PR ld/6590
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
c5aa993b 40#include "inferior.h" /* for write_pc */
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
c906108c 56
c906108c
SS
57#include <sys/types.h>
58#include <fcntl.h>
59#include "gdb_string.h"
60#include "gdb_stat.h"
61#include <ctype.h>
62#include <time.h>
2b71414d 63#include <sys/time.h>
c906108c 64
c906108c 65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97static void add_shared_symbol_files_command (char *, int);
c906108c 98
5b5d99cf
JB
99static void reread_separate_symbols (struct objfile *objfile);
100
a14ed312 101static void cashier_psymtab (struct partial_symtab *);
c906108c 102
a14ed312 103bfd *symfile_bfd_open (char *);
c906108c 104
0e931cf0
JB
105int get_section_index (struct objfile *, char *);
106
31d99776 107static struct sym_fns *find_sym_fns (bfd *);
c906108c 108
a14ed312 109static void decrement_reading_symtab (void *);
c906108c 110
a14ed312 111static void overlay_invalidate_all (void);
c906108c 112
a14ed312 113static int overlay_is_mapped (struct obj_section *);
c906108c 114
a14ed312 115void list_overlays_command (char *, int);
c906108c 116
a14ed312 117void map_overlay_command (char *, int);
c906108c 118
a14ed312 119void unmap_overlay_command (char *, int);
c906108c 120
a14ed312 121static void overlay_auto_command (char *, int);
c906108c 122
a14ed312 123static void overlay_manual_command (char *, int);
c906108c 124
a14ed312 125static void overlay_off_command (char *, int);
c906108c 126
a14ed312 127static void overlay_load_command (char *, int);
c906108c 128
a14ed312 129static void overlay_command (char *, int);
c906108c 130
a14ed312 131static void simple_free_overlay_table (void);
c906108c 132
a14ed312 133static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
c906108c 174
b7209cb4
FF
175/* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
c906108c 182 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 183 report all the functions that are actually present. */
c906108c
SS
184
185int auto_solib_add = 1;
b7209cb4
FF
186
187/* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195int auto_solib_limit;
c906108c 196\f
c5aa993b 197
0fe19209
DC
198/* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
c906108c
SS
200
201static int
0cd64fe2 202compare_psymbols (const void *s1p, const void *s2p)
c906108c 203{
0fe19209
DC
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
4725b721
PH
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
209}
210
211void
fba45db2 212sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
213{
214 /* Sort the global list; don't sort the static list */
215
c5aa993b
JM
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
218 compare_psymbols);
219}
220
c906108c
SS
221/* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226char *
63ca651f 227obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 228{
52f0bd74 229 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
aa1ee363
AC
234 const char *p1 = ptr;
235 char *p2 = p;
63ca651f 236 const char *end = ptr + size;
c906108c
SS
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242}
243
244/* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247char *
fba45db2
KB
248obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
c906108c 250{
52f0bd74
AC
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257}
258
259/* True if we are nested inside psymtab_to_symtab. */
260
261int currently_reading_symtab = 0;
262
263static void
fba45db2 264decrement_reading_symtab (void *dummy)
c906108c
SS
265{
266 currently_reading_symtab--;
267}
268
269/* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274struct symtab *
aa1ee363 275psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
276{
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
c5aa993b 283 {
c906108c
SS
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291}
292
5417f6dc
RM
293/* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
c906108c
SS
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302void
4efb68b1 303find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 304{
c5aa993b 305 asection **lowest = (asection **) obj;
c906108c
SS
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317}
318
a39a16c4
MM
319/* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321struct section_addr_info *
322alloc_section_addr_info (size_t num_sections)
323{
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334}
62557bbc 335
7b90c3f9
JB
336
337/* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339struct section_addr_info *
340copy_section_addr_info (struct section_addr_info *addrs)
341{
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358}
359
360
361
62557bbc
KB
362/* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365extern struct section_addr_info *
366build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368{
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
a39a16c4 373 sap = alloc_section_addr_info (end - start);
62557bbc
KB
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
5417f6dc 377 if (bfd_get_section_flags (stp->bfd,
fbd35540 378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 379 && oidx < end - start)
62557bbc
KB
380 {
381 sap->other[oidx].addr = stp->addr;
5417f6dc 382 sap->other[oidx].name
fbd35540 383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390}
391
392
393/* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395extern void
396free_section_addr_info (struct section_addr_info *sap)
397{
398 int idx;
399
a39a16c4 400 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 401 if (sap->other[idx].name)
b8c9b27d
KB
402 xfree (sap->other[idx].name);
403 xfree (sap);
62557bbc
KB
404}
405
406
e8289572
JB
407/* Initialize OBJFILE's sect_index_* members. */
408static void
409init_objfile_sect_indices (struct objfile *objfile)
c906108c 410{
e8289572 411 asection *sect;
c906108c 412 int i;
5417f6dc 413
b8fbeb18 414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 415 if (sect)
b8fbeb18
EZ
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 419 if (sect)
b8fbeb18
EZ
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 423 if (sect)
b8fbeb18
EZ
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 427 if (sect)
b8fbeb18
EZ
428 objfile->sect_index_rodata = sect->index;
429
bbcd32ad
FF
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
31d99776
DJ
433 accomodate that. First, check for a file with the standard
434 one or two segments. */
435
436 symfile_find_segment_sections (objfile);
437
438 /* Except when explicitly adding symbol files at some address,
439 section_offsets contains nothing but zeros, so it doesn't matter
440 which slot in section_offsets the individual sect_index_* members
441 index into. So if they are all zero, it is safe to just point
442 all the currently uninitialized indices to the first slot. But
443 beware: if this is the main executable, it may be relocated
444 later, e.g. by the remote qOffsets packet, and then this will
445 be wrong! That's why we try segments first. */
bbcd32ad
FF
446
447 for (i = 0; i < objfile->num_sections; i++)
448 {
449 if (ANOFFSET (objfile->section_offsets, i) != 0)
450 {
451 break;
452 }
453 }
454 if (i == objfile->num_sections)
455 {
456 if (objfile->sect_index_text == -1)
457 objfile->sect_index_text = 0;
458 if (objfile->sect_index_data == -1)
459 objfile->sect_index_data = 0;
460 if (objfile->sect_index_bss == -1)
461 objfile->sect_index_bss = 0;
462 if (objfile->sect_index_rodata == -1)
463 objfile->sect_index_rodata = 0;
464 }
b8fbeb18 465}
c906108c 466
c1bd25fd
DJ
467/* The arguments to place_section. */
468
469struct place_section_arg
470{
471 struct section_offsets *offsets;
472 CORE_ADDR lowest;
473};
474
475/* Find a unique offset to use for loadable section SECT if
476 the user did not provide an offset. */
477
478void
479place_section (bfd *abfd, asection *sect, void *obj)
480{
481 struct place_section_arg *arg = obj;
482 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
483 int done;
3bd72c6f 484 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 485
2711e456
DJ
486 /* We are only interested in allocated sections. */
487 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
488 return;
489
490 /* If the user specified an offset, honor it. */
491 if (offsets[sect->index] != 0)
492 return;
493
494 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
495 start_addr = (arg->lowest + align - 1) & -align;
496
c1bd25fd
DJ
497 do {
498 asection *cur_sec;
c1bd25fd 499
c1bd25fd
DJ
500 done = 1;
501
502 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
503 {
504 int indx = cur_sec->index;
505 CORE_ADDR cur_offset;
506
507 /* We don't need to compare against ourself. */
508 if (cur_sec == sect)
509 continue;
510
2711e456
DJ
511 /* We can only conflict with allocated sections. */
512 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
3bd72c6f 528 break;
c1bd25fd
DJ
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 538}
e8289572
JB
539
540/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 541 of how to represent it for fast symbol reading. This is the default
e8289572
JB
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546void
547default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549{
550 int i;
551
a39a16c4 552 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 553 objfile->section_offsets = (struct section_offsets *)
5417f6dc 554 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 556 memset (objfile->section_offsets, 0,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
a39a16c4 561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
c1bd25fd
DJ
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
2711e456
DJ
583 bfd *abfd = objfile->obfd;
584 asection *cur_sec;
585 CORE_ADDR lowest = 0;
586
587 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
588 /* We do not expect this to happen; just skip this step if the
589 relocatable file has a section with an assigned VMA. */
590 if (bfd_section_vma (abfd, cur_sec) != 0)
591 break;
592
593 if (cur_sec == NULL)
594 {
595 CORE_ADDR *offsets = objfile->section_offsets->offsets;
596
597 /* Pick non-overlapping offsets for sections the user did not
598 place explicitly. */
599 arg.offsets = objfile->section_offsets;
600 arg.lowest = 0;
601 bfd_map_over_sections (objfile->obfd, place_section, &arg);
602
603 /* Correctly filling in the section offsets is not quite
604 enough. Relocatable files have two properties that
605 (most) shared objects do not:
606
607 - Their debug information will contain relocations. Some
608 shared libraries do also, but many do not, so this can not
609 be assumed.
610
611 - If there are multiple code sections they will be loaded
612 at different relative addresses in memory than they are
613 in the objfile, since all sections in the file will start
614 at address zero.
615
616 Because GDB has very limited ability to map from an
617 address in debug info to the correct code section,
618 it relies on adding SECT_OFF_TEXT to things which might be
619 code. If we clear all the section offsets, and set the
620 section VMAs instead, then symfile_relocate_debug_section
621 will return meaningful debug information pointing at the
622 correct sections.
623
624 GDB has too many different data structures for section
625 addresses - a bfd, objfile, and so_list all have section
626 tables, as does exec_ops. Some of these could probably
627 be eliminated. */
628
629 for (cur_sec = abfd->sections; cur_sec != NULL;
630 cur_sec = cur_sec->next)
631 {
632 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
633 continue;
634
635 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
636 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
637 offsets[cur_sec->index]);
2711e456
DJ
638 offsets[cur_sec->index] = 0;
639 }
640 }
c1bd25fd
DJ
641 }
642
e8289572
JB
643 /* Remember the bfd indexes for the .text, .data, .bss and
644 .rodata sections. */
645 init_objfile_sect_indices (objfile);
646}
647
648
31d99776
DJ
649/* Divide the file into segments, which are individual relocatable units.
650 This is the default version of the sym_fns.sym_segments function for
651 symbol readers that do not have an explicit representation of segments.
652 It assumes that object files do not have segments, and fully linked
653 files have a single segment. */
654
655struct symfile_segment_data *
656default_symfile_segments (bfd *abfd)
657{
658 int num_sections, i;
659 asection *sect;
660 struct symfile_segment_data *data;
661 CORE_ADDR low, high;
662
663 /* Relocatable files contain enough information to position each
664 loadable section independently; they should not be relocated
665 in segments. */
666 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
667 return NULL;
668
669 /* Make sure there is at least one loadable section in the file. */
670 for (sect = abfd->sections; sect != NULL; sect = sect->next)
671 {
672 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
673 continue;
674
675 break;
676 }
677 if (sect == NULL)
678 return NULL;
679
680 low = bfd_get_section_vma (abfd, sect);
681 high = low + bfd_get_section_size (sect);
682
683 data = XZALLOC (struct symfile_segment_data);
684 data->num_segments = 1;
685 data->segment_bases = XCALLOC (1, CORE_ADDR);
686 data->segment_sizes = XCALLOC (1, CORE_ADDR);
687
688 num_sections = bfd_count_sections (abfd);
689 data->segment_info = XCALLOC (num_sections, int);
690
691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
692 {
693 CORE_ADDR vma;
694
695 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
696 continue;
697
698 vma = bfd_get_section_vma (abfd, sect);
699 if (vma < low)
700 low = vma;
701 if (vma + bfd_get_section_size (sect) > high)
702 high = vma + bfd_get_section_size (sect);
703
704 data->segment_info[i] = 1;
705 }
706
707 data->segment_bases[0] = low;
708 data->segment_sizes[0] = high - low;
709
710 return data;
711}
712
c906108c
SS
713/* Process a symbol file, as either the main file or as a dynamically
714 loaded file.
715
96baa820
JM
716 OBJFILE is where the symbols are to be read from.
717
7e8580c1
JB
718 ADDRS is the list of section load addresses. If the user has given
719 an 'add-symbol-file' command, then this is the list of offsets and
720 addresses he or she provided as arguments to the command; or, if
721 we're handling a shared library, these are the actual addresses the
722 sections are loaded at, according to the inferior's dynamic linker
723 (as gleaned by GDB's shared library code). We convert each address
724 into an offset from the section VMA's as it appears in the object
725 file, and then call the file's sym_offsets function to convert this
726 into a format-specific offset table --- a `struct section_offsets'.
727 If ADDRS is non-zero, OFFSETS must be zero.
728
729 OFFSETS is a table of section offsets already in the right
730 format-specific representation. NUM_OFFSETS is the number of
731 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
732 assume this is the proper table the call to sym_offsets described
733 above would produce. Instead of calling sym_offsets, we just dump
734 it right into objfile->section_offsets. (When we're re-reading
735 symbols from an objfile, we don't have the original load address
736 list any more; all we have is the section offset table.) If
737 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
738
739 MAINLINE is nonzero if this is the main symbol file, or zero if
740 it's an extra symbol file such as dynamically loaded code.
741
742 VERBO is nonzero if the caller has printed a verbose message about
743 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
744
745void
7e8580c1
JB
746syms_from_objfile (struct objfile *objfile,
747 struct section_addr_info *addrs,
748 struct section_offsets *offsets,
749 int num_offsets,
750 int mainline,
751 int verbo)
c906108c 752{
a39a16c4 753 struct section_addr_info *local_addr = NULL;
c906108c 754 struct cleanup *old_chain;
2acceee2 755
7e8580c1 756 gdb_assert (! (addrs && offsets));
2acceee2 757
c906108c 758 init_entry_point_info (objfile);
31d99776 759 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 760
75245b24
MS
761 if (objfile->sf == NULL)
762 return; /* No symbols. */
763
c906108c
SS
764 /* Make sure that partially constructed symbol tables will be cleaned up
765 if an error occurs during symbol reading. */
74b7792f 766 old_chain = make_cleanup_free_objfile (objfile);
c906108c 767
a39a16c4
MM
768 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
769 list. We now establish the convention that an addr of zero means
770 no load address was specified. */
771 if (! addrs && ! offsets)
772 {
5417f6dc 773 local_addr
a39a16c4
MM
774 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
775 make_cleanup (xfree, local_addr);
776 addrs = local_addr;
777 }
778
779 /* Now either addrs or offsets is non-zero. */
780
c5aa993b 781 if (mainline)
c906108c
SS
782 {
783 /* We will modify the main symbol table, make sure that all its users
c5aa993b 784 will be cleaned up if an error occurs during symbol reading. */
74b7792f 785 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
786
787 /* Since no error yet, throw away the old symbol table. */
788
789 if (symfile_objfile != NULL)
790 {
791 free_objfile (symfile_objfile);
792 symfile_objfile = NULL;
793 }
794
795 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
796 If the user wants to get rid of them, they should do "symbol-file"
797 without arguments first. Not sure this is the best behavior
798 (PR 2207). */
c906108c 799
c5aa993b 800 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
801 }
802
803 /* Convert addr into an offset rather than an absolute address.
804 We find the lowest address of a loaded segment in the objfile,
53a5351d 805 and assume that <addr> is where that got loaded.
c906108c 806
53a5351d
JM
807 We no longer warn if the lowest section is not a text segment (as
808 happens for the PA64 port. */
1549f619 809 if (!mainline && addrs && addrs->other[0].name)
c906108c 810 {
1549f619
EZ
811 asection *lower_sect;
812 asection *sect;
813 CORE_ADDR lower_offset;
814 int i;
815
5417f6dc 816 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
817 continguous sections. FIXME!! won't work without call to find
818 .text first, but this assumes text is lowest section. */
819 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
820 if (lower_sect == NULL)
c906108c 821 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 822 &lower_sect);
2acceee2 823 if (lower_sect == NULL)
ff8e85c3
PA
824 {
825 warning (_("no loadable sections found in added symbol-file %s"),
826 objfile->name);
827 lower_offset = 0;
828 }
2acceee2 829 else
ff8e85c3 830 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 831
13de58df 832 /* Calculate offsets for the loadable sections.
2acceee2
JM
833 FIXME! Sections must be in order of increasing loadable section
834 so that contiguous sections can use the lower-offset!!!
5417f6dc 835
13de58df
JB
836 Adjust offsets if the segments are not contiguous.
837 If the section is contiguous, its offset should be set to
2acceee2
JM
838 the offset of the highest loadable section lower than it
839 (the loadable section directly below it in memory).
840 this_offset = lower_offset = lower_addr - lower_orig_addr */
841
1549f619 842 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
843 {
844 if (addrs->other[i].addr != 0)
845 {
846 sect = bfd_get_section_by_name (objfile->obfd,
847 addrs->other[i].name);
848 if (sect)
849 {
850 addrs->other[i].addr
851 -= bfd_section_vma (objfile->obfd, sect);
852 lower_offset = addrs->other[i].addr;
853 /* This is the index used by BFD. */
854 addrs->other[i].sectindex = sect->index ;
855 }
856 else
857 {
8a3fe4f8 858 warning (_("section %s not found in %s"),
5417f6dc 859 addrs->other[i].name,
7e8580c1
JB
860 objfile->name);
861 addrs->other[i].addr = 0;
862 }
863 }
864 else
865 addrs->other[i].addr = lower_offset;
866 }
c906108c
SS
867 }
868
869 /* Initialize symbol reading routines for this objfile, allow complaints to
870 appear for this new file, and record how verbose to be, then do the
871 initial symbol reading for this file. */
872
c5aa993b 873 (*objfile->sf->sym_init) (objfile);
b9caf505 874 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 875
7e8580c1
JB
876 if (addrs)
877 (*objfile->sf->sym_offsets) (objfile, addrs);
878 else
879 {
880 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
881
882 /* Just copy in the offset table directly as given to us. */
883 objfile->num_sections = num_offsets;
884 objfile->section_offsets
885 = ((struct section_offsets *)
8b92e4d5 886 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
887 memcpy (objfile->section_offsets, offsets, size);
888
889 init_objfile_sect_indices (objfile);
890 }
c906108c 891
52d16ba8 892#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
893 /* This is a SVR4/SunOS specific hack, I think. In any event, it
894 screws RS/6000. sym_offsets should be doing this sort of thing,
895 because it knows the mapping between bfd sections and
896 section_offsets. */
897 /* This is a hack. As far as I can tell, section offsets are not
898 target dependent. They are all set to addr with a couple of
899 exceptions. The exceptions are sysvr4 shared libraries, whose
900 offsets are kept in solib structures anyway and rs6000 xcoff
901 which handles shared libraries in a completely unique way.
902
903 Section offsets are built similarly, except that they are built
904 by adding addr in all cases because there is no clear mapping
905 from section_offsets into actual sections. Note that solib.c
96baa820 906 has a different algorithm for finding section offsets.
c906108c
SS
907
908 These should probably all be collapsed into some target
909 independent form of shared library support. FIXME. */
910
2acceee2 911 if (addrs)
c906108c
SS
912 {
913 struct obj_section *s;
914
5417f6dc
RM
915 /* Map section offsets in "addr" back to the object's
916 sections by comparing the section names with bfd's
2acceee2
JM
917 section names. Then adjust the section address by
918 the offset. */ /* for gdb/13815 */
5417f6dc 919
96baa820 920 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 921 {
2acceee2
JM
922 CORE_ADDR s_addr = 0;
923 int i;
924
5417f6dc 925 for (i = 0;
a39a16c4 926 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 927 i++)
5417f6dc
RM
928 if (strcmp (bfd_section_name (s->objfile->obfd,
929 s->the_bfd_section),
fbd35540 930 addrs->other[i].name) == 0)
2acceee2 931 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 932
c906108c 933 s->addr -= s->offset;
2acceee2 934 s->addr += s_addr;
c906108c 935 s->endaddr -= s->offset;
2acceee2
JM
936 s->endaddr += s_addr;
937 s->offset += s_addr;
c906108c
SS
938 }
939 }
52d16ba8 940#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 941
96baa820 942 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 943
c906108c
SS
944 /* Don't allow char * to have a typename (else would get caddr_t).
945 Ditto void *. FIXME: Check whether this is now done by all the
946 symbol readers themselves (many of them now do), and if so remove
947 it from here. */
948
949 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
950 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
951
952 /* Mark the objfile has having had initial symbol read attempted. Note
953 that this does not mean we found any symbols... */
954
c5aa993b 955 objfile->flags |= OBJF_SYMS;
c906108c
SS
956
957 /* Discard cleanups as symbol reading was successful. */
958
959 discard_cleanups (old_chain);
c906108c
SS
960}
961
962/* Perform required actions after either reading in the initial
963 symbols for a new objfile, or mapping in the symbols from a reusable
964 objfile. */
c5aa993b 965
c906108c 966void
fba45db2 967new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
968{
969
970 /* If this is the main symbol file we have to clean up all users of the
971 old main symbol file. Otherwise it is sufficient to fixup all the
972 breakpoints that may have been redefined by this symbol file. */
973 if (mainline)
974 {
975 /* OK, make it the "real" symbol file. */
976 symfile_objfile = objfile;
977
978 clear_symtab_users ();
979 }
980 else
981 {
982 breakpoint_re_set ();
983 }
984
985 /* We're done reading the symbol file; finish off complaints. */
b9caf505 986 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
987}
988
989/* Process a symbol file, as either the main file or as a dynamically
990 loaded file.
991
5417f6dc
RM
992 ABFD is a BFD already open on the file, as from symfile_bfd_open.
993 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
994
995 FROM_TTY says how verbose to be.
996
997 MAINLINE specifies whether this is the main symbol file, or whether
998 it's an extra symbol file such as dynamically loaded code.
999
1000 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1001 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1002 non-zero.
c906108c 1003
c906108c
SS
1004 Upon success, returns a pointer to the objfile that was added.
1005 Upon failure, jumps back to command level (never returns). */
7904e09f 1006static struct objfile *
5417f6dc 1007symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
1008 struct section_addr_info *addrs,
1009 struct section_offsets *offsets,
1010 int num_offsets,
1011 int mainline, int flags)
c906108c
SS
1012{
1013 struct objfile *objfile;
1014 struct partial_symtab *psymtab;
77069918 1015 char *debugfile = NULL;
7b90c3f9 1016 struct section_addr_info *orig_addrs = NULL;
a39a16c4 1017 struct cleanup *my_cleanups;
5417f6dc 1018 const char *name = bfd_get_filename (abfd);
c906108c 1019
5417f6dc 1020 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1021
5417f6dc
RM
1022 /* Give user a chance to burp if we'd be
1023 interactively wiping out any existing symbols. */
c906108c
SS
1024
1025 if ((have_full_symbols () || have_partial_symbols ())
1026 && mainline
1027 && from_tty
1028 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 1029 error (_("Not confirmed."));
c906108c 1030
2df3850c 1031 objfile = allocate_objfile (abfd, flags);
5417f6dc 1032 discard_cleanups (my_cleanups);
c906108c 1033
a39a16c4 1034 if (addrs)
63cd24fe 1035 {
7b90c3f9
JB
1036 orig_addrs = copy_section_addr_info (addrs);
1037 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 1038 }
a39a16c4 1039
78a4a9b9
AC
1040 /* We either created a new mapped symbol table, mapped an existing
1041 symbol table file which has not had initial symbol reading
1042 performed, or need to read an unmapped symbol table. */
1043 if (from_tty || info_verbose)
c906108c 1044 {
769d7dc4
AC
1045 if (deprecated_pre_add_symbol_hook)
1046 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1047 else
c906108c 1048 {
a3f17187 1049 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
1050 wrap_here ("");
1051 gdb_flush (gdb_stdout);
1052 }
c906108c 1053 }
78a4a9b9
AC
1054 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1055 mainline, from_tty);
c906108c
SS
1056
1057 /* We now have at least a partial symbol table. Check to see if the
1058 user requested that all symbols be read on initial access via either
1059 the gdb startup command line or on a per symbol file basis. Expand
1060 all partial symbol tables for this objfile if so. */
1061
2acceee2 1062 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
1063 {
1064 if (from_tty || info_verbose)
1065 {
a3f17187 1066 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1067 wrap_here ("");
1068 gdb_flush (gdb_stdout);
1069 }
1070
c5aa993b 1071 for (psymtab = objfile->psymtabs;
c906108c 1072 psymtab != NULL;
c5aa993b 1073 psymtab = psymtab->next)
c906108c
SS
1074 {
1075 psymtab_to_symtab (psymtab);
1076 }
1077 }
1078
77069918
JK
1079 /* If the file has its own symbol tables it has no separate debug info.
1080 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1081 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1082 if (objfile->psymtabs == NULL)
1083 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1084 if (debugfile)
1085 {
5b5d99cf
JB
1086 if (addrs != NULL)
1087 {
1088 objfile->separate_debug_objfile
a39a16c4 1089 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1090 }
1091 else
1092 {
1093 objfile->separate_debug_objfile
1094 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1095 }
1096 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1097 = objfile;
5417f6dc 1098
5b5d99cf
JB
1099 /* Put the separate debug object before the normal one, this is so that
1100 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1101 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1102
5b5d99cf
JB
1103 xfree (debugfile);
1104 }
5417f6dc 1105
cb3c37b2
JB
1106 if (!have_partial_symbols () && !have_full_symbols ())
1107 {
1108 wrap_here ("");
a3f17187 1109 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
1110 if (from_tty || info_verbose)
1111 printf_filtered ("...");
1112 else
1113 printf_filtered ("\n");
cb3c37b2
JB
1114 wrap_here ("");
1115 }
1116
c906108c
SS
1117 if (from_tty || info_verbose)
1118 {
769d7dc4
AC
1119 if (deprecated_post_add_symbol_hook)
1120 deprecated_post_add_symbol_hook ();
c906108c 1121 else
c5aa993b 1122 {
a3f17187 1123 printf_unfiltered (_("done.\n"));
c5aa993b 1124 }
c906108c
SS
1125 }
1126
481d0f41
JB
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
a39a16c4
MM
1132 do_cleanups (my_cleanups);
1133
109f874e
MS
1134 if (objfile->sf == NULL)
1135 return objfile; /* No symbols. */
1136
c906108c
SS
1137 new_symfile_objfile (objfile, mainline, from_tty);
1138
06d3b283 1139 observer_notify_new_objfile (objfile);
c906108c 1140
ce7d4522 1141 bfd_cache_close_all ();
c906108c
SS
1142 return (objfile);
1143}
1144
7904e09f 1145
eb4556d7
JB
1146/* Process the symbol file ABFD, as either the main file or as a
1147 dynamically loaded file.
1148
1149 See symbol_file_add_with_addrs_or_offsets's comments for
1150 details. */
1151struct objfile *
1152symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1153 struct section_addr_info *addrs,
1154 int mainline, int flags)
1155{
1156 return symbol_file_add_with_addrs_or_offsets (abfd,
1157 from_tty, addrs, 0, 0,
1158 mainline, flags);
1159}
1160
1161
7904e09f
JB
1162/* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1164 for details. */
1165struct objfile *
1166symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1167 int mainline, int flags)
1168{
eb4556d7
JB
1169 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1170 addrs, mainline, flags);
7904e09f
JB
1171}
1172
1173
d7db6da9
FN
1174/* Call symbol_file_add() with default values and update whatever is
1175 affected by the loading of a new main().
1176 Used when the file is supplied in the gdb command line
1177 and by some targets with special loading requirements.
1178 The auxiliary function, symbol_file_add_main_1(), has the flags
1179 argument for the switches that can only be specified in the symbol_file
1180 command itself. */
5417f6dc 1181
1adeb98a
FN
1182void
1183symbol_file_add_main (char *args, int from_tty)
1184{
d7db6da9
FN
1185 symbol_file_add_main_1 (args, from_tty, 0);
1186}
1187
1188static void
1189symbol_file_add_main_1 (char *args, int from_tty, int flags)
1190{
1191 symbol_file_add (args, from_tty, NULL, 1, flags);
1192
d7db6da9
FN
1193 /* Getting new symbols may change our opinion about
1194 what is frameless. */
1195 reinit_frame_cache ();
1196
1197 set_initial_language ();
1adeb98a
FN
1198}
1199
1200void
1201symbol_file_clear (int from_tty)
1202{
1203 if ((have_full_symbols () || have_partial_symbols ())
1204 && from_tty
0430b0d6
AS
1205 && (symfile_objfile
1206 ? !query (_("Discard symbol table from `%s'? "),
1207 symfile_objfile->name)
1208 : !query (_("Discard symbol table? "))))
8a3fe4f8 1209 error (_("Not confirmed."));
1adeb98a
FN
1210 free_all_objfiles ();
1211
1212 /* solib descriptors may have handles to objfiles. Since their
1213 storage has just been released, we'd better wipe the solib
1214 descriptors as well.
1215 */
e85a822c 1216 no_shared_libraries (NULL, from_tty);
1adeb98a
FN
1217
1218 symfile_objfile = NULL;
1219 if (from_tty)
a3f17187 1220 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1221}
1222
77069918
JK
1223struct build_id
1224 {
1225 size_t size;
1226 gdb_byte data[1];
1227 };
1228
1229/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1230
1231static struct build_id *
1232build_id_bfd_get (bfd *abfd)
1233{
1234 struct build_id *retval;
1235
1236 if (!bfd_check_format (abfd, bfd_object)
1237 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1238 || elf_tdata (abfd)->build_id == NULL)
1239 return NULL;
1240
1241 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1242 retval->size = elf_tdata (abfd)->build_id_size;
1243 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1244
1245 return retval;
1246}
1247
1248/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1249
1250static int
1251build_id_verify (const char *filename, struct build_id *check)
1252{
1253 bfd *abfd;
1254 struct build_id *found = NULL;
1255 int retval = 0;
1256
1257 /* We expect to be silent on the non-existing files. */
1258 abfd = bfd_openr (filename, gnutarget);
1259 if (abfd == NULL)
1260 return 0;
1261
1262 found = build_id_bfd_get (abfd);
1263
1264 if (found == NULL)
1265 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1266 else if (found->size != check->size
1267 || memcmp (found->data, check->data, found->size) != 0)
1268 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1269 else
1270 retval = 1;
1271
1272 if (!bfd_close (abfd))
1273 warning (_("cannot close \"%s\": %s"), filename,
1274 bfd_errmsg (bfd_get_error ()));
1275 return retval;
1276}
1277
1278static char *
1279build_id_to_debug_filename (struct build_id *build_id)
1280{
1281 char *link, *s, *retval = NULL;
1282 gdb_byte *data = build_id->data;
1283 size_t size = build_id->size;
1284
1285 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1286 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1287 + 2 * size + (sizeof ".debug" - 1) + 1);
1288 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1289 if (size > 0)
1290 {
1291 size--;
1292 s += sprintf (s, "%02x", (unsigned) *data++);
1293 }
1294 if (size > 0)
1295 *s++ = '/';
1296 while (size-- > 0)
1297 s += sprintf (s, "%02x", (unsigned) *data++);
1298 strcpy (s, ".debug");
1299
1300 /* lrealpath() is expensive even for the usually non-existent files. */
1301 if (access (link, F_OK) == 0)
1302 retval = lrealpath (link);
1303 xfree (link);
1304
1305 if (retval != NULL && !build_id_verify (retval, build_id))
1306 {
1307 xfree (retval);
1308 retval = NULL;
1309 }
1310
1311 return retval;
1312}
1313
5b5d99cf
JB
1314static char *
1315get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1316{
1317 asection *sect;
1318 bfd_size_type debuglink_size;
1319 unsigned long crc32;
1320 char *contents;
1321 int crc_offset;
1322 unsigned char *p;
5417f6dc 1323
5b5d99cf
JB
1324 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1325
1326 if (sect == NULL)
1327 return NULL;
1328
1329 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1330
5b5d99cf
JB
1331 contents = xmalloc (debuglink_size);
1332 bfd_get_section_contents (objfile->obfd, sect, contents,
1333 (file_ptr)0, (bfd_size_type)debuglink_size);
1334
1335 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1336 crc_offset = strlen (contents) + 1;
1337 crc_offset = (crc_offset + 3) & ~3;
1338
1339 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1340
5b5d99cf
JB
1341 *crc32_out = crc32;
1342 return contents;
1343}
1344
1345static int
1346separate_debug_file_exists (const char *name, unsigned long crc)
1347{
1348 unsigned long file_crc = 0;
1349 int fd;
777ea8f1 1350 gdb_byte buffer[8*1024];
5b5d99cf
JB
1351 int count;
1352
1353 fd = open (name, O_RDONLY | O_BINARY);
1354 if (fd < 0)
1355 return 0;
1356
1357 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 close (fd);
1361
1362 return crc == file_crc;
1363}
1364
aa28a74e 1365char *debug_file_directory = NULL;
920d2a44
AC
1366static void
1367show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369{
1370 fprintf_filtered (file, _("\
1371The directory where separate debug symbols are searched for is \"%s\".\n"),
1372 value);
1373}
5b5d99cf
JB
1374
1375#if ! defined (DEBUG_SUBDIRECTORY)
1376#define DEBUG_SUBDIRECTORY ".debug"
1377#endif
1378
1379static char *
1380find_separate_debug_file (struct objfile *objfile)
1381{
1382 asection *sect;
1383 char *basename;
1384 char *dir;
1385 char *debugfile;
1386 char *name_copy;
aa28a74e 1387 char *canon_name;
5b5d99cf
JB
1388 bfd_size_type debuglink_size;
1389 unsigned long crc32;
1390 int i;
77069918
JK
1391 struct build_id *build_id;
1392
1393 build_id = build_id_bfd_get (objfile->obfd);
1394 if (build_id != NULL)
1395 {
1396 char *build_id_name;
1397
1398 build_id_name = build_id_to_debug_filename (build_id);
1399 free (build_id);
1400 /* Prevent looping on a stripped .debug file. */
1401 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1402 {
1403 warning (_("\"%s\": separate debug info file has no debug info"),
1404 build_id_name);
1405 xfree (build_id_name);
1406 }
1407 else if (build_id_name != NULL)
1408 return build_id_name;
1409 }
5b5d99cf
JB
1410
1411 basename = get_debug_link_info (objfile, &crc32);
1412
1413 if (basename == NULL)
1414 return NULL;
5417f6dc 1415
5b5d99cf
JB
1416 dir = xstrdup (objfile->name);
1417
fe36c4f4
JB
1418 /* Strip off the final filename part, leaving the directory name,
1419 followed by a slash. Objfile names should always be absolute and
1420 tilde-expanded, so there should always be a slash in there
1421 somewhere. */
5b5d99cf
JB
1422 for (i = strlen(dir) - 1; i >= 0; i--)
1423 {
1424 if (IS_DIR_SEPARATOR (dir[i]))
1425 break;
1426 }
fe36c4f4 1427 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1428 dir[i+1] = '\0';
5417f6dc 1429
5b5d99cf
JB
1430 debugfile = alloca (strlen (debug_file_directory) + 1
1431 + strlen (dir)
1432 + strlen (DEBUG_SUBDIRECTORY)
1433 + strlen ("/")
5417f6dc 1434 + strlen (basename)
5b5d99cf
JB
1435 + 1);
1436
1437 /* First try in the same directory as the original file. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, basename);
1440
1441 if (separate_debug_file_exists (debugfile, crc32))
1442 {
1443 xfree (basename);
1444 xfree (dir);
1445 return xstrdup (debugfile);
1446 }
5417f6dc 1447
5b5d99cf
JB
1448 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, DEBUG_SUBDIRECTORY);
1451 strcat (debugfile, "/");
1452 strcat (debugfile, basename);
1453
1454 if (separate_debug_file_exists (debugfile, crc32))
1455 {
1456 xfree (basename);
1457 xfree (dir);
1458 return xstrdup (debugfile);
1459 }
5417f6dc 1460
5b5d99cf
JB
1461 /* Then try in the global debugfile directory. */
1462 strcpy (debugfile, debug_file_directory);
1463 strcat (debugfile, "/");
1464 strcat (debugfile, dir);
5b5d99cf
JB
1465 strcat (debugfile, basename);
1466
1467 if (separate_debug_file_exists (debugfile, crc32))
1468 {
1469 xfree (basename);
1470 xfree (dir);
1471 return xstrdup (debugfile);
1472 }
5417f6dc 1473
aa28a74e
DJ
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1476 canon_name = lrealpath (dir);
1477 if (canon_name
1478 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1479 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1480 {
1481 strcpy (debugfile, debug_file_directory);
1482 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, basename);
1485
1486 if (separate_debug_file_exists (debugfile, crc32))
1487 {
1488 xfree (canon_name);
1489 xfree (basename);
1490 xfree (dir);
1491 return xstrdup (debugfile);
1492 }
1493 }
1494
1495 if (canon_name)
1496 xfree (canon_name);
1497
5b5d99cf
JB
1498 xfree (basename);
1499 xfree (dir);
1500 return NULL;
1501}
1502
1503
c906108c
SS
1504/* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
c906108c
SS
1516 conventions (because it is confusing and inconvenient). */
1517
1518void
fba45db2 1519symbol_file_command (char *args, int from_tty)
c906108c 1520{
c906108c
SS
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1adeb98a 1525 symbol_file_clear (from_tty);
c906108c
SS
1526 }
1527 else
1528 {
cb2f3a29
MK
1529 char **argv = buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 if (argv == NULL)
1535 nomem (0);
1536
7a292a7a 1537 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1538 while (*argv != NULL)
1539 {
78a4a9b9
AC
1540 if (strcmp (*argv, "-readnow") == 0)
1541 flags |= OBJF_READNOW;
1542 else if (**argv == '-')
8a3fe4f8 1543 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1544 else
1545 {
cb2f3a29 1546 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1547 name = *argv;
78a4a9b9 1548 }
cb2f3a29 1549
c906108c
SS
1550 argv++;
1551 }
1552
1553 if (name == NULL)
cb2f3a29
MK
1554 error (_("no symbol file name was specified"));
1555
c906108c
SS
1556 do_cleanups (cleanups);
1557 }
1558}
1559
1560/* Set the initial language.
1561
cb2f3a29
MK
1562 FIXME: A better solution would be to record the language in the
1563 psymtab when reading partial symbols, and then use it (if known) to
1564 set the language. This would be a win for formats that encode the
1565 language in an easily discoverable place, such as DWARF. For
1566 stabs, we can jump through hoops looking for specially named
1567 symbols or try to intuit the language from the specific type of
1568 stabs we find, but we can't do that until later when we read in
1569 full symbols. */
c906108c 1570
8b60591b 1571void
fba45db2 1572set_initial_language (void)
c906108c
SS
1573{
1574 struct partial_symtab *pst;
c5aa993b 1575 enum language lang = language_unknown;
c906108c
SS
1576
1577 pst = find_main_psymtab ();
1578 if (pst != NULL)
1579 {
c5aa993b 1580 if (pst->filename != NULL)
cb2f3a29
MK
1581 lang = deduce_language_from_filename (pst->filename);
1582
c906108c
SS
1583 if (lang == language_unknown)
1584 {
c5aa993b
JM
1585 /* Make C the default language */
1586 lang = language_c;
c906108c 1587 }
cb2f3a29 1588
c906108c 1589 set_language (lang);
cb2f3a29 1590 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1591 }
1592}
1593
cb2f3a29
MK
1594/* Open the file specified by NAME and hand it off to BFD for
1595 preliminary analysis. Return a newly initialized bfd *, which
1596 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1597 absolute). In case of trouble, error() is called. */
c906108c
SS
1598
1599bfd *
fba45db2 1600symfile_bfd_open (char *name)
c906108c
SS
1601{
1602 bfd *sym_bfd;
1603 int desc;
1604 char *absolute_name;
1605
cb2f3a29 1606 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1607
1608 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1609 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1610 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1611#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1612 if (desc < 0)
1613 {
1614 char *exename = alloca (strlen (name) + 5);
1615 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1616 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1617 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1618 }
1619#endif
1620 if (desc < 0)
1621 {
b8c9b27d 1622 make_cleanup (xfree, name);
c906108c
SS
1623 perror_with_name (name);
1624 }
cb2f3a29
MK
1625
1626 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1627 bfd. It'll be freed in free_objfile(). */
1628 xfree (name);
1629 name = absolute_name;
c906108c 1630
9f76c2cd 1631 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1632 if (!sym_bfd)
1633 {
1634 close (desc);
b8c9b27d 1635 make_cleanup (xfree, name);
8a3fe4f8 1636 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1637 bfd_errmsg (bfd_get_error ()));
1638 }
549c1eea 1639 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1640
1641 if (!bfd_check_format (sym_bfd, bfd_object))
1642 {
cb2f3a29
MK
1643 /* FIXME: should be checking for errors from bfd_close (for one
1644 thing, on error it does not free all the storage associated
1645 with the bfd). */
1646 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1647 make_cleanup (xfree, name);
8a3fe4f8 1648 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1649 bfd_errmsg (bfd_get_error ()));
1650 }
cb2f3a29
MK
1651
1652 return sym_bfd;
c906108c
SS
1653}
1654
cb2f3a29
MK
1655/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1657
0e931cf0
JB
1658int
1659get_section_index (struct objfile *objfile, char *section_name)
1660{
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1662
0e931cf0
JB
1663 if (sect)
1664 return sect->index;
1665 else
1666 return -1;
1667}
1668
cb2f3a29
MK
1669/* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1672 handle. */
c906108c
SS
1673
1674void
fba45db2 1675add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1676{
1677 sf->next = symtab_fns;
1678 symtab_fns = sf;
1679}
1680
cb2f3a29
MK
1681/* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
c906108c 1685
31d99776
DJ
1686static struct sym_fns *
1687find_sym_fns (bfd *abfd)
c906108c
SS
1688{
1689 struct sym_fns *sf;
31d99776 1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1691
75245b24
MS
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1695 return NULL; /* No symbols. */
75245b24 1696
c5aa993b 1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1698 if (our_flavour == sf->sym_flavour)
1699 return sf;
cb2f3a29 1700
8a3fe4f8 1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1702 bfd_get_target (abfd));
c906108c
SS
1703}
1704\f
cb2f3a29 1705
c906108c
SS
1706/* This function runs the load command of our current target. */
1707
1708static void
fba45db2 1709load_command (char *arg, int from_tty)
c906108c
SS
1710{
1711 if (arg == NULL)
1986bccd
AS
1712 {
1713 char *parg;
1714 int count = 0;
1715
1716 parg = arg = get_exec_file (1);
1717
1718 /* Count how many \ " ' tab space there are in the name. */
1719 while ((parg = strpbrk (parg, "\\\"'\t ")))
1720 {
1721 parg++;
1722 count++;
1723 }
1724
1725 if (count)
1726 {
1727 /* We need to quote this string so buildargv can pull it apart. */
1728 char *temp = xmalloc (strlen (arg) + count + 1 );
1729 char *ptemp = temp;
1730 char *prev;
1731
1732 make_cleanup (xfree, temp);
1733
1734 prev = parg = arg;
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1736 {
1737 strncpy (ptemp, prev, parg - prev);
1738 ptemp += parg - prev;
1739 prev = parg++;
1740 *ptemp++ = '\\';
1741 }
1742 strcpy (ptemp, prev);
1743
1744 arg = temp;
1745 }
1746 }
1747
6490cafe
DJ
1748 /* The user might be reloading because the binary has changed. Take
1749 this opportunity to check. */
1750 reopen_exec_file ();
1751 reread_symbols ();
1752
c906108c 1753 target_load (arg, from_tty);
2889e661
JB
1754
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
c906108c
SS
1758}
1759
1760/* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1763
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
917317f4 1768
917317f4
JM
1769static int validate_download = 0;
1770
e4f9b4d5
MS
1771/* Callback service function for generic_load (bfd_map_over_sections). */
1772
1773static void
1774add_section_size_callback (bfd *abfd, asection *asec, void *data)
1775{
1776 bfd_size_type *sum = data;
1777
2c500098 1778 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1779}
1780
1781/* Opaque data for load_section_callback. */
1782struct load_section_data {
1783 unsigned long load_offset;
a76d924d
DJ
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1786};
1787
1788/* Opaque data for load_progress. */
1789struct load_progress_data {
1790 /* Cumulative data. */
e4f9b4d5
MS
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
a76d924d
DJ
1794};
1795
1796/* Opaque data for load_progress for a single section. */
1797struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
cf7a04e8 1799
a76d924d 1800 /* Per-section data. */
cf7a04e8
DJ
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1804 CORE_ADDR lma;
1805 gdb_byte *buffer;
e4f9b4d5
MS
1806};
1807
a76d924d 1808/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1809
1810static void
1811load_progress (ULONGEST bytes, void *untyped_arg)
1812{
a76d924d
DJ
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1815
1816 if (args == NULL)
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1819 return;
1820
1821 totals = args->cumulative;
1822
1823 if (bytes == 0 && args->section_sent == 0)
1824 {
1825 /* The write is just starting. Let the user know we've started
1826 this section. */
1827 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1828 args->section_name, paddr_nz (args->section_size),
1829 paddr_nz (args->lma));
1830 return;
1831 }
cf7a04e8
DJ
1832
1833 if (validate_download)
1834 {
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1837 downloads. */
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1844
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at 0x%s"),
1847 paddr (args->lma));
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at 0x%s"),
1850 paddr (args->lma));
1851 do_cleanups (verify_cleanups);
1852 }
a76d924d 1853 totals->data_count += bytes;
cf7a04e8
DJ
1854 args->lma += bytes;
1855 args->buffer += bytes;
a76d924d 1856 totals->write_count += 1;
cf7a04e8
DJ
1857 args->section_sent += bytes;
1858 if (quit_flag
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1863
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1866 args->section_sent,
1867 args->section_size,
a76d924d
DJ
1868 totals->data_count,
1869 totals->total_size);
cf7a04e8
DJ
1870}
1871
e4f9b4d5
MS
1872/* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874static void
1875load_section_callback (bfd *abfd, asection *asec, void *data)
1876{
a76d924d 1877 struct memory_write_request *new_request;
e4f9b4d5 1878 struct load_section_data *args = data;
a76d924d 1879 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1880 bfd_size_type size = bfd_get_section_size (asec);
1881 gdb_byte *buffer;
cf7a04e8 1882 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1883
cf7a04e8
DJ
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1885 return;
e4f9b4d5 1886
cf7a04e8
DJ
1887 if (size == 0)
1888 return;
e4f9b4d5 1889
a76d924d
DJ
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
cf7a04e8 1898
a76d924d 1899 buffer = new_request->data;
cf7a04e8 1900
a76d924d
DJ
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
cf7a04e8
DJ
1906
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1908}
1909
1910/* Clean up an entire memory request vector, including load
1911 data and progress records. */
cf7a04e8 1912
a76d924d
DJ
1913static void
1914clear_memory_write_data (void *arg)
1915{
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1918 int i;
1919 struct memory_write_request *mr;
cf7a04e8 1920
a76d924d
DJ
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1922 {
1923 xfree (mr->data);
1924 xfree (mr->baton);
1925 }
1926 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1927}
1928
c906108c 1929void
917317f4 1930generic_load (char *args, int from_tty)
c906108c 1931{
c906108c 1932 bfd *loadfile_bfd;
2b71414d 1933 struct timeval start_time, end_time;
917317f4 1934 char *filename;
1986bccd 1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1936 struct load_section_data cbdata;
a76d924d
DJ
1937 struct load_progress_data total_progress;
1938
e4f9b4d5 1939 CORE_ADDR entry;
1986bccd 1940 char **argv;
e4f9b4d5 1941
a76d924d
DJ
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1945
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1947
1986bccd
AS
1948 argv = buildargv (args);
1949
1950 if (argv == NULL)
1951 nomem(0);
1952
1953 make_cleanup_freeargv (argv);
1954
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1957
1958 if (argv[1] != NULL)
917317f4
JM
1959 {
1960 char *endptr;
ba5f2f8a 1961
1986bccd
AS
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1968
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
917317f4 1971 }
c906108c 1972
917317f4 1973 /* Open the file for loading. */
c906108c
SS
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1976 {
1977 perror_with_name (filename);
1978 return;
1979 }
917317f4 1980
c906108c
SS
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1983 bfd). */
5c65bbb6 1984 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1985
c5aa993b 1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1987 {
8a3fe4f8 1988 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1989 bfd_errmsg (bfd_get_error ()));
1990 }
c5aa993b 1991
5417f6dc 1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1993 (void *) &total_progress.total_size);
1994
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1996
2b71414d 1997 gettimeofday (&start_time, NULL);
c906108c 1998
a76d924d
DJ
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
c906108c 2002
2b71414d 2003 gettimeofday (&end_time, NULL);
ba5f2f8a 2004
e4f9b4d5 2005 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
2006 ui_out_text (uiout, "Start address ");
2007 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2008 ui_out_text (uiout, ", load size ");
a76d924d 2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2010 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
2013 write_pc (entry);
c906108c 2014
7ca9f392
AC
2015 /* FIXME: are we supposed to call symbol_file_add or not? According
2016 to a comment from remote-mips.c (where a call to symbol_file_add
2017 was commented out), making the call confuses GDB if more than one
2018 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2019 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2020
a76d924d
DJ
2021 print_transfer_performance (gdb_stdout, total_progress.data_count,
2022 total_progress.write_count,
2023 &start_time, &end_time);
c906108c
SS
2024
2025 do_cleanups (old_cleanups);
2026}
2027
2028/* Report how fast the transfer went. */
2029
917317f4
JM
2030/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2031 replaced by print_transfer_performance (with a very different
2032 function signature). */
2033
c906108c 2034void
fba45db2
KB
2035report_transfer_performance (unsigned long data_count, time_t start_time,
2036 time_t end_time)
c906108c 2037{
2b71414d
DJ
2038 struct timeval start, end;
2039
2040 start.tv_sec = start_time;
2041 start.tv_usec = 0;
2042 end.tv_sec = end_time;
2043 end.tv_usec = 0;
2044
2045 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2046}
2047
2048void
d9fcf2fb 2049print_transfer_performance (struct ui_file *stream,
917317f4
JM
2050 unsigned long data_count,
2051 unsigned long write_count,
2b71414d
DJ
2052 const struct timeval *start_time,
2053 const struct timeval *end_time)
917317f4 2054{
9f43d28c 2055 ULONGEST time_count;
2b71414d
DJ
2056
2057 /* Compute the elapsed time in milliseconds, as a tradeoff between
2058 accuracy and overflow. */
2059 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2060 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2061
8b93c638
JM
2062 ui_out_text (uiout, "Transfer rate: ");
2063 if (time_count > 0)
2064 {
9f43d28c
DJ
2065 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2066
2067 if (ui_out_is_mi_like_p (uiout))
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2070 ui_out_text (uiout, " bits/sec");
2071 }
2072 else if (rate < 1024)
2073 {
2074 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2075 ui_out_text (uiout, " bytes/sec");
2076 }
2077 else
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2080 ui_out_text (uiout, " KB/sec");
2081 }
8b93c638
JM
2082 }
2083 else
2084 {
ba5f2f8a 2085 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2086 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2087 }
2088 if (write_count > 0)
2089 {
2090 ui_out_text (uiout, ", ");
ba5f2f8a 2091 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2092 ui_out_text (uiout, " bytes/write");
2093 }
2094 ui_out_text (uiout, ".\n");
c906108c
SS
2095}
2096
2097/* This function allows the addition of incrementally linked object files.
2098 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2099/* Note: ezannoni 2000-04-13 This function/command used to have a
2100 special case syntax for the rombug target (Rombug is the boot
2101 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2102 rombug case, the user doesn't need to supply a text address,
2103 instead a call to target_link() (in target.c) would supply the
2104 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2105
c906108c 2106static void
fba45db2 2107add_symbol_file_command (char *args, int from_tty)
c906108c 2108{
db162d44 2109 char *filename = NULL;
2df3850c 2110 int flags = OBJF_USERLOADED;
c906108c 2111 char *arg;
2acceee2 2112 int expecting_option = 0;
db162d44 2113 int section_index = 0;
2acceee2
JM
2114 int argcnt = 0;
2115 int sec_num = 0;
2116 int i;
db162d44
EZ
2117 int expecting_sec_name = 0;
2118 int expecting_sec_addr = 0;
5b96932b 2119 char **argv;
db162d44 2120
a39a16c4 2121 struct sect_opt
2acceee2 2122 {
2acceee2
JM
2123 char *name;
2124 char *value;
a39a16c4 2125 };
db162d44 2126
a39a16c4
MM
2127 struct section_addr_info *section_addrs;
2128 struct sect_opt *sect_opts = NULL;
2129 size_t num_sect_opts = 0;
3017564a 2130 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2131
a39a16c4 2132 num_sect_opts = 16;
5417f6dc 2133 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2134 * sizeof (struct sect_opt));
2135
c906108c
SS
2136 dont_repeat ();
2137
2138 if (args == NULL)
8a3fe4f8 2139 error (_("add-symbol-file takes a file name and an address"));
c906108c 2140
5b96932b
AS
2141 argv = buildargv (args);
2142 make_cleanup_freeargv (argv);
db162d44 2143
5b96932b
AS
2144 if (argv == NULL)
2145 nomem (0);
db162d44 2146
5b96932b
AS
2147 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2148 {
2149 /* Process the argument. */
db162d44 2150 if (argcnt == 0)
c906108c 2151 {
db162d44
EZ
2152 /* The first argument is the file name. */
2153 filename = tilde_expand (arg);
3017564a 2154 make_cleanup (xfree, filename);
c906108c 2155 }
db162d44 2156 else
7a78ae4e
ND
2157 if (argcnt == 1)
2158 {
2159 /* The second argument is always the text address at which
2160 to load the program. */
2161 sect_opts[section_index].name = ".text";
2162 sect_opts[section_index].value = arg;
f414f22f 2163 if (++section_index >= num_sect_opts)
a39a16c4
MM
2164 {
2165 num_sect_opts *= 2;
5417f6dc 2166 sect_opts = ((struct sect_opt *)
a39a16c4 2167 xrealloc (sect_opts,
5417f6dc 2168 num_sect_opts
a39a16c4
MM
2169 * sizeof (struct sect_opt)));
2170 }
7a78ae4e
ND
2171 }
2172 else
2173 {
2174 /* It's an option (starting with '-') or it's an argument
2175 to an option */
2176
2177 if (*arg == '-')
2178 {
78a4a9b9
AC
2179 if (strcmp (arg, "-readnow") == 0)
2180 flags |= OBJF_READNOW;
2181 else if (strcmp (arg, "-s") == 0)
2182 {
2183 expecting_sec_name = 1;
2184 expecting_sec_addr = 1;
2185 }
7a78ae4e
ND
2186 }
2187 else
2188 {
2189 if (expecting_sec_name)
db162d44 2190 {
7a78ae4e
ND
2191 sect_opts[section_index].name = arg;
2192 expecting_sec_name = 0;
db162d44
EZ
2193 }
2194 else
7a78ae4e
ND
2195 if (expecting_sec_addr)
2196 {
2197 sect_opts[section_index].value = arg;
2198 expecting_sec_addr = 0;
f414f22f 2199 if (++section_index >= num_sect_opts)
a39a16c4
MM
2200 {
2201 num_sect_opts *= 2;
5417f6dc 2202 sect_opts = ((struct sect_opt *)
a39a16c4 2203 xrealloc (sect_opts,
5417f6dc 2204 num_sect_opts
a39a16c4
MM
2205 * sizeof (struct sect_opt)));
2206 }
7a78ae4e
ND
2207 }
2208 else
8a3fe4f8 2209 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2210 }
2211 }
c906108c 2212 }
c906108c 2213
927890d0
JB
2214 /* This command takes at least two arguments. The first one is a
2215 filename, and the second is the address where this file has been
2216 loaded. Abort now if this address hasn't been provided by the
2217 user. */
2218 if (section_index < 1)
2219 error (_("The address where %s has been loaded is missing"), filename);
2220
db162d44
EZ
2221 /* Print the prompt for the query below. And save the arguments into
2222 a sect_addr_info structure to be passed around to other
2223 functions. We have to split this up into separate print
bb599908 2224 statements because hex_string returns a local static
db162d44 2225 string. */
5417f6dc 2226
a3f17187 2227 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2228 section_addrs = alloc_section_addr_info (section_index);
2229 make_cleanup (xfree, section_addrs);
db162d44 2230 for (i = 0; i < section_index; i++)
c906108c 2231 {
db162d44
EZ
2232 CORE_ADDR addr;
2233 char *val = sect_opts[i].value;
2234 char *sec = sect_opts[i].name;
5417f6dc 2235
ae822768 2236 addr = parse_and_eval_address (val);
db162d44 2237
db162d44
EZ
2238 /* Here we store the section offsets in the order they were
2239 entered on the command line. */
a39a16c4
MM
2240 section_addrs->other[sec_num].name = sec;
2241 section_addrs->other[sec_num].addr = addr;
35076fa0 2242 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
db162d44
EZ
2243 sec_num++;
2244
5417f6dc 2245 /* The object's sections are initialized when a
db162d44 2246 call is made to build_objfile_section_table (objfile).
5417f6dc 2247 This happens in reread_symbols.
db162d44
EZ
2248 At this point, we don't know what file type this is,
2249 so we can't determine what section names are valid. */
2acceee2 2250 }
db162d44 2251
2acceee2 2252 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2253 error (_("Not confirmed."));
c906108c 2254
a39a16c4 2255 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2256
2257 /* Getting new symbols may change our opinion about what is
2258 frameless. */
2259 reinit_frame_cache ();
db162d44 2260 do_cleanups (my_cleanups);
c906108c
SS
2261}
2262\f
2263static void
fba45db2 2264add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2265{
2266#ifdef ADD_SHARED_SYMBOL_FILES
2267 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2268#else
8a3fe4f8 2269 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2270#endif
c906108c
SS
2271}
2272\f
2273/* Re-read symbols if a symbol-file has changed. */
2274void
fba45db2 2275reread_symbols (void)
c906108c
SS
2276{
2277 struct objfile *objfile;
2278 long new_modtime;
2279 int reread_one = 0;
2280 struct stat new_statbuf;
2281 int res;
2282
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
2287 and see if the symbol table that it originates from has been changed */
2288
c5aa993b
JM
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2290 {
2291 if (objfile->obfd)
2292 {
52d16ba8 2293#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2294 /* If this object is from a shared library, then you should
2295 stat on the library name, not member name. */
c906108c 2296
c5aa993b
JM
2297 if (objfile->obfd->my_archive)
2298 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2299 else
c906108c 2300#endif
c5aa993b
JM
2301 res = stat (objfile->name, &new_statbuf);
2302 if (res != 0)
c906108c 2303 {
c5aa993b 2304 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2305 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2306 objfile->name);
2307 continue;
c906108c 2308 }
c5aa993b
JM
2309 new_modtime = new_statbuf.st_mtime;
2310 if (new_modtime != objfile->mtime)
c906108c 2311 {
c5aa993b
JM
2312 struct cleanup *old_cleanups;
2313 struct section_offsets *offsets;
2314 int num_offsets;
c5aa993b
JM
2315 char *obfd_filename;
2316
a3f17187 2317 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2318 objfile->name);
2319
2320 /* There are various functions like symbol_file_add,
2321 symfile_bfd_open, syms_from_objfile, etc., which might
2322 appear to do what we want. But they have various other
2323 effects which we *don't* want. So we just do stuff
2324 ourselves. We don't worry about mapped files (for one thing,
2325 any mapped file will be out of date). */
2326
2327 /* If we get an error, blow away this objfile (not sure if
2328 that is the correct response for things like shared
2329 libraries). */
74b7792f 2330 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2331 /* We need to do this whenever any symbols go away. */
74b7792f 2332 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2333
b2de52bb
JK
2334 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2335 bfd_get_filename (exec_bfd)) == 0)
2336 {
2337 /* Reload EXEC_BFD without asking anything. */
2338
2339 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2340 }
2341
c5aa993b
JM
2342 /* Clean up any state BFD has sitting around. We don't need
2343 to close the descriptor but BFD lacks a way of closing the
2344 BFD without closing the descriptor. */
2345 obfd_filename = bfd_get_filename (objfile->obfd);
2346 if (!bfd_close (objfile->obfd))
8a3fe4f8 2347 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2348 bfd_errmsg (bfd_get_error ()));
2349 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2350 if (objfile->obfd == NULL)
8a3fe4f8 2351 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2352 /* bfd_openr sets cacheable to true, which is what we want. */
2353 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2354 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2355 bfd_errmsg (bfd_get_error ()));
2356
2357 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2358 objfile_obstack. */
c5aa993b 2359 num_offsets = objfile->num_sections;
5417f6dc 2360 offsets = ((struct section_offsets *)
a39a16c4 2361 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2362 memcpy (offsets, objfile->section_offsets,
a39a16c4 2363 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2364
ae5a43e0
DJ
2365 /* Remove any references to this objfile in the global
2366 value lists. */
2367 preserve_values (objfile);
2368
c5aa993b
JM
2369 /* Nuke all the state that we will re-read. Much of the following
2370 code which sets things to NULL really is necessary to tell
2371 other parts of GDB that there is nothing currently there. */
2372
2373 /* FIXME: Do we have to free a whole linked list, or is this
2374 enough? */
2375 if (objfile->global_psymbols.list)
2dc74dc1 2376 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2377 memset (&objfile->global_psymbols, 0,
2378 sizeof (objfile->global_psymbols));
2379 if (objfile->static_psymbols.list)
2dc74dc1 2380 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2381 memset (&objfile->static_psymbols, 0,
2382 sizeof (objfile->static_psymbols));
2383
2384 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2385 bcache_xfree (objfile->psymbol_cache);
2386 objfile->psymbol_cache = bcache_xmalloc ();
2387 bcache_xfree (objfile->macro_cache);
2388 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2389 if (objfile->demangled_names_hash != NULL)
2390 {
2391 htab_delete (objfile->demangled_names_hash);
2392 objfile->demangled_names_hash = NULL;
2393 }
b99607ea 2394 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2395 objfile->sections = NULL;
2396 objfile->symtabs = NULL;
2397 objfile->psymtabs = NULL;
2398 objfile->free_psymtabs = NULL;
a1b8c067 2399 objfile->cp_namespace_symtab = NULL;
c5aa993b 2400 objfile->msymbols = NULL;
0a6ddd08 2401 objfile->deprecated_sym_private = NULL;
c5aa993b 2402 objfile->minimal_symbol_count = 0;
0a83117a
MS
2403 memset (&objfile->msymbol_hash, 0,
2404 sizeof (objfile->msymbol_hash));
2405 memset (&objfile->msymbol_demangled_hash, 0,
2406 sizeof (objfile->msymbol_demangled_hash));
7b097ae3 2407 clear_objfile_data (objfile);
c5aa993b
JM
2408 if (objfile->sf != NULL)
2409 {
2410 (*objfile->sf->sym_finish) (objfile);
2411 }
2412
2413 /* We never make this a mapped file. */
2414 objfile->md = NULL;
af5f3db6
AC
2415 objfile->psymbol_cache = bcache_xmalloc ();
2416 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2417 /* obstack_init also initializes the obstack so it is
2418 empty. We could use obstack_specify_allocation but
2419 gdb_obstack.h specifies the alloc/dealloc
2420 functions. */
2421 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2422 if (build_objfile_section_table (objfile))
2423 {
8a3fe4f8 2424 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2425 objfile->name, bfd_errmsg (bfd_get_error ()));
2426 }
15831452 2427 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2428
2429 /* We use the same section offsets as from last time. I'm not
2430 sure whether that is always correct for shared libraries. */
2431 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2432 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2433 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2434 memcpy (objfile->section_offsets, offsets,
a39a16c4 2435 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2436 objfile->num_sections = num_offsets;
2437
2438 /* What the hell is sym_new_init for, anyway? The concept of
2439 distinguishing between the main file and additional files
2440 in this way seems rather dubious. */
2441 if (objfile == symfile_objfile)
2442 {
2443 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2444 }
2445
2446 (*objfile->sf->sym_init) (objfile);
b9caf505 2447 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2448 /* The "mainline" parameter is a hideous hack; I think leaving it
2449 zero is OK since dbxread.c also does what it needs to do if
2450 objfile->global_psymbols.size is 0. */
96baa820 2451 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2452 if (!have_partial_symbols () && !have_full_symbols ())
2453 {
2454 wrap_here ("");
a3f17187 2455 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2456 wrap_here ("");
2457 }
2458 objfile->flags |= OBJF_SYMS;
2459
2460 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2461 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2462
c5aa993b
JM
2463 /* Getting new symbols may change our opinion about what is
2464 frameless. */
c906108c 2465
c5aa993b 2466 reinit_frame_cache ();
c906108c 2467
c5aa993b
JM
2468 /* Discard cleanups as symbol reading was successful. */
2469 discard_cleanups (old_cleanups);
c906108c 2470
c5aa993b
JM
2471 /* If the mtime has changed between the time we set new_modtime
2472 and now, we *want* this to be out of date, so don't call stat
2473 again now. */
2474 objfile->mtime = new_modtime;
2475 reread_one = 1;
5b5d99cf 2476 reread_separate_symbols (objfile);
6528a9ea 2477 init_entry_point_info (objfile);
c5aa993b 2478 }
c906108c
SS
2479 }
2480 }
c906108c
SS
2481
2482 if (reread_one)
ea53e89f
JB
2483 {
2484 clear_symtab_users ();
2485 /* At least one objfile has changed, so we can consider that
2486 the executable we're debugging has changed too. */
2487 observer_notify_executable_changed (NULL);
2488 }
2489
c906108c 2490}
5b5d99cf
JB
2491
2492
2493/* Handle separate debug info for OBJFILE, which has just been
2494 re-read:
2495 - If we had separate debug info before, but now we don't, get rid
2496 of the separated objfile.
2497 - If we didn't have separated debug info before, but now we do,
2498 read in the new separated debug info file.
2499 - If the debug link points to a different file, toss the old one
2500 and read the new one.
2501 This function does *not* handle the case where objfile is still
2502 using the same separate debug info file, but that file's timestamp
2503 has changed. That case should be handled by the loop in
2504 reread_symbols already. */
2505static void
2506reread_separate_symbols (struct objfile *objfile)
2507{
2508 char *debug_file;
2509 unsigned long crc32;
2510
2511 /* Does the updated objfile's debug info live in a
2512 separate file? */
2513 debug_file = find_separate_debug_file (objfile);
2514
2515 if (objfile->separate_debug_objfile)
2516 {
2517 /* There are two cases where we need to get rid of
2518 the old separated debug info objfile:
2519 - if the new primary objfile doesn't have
2520 separated debug info, or
2521 - if the new primary objfile has separate debug
2522 info, but it's under a different filename.
5417f6dc 2523
5b5d99cf
JB
2524 If the old and new objfiles both have separate
2525 debug info, under the same filename, then we're
2526 okay --- if the separated file's contents have
2527 changed, we will have caught that when we
2528 visited it in this function's outermost
2529 loop. */
2530 if (! debug_file
2531 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2532 free_objfile (objfile->separate_debug_objfile);
2533 }
2534
2535 /* If the new objfile has separate debug info, and we
2536 haven't loaded it already, do so now. */
2537 if (debug_file
2538 && ! objfile->separate_debug_objfile)
2539 {
2540 /* Use the same section offset table as objfile itself.
2541 Preserve the flags from objfile that make sense. */
2542 objfile->separate_debug_objfile
2543 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2544 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2545 info_verbose, /* from_tty: Don't override the default. */
2546 0, /* No addr table. */
2547 objfile->section_offsets, objfile->num_sections,
2548 0, /* Not mainline. See comments about this above. */
78a4a9b9 2549 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2550 | OBJF_USERLOADED)));
2551 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2552 = objfile;
2553 }
73780b3c
MS
2554 if (debug_file)
2555 xfree (debug_file);
5b5d99cf
JB
2556}
2557
2558
c906108c
SS
2559\f
2560
c5aa993b
JM
2561
2562typedef struct
2563{
2564 char *ext;
c906108c 2565 enum language lang;
c5aa993b
JM
2566}
2567filename_language;
c906108c 2568
c5aa993b 2569static filename_language *filename_language_table;
c906108c
SS
2570static int fl_table_size, fl_table_next;
2571
2572static void
fba45db2 2573add_filename_language (char *ext, enum language lang)
c906108c
SS
2574{
2575 if (fl_table_next >= fl_table_size)
2576 {
2577 fl_table_size += 10;
5417f6dc 2578 filename_language_table =
25bf3106
PM
2579 xrealloc (filename_language_table,
2580 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2581 }
2582
4fcf66da 2583 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2584 filename_language_table[fl_table_next].lang = lang;
2585 fl_table_next++;
2586}
2587
2588static char *ext_args;
920d2a44
AC
2589static void
2590show_ext_args (struct ui_file *file, int from_tty,
2591 struct cmd_list_element *c, const char *value)
2592{
2593 fprintf_filtered (file, _("\
2594Mapping between filename extension and source language is \"%s\".\n"),
2595 value);
2596}
c906108c
SS
2597
2598static void
26c41df3 2599set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2600{
2601 int i;
2602 char *cp = ext_args;
2603 enum language lang;
2604
2605 /* First arg is filename extension, starting with '.' */
2606 if (*cp != '.')
8a3fe4f8 2607 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2608
2609 /* Find end of first arg. */
c5aa993b 2610 while (*cp && !isspace (*cp))
c906108c
SS
2611 cp++;
2612
2613 if (*cp == '\0')
8a3fe4f8 2614 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2615 ext_args);
2616
2617 /* Null-terminate first arg */
c5aa993b 2618 *cp++ = '\0';
c906108c
SS
2619
2620 /* Find beginning of second arg, which should be a source language. */
2621 while (*cp && isspace (*cp))
2622 cp++;
2623
2624 if (*cp == '\0')
8a3fe4f8 2625 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2626 ext_args);
2627
2628 /* Lookup the language from among those we know. */
2629 lang = language_enum (cp);
2630
2631 /* Now lookup the filename extension: do we already know it? */
2632 for (i = 0; i < fl_table_next; i++)
2633 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2634 break;
2635
2636 if (i >= fl_table_next)
2637 {
2638 /* new file extension */
2639 add_filename_language (ext_args, lang);
2640 }
2641 else
2642 {
2643 /* redefining a previously known filename extension */
2644
2645 /* if (from_tty) */
2646 /* query ("Really make files of type %s '%s'?", */
2647 /* ext_args, language_str (lang)); */
2648
b8c9b27d 2649 xfree (filename_language_table[i].ext);
4fcf66da 2650 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2651 filename_language_table[i].lang = lang;
2652 }
2653}
2654
2655static void
fba45db2 2656info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2657{
2658 int i;
2659
a3f17187 2660 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2661 printf_filtered ("\n\n");
2662 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2663 printf_filtered ("\t%s\t- %s\n",
2664 filename_language_table[i].ext,
c906108c
SS
2665 language_str (filename_language_table[i].lang));
2666}
2667
2668static void
fba45db2 2669init_filename_language_table (void)
c906108c
SS
2670{
2671 if (fl_table_size == 0) /* protect against repetition */
2672 {
2673 fl_table_size = 20;
2674 fl_table_next = 0;
c5aa993b 2675 filename_language_table =
c906108c 2676 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2677 add_filename_language (".c", language_c);
2678 add_filename_language (".C", language_cplus);
2679 add_filename_language (".cc", language_cplus);
2680 add_filename_language (".cp", language_cplus);
2681 add_filename_language (".cpp", language_cplus);
2682 add_filename_language (".cxx", language_cplus);
2683 add_filename_language (".c++", language_cplus);
2684 add_filename_language (".java", language_java);
c906108c 2685 add_filename_language (".class", language_java);
da2cf7e0 2686 add_filename_language (".m", language_objc);
c5aa993b
JM
2687 add_filename_language (".f", language_fortran);
2688 add_filename_language (".F", language_fortran);
2689 add_filename_language (".s", language_asm);
aa707ed0 2690 add_filename_language (".sx", language_asm);
c5aa993b 2691 add_filename_language (".S", language_asm);
c6fd39cd
PM
2692 add_filename_language (".pas", language_pascal);
2693 add_filename_language (".p", language_pascal);
2694 add_filename_language (".pp", language_pascal);
963a6417
PH
2695 add_filename_language (".adb", language_ada);
2696 add_filename_language (".ads", language_ada);
2697 add_filename_language (".a", language_ada);
2698 add_filename_language (".ada", language_ada);
c906108c
SS
2699 }
2700}
2701
2702enum language
fba45db2 2703deduce_language_from_filename (char *filename)
c906108c
SS
2704{
2705 int i;
2706 char *cp;
2707
2708 if (filename != NULL)
2709 if ((cp = strrchr (filename, '.')) != NULL)
2710 for (i = 0; i < fl_table_next; i++)
2711 if (strcmp (cp, filename_language_table[i].ext) == 0)
2712 return filename_language_table[i].lang;
2713
2714 return language_unknown;
2715}
2716\f
2717/* allocate_symtab:
2718
2719 Allocate and partly initialize a new symbol table. Return a pointer
2720 to it. error() if no space.
2721
2722 Caller must set these fields:
c5aa993b
JM
2723 LINETABLE(symtab)
2724 symtab->blockvector
2725 symtab->dirname
2726 symtab->free_code
2727 symtab->free_ptr
2728 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2729 */
2730
2731struct symtab *
fba45db2 2732allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2733{
52f0bd74 2734 struct symtab *symtab;
c906108c
SS
2735
2736 symtab = (struct symtab *)
4a146b47 2737 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2738 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2739 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2740 &objfile->objfile_obstack);
c5aa993b
JM
2741 symtab->fullname = NULL;
2742 symtab->language = deduce_language_from_filename (filename);
2743 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2744 &objfile->objfile_obstack);
c906108c
SS
2745
2746 /* Hook it to the objfile it comes from */
2747
c5aa993b
JM
2748 symtab->objfile = objfile;
2749 symtab->next = objfile->symtabs;
2750 objfile->symtabs = symtab;
c906108c 2751
c906108c
SS
2752 return (symtab);
2753}
2754
2755struct partial_symtab *
fba45db2 2756allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2757{
2758 struct partial_symtab *psymtab;
2759
c5aa993b 2760 if (objfile->free_psymtabs)
c906108c 2761 {
c5aa993b
JM
2762 psymtab = objfile->free_psymtabs;
2763 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2764 }
2765 else
2766 psymtab = (struct partial_symtab *)
8b92e4d5 2767 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2768 sizeof (struct partial_symtab));
2769
2770 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2771 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2772 &objfile->objfile_obstack);
c5aa993b 2773 psymtab->symtab = NULL;
c906108c
SS
2774
2775 /* Prepend it to the psymtab list for the objfile it belongs to.
2776 Psymtabs are searched in most recent inserted -> least recent
2777 inserted order. */
2778
c5aa993b
JM
2779 psymtab->objfile = objfile;
2780 psymtab->next = objfile->psymtabs;
2781 objfile->psymtabs = psymtab;
c906108c
SS
2782#if 0
2783 {
2784 struct partial_symtab **prev_pst;
c5aa993b
JM
2785 psymtab->objfile = objfile;
2786 psymtab->next = NULL;
2787 prev_pst = &(objfile->psymtabs);
c906108c 2788 while ((*prev_pst) != NULL)
c5aa993b 2789 prev_pst = &((*prev_pst)->next);
c906108c 2790 (*prev_pst) = psymtab;
c5aa993b 2791 }
c906108c 2792#endif
c5aa993b 2793
c906108c
SS
2794 return (psymtab);
2795}
2796
2797void
fba45db2 2798discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2799{
2800 struct partial_symtab **prev_pst;
2801
2802 /* From dbxread.c:
2803 Empty psymtabs happen as a result of header files which don't
2804 have any symbols in them. There can be a lot of them. But this
2805 check is wrong, in that a psymtab with N_SLINE entries but
2806 nothing else is not empty, but we don't realize that. Fixing
2807 that without slowing things down might be tricky. */
2808
2809 /* First, snip it out of the psymtab chain */
2810
2811 prev_pst = &(pst->objfile->psymtabs);
2812 while ((*prev_pst) != pst)
2813 prev_pst = &((*prev_pst)->next);
2814 (*prev_pst) = pst->next;
2815
2816 /* Next, put it on a free list for recycling */
2817
2818 pst->next = pst->objfile->free_psymtabs;
2819 pst->objfile->free_psymtabs = pst;
2820}
c906108c 2821\f
c5aa993b 2822
c906108c
SS
2823/* Reset all data structures in gdb which may contain references to symbol
2824 table data. */
2825
2826void
fba45db2 2827clear_symtab_users (void)
c906108c
SS
2828{
2829 /* Someday, we should do better than this, by only blowing away
2830 the things that really need to be blown. */
c0501be5
DJ
2831
2832 /* Clear the "current" symtab first, because it is no longer valid.
2833 breakpoint_re_set may try to access the current symtab. */
2834 clear_current_source_symtab_and_line ();
2835
c906108c 2836 clear_displays ();
c906108c
SS
2837 breakpoint_re_set ();
2838 set_default_breakpoint (0, 0, 0, 0);
c906108c 2839 clear_pc_function_cache ();
06d3b283 2840 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2841
2842 /* Clear globals which might have pointed into a removed objfile.
2843 FIXME: It's not clear which of these are supposed to persist
2844 between expressions and which ought to be reset each time. */
2845 expression_context_block = NULL;
2846 innermost_block = NULL;
8756216b
DP
2847
2848 /* Varobj may refer to old symbols, perform a cleanup. */
2849 varobj_invalidate ();
2850
c906108c
SS
2851}
2852
74b7792f
AC
2853static void
2854clear_symtab_users_cleanup (void *ignore)
2855{
2856 clear_symtab_users ();
2857}
2858
c906108c
SS
2859/* clear_symtab_users_once:
2860
2861 This function is run after symbol reading, or from a cleanup.
2862 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2863 has been blown away, but the other GDB data structures that may
c906108c
SS
2864 reference it have not yet been cleared or re-directed. (The old
2865 symtab was zapped, and the cleanup queued, in free_named_symtab()
2866 below.)
2867
2868 This function can be queued N times as a cleanup, or called
2869 directly; it will do all the work the first time, and then will be a
2870 no-op until the next time it is queued. This works by bumping a
2871 counter at queueing time. Much later when the cleanup is run, or at
2872 the end of symbol processing (in case the cleanup is discarded), if
2873 the queued count is greater than the "done-count", we do the work
2874 and set the done-count to the queued count. If the queued count is
2875 less than or equal to the done-count, we just ignore the call. This
2876 is needed because reading a single .o file will often replace many
2877 symtabs (one per .h file, for example), and we don't want to reset
2878 the breakpoints N times in the user's face.
2879
2880 The reason we both queue a cleanup, and call it directly after symbol
2881 reading, is because the cleanup protects us in case of errors, but is
2882 discarded if symbol reading is successful. */
2883
2884#if 0
2885/* FIXME: As free_named_symtabs is currently a big noop this function
2886 is no longer needed. */
a14ed312 2887static void clear_symtab_users_once (void);
c906108c
SS
2888
2889static int clear_symtab_users_queued;
2890static int clear_symtab_users_done;
2891
2892static void
fba45db2 2893clear_symtab_users_once (void)
c906108c
SS
2894{
2895 /* Enforce once-per-`do_cleanups'-semantics */
2896 if (clear_symtab_users_queued <= clear_symtab_users_done)
2897 return;
2898 clear_symtab_users_done = clear_symtab_users_queued;
2899
2900 clear_symtab_users ();
2901}
2902#endif
2903
2904/* Delete the specified psymtab, and any others that reference it. */
2905
2906static void
fba45db2 2907cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2908{
2909 struct partial_symtab *ps, *pprev = NULL;
2910 int i;
2911
2912 /* Find its previous psymtab in the chain */
c5aa993b
JM
2913 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2914 {
2915 if (ps == pst)
2916 break;
2917 pprev = ps;
2918 }
c906108c 2919
c5aa993b
JM
2920 if (ps)
2921 {
2922 /* Unhook it from the chain. */
2923 if (ps == pst->objfile->psymtabs)
2924 pst->objfile->psymtabs = ps->next;
2925 else
2926 pprev->next = ps->next;
2927
2928 /* FIXME, we can't conveniently deallocate the entries in the
2929 partial_symbol lists (global_psymbols/static_psymbols) that
2930 this psymtab points to. These just take up space until all
2931 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2932 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2933
2934 /* We need to cashier any psymtab that has this one as a dependency... */
2935 again:
2936 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2937 {
2938 for (i = 0; i < ps->number_of_dependencies; i++)
2939 {
2940 if (ps->dependencies[i] == pst)
2941 {
2942 cashier_psymtab (ps);
2943 goto again; /* Must restart, chain has been munged. */
2944 }
2945 }
c906108c 2946 }
c906108c 2947 }
c906108c
SS
2948}
2949
2950/* If a symtab or psymtab for filename NAME is found, free it along
2951 with any dependent breakpoints, displays, etc.
2952 Used when loading new versions of object modules with the "add-file"
2953 command. This is only called on the top-level symtab or psymtab's name;
2954 it is not called for subsidiary files such as .h files.
2955
2956 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2957 FIXME. The return value appears to never be used.
c906108c
SS
2958
2959 FIXME. I think this is not the best way to do this. We should
2960 work on being gentler to the environment while still cleaning up
2961 all stray pointers into the freed symtab. */
2962
2963int
fba45db2 2964free_named_symtabs (char *name)
c906108c
SS
2965{
2966#if 0
2967 /* FIXME: With the new method of each objfile having it's own
2968 psymtab list, this function needs serious rethinking. In particular,
2969 why was it ever necessary to toss psymtabs with specific compilation
2970 unit filenames, as opposed to all psymtabs from a particular symbol
2971 file? -- fnf
2972 Well, the answer is that some systems permit reloading of particular
2973 compilation units. We want to blow away any old info about these
2974 compilation units, regardless of which objfiles they arrived in. --gnu. */
2975
52f0bd74
AC
2976 struct symtab *s;
2977 struct symtab *prev;
2978 struct partial_symtab *ps;
c906108c
SS
2979 struct blockvector *bv;
2980 int blewit = 0;
2981
2982 /* We only wack things if the symbol-reload switch is set. */
2983 if (!symbol_reloading)
2984 return 0;
2985
2986 /* Some symbol formats have trouble providing file names... */
2987 if (name == 0 || *name == '\0')
2988 return 0;
2989
2990 /* Look for a psymtab with the specified name. */
2991
2992again2:
c5aa993b
JM
2993 for (ps = partial_symtab_list; ps; ps = ps->next)
2994 {
6314a349 2995 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2996 {
2997 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2998 goto again2; /* Must restart, chain has been munged */
2999 }
c906108c 3000 }
c906108c
SS
3001
3002 /* Look for a symtab with the specified name. */
3003
3004 for (s = symtab_list; s; s = s->next)
3005 {
6314a349 3006 if (strcmp (name, s->filename) == 0)
c906108c
SS
3007 break;
3008 prev = s;
3009 }
3010
3011 if (s)
3012 {
3013 if (s == symtab_list)
3014 symtab_list = s->next;
3015 else
3016 prev->next = s->next;
3017
3018 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3019 or not they depend on the symtab being freed. This should be
3020 changed so that only those data structures affected are deleted. */
c906108c
SS
3021
3022 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3023 This test is necessary due to a bug in "dbxread.c" that
3024 causes empty symtabs to be created for N_SO symbols that
3025 contain the pathname of the object file. (This problem
3026 has been fixed in GDB 3.9x). */
c906108c
SS
3027
3028 bv = BLOCKVECTOR (s);
3029 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3030 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3031 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3032 {
e2e0b3e5 3033 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3034 name);
c906108c
SS
3035 clear_symtab_users_queued++;
3036 make_cleanup (clear_symtab_users_once, 0);
3037 blewit = 1;
c5aa993b
JM
3038 }
3039 else
e2e0b3e5
AC
3040 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3041 name);
c906108c
SS
3042
3043 free_symtab (s);
3044 }
3045 else
3046 {
3047 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3048 even though no symtab was found, since the file might have
3049 been compiled without debugging, and hence not be associated
3050 with a symtab. In order to handle this correctly, we would need
3051 to keep a list of text address ranges for undebuggable files.
3052 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3053 ;
3054 }
3055
3056 /* FIXME, what about the minimal symbol table? */
3057 return blewit;
3058#else
3059 return (0);
3060#endif
3061}
3062\f
3063/* Allocate and partially fill a partial symtab. It will be
3064 completely filled at the end of the symbol list.
3065
d4f3574e 3066 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3067
3068struct partial_symtab *
fba45db2
KB
3069start_psymtab_common (struct objfile *objfile,
3070 struct section_offsets *section_offsets, char *filename,
3071 CORE_ADDR textlow, struct partial_symbol **global_syms,
3072 struct partial_symbol **static_syms)
c906108c
SS
3073{
3074 struct partial_symtab *psymtab;
3075
3076 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3077 psymtab->section_offsets = section_offsets;
3078 psymtab->textlow = textlow;
3079 psymtab->texthigh = psymtab->textlow; /* default */
3080 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3081 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3082 return (psymtab);
3083}
3084\f
3085/* Add a symbol with a long value to a psymtab.
5417f6dc 3086 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3087 Return the partial symbol that has been added. */
3088
3089/* NOTE: carlton/2003-09-11: The reason why we return the partial
3090 symbol is so that callers can get access to the symbol's demangled
3091 name, which they don't have any cheap way to determine otherwise.
3092 (Currenly, dwarf2read.c is the only file who uses that information,
3093 though it's possible that other readers might in the future.)
3094 Elena wasn't thrilled about that, and I don't blame her, but we
3095 couldn't come up with a better way to get that information. If
3096 it's needed in other situations, we could consider breaking up
3097 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3098 cache. */
3099
3100const struct partial_symbol *
176620f1 3101add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
3102 enum address_class class,
3103 struct psymbol_allocation_list *list, long val, /* Value as a long */
3104 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3105 enum language language, struct objfile *objfile)
c906108c 3106{
52f0bd74 3107 struct partial_symbol *psym;
c906108c
SS
3108 char *buf = alloca (namelength + 1);
3109 /* psymbol is static so that there will be no uninitialized gaps in the
3110 structure which might contain random data, causing cache misses in
3111 bcache. */
3112 static struct partial_symbol psymbol;
3113
3114 /* Create local copy of the partial symbol */
3115 memcpy (buf, name, namelength);
3116 buf[namelength] = '\0';
c906108c
SS
3117 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3118 if (val != 0)
3119 {
3120 SYMBOL_VALUE (&psymbol) = val;
3121 }
3122 else
3123 {
3124 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3125 }
3126 SYMBOL_SECTION (&psymbol) = 0;
3127 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 3128 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 3129 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
3130
3131 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
3132
3133 /* Stash the partial symbol away in the cache */
3a16a68c
AC
3134 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3135 objfile->psymbol_cache);
c906108c
SS
3136
3137 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3138 if (list->next >= list->list + list->size)
3139 {
3140 extend_psymbol_list (list, objfile);
3141 }
3142 *list->next++ = psym;
3143 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
3144
3145 return psym;
c906108c
SS
3146}
3147
c906108c
SS
3148/* Initialize storage for partial symbols. */
3149
3150void
fba45db2 3151init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3152{
3153 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3154
3155 if (objfile->global_psymbols.list)
c906108c 3156 {
2dc74dc1 3157 xfree (objfile->global_psymbols.list);
c906108c 3158 }
c5aa993b 3159 if (objfile->static_psymbols.list)
c906108c 3160 {
2dc74dc1 3161 xfree (objfile->static_psymbols.list);
c906108c 3162 }
c5aa993b 3163
c906108c
SS
3164 /* Current best guess is that approximately a twentieth
3165 of the total symbols (in a debugging file) are global or static
3166 oriented symbols */
c906108c 3167
c5aa993b
JM
3168 objfile->global_psymbols.size = total_symbols / 10;
3169 objfile->static_psymbols.size = total_symbols / 10;
3170
3171 if (objfile->global_psymbols.size > 0)
c906108c 3172 {
c5aa993b
JM
3173 objfile->global_psymbols.next =
3174 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3175 xmalloc ((objfile->global_psymbols.size
3176 * sizeof (struct partial_symbol *)));
c906108c 3177 }
c5aa993b 3178 if (objfile->static_psymbols.size > 0)
c906108c 3179 {
c5aa993b
JM
3180 objfile->static_psymbols.next =
3181 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3182 xmalloc ((objfile->static_psymbols.size
3183 * sizeof (struct partial_symbol *)));
c906108c
SS
3184 }
3185}
3186
3187/* OVERLAYS:
3188 The following code implements an abstraction for debugging overlay sections.
3189
3190 The target model is as follows:
3191 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3192 same VMA, each with its own unique LMA (or load address).
c906108c 3193 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3194 sections, one by one, from the load address into the VMA address.
5417f6dc 3195 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3196 sections should be considered to be mapped from the VMA to the LMA.
3197 This information is used for symbol lookup, and memory read/write.
5417f6dc 3198 For instance, if a section has been mapped then its contents
c5aa993b 3199 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3200
3201 Two levels of debugger support for overlays are available. One is
3202 "manual", in which the debugger relies on the user to tell it which
3203 overlays are currently mapped. This level of support is
3204 implemented entirely in the core debugger, and the information about
3205 whether a section is mapped is kept in the objfile->obj_section table.
3206
3207 The second level of support is "automatic", and is only available if
3208 the target-specific code provides functionality to read the target's
3209 overlay mapping table, and translate its contents for the debugger
3210 (by updating the mapped state information in the obj_section tables).
3211
3212 The interface is as follows:
c5aa993b
JM
3213 User commands:
3214 overlay map <name> -- tell gdb to consider this section mapped
3215 overlay unmap <name> -- tell gdb to consider this section unmapped
3216 overlay list -- list the sections that GDB thinks are mapped
3217 overlay read-target -- get the target's state of what's mapped
3218 overlay off/manual/auto -- set overlay debugging state
3219 Functional interface:
3220 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3221 section, return that section.
5417f6dc 3222 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3223 the pc, either in its VMA or its LMA
3224 overlay_is_mapped(sect): true if overlay is marked as mapped
3225 section_is_overlay(sect): true if section's VMA != LMA
3226 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3227 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3228 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3229 overlay_mapped_address(...): map an address from section's LMA to VMA
3230 overlay_unmapped_address(...): map an address from section's VMA to LMA
3231 symbol_overlayed_address(...): Return a "current" address for symbol:
3232 either in VMA or LMA depending on whether
3233 the symbol's section is currently mapped
c906108c
SS
3234 */
3235
3236/* Overlay debugging state: */
3237
d874f1e2 3238enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3239int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3240
c906108c 3241/* Function: section_is_overlay (SECTION)
5417f6dc 3242 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3243 SECTION is loaded at an address different from where it will "run". */
3244
3245int
fba45db2 3246section_is_overlay (asection *section)
c906108c 3247{
fbd35540
MS
3248 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3249
c906108c
SS
3250 if (overlay_debugging)
3251 if (section && section->lma != 0 &&
3252 section->vma != section->lma)
3253 return 1;
3254
3255 return 0;
3256}
3257
3258/* Function: overlay_invalidate_all (void)
3259 Invalidate the mapped state of all overlay sections (mark it as stale). */
3260
3261static void
fba45db2 3262overlay_invalidate_all (void)
c906108c 3263{
c5aa993b 3264 struct objfile *objfile;
c906108c
SS
3265 struct obj_section *sect;
3266
3267 ALL_OBJSECTIONS (objfile, sect)
3268 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3269 sect->ovly_mapped = -1;
c906108c
SS
3270}
3271
3272/* Function: overlay_is_mapped (SECTION)
5417f6dc 3273 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3274 Private: public access is thru function section_is_mapped.
3275
3276 Access to the ovly_mapped flag is restricted to this function, so
3277 that we can do automatic update. If the global flag
3278 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3279 overlay_invalidate_all. If the mapped state of the particular
3280 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3281
c5aa993b 3282static int
fba45db2 3283overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3284{
3285 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3286 return 0;
3287
c5aa993b 3288 switch (overlay_debugging)
c906108c
SS
3289 {
3290 default:
d874f1e2 3291 case ovly_off:
c5aa993b 3292 return 0; /* overlay debugging off */
d874f1e2 3293 case ovly_auto: /* overlay debugging automatic */
1c772458 3294 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3295 there's really nothing useful to do here (can't really go auto) */
1c772458 3296 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3297 {
3298 if (overlay_cache_invalid)
3299 {
3300 overlay_invalidate_all ();
3301 overlay_cache_invalid = 0;
3302 }
3303 if (osect->ovly_mapped == -1)
1c772458 3304 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3305 }
3306 /* fall thru to manual case */
d874f1e2 3307 case ovly_on: /* overlay debugging manual */
c906108c
SS
3308 return osect->ovly_mapped == 1;
3309 }
3310}
3311
3312/* Function: section_is_mapped
3313 Returns true if section is an overlay, and is currently mapped. */
3314
3315int
fba45db2 3316section_is_mapped (asection *section)
c906108c 3317{
c5aa993b 3318 struct objfile *objfile;
c906108c
SS
3319 struct obj_section *osect;
3320
3321 if (overlay_debugging)
3322 if (section && section_is_overlay (section))
3323 ALL_OBJSECTIONS (objfile, osect)
3324 if (osect->the_bfd_section == section)
c5aa993b 3325 return overlay_is_mapped (osect);
c906108c
SS
3326
3327 return 0;
3328}
3329
3330/* Function: pc_in_unmapped_range
3331 If PC falls into the lma range of SECTION, return true, else false. */
3332
3333CORE_ADDR
fba45db2 3334pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3335{
fbd35540
MS
3336 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3337
c906108c
SS
3338 int size;
3339
3340 if (overlay_debugging)
3341 if (section && section_is_overlay (section))
3342 {
2c500098 3343 size = bfd_get_section_size (section);
c906108c
SS
3344 if (section->lma <= pc && pc < section->lma + size)
3345 return 1;
3346 }
3347 return 0;
3348}
3349
3350/* Function: pc_in_mapped_range
3351 If PC falls into the vma range of SECTION, return true, else false. */
3352
3353CORE_ADDR
fba45db2 3354pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3355{
fbd35540
MS
3356 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3357
c906108c
SS
3358 int size;
3359
3360 if (overlay_debugging)
3361 if (section && section_is_overlay (section))
3362 {
2c500098 3363 size = bfd_get_section_size (section);
c906108c
SS
3364 if (section->vma <= pc && pc < section->vma + size)
3365 return 1;
3366 }
3367 return 0;
3368}
3369
9ec8e6a0
JB
3370
3371/* Return true if the mapped ranges of sections A and B overlap, false
3372 otherwise. */
b9362cc7 3373static int
9ec8e6a0
JB
3374sections_overlap (asection *a, asection *b)
3375{
fbd35540
MS
3376 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3377
9ec8e6a0 3378 CORE_ADDR a_start = a->vma;
2c500098 3379 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3380 CORE_ADDR b_start = b->vma;
2c500098 3381 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3382
3383 return (a_start < b_end && b_start < a_end);
3384}
3385
c906108c
SS
3386/* Function: overlay_unmapped_address (PC, SECTION)
3387 Returns the address corresponding to PC in the unmapped (load) range.
3388 May be the same as PC. */
3389
3390CORE_ADDR
fba45db2 3391overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3392{
fbd35540
MS
3393 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3394
c906108c
SS
3395 if (overlay_debugging)
3396 if (section && section_is_overlay (section) &&
3397 pc_in_mapped_range (pc, section))
3398 return pc + section->lma - section->vma;
3399
3400 return pc;
3401}
3402
3403/* Function: overlay_mapped_address (PC, SECTION)
3404 Returns the address corresponding to PC in the mapped (runtime) range.
3405 May be the same as PC. */
3406
3407CORE_ADDR
fba45db2 3408overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3409{
fbd35540
MS
3410 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3411
c906108c
SS
3412 if (overlay_debugging)
3413 if (section && section_is_overlay (section) &&
3414 pc_in_unmapped_range (pc, section))
3415 return pc + section->vma - section->lma;
3416
3417 return pc;
3418}
3419
3420
5417f6dc 3421/* Function: symbol_overlayed_address
c906108c
SS
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3424
c5aa993b 3425CORE_ADDR
fba45db2 3426symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3427{
3428 if (overlay_debugging)
3429 {
3430 /* If the symbol has no section, just return its regular address. */
3431 if (section == 0)
3432 return address;
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3435 return address;
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3438 return address;
3439 /*
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3442 */
3443 return overlay_unmapped_address (address, section);
3444 }
3445 return address;
3446}
3447
5417f6dc 3448/* Function: find_pc_overlay (PC)
c906108c
SS
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3453
3454asection *
fba45db2 3455find_pc_overlay (CORE_ADDR pc)
c906108c 3456{
c5aa993b 3457 struct objfile *objfile;
c906108c
SS
3458 struct obj_section *osect, *best_match = NULL;
3459
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
3462 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3463 {
3464 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3465 {
3466 if (overlay_is_mapped (osect))
3467 return osect->the_bfd_section;
3468 else
3469 best_match = osect;
3470 }
3471 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3472 best_match = osect;
3473 }
c906108c
SS
3474 return best_match ? best_match->the_bfd_section : NULL;
3475}
3476
3477/* Function: find_pc_mapped_section (PC)
5417f6dc 3478 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3479 currently marked as MAPPED, return that section. Else return NULL. */
3480
3481asection *
fba45db2 3482find_pc_mapped_section (CORE_ADDR pc)
c906108c 3483{
c5aa993b 3484 struct objfile *objfile;
c906108c
SS
3485 struct obj_section *osect;
3486
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
3489 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3490 overlay_is_mapped (osect))
c5aa993b 3491 return osect->the_bfd_section;
c906108c
SS
3492
3493 return NULL;
3494}
3495
3496/* Function: list_overlays_command
3497 Print a list of mapped sections and their PC ranges */
3498
3499void
fba45db2 3500list_overlays_command (char *args, int from_tty)
c906108c 3501{
c5aa993b
JM
3502 int nmapped = 0;
3503 struct objfile *objfile;
c906108c
SS
3504 struct obj_section *osect;
3505
3506 if (overlay_debugging)
3507 ALL_OBJSECTIONS (objfile, osect)
3508 if (overlay_is_mapped (osect))
c5aa993b
JM
3509 {
3510 const char *name;
3511 bfd_vma lma, vma;
3512 int size;
3513
3514 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3515 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3516 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3517 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3518
3519 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3520 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3521 puts_filtered (" - ");
ed49a04f 3522 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3523 printf_filtered (", mapped at ");
ed49a04f 3524 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3525 puts_filtered (" - ");
ed49a04f 3526 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3527 puts_filtered ("\n");
3528
3529 nmapped++;
3530 }
c906108c 3531 if (nmapped == 0)
a3f17187 3532 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3533}
3534
3535/* Function: map_overlay_command
3536 Mark the named section as mapped (ie. residing at its VMA address). */
3537
3538void
fba45db2 3539map_overlay_command (char *args, int from_tty)
c906108c 3540{
c5aa993b
JM
3541 struct objfile *objfile, *objfile2;
3542 struct obj_section *sec, *sec2;
3543 asection *bfdsec;
c906108c
SS
3544
3545 if (!overlay_debugging)
8a3fe4f8 3546 error (_("\
515ad16c 3547Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3548the 'overlay manual' command."));
c906108c
SS
3549
3550 if (args == 0 || *args == 0)
8a3fe4f8 3551 error (_("Argument required: name of an overlay section"));
c906108c
SS
3552
3553 /* First, find a section matching the user supplied argument */
3554 ALL_OBJSECTIONS (objfile, sec)
3555 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3556 {
3557 /* Now, check to see if the section is an overlay. */
3558 bfdsec = sec->the_bfd_section;
3559 if (!section_is_overlay (bfdsec))
3560 continue; /* not an overlay section */
3561
3562 /* Mark the overlay as "mapped" */
3563 sec->ovly_mapped = 1;
3564
3565 /* Next, make a pass and unmap any sections that are
3566 overlapped by this new section: */
3567 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3568 if (sec2->ovly_mapped
3569 && sec != sec2
3570 && sec->the_bfd_section != sec2->the_bfd_section
3571 && sections_overlap (sec->the_bfd_section,
3572 sec2->the_bfd_section))
c5aa993b
JM
3573 {
3574 if (info_verbose)
a3f17187 3575 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3576 bfd_section_name (objfile->obfd,
3577 sec2->the_bfd_section));
3578 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3579 }
3580 return;
3581 }
8a3fe4f8 3582 error (_("No overlay section called %s"), args);
c906108c
SS
3583}
3584
3585/* Function: unmap_overlay_command
5417f6dc 3586 Mark the overlay section as unmapped
c906108c
SS
3587 (ie. resident in its LMA address range, rather than the VMA range). */
3588
3589void
fba45db2 3590unmap_overlay_command (char *args, int from_tty)
c906108c 3591{
c5aa993b 3592 struct objfile *objfile;
c906108c
SS
3593 struct obj_section *sec;
3594
3595 if (!overlay_debugging)
8a3fe4f8 3596 error (_("\
515ad16c 3597Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3598the 'overlay manual' command."));
c906108c
SS
3599
3600 if (args == 0 || *args == 0)
8a3fe4f8 3601 error (_("Argument required: name of an overlay section"));
c906108c
SS
3602
3603 /* First, find a section matching the user supplied argument */
3604 ALL_OBJSECTIONS (objfile, sec)
3605 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3606 {
3607 if (!sec->ovly_mapped)
8a3fe4f8 3608 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3609 sec->ovly_mapped = 0;
3610 return;
3611 }
8a3fe4f8 3612 error (_("No overlay section called %s"), args);
c906108c
SS
3613}
3614
3615/* Function: overlay_auto_command
3616 A utility command to turn on overlay debugging.
3617 Possibly this should be done via a set/show command. */
3618
3619static void
fba45db2 3620overlay_auto_command (char *args, int from_tty)
c906108c 3621{
d874f1e2 3622 overlay_debugging = ovly_auto;
1900040c 3623 enable_overlay_breakpoints ();
c906108c 3624 if (info_verbose)
a3f17187 3625 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3626}
3627
3628/* Function: overlay_manual_command
3629 A utility command to turn on overlay debugging.
3630 Possibly this should be done via a set/show command. */
3631
3632static void
fba45db2 3633overlay_manual_command (char *args, int from_tty)
c906108c 3634{
d874f1e2 3635 overlay_debugging = ovly_on;
1900040c 3636 disable_overlay_breakpoints ();
c906108c 3637 if (info_verbose)
a3f17187 3638 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3639}
3640
3641/* Function: overlay_off_command
3642 A utility command to turn on overlay debugging.
3643 Possibly this should be done via a set/show command. */
3644
3645static void
fba45db2 3646overlay_off_command (char *args, int from_tty)
c906108c 3647{
d874f1e2 3648 overlay_debugging = ovly_off;
1900040c 3649 disable_overlay_breakpoints ();
c906108c 3650 if (info_verbose)
a3f17187 3651 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3652}
3653
3654static void
fba45db2 3655overlay_load_command (char *args, int from_tty)
c906108c 3656{
1c772458
UW
3657 if (gdbarch_overlay_update_p (current_gdbarch))
3658 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3659 else
8a3fe4f8 3660 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3661}
3662
3663/* Function: overlay_command
3664 A place-holder for a mis-typed command */
3665
3666/* Command list chain containing all defined "overlay" subcommands. */
3667struct cmd_list_element *overlaylist;
3668
3669static void
fba45db2 3670overlay_command (char *args, int from_tty)
c906108c 3671{
c5aa993b 3672 printf_unfiltered
c906108c
SS
3673 ("\"overlay\" must be followed by the name of an overlay command.\n");
3674 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3675}
3676
3677
3678/* Target Overlays for the "Simplest" overlay manager:
3679
5417f6dc
RM
3680 This is GDB's default target overlay layer. It works with the
3681 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3682 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3683 so targets that use a different runtime overlay manager can
c906108c
SS
3684 substitute their own overlay_update function and take over the
3685 function pointer.
3686
3687 The overlay_update function pokes around in the target's data structures
3688 to see what overlays are mapped, and updates GDB's overlay mapping with
3689 this information.
3690
3691 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3692 unsigned _novlys; /# number of overlay sections #/
3693 unsigned _ovly_table[_novlys][4] = {
3694 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3695 {..., ..., ..., ...},
3696 }
3697 unsigned _novly_regions; /# number of overlay regions #/
3698 unsigned _ovly_region_table[_novly_regions][3] = {
3699 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3700 {..., ..., ...},
3701 }
c906108c
SS
3702 These functions will attempt to update GDB's mappedness state in the
3703 symbol section table, based on the target's mappedness state.
3704
3705 To do this, we keep a cached copy of the target's _ovly_table, and
3706 attempt to detect when the cached copy is invalidated. The main
3707 entry point is "simple_overlay_update(SECT), which looks up SECT in
3708 the cached table and re-reads only the entry for that section from
3709 the target (whenever possible).
3710 */
3711
3712/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3713static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3714#if 0
c5aa993b 3715static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3716#endif
c5aa993b 3717static unsigned cache_novlys = 0;
c906108c 3718#if 0
c5aa993b 3719static unsigned cache_novly_regions = 0;
c906108c
SS
3720#endif
3721static CORE_ADDR cache_ovly_table_base = 0;
3722#if 0
3723static CORE_ADDR cache_ovly_region_table_base = 0;
3724#endif
c5aa993b
JM
3725enum ovly_index
3726 {
3727 VMA, SIZE, LMA, MAPPED
3728 };
9a76efb6
UW
3729#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3730 / TARGET_CHAR_BIT)
c906108c
SS
3731
3732/* Throw away the cached copy of _ovly_table */
3733static void
fba45db2 3734simple_free_overlay_table (void)
c906108c
SS
3735{
3736 if (cache_ovly_table)
b8c9b27d 3737 xfree (cache_ovly_table);
c5aa993b 3738 cache_novlys = 0;
c906108c
SS
3739 cache_ovly_table = NULL;
3740 cache_ovly_table_base = 0;
3741}
3742
3743#if 0
3744/* Throw away the cached copy of _ovly_region_table */
3745static void
fba45db2 3746simple_free_overlay_region_table (void)
c906108c
SS
3747{
3748 if (cache_ovly_region_table)
b8c9b27d 3749 xfree (cache_ovly_region_table);
c5aa993b 3750 cache_novly_regions = 0;
c906108c
SS
3751 cache_ovly_region_table = NULL;
3752 cache_ovly_region_table_base = 0;
3753}
3754#endif
3755
3756/* Read an array of ints from the target into a local buffer.
3757 Convert to host order. int LEN is number of ints */
3758static void
fba45db2 3759read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3760{
34c0bd93 3761 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3762 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3763 int i;
c906108c
SS
3764
3765 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3766 for (i = 0; i < len; i++)
c5aa993b 3767 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3768 TARGET_LONG_BYTES);
3769}
3770
3771/* Find and grab a copy of the target _ovly_table
3772 (and _novlys, which is needed for the table's size) */
c5aa993b 3773static int
fba45db2 3774simple_read_overlay_table (void)
c906108c 3775{
0d43edd1 3776 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3777
3778 simple_free_overlay_table ();
9b27852e 3779 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3780 if (! novlys_msym)
c906108c 3781 {
8a3fe4f8 3782 error (_("Error reading inferior's overlay table: "
0d43edd1 3783 "couldn't find `_novlys' variable\n"
8a3fe4f8 3784 "in inferior. Use `overlay manual' mode."));
0d43edd1 3785 return 0;
c906108c 3786 }
0d43edd1 3787
9b27852e 3788 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3789 if (! ovly_table_msym)
3790 {
8a3fe4f8 3791 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3792 "`_ovly_table' array\n"
8a3fe4f8 3793 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3794 return 0;
3795 }
3796
3797 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3798 cache_ovly_table
3799 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3800 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3801 read_target_long_array (cache_ovly_table_base,
777ea8f1 3802 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3803 cache_novlys * 4);
3804
c5aa993b 3805 return 1; /* SUCCESS */
c906108c
SS
3806}
3807
3808#if 0
3809/* Find and grab a copy of the target _ovly_region_table
3810 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3811static int
fba45db2 3812simple_read_overlay_region_table (void)
c906108c
SS
3813{
3814 struct minimal_symbol *msym;
3815
3816 simple_free_overlay_region_table ();
9b27852e 3817 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3818 if (msym != NULL)
3819 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3820 else
3821 return 0; /* failure */
c906108c
SS
3822 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3823 if (cache_ovly_region_table != NULL)
3824 {
9b27852e 3825 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3826 if (msym != NULL)
3827 {
3828 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3829 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3830 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3831 cache_novly_regions * 3);
3832 }
c5aa993b
JM
3833 else
3834 return 0; /* failure */
c906108c 3835 }
c5aa993b
JM
3836 else
3837 return 0; /* failure */
3838 return 1; /* SUCCESS */
c906108c
SS
3839}
3840#endif
3841
5417f6dc 3842/* Function: simple_overlay_update_1
c906108c
SS
3843 A helper function for simple_overlay_update. Assuming a cached copy
3844 of _ovly_table exists, look through it to find an entry whose vma,
3845 lma and size match those of OSECT. Re-read the entry and make sure
3846 it still matches OSECT (else the table may no longer be valid).
3847 Set OSECT's mapped state to match the entry. Return: 1 for
3848 success, 0 for failure. */
3849
3850static int
fba45db2 3851simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3852{
3853 int i, size;
fbd35540
MS
3854 bfd *obfd = osect->objfile->obfd;
3855 asection *bsect = osect->the_bfd_section;
c906108c 3856
2c500098 3857 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3858 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3859 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3860 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3861 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3862 {
3863 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3864 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3865 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3866 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3867 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3868 {
3869 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3870 return 1;
3871 }
fbd35540 3872 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3873 return 0;
3874 }
3875 return 0;
3876}
3877
3878/* Function: simple_overlay_update
5417f6dc
RM
3879 If OSECT is NULL, then update all sections' mapped state
3880 (after re-reading the entire target _ovly_table).
3881 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3882 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3883 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3884 re-read the entire cache, and go ahead and update all sections. */
3885
1c772458 3886void
fba45db2 3887simple_overlay_update (struct obj_section *osect)
c906108c 3888{
c5aa993b 3889 struct objfile *objfile;
c906108c
SS
3890
3891 /* Were we given an osect to look up? NULL means do all of them. */
3892 if (osect)
3893 /* Have we got a cached copy of the target's overlay table? */
3894 if (cache_ovly_table != NULL)
3895 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3896 if (cache_ovly_table_base ==
9b27852e 3897 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3898 /* Then go ahead and try to look up this single section in the cache */
3899 if (simple_overlay_update_1 (osect))
3900 /* Found it! We're done. */
3901 return;
3902
3903 /* Cached table no good: need to read the entire table anew.
3904 Or else we want all the sections, in which case it's actually
3905 more efficient to read the whole table in one block anyway. */
3906
0d43edd1
JB
3907 if (! simple_read_overlay_table ())
3908 return;
3909
c906108c
SS
3910 /* Now may as well update all sections, even if only one was requested. */
3911 ALL_OBJSECTIONS (objfile, osect)
3912 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3913 {
3914 int i, size;
fbd35540
MS
3915 bfd *obfd = osect->objfile->obfd;
3916 asection *bsect = osect->the_bfd_section;
c5aa993b 3917
2c500098 3918 size = bfd_get_section_size (bsect);
c5aa993b 3919 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3920 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3921 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3922 /* && cache_ovly_table[i][SIZE] == size */ )
3923 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3924 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3925 break; /* finished with inner for loop: break out */
3926 }
3927 }
c906108c
SS
3928}
3929
086df311
DJ
3930/* Set the output sections and output offsets for section SECTP in
3931 ABFD. The relocation code in BFD will read these offsets, so we
3932 need to be sure they're initialized. We map each section to itself,
3933 with no offset; this means that SECTP->vma will be honored. */
3934
3935static void
3936symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3937{
3938 sectp->output_section = sectp;
3939 sectp->output_offset = 0;
3940}
3941
3942/* Relocate the contents of a debug section SECTP in ABFD. The
3943 contents are stored in BUF if it is non-NULL, or returned in a
3944 malloc'd buffer otherwise.
3945
3946 For some platforms and debug info formats, shared libraries contain
3947 relocations against the debug sections (particularly for DWARF-2;
3948 one affected platform is PowerPC GNU/Linux, although it depends on
3949 the version of the linker in use). Also, ELF object files naturally
3950 have unresolved relocations for their debug sections. We need to apply
3951 the relocations in order to get the locations of symbols correct. */
3952
3953bfd_byte *
3954symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3955{
3956 /* We're only interested in debugging sections with relocation
3957 information. */
3958 if ((sectp->flags & SEC_RELOC) == 0)
3959 return NULL;
3960 if ((sectp->flags & SEC_DEBUGGING) == 0)
3961 return NULL;
3962
3963 /* We will handle section offsets properly elsewhere, so relocate as if
3964 all sections begin at 0. */
3965 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3966
97606a13 3967 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3968}
c906108c 3969
31d99776
DJ
3970struct symfile_segment_data *
3971get_symfile_segment_data (bfd *abfd)
3972{
3973 struct sym_fns *sf = find_sym_fns (abfd);
3974
3975 if (sf == NULL)
3976 return NULL;
3977
3978 return sf->sym_segments (abfd);
3979}
3980
3981void
3982free_symfile_segment_data (struct symfile_segment_data *data)
3983{
3984 xfree (data->segment_bases);
3985 xfree (data->segment_sizes);
3986 xfree (data->segment_info);
3987 xfree (data);
3988}
3989
28c32713
JB
3990
3991/* Given:
3992 - DATA, containing segment addresses from the object file ABFD, and
3993 the mapping from ABFD's sections onto the segments that own them,
3994 and
3995 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3996 segment addresses reported by the target,
3997 store the appropriate offsets for each section in OFFSETS.
3998
3999 If there are fewer entries in SEGMENT_BASES than there are segments
4000 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4001
4002 If there are more, then verify that all the excess addresses are
4003 the same as the last legitimate one, and then ignore them. This
4004 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4005 only a single segment. */
31d99776
DJ
4006int
4007symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4008 struct section_offsets *offsets,
4009 int num_segment_bases,
4010 const CORE_ADDR *segment_bases)
4011{
4012 int i;
4013 asection *sect;
4014
28c32713
JB
4015 /* It doesn't make sense to call this function unless you have some
4016 segment base addresses. */
4017 gdb_assert (segment_bases > 0);
4018
31d99776
DJ
4019 /* If we do not have segment mappings for the object file, we
4020 can not relocate it by segments. */
4021 gdb_assert (data != NULL);
4022 gdb_assert (data->num_segments > 0);
4023
28c32713 4024 /* Check any extra SEGMENT_BASES entries. */
31d99776
DJ
4025 if (num_segment_bases > data->num_segments)
4026 for (i = data->num_segments; i < num_segment_bases; i++)
4027 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4028 return 0;
4029
4030 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4031 {
31d99776
DJ
4032 int which = data->segment_info[i];
4033
28c32713
JB
4034 gdb_assert (0 <= which && which <= data->num_segments);
4035
4036 /* Don't bother computing offsets for sections that aren't
4037 loaded as part of any segment. */
4038 if (! which)
4039 continue;
4040
4041 /* Use the last SEGMENT_BASES entry as the address of any extra
4042 segments mentioned in DATA->segment_info. */
31d99776 4043 if (which > num_segment_bases)
28c32713 4044 which = num_segment_bases;
31d99776 4045
28c32713
JB
4046 offsets->offsets[i] = (segment_bases[which - 1]
4047 - data->segment_bases[which - 1]);
31d99776
DJ
4048 }
4049
4050 return 1;
4051}
4052
4053static void
4054symfile_find_segment_sections (struct objfile *objfile)
4055{
4056 bfd *abfd = objfile->obfd;
4057 int i;
4058 asection *sect;
4059 struct symfile_segment_data *data;
4060
4061 data = get_symfile_segment_data (objfile->obfd);
4062 if (data == NULL)
4063 return;
4064
4065 if (data->num_segments != 1 && data->num_segments != 2)
4066 {
4067 free_symfile_segment_data (data);
4068 return;
4069 }
4070
4071 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4072 {
4073 CORE_ADDR vma;
4074 int which = data->segment_info[i];
4075
4076 if (which == 1)
4077 {
4078 if (objfile->sect_index_text == -1)
4079 objfile->sect_index_text = sect->index;
4080
4081 if (objfile->sect_index_rodata == -1)
4082 objfile->sect_index_rodata = sect->index;
4083 }
4084 else if (which == 2)
4085 {
4086 if (objfile->sect_index_data == -1)
4087 objfile->sect_index_data = sect->index;
4088
4089 if (objfile->sect_index_bss == -1)
4090 objfile->sect_index_bss = sect->index;
4091 }
4092 }
4093
4094 free_symfile_segment_data (data);
4095}
4096
c906108c 4097void
fba45db2 4098_initialize_symfile (void)
c906108c
SS
4099{
4100 struct cmd_list_element *c;
c5aa993b 4101
1a966eab
AC
4102 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4103Load symbol table from executable file FILE.\n\
c906108c 4104The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4105to execute."), &cmdlist);
5ba2abeb 4106 set_cmd_completer (c, filename_completer);
c906108c 4107
1a966eab 4108 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4109Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4110Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4111ADDR is the starting address of the file's text.\n\
db162d44
EZ
4112The optional arguments are section-name section-address pairs and\n\
4113should be specified if the data and bss segments are not contiguous\n\
1a966eab 4114with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4115 &cmdlist);
5ba2abeb 4116 set_cmd_completer (c, filename_completer);
c906108c
SS
4117
4118 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
4119 add_shared_symbol_files_command, _("\
4120Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 4121 &cmdlist);
c906108c
SS
4122 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4123 &cmdlist);
4124
1a966eab
AC
4125 c = add_cmd ("load", class_files, load_command, _("\
4126Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4127for access from GDB.\n\
4128A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4129 set_cmd_completer (c, filename_completer);
c906108c 4130
5bf193a2
AC
4131 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4132 &symbol_reloading, _("\
4133Set dynamic symbol table reloading multiple times in one run."), _("\
4134Show dynamic symbol table reloading multiple times in one run."), NULL,
4135 NULL,
920d2a44 4136 show_symbol_reloading,
5bf193a2 4137 &setlist, &showlist);
c906108c 4138
c5aa993b 4139 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4140 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4141 "overlay ", 0, &cmdlist);
4142
4143 add_com_alias ("ovly", "overlay", class_alias, 1);
4144 add_com_alias ("ov", "overlay", class_alias, 1);
4145
c5aa993b 4146 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4147 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4148
c5aa993b 4149 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4150 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4151
c5aa993b 4152 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4153 _("List mappings of overlay sections."), &overlaylist);
c906108c 4154
c5aa993b 4155 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4156 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4157 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4158 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4159 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4160 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4161 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4162 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4163
4164 /* Filename extension to source language lookup table: */
4165 init_filename_language_table ();
26c41df3
AC
4166 add_setshow_string_noescape_cmd ("extension-language", class_files,
4167 &ext_args, _("\
4168Set mapping between filename extension and source language."), _("\
4169Show mapping between filename extension and source language."), _("\
4170Usage: set extension-language .foo bar"),
4171 set_ext_lang_command,
920d2a44 4172 show_ext_args,
26c41df3 4173 &setlist, &showlist);
c906108c 4174
c5aa993b 4175 add_info ("extensions", info_ext_lang_command,
1bedd215 4176 _("All filename extensions associated with a source language."));
917317f4 4177
525226b5
AC
4178 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4179 &debug_file_directory, _("\
4180Set the directory where separate debug symbols are searched for."), _("\
4181Show the directory where separate debug symbols are searched for."), _("\
4182Separate debug symbols are first searched for in the same\n\
4183directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4184and lastly at the path of the directory of the binary with\n\
4185the global debug-file directory prepended."),
4186 NULL,
920d2a44 4187 show_debug_file_directory,
525226b5 4188 &setlist, &showlist);
c906108c 4189}
This page took 1.07314 seconds and 4 git commands to generate.