unsigned long data_count;
1548 bfd_size_type total_size;
1549};
1550
1551/* Callback service function for generic_load (bfd_map_over_sections). */
1552
1553static void
1554load_section_callback (bfd *abfd, asection *asec, void *data)
1555{
1556 struct load_section_data *args = data;
1557
1558 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1559 {
2c500098 1560 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1561 if (size > 0)
1562 {
777ea8f1 1563 gdb_byte *buffer;
e4f9b4d5
MS
1564 struct cleanup *old_chain;
1565 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1566 bfd_size_type block_size;
1567 int err;
1568 const char *sect_name = bfd_get_section_name (abfd, asec);
1569 bfd_size_type sent;
1570
1571 if (download_write_size > 0 && size > download_write_size)
1572 block_size = download_write_size;
1573 else
1574 block_size = size;
1575
1576 buffer = xmalloc (size);
1577 old_chain = make_cleanup (xfree, buffer);
1578
1579 /* Is this really necessary? I guess it gives the user something
1580 to look at during a long download. */
e4f9b4d5
MS
1581 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1582 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1583
1584 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1585
1586 sent = 0;
1587 do
1588 {
1589 int len;
1590 bfd_size_type this_transfer = size - sent;
1591
1592 if (this_transfer >= block_size)
1593 this_transfer = block_size;
1594 len = target_write_memory_partial (lma, buffer,
1595 this_transfer, &err);
1596 if (err)
1597 break;
1598 if (validate_download)
1599 {
1600 /* Broken memories and broken monitors manifest
1601 themselves here when bring new computers to
1602 life. This doubles already slow downloads. */
1603 /* NOTE: cagney/1999-10-18: A more efficient
1604 implementation might add a verify_memory()
1605 method to the target vector and then use
1606 that. remote.c could implement that method
1607 using the ``qCRC'' packet. */
777ea8f1 1608 gdb_byte *check = xmalloc (len);
5417f6dc 1609 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1610 make_cleanup (xfree, check);
1611
1612 if (target_read_memory (lma, check, len) != 0)
8a3fe4f8 1613 error (_("Download verify read failed at 0x%s"),
e4f9b4d5
MS
1614 paddr (lma));
1615 if (memcmp (buffer, check, len) != 0)
8a3fe4f8 1616 error (_("Download verify compare failed at 0x%s"),
e4f9b4d5
MS
1617 paddr (lma));
1618 do_cleanups (verify_cleanups);
1619 }
1620 args->data_count += len;
1621 lma += len;
1622 buffer += len;
1623 args->write_count += 1;
1624 sent += len;
1625 if (quit_flag
9a4105ab
AC
1626 || (deprecated_ui_load_progress_hook != NULL
1627 && deprecated_ui_load_progress_hook (sect_name, sent)))
8a3fe4f8 1628 error (_("Canceled the download"));
e4f9b4d5 1629
9a4105ab
AC
1630 if (deprecated_show_load_progress != NULL)
1631 deprecated_show_load_progress (sect_name, sent, size,
1632 args->data_count,
1633 args->total_size);
e4f9b4d5
MS
1634 }
1635 while (sent < size);
1636
1637 if (err != 0)
8a3fe4f8 1638 error (_("Memory access error while loading section %s."), sect_name);
e4f9b4d5
MS
1639
1640 do_cleanups (old_chain);
1641 }
1642 }
1643}
1644
c906108c 1645void
917317f4 1646generic_load (char *args, int from_tty)
c906108c 1647{
c906108c
SS
1648 asection *s;
1649 bfd *loadfile_bfd;
2b71414d 1650 struct timeval start_time, end_time;
917317f4 1651 char *filename;
1986bccd 1652 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5
MS
1653 struct load_section_data cbdata;
1654 CORE_ADDR entry;
1986bccd 1655 char **argv;
e4f9b4d5
MS
1656
1657 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1658 cbdata.write_count = 0; /* Number of writes needed. */
1659 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1660 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4 1661
1986bccd
AS
1662 argv = buildargv (args);
1663
1664 if (argv == NULL)
1665 nomem(0);
1666
1667 make_cleanup_freeargv (argv);
1668
1669 filename = tilde_expand (argv[0]);
1670 make_cleanup (xfree, filename);
1671
1672 if (argv[1] != NULL)
917317f4
JM
1673 {
1674 char *endptr;
ba5f2f8a 1675
1986bccd
AS
1676 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1677
1678 /* If the last word was not a valid number then
1679 treat it as a file name with spaces in. */
1680 if (argv[1] == endptr)
1681 error (_("Invalid download offset:%s."), argv[1]);
1682
1683 if (argv[2] != NULL)
1684 error (_("Too many parameters."));
917317f4 1685 }
c906108c 1686
917317f4 1687 /* Open the file for loading. */
c906108c
SS
1688 loadfile_bfd = bfd_openr (filename, gnutarget);
1689 if (loadfile_bfd == NULL)
1690 {
1691 perror_with_name (filename);
1692 return;
1693 }
917317f4 1694
c906108c
SS
1695 /* FIXME: should be checking for errors from bfd_close (for one thing,
1696 on error it does not free all the storage associated with the
1697 bfd). */
5c65bbb6 1698 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1699
c5aa993b 1700 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1701 {
8a3fe4f8 1702 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1703 bfd_errmsg (bfd_get_error ()));
1704 }
c5aa993b 1705
5417f6dc 1706 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1707 (void *) &cbdata.total_size);
c2d11a7d 1708
2b71414d 1709 gettimeofday (&start_time, NULL);
c906108c 1710
e4f9b4d5 1711 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c 1712
2b71414d 1713 gettimeofday (&end_time, NULL);
ba5f2f8a 1714
e4f9b4d5 1715 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1716 ui_out_text (uiout, "Start address ");
1717 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1718 ui_out_text (uiout, ", load size ");
1719 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1720 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1721 /* We were doing this in remote-mips.c, I suspect it is right
1722 for other targets too. */
1723 write_pc (entry);
c906108c 1724
7ca9f392
AC
1725 /* FIXME: are we supposed to call symbol_file_add or not? According
1726 to a comment from remote-mips.c (where a call to symbol_file_add
1727 was commented out), making the call confuses GDB if more than one
1728 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1729 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1730
5417f6dc 1731 print_transfer_performance (gdb_stdout, cbdata.data_count,
2b71414d 1732 cbdata.write_count, &start_time, &end_time);
c906108c
SS
1733
1734 do_cleanups (old_cleanups);
1735}
1736
1737/* Report how fast the transfer went. */
1738
917317f4
JM
1739/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1740 replaced by print_transfer_performance (with a very different
1741 function signature). */
1742
c906108c 1743void
fba45db2
KB
1744report_transfer_performance (unsigned long data_count, time_t start_time,
1745 time_t end_time)
c906108c 1746{
2b71414d
DJ
1747 struct timeval start, end;
1748
1749 start.tv_sec = start_time;
1750 start.tv_usec = 0;
1751 end.tv_sec = end_time;
1752 end.tv_usec = 0;
1753
1754 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1755}
1756
1757void
d9fcf2fb 1758print_transfer_performance (struct ui_file *stream,
917317f4
JM
1759 unsigned long data_count,
1760 unsigned long write_count,
2b71414d
DJ
1761 const struct timeval *start_time,
1762 const struct timeval *end_time)
917317f4 1763{
2b71414d
DJ
1764 unsigned long time_count;
1765
1766 /* Compute the elapsed time in milliseconds, as a tradeoff between
1767 accuracy and overflow. */
1768 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1769 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1770
8b93c638
JM
1771 ui_out_text (uiout, "Transfer rate: ");
1772 if (time_count > 0)
1773 {
5417f6dc 1774 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1775 1000 * (data_count * 8) / time_count);
8b93c638
JM
1776 ui_out_text (uiout, " bits/sec");
1777 }
1778 else
1779 {
ba5f2f8a 1780 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1781 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1782 }
1783 if (write_count > 0)
1784 {
1785 ui_out_text (uiout, ", ");
ba5f2f8a 1786 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1787 ui_out_text (uiout, " bytes/write");
1788 }
1789 ui_out_text (uiout, ".\n");
c906108c
SS
1790}
1791
1792/* This function allows the addition of incrementally linked object files.
1793 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1794/* Note: ezannoni 2000-04-13 This function/command used to have a
1795 special case syntax for the rombug target (Rombug is the boot
1796 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1797 rombug case, the user doesn't need to supply a text address,
1798 instead a call to target_link() (in target.c) would supply the
1799 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1800
c906108c 1801static void
fba45db2 1802add_symbol_file_command (char *args, int from_tty)
c906108c 1803{
db162d44 1804 char *filename = NULL;
2df3850c 1805 int flags = OBJF_USERLOADED;
c906108c 1806 char *arg;
2acceee2 1807 int expecting_option = 0;
db162d44 1808 int section_index = 0;
2acceee2
JM
1809 int argcnt = 0;
1810 int sec_num = 0;
1811 int i;
db162d44
EZ
1812 int expecting_sec_name = 0;
1813 int expecting_sec_addr = 0;
5b96932b 1814 char **argv;
db162d44 1815
a39a16c4 1816 struct sect_opt
2acceee2 1817 {
2acceee2
JM
1818 char *name;
1819 char *value;
a39a16c4 1820 };
db162d44 1821
a39a16c4
MM
1822 struct section_addr_info *section_addrs;
1823 struct sect_opt *sect_opts = NULL;
1824 size_t num_sect_opts = 0;
3017564a 1825 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1826
a39a16c4 1827 num_sect_opts = 16;
5417f6dc 1828 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1829 * sizeof (struct sect_opt));
1830
c906108c
SS
1831 dont_repeat ();
1832
1833 if (args == NULL)
8a3fe4f8 1834 error (_("add-symbol-file takes a file name and an address"));
c906108c 1835
5b96932b
AS
1836 argv = buildargv (args);
1837 make_cleanup_freeargv (argv);
db162d44 1838
5b96932b
AS
1839 if (argv == NULL)
1840 nomem (0);
db162d44 1841
5b96932b
AS
1842 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1843 {
1844 /* Process the argument. */
db162d44 1845 if (argcnt == 0)
c906108c 1846 {
db162d44
EZ
1847 /* The first argument is the file name. */
1848 filename = tilde_expand (arg);
3017564a 1849 make_cleanup (xfree, filename);
c906108c 1850 }
db162d44 1851 else
7a78ae4e
ND
1852 if (argcnt == 1)
1853 {
1854 /* The second argument is always the text address at which
1855 to load the program. */
1856 sect_opts[section_index].name = ".text";
1857 sect_opts[section_index].value = arg;
5417f6dc 1858 if (++section_index > num_sect_opts)
a39a16c4
MM
1859 {
1860 num_sect_opts *= 2;
5417f6dc 1861 sect_opts = ((struct sect_opt *)
a39a16c4 1862 xrealloc (sect_opts,
5417f6dc 1863 num_sect_opts
a39a16c4
MM
1864 * sizeof (struct sect_opt)));
1865 }
7a78ae4e
ND
1866 }
1867 else
1868 {
1869 /* It's an option (starting with '-') or it's an argument
1870 to an option */
1871
1872 if (*arg == '-')
1873 {
78a4a9b9
AC
1874 if (strcmp (arg, "-readnow") == 0)
1875 flags |= OBJF_READNOW;
1876 else if (strcmp (arg, "-s") == 0)
1877 {
1878 expecting_sec_name = 1;
1879 expecting_sec_addr = 1;
1880 }
7a78ae4e
ND
1881 }
1882 else
1883 {
1884 if (expecting_sec_name)
db162d44 1885 {
7a78ae4e
ND
1886 sect_opts[section_index].name = arg;
1887 expecting_sec_name = 0;
db162d44
EZ
1888 }
1889 else
7a78ae4e
ND
1890 if (expecting_sec_addr)
1891 {
1892 sect_opts[section_index].value = arg;
1893 expecting_sec_addr = 0;
5417f6dc 1894 if (++section_index > num_sect_opts)
a39a16c4
MM
1895 {
1896 num_sect_opts *= 2;
5417f6dc 1897 sect_opts = ((struct sect_opt *)
a39a16c4 1898 xrealloc (sect_opts,
5417f6dc 1899 num_sect_opts
a39a16c4
MM
1900 * sizeof (struct sect_opt)));
1901 }
7a78ae4e
ND
1902 }
1903 else
8a3fe4f8 1904 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1905 }
1906 }
c906108c 1907 }
c906108c 1908
927890d0
JB
1909 /* This command takes at least two arguments. The first one is a
1910 filename, and the second is the address where this file has been
1911 loaded. Abort now if this address hasn't been provided by the
1912 user. */
1913 if (section_index < 1)
1914 error (_("The address where %s has been loaded is missing"), filename);
1915
db162d44
EZ
1916 /* Print the prompt for the query below. And save the arguments into
1917 a sect_addr_info structure to be passed around to other
1918 functions. We have to split this up into separate print
bb599908 1919 statements because hex_string returns a local static
db162d44 1920 string. */
5417f6dc 1921
a3f17187 1922 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1923 section_addrs = alloc_section_addr_info (section_index);
1924 make_cleanup (xfree, section_addrs);
db162d44 1925 for (i = 0; i < section_index; i++)
c906108c 1926 {
db162d44
EZ
1927 CORE_ADDR addr;
1928 char *val = sect_opts[i].value;
1929 char *sec = sect_opts[i].name;
5417f6dc 1930
ae822768 1931 addr = parse_and_eval_address (val);
db162d44 1932
db162d44
EZ
1933 /* Here we store the section offsets in the order they were
1934 entered on the command line. */
a39a16c4
MM
1935 section_addrs->other[sec_num].name = sec;
1936 section_addrs->other[sec_num].addr = addr;
46f45a4a 1937 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1938 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1939 sec_num++;
1940
5417f6dc 1941 /* The object's sections are initialized when a
db162d44 1942 call is made to build_objfile_section_table (objfile).
5417f6dc 1943 This happens in reread_symbols.
db162d44
EZ
1944 At this point, we don't know what file type this is,
1945 so we can't determine what section names are valid. */
2acceee2 1946 }
db162d44 1947
2acceee2 1948 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1949 error (_("Not confirmed."));
c906108c 1950
a39a16c4 1951 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1952
1953 /* Getting new symbols may change our opinion about what is
1954 frameless. */
1955 reinit_frame_cache ();
db162d44 1956 do_cleanups (my_cleanups);
c906108c
SS
1957}
1958\f
1959static void
fba45db2 1960add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1961{
1962#ifdef ADD_SHARED_SYMBOL_FILES
1963 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1964#else
8a3fe4f8 1965 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1966#endif
c906108c
SS
1967}
1968\f
1969/* Re-read symbols if a symbol-file has changed. */
1970void
fba45db2 1971reread_symbols (void)
c906108c
SS
1972{
1973 struct objfile *objfile;
1974 long new_modtime;
1975 int reread_one = 0;
1976 struct stat new_statbuf;
1977 int res;
1978
1979 /* With the addition of shared libraries, this should be modified,
1980 the load time should be saved in the partial symbol tables, since
1981 different tables may come from different source files. FIXME.
1982 This routine should then walk down each partial symbol table
1983 and see if the symbol table that it originates from has been changed */
1984
c5aa993b
JM
1985 for (objfile = object_files; objfile; objfile = objfile->next)
1986 {
1987 if (objfile->obfd)
1988 {
52d16ba8 1989#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1990 /* If this object is from a shared library, then you should
1991 stat on the library name, not member name. */
c906108c 1992
c5aa993b
JM
1993 if (objfile->obfd->my_archive)
1994 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1995 else
c906108c 1996#endif
c5aa993b
JM
1997 res = stat (objfile->name, &new_statbuf);
1998 if (res != 0)
c906108c 1999 {
c5aa993b 2000 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2001 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2002 objfile->name);
2003 continue;
c906108c 2004 }
c5aa993b
JM
2005 new_modtime = new_statbuf.st_mtime;
2006 if (new_modtime != objfile->mtime)
c906108c 2007 {
c5aa993b
JM
2008 struct cleanup *old_cleanups;
2009 struct section_offsets *offsets;
2010 int num_offsets;
c5aa993b
JM
2011 char *obfd_filename;
2012
a3f17187 2013 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2014 objfile->name);
2015
2016 /* There are various functions like symbol_file_add,
2017 symfile_bfd_open, syms_from_objfile, etc., which might
2018 appear to do what we want. But they have various other
2019 effects which we *don't* want. So we just do stuff
2020 ourselves. We don't worry about mapped files (for one thing,
2021 any mapped file will be out of date). */
2022
2023 /* If we get an error, blow away this objfile (not sure if
2024 that is the correct response for things like shared
2025 libraries). */
74b7792f 2026 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2027 /* We need to do this whenever any symbols go away. */
74b7792f 2028 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2029
2030 /* Clean up any state BFD has sitting around. We don't need
2031 to close the descriptor but BFD lacks a way of closing the
2032 BFD without closing the descriptor. */
2033 obfd_filename = bfd_get_filename (objfile->obfd);
2034 if (!bfd_close (objfile->obfd))
8a3fe4f8 2035 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2036 bfd_errmsg (bfd_get_error ()));
2037 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2038 if (objfile->obfd == NULL)
8a3fe4f8 2039 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2040 /* bfd_openr sets cacheable to true, which is what we want. */
2041 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2042 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2043 bfd_errmsg (bfd_get_error ()));
2044
2045 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2046 objfile_obstack. */
c5aa993b 2047 num_offsets = objfile->num_sections;
5417f6dc 2048 offsets = ((struct section_offsets *)
a39a16c4 2049 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2050 memcpy (offsets, objfile->section_offsets,
a39a16c4 2051 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2052
ae5a43e0
DJ
2053 /* Remove any references to this objfile in the global
2054 value lists. */
2055 preserve_values (objfile);
2056
c5aa993b
JM
2057 /* Nuke all the state that we will re-read. Much of the following
2058 code which sets things to NULL really is necessary to tell
2059 other parts of GDB that there is nothing currently there. */
2060
2061 /* FIXME: Do we have to free a whole linked list, or is this
2062 enough? */
2063 if (objfile->global_psymbols.list)
2dc74dc1 2064 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2065 memset (&objfile->global_psymbols, 0,
2066 sizeof (objfile->global_psymbols));
2067 if (objfile->static_psymbols.list)
2dc74dc1 2068 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2069 memset (&objfile->static_psymbols, 0,
2070 sizeof (objfile->static_psymbols));
2071
2072 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2073 bcache_xfree (objfile->psymbol_cache);
2074 objfile->psymbol_cache = bcache_xmalloc ();
2075 bcache_xfree (objfile->macro_cache);
2076 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2077 if (objfile->demangled_names_hash != NULL)
2078 {
2079 htab_delete (objfile->demangled_names_hash);
2080 objfile->demangled_names_hash = NULL;
2081 }
b99607ea 2082 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2083 objfile->sections = NULL;
2084 objfile->symtabs = NULL;
2085 objfile->psymtabs = NULL;
2086 objfile->free_psymtabs = NULL;
a1b8c067 2087 objfile->cp_namespace_symtab = NULL;
c5aa993b 2088 objfile->msymbols = NULL;
0a6ddd08 2089 objfile->deprecated_sym_private = NULL;
c5aa993b 2090 objfile->minimal_symbol_count = 0;
0a83117a
MS
2091 memset (&objfile->msymbol_hash, 0,
2092 sizeof (objfile->msymbol_hash));
2093 memset (&objfile->msymbol_demangled_hash, 0,
2094 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2095 objfile->fundamental_types = NULL;
7b097ae3 2096 clear_objfile_data (objfile);
c5aa993b
JM
2097 if (objfile->sf != NULL)
2098 {
2099 (*objfile->sf->sym_finish) (objfile);
2100 }
2101
2102 /* We never make this a mapped file. */
2103 objfile->md = NULL;
af5f3db6
AC
2104 objfile->psymbol_cache = bcache_xmalloc ();
2105 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2106 /* obstack_init also initializes the obstack so it is
2107 empty. We could use obstack_specify_allocation but
2108 gdb_obstack.h specifies the alloc/dealloc
2109 functions. */
2110 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2111 if (build_objfile_section_table (objfile))
2112 {
8a3fe4f8 2113 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2114 objfile->name, bfd_errmsg (bfd_get_error ()));
2115 }
15831452 2116 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2117
2118 /* We use the same section offsets as from last time. I'm not
2119 sure whether that is always correct for shared libraries. */
2120 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2121 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2122 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2123 memcpy (objfile->section_offsets, offsets,
a39a16c4 2124 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2125 objfile->num_sections = num_offsets;
2126
2127 /* What the hell is sym_new_init for, anyway? The concept of
2128 distinguishing between the main file and additional files
2129 in this way seems rather dubious. */
2130 if (objfile == symfile_objfile)
2131 {
2132 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2133 }
2134
2135 (*objfile->sf->sym_init) (objfile);
b9caf505 2136 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2137 /* The "mainline" parameter is a hideous hack; I think leaving it
2138 zero is OK since dbxread.c also does what it needs to do if
2139 objfile->global_psymbols.size is 0. */
96baa820 2140 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2141 if (!have_partial_symbols () && !have_full_symbols ())
2142 {
2143 wrap_here ("");
a3f17187 2144 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2145 wrap_here ("");
2146 }
2147 objfile->flags |= OBJF_SYMS;
2148
2149 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2150 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2151
c5aa993b
JM
2152 /* Getting new symbols may change our opinion about what is
2153 frameless. */
c906108c 2154
c5aa993b 2155 reinit_frame_cache ();
c906108c 2156
c5aa993b
JM
2157 /* Discard cleanups as symbol reading was successful. */
2158 discard_cleanups (old_cleanups);
c906108c 2159
c5aa993b
JM
2160 /* If the mtime has changed between the time we set new_modtime
2161 and now, we *want* this to be out of date, so don't call stat
2162 again now. */
2163 objfile->mtime = new_modtime;
2164 reread_one = 1;
5b5d99cf 2165 reread_separate_symbols (objfile);
c5aa993b 2166 }
c906108c
SS
2167 }
2168 }
c906108c
SS
2169
2170 if (reread_one)
ea53e89f
JB
2171 {
2172 clear_symtab_users ();
2173 /* At least one objfile has changed, so we can consider that
2174 the executable we're debugging has changed too. */
2175 observer_notify_executable_changed (NULL);
2176 }
2177
c906108c 2178}
5b5d99cf
JB
2179
2180
2181/* Handle separate debug info for OBJFILE, which has just been
2182 re-read:
2183 - If we had separate debug info before, but now we don't, get rid
2184 of the separated objfile.
2185 - If we didn't have separated debug info before, but now we do,
2186 read in the new separated debug info file.
2187 - If the debug link points to a different file, toss the old one
2188 and read the new one.
2189 This function does *not* handle the case where objfile is still
2190 using the same separate debug info file, but that file's timestamp
2191 has changed. That case should be handled by the loop in
2192 reread_symbols already. */
2193static void
2194reread_separate_symbols (struct objfile *objfile)
2195{
2196 char *debug_file;
2197 unsigned long crc32;
2198
2199 /* Does the updated objfile's debug info live in a
2200 separate file? */
2201 debug_file = find_separate_debug_file (objfile);
2202
2203 if (objfile->separate_debug_objfile)
2204 {
2205 /* There are two cases where we need to get rid of
2206 the old separated debug info objfile:
2207 - if the new primary objfile doesn't have
2208 separated debug info, or
2209 - if the new primary objfile has separate debug
2210 info, but it's under a different filename.
5417f6dc 2211
5b5d99cf
JB
2212 If the old and new objfiles both have separate
2213 debug info, under the same filename, then we're
2214 okay --- if the separated file's contents have
2215 changed, we will have caught that when we
2216 visited it in this function's outermost
2217 loop. */
2218 if (! debug_file
2219 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2220 free_objfile (objfile->separate_debug_objfile);
2221 }
2222
2223 /* If the new objfile has separate debug info, and we
2224 haven't loaded it already, do so now. */
2225 if (debug_file
2226 && ! objfile->separate_debug_objfile)
2227 {
2228 /* Use the same section offset table as objfile itself.
2229 Preserve the flags from objfile that make sense. */
2230 objfile->separate_debug_objfile
2231 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2232 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2233 info_verbose, /* from_tty: Don't override the default. */
2234 0, /* No addr table. */
2235 objfile->section_offsets, objfile->num_sections,
2236 0, /* Not mainline. See comments about this above. */
78a4a9b9 2237 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2238 | OBJF_USERLOADED)));
2239 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2240 = objfile;
2241 }
2242}
2243
2244
c906108c
SS
2245\f
2246
c5aa993b
JM
2247
2248typedef struct
2249{
2250 char *ext;
c906108c 2251 enum language lang;
c5aa993b
JM
2252}
2253filename_language;
c906108c 2254
c5aa993b 2255static filename_language *filename_language_table;
c906108c
SS
2256static int fl_table_size, fl_table_next;
2257
2258static void
fba45db2 2259add_filename_language (char *ext, enum language lang)
c906108c
SS
2260{
2261 if (fl_table_next >= fl_table_size)
2262 {
2263 fl_table_size += 10;
5417f6dc 2264 filename_language_table =
25bf3106
PM
2265 xrealloc (filename_language_table,
2266 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2267 }
2268
4fcf66da 2269 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2270 filename_language_table[fl_table_next].lang = lang;
2271 fl_table_next++;
2272}
2273
2274static char *ext_args;
920d2a44
AC
2275static void
2276show_ext_args (struct ui_file *file, int from_tty,
2277 struct cmd_list_element *c, const char *value)
2278{
2279 fprintf_filtered (file, _("\
2280Mapping between filename extension and source language is \"%s\".\n"),
2281 value);
2282}
c906108c
SS
2283
2284static void
26c41df3 2285set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2286{
2287 int i;
2288 char *cp = ext_args;
2289 enum language lang;
2290
2291 /* First arg is filename extension, starting with '.' */
2292 if (*cp != '.')
8a3fe4f8 2293 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2294
2295 /* Find end of first arg. */
c5aa993b 2296 while (*cp && !isspace (*cp))
c906108c
SS
2297 cp++;
2298
2299 if (*cp == '\0')
8a3fe4f8 2300 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2301 ext_args);
2302
2303 /* Null-terminate first arg */
c5aa993b 2304 *cp++ = '\0';
c906108c
SS
2305
2306 /* Find beginning of second arg, which should be a source language. */
2307 while (*cp && isspace (*cp))
2308 cp++;
2309
2310 if (*cp == '\0')
8a3fe4f8 2311 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2312 ext_args);
2313
2314 /* Lookup the language from among those we know. */
2315 lang = language_enum (cp);
2316
2317 /* Now lookup the filename extension: do we already know it? */
2318 for (i = 0; i < fl_table_next; i++)
2319 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2320 break;
2321
2322 if (i >= fl_table_next)
2323 {
2324 /* new file extension */
2325 add_filename_language (ext_args, lang);
2326 }
2327 else
2328 {
2329 /* redefining a previously known filename extension */
2330
2331 /* if (from_tty) */
2332 /* query ("Really make files of type %s '%s'?", */
2333 /* ext_args, language_str (lang)); */
2334
b8c9b27d 2335 xfree (filename_language_table[i].ext);
4fcf66da 2336 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2337 filename_language_table[i].lang = lang;
2338 }
2339}
2340
2341static void
fba45db2 2342info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2343{
2344 int i;
2345
a3f17187 2346 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2347 printf_filtered ("\n\n");
2348 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2349 printf_filtered ("\t%s\t- %s\n",
2350 filename_language_table[i].ext,
c906108c
SS
2351 language_str (filename_language_table[i].lang));
2352}
2353
2354static void
fba45db2 2355init_filename_language_table (void)
c906108c
SS
2356{
2357 if (fl_table_size == 0) /* protect against repetition */
2358 {
2359 fl_table_size = 20;
2360 fl_table_next = 0;
c5aa993b 2361 filename_language_table =
c906108c 2362 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2363 add_filename_language (".c", language_c);
2364 add_filename_language (".C", language_cplus);
2365 add_filename_language (".cc", language_cplus);
2366 add_filename_language (".cp", language_cplus);
2367 add_filename_language (".cpp", language_cplus);
2368 add_filename_language (".cxx", language_cplus);
2369 add_filename_language (".c++", language_cplus);
2370 add_filename_language (".java", language_java);
c906108c 2371 add_filename_language (".class", language_java);
da2cf7e0 2372 add_filename_language (".m", language_objc);
c5aa993b
JM
2373 add_filename_language (".f", language_fortran);
2374 add_filename_language (".F", language_fortran);
2375 add_filename_language (".s", language_asm);
2376 add_filename_language (".S", language_asm);
c6fd39cd
PM
2377 add_filename_language (".pas", language_pascal);
2378 add_filename_language (".p", language_pascal);
2379 add_filename_language (".pp", language_pascal);
963a6417
PH
2380 add_filename_language (".adb", language_ada);
2381 add_filename_language (".ads", language_ada);
2382 add_filename_language (".a", language_ada);
2383 add_filename_language (".ada", language_ada);
c906108c
SS
2384 }
2385}
2386
2387enum language
fba45db2 2388deduce_language_from_filename (char *filename)
c906108c
SS
2389{
2390 int i;
2391 char *cp;
2392
2393 if (filename != NULL)
2394 if ((cp = strrchr (filename, '.')) != NULL)
2395 for (i = 0; i < fl_table_next; i++)
2396 if (strcmp (cp, filename_language_table[i].ext) == 0)
2397 return filename_language_table[i].lang;
2398
2399 return language_unknown;
2400}
2401\f
2402/* allocate_symtab:
2403
2404 Allocate and partly initialize a new symbol table. Return a pointer
2405 to it. error() if no space.
2406
2407 Caller must set these fields:
c5aa993b
JM
2408 LINETABLE(symtab)
2409 symtab->blockvector
2410 symtab->dirname
2411 symtab->free_code
2412 symtab->free_ptr
2413 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2414 */
2415
2416struct symtab *
fba45db2 2417allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2418{
52f0bd74 2419 struct symtab *symtab;
c906108c
SS
2420
2421 symtab = (struct symtab *)
4a146b47 2422 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2423 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2424 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2425 &objfile->objfile_obstack);
c5aa993b
JM
2426 symtab->fullname = NULL;
2427 symtab->language = deduce_language_from_filename (filename);
2428 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2429 &objfile->objfile_obstack);
c906108c
SS
2430
2431 /* Hook it to the objfile it comes from */
2432
c5aa993b
JM
2433 symtab->objfile = objfile;
2434 symtab->next = objfile->symtabs;
2435 objfile->symtabs = symtab;
c906108c
SS
2436
2437 /* FIXME: This should go away. It is only defined for the Z8000,
2438 and the Z8000 definition of this macro doesn't have anything to
2439 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2440 here for convenience. */
2441#ifdef INIT_EXTRA_SYMTAB_INFO
2442 INIT_EXTRA_SYMTAB_INFO (symtab);
2443#endif
2444
2445 return (symtab);
2446}
2447
2448struct partial_symtab *
fba45db2 2449allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2450{
2451 struct partial_symtab *psymtab;
2452
c5aa993b 2453 if (objfile->free_psymtabs)
c906108c 2454 {
c5aa993b
JM
2455 psymtab = objfile->free_psymtabs;
2456 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2457 }
2458 else
2459 psymtab = (struct partial_symtab *)
8b92e4d5 2460 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2461 sizeof (struct partial_symtab));
2462
2463 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2464 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2465 &objfile->objfile_obstack);
c5aa993b 2466 psymtab->symtab = NULL;
c906108c
SS
2467
2468 /* Prepend it to the psymtab list for the objfile it belongs to.
2469 Psymtabs are searched in most recent inserted -> least recent
2470 inserted order. */
2471
c5aa993b
JM
2472 psymtab->objfile = objfile;
2473 psymtab->next = objfile->psymtabs;
2474 objfile->psymtabs = psymtab;
c906108c
SS
2475#if 0
2476 {
2477 struct partial_symtab **prev_pst;
c5aa993b
JM
2478 psymtab->objfile = objfile;
2479 psymtab->next = NULL;
2480 prev_pst = &(objfile->psymtabs);
c906108c 2481 while ((*prev_pst) != NULL)
c5aa993b 2482 prev_pst = &((*prev_pst)->next);
c906108c 2483 (*prev_pst) = psymtab;
c5aa993b 2484 }
c906108c 2485#endif
c5aa993b 2486
c906108c
SS
2487 return (psymtab);
2488}
2489
2490void
fba45db2 2491discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2492{
2493 struct partial_symtab **prev_pst;
2494
2495 /* From dbxread.c:
2496 Empty psymtabs happen as a result of header files which don't
2497 have any symbols in them. There can be a lot of them. But this
2498 check is wrong, in that a psymtab with N_SLINE entries but
2499 nothing else is not empty, but we don't realize that. Fixing
2500 that without slowing things down might be tricky. */
2501
2502 /* First, snip it out of the psymtab chain */
2503
2504 prev_pst = &(pst->objfile->psymtabs);
2505 while ((*prev_pst) != pst)
2506 prev_pst = &((*prev_pst)->next);
2507 (*prev_pst) = pst->next;
2508
2509 /* Next, put it on a free list for recycling */
2510
2511 pst->next = pst->objfile->free_psymtabs;
2512 pst->objfile->free_psymtabs = pst;
2513}
c906108c 2514\f
c5aa993b 2515
c906108c
SS
2516/* Reset all data structures in gdb which may contain references to symbol
2517 table data. */
2518
2519void
fba45db2 2520clear_symtab_users (void)
c906108c
SS
2521{
2522 /* Someday, we should do better than this, by only blowing away
2523 the things that really need to be blown. */
c0501be5
DJ
2524
2525 /* Clear the "current" symtab first, because it is no longer valid.
2526 breakpoint_re_set may try to access the current symtab. */
2527 clear_current_source_symtab_and_line ();
2528
c906108c 2529 clear_displays ();
c906108c
SS
2530 breakpoint_re_set ();
2531 set_default_breakpoint (0, 0, 0, 0);
c906108c 2532 clear_pc_function_cache ();
9a4105ab
AC
2533 if (deprecated_target_new_objfile_hook)
2534 deprecated_target_new_objfile_hook (NULL);
c906108c
SS
2535}
2536
74b7792f
AC
2537static void
2538clear_symtab_users_cleanup (void *ignore)
2539{
2540 clear_symtab_users ();
2541}
2542
c906108c
SS
2543/* clear_symtab_users_once:
2544
2545 This function is run after symbol reading, or from a cleanup.
2546 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2547 has been blown away, but the other GDB data structures that may
c906108c
SS
2548 reference it have not yet been cleared or re-directed. (The old
2549 symtab was zapped, and the cleanup queued, in free_named_symtab()
2550 below.)
2551
2552 This function can be queued N times as a cleanup, or called
2553 directly; it will do all the work the first time, and then will be a
2554 no-op until the next time it is queued. This works by bumping a
2555 counter at queueing time. Much later when the cleanup is run, or at
2556 the end of symbol processing (in case the cleanup is discarded), if
2557 the queued count is greater than the "done-count", we do the work
2558 and set the done-count to the queued count. If the queued count is
2559 less than or equal to the done-count, we just ignore the call. This
2560 is needed because reading a single .o file will often replace many
2561 symtabs (one per .h file, for example), and we don't want to reset
2562 the breakpoints N times in the user's face.
2563
2564 The reason we both queue a cleanup, and call it directly after symbol
2565 reading, is because the cleanup protects us in case of errors, but is
2566 discarded if symbol reading is successful. */
2567
2568#if 0
2569/* FIXME: As free_named_symtabs is currently a big noop this function
2570 is no longer needed. */
a14ed312 2571static void clear_symtab_users_once (void);
c906108c
SS
2572
2573static int clear_symtab_users_queued;
2574static int clear_symtab_users_done;
2575
2576static void
fba45db2 2577clear_symtab_users_once (void)
c906108c
SS
2578{
2579 /* Enforce once-per-`do_cleanups'-semantics */
2580 if (clear_symtab_users_queued <= clear_symtab_users_done)
2581 return;
2582 clear_symtab_users_done = clear_symtab_users_queued;
2583
2584 clear_symtab_users ();
2585}
2586#endif
2587
2588/* Delete the specified psymtab, and any others that reference it. */
2589
2590static void
fba45db2 2591cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2592{
2593 struct partial_symtab *ps, *pprev = NULL;
2594 int i;
2595
2596 /* Find its previous psymtab in the chain */
c5aa993b
JM
2597 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2598 {
2599 if (ps == pst)
2600 break;
2601 pprev = ps;
2602 }
c906108c 2603
c5aa993b
JM
2604 if (ps)
2605 {
2606 /* Unhook it from the chain. */
2607 if (ps == pst->objfile->psymtabs)
2608 pst->objfile->psymtabs = ps->next;
2609 else
2610 pprev->next = ps->next;
2611
2612 /* FIXME, we can't conveniently deallocate the entries in the
2613 partial_symbol lists (global_psymbols/static_psymbols) that
2614 this psymtab points to. These just take up space until all
2615 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2616 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2617
2618 /* We need to cashier any psymtab that has this one as a dependency... */
2619 again:
2620 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2621 {
2622 for (i = 0; i < ps->number_of_dependencies; i++)
2623 {
2624 if (ps->dependencies[i] == pst)
2625 {
2626 cashier_psymtab (ps);
2627 goto again; /* Must restart, chain has been munged. */
2628 }
2629 }
c906108c 2630 }
c906108c 2631 }
c906108c
SS
2632}
2633
2634/* If a symtab or psymtab for filename NAME is found, free it along
2635 with any dependent breakpoints, displays, etc.
2636 Used when loading new versions of object modules with the "add-file"
2637 command. This is only called on the top-level symtab or psymtab's name;
2638 it is not called for subsidiary files such as .h files.
2639
2640 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2641 FIXME. The return value appears to never be used.
c906108c
SS
2642
2643 FIXME. I think this is not the best way to do this. We should
2644 work on being gentler to the environment while still cleaning up
2645 all stray pointers into the freed symtab. */
2646
2647int
fba45db2 2648free_named_symtabs (char *name)
c906108c
SS
2649{
2650#if 0
2651 /* FIXME: With the new method of each objfile having it's own
2652 psymtab list, this function needs serious rethinking. In particular,
2653 why was it ever necessary to toss psymtabs with specific compilation
2654 unit filenames, as opposed to all psymtabs from a particular symbol
2655 file? -- fnf
2656 Well, the answer is that some systems permit reloading of particular
2657 compilation units. We want to blow away any old info about these
2658 compilation units, regardless of which objfiles they arrived in. --gnu. */
2659
52f0bd74
AC
2660 struct symtab *s;
2661 struct symtab *prev;
2662 struct partial_symtab *ps;
c906108c
SS
2663 struct blockvector *bv;
2664 int blewit = 0;
2665
2666 /* We only wack things if the symbol-reload switch is set. */
2667 if (!symbol_reloading)
2668 return 0;
2669
2670 /* Some symbol formats have trouble providing file names... */
2671 if (name == 0 || *name == '\0')
2672 return 0;
2673
2674 /* Look for a psymtab with the specified name. */
2675
2676again2:
c5aa993b
JM
2677 for (ps = partial_symtab_list; ps; ps = ps->next)
2678 {
6314a349 2679 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2680 {
2681 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2682 goto again2; /* Must restart, chain has been munged */
2683 }
c906108c 2684 }
c906108c
SS
2685
2686 /* Look for a symtab with the specified name. */
2687
2688 for (s = symtab_list; s; s = s->next)
2689 {
6314a349 2690 if (strcmp (name, s->filename) == 0)
c906108c
SS
2691 break;
2692 prev = s;
2693 }
2694
2695 if (s)
2696 {
2697 if (s == symtab_list)
2698 symtab_list = s->next;
2699 else
2700 prev->next = s->next;
2701
2702 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2703 or not they depend on the symtab being freed. This should be
2704 changed so that only those data structures affected are deleted. */
c906108c
SS
2705
2706 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2707 This test is necessary due to a bug in "dbxread.c" that
2708 causes empty symtabs to be created for N_SO symbols that
2709 contain the pathname of the object file. (This problem
2710 has been fixed in GDB 3.9x). */
c906108c
SS
2711
2712 bv = BLOCKVECTOR (s);
2713 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2714 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2715 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2716 {
e2e0b3e5 2717 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2718 name);
c906108c
SS
2719 clear_symtab_users_queued++;
2720 make_cleanup (clear_symtab_users_once, 0);
2721 blewit = 1;
c5aa993b
JM
2722 }
2723 else
e2e0b3e5
AC
2724 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2725 name);
c906108c
SS
2726
2727 free_symtab (s);
2728 }
2729 else
2730 {
2731 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2732 even though no symtab was found, since the file might have
2733 been compiled without debugging, and hence not be associated
2734 with a symtab. In order to handle this correctly, we would need
2735 to keep a list of text address ranges for undebuggable files.
2736 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2737 ;
2738 }
2739
2740 /* FIXME, what about the minimal symbol table? */
2741 return blewit;
2742#else
2743 return (0);
2744#endif
2745}
2746\f
2747/* Allocate and partially fill a partial symtab. It will be
2748 completely filled at the end of the symbol list.
2749
d4f3574e 2750 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2751
2752struct partial_symtab *
fba45db2
KB
2753start_psymtab_common (struct objfile *objfile,
2754 struct section_offsets *section_offsets, char *filename,
2755 CORE_ADDR textlow, struct partial_symbol **global_syms,
2756 struct partial_symbol **static_syms)
c906108c
SS
2757{
2758 struct partial_symtab *psymtab;
2759
2760 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2761 psymtab->section_offsets = section_offsets;
2762 psymtab->textlow = textlow;
2763 psymtab->texthigh = psymtab->textlow; /* default */
2764 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2765 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2766 return (psymtab);
2767}
2768\f
2769/* Add a symbol with a long value to a psymtab.
5417f6dc 2770 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2771 Return the partial symbol that has been added. */
2772
2773/* NOTE: carlton/2003-09-11: The reason why we return the partial
2774 symbol is so that callers can get access to the symbol's demangled
2775 name, which they don't have any cheap way to determine otherwise.
2776 (Currenly, dwarf2read.c is the only file who uses that information,
2777 though it's possible that other readers might in the future.)
2778 Elena wasn't thrilled about that, and I don't blame her, but we
2779 couldn't come up with a better way to get that information. If
2780 it's needed in other situations, we could consider breaking up
2781 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2782 cache. */
2783
2784const struct partial_symbol *
176620f1 2785add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2786 enum address_class class,
2787 struct psymbol_allocation_list *list, long val, /* Value as a long */
2788 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2789 enum language language, struct objfile *objfile)
c906108c 2790{
52f0bd74 2791 struct partial_symbol *psym;
c906108c
SS
2792 char *buf = alloca (namelength + 1);
2793 /* psymbol is static so that there will be no uninitialized gaps in the
2794 structure which might contain random data, causing cache misses in
2795 bcache. */
2796 static struct partial_symbol psymbol;
2797
2798 /* Create local copy of the partial symbol */
2799 memcpy (buf, name, namelength);
2800 buf[namelength] = '\0';
c906108c
SS
2801 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2802 if (val != 0)
2803 {
2804 SYMBOL_VALUE (&psymbol) = val;
2805 }
2806 else
2807 {
2808 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2809 }
2810 SYMBOL_SECTION (&psymbol) = 0;
2811 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2812 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2813 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2814
2815 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2816
2817 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2818 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2819 objfile->psymbol_cache);
c906108c
SS
2820
2821 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2822 if (list->next >= list->list + list->size)
2823 {
2824 extend_psymbol_list (list, objfile);
2825 }
2826 *list->next++ = psym;
2827 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2828
2829 return psym;
c906108c
SS
2830}
2831
2832/* Add a symbol with a long value to a psymtab. This differs from
2833 * add_psymbol_to_list above in taking both a mangled and a demangled
2834 * name. */
2835
2836void
fba45db2 2837add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2838 int dem_namelength, domain_enum domain,
fba45db2
KB
2839 enum address_class class,
2840 struct psymbol_allocation_list *list, long val, /* Value as a long */
2841 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2842 enum language language,
2843 struct objfile *objfile)
c906108c 2844{
52f0bd74 2845 struct partial_symbol *psym;
c906108c
SS
2846 char *buf = alloca (namelength + 1);
2847 /* psymbol is static so that there will be no uninitialized gaps in the
2848 structure which might contain random data, causing cache misses in
2849 bcache. */
2850 static struct partial_symbol psymbol;
2851
2852 /* Create local copy of the partial symbol */
2853
2854 memcpy (buf, name, namelength);
2855 buf[namelength] = '\0';
3a16a68c
AC
2856 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2857 objfile->psymbol_cache);
c906108c
SS
2858
2859 buf = alloca (dem_namelength + 1);
2860 memcpy (buf, dem_name, dem_namelength);
2861 buf[dem_namelength] = '\0';
c5aa993b 2862
c906108c
SS
2863 switch (language)
2864 {
c5aa993b
JM
2865 case language_c:
2866 case language_cplus:
2867 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2868 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2869 break;
c906108c
SS
2870 /* FIXME What should be done for the default case? Ignoring for now. */
2871 }
2872
2873 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2874 if (val != 0)
2875 {
2876 SYMBOL_VALUE (&psymbol) = val;
2877 }
2878 else
2879 {
2880 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2881 }
2882 SYMBOL_SECTION (&psymbol) = 0;
2883 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2884 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2885 PSYMBOL_CLASS (&psymbol) = class;
2886 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2887
2888 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2889 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2890 objfile->psymbol_cache);
c906108c
SS
2891
2892 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2893 if (list->next >= list->list + list->size)
2894 {
2895 extend_psymbol_list (list, objfile);
2896 }
2897 *list->next++ = psym;
2898 OBJSTAT (objfile, n_psyms++);
2899}
2900
2901/* Initialize storage for partial symbols. */
2902
2903void
fba45db2 2904init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2905{
2906 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2907
2908 if (objfile->global_psymbols.list)
c906108c 2909 {
2dc74dc1 2910 xfree (objfile->global_psymbols.list);
c906108c 2911 }
c5aa993b 2912 if (objfile->static_psymbols.list)
c906108c 2913 {
2dc74dc1 2914 xfree (objfile->static_psymbols.list);
c906108c 2915 }
c5aa993b 2916
c906108c
SS
2917 /* Current best guess is that approximately a twentieth
2918 of the total symbols (in a debugging file) are global or static
2919 oriented symbols */
c906108c 2920
c5aa993b
JM
2921 objfile->global_psymbols.size = total_symbols / 10;
2922 objfile->static_psymbols.size = total_symbols / 10;
2923
2924 if (objfile->global_psymbols.size > 0)
c906108c 2925 {
c5aa993b
JM
2926 objfile->global_psymbols.next =
2927 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2928 xmalloc ((objfile->global_psymbols.size
2929 * sizeof (struct partial_symbol *)));
c906108c 2930 }
c5aa993b 2931 if (objfile->static_psymbols.size > 0)
c906108c 2932 {
c5aa993b
JM
2933 objfile->static_psymbols.next =
2934 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2935 xmalloc ((objfile->static_psymbols.size
2936 * sizeof (struct partial_symbol *)));
c906108c
SS
2937 }
2938}
2939
2940/* OVERLAYS:
2941 The following code implements an abstraction for debugging overlay sections.
2942
2943 The target model is as follows:
2944 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2945 same VMA, each with its own unique LMA (or load address).
c906108c 2946 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2947 sections, one by one, from the load address into the VMA address.
5417f6dc 2948 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2949 sections should be considered to be mapped from the VMA to the LMA.
2950 This information is used for symbol lookup, and memory read/write.
5417f6dc 2951 For instance, if a section has been mapped then its contents
c5aa993b 2952 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2953
2954 Two levels of debugger support for overlays are available. One is
2955 "manual", in which the debugger relies on the user to tell it which
2956 overlays are currently mapped. This level of support is
2957 implemented entirely in the core debugger, and the information about
2958 whether a section is mapped is kept in the objfile->obj_section table.
2959
2960 The second level of support is "automatic", and is only available if
2961 the target-specific code provides functionality to read the target's
2962 overlay mapping table, and translate its contents for the debugger
2963 (by updating the mapped state information in the obj_section tables).
2964
2965 The interface is as follows:
c5aa993b
JM
2966 User commands:
2967 overlay map <name> -- tell gdb to consider this section mapped
2968 overlay unmap <name> -- tell gdb to consider this section unmapped
2969 overlay list -- list the sections that GDB thinks are mapped
2970 overlay read-target -- get the target's state of what's mapped
2971 overlay off/manual/auto -- set overlay debugging state
2972 Functional interface:
2973 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2974 section, return that section.
5417f6dc 2975 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2976 the pc, either in its VMA or its LMA
2977 overlay_is_mapped(sect): true if overlay is marked as mapped
2978 section_is_overlay(sect): true if section's VMA != LMA
2979 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2980 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2981 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2982 overlay_mapped_address(...): map an address from section's LMA to VMA
2983 overlay_unmapped_address(...): map an address from section's VMA to LMA
2984 symbol_overlayed_address(...): Return a "current" address for symbol:
2985 either in VMA or LMA depending on whether
2986 the symbol's section is currently mapped
c906108c
SS
2987 */
2988
2989/* Overlay debugging state: */
2990
d874f1e2 2991enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2992int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2993
2994/* Target vector for refreshing overlay mapped state */
a14ed312 2995static void simple_overlay_update (struct obj_section *);
507f3c78 2996void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2997
2998/* Function: section_is_overlay (SECTION)
5417f6dc 2999 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3000 SECTION is loaded at an address different from where it will "run". */
3001
3002int
fba45db2 3003section_is_overlay (asection *section)
c906108c 3004{
fbd35540
MS
3005 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3006
c906108c
SS
3007 if (overlay_debugging)
3008 if (section && section->lma != 0 &&
3009 section->vma != section->lma)
3010 return 1;
3011
3012 return 0;
3013}
3014
3015/* Function: overlay_invalidate_all (void)
3016 Invalidate the mapped state of all overlay sections (mark it as stale). */
3017
3018static void
fba45db2 3019overlay_invalidate_all (void)
c906108c 3020{
c5aa993b 3021 struct objfile *objfile;
c906108c
SS
3022 struct obj_section *sect;
3023
3024 ALL_OBJSECTIONS (objfile, sect)
3025 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3026 sect->ovly_mapped = -1;
c906108c
SS
3027}
3028
3029/* Function: overlay_is_mapped (SECTION)
5417f6dc 3030 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3031 Private: public access is thru function section_is_mapped.
3032
3033 Access to the ovly_mapped flag is restricted to this function, so
3034 that we can do automatic update. If the global flag
3035 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3036 overlay_invalidate_all. If the mapped state of the particular
3037 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3038
c5aa993b 3039static int
fba45db2 3040overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3041{
3042 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3043 return 0;
3044
c5aa993b 3045 switch (overlay_debugging)
c906108c
SS
3046 {
3047 default:
d874f1e2 3048 case ovly_off:
c5aa993b 3049 return 0; /* overlay debugging off */
d874f1e2 3050 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3051 /* Unles there is a target_overlay_update function,
c5aa993b 3052 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3053 if (target_overlay_update)
3054 {
3055 if (overlay_cache_invalid)
3056 {
3057 overlay_invalidate_all ();
3058 overlay_cache_invalid = 0;
3059 }
3060 if (osect->ovly_mapped == -1)
3061 (*target_overlay_update) (osect);
3062 }
3063 /* fall thru to manual case */
d874f1e2 3064 case ovly_on: /* overlay debugging manual */
c906108c
SS
3065 return osect->ovly_mapped == 1;
3066 }
3067}
3068
3069/* Function: section_is_mapped
3070 Returns true if section is an overlay, and is currently mapped. */
3071
3072int
fba45db2 3073section_is_mapped (asection *section)
c906108c 3074{
c5aa993b 3075 struct objfile *objfile;
c906108c
SS
3076 struct obj_section *osect;
3077
3078 if (overlay_debugging)
3079 if (section && section_is_overlay (section))
3080 ALL_OBJSECTIONS (objfile, osect)
3081 if (osect->the_bfd_section == section)
c5aa993b 3082 return overlay_is_mapped (osect);
c906108c
SS
3083
3084 return 0;
3085}
3086
3087/* Function: pc_in_unmapped_range
3088 If PC falls into the lma range of SECTION, return true, else false. */
3089
3090CORE_ADDR
fba45db2 3091pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3092{
fbd35540
MS
3093 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3094
c906108c
SS
3095 int size;
3096
3097 if (overlay_debugging)
3098 if (section && section_is_overlay (section))
3099 {
2c500098 3100 size = bfd_get_section_size (section);
c906108c
SS
3101 if (section->lma <= pc && pc < section->lma + size)
3102 return 1;
3103 }
3104 return 0;
3105}
3106
3107/* Function: pc_in_mapped_range
3108 If PC falls into the vma range of SECTION, return true, else false. */
3109
3110CORE_ADDR
fba45db2 3111pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3112{
fbd35540
MS
3113 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3114
c906108c
SS
3115 int size;
3116
3117 if (overlay_debugging)
3118 if (section && section_is_overlay (section))
3119 {
2c500098 3120 size = bfd_get_section_size (section);
c906108c
SS
3121 if (section->vma <= pc && pc < section->vma + size)
3122 return 1;
3123 }
3124 return 0;
3125}
3126
9ec8e6a0
JB
3127
3128/* Return true if the mapped ranges of sections A and B overlap, false
3129 otherwise. */
b9362cc7 3130static int
9ec8e6a0
JB
3131sections_overlap (asection *a, asection *b)
3132{
fbd35540
MS
3133 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3134
9ec8e6a0 3135 CORE_ADDR a_start = a->vma;
2c500098 3136 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3137 CORE_ADDR b_start = b->vma;
2c500098 3138 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3139
3140 return (a_start < b_end && b_start < a_end);
3141}
3142
c906108c
SS
3143/* Function: overlay_unmapped_address (PC, SECTION)
3144 Returns the address corresponding to PC in the unmapped (load) range.
3145 May be the same as PC. */
3146
3147CORE_ADDR
fba45db2 3148overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3149{
fbd35540
MS
3150 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3151
c906108c
SS
3152 if (overlay_debugging)
3153 if (section && section_is_overlay (section) &&
3154 pc_in_mapped_range (pc, section))
3155 return pc + section->lma - section->vma;
3156
3157 return pc;
3158}
3159
3160/* Function: overlay_mapped_address (PC, SECTION)
3161 Returns the address corresponding to PC in the mapped (runtime) range.
3162 May be the same as PC. */
3163
3164CORE_ADDR
fba45db2 3165overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3166{
fbd35540
MS
3167 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3168
c906108c
SS
3169 if (overlay_debugging)
3170 if (section && section_is_overlay (section) &&
3171 pc_in_unmapped_range (pc, section))
3172 return pc + section->vma - section->lma;
3173
3174 return pc;
3175}
3176
3177
5417f6dc 3178/* Function: symbol_overlayed_address
c906108c
SS
3179 Return one of two addresses (relative to the VMA or to the LMA),
3180 depending on whether the section is mapped or not. */
3181
c5aa993b 3182CORE_ADDR
fba45db2 3183symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3184{
3185 if (overlay_debugging)
3186 {
3187 /* If the symbol has no section, just return its regular address. */
3188 if (section == 0)
3189 return address;
3190 /* If the symbol's section is not an overlay, just return its address */
3191 if (!section_is_overlay (section))
3192 return address;
3193 /* If the symbol's section is mapped, just return its address */
3194 if (section_is_mapped (section))
3195 return address;
3196 /*
3197 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3198 * then return its LOADED address rather than its vma address!!
3199 */
3200 return overlay_unmapped_address (address, section);
3201 }
3202 return address;
3203}
3204
5417f6dc 3205/* Function: find_pc_overlay (PC)
c906108c
SS
3206 Return the best-match overlay section for PC:
3207 If PC matches a mapped overlay section's VMA, return that section.
3208 Else if PC matches an unmapped section's VMA, return that section.
3209 Else if PC matches an unmapped section's LMA, return that section. */
3210
3211asection *
fba45db2 3212find_pc_overlay (CORE_ADDR pc)
c906108c 3213{
c5aa993b 3214 struct objfile *objfile;
c906108c
SS
3215 struct obj_section *osect, *best_match = NULL;
3216
3217 if (overlay_debugging)
3218 ALL_OBJSECTIONS (objfile, osect)
3219 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3220 {
3221 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3222 {
3223 if (overlay_is_mapped (osect))
3224 return osect->the_bfd_section;
3225 else
3226 best_match = osect;
3227 }
3228 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3229 best_match = osect;
3230 }
c906108c
SS
3231 return best_match ? best_match->the_bfd_section : NULL;
3232}
3233
3234/* Function: find_pc_mapped_section (PC)
5417f6dc 3235 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3236 currently marked as MAPPED, return that section. Else return NULL. */
3237
3238asection *
fba45db2 3239find_pc_mapped_section (CORE_ADDR pc)
c906108c 3240{
c5aa993b 3241 struct objfile *objfile;
c906108c
SS
3242 struct obj_section *osect;
3243
3244 if (overlay_debugging)
3245 ALL_OBJSECTIONS (objfile, osect)
3246 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3247 overlay_is_mapped (osect))
c5aa993b 3248 return osect->the_bfd_section;
c906108c
SS
3249
3250 return NULL;
3251}
3252
3253/* Function: list_overlays_command
3254 Print a list of mapped sections and their PC ranges */
3255
3256void
fba45db2 3257list_overlays_command (char *args, int from_tty)
c906108c 3258{
c5aa993b
JM
3259 int nmapped = 0;
3260 struct objfile *objfile;
c906108c
SS
3261 struct obj_section *osect;
3262
3263 if (overlay_debugging)
3264 ALL_OBJSECTIONS (objfile, osect)
3265 if (overlay_is_mapped (osect))
c5aa993b
JM
3266 {
3267 const char *name;
3268 bfd_vma lma, vma;
3269 int size;
3270
3271 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3272 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3273 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3274 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3275
3276 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3277 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3278 puts_filtered (" - ");
66bf4b3a 3279 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3280 printf_filtered (", mapped at ");
66bf4b3a 3281 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3282 puts_filtered (" - ");
66bf4b3a 3283 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3284 puts_filtered ("\n");
3285
3286 nmapped++;
3287 }
c906108c 3288 if (nmapped == 0)
a3f17187 3289 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3290}
3291
3292/* Function: map_overlay_command
3293 Mark the named section as mapped (ie. residing at its VMA address). */
3294
3295void
fba45db2 3296map_overlay_command (char *args, int from_tty)
c906108c 3297{
c5aa993b
JM
3298 struct objfile *objfile, *objfile2;
3299 struct obj_section *sec, *sec2;
3300 asection *bfdsec;
c906108c
SS
3301
3302 if (!overlay_debugging)
8a3fe4f8 3303 error (_("\
515ad16c 3304Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3305the 'overlay manual' command."));
c906108c
SS
3306
3307 if (args == 0 || *args == 0)
8a3fe4f8 3308 error (_("Argument required: name of an overlay section"));
c906108c
SS
3309
3310 /* First, find a section matching the user supplied argument */
3311 ALL_OBJSECTIONS (objfile, sec)
3312 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3313 {
3314 /* Now, check to see if the section is an overlay. */
3315 bfdsec = sec->the_bfd_section;
3316 if (!section_is_overlay (bfdsec))
3317 continue; /* not an overlay section */
3318
3319 /* Mark the overlay as "mapped" */
3320 sec->ovly_mapped = 1;
3321
3322 /* Next, make a pass and unmap any sections that are
3323 overlapped by this new section: */
3324 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3325 if (sec2->ovly_mapped
3326 && sec != sec2
3327 && sec->the_bfd_section != sec2->the_bfd_section
3328 && sections_overlap (sec->the_bfd_section,
3329 sec2->the_bfd_section))
c5aa993b
JM
3330 {
3331 if (info_verbose)
a3f17187 3332 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3333 bfd_section_name (objfile->obfd,
3334 sec2->the_bfd_section));
3335 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3336 }
3337 return;
3338 }
8a3fe4f8 3339 error (_("No overlay section called %s"), args);
c906108c
SS
3340}
3341
3342/* Function: unmap_overlay_command
5417f6dc 3343 Mark the overlay section as unmapped
c906108c
SS
3344 (ie. resident in its LMA address range, rather than the VMA range). */
3345
3346void
fba45db2 3347unmap_overlay_command (char *args, int from_tty)
c906108c 3348{
c5aa993b 3349 struct objfile *objfile;
c906108c
SS
3350 struct obj_section *sec;
3351
3352 if (!overlay_debugging)
8a3fe4f8 3353 error (_("\
515ad16c 3354Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3355the 'overlay manual' command."));
c906108c
SS
3356
3357 if (args == 0 || *args == 0)
8a3fe4f8 3358 error (_("Argument required: name of an overlay section"));
c906108c
SS
3359
3360 /* First, find a section matching the user supplied argument */
3361 ALL_OBJSECTIONS (objfile, sec)
3362 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3363 {
3364 if (!sec->ovly_mapped)
8a3fe4f8 3365 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3366 sec->ovly_mapped = 0;
3367 return;
3368 }
8a3fe4f8 3369 error (_("No overlay section called %s"), args);
c906108c
SS
3370}
3371
3372/* Function: overlay_auto_command
3373 A utility command to turn on overlay debugging.
3374 Possibly this should be done via a set/show command. */
3375
3376static void
fba45db2 3377overlay_auto_command (char *args, int from_tty)
c906108c 3378{
d874f1e2 3379 overlay_debugging = ovly_auto;
1900040c 3380 enable_overlay_breakpoints ();
c906108c 3381 if (info_verbose)
a3f17187 3382 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3383}
3384
3385/* Function: overlay_manual_command
3386 A utility command to turn on overlay debugging.
3387 Possibly this should be done via a set/show command. */
3388
3389static void
fba45db2 3390overlay_manual_command (char *args, int from_tty)
c906108c 3391{
d874f1e2 3392 overlay_debugging = ovly_on;
1900040c 3393 disable_overlay_breakpoints ();
c906108c 3394 if (info_verbose)
a3f17187 3395 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3396}
3397
3398/* Function: overlay_off_command
3399 A utility command to turn on overlay debugging.
3400 Possibly this should be done via a set/show command. */
3401
3402static void
fba45db2 3403overlay_off_command (char *args, int from_tty)
c906108c 3404{
d874f1e2 3405 overlay_debugging = ovly_off;
1900040c 3406 disable_overlay_breakpoints ();
c906108c 3407 if (info_verbose)
a3f17187 3408 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3409}
3410
3411static void
fba45db2 3412overlay_load_command (char *args, int from_tty)
c906108c
SS
3413{
3414 if (target_overlay_update)
3415 (*target_overlay_update) (NULL);
3416 else
8a3fe4f8 3417 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3418}
3419
3420/* Function: overlay_command
3421 A place-holder for a mis-typed command */
3422
3423/* Command list chain containing all defined "overlay" subcommands. */
3424struct cmd_list_element *overlaylist;
3425
3426static void
fba45db2 3427overlay_command (char *args, int from_tty)
c906108c 3428{
c5aa993b 3429 printf_unfiltered
c906108c
SS
3430 ("\"overlay\" must be followed by the name of an overlay command.\n");
3431 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3432}
3433
3434
3435/* Target Overlays for the "Simplest" overlay manager:
3436
5417f6dc
RM
3437 This is GDB's default target overlay layer. It works with the
3438 minimal overlay manager supplied as an example by Cygnus. The
3439 entry point is via a function pointer "target_overlay_update",
3440 so targets that use a different runtime overlay manager can
c906108c
SS
3441 substitute their own overlay_update function and take over the
3442 function pointer.
3443
3444 The overlay_update function pokes around in the target's data structures
3445 to see what overlays are mapped, and updates GDB's overlay mapping with
3446 this information.
3447
3448 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3449 unsigned _novlys; /# number of overlay sections #/
3450 unsigned _ovly_table[_novlys][4] = {
3451 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3452 {..., ..., ..., ...},
3453 }
3454 unsigned _novly_regions; /# number of overlay regions #/
3455 unsigned _ovly_region_table[_novly_regions][3] = {
3456 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3457 {..., ..., ...},
3458 }
c906108c
SS
3459 These functions will attempt to update GDB's mappedness state in the
3460 symbol section table, based on the target's mappedness state.
3461
3462 To do this, we keep a cached copy of the target's _ovly_table, and
3463 attempt to detect when the cached copy is invalidated. The main
3464 entry point is "simple_overlay_update(SECT), which looks up SECT in
3465 the cached table and re-reads only the entry for that section from
3466 the target (whenever possible).
3467 */
3468
3469/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3470static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3471#if 0
c5aa993b 3472static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3473#endif
c5aa993b 3474static unsigned cache_novlys = 0;
c906108c 3475#if 0
c5aa993b 3476static unsigned cache_novly_regions = 0;
c906108c
SS
3477#endif
3478static CORE_ADDR cache_ovly_table_base = 0;
3479#if 0
3480static CORE_ADDR cache_ovly_region_table_base = 0;
3481#endif
c5aa993b
JM
3482enum ovly_index
3483 {
3484 VMA, SIZE, LMA, MAPPED
3485 };
c906108c
SS
3486#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3487
3488/* Throw away the cached copy of _ovly_table */
3489static void
fba45db2 3490simple_free_overlay_table (void)
c906108c
SS
3491{
3492 if (cache_ovly_table)
b8c9b27d 3493 xfree (cache_ovly_table);
c5aa993b 3494 cache_novlys = 0;
c906108c
SS
3495 cache_ovly_table = NULL;
3496 cache_ovly_table_base = 0;
3497}
3498
3499#if 0
3500/* Throw away the cached copy of _ovly_region_table */
3501static void
fba45db2 3502simple_free_overlay_region_table (void)
c906108c
SS
3503{
3504 if (cache_ovly_region_table)
b8c9b27d 3505 xfree (cache_ovly_region_table);
c5aa993b 3506 cache_novly_regions = 0;
c906108c
SS
3507 cache_ovly_region_table = NULL;
3508 cache_ovly_region_table_base = 0;
3509}
3510#endif
3511
3512/* Read an array of ints from the target into a local buffer.
3513 Convert to host order. int LEN is number of ints */
3514static void
fba45db2 3515read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3516{
34c0bd93 3517 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3518 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3519 int i;
c906108c
SS
3520
3521 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3522 for (i = 0; i < len; i++)
c5aa993b 3523 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3524 TARGET_LONG_BYTES);
3525}
3526
3527/* Find and grab a copy of the target _ovly_table
3528 (and _novlys, which is needed for the table's size) */
c5aa993b 3529static int
fba45db2 3530simple_read_overlay_table (void)
c906108c 3531{
0d43edd1 3532 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3533
3534 simple_free_overlay_table ();
9b27852e 3535 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3536 if (! novlys_msym)
c906108c 3537 {
8a3fe4f8 3538 error (_("Error reading inferior's overlay table: "
0d43edd1 3539 "couldn't find `_novlys' variable\n"
8a3fe4f8 3540 "in inferior. Use `overlay manual' mode."));
0d43edd1 3541 return 0;
c906108c 3542 }
0d43edd1 3543
9b27852e 3544 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3545 if (! ovly_table_msym)
3546 {
8a3fe4f8 3547 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3548 "`_ovly_table' array\n"
8a3fe4f8 3549 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3550 return 0;
3551 }
3552
3553 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3554 cache_ovly_table
3555 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3556 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3557 read_target_long_array (cache_ovly_table_base,
777ea8f1 3558 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3559 cache_novlys * 4);
3560
c5aa993b 3561 return 1; /* SUCCESS */
c906108c
SS
3562}
3563
3564#if 0
3565/* Find and grab a copy of the target _ovly_region_table
3566 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3567static int
fba45db2 3568simple_read_overlay_region_table (void)
c906108c
SS
3569{
3570 struct minimal_symbol *msym;
3571
3572 simple_free_overlay_region_table ();
9b27852e 3573 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3574 if (msym != NULL)
3575 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3576 else
3577 return 0; /* failure */
c906108c
SS
3578 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3579 if (cache_ovly_region_table != NULL)
3580 {
9b27852e 3581 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3582 if (msym != NULL)
3583 {
3584 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3585 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3586 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3587 cache_novly_regions * 3);
3588 }
c5aa993b
JM
3589 else
3590 return 0; /* failure */
c906108c 3591 }
c5aa993b
JM
3592 else
3593 return 0; /* failure */
3594 return 1; /* SUCCESS */
c906108c
SS
3595}
3596#endif
3597
5417f6dc 3598/* Function: simple_overlay_update_1
c906108c
SS
3599 A helper function for simple_overlay_update. Assuming a cached copy
3600 of _ovly_table exists, look through it to find an entry whose vma,
3601 lma and size match those of OSECT. Re-read the entry and make sure
3602 it still matches OSECT (else the table may no longer be valid).
3603 Set OSECT's mapped state to match the entry. Return: 1 for
3604 success, 0 for failure. */
3605
3606static int
fba45db2 3607simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3608{
3609 int i, size;
fbd35540
MS
3610 bfd *obfd = osect->objfile->obfd;
3611 asection *bsect = osect->the_bfd_section;
c906108c 3612
2c500098 3613 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3614 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3615 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3616 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3617 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3618 {
3619 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3620 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3621 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3622 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3623 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3624 {
3625 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3626 return 1;
3627 }
fbd35540 3628 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3629 return 0;
3630 }
3631 return 0;
3632}
3633
3634/* Function: simple_overlay_update
5417f6dc
RM
3635 If OSECT is NULL, then update all sections' mapped state
3636 (after re-reading the entire target _ovly_table).
3637 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3638 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3639 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3640 re-read the entire cache, and go ahead and update all sections. */
3641
3642static void
fba45db2 3643simple_overlay_update (struct obj_section *osect)
c906108c 3644{
c5aa993b 3645 struct objfile *objfile;
c906108c
SS
3646
3647 /* Were we given an osect to look up? NULL means do all of them. */
3648 if (osect)
3649 /* Have we got a cached copy of the target's overlay table? */
3650 if (cache_ovly_table != NULL)
3651 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3652 if (cache_ovly_table_base ==
9b27852e 3653 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3654 /* Then go ahead and try to look up this single section in the cache */
3655 if (simple_overlay_update_1 (osect))
3656 /* Found it! We're done. */
3657 return;
3658
3659 /* Cached table no good: need to read the entire table anew.
3660 Or else we want all the sections, in which case it's actually
3661 more efficient to read the whole table in one block anyway. */
3662
0d43edd1
JB
3663 if (! simple_read_overlay_table ())
3664 return;
3665
c906108c
SS
3666 /* Now may as well update all sections, even if only one was requested. */
3667 ALL_OBJSECTIONS (objfile, osect)
3668 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3669 {
3670 int i, size;
fbd35540
MS
3671 bfd *obfd = osect->objfile->obfd;
3672 asection *bsect = osect->the_bfd_section;
c5aa993b 3673
2c500098 3674 size = bfd_get_section_size (bsect);
c5aa993b 3675 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3676 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3677 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3678 /* && cache_ovly_table[i][SIZE] == size */ )
3679 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3680 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3681 break; /* finished with inner for loop: break out */
3682 }
3683 }
c906108c
SS
3684}
3685
086df311
DJ
3686/* Set the output sections and output offsets for section SECTP in
3687 ABFD. The relocation code in BFD will read these offsets, so we
3688 need to be sure they're initialized. We map each section to itself,
3689 with no offset; this means that SECTP->vma will be honored. */
3690
3691static void
3692symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3693{
3694 sectp->output_section = sectp;
3695 sectp->output_offset = 0;
3696}
3697
3698/* Relocate the contents of a debug section SECTP in ABFD. The
3699 contents are stored in BUF if it is non-NULL, or returned in a
3700 malloc'd buffer otherwise.
3701
3702 For some platforms and debug info formats, shared libraries contain
3703 relocations against the debug sections (particularly for DWARF-2;
3704 one affected platform is PowerPC GNU/Linux, although it depends on
3705 the version of the linker in use). Also, ELF object files naturally
3706 have unresolved relocations for their debug sections. We need to apply
3707 the relocations in order to get the locations of symbols correct. */
3708
3709bfd_byte *
3710symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3711{
3712 /* We're only interested in debugging sections with relocation
3713 information. */
3714 if ((sectp->flags & SEC_RELOC) == 0)
3715 return NULL;
3716 if ((sectp->flags & SEC_DEBUGGING) == 0)
3717 return NULL;
3718
3719 /* We will handle section offsets properly elsewhere, so relocate as if
3720 all sections begin at 0. */
3721 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3722
97606a13 3723 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3724}
c906108c
SS
3725
3726void
fba45db2 3727_initialize_symfile (void)
c906108c
SS
3728{
3729 struct cmd_list_element *c;
c5aa993b 3730
1a966eab
AC
3731 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3732Load symbol table from executable file FILE.\n\
c906108c 3733The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3734to execute."), &cmdlist);
5ba2abeb 3735 set_cmd_completer (c, filename_completer);
c906108c 3736
1a966eab 3737 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3738Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3739Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3740ADDR is the starting address of the file's text.\n\
db162d44
EZ
3741The optional arguments are section-name section-address pairs and\n\
3742should be specified if the data and bss segments are not contiguous\n\
1a966eab 3743with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3744 &cmdlist);
5ba2abeb 3745 set_cmd_completer (c, filename_completer);
c906108c
SS
3746
3747 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3748 add_shared_symbol_files_command, _("\
3749Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3750 &cmdlist);
c906108c
SS
3751 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3752 &cmdlist);
3753
1a966eab
AC
3754 c = add_cmd ("load", class_files, load_command, _("\
3755Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3756for access from GDB.\n\
3757A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3758 set_cmd_completer (c, filename_completer);
c906108c 3759
5bf193a2
AC
3760 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3761 &symbol_reloading, _("\
3762Set dynamic symbol table reloading multiple times in one run."), _("\
3763Show dynamic symbol table reloading multiple times in one run."), NULL,
3764 NULL,
920d2a44 3765 show_symbol_reloading,
5bf193a2 3766 &setlist, &showlist);
c906108c 3767
c5aa993b 3768 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3769 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3770 "overlay ", 0, &cmdlist);
3771
3772 add_com_alias ("ovly", "overlay", class_alias, 1);
3773 add_com_alias ("ov", "overlay", class_alias, 1);
3774
c5aa993b 3775 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3776 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3777
c5aa993b 3778 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3779 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3780
c5aa993b 3781 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3782 _("List mappings of overlay sections."), &overlaylist);
c906108c 3783
c5aa993b 3784 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3785 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3786 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3787 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3788 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3789 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3790 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3791 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3792
3793 /* Filename extension to source language lookup table: */
3794 init_filename_language_table ();
26c41df3
AC
3795 add_setshow_string_noescape_cmd ("extension-language", class_files,
3796 &ext_args, _("\
3797Set mapping between filename extension and source language."), _("\
3798Show mapping between filename extension and source language."), _("\
3799Usage: set extension-language .foo bar"),
3800 set_ext_lang_command,
920d2a44 3801 show_ext_args,
26c41df3 3802 &setlist, &showlist);
c906108c 3803
c5aa993b 3804 add_info ("extensions", info_ext_lang_command,
1bedd215 3805 _("All filename extensions associated with a source language."));
917317f4 3806
4d28ad1e
AC
3807 add_setshow_integer_cmd ("download-write-size", class_obscure,
3808 &download_write_size, _("\
3809Set the write size used when downloading a program."), _("\
3810Show the write size used when downloading a program."), _("\
3811Only used when downloading a program onto a remote\n\
3812target. Specify zero, or a negative value, to disable\n\
3813blocked writes. The actual size of each transfer is also\n\
3814limited by the size of the target packet and the memory\n\
3815cache."),
3816 NULL,
920d2a44 3817 show_download_write_size,
4d28ad1e 3818 &setlist, &showlist);
5b5d99cf
JB
3819
3820 debug_file_directory = xstrdup (DEBUGDIR);
525226b5
AC
3821 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3822 &debug_file_directory, _("\
3823Set the directory where separate debug symbols are searched for."), _("\
3824Show the directory where separate debug symbols are searched for."), _("\
3825Separate debug symbols are first searched for in the same\n\
3826directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3827and lastly at the path of the directory of the binary with\n\
3828the global debug-file directory prepended."),
3829 NULL,
920d2a44 3830 show_debug_file_directory,
525226b5 3831 &setlist, &showlist);
c906108c 3832}
This page took 1.3674 seconds and 4 git commands to generate.