2009-07-22 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
0542c86d
PA
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
62557bbc
KB
374{
375 struct section_addr_info *sap;
0542c86d 376 const struct target_section *stp;
62557bbc
KB
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
2c0b251b 484static void
c1bd25fd
DJ
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820 744
7eedccfa
PP
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
c906108c
SS
748
749void
7e8580c1
JB
750syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
7eedccfa 754 int add_flags)
c906108c 755{
a39a16c4 756 struct section_addr_info *local_addr = NULL;
c906108c 757 struct cleanup *old_chain;
7eedccfa 758 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 759
7e8580c1 760 gdb_assert (! (addrs && offsets));
2acceee2 761
c906108c 762 init_entry_point_info (objfile);
31d99776 763 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 764
75245b24
MS
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
c906108c
SS
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
74b7792f 770 old_chain = make_cleanup_free_objfile (objfile);
c906108c 771
a39a16c4
MM
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
5417f6dc 777 local_addr
a39a16c4
MM
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
c5aa993b 785 if (mainline)
c906108c
SS
786 {
787 /* We will modify the main symbol table, make sure that all its users
c5aa993b 788 will be cleaned up if an error occurs during symbol reading. */
74b7792f 789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
c906108c 803
c5aa993b 804 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
53a5351d 809 and assume that <addr> is where that got loaded.
c906108c 810
53a5351d
JM
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
1549f619 813 if (!mainline && addrs && addrs->other[0].name)
c906108c 814 {
1549f619
EZ
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
5417f6dc 820 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
c906108c 825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 826 &lower_sect);
2acceee2 827 if (lower_sect == NULL)
ff8e85c3
PA
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
2acceee2 833 else
ff8e85c3 834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 835
13de58df 836 /* Calculate offsets for the loadable sections.
2acceee2
JM
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
5417f6dc 839
13de58df
JB
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
2acceee2
JM
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
1549f619 846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
8a3fe4f8 862 warning (_("section %s not found in %s"),
5417f6dc 863 addrs->other[i].name,
7e8580c1
JB
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
c906108c
SS
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
c5aa993b 877 (*objfile->sf->sym_init) (objfile);
7eedccfa 878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 879
7e8580c1
JB
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
8b92e4d5 890 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
c906108c 895
96baa820 896 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 897
c906108c
SS
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
f7545552 901 xfree (local_addr);
c906108c
SS
902}
903
904/* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
c5aa993b 907
c906108c 908void
7eedccfa 909new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
910{
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
7eedccfa 915 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
7eedccfa 922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 923 {
69de3c6a 924 breakpoint_re_set ();
c906108c
SS
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
929}
930
931/* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
5417f6dc
RM
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
7904e09f 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 943
c906108c
SS
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
7eedccfa 946
7904e09f 947static struct objfile *
7eedccfa
PP
948symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
7904e09f
JB
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
7eedccfa 953 int flags)
c906108c
SS
954{
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
77069918 957 char *debugfile = NULL;
7b90c3f9 958 struct section_addr_info *orig_addrs = NULL;
a39a16c4 959 struct cleanup *my_cleanups;
5417f6dc 960 const char *name = bfd_get_filename (abfd);
7eedccfa 961 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 962
5417f6dc 963 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 964
5417f6dc
RM
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
c906108c
SS
967
968 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 969 && (add_flags & SYMFILE_MAINLINE)
c906108c 970 && from_tty
9e2f0ad4 971 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 972 error (_("Not confirmed."));
c906108c 973
2df3850c 974 objfile = allocate_objfile (abfd, flags);
5417f6dc 975 discard_cleanups (my_cleanups);
c906108c 976
a39a16c4 977 if (addrs)
63cd24fe 978 {
7b90c3f9
JB
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 981 }
a39a16c4 982
78a4a9b9
AC
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
c906108c 987 {
769d7dc4
AC
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
78a4a9b9 990 else
c906108c 991 {
bf250677
DE
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
c906108c 998 }
c906108c 999 }
78a4a9b9 1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1001 add_flags);
c906108c
SS
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
2acceee2 1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1009 {
bf250677 1010 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1011 {
a3f17187 1012 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
c5aa993b 1017 for (psymtab = objfile->psymtabs;
c906108c 1018 psymtab != NULL;
c5aa993b 1019 psymtab = psymtab->next)
c906108c
SS
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
77069918
JK
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1030 if (debugfile)
1031 {
5b5d99cf
JB
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
7eedccfa 1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
7eedccfa 1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
5417f6dc 1044
5b5d99cf
JB
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1048
5b5d99cf
JB
1049 xfree (debugfile);
1050 }
5417f6dc 1051
bf250677
DE
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
cb3c37b2
JB
1054 {
1055 wrap_here ("");
d4c0a7a0 1056 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1057 if (from_tty || info_verbose)
d4c0a7a0 1058 printf_unfiltered ("...");
8f5ba92b 1059 else
d4c0a7a0 1060 printf_unfiltered ("\n");
cb3c37b2
JB
1061 wrap_here ("");
1062 }
1063
c906108c
SS
1064 if (from_tty || info_verbose)
1065 {
769d7dc4
AC
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
c906108c 1068 else
c5aa993b 1069 {
bf250677
DE
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
c5aa993b 1072 }
c906108c
SS
1073 }
1074
481d0f41
JB
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
a39a16c4
MM
1080 do_cleanups (my_cleanups);
1081
109f874e
MS
1082 if (objfile->sf == NULL)
1083 return objfile; /* No symbols. */
1084
7eedccfa 1085 new_symfile_objfile (objfile, add_flags);
c906108c 1086
06d3b283 1087 observer_notify_new_objfile (objfile);
c906108c 1088
ce7d4522 1089 bfd_cache_close_all ();
c906108c
SS
1090 return (objfile);
1091}
1092
7904e09f 1093
eb4556d7
JB
1094/* Process the symbol file ABFD, as either the main file or as a
1095 dynamically loaded file.
1096
1097 See symbol_file_add_with_addrs_or_offsets's comments for
1098 details. */
1099struct objfile *
7eedccfa 1100symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1101 struct section_addr_info *addrs,
7eedccfa 1102 int flags)
eb4556d7 1103{
7eedccfa
PP
1104 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1105 flags);
eb4556d7
JB
1106}
1107
1108
7904e09f
JB
1109/* Process a symbol file, as either the main file or as a dynamically
1110 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1111 for details. */
1112struct objfile *
7eedccfa
PP
1113symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1114 int flags)
7904e09f 1115{
7eedccfa
PP
1116 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1117 flags);
7904e09f
JB
1118}
1119
1120
d7db6da9
FN
1121/* Call symbol_file_add() with default values and update whatever is
1122 affected by the loading of a new main().
1123 Used when the file is supplied in the gdb command line
1124 and by some targets with special loading requirements.
1125 The auxiliary function, symbol_file_add_main_1(), has the flags
1126 argument for the switches that can only be specified in the symbol_file
1127 command itself. */
5417f6dc 1128
1adeb98a
FN
1129void
1130symbol_file_add_main (char *args, int from_tty)
1131{
d7db6da9
FN
1132 symbol_file_add_main_1 (args, from_tty, 0);
1133}
1134
1135static void
1136symbol_file_add_main_1 (char *args, int from_tty, int flags)
1137{
7eedccfa
PP
1138 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1139 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1140
d7db6da9
FN
1141 /* Getting new symbols may change our opinion about
1142 what is frameless. */
1143 reinit_frame_cache ();
1144
1145 set_initial_language ();
1adeb98a
FN
1146}
1147
1148void
1149symbol_file_clear (int from_tty)
1150{
1151 if ((have_full_symbols () || have_partial_symbols ())
1152 && from_tty
0430b0d6
AS
1153 && (symfile_objfile
1154 ? !query (_("Discard symbol table from `%s'? "),
1155 symfile_objfile->name)
1156 : !query (_("Discard symbol table? "))))
8a3fe4f8 1157 error (_("Not confirmed."));
1adeb98a 1158
d10c338d 1159 free_all_objfiles ();
1adeb98a 1160
d10c338d
DE
1161 /* solib descriptors may have handles to objfiles. Since their
1162 storage has just been released, we'd better wipe the solib
1163 descriptors as well. */
1164 no_shared_libraries (NULL, from_tty);
1165
1166 symfile_objfile = NULL;
1167 if (from_tty)
1168 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1169}
1170
77069918
JK
1171struct build_id
1172 {
1173 size_t size;
1174 gdb_byte data[1];
1175 };
1176
1177/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1178
1179static struct build_id *
1180build_id_bfd_get (bfd *abfd)
1181{
1182 struct build_id *retval;
1183
1184 if (!bfd_check_format (abfd, bfd_object)
1185 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1186 || elf_tdata (abfd)->build_id == NULL)
1187 return NULL;
1188
1189 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1190 retval->size = elf_tdata (abfd)->build_id_size;
1191 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1192
1193 return retval;
1194}
1195
1196/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1197
1198static int
1199build_id_verify (const char *filename, struct build_id *check)
1200{
1201 bfd *abfd;
1202 struct build_id *found = NULL;
1203 int retval = 0;
1204
1205 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1206 if (remote_filename_p (filename))
1207 abfd = remote_bfd_open (filename, gnutarget);
1208 else
1209 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1210 if (abfd == NULL)
1211 return 0;
1212
1213 found = build_id_bfd_get (abfd);
1214
1215 if (found == NULL)
1216 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1217 else if (found->size != check->size
1218 || memcmp (found->data, check->data, found->size) != 0)
1219 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1220 else
1221 retval = 1;
1222
1223 if (!bfd_close (abfd))
1224 warning (_("cannot close \"%s\": %s"), filename,
1225 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1226
1227 xfree (found);
1228
77069918
JK
1229 return retval;
1230}
1231
1232static char *
1233build_id_to_debug_filename (struct build_id *build_id)
1234{
1235 char *link, *s, *retval = NULL;
1236 gdb_byte *data = build_id->data;
1237 size_t size = build_id->size;
1238
1239 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1240 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1241 + 2 * size + (sizeof ".debug" - 1) + 1);
1242 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1243 if (size > 0)
1244 {
1245 size--;
1246 s += sprintf (s, "%02x", (unsigned) *data++);
1247 }
1248 if (size > 0)
1249 *s++ = '/';
1250 while (size-- > 0)
1251 s += sprintf (s, "%02x", (unsigned) *data++);
1252 strcpy (s, ".debug");
1253
1254 /* lrealpath() is expensive even for the usually non-existent files. */
1255 if (access (link, F_OK) == 0)
1256 retval = lrealpath (link);
1257 xfree (link);
1258
1259 if (retval != NULL && !build_id_verify (retval, build_id))
1260 {
1261 xfree (retval);
1262 retval = NULL;
1263 }
1264
1265 return retval;
1266}
1267
5b5d99cf
JB
1268static char *
1269get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270{
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
1276 unsigned char *p;
5417f6dc 1277
5b5d99cf
JB
1278 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1279
1280 if (sect == NULL)
1281 return NULL;
1282
1283 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1284
5b5d99cf
JB
1285 contents = xmalloc (debuglink_size);
1286 bfd_get_section_contents (objfile->obfd, sect, contents,
1287 (file_ptr)0, (bfd_size_type)debuglink_size);
1288
1289 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1290 crc_offset = strlen (contents) + 1;
1291 crc_offset = (crc_offset + 3) & ~3;
1292
1293 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1294
5b5d99cf
JB
1295 *crc32_out = crc32;
1296 return contents;
1297}
1298
1299static int
1300separate_debug_file_exists (const char *name, unsigned long crc)
1301{
1302 unsigned long file_crc = 0;
f1838a98 1303 bfd *abfd;
777ea8f1 1304 gdb_byte buffer[8*1024];
5b5d99cf
JB
1305 int count;
1306
f1838a98
UW
1307 if (remote_filename_p (name))
1308 abfd = remote_bfd_open (name, gnutarget);
1309 else
1310 abfd = bfd_openr (name, gnutarget);
1311
1312 if (!abfd)
5b5d99cf
JB
1313 return 0;
1314
f1838a98 1315 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1316 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1317
f1838a98 1318 bfd_close (abfd);
5b5d99cf
JB
1319
1320 return crc == file_crc;
1321}
1322
aa28a74e 1323char *debug_file_directory = NULL;
920d2a44
AC
1324static void
1325show_debug_file_directory (struct ui_file *file, int from_tty,
1326 struct cmd_list_element *c, const char *value)
1327{
1328 fprintf_filtered (file, _("\
1329The directory where separate debug symbols are searched for is \"%s\".\n"),
1330 value);
1331}
5b5d99cf
JB
1332
1333#if ! defined (DEBUG_SUBDIRECTORY)
1334#define DEBUG_SUBDIRECTORY ".debug"
1335#endif
1336
1337static char *
1338find_separate_debug_file (struct objfile *objfile)
1339{
1340 asection *sect;
1341 char *basename;
1342 char *dir;
1343 char *debugfile;
1344 char *name_copy;
aa28a74e 1345 char *canon_name;
5b5d99cf
JB
1346 bfd_size_type debuglink_size;
1347 unsigned long crc32;
1348 int i;
77069918
JK
1349 struct build_id *build_id;
1350
1351 build_id = build_id_bfd_get (objfile->obfd);
1352 if (build_id != NULL)
1353 {
1354 char *build_id_name;
1355
1356 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1357 xfree (build_id);
77069918
JK
1358 /* Prevent looping on a stripped .debug file. */
1359 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1360 {
1361 warning (_("\"%s\": separate debug info file has no debug info"),
1362 build_id_name);
1363 xfree (build_id_name);
1364 }
1365 else if (build_id_name != NULL)
1366 return build_id_name;
1367 }
5b5d99cf
JB
1368
1369 basename = get_debug_link_info (objfile, &crc32);
1370
1371 if (basename == NULL)
1372 return NULL;
5417f6dc 1373
5b5d99cf
JB
1374 dir = xstrdup (objfile->name);
1375
fe36c4f4
JB
1376 /* Strip off the final filename part, leaving the directory name,
1377 followed by a slash. Objfile names should always be absolute and
1378 tilde-expanded, so there should always be a slash in there
1379 somewhere. */
5b5d99cf
JB
1380 for (i = strlen(dir) - 1; i >= 0; i--)
1381 {
1382 if (IS_DIR_SEPARATOR (dir[i]))
1383 break;
1384 }
fe36c4f4 1385 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1386 dir[i+1] = '\0';
5417f6dc 1387
5b5d99cf
JB
1388 debugfile = alloca (strlen (debug_file_directory) + 1
1389 + strlen (dir)
1390 + strlen (DEBUG_SUBDIRECTORY)
1391 + strlen ("/")
5417f6dc 1392 + strlen (basename)
5b5d99cf
JB
1393 + 1);
1394
1395 /* First try in the same directory as the original file. */
1396 strcpy (debugfile, dir);
1397 strcat (debugfile, basename);
1398
1399 if (separate_debug_file_exists (debugfile, crc32))
1400 {
1401 xfree (basename);
1402 xfree (dir);
1403 return xstrdup (debugfile);
1404 }
5417f6dc 1405
5b5d99cf
JB
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, basename);
1411
1412 if (separate_debug_file_exists (debugfile, crc32))
1413 {
1414 xfree (basename);
1415 xfree (dir);
1416 return xstrdup (debugfile);
1417 }
5417f6dc 1418
5b5d99cf
JB
1419 /* Then try in the global debugfile directory. */
1420 strcpy (debugfile, debug_file_directory);
1421 strcat (debugfile, "/");
1422 strcat (debugfile, dir);
5b5d99cf
JB
1423 strcat (debugfile, basename);
1424
1425 if (separate_debug_file_exists (debugfile, crc32))
1426 {
1427 xfree (basename);
1428 xfree (dir);
1429 return xstrdup (debugfile);
1430 }
5417f6dc 1431
aa28a74e
DJ
1432 /* If the file is in the sysroot, try using its base path in the
1433 global debugfile directory. */
1434 canon_name = lrealpath (dir);
1435 if (canon_name
1436 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1437 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1438 {
1439 strcpy (debugfile, debug_file_directory);
1440 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
1444 if (separate_debug_file_exists (debugfile, crc32))
1445 {
1446 xfree (canon_name);
1447 xfree (basename);
1448 xfree (dir);
1449 return xstrdup (debugfile);
1450 }
1451 }
1452
1453 if (canon_name)
1454 xfree (canon_name);
1455
5b5d99cf
JB
1456 xfree (basename);
1457 xfree (dir);
1458 return NULL;
1459}
1460
1461
c906108c
SS
1462/* This is the symbol-file command. Read the file, analyze its
1463 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1464 the command is rather bizarre:
1465
1466 1. The function buildargv implements various quoting conventions
1467 which are undocumented and have little or nothing in common with
1468 the way things are quoted (or not quoted) elsewhere in GDB.
1469
1470 2. Options are used, which are not generally used in GDB (perhaps
1471 "set mapped on", "set readnow on" would be better)
1472
1473 3. The order of options matters, which is contrary to GNU
c906108c
SS
1474 conventions (because it is confusing and inconvenient). */
1475
1476void
fba45db2 1477symbol_file_command (char *args, int from_tty)
c906108c 1478{
c906108c
SS
1479 dont_repeat ();
1480
1481 if (args == NULL)
1482 {
1adeb98a 1483 symbol_file_clear (from_tty);
c906108c
SS
1484 }
1485 else
1486 {
d1a41061 1487 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1488 int flags = OBJF_USERLOADED;
1489 struct cleanup *cleanups;
1490 char *name = NULL;
1491
7a292a7a 1492 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1493 while (*argv != NULL)
1494 {
78a4a9b9
AC
1495 if (strcmp (*argv, "-readnow") == 0)
1496 flags |= OBJF_READNOW;
1497 else if (**argv == '-')
8a3fe4f8 1498 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1499 else
1500 {
cb2f3a29 1501 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1502 name = *argv;
78a4a9b9 1503 }
cb2f3a29 1504
c906108c
SS
1505 argv++;
1506 }
1507
1508 if (name == NULL)
cb2f3a29
MK
1509 error (_("no symbol file name was specified"));
1510
c906108c
SS
1511 do_cleanups (cleanups);
1512 }
1513}
1514
1515/* Set the initial language.
1516
cb2f3a29
MK
1517 FIXME: A better solution would be to record the language in the
1518 psymtab when reading partial symbols, and then use it (if known) to
1519 set the language. This would be a win for formats that encode the
1520 language in an easily discoverable place, such as DWARF. For
1521 stabs, we can jump through hoops looking for specially named
1522 symbols or try to intuit the language from the specific type of
1523 stabs we find, but we can't do that until later when we read in
1524 full symbols. */
c906108c 1525
8b60591b 1526void
fba45db2 1527set_initial_language (void)
c906108c
SS
1528{
1529 struct partial_symtab *pst;
c5aa993b 1530 enum language lang = language_unknown;
c906108c
SS
1531
1532 pst = find_main_psymtab ();
1533 if (pst != NULL)
1534 {
c5aa993b 1535 if (pst->filename != NULL)
cb2f3a29
MK
1536 lang = deduce_language_from_filename (pst->filename);
1537
c906108c
SS
1538 if (lang == language_unknown)
1539 {
c5aa993b
JM
1540 /* Make C the default language */
1541 lang = language_c;
c906108c 1542 }
cb2f3a29 1543
c906108c 1544 set_language (lang);
cb2f3a29 1545 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1546 }
1547}
1548
cb2f3a29
MK
1549/* Open the file specified by NAME and hand it off to BFD for
1550 preliminary analysis. Return a newly initialized bfd *, which
1551 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1552 absolute). In case of trouble, error() is called. */
c906108c
SS
1553
1554bfd *
fba45db2 1555symfile_bfd_open (char *name)
c906108c
SS
1556{
1557 bfd *sym_bfd;
1558 int desc;
1559 char *absolute_name;
1560
f1838a98
UW
1561 if (remote_filename_p (name))
1562 {
1563 name = xstrdup (name);
1564 sym_bfd = remote_bfd_open (name, gnutarget);
1565 if (!sym_bfd)
1566 {
1567 make_cleanup (xfree, name);
1568 error (_("`%s': can't open to read symbols: %s."), name,
1569 bfd_errmsg (bfd_get_error ()));
1570 }
1571
1572 if (!bfd_check_format (sym_bfd, bfd_object))
1573 {
1574 bfd_close (sym_bfd);
1575 make_cleanup (xfree, name);
1576 error (_("`%s': can't read symbols: %s."), name,
1577 bfd_errmsg (bfd_get_error ()));
1578 }
1579
1580 return sym_bfd;
1581 }
1582
cb2f3a29 1583 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1584
1585 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1586 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1587 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1588#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1589 if (desc < 0)
1590 {
1591 char *exename = alloca (strlen (name) + 5);
1592 strcat (strcpy (exename, name), ".exe");
014d698b 1593 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1594 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1595 }
1596#endif
1597 if (desc < 0)
1598 {
b8c9b27d 1599 make_cleanup (xfree, name);
c906108c
SS
1600 perror_with_name (name);
1601 }
cb2f3a29
MK
1602
1603 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1604 bfd. It'll be freed in free_objfile(). */
1605 xfree (name);
1606 name = absolute_name;
c906108c 1607
9f76c2cd 1608 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1609 if (!sym_bfd)
1610 {
1611 close (desc);
b8c9b27d 1612 make_cleanup (xfree, name);
f1838a98 1613 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1614 bfd_errmsg (bfd_get_error ()));
1615 }
549c1eea 1616 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1617
1618 if (!bfd_check_format (sym_bfd, bfd_object))
1619 {
cb2f3a29
MK
1620 /* FIXME: should be checking for errors from bfd_close (for one
1621 thing, on error it does not free all the storage associated
1622 with the bfd). */
1623 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1624 make_cleanup (xfree, name);
f1838a98 1625 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1626 bfd_errmsg (bfd_get_error ()));
1627 }
cb2f3a29
MK
1628
1629 return sym_bfd;
c906108c
SS
1630}
1631
cb2f3a29
MK
1632/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1633 the section was not found. */
1634
0e931cf0
JB
1635int
1636get_section_index (struct objfile *objfile, char *section_name)
1637{
1638 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1639
0e931cf0
JB
1640 if (sect)
1641 return sect->index;
1642 else
1643 return -1;
1644}
1645
cb2f3a29
MK
1646/* Link SF into the global symtab_fns list. Called on startup by the
1647 _initialize routine in each object file format reader, to register
1648 information about each format the the reader is prepared to
1649 handle. */
c906108c
SS
1650
1651void
fba45db2 1652add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1653{
1654 sf->next = symtab_fns;
1655 symtab_fns = sf;
1656}
1657
cb2f3a29
MK
1658/* Initialize OBJFILE to read symbols from its associated BFD. It
1659 either returns or calls error(). The result is an initialized
1660 struct sym_fns in the objfile structure, that contains cached
1661 information about the symbol file. */
c906108c 1662
31d99776
DJ
1663static struct sym_fns *
1664find_sym_fns (bfd *abfd)
c906108c
SS
1665{
1666 struct sym_fns *sf;
31d99776 1667 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1668
75245b24
MS
1669 if (our_flavour == bfd_target_srec_flavour
1670 || our_flavour == bfd_target_ihex_flavour
1671 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1672 return NULL; /* No symbols. */
75245b24 1673
c5aa993b 1674 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1675 if (our_flavour == sf->sym_flavour)
1676 return sf;
cb2f3a29 1677
8a3fe4f8 1678 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1679 bfd_get_target (abfd));
c906108c
SS
1680}
1681\f
cb2f3a29 1682
c906108c
SS
1683/* This function runs the load command of our current target. */
1684
1685static void
fba45db2 1686load_command (char *arg, int from_tty)
c906108c 1687{
4487aabf
PA
1688 /* The user might be reloading because the binary has changed. Take
1689 this opportunity to check. */
1690 reopen_exec_file ();
1691 reread_symbols ();
1692
c906108c 1693 if (arg == NULL)
1986bccd
AS
1694 {
1695 char *parg;
1696 int count = 0;
1697
1698 parg = arg = get_exec_file (1);
1699
1700 /* Count how many \ " ' tab space there are in the name. */
1701 while ((parg = strpbrk (parg, "\\\"'\t ")))
1702 {
1703 parg++;
1704 count++;
1705 }
1706
1707 if (count)
1708 {
1709 /* We need to quote this string so buildargv can pull it apart. */
1710 char *temp = xmalloc (strlen (arg) + count + 1 );
1711 char *ptemp = temp;
1712 char *prev;
1713
1714 make_cleanup (xfree, temp);
1715
1716 prev = parg = arg;
1717 while ((parg = strpbrk (parg, "\\\"'\t ")))
1718 {
1719 strncpy (ptemp, prev, parg - prev);
1720 ptemp += parg - prev;
1721 prev = parg++;
1722 *ptemp++ = '\\';
1723 }
1724 strcpy (ptemp, prev);
1725
1726 arg = temp;
1727 }
1728 }
1729
c906108c 1730 target_load (arg, from_tty);
2889e661
JB
1731
1732 /* After re-loading the executable, we don't really know which
1733 overlays are mapped any more. */
1734 overlay_cache_invalid = 1;
c906108c
SS
1735}
1736
1737/* This version of "load" should be usable for any target. Currently
1738 it is just used for remote targets, not inftarg.c or core files,
1739 on the theory that only in that case is it useful.
1740
1741 Avoiding xmodem and the like seems like a win (a) because we don't have
1742 to worry about finding it, and (b) On VMS, fork() is very slow and so
1743 we don't want to run a subprocess. On the other hand, I'm not sure how
1744 performance compares. */
917317f4 1745
917317f4
JM
1746static int validate_download = 0;
1747
e4f9b4d5
MS
1748/* Callback service function for generic_load (bfd_map_over_sections). */
1749
1750static void
1751add_section_size_callback (bfd *abfd, asection *asec, void *data)
1752{
1753 bfd_size_type *sum = data;
1754
2c500098 1755 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1756}
1757
1758/* Opaque data for load_section_callback. */
1759struct load_section_data {
1760 unsigned long load_offset;
a76d924d
DJ
1761 struct load_progress_data *progress_data;
1762 VEC(memory_write_request_s) *requests;
1763};
1764
1765/* Opaque data for load_progress. */
1766struct load_progress_data {
1767 /* Cumulative data. */
e4f9b4d5
MS
1768 unsigned long write_count;
1769 unsigned long data_count;
1770 bfd_size_type total_size;
a76d924d
DJ
1771};
1772
1773/* Opaque data for load_progress for a single section. */
1774struct load_progress_section_data {
1775 struct load_progress_data *cumulative;
cf7a04e8 1776
a76d924d 1777 /* Per-section data. */
cf7a04e8
DJ
1778 const char *section_name;
1779 ULONGEST section_sent;
1780 ULONGEST section_size;
1781 CORE_ADDR lma;
1782 gdb_byte *buffer;
e4f9b4d5
MS
1783};
1784
a76d924d 1785/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1786
1787static void
1788load_progress (ULONGEST bytes, void *untyped_arg)
1789{
a76d924d
DJ
1790 struct load_progress_section_data *args = untyped_arg;
1791 struct load_progress_data *totals;
1792
1793 if (args == NULL)
1794 /* Writing padding data. No easy way to get at the cumulative
1795 stats, so just ignore this. */
1796 return;
1797
1798 totals = args->cumulative;
1799
1800 if (bytes == 0 && args->section_sent == 0)
1801 {
1802 /* The write is just starting. Let the user know we've started
1803 this section. */
5af949e3
UW
1804 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1805 args->section_name, hex_string (args->section_size),
1806 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1807 return;
1808 }
cf7a04e8
DJ
1809
1810 if (validate_download)
1811 {
1812 /* Broken memories and broken monitors manifest themselves here
1813 when bring new computers to life. This doubles already slow
1814 downloads. */
1815 /* NOTE: cagney/1999-10-18: A more efficient implementation
1816 might add a verify_memory() method to the target vector and
1817 then use that. remote.c could implement that method using
1818 the ``qCRC'' packet. */
1819 gdb_byte *check = xmalloc (bytes);
1820 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1821
1822 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1823 error (_("Download verify read failed at %s"),
1824 paddress (target_gdbarch, args->lma));
cf7a04e8 1825 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1826 error (_("Download verify compare failed at %s"),
1827 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1828 do_cleanups (verify_cleanups);
1829 }
a76d924d 1830 totals->data_count += bytes;
cf7a04e8
DJ
1831 args->lma += bytes;
1832 args->buffer += bytes;
a76d924d 1833 totals->write_count += 1;
cf7a04e8
DJ
1834 args->section_sent += bytes;
1835 if (quit_flag
1836 || (deprecated_ui_load_progress_hook != NULL
1837 && deprecated_ui_load_progress_hook (args->section_name,
1838 args->section_sent)))
1839 error (_("Canceled the download"));
1840
1841 if (deprecated_show_load_progress != NULL)
1842 deprecated_show_load_progress (args->section_name,
1843 args->section_sent,
1844 args->section_size,
a76d924d
DJ
1845 totals->data_count,
1846 totals->total_size);
cf7a04e8
DJ
1847}
1848
e4f9b4d5
MS
1849/* Callback service function for generic_load (bfd_map_over_sections). */
1850
1851static void
1852load_section_callback (bfd *abfd, asection *asec, void *data)
1853{
a76d924d 1854 struct memory_write_request *new_request;
e4f9b4d5 1855 struct load_section_data *args = data;
a76d924d 1856 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1857 bfd_size_type size = bfd_get_section_size (asec);
1858 gdb_byte *buffer;
cf7a04e8 1859 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1860
cf7a04e8
DJ
1861 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1862 return;
e4f9b4d5 1863
cf7a04e8
DJ
1864 if (size == 0)
1865 return;
e4f9b4d5 1866
a76d924d
DJ
1867 new_request = VEC_safe_push (memory_write_request_s,
1868 args->requests, NULL);
1869 memset (new_request, 0, sizeof (struct memory_write_request));
1870 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1871 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1872 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1873 new_request->data = xmalloc (size);
1874 new_request->baton = section_data;
cf7a04e8 1875
a76d924d 1876 buffer = new_request->data;
cf7a04e8 1877
a76d924d
DJ
1878 section_data->cumulative = args->progress_data;
1879 section_data->section_name = sect_name;
1880 section_data->section_size = size;
1881 section_data->lma = new_request->begin;
1882 section_data->buffer = buffer;
cf7a04e8
DJ
1883
1884 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1885}
1886
1887/* Clean up an entire memory request vector, including load
1888 data and progress records. */
cf7a04e8 1889
a76d924d
DJ
1890static void
1891clear_memory_write_data (void *arg)
1892{
1893 VEC(memory_write_request_s) **vec_p = arg;
1894 VEC(memory_write_request_s) *vec = *vec_p;
1895 int i;
1896 struct memory_write_request *mr;
cf7a04e8 1897
a76d924d
DJ
1898 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1899 {
1900 xfree (mr->data);
1901 xfree (mr->baton);
1902 }
1903 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1904}
1905
c906108c 1906void
917317f4 1907generic_load (char *args, int from_tty)
c906108c 1908{
c906108c 1909 bfd *loadfile_bfd;
2b71414d 1910 struct timeval start_time, end_time;
917317f4 1911 char *filename;
1986bccd 1912 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1913 struct load_section_data cbdata;
a76d924d
DJ
1914 struct load_progress_data total_progress;
1915
e4f9b4d5 1916 CORE_ADDR entry;
1986bccd 1917 char **argv;
e4f9b4d5 1918
a76d924d
DJ
1919 memset (&cbdata, 0, sizeof (cbdata));
1920 memset (&total_progress, 0, sizeof (total_progress));
1921 cbdata.progress_data = &total_progress;
1922
1923 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1924
d1a41061
PP
1925 if (args == NULL)
1926 error_no_arg (_("file to load"));
1986bccd 1927
d1a41061 1928 argv = gdb_buildargv (args);
1986bccd
AS
1929 make_cleanup_freeargv (argv);
1930
1931 filename = tilde_expand (argv[0]);
1932 make_cleanup (xfree, filename);
1933
1934 if (argv[1] != NULL)
917317f4
JM
1935 {
1936 char *endptr;
ba5f2f8a 1937
1986bccd
AS
1938 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1939
1940 /* If the last word was not a valid number then
1941 treat it as a file name with spaces in. */
1942 if (argv[1] == endptr)
1943 error (_("Invalid download offset:%s."), argv[1]);
1944
1945 if (argv[2] != NULL)
1946 error (_("Too many parameters."));
917317f4 1947 }
c906108c 1948
917317f4 1949 /* Open the file for loading. */
c906108c
SS
1950 loadfile_bfd = bfd_openr (filename, gnutarget);
1951 if (loadfile_bfd == NULL)
1952 {
1953 perror_with_name (filename);
1954 return;
1955 }
917317f4 1956
c906108c
SS
1957 /* FIXME: should be checking for errors from bfd_close (for one thing,
1958 on error it does not free all the storage associated with the
1959 bfd). */
5c65bbb6 1960 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1961
c5aa993b 1962 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1963 {
8a3fe4f8 1964 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1965 bfd_errmsg (bfd_get_error ()));
1966 }
c5aa993b 1967
5417f6dc 1968 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1969 (void *) &total_progress.total_size);
1970
1971 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1972
2b71414d 1973 gettimeofday (&start_time, NULL);
c906108c 1974
a76d924d
DJ
1975 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1976 load_progress) != 0)
1977 error (_("Load failed"));
c906108c 1978
2b71414d 1979 gettimeofday (&end_time, NULL);
ba5f2f8a 1980
e4f9b4d5 1981 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 1982 ui_out_text (uiout, "Start address ");
5af949e3 1983 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 1984 ui_out_text (uiout, ", load size ");
a76d924d 1985 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1986 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1987 /* We were doing this in remote-mips.c, I suspect it is right
1988 for other targets too. */
fb14de7b 1989 regcache_write_pc (get_current_regcache (), entry);
c906108c 1990
7ca9f392
AC
1991 /* FIXME: are we supposed to call symbol_file_add or not? According
1992 to a comment from remote-mips.c (where a call to symbol_file_add
1993 was commented out), making the call confuses GDB if more than one
1994 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1995 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1996
a76d924d
DJ
1997 print_transfer_performance (gdb_stdout, total_progress.data_count,
1998 total_progress.write_count,
1999 &start_time, &end_time);
c906108c
SS
2000
2001 do_cleanups (old_cleanups);
2002}
2003
2004/* Report how fast the transfer went. */
2005
917317f4
JM
2006/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2007 replaced by print_transfer_performance (with a very different
2008 function signature). */
2009
c906108c 2010void
fba45db2
KB
2011report_transfer_performance (unsigned long data_count, time_t start_time,
2012 time_t end_time)
c906108c 2013{
2b71414d
DJ
2014 struct timeval start, end;
2015
2016 start.tv_sec = start_time;
2017 start.tv_usec = 0;
2018 end.tv_sec = end_time;
2019 end.tv_usec = 0;
2020
2021 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2022}
2023
2024void
d9fcf2fb 2025print_transfer_performance (struct ui_file *stream,
917317f4
JM
2026 unsigned long data_count,
2027 unsigned long write_count,
2b71414d
DJ
2028 const struct timeval *start_time,
2029 const struct timeval *end_time)
917317f4 2030{
9f43d28c 2031 ULONGEST time_count;
2b71414d
DJ
2032
2033 /* Compute the elapsed time in milliseconds, as a tradeoff between
2034 accuracy and overflow. */
2035 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2036 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2037
8b93c638
JM
2038 ui_out_text (uiout, "Transfer rate: ");
2039 if (time_count > 0)
2040 {
9f43d28c
DJ
2041 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2042
2043 if (ui_out_is_mi_like_p (uiout))
2044 {
2045 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2046 ui_out_text (uiout, " bits/sec");
2047 }
2048 else if (rate < 1024)
2049 {
2050 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2051 ui_out_text (uiout, " bytes/sec");
2052 }
2053 else
2054 {
2055 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2056 ui_out_text (uiout, " KB/sec");
2057 }
8b93c638
JM
2058 }
2059 else
2060 {
ba5f2f8a 2061 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2062 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2063 }
2064 if (write_count > 0)
2065 {
2066 ui_out_text (uiout, ", ");
ba5f2f8a 2067 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2068 ui_out_text (uiout, " bytes/write");
2069 }
2070 ui_out_text (uiout, ".\n");
c906108c
SS
2071}
2072
2073/* This function allows the addition of incrementally linked object files.
2074 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2075/* Note: ezannoni 2000-04-13 This function/command used to have a
2076 special case syntax for the rombug target (Rombug is the boot
2077 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2078 rombug case, the user doesn't need to supply a text address,
2079 instead a call to target_link() (in target.c) would supply the
2080 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2081
c906108c 2082static void
fba45db2 2083add_symbol_file_command (char *args, int from_tty)
c906108c 2084{
5af949e3 2085 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2086 char *filename = NULL;
2df3850c 2087 int flags = OBJF_USERLOADED;
c906108c 2088 char *arg;
2acceee2 2089 int expecting_option = 0;
db162d44 2090 int section_index = 0;
2acceee2
JM
2091 int argcnt = 0;
2092 int sec_num = 0;
2093 int i;
db162d44
EZ
2094 int expecting_sec_name = 0;
2095 int expecting_sec_addr = 0;
5b96932b 2096 char **argv;
db162d44 2097
a39a16c4 2098 struct sect_opt
2acceee2 2099 {
2acceee2
JM
2100 char *name;
2101 char *value;
a39a16c4 2102 };
db162d44 2103
a39a16c4
MM
2104 struct section_addr_info *section_addrs;
2105 struct sect_opt *sect_opts = NULL;
2106 size_t num_sect_opts = 0;
3017564a 2107 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2108
a39a16c4 2109 num_sect_opts = 16;
5417f6dc 2110 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2111 * sizeof (struct sect_opt));
2112
c906108c
SS
2113 dont_repeat ();
2114
2115 if (args == NULL)
8a3fe4f8 2116 error (_("add-symbol-file takes a file name and an address"));
c906108c 2117
d1a41061 2118 argv = gdb_buildargv (args);
5b96932b 2119 make_cleanup_freeargv (argv);
db162d44 2120
5b96932b
AS
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2122 {
2123 /* Process the argument. */
db162d44 2124 if (argcnt == 0)
c906108c 2125 {
db162d44
EZ
2126 /* The first argument is the file name. */
2127 filename = tilde_expand (arg);
3017564a 2128 make_cleanup (xfree, filename);
c906108c 2129 }
db162d44 2130 else
7a78ae4e
ND
2131 if (argcnt == 1)
2132 {
2133 /* The second argument is always the text address at which
2134 to load the program. */
2135 sect_opts[section_index].name = ".text";
2136 sect_opts[section_index].value = arg;
f414f22f 2137 if (++section_index >= num_sect_opts)
a39a16c4
MM
2138 {
2139 num_sect_opts *= 2;
5417f6dc 2140 sect_opts = ((struct sect_opt *)
a39a16c4 2141 xrealloc (sect_opts,
5417f6dc 2142 num_sect_opts
a39a16c4
MM
2143 * sizeof (struct sect_opt)));
2144 }
7a78ae4e
ND
2145 }
2146 else
2147 {
2148 /* It's an option (starting with '-') or it's an argument
2149 to an option */
2150
2151 if (*arg == '-')
2152 {
78a4a9b9
AC
2153 if (strcmp (arg, "-readnow") == 0)
2154 flags |= OBJF_READNOW;
2155 else if (strcmp (arg, "-s") == 0)
2156 {
2157 expecting_sec_name = 1;
2158 expecting_sec_addr = 1;
2159 }
7a78ae4e
ND
2160 }
2161 else
2162 {
2163 if (expecting_sec_name)
db162d44 2164 {
7a78ae4e
ND
2165 sect_opts[section_index].name = arg;
2166 expecting_sec_name = 0;
db162d44
EZ
2167 }
2168 else
7a78ae4e
ND
2169 if (expecting_sec_addr)
2170 {
2171 sect_opts[section_index].value = arg;
2172 expecting_sec_addr = 0;
f414f22f 2173 if (++section_index >= num_sect_opts)
a39a16c4
MM
2174 {
2175 num_sect_opts *= 2;
5417f6dc 2176 sect_opts = ((struct sect_opt *)
a39a16c4 2177 xrealloc (sect_opts,
5417f6dc 2178 num_sect_opts
a39a16c4
MM
2179 * sizeof (struct sect_opt)));
2180 }
7a78ae4e
ND
2181 }
2182 else
8a3fe4f8 2183 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2184 }
2185 }
c906108c 2186 }
c906108c 2187
927890d0
JB
2188 /* This command takes at least two arguments. The first one is a
2189 filename, and the second is the address where this file has been
2190 loaded. Abort now if this address hasn't been provided by the
2191 user. */
2192 if (section_index < 1)
2193 error (_("The address where %s has been loaded is missing"), filename);
2194
db162d44
EZ
2195 /* Print the prompt for the query below. And save the arguments into
2196 a sect_addr_info structure to be passed around to other
2197 functions. We have to split this up into separate print
bb599908 2198 statements because hex_string returns a local static
db162d44 2199 string. */
5417f6dc 2200
a3f17187 2201 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2202 section_addrs = alloc_section_addr_info (section_index);
2203 make_cleanup (xfree, section_addrs);
db162d44 2204 for (i = 0; i < section_index; i++)
c906108c 2205 {
db162d44
EZ
2206 CORE_ADDR addr;
2207 char *val = sect_opts[i].value;
2208 char *sec = sect_opts[i].name;
5417f6dc 2209
ae822768 2210 addr = parse_and_eval_address (val);
db162d44 2211
db162d44
EZ
2212 /* Here we store the section offsets in the order they were
2213 entered on the command line. */
a39a16c4
MM
2214 section_addrs->other[sec_num].name = sec;
2215 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2216 printf_unfiltered ("\t%s_addr = %s\n", sec,
2217 paddress (gdbarch, addr));
db162d44
EZ
2218 sec_num++;
2219
5417f6dc 2220 /* The object's sections are initialized when a
db162d44 2221 call is made to build_objfile_section_table (objfile).
5417f6dc 2222 This happens in reread_symbols.
db162d44
EZ
2223 At this point, we don't know what file type this is,
2224 so we can't determine what section names are valid. */
2acceee2 2225 }
db162d44 2226
2acceee2 2227 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2228 error (_("Not confirmed."));
c906108c 2229
7eedccfa
PP
2230 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2231 section_addrs, flags);
c906108c
SS
2232
2233 /* Getting new symbols may change our opinion about what is
2234 frameless. */
2235 reinit_frame_cache ();
db162d44 2236 do_cleanups (my_cleanups);
c906108c
SS
2237}
2238\f
70992597 2239
c906108c
SS
2240/* Re-read symbols if a symbol-file has changed. */
2241void
fba45db2 2242reread_symbols (void)
c906108c
SS
2243{
2244 struct objfile *objfile;
2245 long new_modtime;
2246 int reread_one = 0;
2247 struct stat new_statbuf;
2248 int res;
2249
2250 /* With the addition of shared libraries, this should be modified,
2251 the load time should be saved in the partial symbol tables, since
2252 different tables may come from different source files. FIXME.
2253 This routine should then walk down each partial symbol table
2254 and see if the symbol table that it originates from has been changed */
2255
c5aa993b
JM
2256 for (objfile = object_files; objfile; objfile = objfile->next)
2257 {
2258 if (objfile->obfd)
2259 {
52d16ba8 2260#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2261 /* If this object is from a shared library, then you should
2262 stat on the library name, not member name. */
c906108c 2263
c5aa993b
JM
2264 if (objfile->obfd->my_archive)
2265 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2266 else
c906108c 2267#endif
c5aa993b
JM
2268 res = stat (objfile->name, &new_statbuf);
2269 if (res != 0)
c906108c 2270 {
c5aa993b 2271 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2272 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2273 objfile->name);
2274 continue;
c906108c 2275 }
c5aa993b
JM
2276 new_modtime = new_statbuf.st_mtime;
2277 if (new_modtime != objfile->mtime)
c906108c 2278 {
c5aa993b
JM
2279 struct cleanup *old_cleanups;
2280 struct section_offsets *offsets;
2281 int num_offsets;
c5aa993b
JM
2282 char *obfd_filename;
2283
a3f17187 2284 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2285 objfile->name);
2286
2287 /* There are various functions like symbol_file_add,
2288 symfile_bfd_open, syms_from_objfile, etc., which might
2289 appear to do what we want. But they have various other
2290 effects which we *don't* want. So we just do stuff
2291 ourselves. We don't worry about mapped files (for one thing,
2292 any mapped file will be out of date). */
2293
2294 /* If we get an error, blow away this objfile (not sure if
2295 that is the correct response for things like shared
2296 libraries). */
74b7792f 2297 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2298 /* We need to do this whenever any symbols go away. */
74b7792f 2299 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2300
b2de52bb
JK
2301 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2302 bfd_get_filename (exec_bfd)) == 0)
2303 {
2304 /* Reload EXEC_BFD without asking anything. */
2305
2306 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2307 }
2308
c5aa993b
JM
2309 /* Clean up any state BFD has sitting around. We don't need
2310 to close the descriptor but BFD lacks a way of closing the
2311 BFD without closing the descriptor. */
2312 obfd_filename = bfd_get_filename (objfile->obfd);
2313 if (!bfd_close (objfile->obfd))
8a3fe4f8 2314 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2315 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2316 if (remote_filename_p (obfd_filename))
2317 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2318 else
2319 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2320 if (objfile->obfd == NULL)
8a3fe4f8 2321 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2322 /* bfd_openr sets cacheable to true, which is what we want. */
2323 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2324 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2325 bfd_errmsg (bfd_get_error ()));
2326
2327 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2328 objfile_obstack. */
c5aa993b 2329 num_offsets = objfile->num_sections;
5417f6dc 2330 offsets = ((struct section_offsets *)
a39a16c4 2331 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2332 memcpy (offsets, objfile->section_offsets,
a39a16c4 2333 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2334
ae5a43e0
DJ
2335 /* Remove any references to this objfile in the global
2336 value lists. */
2337 preserve_values (objfile);
2338
c5aa993b
JM
2339 /* Nuke all the state that we will re-read. Much of the following
2340 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2341 other parts of GDB that there is nothing currently there.
2342
2343 Try to keep the freeing order compatible with free_objfile. */
2344
2345 if (objfile->sf != NULL)
2346 {
2347 (*objfile->sf->sym_finish) (objfile);
2348 }
2349
2350 clear_objfile_data (objfile);
c5aa993b
JM
2351
2352 /* FIXME: Do we have to free a whole linked list, or is this
2353 enough? */
2354 if (objfile->global_psymbols.list)
2dc74dc1 2355 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2356 memset (&objfile->global_psymbols, 0,
2357 sizeof (objfile->global_psymbols));
2358 if (objfile->static_psymbols.list)
2dc74dc1 2359 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2360 memset (&objfile->static_psymbols, 0,
2361 sizeof (objfile->static_psymbols));
2362
2363 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2364 bcache_xfree (objfile->psymbol_cache);
2365 objfile->psymbol_cache = bcache_xmalloc ();
2366 bcache_xfree (objfile->macro_cache);
2367 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2368 if (objfile->demangled_names_hash != NULL)
2369 {
2370 htab_delete (objfile->demangled_names_hash);
2371 objfile->demangled_names_hash = NULL;
2372 }
b99607ea 2373 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2374 objfile->sections = NULL;
2375 objfile->symtabs = NULL;
2376 objfile->psymtabs = NULL;
930123b7 2377 objfile->psymtabs_addrmap = NULL;
c5aa993b 2378 objfile->free_psymtabs = NULL;
a1b8c067 2379 objfile->cp_namespace_symtab = NULL;
c5aa993b 2380 objfile->msymbols = NULL;
0a6ddd08 2381 objfile->deprecated_sym_private = NULL;
c5aa993b 2382 objfile->minimal_symbol_count = 0;
0a83117a
MS
2383 memset (&objfile->msymbol_hash, 0,
2384 sizeof (objfile->msymbol_hash));
2385 memset (&objfile->msymbol_demangled_hash, 0,
2386 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2387
af5f3db6
AC
2388 objfile->psymbol_cache = bcache_xmalloc ();
2389 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2390 /* obstack_init also initializes the obstack so it is
2391 empty. We could use obstack_specify_allocation but
2392 gdb_obstack.h specifies the alloc/dealloc
2393 functions. */
2394 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2395 if (build_objfile_section_table (objfile))
2396 {
8a3fe4f8 2397 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2398 objfile->name, bfd_errmsg (bfd_get_error ()));
2399 }
15831452 2400 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2401
2402 /* We use the same section offsets as from last time. I'm not
2403 sure whether that is always correct for shared libraries. */
2404 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2405 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2406 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2407 memcpy (objfile->section_offsets, offsets,
a39a16c4 2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2409 objfile->num_sections = num_offsets;
2410
2411 /* What the hell is sym_new_init for, anyway? The concept of
2412 distinguishing between the main file and additional files
2413 in this way seems rather dubious. */
2414 if (objfile == symfile_objfile)
2415 {
2416 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2417 }
2418
2419 (*objfile->sf->sym_init) (objfile);
b9caf505 2420 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2421 /* The "mainline" parameter is a hideous hack; I think leaving it
2422 zero is OK since dbxread.c also does what it needs to do if
2423 objfile->global_psymbols.size is 0. */
96baa820 2424 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2425 if (!have_partial_symbols () && !have_full_symbols ())
2426 {
2427 wrap_here ("");
a3f17187 2428 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2429 wrap_here ("");
2430 }
c5aa993b
JM
2431
2432 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2433 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2434
c5aa993b
JM
2435 /* Getting new symbols may change our opinion about what is
2436 frameless. */
c906108c 2437
c5aa993b 2438 reinit_frame_cache ();
c906108c 2439
c5aa993b
JM
2440 /* Discard cleanups as symbol reading was successful. */
2441 discard_cleanups (old_cleanups);
c906108c 2442
c5aa993b
JM
2443 /* If the mtime has changed between the time we set new_modtime
2444 and now, we *want* this to be out of date, so don't call stat
2445 again now. */
2446 objfile->mtime = new_modtime;
2447 reread_one = 1;
5b5d99cf 2448 reread_separate_symbols (objfile);
6528a9ea 2449 init_entry_point_info (objfile);
c5aa993b 2450 }
c906108c
SS
2451 }
2452 }
c906108c
SS
2453
2454 if (reread_one)
ea53e89f
JB
2455 {
2456 clear_symtab_users ();
2457 /* At least one objfile has changed, so we can consider that
2458 the executable we're debugging has changed too. */
781b42b0 2459 observer_notify_executable_changed ();
ea53e89f
JB
2460 }
2461
c906108c 2462}
5b5d99cf
JB
2463
2464
2465/* Handle separate debug info for OBJFILE, which has just been
2466 re-read:
2467 - If we had separate debug info before, but now we don't, get rid
2468 of the separated objfile.
2469 - If we didn't have separated debug info before, but now we do,
2470 read in the new separated debug info file.
2471 - If the debug link points to a different file, toss the old one
2472 and read the new one.
2473 This function does *not* handle the case where objfile is still
2474 using the same separate debug info file, but that file's timestamp
2475 has changed. That case should be handled by the loop in
2476 reread_symbols already. */
2477static void
2478reread_separate_symbols (struct objfile *objfile)
2479{
2480 char *debug_file;
2481 unsigned long crc32;
2482
2483 /* Does the updated objfile's debug info live in a
2484 separate file? */
2485 debug_file = find_separate_debug_file (objfile);
2486
2487 if (objfile->separate_debug_objfile)
2488 {
2489 /* There are two cases where we need to get rid of
2490 the old separated debug info objfile:
2491 - if the new primary objfile doesn't have
2492 separated debug info, or
2493 - if the new primary objfile has separate debug
2494 info, but it's under a different filename.
5417f6dc 2495
5b5d99cf
JB
2496 If the old and new objfiles both have separate
2497 debug info, under the same filename, then we're
2498 okay --- if the separated file's contents have
2499 changed, we will have caught that when we
2500 visited it in this function's outermost
2501 loop. */
2502 if (! debug_file
2503 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2504 free_objfile (objfile->separate_debug_objfile);
2505 }
2506
2507 /* If the new objfile has separate debug info, and we
2508 haven't loaded it already, do so now. */
2509 if (debug_file
2510 && ! objfile->separate_debug_objfile)
2511 {
2512 /* Use the same section offset table as objfile itself.
2513 Preserve the flags from objfile that make sense. */
2514 objfile->separate_debug_objfile
2515 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2516 (symfile_bfd_open (debug_file),
7eedccfa 2517 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2518 0, /* No addr table. */
2519 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2520 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2521 | OBJF_USERLOADED)));
2522 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2523 = objfile;
2524 }
73780b3c
MS
2525 if (debug_file)
2526 xfree (debug_file);
5b5d99cf
JB
2527}
2528
2529
c906108c
SS
2530\f
2531
c5aa993b
JM
2532
2533typedef struct
2534{
2535 char *ext;
c906108c 2536 enum language lang;
c5aa993b
JM
2537}
2538filename_language;
c906108c 2539
c5aa993b 2540static filename_language *filename_language_table;
c906108c
SS
2541static int fl_table_size, fl_table_next;
2542
2543static void
fba45db2 2544add_filename_language (char *ext, enum language lang)
c906108c
SS
2545{
2546 if (fl_table_next >= fl_table_size)
2547 {
2548 fl_table_size += 10;
5417f6dc 2549 filename_language_table =
25bf3106
PM
2550 xrealloc (filename_language_table,
2551 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2552 }
2553
4fcf66da 2554 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2555 filename_language_table[fl_table_next].lang = lang;
2556 fl_table_next++;
2557}
2558
2559static char *ext_args;
920d2a44
AC
2560static void
2561show_ext_args (struct ui_file *file, int from_tty,
2562 struct cmd_list_element *c, const char *value)
2563{
2564 fprintf_filtered (file, _("\
2565Mapping between filename extension and source language is \"%s\".\n"),
2566 value);
2567}
c906108c
SS
2568
2569static void
26c41df3 2570set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2571{
2572 int i;
2573 char *cp = ext_args;
2574 enum language lang;
2575
2576 /* First arg is filename extension, starting with '.' */
2577 if (*cp != '.')
8a3fe4f8 2578 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2579
2580 /* Find end of first arg. */
c5aa993b 2581 while (*cp && !isspace (*cp))
c906108c
SS
2582 cp++;
2583
2584 if (*cp == '\0')
8a3fe4f8 2585 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2586 ext_args);
2587
2588 /* Null-terminate first arg */
c5aa993b 2589 *cp++ = '\0';
c906108c
SS
2590
2591 /* Find beginning of second arg, which should be a source language. */
2592 while (*cp && isspace (*cp))
2593 cp++;
2594
2595 if (*cp == '\0')
8a3fe4f8 2596 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2597 ext_args);
2598
2599 /* Lookup the language from among those we know. */
2600 lang = language_enum (cp);
2601
2602 /* Now lookup the filename extension: do we already know it? */
2603 for (i = 0; i < fl_table_next; i++)
2604 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2605 break;
2606
2607 if (i >= fl_table_next)
2608 {
2609 /* new file extension */
2610 add_filename_language (ext_args, lang);
2611 }
2612 else
2613 {
2614 /* redefining a previously known filename extension */
2615
2616 /* if (from_tty) */
2617 /* query ("Really make files of type %s '%s'?", */
2618 /* ext_args, language_str (lang)); */
2619
b8c9b27d 2620 xfree (filename_language_table[i].ext);
4fcf66da 2621 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2622 filename_language_table[i].lang = lang;
2623 }
2624}
2625
2626static void
fba45db2 2627info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2628{
2629 int i;
2630
a3f17187 2631 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2632 printf_filtered ("\n\n");
2633 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2634 printf_filtered ("\t%s\t- %s\n",
2635 filename_language_table[i].ext,
c906108c
SS
2636 language_str (filename_language_table[i].lang));
2637}
2638
2639static void
fba45db2 2640init_filename_language_table (void)
c906108c
SS
2641{
2642 if (fl_table_size == 0) /* protect against repetition */
2643 {
2644 fl_table_size = 20;
2645 fl_table_next = 0;
c5aa993b 2646 filename_language_table =
c906108c 2647 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2648 add_filename_language (".c", language_c);
2649 add_filename_language (".C", language_cplus);
2650 add_filename_language (".cc", language_cplus);
2651 add_filename_language (".cp", language_cplus);
2652 add_filename_language (".cpp", language_cplus);
2653 add_filename_language (".cxx", language_cplus);
2654 add_filename_language (".c++", language_cplus);
2655 add_filename_language (".java", language_java);
c906108c 2656 add_filename_language (".class", language_java);
da2cf7e0 2657 add_filename_language (".m", language_objc);
c5aa993b
JM
2658 add_filename_language (".f", language_fortran);
2659 add_filename_language (".F", language_fortran);
2660 add_filename_language (".s", language_asm);
aa707ed0 2661 add_filename_language (".sx", language_asm);
c5aa993b 2662 add_filename_language (".S", language_asm);
c6fd39cd
PM
2663 add_filename_language (".pas", language_pascal);
2664 add_filename_language (".p", language_pascal);
2665 add_filename_language (".pp", language_pascal);
963a6417
PH
2666 add_filename_language (".adb", language_ada);
2667 add_filename_language (".ads", language_ada);
2668 add_filename_language (".a", language_ada);
2669 add_filename_language (".ada", language_ada);
c906108c
SS
2670 }
2671}
2672
2673enum language
fba45db2 2674deduce_language_from_filename (char *filename)
c906108c
SS
2675{
2676 int i;
2677 char *cp;
2678
2679 if (filename != NULL)
2680 if ((cp = strrchr (filename, '.')) != NULL)
2681 for (i = 0; i < fl_table_next; i++)
2682 if (strcmp (cp, filename_language_table[i].ext) == 0)
2683 return filename_language_table[i].lang;
2684
2685 return language_unknown;
2686}
2687\f
2688/* allocate_symtab:
2689
2690 Allocate and partly initialize a new symbol table. Return a pointer
2691 to it. error() if no space.
2692
2693 Caller must set these fields:
c5aa993b
JM
2694 LINETABLE(symtab)
2695 symtab->blockvector
2696 symtab->dirname
2697 symtab->free_code
2698 symtab->free_ptr
2699 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2700 */
2701
2702struct symtab *
fba45db2 2703allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2704{
52f0bd74 2705 struct symtab *symtab;
c906108c
SS
2706
2707 symtab = (struct symtab *)
4a146b47 2708 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2709 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2710 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2711 &objfile->objfile_obstack);
c5aa993b
JM
2712 symtab->fullname = NULL;
2713 symtab->language = deduce_language_from_filename (filename);
2714 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2715 &objfile->objfile_obstack);
c906108c
SS
2716
2717 /* Hook it to the objfile it comes from */
2718
c5aa993b
JM
2719 symtab->objfile = objfile;
2720 symtab->next = objfile->symtabs;
2721 objfile->symtabs = symtab;
c906108c 2722
c906108c
SS
2723 return (symtab);
2724}
2725
2726struct partial_symtab *
fba45db2 2727allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2728{
2729 struct partial_symtab *psymtab;
2730
c5aa993b 2731 if (objfile->free_psymtabs)
c906108c 2732 {
c5aa993b
JM
2733 psymtab = objfile->free_psymtabs;
2734 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2735 }
2736 else
2737 psymtab = (struct partial_symtab *)
8b92e4d5 2738 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2739 sizeof (struct partial_symtab));
2740
2741 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2742 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2743 &objfile->objfile_obstack);
c5aa993b 2744 psymtab->symtab = NULL;
c906108c
SS
2745
2746 /* Prepend it to the psymtab list for the objfile it belongs to.
2747 Psymtabs are searched in most recent inserted -> least recent
2748 inserted order. */
2749
c5aa993b
JM
2750 psymtab->objfile = objfile;
2751 psymtab->next = objfile->psymtabs;
2752 objfile->psymtabs = psymtab;
c906108c
SS
2753#if 0
2754 {
2755 struct partial_symtab **prev_pst;
c5aa993b
JM
2756 psymtab->objfile = objfile;
2757 psymtab->next = NULL;
2758 prev_pst = &(objfile->psymtabs);
c906108c 2759 while ((*prev_pst) != NULL)
c5aa993b 2760 prev_pst = &((*prev_pst)->next);
c906108c 2761 (*prev_pst) = psymtab;
c5aa993b 2762 }
c906108c 2763#endif
c5aa993b 2764
c906108c
SS
2765 return (psymtab);
2766}
2767
2768void
fba45db2 2769discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2770{
2771 struct partial_symtab **prev_pst;
2772
2773 /* From dbxread.c:
2774 Empty psymtabs happen as a result of header files which don't
2775 have any symbols in them. There can be a lot of them. But this
2776 check is wrong, in that a psymtab with N_SLINE entries but
2777 nothing else is not empty, but we don't realize that. Fixing
2778 that without slowing things down might be tricky. */
2779
2780 /* First, snip it out of the psymtab chain */
2781
2782 prev_pst = &(pst->objfile->psymtabs);
2783 while ((*prev_pst) != pst)
2784 prev_pst = &((*prev_pst)->next);
2785 (*prev_pst) = pst->next;
2786
2787 /* Next, put it on a free list for recycling */
2788
2789 pst->next = pst->objfile->free_psymtabs;
2790 pst->objfile->free_psymtabs = pst;
2791}
c906108c 2792\f
c5aa993b 2793
c906108c
SS
2794/* Reset all data structures in gdb which may contain references to symbol
2795 table data. */
2796
2797void
fba45db2 2798clear_symtab_users (void)
c906108c
SS
2799{
2800 /* Someday, we should do better than this, by only blowing away
2801 the things that really need to be blown. */
c0501be5
DJ
2802
2803 /* Clear the "current" symtab first, because it is no longer valid.
2804 breakpoint_re_set may try to access the current symtab. */
2805 clear_current_source_symtab_and_line ();
2806
c906108c 2807 clear_displays ();
c906108c
SS
2808 breakpoint_re_set ();
2809 set_default_breakpoint (0, 0, 0, 0);
c906108c 2810 clear_pc_function_cache ();
06d3b283 2811 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2812
2813 /* Clear globals which might have pointed into a removed objfile.
2814 FIXME: It's not clear which of these are supposed to persist
2815 between expressions and which ought to be reset each time. */
2816 expression_context_block = NULL;
2817 innermost_block = NULL;
8756216b
DP
2818
2819 /* Varobj may refer to old symbols, perform a cleanup. */
2820 varobj_invalidate ();
2821
c906108c
SS
2822}
2823
74b7792f
AC
2824static void
2825clear_symtab_users_cleanup (void *ignore)
2826{
2827 clear_symtab_users ();
2828}
2829
c906108c
SS
2830/* clear_symtab_users_once:
2831
2832 This function is run after symbol reading, or from a cleanup.
2833 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2834 has been blown away, but the other GDB data structures that may
c906108c
SS
2835 reference it have not yet been cleared or re-directed. (The old
2836 symtab was zapped, and the cleanup queued, in free_named_symtab()
2837 below.)
2838
2839 This function can be queued N times as a cleanup, or called
2840 directly; it will do all the work the first time, and then will be a
2841 no-op until the next time it is queued. This works by bumping a
2842 counter at queueing time. Much later when the cleanup is run, or at
2843 the end of symbol processing (in case the cleanup is discarded), if
2844 the queued count is greater than the "done-count", we do the work
2845 and set the done-count to the queued count. If the queued count is
2846 less than or equal to the done-count, we just ignore the call. This
2847 is needed because reading a single .o file will often replace many
2848 symtabs (one per .h file, for example), and we don't want to reset
2849 the breakpoints N times in the user's face.
2850
2851 The reason we both queue a cleanup, and call it directly after symbol
2852 reading, is because the cleanup protects us in case of errors, but is
2853 discarded if symbol reading is successful. */
2854
2855#if 0
2856/* FIXME: As free_named_symtabs is currently a big noop this function
2857 is no longer needed. */
a14ed312 2858static void clear_symtab_users_once (void);
c906108c
SS
2859
2860static int clear_symtab_users_queued;
2861static int clear_symtab_users_done;
2862
2863static void
fba45db2 2864clear_symtab_users_once (void)
c906108c
SS
2865{
2866 /* Enforce once-per-`do_cleanups'-semantics */
2867 if (clear_symtab_users_queued <= clear_symtab_users_done)
2868 return;
2869 clear_symtab_users_done = clear_symtab_users_queued;
2870
2871 clear_symtab_users ();
2872}
2873#endif
2874
2875/* Delete the specified psymtab, and any others that reference it. */
2876
2877static void
fba45db2 2878cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2879{
2880 struct partial_symtab *ps, *pprev = NULL;
2881 int i;
2882
2883 /* Find its previous psymtab in the chain */
c5aa993b
JM
2884 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2885 {
2886 if (ps == pst)
2887 break;
2888 pprev = ps;
2889 }
c906108c 2890
c5aa993b
JM
2891 if (ps)
2892 {
2893 /* Unhook it from the chain. */
2894 if (ps == pst->objfile->psymtabs)
2895 pst->objfile->psymtabs = ps->next;
2896 else
2897 pprev->next = ps->next;
2898
2899 /* FIXME, we can't conveniently deallocate the entries in the
2900 partial_symbol lists (global_psymbols/static_psymbols) that
2901 this psymtab points to. These just take up space until all
2902 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2903 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2904
2905 /* We need to cashier any psymtab that has this one as a dependency... */
2906 again:
2907 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2908 {
2909 for (i = 0; i < ps->number_of_dependencies; i++)
2910 {
2911 if (ps->dependencies[i] == pst)
2912 {
2913 cashier_psymtab (ps);
2914 goto again; /* Must restart, chain has been munged. */
2915 }
2916 }
c906108c 2917 }
c906108c 2918 }
c906108c
SS
2919}
2920
2921/* If a symtab or psymtab for filename NAME is found, free it along
2922 with any dependent breakpoints, displays, etc.
2923 Used when loading new versions of object modules with the "add-file"
2924 command. This is only called on the top-level symtab or psymtab's name;
2925 it is not called for subsidiary files such as .h files.
2926
2927 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2928 FIXME. The return value appears to never be used.
c906108c
SS
2929
2930 FIXME. I think this is not the best way to do this. We should
2931 work on being gentler to the environment while still cleaning up
2932 all stray pointers into the freed symtab. */
2933
2934int
fba45db2 2935free_named_symtabs (char *name)
c906108c
SS
2936{
2937#if 0
2938 /* FIXME: With the new method of each objfile having it's own
2939 psymtab list, this function needs serious rethinking. In particular,
2940 why was it ever necessary to toss psymtabs with specific compilation
2941 unit filenames, as opposed to all psymtabs from a particular symbol
2942 file? -- fnf
2943 Well, the answer is that some systems permit reloading of particular
2944 compilation units. We want to blow away any old info about these
2945 compilation units, regardless of which objfiles they arrived in. --gnu. */
2946
52f0bd74
AC
2947 struct symtab *s;
2948 struct symtab *prev;
2949 struct partial_symtab *ps;
c906108c
SS
2950 struct blockvector *bv;
2951 int blewit = 0;
2952
2953 /* We only wack things if the symbol-reload switch is set. */
2954 if (!symbol_reloading)
2955 return 0;
2956
2957 /* Some symbol formats have trouble providing file names... */
2958 if (name == 0 || *name == '\0')
2959 return 0;
2960
2961 /* Look for a psymtab with the specified name. */
2962
2963again2:
c5aa993b
JM
2964 for (ps = partial_symtab_list; ps; ps = ps->next)
2965 {
6314a349 2966 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2967 {
2968 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2969 goto again2; /* Must restart, chain has been munged */
2970 }
c906108c 2971 }
c906108c
SS
2972
2973 /* Look for a symtab with the specified name. */
2974
2975 for (s = symtab_list; s; s = s->next)
2976 {
6314a349 2977 if (strcmp (name, s->filename) == 0)
c906108c
SS
2978 break;
2979 prev = s;
2980 }
2981
2982 if (s)
2983 {
2984 if (s == symtab_list)
2985 symtab_list = s->next;
2986 else
2987 prev->next = s->next;
2988
2989 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2990 or not they depend on the symtab being freed. This should be
2991 changed so that only those data structures affected are deleted. */
c906108c
SS
2992
2993 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2994 This test is necessary due to a bug in "dbxread.c" that
2995 causes empty symtabs to be created for N_SO symbols that
2996 contain the pathname of the object file. (This problem
2997 has been fixed in GDB 3.9x). */
c906108c
SS
2998
2999 bv = BLOCKVECTOR (s);
3000 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3001 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3002 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3003 {
e2e0b3e5 3004 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3005 name);
c906108c
SS
3006 clear_symtab_users_queued++;
3007 make_cleanup (clear_symtab_users_once, 0);
3008 blewit = 1;
c5aa993b
JM
3009 }
3010 else
e2e0b3e5
AC
3011 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3012 name);
c906108c
SS
3013
3014 free_symtab (s);
3015 }
3016 else
3017 {
3018 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3019 even though no symtab was found, since the file might have
3020 been compiled without debugging, and hence not be associated
3021 with a symtab. In order to handle this correctly, we would need
3022 to keep a list of text address ranges for undebuggable files.
3023 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3024 ;
3025 }
3026
3027 /* FIXME, what about the minimal symbol table? */
3028 return blewit;
3029#else
3030 return (0);
3031#endif
3032}
3033\f
3034/* Allocate and partially fill a partial symtab. It will be
3035 completely filled at the end of the symbol list.
3036
d4f3574e 3037 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3038
3039struct partial_symtab *
fba45db2
KB
3040start_psymtab_common (struct objfile *objfile,
3041 struct section_offsets *section_offsets, char *filename,
3042 CORE_ADDR textlow, struct partial_symbol **global_syms,
3043 struct partial_symbol **static_syms)
c906108c
SS
3044{
3045 struct partial_symtab *psymtab;
3046
3047 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3048 psymtab->section_offsets = section_offsets;
3049 psymtab->textlow = textlow;
3050 psymtab->texthigh = psymtab->textlow; /* default */
3051 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3052 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3053 return (psymtab);
3054}
3055\f
2e618c13
AR
3056/* Helper function, initialises partial symbol structure and stashes
3057 it into objfile's bcache. Note that our caching mechanism will
3058 use all fields of struct partial_symbol to determine hash value of the
3059 structure. In other words, having two symbols with the same name but
3060 different domain (or address) is possible and correct. */
3061
11d31d94 3062static const struct partial_symbol *
2e618c13
AR
3063add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3064 enum address_class class,
3065 long val, /* Value as a long */
3066 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3067 enum language language, struct objfile *objfile,
3068 int *added)
3069{
3070 char *buf = name;
3071 /* psymbol is static so that there will be no uninitialized gaps in the
3072 structure which might contain random data, causing cache misses in
3073 bcache. */
3074 static struct partial_symbol psymbol;
3075
3076 if (name[namelength] != '\0')
3077 {
3078 buf = alloca (namelength + 1);
3079 /* Create local copy of the partial symbol */
3080 memcpy (buf, name, namelength);
3081 buf[namelength] = '\0';
3082 }
3083 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3084 if (val != 0)
3085 {
3086 SYMBOL_VALUE (&psymbol) = val;
3087 }
3088 else
3089 {
3090 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3091 }
3092 SYMBOL_SECTION (&psymbol) = 0;
3093 SYMBOL_LANGUAGE (&psymbol) = language;
3094 PSYMBOL_DOMAIN (&psymbol) = domain;
3095 PSYMBOL_CLASS (&psymbol) = class;
3096
3097 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3098
3099 /* Stash the partial symbol away in the cache */
11d31d94
TT
3100 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3101 objfile->psymbol_cache, added);
2e618c13
AR
3102}
3103
3104/* Helper function, adds partial symbol to the given partial symbol
3105 list. */
3106
3107static void
3108append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3109 const struct partial_symbol *psym,
2e618c13
AR
3110 struct objfile *objfile)
3111{
3112 if (list->next >= list->list + list->size)
3113 extend_psymbol_list (list, objfile);
11d31d94 3114 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3115 OBJSTAT (objfile, n_psyms++);
3116}
3117
c906108c 3118/* Add a symbol with a long value to a psymtab.
5417f6dc 3119 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3120 Return the partial symbol that has been added. */
3121
3122/* NOTE: carlton/2003-09-11: The reason why we return the partial
3123 symbol is so that callers can get access to the symbol's demangled
3124 name, which they don't have any cheap way to determine otherwise.
3125 (Currenly, dwarf2read.c is the only file who uses that information,
3126 though it's possible that other readers might in the future.)
3127 Elena wasn't thrilled about that, and I don't blame her, but we
3128 couldn't come up with a better way to get that information. If
3129 it's needed in other situations, we could consider breaking up
3130 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3131 cache. */
3132
3133const struct partial_symbol *
176620f1 3134add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3135 enum address_class class,
2e618c13
AR
3136 struct psymbol_allocation_list *list,
3137 long val, /* Value as a long */
fba45db2
KB
3138 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3139 enum language language, struct objfile *objfile)
c906108c 3140{
11d31d94 3141 const struct partial_symbol *psym;
2de7ced7 3142
2e618c13 3143 int added;
c906108c
SS
3144
3145 /* Stash the partial symbol away in the cache */
2e618c13
AR
3146 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3147 val, coreaddr, language, objfile, &added);
c906108c 3148
2e618c13
AR
3149 /* Do not duplicate global partial symbols. */
3150 if (list == &objfile->global_psymbols
3151 && !added)
3152 return psym;
5c4e30ca 3153
2e618c13
AR
3154 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3155 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3156 return psym;
c906108c
SS
3157}
3158
c906108c
SS
3159/* Initialize storage for partial symbols. */
3160
3161void
fba45db2 3162init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3163{
3164 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3165
3166 if (objfile->global_psymbols.list)
c906108c 3167 {
2dc74dc1 3168 xfree (objfile->global_psymbols.list);
c906108c 3169 }
c5aa993b 3170 if (objfile->static_psymbols.list)
c906108c 3171 {
2dc74dc1 3172 xfree (objfile->static_psymbols.list);
c906108c 3173 }
c5aa993b 3174
c906108c
SS
3175 /* Current best guess is that approximately a twentieth
3176 of the total symbols (in a debugging file) are global or static
3177 oriented symbols */
c906108c 3178
c5aa993b
JM
3179 objfile->global_psymbols.size = total_symbols / 10;
3180 objfile->static_psymbols.size = total_symbols / 10;
3181
3182 if (objfile->global_psymbols.size > 0)
c906108c 3183 {
c5aa993b
JM
3184 objfile->global_psymbols.next =
3185 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3186 xmalloc ((objfile->global_psymbols.size
3187 * sizeof (struct partial_symbol *)));
c906108c 3188 }
c5aa993b 3189 if (objfile->static_psymbols.size > 0)
c906108c 3190 {
c5aa993b
JM
3191 objfile->static_psymbols.next =
3192 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3193 xmalloc ((objfile->static_psymbols.size
3194 * sizeof (struct partial_symbol *)));
c906108c
SS
3195 }
3196}
3197
3198/* OVERLAYS:
3199 The following code implements an abstraction for debugging overlay sections.
3200
3201 The target model is as follows:
3202 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3203 same VMA, each with its own unique LMA (or load address).
c906108c 3204 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3205 sections, one by one, from the load address into the VMA address.
5417f6dc 3206 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3207 sections should be considered to be mapped from the VMA to the LMA.
3208 This information is used for symbol lookup, and memory read/write.
5417f6dc 3209 For instance, if a section has been mapped then its contents
c5aa993b 3210 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3211
3212 Two levels of debugger support for overlays are available. One is
3213 "manual", in which the debugger relies on the user to tell it which
3214 overlays are currently mapped. This level of support is
3215 implemented entirely in the core debugger, and the information about
3216 whether a section is mapped is kept in the objfile->obj_section table.
3217
3218 The second level of support is "automatic", and is only available if
3219 the target-specific code provides functionality to read the target's
3220 overlay mapping table, and translate its contents for the debugger
3221 (by updating the mapped state information in the obj_section tables).
3222
3223 The interface is as follows:
c5aa993b
JM
3224 User commands:
3225 overlay map <name> -- tell gdb to consider this section mapped
3226 overlay unmap <name> -- tell gdb to consider this section unmapped
3227 overlay list -- list the sections that GDB thinks are mapped
3228 overlay read-target -- get the target's state of what's mapped
3229 overlay off/manual/auto -- set overlay debugging state
3230 Functional interface:
3231 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3232 section, return that section.
5417f6dc 3233 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3234 the pc, either in its VMA or its LMA
714835d5 3235 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3236 section_is_overlay(sect): true if section's VMA != LMA
3237 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3238 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3239 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3240 overlay_mapped_address(...): map an address from section's LMA to VMA
3241 overlay_unmapped_address(...): map an address from section's VMA to LMA
3242 symbol_overlayed_address(...): Return a "current" address for symbol:
3243 either in VMA or LMA depending on whether
3244 the symbol's section is currently mapped
c906108c
SS
3245 */
3246
3247/* Overlay debugging state: */
3248
d874f1e2 3249enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3250int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3251
c906108c 3252/* Function: section_is_overlay (SECTION)
5417f6dc 3253 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3254 SECTION is loaded at an address different from where it will "run". */
3255
3256int
714835d5 3257section_is_overlay (struct obj_section *section)
c906108c 3258{
714835d5
UW
3259 if (overlay_debugging && section)
3260 {
3261 bfd *abfd = section->objfile->obfd;
3262 asection *bfd_section = section->the_bfd_section;
3263
3264 if (bfd_section_lma (abfd, bfd_section) != 0
3265 && bfd_section_lma (abfd, bfd_section)
3266 != bfd_section_vma (abfd, bfd_section))
3267 return 1;
3268 }
c906108c
SS
3269
3270 return 0;
3271}
3272
3273/* Function: overlay_invalidate_all (void)
3274 Invalidate the mapped state of all overlay sections (mark it as stale). */
3275
3276static void
fba45db2 3277overlay_invalidate_all (void)
c906108c 3278{
c5aa993b 3279 struct objfile *objfile;
c906108c
SS
3280 struct obj_section *sect;
3281
3282 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3283 if (section_is_overlay (sect))
3284 sect->ovly_mapped = -1;
c906108c
SS
3285}
3286
714835d5 3287/* Function: section_is_mapped (SECTION)
5417f6dc 3288 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3289
3290 Access to the ovly_mapped flag is restricted to this function, so
3291 that we can do automatic update. If the global flag
3292 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3293 overlay_invalidate_all. If the mapped state of the particular
3294 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3295
714835d5
UW
3296int
3297section_is_mapped (struct obj_section *osect)
c906108c 3298{
9216df95
UW
3299 struct gdbarch *gdbarch;
3300
714835d5 3301 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3302 return 0;
3303
c5aa993b 3304 switch (overlay_debugging)
c906108c
SS
3305 {
3306 default:
d874f1e2 3307 case ovly_off:
c5aa993b 3308 return 0; /* overlay debugging off */
d874f1e2 3309 case ovly_auto: /* overlay debugging automatic */
1c772458 3310 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3311 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3312 gdbarch = get_objfile_arch (osect->objfile);
3313 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3314 {
3315 if (overlay_cache_invalid)
3316 {
3317 overlay_invalidate_all ();
3318 overlay_cache_invalid = 0;
3319 }
3320 if (osect->ovly_mapped == -1)
9216df95 3321 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3322 }
3323 /* fall thru to manual case */
d874f1e2 3324 case ovly_on: /* overlay debugging manual */
c906108c
SS
3325 return osect->ovly_mapped == 1;
3326 }
3327}
3328
c906108c
SS
3329/* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332CORE_ADDR
714835d5 3333pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3334{
714835d5
UW
3335 if (section_is_overlay (section))
3336 {
3337 bfd *abfd = section->objfile->obfd;
3338 asection *bfd_section = section->the_bfd_section;
fbd35540 3339
714835d5
UW
3340 /* We assume the LMA is relocated by the same offset as the VMA. */
3341 bfd_vma size = bfd_get_section_size (bfd_section);
3342 CORE_ADDR offset = obj_section_offset (section);
3343
3344 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3345 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3346 return 1;
3347 }
c906108c 3348
c906108c
SS
3349 return 0;
3350}
3351
3352/* Function: pc_in_mapped_range
3353 If PC falls into the vma range of SECTION, return true, else false. */
3354
3355CORE_ADDR
714835d5 3356pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3357{
714835d5
UW
3358 if (section_is_overlay (section))
3359 {
3360 if (obj_section_addr (section) <= pc
3361 && pc < obj_section_endaddr (section))
3362 return 1;
3363 }
c906108c 3364
c906108c
SS
3365 return 0;
3366}
3367
9ec8e6a0
JB
3368
3369/* Return true if the mapped ranges of sections A and B overlap, false
3370 otherwise. */
b9362cc7 3371static int
714835d5 3372sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3373{
714835d5
UW
3374 CORE_ADDR a_start = obj_section_addr (a);
3375 CORE_ADDR a_end = obj_section_endaddr (a);
3376 CORE_ADDR b_start = obj_section_addr (b);
3377 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3378
3379 return (a_start < b_end && b_start < a_end);
3380}
3381
c906108c
SS
3382/* Function: overlay_unmapped_address (PC, SECTION)
3383 Returns the address corresponding to PC in the unmapped (load) range.
3384 May be the same as PC. */
3385
3386CORE_ADDR
714835d5 3387overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3388{
714835d5
UW
3389 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3390 {
3391 bfd *abfd = section->objfile->obfd;
3392 asection *bfd_section = section->the_bfd_section;
fbd35540 3393
714835d5
UW
3394 return pc + bfd_section_lma (abfd, bfd_section)
3395 - bfd_section_vma (abfd, bfd_section);
3396 }
c906108c
SS
3397
3398 return pc;
3399}
3400
3401/* Function: overlay_mapped_address (PC, SECTION)
3402 Returns the address corresponding to PC in the mapped (runtime) range.
3403 May be the same as PC. */
3404
3405CORE_ADDR
714835d5 3406overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3407{
714835d5
UW
3408 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3409 {
3410 bfd *abfd = section->objfile->obfd;
3411 asection *bfd_section = section->the_bfd_section;
fbd35540 3412
714835d5
UW
3413 return pc + bfd_section_vma (abfd, bfd_section)
3414 - bfd_section_lma (abfd, bfd_section);
3415 }
c906108c
SS
3416
3417 return pc;
3418}
3419
3420
5417f6dc 3421/* Function: symbol_overlayed_address
c906108c
SS
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3424
c5aa993b 3425CORE_ADDR
714835d5 3426symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3427{
3428 if (overlay_debugging)
3429 {
3430 /* If the symbol has no section, just return its regular address. */
3431 if (section == 0)
3432 return address;
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3435 return address;
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3438 return address;
3439 /*
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3442 */
3443 return overlay_unmapped_address (address, section);
3444 }
3445 return address;
3446}
3447
5417f6dc 3448/* Function: find_pc_overlay (PC)
c906108c
SS
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3453
714835d5 3454struct obj_section *
fba45db2 3455find_pc_overlay (CORE_ADDR pc)
c906108c 3456{
c5aa993b 3457 struct objfile *objfile;
c906108c
SS
3458 struct obj_section *osect, *best_match = NULL;
3459
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
714835d5 3462 if (section_is_overlay (osect))
c5aa993b 3463 {
714835d5 3464 if (pc_in_mapped_range (pc, osect))
c5aa993b 3465 {
714835d5
UW
3466 if (section_is_mapped (osect))
3467 return osect;
c5aa993b
JM
3468 else
3469 best_match = osect;
3470 }
714835d5 3471 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3472 best_match = osect;
3473 }
714835d5 3474 return best_match;
c906108c
SS
3475}
3476
3477/* Function: find_pc_mapped_section (PC)
5417f6dc 3478 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3479 currently marked as MAPPED, return that section. Else return NULL. */
3480
714835d5 3481struct obj_section *
fba45db2 3482find_pc_mapped_section (CORE_ADDR pc)
c906108c 3483{
c5aa993b 3484 struct objfile *objfile;
c906108c
SS
3485 struct obj_section *osect;
3486
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3489 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3490 return osect;
c906108c
SS
3491
3492 return NULL;
3493}
3494
3495/* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498void
fba45db2 3499list_overlays_command (char *args, int from_tty)
c906108c 3500{
c5aa993b
JM
3501 int nmapped = 0;
3502 struct objfile *objfile;
c906108c
SS
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
714835d5 3507 if (section_is_mapped (osect))
c5aa993b 3508 {
5af949e3 3509 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3510 const char *name;
3511 bfd_vma lma, vma;
3512 int size;
3513
3514 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3515 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3516 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3517 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3518
3519 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3520 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3521 puts_filtered (" - ");
5af949e3 3522 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3523 printf_filtered (", mapped at ");
5af949e3 3524 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3525 puts_filtered (" - ");
5af949e3 3526 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3527 puts_filtered ("\n");
3528
3529 nmapped++;
3530 }
c906108c 3531 if (nmapped == 0)
a3f17187 3532 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3533}
3534
3535/* Function: map_overlay_command
3536 Mark the named section as mapped (ie. residing at its VMA address). */
3537
3538void
fba45db2 3539map_overlay_command (char *args, int from_tty)
c906108c 3540{
c5aa993b
JM
3541 struct objfile *objfile, *objfile2;
3542 struct obj_section *sec, *sec2;
c906108c
SS
3543
3544 if (!overlay_debugging)
8a3fe4f8 3545 error (_("\
515ad16c 3546Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3547the 'overlay manual' command."));
c906108c
SS
3548
3549 if (args == 0 || *args == 0)
8a3fe4f8 3550 error (_("Argument required: name of an overlay section"));
c906108c
SS
3551
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3555 {
3556 /* Now, check to see if the section is an overlay. */
714835d5 3557 if (!section_is_overlay (sec))
c5aa993b
JM
3558 continue; /* not an overlay section */
3559
3560 /* Mark the overlay as "mapped" */
3561 sec->ovly_mapped = 1;
3562
3563 /* Next, make a pass and unmap any sections that are
3564 overlapped by this new section: */
3565 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3566 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3567 {
3568 if (info_verbose)
a3f17187 3569 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3570 bfd_section_name (objfile->obfd,
3571 sec2->the_bfd_section));
3572 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3573 }
3574 return;
3575 }
8a3fe4f8 3576 error (_("No overlay section called %s"), args);
c906108c
SS
3577}
3578
3579/* Function: unmap_overlay_command
5417f6dc 3580 Mark the overlay section as unmapped
c906108c
SS
3581 (ie. resident in its LMA address range, rather than the VMA range). */
3582
3583void
fba45db2 3584unmap_overlay_command (char *args, int from_tty)
c906108c 3585{
c5aa993b 3586 struct objfile *objfile;
c906108c
SS
3587 struct obj_section *sec;
3588
3589 if (!overlay_debugging)
8a3fe4f8 3590 error (_("\
515ad16c 3591Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3592the 'overlay manual' command."));
c906108c
SS
3593
3594 if (args == 0 || *args == 0)
8a3fe4f8 3595 error (_("Argument required: name of an overlay section"));
c906108c
SS
3596
3597 /* First, find a section matching the user supplied argument */
3598 ALL_OBJSECTIONS (objfile, sec)
3599 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3600 {
3601 if (!sec->ovly_mapped)
8a3fe4f8 3602 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3603 sec->ovly_mapped = 0;
3604 return;
3605 }
8a3fe4f8 3606 error (_("No overlay section called %s"), args);
c906108c
SS
3607}
3608
3609/* Function: overlay_auto_command
3610 A utility command to turn on overlay debugging.
3611 Possibly this should be done via a set/show command. */
3612
3613static void
fba45db2 3614overlay_auto_command (char *args, int from_tty)
c906108c 3615{
d874f1e2 3616 overlay_debugging = ovly_auto;
1900040c 3617 enable_overlay_breakpoints ();
c906108c 3618 if (info_verbose)
a3f17187 3619 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3620}
3621
3622/* Function: overlay_manual_command
3623 A utility command to turn on overlay debugging.
3624 Possibly this should be done via a set/show command. */
3625
3626static void
fba45db2 3627overlay_manual_command (char *args, int from_tty)
c906108c 3628{
d874f1e2 3629 overlay_debugging = ovly_on;
1900040c 3630 disable_overlay_breakpoints ();
c906108c 3631 if (info_verbose)
a3f17187 3632 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3633}
3634
3635/* Function: overlay_off_command
3636 A utility command to turn on overlay debugging.
3637 Possibly this should be done via a set/show command. */
3638
3639static void
fba45db2 3640overlay_off_command (char *args, int from_tty)
c906108c 3641{
d874f1e2 3642 overlay_debugging = ovly_off;
1900040c 3643 disable_overlay_breakpoints ();
c906108c 3644 if (info_verbose)
a3f17187 3645 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3646}
3647
3648static void
fba45db2 3649overlay_load_command (char *args, int from_tty)
c906108c 3650{
e17c207e
UW
3651 struct gdbarch *gdbarch = get_current_arch ();
3652
3653 if (gdbarch_overlay_update_p (gdbarch))
3654 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3655 else
8a3fe4f8 3656 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3657}
3658
3659/* Function: overlay_command
3660 A place-holder for a mis-typed command */
3661
3662/* Command list chain containing all defined "overlay" subcommands. */
3663struct cmd_list_element *overlaylist;
3664
3665static void
fba45db2 3666overlay_command (char *args, int from_tty)
c906108c 3667{
c5aa993b 3668 printf_unfiltered
c906108c
SS
3669 ("\"overlay\" must be followed by the name of an overlay command.\n");
3670 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3671}
3672
3673
3674/* Target Overlays for the "Simplest" overlay manager:
3675
5417f6dc
RM
3676 This is GDB's default target overlay layer. It works with the
3677 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3678 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3679 so targets that use a different runtime overlay manager can
c906108c
SS
3680 substitute their own overlay_update function and take over the
3681 function pointer.
3682
3683 The overlay_update function pokes around in the target's data structures
3684 to see what overlays are mapped, and updates GDB's overlay mapping with
3685 this information.
3686
3687 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3688 unsigned _novlys; /# number of overlay sections #/
3689 unsigned _ovly_table[_novlys][4] = {
3690 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3691 {..., ..., ..., ...},
3692 }
3693 unsigned _novly_regions; /# number of overlay regions #/
3694 unsigned _ovly_region_table[_novly_regions][3] = {
3695 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3696 {..., ..., ...},
3697 }
c906108c
SS
3698 These functions will attempt to update GDB's mappedness state in the
3699 symbol section table, based on the target's mappedness state.
3700
3701 To do this, we keep a cached copy of the target's _ovly_table, and
3702 attempt to detect when the cached copy is invalidated. The main
3703 entry point is "simple_overlay_update(SECT), which looks up SECT in
3704 the cached table and re-reads only the entry for that section from
3705 the target (whenever possible).
3706 */
3707
3708/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3709static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3710#if 0
c5aa993b 3711static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3712#endif
c5aa993b 3713static unsigned cache_novlys = 0;
c906108c 3714#if 0
c5aa993b 3715static unsigned cache_novly_regions = 0;
c906108c
SS
3716#endif
3717static CORE_ADDR cache_ovly_table_base = 0;
3718#if 0
3719static CORE_ADDR cache_ovly_region_table_base = 0;
3720#endif
c5aa993b
JM
3721enum ovly_index
3722 {
3723 VMA, SIZE, LMA, MAPPED
3724 };
c906108c
SS
3725
3726/* Throw away the cached copy of _ovly_table */
3727static void
fba45db2 3728simple_free_overlay_table (void)
c906108c
SS
3729{
3730 if (cache_ovly_table)
b8c9b27d 3731 xfree (cache_ovly_table);
c5aa993b 3732 cache_novlys = 0;
c906108c
SS
3733 cache_ovly_table = NULL;
3734 cache_ovly_table_base = 0;
3735}
3736
3737#if 0
3738/* Throw away the cached copy of _ovly_region_table */
3739static void
fba45db2 3740simple_free_overlay_region_table (void)
c906108c
SS
3741{
3742 if (cache_ovly_region_table)
b8c9b27d 3743 xfree (cache_ovly_region_table);
c5aa993b 3744 cache_novly_regions = 0;
c906108c
SS
3745 cache_ovly_region_table = NULL;
3746 cache_ovly_region_table_base = 0;
3747}
3748#endif
3749
9216df95 3750/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3751 Convert to host order. int LEN is number of ints */
3752static void
9216df95 3753read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3754 int len, int size, enum bfd_endian byte_order)
c906108c 3755{
34c0bd93 3756 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3757 gdb_byte *buf = alloca (len * size);
c5aa993b 3758 int i;
c906108c 3759
9216df95 3760 read_memory (memaddr, buf, len * size);
c906108c 3761 for (i = 0; i < len; i++)
e17a4113 3762 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3763}
3764
3765/* Find and grab a copy of the target _ovly_table
3766 (and _novlys, which is needed for the table's size) */
c5aa993b 3767static int
fba45db2 3768simple_read_overlay_table (void)
c906108c 3769{
0d43edd1 3770 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3771 struct gdbarch *gdbarch;
3772 int word_size;
e17a4113 3773 enum bfd_endian byte_order;
c906108c
SS
3774
3775 simple_free_overlay_table ();
9b27852e 3776 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3777 if (! novlys_msym)
c906108c 3778 {
8a3fe4f8 3779 error (_("Error reading inferior's overlay table: "
0d43edd1 3780 "couldn't find `_novlys' variable\n"
8a3fe4f8 3781 "in inferior. Use `overlay manual' mode."));
0d43edd1 3782 return 0;
c906108c 3783 }
0d43edd1 3784
9b27852e 3785 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3786 if (! ovly_table_msym)
3787 {
8a3fe4f8 3788 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3789 "`_ovly_table' array\n"
8a3fe4f8 3790 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3791 return 0;
3792 }
3793
9216df95
UW
3794 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3795 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3796 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3797
e17a4113
UW
3798 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3799 4, byte_order);
0d43edd1
JB
3800 cache_ovly_table
3801 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3802 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3803 read_target_long_array (cache_ovly_table_base,
777ea8f1 3804 (unsigned int *) cache_ovly_table,
e17a4113 3805 cache_novlys * 4, word_size, byte_order);
0d43edd1 3806
c5aa993b 3807 return 1; /* SUCCESS */
c906108c
SS
3808}
3809
3810#if 0
3811/* Find and grab a copy of the target _ovly_region_table
3812 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3813static int
fba45db2 3814simple_read_overlay_region_table (void)
c906108c
SS
3815{
3816 struct minimal_symbol *msym;
e17a4113
UW
3817 struct gdbarch *gdbarch;
3818 int word_size;
3819 enum bfd_endian byte_order;
c906108c
SS
3820
3821 simple_free_overlay_region_table ();
9b27852e 3822 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3823 if (msym == NULL)
c5aa993b 3824 return 0; /* failure */
e17a4113
UW
3825
3826 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3827 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3828 byte_order = gdbarch_byte_order (gdbarch);
3829
3830 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3831 4, byte_order);
3832
c906108c
SS
3833 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3834 if (cache_ovly_region_table != NULL)
3835 {
9b27852e 3836 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3837 if (msym != NULL)
3838 {
3839 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3840 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3841 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3842 cache_novly_regions * 3,
3843 word_size, byte_order);
c906108c 3844 }
c5aa993b
JM
3845 else
3846 return 0; /* failure */
c906108c 3847 }
c5aa993b
JM
3848 else
3849 return 0; /* failure */
3850 return 1; /* SUCCESS */
c906108c
SS
3851}
3852#endif
3853
5417f6dc 3854/* Function: simple_overlay_update_1
c906108c
SS
3855 A helper function for simple_overlay_update. Assuming a cached copy
3856 of _ovly_table exists, look through it to find an entry whose vma,
3857 lma and size match those of OSECT. Re-read the entry and make sure
3858 it still matches OSECT (else the table may no longer be valid).
3859 Set OSECT's mapped state to match the entry. Return: 1 for
3860 success, 0 for failure. */
3861
3862static int
fba45db2 3863simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3864{
3865 int i, size;
fbd35540
MS
3866 bfd *obfd = osect->objfile->obfd;
3867 asection *bsect = osect->the_bfd_section;
9216df95
UW
3868 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3869 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3871
2c500098 3872 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3873 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3874 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3875 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3876 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3877 {
9216df95
UW
3878 read_target_long_array (cache_ovly_table_base + i * word_size,
3879 (unsigned int *) cache_ovly_table[i],
e17a4113 3880 4, word_size, byte_order);
fbd35540
MS
3881 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3882 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3883 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3884 {
3885 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3886 return 1;
3887 }
fbd35540 3888 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3889 return 0;
3890 }
3891 return 0;
3892}
3893
3894/* Function: simple_overlay_update
5417f6dc
RM
3895 If OSECT is NULL, then update all sections' mapped state
3896 (after re-reading the entire target _ovly_table).
3897 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3898 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3899 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3900 re-read the entire cache, and go ahead and update all sections. */
3901
1c772458 3902void
fba45db2 3903simple_overlay_update (struct obj_section *osect)
c906108c 3904{
c5aa993b 3905 struct objfile *objfile;
c906108c
SS
3906
3907 /* Were we given an osect to look up? NULL means do all of them. */
3908 if (osect)
3909 /* Have we got a cached copy of the target's overlay table? */
3910 if (cache_ovly_table != NULL)
3911 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3912 if (cache_ovly_table_base ==
9b27852e 3913 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3914 /* Then go ahead and try to look up this single section in the cache */
3915 if (simple_overlay_update_1 (osect))
3916 /* Found it! We're done. */
3917 return;
3918
3919 /* Cached table no good: need to read the entire table anew.
3920 Or else we want all the sections, in which case it's actually
3921 more efficient to read the whole table in one block anyway. */
3922
0d43edd1
JB
3923 if (! simple_read_overlay_table ())
3924 return;
3925
c906108c
SS
3926 /* Now may as well update all sections, even if only one was requested. */
3927 ALL_OBJSECTIONS (objfile, osect)
714835d5 3928 if (section_is_overlay (osect))
c5aa993b
JM
3929 {
3930 int i, size;
fbd35540
MS
3931 bfd *obfd = osect->objfile->obfd;
3932 asection *bsect = osect->the_bfd_section;
c5aa993b 3933
2c500098 3934 size = bfd_get_section_size (bsect);
c5aa993b 3935 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3936 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3937 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3938 /* && cache_ovly_table[i][SIZE] == size */ )
3939 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3940 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3941 break; /* finished with inner for loop: break out */
3942 }
3943 }
c906108c
SS
3944}
3945
086df311
DJ
3946/* Set the output sections and output offsets for section SECTP in
3947 ABFD. The relocation code in BFD will read these offsets, so we
3948 need to be sure they're initialized. We map each section to itself,
3949 with no offset; this means that SECTP->vma will be honored. */
3950
3951static void
3952symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3953{
3954 sectp->output_section = sectp;
3955 sectp->output_offset = 0;
3956}
3957
3958/* Relocate the contents of a debug section SECTP in ABFD. The
3959 contents are stored in BUF if it is non-NULL, or returned in a
3960 malloc'd buffer otherwise.
3961
3962 For some platforms and debug info formats, shared libraries contain
3963 relocations against the debug sections (particularly for DWARF-2;
3964 one affected platform is PowerPC GNU/Linux, although it depends on
3965 the version of the linker in use). Also, ELF object files naturally
3966 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3967 the relocations in order to get the locations of symbols correct.
3968 Another example that may require relocation processing, is the
3969 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3970 debug section. */
086df311
DJ
3971
3972bfd_byte *
3973symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3974{
065a2c74 3975 /* We're only interested in sections with relocation
086df311
DJ
3976 information. */
3977 if ((sectp->flags & SEC_RELOC) == 0)
3978 return NULL;
086df311
DJ
3979
3980 /* We will handle section offsets properly elsewhere, so relocate as if
3981 all sections begin at 0. */
3982 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3983
97606a13 3984 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3985}
c906108c 3986
31d99776
DJ
3987struct symfile_segment_data *
3988get_symfile_segment_data (bfd *abfd)
3989{
3990 struct sym_fns *sf = find_sym_fns (abfd);
3991
3992 if (sf == NULL)
3993 return NULL;
3994
3995 return sf->sym_segments (abfd);
3996}
3997
3998void
3999free_symfile_segment_data (struct symfile_segment_data *data)
4000{
4001 xfree (data->segment_bases);
4002 xfree (data->segment_sizes);
4003 xfree (data->segment_info);
4004 xfree (data);
4005}
4006
28c32713
JB
4007
4008/* Given:
4009 - DATA, containing segment addresses from the object file ABFD, and
4010 the mapping from ABFD's sections onto the segments that own them,
4011 and
4012 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4013 segment addresses reported by the target,
4014 store the appropriate offsets for each section in OFFSETS.
4015
4016 If there are fewer entries in SEGMENT_BASES than there are segments
4017 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4018
8d385431
DJ
4019 If there are more entries, then ignore the extra. The target may
4020 not be able to distinguish between an empty data segment and a
4021 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4022int
4023symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4024 struct section_offsets *offsets,
4025 int num_segment_bases,
4026 const CORE_ADDR *segment_bases)
4027{
4028 int i;
4029 asection *sect;
4030
28c32713
JB
4031 /* It doesn't make sense to call this function unless you have some
4032 segment base addresses. */
4033 gdb_assert (segment_bases > 0);
4034
31d99776
DJ
4035 /* If we do not have segment mappings for the object file, we
4036 can not relocate it by segments. */
4037 gdb_assert (data != NULL);
4038 gdb_assert (data->num_segments > 0);
4039
31d99776
DJ
4040 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4041 {
31d99776
DJ
4042 int which = data->segment_info[i];
4043
28c32713
JB
4044 gdb_assert (0 <= which && which <= data->num_segments);
4045
4046 /* Don't bother computing offsets for sections that aren't
4047 loaded as part of any segment. */
4048 if (! which)
4049 continue;
4050
4051 /* Use the last SEGMENT_BASES entry as the address of any extra
4052 segments mentioned in DATA->segment_info. */
31d99776 4053 if (which > num_segment_bases)
28c32713 4054 which = num_segment_bases;
31d99776 4055
28c32713
JB
4056 offsets->offsets[i] = (segment_bases[which - 1]
4057 - data->segment_bases[which - 1]);
31d99776
DJ
4058 }
4059
4060 return 1;
4061}
4062
4063static void
4064symfile_find_segment_sections (struct objfile *objfile)
4065{
4066 bfd *abfd = objfile->obfd;
4067 int i;
4068 asection *sect;
4069 struct symfile_segment_data *data;
4070
4071 data = get_symfile_segment_data (objfile->obfd);
4072 if (data == NULL)
4073 return;
4074
4075 if (data->num_segments != 1 && data->num_segments != 2)
4076 {
4077 free_symfile_segment_data (data);
4078 return;
4079 }
4080
4081 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4082 {
4083 CORE_ADDR vma;
4084 int which = data->segment_info[i];
4085
4086 if (which == 1)
4087 {
4088 if (objfile->sect_index_text == -1)
4089 objfile->sect_index_text = sect->index;
4090
4091 if (objfile->sect_index_rodata == -1)
4092 objfile->sect_index_rodata = sect->index;
4093 }
4094 else if (which == 2)
4095 {
4096 if (objfile->sect_index_data == -1)
4097 objfile->sect_index_data = sect->index;
4098
4099 if (objfile->sect_index_bss == -1)
4100 objfile->sect_index_bss = sect->index;
4101 }
4102 }
4103
4104 free_symfile_segment_data (data);
4105}
4106
c906108c 4107void
fba45db2 4108_initialize_symfile (void)
c906108c
SS
4109{
4110 struct cmd_list_element *c;
c5aa993b 4111
1a966eab
AC
4112 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4113Load symbol table from executable file FILE.\n\
c906108c 4114The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4115to execute."), &cmdlist);
5ba2abeb 4116 set_cmd_completer (c, filename_completer);
c906108c 4117
1a966eab 4118 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4119Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4120Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4121ADDR is the starting address of the file's text.\n\
db162d44
EZ
4122The optional arguments are section-name section-address pairs and\n\
4123should be specified if the data and bss segments are not contiguous\n\
1a966eab 4124with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4125 &cmdlist);
5ba2abeb 4126 set_cmd_completer (c, filename_completer);
c906108c 4127
1a966eab
AC
4128 c = add_cmd ("load", class_files, load_command, _("\
4129Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4130for access from GDB.\n\
4131A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4132 set_cmd_completer (c, filename_completer);
c906108c 4133
5bf193a2
AC
4134 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4135 &symbol_reloading, _("\
4136Set dynamic symbol table reloading multiple times in one run."), _("\
4137Show dynamic symbol table reloading multiple times in one run."), NULL,
4138 NULL,
920d2a44 4139 show_symbol_reloading,
5bf193a2 4140 &setlist, &showlist);
c906108c 4141
c5aa993b 4142 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4143 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4144 "overlay ", 0, &cmdlist);
4145
4146 add_com_alias ("ovly", "overlay", class_alias, 1);
4147 add_com_alias ("ov", "overlay", class_alias, 1);
4148
c5aa993b 4149 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4150 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4151
c5aa993b 4152 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4153 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4154
c5aa993b 4155 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4156 _("List mappings of overlay sections."), &overlaylist);
c906108c 4157
c5aa993b 4158 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4159 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4160 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4161 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4162 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4163 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4164 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4165 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4166
4167 /* Filename extension to source language lookup table: */
4168 init_filename_language_table ();
26c41df3
AC
4169 add_setshow_string_noescape_cmd ("extension-language", class_files,
4170 &ext_args, _("\
4171Set mapping between filename extension and source language."), _("\
4172Show mapping between filename extension and source language."), _("\
4173Usage: set extension-language .foo bar"),
4174 set_ext_lang_command,
920d2a44 4175 show_ext_args,
26c41df3 4176 &setlist, &showlist);
c906108c 4177
c5aa993b 4178 add_info ("extensions", info_ext_lang_command,
1bedd215 4179 _("All filename extensions associated with a source language."));
917317f4 4180
525226b5
AC
4181 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4182 &debug_file_directory, _("\
4183Set the directory where separate debug symbols are searched for."), _("\
4184Show the directory where separate debug symbols are searched for."), _("\
4185Separate debug symbols are first searched for in the same\n\
4186directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4187and lastly at the path of the directory of the binary with\n\
4188the global debug-file directory prepended."),
4189 NULL,
920d2a44 4190 show_debug_file_directory,
525226b5 4191 &setlist, &showlist);
bf250677
DE
4192
4193 add_setshow_boolean_cmd ("symbol-loading", no_class,
4194 &print_symbol_loading, _("\
4195Set printing of symbol loading messages."), _("\
4196Show printing of symbol loading messages."), NULL,
4197 NULL,
4198 NULL,
4199 &setprintlist, &showprintlist);
c906108c 4200}
This page took 1.143391 seconds and 4 git commands to generate.