* configure.ac (DEBUGDIR_RELOCATABLE): Define for debugdir inside
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
c906108c 55
c906108c
SS
56#include <sys/types.h>
57#include <fcntl.h>
58#include "gdb_string.h"
59#include "gdb_stat.h"
60#include <ctype.h>
61#include <time.h>
2b71414d 62#include <sys/time.h>
c906108c 63
c906108c 64
9a4105ab
AC
65int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
c2d11a7d 70 unsigned long total_size);
769d7dc4
AC
71void (*deprecated_pre_add_symbol_hook) (const char *);
72void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 73void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void set_initial_language (void);
c906108c 92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
a14ed312 99static void add_shared_symbol_files_command (char *, int);
c906108c 100
5b5d99cf
JB
101static void reread_separate_symbols (struct objfile *objfile);
102
a14ed312 103static void cashier_psymtab (struct partial_symtab *);
c906108c 104
a14ed312 105bfd *symfile_bfd_open (char *);
c906108c 106
0e931cf0
JB
107int get_section_index (struct objfile *, char *);
108
a14ed312 109static void find_sym_fns (struct objfile *);
c906108c 110
a14ed312 111static void decrement_reading_symtab (void *);
c906108c 112
a14ed312 113static void overlay_invalidate_all (void);
c906108c 114
a14ed312 115static int overlay_is_mapped (struct obj_section *);
c906108c 116
a14ed312 117void list_overlays_command (char *, int);
c906108c 118
a14ed312 119void map_overlay_command (char *, int);
c906108c 120
a14ed312 121void unmap_overlay_command (char *, int);
c906108c 122
a14ed312 123static void overlay_auto_command (char *, int);
c906108c 124
a14ed312 125static void overlay_manual_command (char *, int);
c906108c 126
a14ed312 127static void overlay_off_command (char *, int);
c906108c 128
a14ed312 129static void overlay_load_command (char *, int);
c906108c 130
a14ed312 131static void overlay_command (char *, int);
c906108c 132
a14ed312 133static void simple_free_overlay_table (void);
c906108c 134
a14ed312 135static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 136
a14ed312 137static int simple_read_overlay_table (void);
c906108c 138
a14ed312 139static int simple_overlay_update_1 (struct obj_section *);
c906108c 140
a14ed312 141static void add_filename_language (char *ext, enum language lang);
392a587b 142
a14ed312 143static void info_ext_lang_command (char *args, int from_tty);
392a587b 144
5b5d99cf
JB
145static char *find_separate_debug_file (struct objfile *objfile);
146
a14ed312 147static void init_filename_language_table (void);
392a587b 148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
c906108c 174
b7209cb4
FF
175/* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
c906108c 182 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 183 report all the functions that are actually present. */
c906108c
SS
184
185int auto_solib_add = 1;
b7209cb4
FF
186
187/* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195int auto_solib_limit;
c906108c 196\f
c5aa993b 197
0fe19209
DC
198/* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
c906108c
SS
200
201static int
0cd64fe2 202compare_psymbols (const void *s1p, const void *s2p)
c906108c 203{
0fe19209
DC
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
4725b721
PH
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
209}
210
211void
fba45db2 212sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
213{
214 /* Sort the global list; don't sort the static list */
215
c5aa993b
JM
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
218 compare_psymbols);
219}
220
c906108c
SS
221/* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226char *
63ca651f 227obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 228{
52f0bd74 229 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
aa1ee363
AC
234 const char *p1 = ptr;
235 char *p2 = p;
63ca651f 236 const char *end = ptr + size;
c906108c
SS
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242}
243
244/* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247char *
fba45db2
KB
248obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
c906108c 250{
52f0bd74
AC
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257}
258
259/* True if we are nested inside psymtab_to_symtab. */
260
261int currently_reading_symtab = 0;
262
263static void
fba45db2 264decrement_reading_symtab (void *dummy)
c906108c
SS
265{
266 currently_reading_symtab--;
267}
268
269/* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274struct symtab *
aa1ee363 275psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
276{
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
c5aa993b 283 {
c906108c
SS
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291}
292
5417f6dc
RM
293/* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
c906108c
SS
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302void
4efb68b1 303find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 304{
c5aa993b 305 asection **lowest = (asection **) obj;
c906108c
SS
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317}
318
a39a16c4
MM
319/* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321struct section_addr_info *
322alloc_section_addr_info (size_t num_sections)
323{
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334}
62557bbc 335
7b90c3f9
JB
336
337/* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339struct section_addr_info *
340copy_section_addr_info (struct section_addr_info *addrs)
341{
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358}
359
360
361
62557bbc
KB
362/* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365extern struct section_addr_info *
366build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368{
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
a39a16c4 373 sap = alloc_section_addr_info (end - start);
62557bbc
KB
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
5417f6dc 377 if (bfd_get_section_flags (stp->bfd,
fbd35540 378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 379 && oidx < end - start)
62557bbc
KB
380 {
381 sap->other[oidx].addr = stp->addr;
5417f6dc 382 sap->other[oidx].name
fbd35540 383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390}
391
392
393/* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395extern void
396free_section_addr_info (struct section_addr_info *sap)
397{
398 int idx;
399
a39a16c4 400 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 401 if (sap->other[idx].name)
b8c9b27d
KB
402 xfree (sap->other[idx].name);
403 xfree (sap);
62557bbc
KB
404}
405
406
e8289572
JB
407/* Initialize OBJFILE's sect_index_* members. */
408static void
409init_objfile_sect_indices (struct objfile *objfile)
c906108c 410{
e8289572 411 asection *sect;
c906108c 412 int i;
5417f6dc 413
b8fbeb18 414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 415 if (sect)
b8fbeb18
EZ
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 419 if (sect)
b8fbeb18
EZ
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 423 if (sect)
b8fbeb18
EZ
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 427 if (sect)
b8fbeb18
EZ
428 objfile->sect_index_rodata = sect->index;
429
bbcd32ad
FF
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
b8fbeb18 458}
c906108c 459
c1bd25fd
DJ
460/* The arguments to place_section. */
461
462struct place_section_arg
463{
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466};
467
468/* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471void
472place_section (bfd *abfd, asection *sect, void *obj)
473{
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
3bd72c6f 477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd
DJ
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
488 start_addr = (arg->lowest + align - 1) & -align;
489
c1bd25fd
DJ
490 do {
491 asection *cur_sec;
c1bd25fd 492
c1bd25fd
DJ
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
3bd72c6f 526 break;
c1bd25fd
DJ
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538}
e8289572
JB
539
540/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 541 of how to represent it for fast symbol reading. This is the default
e8289572
JB
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546void
547default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549{
550 int i;
551
a39a16c4 552 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 553 objfile->section_offsets = (struct section_offsets *)
5417f6dc 554 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 556 memset (objfile->section_offsets, 0,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
a39a16c4 561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
c1bd25fd
DJ
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
e8289572
JB
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591}
592
593
c906108c
SS
594/* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
96baa820
JM
597 OBJFILE is where the symbols are to be read from.
598
7e8580c1
JB
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
625
626void
7e8580c1
JB
627syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
c906108c 633{
a39a16c4 634 struct section_addr_info *local_addr = NULL;
c906108c 635 struct cleanup *old_chain;
2acceee2 636
7e8580c1 637 gdb_assert (! (addrs && offsets));
2acceee2 638
c906108c
SS
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
75245b24
MS
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
c906108c
SS
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
74b7792f 647 old_chain = make_cleanup_free_objfile (objfile);
c906108c 648
a39a16c4
MM
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
5417f6dc 654 local_addr
a39a16c4
MM
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
c5aa993b 662 if (mainline)
c906108c
SS
663 {
664 /* We will modify the main symbol table, make sure that all its users
c5aa993b 665 will be cleaned up if an error occurs during symbol reading. */
74b7792f 666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
c906108c 680
c5aa993b 681 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
53a5351d 686 and assume that <addr> is where that got loaded.
c906108c 687
53a5351d
JM
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
1549f619 690 if (!mainline && addrs && addrs->other[0].name)
c906108c 691 {
1549f619
EZ
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
5417f6dc 697 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
c906108c 702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 703 &lower_sect);
2acceee2 704 if (lower_sect == NULL)
8a3fe4f8 705 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 706 objfile->name);
5417f6dc 707 else
b8fbeb18 708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 709 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
5417f6dc 717
13de58df 718 /* Calculate offsets for the loadable sections.
2acceee2
JM
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
5417f6dc 721
13de58df
JB
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
2acceee2
JM
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
1549f619 728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
8a3fe4f8 744 warning (_("section %s not found in %s"),
5417f6dc 745 addrs->other[i].name,
7e8580c1
JB
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
c906108c
SS
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
c5aa993b 759 (*objfile->sf->sym_init) (objfile);
b9caf505 760 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 761
7e8580c1
JB
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
8b92e4d5 772 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
c906108c 777
52d16ba8 778#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
96baa820 792 has a different algorithm for finding section offsets.
c906108c
SS
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
2acceee2 797 if (addrs)
c906108c
SS
798 {
799 struct obj_section *s;
800
5417f6dc
RM
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
2acceee2
JM
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
5417f6dc 805
96baa820 806 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 807 {
2acceee2
JM
808 CORE_ADDR s_addr = 0;
809 int i;
810
5417f6dc 811 for (i = 0;
a39a16c4 812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 813 i++)
5417f6dc
RM
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
fbd35540 816 addrs->other[i].name) == 0)
2acceee2 817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 818
c906108c 819 s->addr -= s->offset;
2acceee2 820 s->addr += s_addr;
c906108c 821 s->endaddr -= s->offset;
2acceee2
JM
822 s->endaddr += s_addr;
823 s->offset += s_addr;
c906108c
SS
824 }
825 }
52d16ba8 826#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 827
96baa820 828 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 829
c906108c
SS
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
c5aa993b 841 objfile->flags |= OBJF_SYMS;
c906108c
SS
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
c906108c
SS
846}
847
848/* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
c5aa993b 851
c906108c 852void
fba45db2 853new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
854{
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
b9caf505 872 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
873}
874
875/* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
5417f6dc
RM
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
c906108c 889
c906108c
SS
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
7904e09f 892static struct objfile *
5417f6dc 893symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
c906108c
SS
898{
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
5b5d99cf 901 char *debugfile;
7b90c3f9 902 struct section_addr_info *orig_addrs = NULL;
a39a16c4 903 struct cleanup *my_cleanups;
5417f6dc 904 const char *name = bfd_get_filename (abfd);
c906108c 905
5417f6dc 906 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 907
5417f6dc
RM
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
c906108c
SS
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 915 error (_("Not confirmed."));
c906108c 916
2df3850c 917 objfile = allocate_objfile (abfd, flags);
5417f6dc 918 discard_cleanups (my_cleanups);
c906108c 919
a39a16c4 920 if (addrs)
63cd24fe 921 {
7b90c3f9
JB
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 924 }
a39a16c4 925
78a4a9b9
AC
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
c906108c 930 {
769d7dc4
AC
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
78a4a9b9 933 else
c906108c 934 {
a3f17187 935 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
c906108c 939 }
78a4a9b9
AC
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
c906108c
SS
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
2acceee2 948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
949 {
950 if (from_tty || info_verbose)
951 {
a3f17187 952 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
c5aa993b 957 for (psymtab = objfile->psymtabs;
c906108c 958 psymtab != NULL;
c5aa993b 959 psymtab = psymtab->next)
c906108c
SS
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
5b5d99cf
JB
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
5b5d99cf
JB
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
a39a16c4 971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
5417f6dc 980
5b5d99cf
JB
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 984
5b5d99cf
JB
985 xfree (debugfile);
986 }
5417f6dc 987
cb3c37b2
JB
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
a3f17187 991 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
cb3c37b2
JB
996 wrap_here ("");
997 }
998
c906108c
SS
999 if (from_tty || info_verbose)
1000 {
769d7dc4
AC
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
c906108c 1003 else
c5aa993b 1004 {
a3f17187 1005 printf_unfiltered (_("done.\n"));
c5aa993b 1006 }
c906108c
SS
1007 }
1008
481d0f41
JB
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
a39a16c4
MM
1014 do_cleanups (my_cleanups);
1015
109f874e
MS
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
c906108c
SS
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
9a4105ab
AC
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
c906108c 1023
ce7d4522 1024 bfd_cache_close_all ();
c906108c
SS
1025 return (objfile);
1026}
1027
7904e09f 1028
eb4556d7
JB
1029/* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034struct objfile *
1035symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038{
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042}
1043
1044
7904e09f
JB
1045/* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048struct objfile *
1049symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051{
eb4556d7
JB
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
7904e09f
JB
1054}
1055
1056
d7db6da9
FN
1057/* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
5417f6dc 1064
1adeb98a
FN
1065void
1066symbol_file_add_main (char *args, int from_tty)
1067{
d7db6da9
FN
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069}
1070
1071static void
1072symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073{
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
d7db6da9
FN
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1adeb98a
FN
1081}
1082
1083void
1084symbol_file_clear (int from_tty)
1085{
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
0430b0d6
AS
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
8a3fe4f8 1092 error (_("Not confirmed."));
1adeb98a
FN
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099#if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101#endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
a3f17187 1105 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1106}
1107
5b5d99cf
JB
1108static char *
1109get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110{
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
5417f6dc 1117
5b5d99cf
JB
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1124
5b5d99cf
JB
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1134
5b5d99cf
JB
1135 *crc32_out = crc32;
1136 return contents;
1137}
1138
1139static int
1140separate_debug_file_exists (const char *name, unsigned long crc)
1141{
1142 unsigned long file_crc = 0;
1143 int fd;
777ea8f1 1144 gdb_byte buffer[8*1024];
5b5d99cf
JB
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157}
1158
aa28a74e 1159char *debug_file_directory = NULL;
920d2a44
AC
1160static void
1161show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163{
1164 fprintf_filtered (file, _("\
1165The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167}
5b5d99cf
JB
1168
1169#if ! defined (DEBUG_SUBDIRECTORY)
1170#define DEBUG_SUBDIRECTORY ".debug"
1171#endif
1172
1173static char *
1174find_separate_debug_file (struct objfile *objfile)
1175{
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
aa28a74e 1181 char *canon_name;
5b5d99cf
JB
1182 bfd_size_type debuglink_size;
1183 unsigned long crc32;
1184 int i;
1185
1186 basename = get_debug_link_info (objfile, &crc32);
1187
1188 if (basename == NULL)
1189 return NULL;
5417f6dc 1190
5b5d99cf
JB
1191 dir = xstrdup (objfile->name);
1192
fe36c4f4
JB
1193 /* Strip off the final filename part, leaving the directory name,
1194 followed by a slash. Objfile names should always be absolute and
1195 tilde-expanded, so there should always be a slash in there
1196 somewhere. */
5b5d99cf
JB
1197 for (i = strlen(dir) - 1; i >= 0; i--)
1198 {
1199 if (IS_DIR_SEPARATOR (dir[i]))
1200 break;
1201 }
fe36c4f4 1202 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1203 dir[i+1] = '\0';
5417f6dc 1204
5b5d99cf
JB
1205 debugfile = alloca (strlen (debug_file_directory) + 1
1206 + strlen (dir)
1207 + strlen (DEBUG_SUBDIRECTORY)
1208 + strlen ("/")
5417f6dc 1209 + strlen (basename)
5b5d99cf
JB
1210 + 1);
1211
1212 /* First try in the same directory as the original file. */
1213 strcpy (debugfile, dir);
1214 strcat (debugfile, basename);
1215
1216 if (separate_debug_file_exists (debugfile, crc32))
1217 {
1218 xfree (basename);
1219 xfree (dir);
1220 return xstrdup (debugfile);
1221 }
5417f6dc 1222
5b5d99cf
JB
1223 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1224 strcpy (debugfile, dir);
1225 strcat (debugfile, DEBUG_SUBDIRECTORY);
1226 strcat (debugfile, "/");
1227 strcat (debugfile, basename);
1228
1229 if (separate_debug_file_exists (debugfile, crc32))
1230 {
1231 xfree (basename);
1232 xfree (dir);
1233 return xstrdup (debugfile);
1234 }
5417f6dc 1235
5b5d99cf
JB
1236 /* Then try in the global debugfile directory. */
1237 strcpy (debugfile, debug_file_directory);
1238 strcat (debugfile, "/");
1239 strcat (debugfile, dir);
5b5d99cf
JB
1240 strcat (debugfile, basename);
1241
1242 if (separate_debug_file_exists (debugfile, crc32))
1243 {
1244 xfree (basename);
1245 xfree (dir);
1246 return xstrdup (debugfile);
1247 }
5417f6dc 1248
aa28a74e
DJ
1249 /* If the file is in the sysroot, try using its base path in the
1250 global debugfile directory. */
1251 canon_name = lrealpath (dir);
1252 if (canon_name
1253 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1254 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1255 {
1256 strcpy (debugfile, debug_file_directory);
1257 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1258 strcat (debugfile, "/");
1259 strcat (debugfile, basename);
1260
1261 if (separate_debug_file_exists (debugfile, crc32))
1262 {
1263 xfree (canon_name);
1264 xfree (basename);
1265 xfree (dir);
1266 return xstrdup (debugfile);
1267 }
1268 }
1269
1270 if (canon_name)
1271 xfree (canon_name);
1272
5b5d99cf
JB
1273 xfree (basename);
1274 xfree (dir);
1275 return NULL;
1276}
1277
1278
c906108c
SS
1279/* This is the symbol-file command. Read the file, analyze its
1280 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1281 the command is rather bizarre:
1282
1283 1. The function buildargv implements various quoting conventions
1284 which are undocumented and have little or nothing in common with
1285 the way things are quoted (or not quoted) elsewhere in GDB.
1286
1287 2. Options are used, which are not generally used in GDB (perhaps
1288 "set mapped on", "set readnow on" would be better)
1289
1290 3. The order of options matters, which is contrary to GNU
c906108c
SS
1291 conventions (because it is confusing and inconvenient). */
1292
1293void
fba45db2 1294symbol_file_command (char *args, int from_tty)
c906108c 1295{
c906108c
SS
1296 dont_repeat ();
1297
1298 if (args == NULL)
1299 {
1adeb98a 1300 symbol_file_clear (from_tty);
c906108c
SS
1301 }
1302 else
1303 {
cb2f3a29
MK
1304 char **argv = buildargv (args);
1305 int flags = OBJF_USERLOADED;
1306 struct cleanup *cleanups;
1307 char *name = NULL;
1308
1309 if (argv == NULL)
1310 nomem (0);
1311
7a292a7a 1312 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1313 while (*argv != NULL)
1314 {
78a4a9b9
AC
1315 if (strcmp (*argv, "-readnow") == 0)
1316 flags |= OBJF_READNOW;
1317 else if (**argv == '-')
8a3fe4f8 1318 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1319 else
1320 {
cb2f3a29 1321 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1322 name = *argv;
78a4a9b9 1323 }
cb2f3a29 1324
c906108c
SS
1325 argv++;
1326 }
1327
1328 if (name == NULL)
cb2f3a29
MK
1329 error (_("no symbol file name was specified"));
1330
c906108c
SS
1331 do_cleanups (cleanups);
1332 }
1333}
1334
1335/* Set the initial language.
1336
cb2f3a29
MK
1337 FIXME: A better solution would be to record the language in the
1338 psymtab when reading partial symbols, and then use it (if known) to
1339 set the language. This would be a win for formats that encode the
1340 language in an easily discoverable place, such as DWARF. For
1341 stabs, we can jump through hoops looking for specially named
1342 symbols or try to intuit the language from the specific type of
1343 stabs we find, but we can't do that until later when we read in
1344 full symbols. */
c906108c
SS
1345
1346static void
fba45db2 1347set_initial_language (void)
c906108c
SS
1348{
1349 struct partial_symtab *pst;
c5aa993b 1350 enum language lang = language_unknown;
c906108c
SS
1351
1352 pst = find_main_psymtab ();
1353 if (pst != NULL)
1354 {
c5aa993b 1355 if (pst->filename != NULL)
cb2f3a29
MK
1356 lang = deduce_language_from_filename (pst->filename);
1357
c906108c
SS
1358 if (lang == language_unknown)
1359 {
c5aa993b
JM
1360 /* Make C the default language */
1361 lang = language_c;
c906108c 1362 }
cb2f3a29 1363
c906108c 1364 set_language (lang);
cb2f3a29 1365 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1366 }
1367}
1368
cb2f3a29
MK
1369/* Open the file specified by NAME and hand it off to BFD for
1370 preliminary analysis. Return a newly initialized bfd *, which
1371 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1372 absolute). In case of trouble, error() is called. */
c906108c
SS
1373
1374bfd *
fba45db2 1375symfile_bfd_open (char *name)
c906108c
SS
1376{
1377 bfd *sym_bfd;
1378 int desc;
1379 char *absolute_name;
1380
cb2f3a29 1381 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1382
1383 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1384 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1385 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1386#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1387 if (desc < 0)
1388 {
1389 char *exename = alloca (strlen (name) + 5);
1390 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1391 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1392 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1393 }
1394#endif
1395 if (desc < 0)
1396 {
b8c9b27d 1397 make_cleanup (xfree, name);
c906108c
SS
1398 perror_with_name (name);
1399 }
cb2f3a29
MK
1400
1401 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1402 bfd. It'll be freed in free_objfile(). */
1403 xfree (name);
1404 name = absolute_name;
c906108c 1405
9f76c2cd 1406 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1407 if (!sym_bfd)
1408 {
1409 close (desc);
b8c9b27d 1410 make_cleanup (xfree, name);
8a3fe4f8 1411 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1412 bfd_errmsg (bfd_get_error ()));
1413 }
549c1eea 1414 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1415
1416 if (!bfd_check_format (sym_bfd, bfd_object))
1417 {
cb2f3a29
MK
1418 /* FIXME: should be checking for errors from bfd_close (for one
1419 thing, on error it does not free all the storage associated
1420 with the bfd). */
1421 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1422 make_cleanup (xfree, name);
8a3fe4f8 1423 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1424 bfd_errmsg (bfd_get_error ()));
1425 }
cb2f3a29
MK
1426
1427 return sym_bfd;
c906108c
SS
1428}
1429
cb2f3a29
MK
1430/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1431 the section was not found. */
1432
0e931cf0
JB
1433int
1434get_section_index (struct objfile *objfile, char *section_name)
1435{
1436 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1437
0e931cf0
JB
1438 if (sect)
1439 return sect->index;
1440 else
1441 return -1;
1442}
1443
cb2f3a29
MK
1444/* Link SF into the global symtab_fns list. Called on startup by the
1445 _initialize routine in each object file format reader, to register
1446 information about each format the the reader is prepared to
1447 handle. */
c906108c
SS
1448
1449void
fba45db2 1450add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1451{
1452 sf->next = symtab_fns;
1453 symtab_fns = sf;
1454}
1455
cb2f3a29
MK
1456/* Initialize OBJFILE to read symbols from its associated BFD. It
1457 either returns or calls error(). The result is an initialized
1458 struct sym_fns in the objfile structure, that contains cached
1459 information about the symbol file. */
c906108c
SS
1460
1461static void
fba45db2 1462find_sym_fns (struct objfile *objfile)
c906108c
SS
1463{
1464 struct sym_fns *sf;
c5aa993b
JM
1465 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1466 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1467
75245b24
MS
1468 if (our_flavour == bfd_target_srec_flavour
1469 || our_flavour == bfd_target_ihex_flavour
1470 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1471 return; /* No symbols. */
75245b24 1472
c5aa993b 1473 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1474 {
c5aa993b 1475 if (our_flavour == sf->sym_flavour)
c906108c 1476 {
c5aa993b 1477 objfile->sf = sf;
c906108c
SS
1478 return;
1479 }
1480 }
cb2f3a29 1481
8a3fe4f8 1482 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1483 bfd_get_target (objfile->obfd));
c906108c
SS
1484}
1485\f
cb2f3a29 1486
c906108c
SS
1487/* This function runs the load command of our current target. */
1488
1489static void
fba45db2 1490load_command (char *arg, int from_tty)
c906108c
SS
1491{
1492 if (arg == NULL)
1986bccd
AS
1493 {
1494 char *parg;
1495 int count = 0;
1496
1497 parg = arg = get_exec_file (1);
1498
1499 /* Count how many \ " ' tab space there are in the name. */
1500 while ((parg = strpbrk (parg, "\\\"'\t ")))
1501 {
1502 parg++;
1503 count++;
1504 }
1505
1506 if (count)
1507 {
1508 /* We need to quote this string so buildargv can pull it apart. */
1509 char *temp = xmalloc (strlen (arg) + count + 1 );
1510 char *ptemp = temp;
1511 char *prev;
1512
1513 make_cleanup (xfree, temp);
1514
1515 prev = parg = arg;
1516 while ((parg = strpbrk (parg, "\\\"'\t ")))
1517 {
1518 strncpy (ptemp, prev, parg - prev);
1519 ptemp += parg - prev;
1520 prev = parg++;
1521 *ptemp++ = '\\';
1522 }
1523 strcpy (ptemp, prev);
1524
1525 arg = temp;
1526 }
1527 }
1528
6490cafe
DJ
1529 /* The user might be reloading because the binary has changed. Take
1530 this opportunity to check. */
1531 reopen_exec_file ();
1532 reread_symbols ();
1533
c906108c 1534 target_load (arg, from_tty);
2889e661
JB
1535
1536 /* After re-loading the executable, we don't really know which
1537 overlays are mapped any more. */
1538 overlay_cache_invalid = 1;
c906108c
SS
1539}
1540
1541/* This version of "load" should be usable for any target. Currently
1542 it is just used for remote targets, not inftarg.c or core files,
1543 on the theory that only in that case is it useful.
1544
1545 Avoiding xmodem and the like seems like a win (a) because we don't have
1546 to worry about finding it, and (b) On VMS, fork() is very slow and so
1547 we don't want to run a subprocess. On the other hand, I'm not sure how
1548 performance compares. */
917317f4 1549
917317f4
JM
1550static int validate_download = 0;
1551
e4f9b4d5
MS
1552/* Callback service function for generic_load (bfd_map_over_sections). */
1553
1554static void
1555add_section_size_callback (bfd *abfd, asection *asec, void *data)
1556{
1557 bfd_size_type *sum = data;
1558
2c500098 1559 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1560}
1561
1562/* Opaque data for load_section_callback. */
1563struct load_section_data {
1564 unsigned long load_offset;
a76d924d
DJ
1565 struct load_progress_data *progress_data;
1566 VEC(memory_write_request_s) *requests;
1567};
1568
1569/* Opaque data for load_progress. */
1570struct load_progress_data {
1571 /* Cumulative data. */
e4f9b4d5
MS
1572 unsigned long write_count;
1573 unsigned long data_count;
1574 bfd_size_type total_size;
a76d924d
DJ
1575};
1576
1577/* Opaque data for load_progress for a single section. */
1578struct load_progress_section_data {
1579 struct load_progress_data *cumulative;
cf7a04e8 1580
a76d924d 1581 /* Per-section data. */
cf7a04e8
DJ
1582 const char *section_name;
1583 ULONGEST section_sent;
1584 ULONGEST section_size;
1585 CORE_ADDR lma;
1586 gdb_byte *buffer;
e4f9b4d5
MS
1587};
1588
a76d924d 1589/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1590
1591static void
1592load_progress (ULONGEST bytes, void *untyped_arg)
1593{
a76d924d
DJ
1594 struct load_progress_section_data *args = untyped_arg;
1595 struct load_progress_data *totals;
1596
1597 if (args == NULL)
1598 /* Writing padding data. No easy way to get at the cumulative
1599 stats, so just ignore this. */
1600 return;
1601
1602 totals = args->cumulative;
1603
1604 if (bytes == 0 && args->section_sent == 0)
1605 {
1606 /* The write is just starting. Let the user know we've started
1607 this section. */
1608 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1609 args->section_name, paddr_nz (args->section_size),
1610 paddr_nz (args->lma));
1611 return;
1612 }
cf7a04e8
DJ
1613
1614 if (validate_download)
1615 {
1616 /* Broken memories and broken monitors manifest themselves here
1617 when bring new computers to life. This doubles already slow
1618 downloads. */
1619 /* NOTE: cagney/1999-10-18: A more efficient implementation
1620 might add a verify_memory() method to the target vector and
1621 then use that. remote.c could implement that method using
1622 the ``qCRC'' packet. */
1623 gdb_byte *check = xmalloc (bytes);
1624 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1625
1626 if (target_read_memory (args->lma, check, bytes) != 0)
1627 error (_("Download verify read failed at 0x%s"),
1628 paddr (args->lma));
1629 if (memcmp (args->buffer, check, bytes) != 0)
1630 error (_("Download verify compare failed at 0x%s"),
1631 paddr (args->lma));
1632 do_cleanups (verify_cleanups);
1633 }
a76d924d 1634 totals->data_count += bytes;
cf7a04e8
DJ
1635 args->lma += bytes;
1636 args->buffer += bytes;
a76d924d 1637 totals->write_count += 1;
cf7a04e8
DJ
1638 args->section_sent += bytes;
1639 if (quit_flag
1640 || (deprecated_ui_load_progress_hook != NULL
1641 && deprecated_ui_load_progress_hook (args->section_name,
1642 args->section_sent)))
1643 error (_("Canceled the download"));
1644
1645 if (deprecated_show_load_progress != NULL)
1646 deprecated_show_load_progress (args->section_name,
1647 args->section_sent,
1648 args->section_size,
a76d924d
DJ
1649 totals->data_count,
1650 totals->total_size);
cf7a04e8
DJ
1651}
1652
e4f9b4d5
MS
1653/* Callback service function for generic_load (bfd_map_over_sections). */
1654
1655static void
1656load_section_callback (bfd *abfd, asection *asec, void *data)
1657{
a76d924d 1658 struct memory_write_request *new_request;
e4f9b4d5 1659 struct load_section_data *args = data;
a76d924d 1660 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1661 bfd_size_type size = bfd_get_section_size (asec);
1662 gdb_byte *buffer;
cf7a04e8 1663 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1664
cf7a04e8
DJ
1665 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1666 return;
e4f9b4d5 1667
cf7a04e8
DJ
1668 if (size == 0)
1669 return;
e4f9b4d5 1670
a76d924d
DJ
1671 new_request = VEC_safe_push (memory_write_request_s,
1672 args->requests, NULL);
1673 memset (new_request, 0, sizeof (struct memory_write_request));
1674 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1675 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1676 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1677 new_request->data = xmalloc (size);
1678 new_request->baton = section_data;
cf7a04e8 1679
a76d924d 1680 buffer = new_request->data;
cf7a04e8 1681
a76d924d
DJ
1682 section_data->cumulative = args->progress_data;
1683 section_data->section_name = sect_name;
1684 section_data->section_size = size;
1685 section_data->lma = new_request->begin;
1686 section_data->buffer = buffer;
cf7a04e8
DJ
1687
1688 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1689}
1690
1691/* Clean up an entire memory request vector, including load
1692 data and progress records. */
cf7a04e8 1693
a76d924d
DJ
1694static void
1695clear_memory_write_data (void *arg)
1696{
1697 VEC(memory_write_request_s) **vec_p = arg;
1698 VEC(memory_write_request_s) *vec = *vec_p;
1699 int i;
1700 struct memory_write_request *mr;
cf7a04e8 1701
a76d924d
DJ
1702 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1703 {
1704 xfree (mr->data);
1705 xfree (mr->baton);
1706 }
1707 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1708}
1709
c906108c 1710void
917317f4 1711generic_load (char *args, int from_tty)
c906108c 1712{
c906108c 1713 bfd *loadfile_bfd;
2b71414d 1714 struct timeval start_time, end_time;
917317f4 1715 char *filename;
1986bccd 1716 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1717 struct load_section_data cbdata;
a76d924d
DJ
1718 struct load_progress_data total_progress;
1719
e4f9b4d5 1720 CORE_ADDR entry;
1986bccd 1721 char **argv;
e4f9b4d5 1722
a76d924d
DJ
1723 memset (&cbdata, 0, sizeof (cbdata));
1724 memset (&total_progress, 0, sizeof (total_progress));
1725 cbdata.progress_data = &total_progress;
1726
1727 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1728
1986bccd
AS
1729 argv = buildargv (args);
1730
1731 if (argv == NULL)
1732 nomem(0);
1733
1734 make_cleanup_freeargv (argv);
1735
1736 filename = tilde_expand (argv[0]);
1737 make_cleanup (xfree, filename);
1738
1739 if (argv[1] != NULL)
917317f4
JM
1740 {
1741 char *endptr;
ba5f2f8a 1742
1986bccd
AS
1743 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1744
1745 /* If the last word was not a valid number then
1746 treat it as a file name with spaces in. */
1747 if (argv[1] == endptr)
1748 error (_("Invalid download offset:%s."), argv[1]);
1749
1750 if (argv[2] != NULL)
1751 error (_("Too many parameters."));
917317f4 1752 }
c906108c 1753
917317f4 1754 /* Open the file for loading. */
c906108c
SS
1755 loadfile_bfd = bfd_openr (filename, gnutarget);
1756 if (loadfile_bfd == NULL)
1757 {
1758 perror_with_name (filename);
1759 return;
1760 }
917317f4 1761
c906108c
SS
1762 /* FIXME: should be checking for errors from bfd_close (for one thing,
1763 on error it does not free all the storage associated with the
1764 bfd). */
5c65bbb6 1765 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1766
c5aa993b 1767 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1768 {
8a3fe4f8 1769 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1770 bfd_errmsg (bfd_get_error ()));
1771 }
c5aa993b 1772
5417f6dc 1773 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1774 (void *) &total_progress.total_size);
1775
1776 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1777
2b71414d 1778 gettimeofday (&start_time, NULL);
c906108c 1779
a76d924d
DJ
1780 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1781 load_progress) != 0)
1782 error (_("Load failed"));
c906108c 1783
2b71414d 1784 gettimeofday (&end_time, NULL);
ba5f2f8a 1785
e4f9b4d5 1786 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1787 ui_out_text (uiout, "Start address ");
1788 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1789 ui_out_text (uiout, ", load size ");
a76d924d 1790 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1791 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1792 /* We were doing this in remote-mips.c, I suspect it is right
1793 for other targets too. */
1794 write_pc (entry);
c906108c 1795
7ca9f392
AC
1796 /* FIXME: are we supposed to call symbol_file_add or not? According
1797 to a comment from remote-mips.c (where a call to symbol_file_add
1798 was commented out), making the call confuses GDB if more than one
1799 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1800 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1801
a76d924d
DJ
1802 print_transfer_performance (gdb_stdout, total_progress.data_count,
1803 total_progress.write_count,
1804 &start_time, &end_time);
c906108c
SS
1805
1806 do_cleanups (old_cleanups);
1807}
1808
1809/* Report how fast the transfer went. */
1810
917317f4
JM
1811/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1812 replaced by print_transfer_performance (with a very different
1813 function signature). */
1814
c906108c 1815void
fba45db2
KB
1816report_transfer_performance (unsigned long data_count, time_t start_time,
1817 time_t end_time)
c906108c 1818{
2b71414d
DJ
1819 struct timeval start, end;
1820
1821 start.tv_sec = start_time;
1822 start.tv_usec = 0;
1823 end.tv_sec = end_time;
1824 end.tv_usec = 0;
1825
1826 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1827}
1828
1829void
d9fcf2fb 1830print_transfer_performance (struct ui_file *stream,
917317f4
JM
1831 unsigned long data_count,
1832 unsigned long write_count,
2b71414d
DJ
1833 const struct timeval *start_time,
1834 const struct timeval *end_time)
917317f4 1835{
2b71414d
DJ
1836 unsigned long time_count;
1837
1838 /* Compute the elapsed time in milliseconds, as a tradeoff between
1839 accuracy and overflow. */
1840 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1841 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1842
8b93c638
JM
1843 ui_out_text (uiout, "Transfer rate: ");
1844 if (time_count > 0)
1845 {
5417f6dc 1846 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1847 1000 * (data_count * 8) / time_count);
8b93c638
JM
1848 ui_out_text (uiout, " bits/sec");
1849 }
1850 else
1851 {
ba5f2f8a 1852 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1853 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1854 }
1855 if (write_count > 0)
1856 {
1857 ui_out_text (uiout, ", ");
ba5f2f8a 1858 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1859 ui_out_text (uiout, " bytes/write");
1860 }
1861 ui_out_text (uiout, ".\n");
c906108c
SS
1862}
1863
1864/* This function allows the addition of incrementally linked object files.
1865 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1866/* Note: ezannoni 2000-04-13 This function/command used to have a
1867 special case syntax for the rombug target (Rombug is the boot
1868 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1869 rombug case, the user doesn't need to supply a text address,
1870 instead a call to target_link() (in target.c) would supply the
1871 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1872
c906108c 1873static void
fba45db2 1874add_symbol_file_command (char *args, int from_tty)
c906108c 1875{
db162d44 1876 char *filename = NULL;
2df3850c 1877 int flags = OBJF_USERLOADED;
c906108c 1878 char *arg;
2acceee2 1879 int expecting_option = 0;
db162d44 1880 int section_index = 0;
2acceee2
JM
1881 int argcnt = 0;
1882 int sec_num = 0;
1883 int i;
db162d44
EZ
1884 int expecting_sec_name = 0;
1885 int expecting_sec_addr = 0;
5b96932b 1886 char **argv;
db162d44 1887
a39a16c4 1888 struct sect_opt
2acceee2 1889 {
2acceee2
JM
1890 char *name;
1891 char *value;
a39a16c4 1892 };
db162d44 1893
a39a16c4
MM
1894 struct section_addr_info *section_addrs;
1895 struct sect_opt *sect_opts = NULL;
1896 size_t num_sect_opts = 0;
3017564a 1897 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1898
a39a16c4 1899 num_sect_opts = 16;
5417f6dc 1900 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1901 * sizeof (struct sect_opt));
1902
c906108c
SS
1903 dont_repeat ();
1904
1905 if (args == NULL)
8a3fe4f8 1906 error (_("add-symbol-file takes a file name and an address"));
c906108c 1907
5b96932b
AS
1908 argv = buildargv (args);
1909 make_cleanup_freeargv (argv);
db162d44 1910
5b96932b
AS
1911 if (argv == NULL)
1912 nomem (0);
db162d44 1913
5b96932b
AS
1914 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1915 {
1916 /* Process the argument. */
db162d44 1917 if (argcnt == 0)
c906108c 1918 {
db162d44
EZ
1919 /* The first argument is the file name. */
1920 filename = tilde_expand (arg);
3017564a 1921 make_cleanup (xfree, filename);
c906108c 1922 }
db162d44 1923 else
7a78ae4e
ND
1924 if (argcnt == 1)
1925 {
1926 /* The second argument is always the text address at which
1927 to load the program. */
1928 sect_opts[section_index].name = ".text";
1929 sect_opts[section_index].value = arg;
f414f22f 1930 if (++section_index >= num_sect_opts)
a39a16c4
MM
1931 {
1932 num_sect_opts *= 2;
5417f6dc 1933 sect_opts = ((struct sect_opt *)
a39a16c4 1934 xrealloc (sect_opts,
5417f6dc 1935 num_sect_opts
a39a16c4
MM
1936 * sizeof (struct sect_opt)));
1937 }
7a78ae4e
ND
1938 }
1939 else
1940 {
1941 /* It's an option (starting with '-') or it's an argument
1942 to an option */
1943
1944 if (*arg == '-')
1945 {
78a4a9b9
AC
1946 if (strcmp (arg, "-readnow") == 0)
1947 flags |= OBJF_READNOW;
1948 else if (strcmp (arg, "-s") == 0)
1949 {
1950 expecting_sec_name = 1;
1951 expecting_sec_addr = 1;
1952 }
7a78ae4e
ND
1953 }
1954 else
1955 {
1956 if (expecting_sec_name)
db162d44 1957 {
7a78ae4e
ND
1958 sect_opts[section_index].name = arg;
1959 expecting_sec_name = 0;
db162d44
EZ
1960 }
1961 else
7a78ae4e
ND
1962 if (expecting_sec_addr)
1963 {
1964 sect_opts[section_index].value = arg;
1965 expecting_sec_addr = 0;
f414f22f 1966 if (++section_index >= num_sect_opts)
a39a16c4
MM
1967 {
1968 num_sect_opts *= 2;
5417f6dc 1969 sect_opts = ((struct sect_opt *)
a39a16c4 1970 xrealloc (sect_opts,
5417f6dc 1971 num_sect_opts
a39a16c4
MM
1972 * sizeof (struct sect_opt)));
1973 }
7a78ae4e
ND
1974 }
1975 else
8a3fe4f8 1976 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1977 }
1978 }
c906108c 1979 }
c906108c 1980
927890d0
JB
1981 /* This command takes at least two arguments. The first one is a
1982 filename, and the second is the address where this file has been
1983 loaded. Abort now if this address hasn't been provided by the
1984 user. */
1985 if (section_index < 1)
1986 error (_("The address where %s has been loaded is missing"), filename);
1987
db162d44
EZ
1988 /* Print the prompt for the query below. And save the arguments into
1989 a sect_addr_info structure to be passed around to other
1990 functions. We have to split this up into separate print
bb599908 1991 statements because hex_string returns a local static
db162d44 1992 string. */
5417f6dc 1993
a3f17187 1994 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1995 section_addrs = alloc_section_addr_info (section_index);
1996 make_cleanup (xfree, section_addrs);
db162d44 1997 for (i = 0; i < section_index; i++)
c906108c 1998 {
db162d44
EZ
1999 CORE_ADDR addr;
2000 char *val = sect_opts[i].value;
2001 char *sec = sect_opts[i].name;
5417f6dc 2002
ae822768 2003 addr = parse_and_eval_address (val);
db162d44 2004
db162d44
EZ
2005 /* Here we store the section offsets in the order they were
2006 entered on the command line. */
a39a16c4
MM
2007 section_addrs->other[sec_num].name = sec;
2008 section_addrs->other[sec_num].addr = addr;
46f45a4a 2009 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 2010 sec, hex_string ((unsigned long)addr));
db162d44
EZ
2011 sec_num++;
2012
5417f6dc 2013 /* The object's sections are initialized when a
db162d44 2014 call is made to build_objfile_section_table (objfile).
5417f6dc 2015 This happens in reread_symbols.
db162d44
EZ
2016 At this point, we don't know what file type this is,
2017 so we can't determine what section names are valid. */
2acceee2 2018 }
db162d44 2019
2acceee2 2020 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2021 error (_("Not confirmed."));
c906108c 2022
a39a16c4 2023 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2024
2025 /* Getting new symbols may change our opinion about what is
2026 frameless. */
2027 reinit_frame_cache ();
db162d44 2028 do_cleanups (my_cleanups);
c906108c
SS
2029}
2030\f
2031static void
fba45db2 2032add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2033{
2034#ifdef ADD_SHARED_SYMBOL_FILES
2035 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2036#else
8a3fe4f8 2037 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2038#endif
c906108c
SS
2039}
2040\f
2041/* Re-read symbols if a symbol-file has changed. */
2042void
fba45db2 2043reread_symbols (void)
c906108c
SS
2044{
2045 struct objfile *objfile;
2046 long new_modtime;
2047 int reread_one = 0;
2048 struct stat new_statbuf;
2049 int res;
2050
2051 /* With the addition of shared libraries, this should be modified,
2052 the load time should be saved in the partial symbol tables, since
2053 different tables may come from different source files. FIXME.
2054 This routine should then walk down each partial symbol table
2055 and see if the symbol table that it originates from has been changed */
2056
c5aa993b
JM
2057 for (objfile = object_files; objfile; objfile = objfile->next)
2058 {
2059 if (objfile->obfd)
2060 {
52d16ba8 2061#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2062 /* If this object is from a shared library, then you should
2063 stat on the library name, not member name. */
c906108c 2064
c5aa993b
JM
2065 if (objfile->obfd->my_archive)
2066 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2067 else
c906108c 2068#endif
c5aa993b
JM
2069 res = stat (objfile->name, &new_statbuf);
2070 if (res != 0)
c906108c 2071 {
c5aa993b 2072 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2073 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2074 objfile->name);
2075 continue;
c906108c 2076 }
c5aa993b
JM
2077 new_modtime = new_statbuf.st_mtime;
2078 if (new_modtime != objfile->mtime)
c906108c 2079 {
c5aa993b
JM
2080 struct cleanup *old_cleanups;
2081 struct section_offsets *offsets;
2082 int num_offsets;
c5aa993b
JM
2083 char *obfd_filename;
2084
a3f17187 2085 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2086 objfile->name);
2087
2088 /* There are various functions like symbol_file_add,
2089 symfile_bfd_open, syms_from_objfile, etc., which might
2090 appear to do what we want. But they have various other
2091 effects which we *don't* want. So we just do stuff
2092 ourselves. We don't worry about mapped files (for one thing,
2093 any mapped file will be out of date). */
2094
2095 /* If we get an error, blow away this objfile (not sure if
2096 that is the correct response for things like shared
2097 libraries). */
74b7792f 2098 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2099 /* We need to do this whenever any symbols go away. */
74b7792f 2100 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2101
2102 /* Clean up any state BFD has sitting around. We don't need
2103 to close the descriptor but BFD lacks a way of closing the
2104 BFD without closing the descriptor. */
2105 obfd_filename = bfd_get_filename (objfile->obfd);
2106 if (!bfd_close (objfile->obfd))
8a3fe4f8 2107 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2108 bfd_errmsg (bfd_get_error ()));
2109 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2110 if (objfile->obfd == NULL)
8a3fe4f8 2111 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2112 /* bfd_openr sets cacheable to true, which is what we want. */
2113 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2114 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2115 bfd_errmsg (bfd_get_error ()));
2116
2117 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2118 objfile_obstack. */
c5aa993b 2119 num_offsets = objfile->num_sections;
5417f6dc 2120 offsets = ((struct section_offsets *)
a39a16c4 2121 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2122 memcpy (offsets, objfile->section_offsets,
a39a16c4 2123 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2124
ae5a43e0
DJ
2125 /* Remove any references to this objfile in the global
2126 value lists. */
2127 preserve_values (objfile);
2128
c5aa993b
JM
2129 /* Nuke all the state that we will re-read. Much of the following
2130 code which sets things to NULL really is necessary to tell
2131 other parts of GDB that there is nothing currently there. */
2132
2133 /* FIXME: Do we have to free a whole linked list, or is this
2134 enough? */
2135 if (objfile->global_psymbols.list)
2dc74dc1 2136 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2137 memset (&objfile->global_psymbols, 0,
2138 sizeof (objfile->global_psymbols));
2139 if (objfile->static_psymbols.list)
2dc74dc1 2140 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2141 memset (&objfile->static_psymbols, 0,
2142 sizeof (objfile->static_psymbols));
2143
2144 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2145 bcache_xfree (objfile->psymbol_cache);
2146 objfile->psymbol_cache = bcache_xmalloc ();
2147 bcache_xfree (objfile->macro_cache);
2148 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2149 if (objfile->demangled_names_hash != NULL)
2150 {
2151 htab_delete (objfile->demangled_names_hash);
2152 objfile->demangled_names_hash = NULL;
2153 }
b99607ea 2154 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2155 objfile->sections = NULL;
2156 objfile->symtabs = NULL;
2157 objfile->psymtabs = NULL;
2158 objfile->free_psymtabs = NULL;
a1b8c067 2159 objfile->cp_namespace_symtab = NULL;
c5aa993b 2160 objfile->msymbols = NULL;
0a6ddd08 2161 objfile->deprecated_sym_private = NULL;
c5aa993b 2162 objfile->minimal_symbol_count = 0;
0a83117a
MS
2163 memset (&objfile->msymbol_hash, 0,
2164 sizeof (objfile->msymbol_hash));
2165 memset (&objfile->msymbol_demangled_hash, 0,
2166 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2167 objfile->fundamental_types = NULL;
7b097ae3 2168 clear_objfile_data (objfile);
c5aa993b
JM
2169 if (objfile->sf != NULL)
2170 {
2171 (*objfile->sf->sym_finish) (objfile);
2172 }
2173
2174 /* We never make this a mapped file. */
2175 objfile->md = NULL;
af5f3db6
AC
2176 objfile->psymbol_cache = bcache_xmalloc ();
2177 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2178 /* obstack_init also initializes the obstack so it is
2179 empty. We could use obstack_specify_allocation but
2180 gdb_obstack.h specifies the alloc/dealloc
2181 functions. */
2182 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2183 if (build_objfile_section_table (objfile))
2184 {
8a3fe4f8 2185 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2186 objfile->name, bfd_errmsg (bfd_get_error ()));
2187 }
15831452 2188 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2189
2190 /* We use the same section offsets as from last time. I'm not
2191 sure whether that is always correct for shared libraries. */
2192 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2193 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2194 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2195 memcpy (objfile->section_offsets, offsets,
a39a16c4 2196 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2197 objfile->num_sections = num_offsets;
2198
2199 /* What the hell is sym_new_init for, anyway? The concept of
2200 distinguishing between the main file and additional files
2201 in this way seems rather dubious. */
2202 if (objfile == symfile_objfile)
2203 {
2204 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2205 }
2206
2207 (*objfile->sf->sym_init) (objfile);
b9caf505 2208 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2209 /* The "mainline" parameter is a hideous hack; I think leaving it
2210 zero is OK since dbxread.c also does what it needs to do if
2211 objfile->global_psymbols.size is 0. */
96baa820 2212 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2213 if (!have_partial_symbols () && !have_full_symbols ())
2214 {
2215 wrap_here ("");
a3f17187 2216 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2217 wrap_here ("");
2218 }
2219 objfile->flags |= OBJF_SYMS;
2220
2221 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2222 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2223
c5aa993b
JM
2224 /* Getting new symbols may change our opinion about what is
2225 frameless. */
c906108c 2226
c5aa993b 2227 reinit_frame_cache ();
c906108c 2228
c5aa993b
JM
2229 /* Discard cleanups as symbol reading was successful. */
2230 discard_cleanups (old_cleanups);
c906108c 2231
c5aa993b
JM
2232 /* If the mtime has changed between the time we set new_modtime
2233 and now, we *want* this to be out of date, so don't call stat
2234 again now. */
2235 objfile->mtime = new_modtime;
2236 reread_one = 1;
5b5d99cf 2237 reread_separate_symbols (objfile);
c5aa993b 2238 }
c906108c
SS
2239 }
2240 }
c906108c
SS
2241
2242 if (reread_one)
ea53e89f
JB
2243 {
2244 clear_symtab_users ();
2245 /* At least one objfile has changed, so we can consider that
2246 the executable we're debugging has changed too. */
2247 observer_notify_executable_changed (NULL);
2248 }
2249
c906108c 2250}
5b5d99cf
JB
2251
2252
2253/* Handle separate debug info for OBJFILE, which has just been
2254 re-read:
2255 - If we had separate debug info before, but now we don't, get rid
2256 of the separated objfile.
2257 - If we didn't have separated debug info before, but now we do,
2258 read in the new separated debug info file.
2259 - If the debug link points to a different file, toss the old one
2260 and read the new one.
2261 This function does *not* handle the case where objfile is still
2262 using the same separate debug info file, but that file's timestamp
2263 has changed. That case should be handled by the loop in
2264 reread_symbols already. */
2265static void
2266reread_separate_symbols (struct objfile *objfile)
2267{
2268 char *debug_file;
2269 unsigned long crc32;
2270
2271 /* Does the updated objfile's debug info live in a
2272 separate file? */
2273 debug_file = find_separate_debug_file (objfile);
2274
2275 if (objfile->separate_debug_objfile)
2276 {
2277 /* There are two cases where we need to get rid of
2278 the old separated debug info objfile:
2279 - if the new primary objfile doesn't have
2280 separated debug info, or
2281 - if the new primary objfile has separate debug
2282 info, but it's under a different filename.
5417f6dc 2283
5b5d99cf
JB
2284 If the old and new objfiles both have separate
2285 debug info, under the same filename, then we're
2286 okay --- if the separated file's contents have
2287 changed, we will have caught that when we
2288 visited it in this function's outermost
2289 loop. */
2290 if (! debug_file
2291 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2292 free_objfile (objfile->separate_debug_objfile);
2293 }
2294
2295 /* If the new objfile has separate debug info, and we
2296 haven't loaded it already, do so now. */
2297 if (debug_file
2298 && ! objfile->separate_debug_objfile)
2299 {
2300 /* Use the same section offset table as objfile itself.
2301 Preserve the flags from objfile that make sense. */
2302 objfile->separate_debug_objfile
2303 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2304 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2305 info_verbose, /* from_tty: Don't override the default. */
2306 0, /* No addr table. */
2307 objfile->section_offsets, objfile->num_sections,
2308 0, /* Not mainline. See comments about this above. */
78a4a9b9 2309 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2310 | OBJF_USERLOADED)));
2311 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2312 = objfile;
2313 }
2314}
2315
2316
c906108c
SS
2317\f
2318
c5aa993b
JM
2319
2320typedef struct
2321{
2322 char *ext;
c906108c 2323 enum language lang;
c5aa993b
JM
2324}
2325filename_language;
c906108c 2326
c5aa993b 2327static filename_language *filename_language_table;
c906108c
SS
2328static int fl_table_size, fl_table_next;
2329
2330static void
fba45db2 2331add_filename_language (char *ext, enum language lang)
c906108c
SS
2332{
2333 if (fl_table_next >= fl_table_size)
2334 {
2335 fl_table_size += 10;
5417f6dc 2336 filename_language_table =
25bf3106
PM
2337 xrealloc (filename_language_table,
2338 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2339 }
2340
4fcf66da 2341 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2342 filename_language_table[fl_table_next].lang = lang;
2343 fl_table_next++;
2344}
2345
2346static char *ext_args;
920d2a44
AC
2347static void
2348show_ext_args (struct ui_file *file, int from_tty,
2349 struct cmd_list_element *c, const char *value)
2350{
2351 fprintf_filtered (file, _("\
2352Mapping between filename extension and source language is \"%s\".\n"),
2353 value);
2354}
c906108c
SS
2355
2356static void
26c41df3 2357set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2358{
2359 int i;
2360 char *cp = ext_args;
2361 enum language lang;
2362
2363 /* First arg is filename extension, starting with '.' */
2364 if (*cp != '.')
8a3fe4f8 2365 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2366
2367 /* Find end of first arg. */
c5aa993b 2368 while (*cp && !isspace (*cp))
c906108c
SS
2369 cp++;
2370
2371 if (*cp == '\0')
8a3fe4f8 2372 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2373 ext_args);
2374
2375 /* Null-terminate first arg */
c5aa993b 2376 *cp++ = '\0';
c906108c
SS
2377
2378 /* Find beginning of second arg, which should be a source language. */
2379 while (*cp && isspace (*cp))
2380 cp++;
2381
2382 if (*cp == '\0')
8a3fe4f8 2383 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2384 ext_args);
2385
2386 /* Lookup the language from among those we know. */
2387 lang = language_enum (cp);
2388
2389 /* Now lookup the filename extension: do we already know it? */
2390 for (i = 0; i < fl_table_next; i++)
2391 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2392 break;
2393
2394 if (i >= fl_table_next)
2395 {
2396 /* new file extension */
2397 add_filename_language (ext_args, lang);
2398 }
2399 else
2400 {
2401 /* redefining a previously known filename extension */
2402
2403 /* if (from_tty) */
2404 /* query ("Really make files of type %s '%s'?", */
2405 /* ext_args, language_str (lang)); */
2406
b8c9b27d 2407 xfree (filename_language_table[i].ext);
4fcf66da 2408 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2409 filename_language_table[i].lang = lang;
2410 }
2411}
2412
2413static void
fba45db2 2414info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2415{
2416 int i;
2417
a3f17187 2418 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2419 printf_filtered ("\n\n");
2420 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2421 printf_filtered ("\t%s\t- %s\n",
2422 filename_language_table[i].ext,
c906108c
SS
2423 language_str (filename_language_table[i].lang));
2424}
2425
2426static void
fba45db2 2427init_filename_language_table (void)
c906108c
SS
2428{
2429 if (fl_table_size == 0) /* protect against repetition */
2430 {
2431 fl_table_size = 20;
2432 fl_table_next = 0;
c5aa993b 2433 filename_language_table =
c906108c 2434 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2435 add_filename_language (".c", language_c);
2436 add_filename_language (".C", language_cplus);
2437 add_filename_language (".cc", language_cplus);
2438 add_filename_language (".cp", language_cplus);
2439 add_filename_language (".cpp", language_cplus);
2440 add_filename_language (".cxx", language_cplus);
2441 add_filename_language (".c++", language_cplus);
2442 add_filename_language (".java", language_java);
c906108c 2443 add_filename_language (".class", language_java);
da2cf7e0 2444 add_filename_language (".m", language_objc);
c5aa993b
JM
2445 add_filename_language (".f", language_fortran);
2446 add_filename_language (".F", language_fortran);
2447 add_filename_language (".s", language_asm);
2448 add_filename_language (".S", language_asm);
c6fd39cd
PM
2449 add_filename_language (".pas", language_pascal);
2450 add_filename_language (".p", language_pascal);
2451 add_filename_language (".pp", language_pascal);
963a6417
PH
2452 add_filename_language (".adb", language_ada);
2453 add_filename_language (".ads", language_ada);
2454 add_filename_language (".a", language_ada);
2455 add_filename_language (".ada", language_ada);
c906108c
SS
2456 }
2457}
2458
2459enum language
fba45db2 2460deduce_language_from_filename (char *filename)
c906108c
SS
2461{
2462 int i;
2463 char *cp;
2464
2465 if (filename != NULL)
2466 if ((cp = strrchr (filename, '.')) != NULL)
2467 for (i = 0; i < fl_table_next; i++)
2468 if (strcmp (cp, filename_language_table[i].ext) == 0)
2469 return filename_language_table[i].lang;
2470
2471 return language_unknown;
2472}
2473\f
2474/* allocate_symtab:
2475
2476 Allocate and partly initialize a new symbol table. Return a pointer
2477 to it. error() if no space.
2478
2479 Caller must set these fields:
c5aa993b
JM
2480 LINETABLE(symtab)
2481 symtab->blockvector
2482 symtab->dirname
2483 symtab->free_code
2484 symtab->free_ptr
2485 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2486 */
2487
2488struct symtab *
fba45db2 2489allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2490{
52f0bd74 2491 struct symtab *symtab;
c906108c
SS
2492
2493 symtab = (struct symtab *)
4a146b47 2494 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2495 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2496 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2497 &objfile->objfile_obstack);
c5aa993b
JM
2498 symtab->fullname = NULL;
2499 symtab->language = deduce_language_from_filename (filename);
2500 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2501 &objfile->objfile_obstack);
c906108c
SS
2502
2503 /* Hook it to the objfile it comes from */
2504
c5aa993b
JM
2505 symtab->objfile = objfile;
2506 symtab->next = objfile->symtabs;
2507 objfile->symtabs = symtab;
c906108c
SS
2508
2509 /* FIXME: This should go away. It is only defined for the Z8000,
2510 and the Z8000 definition of this macro doesn't have anything to
2511 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2512 here for convenience. */
2513#ifdef INIT_EXTRA_SYMTAB_INFO
2514 INIT_EXTRA_SYMTAB_INFO (symtab);
2515#endif
2516
2517 return (symtab);
2518}
2519
2520struct partial_symtab *
fba45db2 2521allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2522{
2523 struct partial_symtab *psymtab;
2524
c5aa993b 2525 if (objfile->free_psymtabs)
c906108c 2526 {
c5aa993b
JM
2527 psymtab = objfile->free_psymtabs;
2528 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2529 }
2530 else
2531 psymtab = (struct partial_symtab *)
8b92e4d5 2532 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2533 sizeof (struct partial_symtab));
2534
2535 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2536 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2537 &objfile->objfile_obstack);
c5aa993b 2538 psymtab->symtab = NULL;
c906108c
SS
2539
2540 /* Prepend it to the psymtab list for the objfile it belongs to.
2541 Psymtabs are searched in most recent inserted -> least recent
2542 inserted order. */
2543
c5aa993b
JM
2544 psymtab->objfile = objfile;
2545 psymtab->next = objfile->psymtabs;
2546 objfile->psymtabs = psymtab;
c906108c
SS
2547#if 0
2548 {
2549 struct partial_symtab **prev_pst;
c5aa993b
JM
2550 psymtab->objfile = objfile;
2551 psymtab->next = NULL;
2552 prev_pst = &(objfile->psymtabs);
c906108c 2553 while ((*prev_pst) != NULL)
c5aa993b 2554 prev_pst = &((*prev_pst)->next);
c906108c 2555 (*prev_pst) = psymtab;
c5aa993b 2556 }
c906108c 2557#endif
c5aa993b 2558
c906108c
SS
2559 return (psymtab);
2560}
2561
2562void
fba45db2 2563discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2564{
2565 struct partial_symtab **prev_pst;
2566
2567 /* From dbxread.c:
2568 Empty psymtabs happen as a result of header files which don't
2569 have any symbols in them. There can be a lot of them. But this
2570 check is wrong, in that a psymtab with N_SLINE entries but
2571 nothing else is not empty, but we don't realize that. Fixing
2572 that without slowing things down might be tricky. */
2573
2574 /* First, snip it out of the psymtab chain */
2575
2576 prev_pst = &(pst->objfile->psymtabs);
2577 while ((*prev_pst) != pst)
2578 prev_pst = &((*prev_pst)->next);
2579 (*prev_pst) = pst->next;
2580
2581 /* Next, put it on a free list for recycling */
2582
2583 pst->next = pst->objfile->free_psymtabs;
2584 pst->objfile->free_psymtabs = pst;
2585}
c906108c 2586\f
c5aa993b 2587
c906108c
SS
2588/* Reset all data structures in gdb which may contain references to symbol
2589 table data. */
2590
2591void
fba45db2 2592clear_symtab_users (void)
c906108c
SS
2593{
2594 /* Someday, we should do better than this, by only blowing away
2595 the things that really need to be blown. */
c0501be5
DJ
2596
2597 /* Clear the "current" symtab first, because it is no longer valid.
2598 breakpoint_re_set may try to access the current symtab. */
2599 clear_current_source_symtab_and_line ();
2600
c906108c 2601 clear_displays ();
c906108c
SS
2602 breakpoint_re_set ();
2603 set_default_breakpoint (0, 0, 0, 0);
c906108c 2604 clear_pc_function_cache ();
9a4105ab
AC
2605 if (deprecated_target_new_objfile_hook)
2606 deprecated_target_new_objfile_hook (NULL);
9bdcbae7
DJ
2607
2608 /* Clear globals which might have pointed into a removed objfile.
2609 FIXME: It's not clear which of these are supposed to persist
2610 between expressions and which ought to be reset each time. */
2611 expression_context_block = NULL;
2612 innermost_block = NULL;
c906108c
SS
2613}
2614
74b7792f
AC
2615static void
2616clear_symtab_users_cleanup (void *ignore)
2617{
2618 clear_symtab_users ();
2619}
2620
c906108c
SS
2621/* clear_symtab_users_once:
2622
2623 This function is run after symbol reading, or from a cleanup.
2624 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2625 has been blown away, but the other GDB data structures that may
c906108c
SS
2626 reference it have not yet been cleared or re-directed. (The old
2627 symtab was zapped, and the cleanup queued, in free_named_symtab()
2628 below.)
2629
2630 This function can be queued N times as a cleanup, or called
2631 directly; it will do all the work the first time, and then will be a
2632 no-op until the next time it is queued. This works by bumping a
2633 counter at queueing time. Much later when the cleanup is run, or at
2634 the end of symbol processing (in case the cleanup is discarded), if
2635 the queued count is greater than the "done-count", we do the work
2636 and set the done-count to the queued count. If the queued count is
2637 less than or equal to the done-count, we just ignore the call. This
2638 is needed because reading a single .o file will often replace many
2639 symtabs (one per .h file, for example), and we don't want to reset
2640 the breakpoints N times in the user's face.
2641
2642 The reason we both queue a cleanup, and call it directly after symbol
2643 reading, is because the cleanup protects us in case of errors, but is
2644 discarded if symbol reading is successful. */
2645
2646#if 0
2647/* FIXME: As free_named_symtabs is currently a big noop this function
2648 is no longer needed. */
a14ed312 2649static void clear_symtab_users_once (void);
c906108c
SS
2650
2651static int clear_symtab_users_queued;
2652static int clear_symtab_users_done;
2653
2654static void
fba45db2 2655clear_symtab_users_once (void)
c906108c
SS
2656{
2657 /* Enforce once-per-`do_cleanups'-semantics */
2658 if (clear_symtab_users_queued <= clear_symtab_users_done)
2659 return;
2660 clear_symtab_users_done = clear_symtab_users_queued;
2661
2662 clear_symtab_users ();
2663}
2664#endif
2665
2666/* Delete the specified psymtab, and any others that reference it. */
2667
2668static void
fba45db2 2669cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2670{
2671 struct partial_symtab *ps, *pprev = NULL;
2672 int i;
2673
2674 /* Find its previous psymtab in the chain */
c5aa993b
JM
2675 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2676 {
2677 if (ps == pst)
2678 break;
2679 pprev = ps;
2680 }
c906108c 2681
c5aa993b
JM
2682 if (ps)
2683 {
2684 /* Unhook it from the chain. */
2685 if (ps == pst->objfile->psymtabs)
2686 pst->objfile->psymtabs = ps->next;
2687 else
2688 pprev->next = ps->next;
2689
2690 /* FIXME, we can't conveniently deallocate the entries in the
2691 partial_symbol lists (global_psymbols/static_psymbols) that
2692 this psymtab points to. These just take up space until all
2693 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2694 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2695
2696 /* We need to cashier any psymtab that has this one as a dependency... */
2697 again:
2698 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2699 {
2700 for (i = 0; i < ps->number_of_dependencies; i++)
2701 {
2702 if (ps->dependencies[i] == pst)
2703 {
2704 cashier_psymtab (ps);
2705 goto again; /* Must restart, chain has been munged. */
2706 }
2707 }
c906108c 2708 }
c906108c 2709 }
c906108c
SS
2710}
2711
2712/* If a symtab or psymtab for filename NAME is found, free it along
2713 with any dependent breakpoints, displays, etc.
2714 Used when loading new versions of object modules with the "add-file"
2715 command. This is only called on the top-level symtab or psymtab's name;
2716 it is not called for subsidiary files such as .h files.
2717
2718 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2719 FIXME. The return value appears to never be used.
c906108c
SS
2720
2721 FIXME. I think this is not the best way to do this. We should
2722 work on being gentler to the environment while still cleaning up
2723 all stray pointers into the freed symtab. */
2724
2725int
fba45db2 2726free_named_symtabs (char *name)
c906108c
SS
2727{
2728#if 0
2729 /* FIXME: With the new method of each objfile having it's own
2730 psymtab list, this function needs serious rethinking. In particular,
2731 why was it ever necessary to toss psymtabs with specific compilation
2732 unit filenames, as opposed to all psymtabs from a particular symbol
2733 file? -- fnf
2734 Well, the answer is that some systems permit reloading of particular
2735 compilation units. We want to blow away any old info about these
2736 compilation units, regardless of which objfiles they arrived in. --gnu. */
2737
52f0bd74
AC
2738 struct symtab *s;
2739 struct symtab *prev;
2740 struct partial_symtab *ps;
c906108c
SS
2741 struct blockvector *bv;
2742 int blewit = 0;
2743
2744 /* We only wack things if the symbol-reload switch is set. */
2745 if (!symbol_reloading)
2746 return 0;
2747
2748 /* Some symbol formats have trouble providing file names... */
2749 if (name == 0 || *name == '\0')
2750 return 0;
2751
2752 /* Look for a psymtab with the specified name. */
2753
2754again2:
c5aa993b
JM
2755 for (ps = partial_symtab_list; ps; ps = ps->next)
2756 {
6314a349 2757 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2758 {
2759 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2760 goto again2; /* Must restart, chain has been munged */
2761 }
c906108c 2762 }
c906108c
SS
2763
2764 /* Look for a symtab with the specified name. */
2765
2766 for (s = symtab_list; s; s = s->next)
2767 {
6314a349 2768 if (strcmp (name, s->filename) == 0)
c906108c
SS
2769 break;
2770 prev = s;
2771 }
2772
2773 if (s)
2774 {
2775 if (s == symtab_list)
2776 symtab_list = s->next;
2777 else
2778 prev->next = s->next;
2779
2780 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2781 or not they depend on the symtab being freed. This should be
2782 changed so that only those data structures affected are deleted. */
c906108c
SS
2783
2784 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2785 This test is necessary due to a bug in "dbxread.c" that
2786 causes empty symtabs to be created for N_SO symbols that
2787 contain the pathname of the object file. (This problem
2788 has been fixed in GDB 3.9x). */
c906108c
SS
2789
2790 bv = BLOCKVECTOR (s);
2791 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2792 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2793 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2794 {
e2e0b3e5 2795 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2796 name);
c906108c
SS
2797 clear_symtab_users_queued++;
2798 make_cleanup (clear_symtab_users_once, 0);
2799 blewit = 1;
c5aa993b
JM
2800 }
2801 else
e2e0b3e5
AC
2802 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2803 name);
c906108c
SS
2804
2805 free_symtab (s);
2806 }
2807 else
2808 {
2809 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2810 even though no symtab was found, since the file might have
2811 been compiled without debugging, and hence not be associated
2812 with a symtab. In order to handle this correctly, we would need
2813 to keep a list of text address ranges for undebuggable files.
2814 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2815 ;
2816 }
2817
2818 /* FIXME, what about the minimal symbol table? */
2819 return blewit;
2820#else
2821 return (0);
2822#endif
2823}
2824\f
2825/* Allocate and partially fill a partial symtab. It will be
2826 completely filled at the end of the symbol list.
2827
d4f3574e 2828 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2829
2830struct partial_symtab *
fba45db2
KB
2831start_psymtab_common (struct objfile *objfile,
2832 struct section_offsets *section_offsets, char *filename,
2833 CORE_ADDR textlow, struct partial_symbol **global_syms,
2834 struct partial_symbol **static_syms)
c906108c
SS
2835{
2836 struct partial_symtab *psymtab;
2837
2838 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2839 psymtab->section_offsets = section_offsets;
2840 psymtab->textlow = textlow;
2841 psymtab->texthigh = psymtab->textlow; /* default */
2842 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2843 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2844 return (psymtab);
2845}
2846\f
2847/* Add a symbol with a long value to a psymtab.
5417f6dc 2848 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2849 Return the partial symbol that has been added. */
2850
2851/* NOTE: carlton/2003-09-11: The reason why we return the partial
2852 symbol is so that callers can get access to the symbol's demangled
2853 name, which they don't have any cheap way to determine otherwise.
2854 (Currenly, dwarf2read.c is the only file who uses that information,
2855 though it's possible that other readers might in the future.)
2856 Elena wasn't thrilled about that, and I don't blame her, but we
2857 couldn't come up with a better way to get that information. If
2858 it's needed in other situations, we could consider breaking up
2859 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2860 cache. */
2861
2862const struct partial_symbol *
176620f1 2863add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2864 enum address_class class,
2865 struct psymbol_allocation_list *list, long val, /* Value as a long */
2866 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2867 enum language language, struct objfile *objfile)
c906108c 2868{
52f0bd74 2869 struct partial_symbol *psym;
c906108c
SS
2870 char *buf = alloca (namelength + 1);
2871 /* psymbol is static so that there will be no uninitialized gaps in the
2872 structure which might contain random data, causing cache misses in
2873 bcache. */
2874 static struct partial_symbol psymbol;
2875
2876 /* Create local copy of the partial symbol */
2877 memcpy (buf, name, namelength);
2878 buf[namelength] = '\0';
c906108c
SS
2879 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2880 if (val != 0)
2881 {
2882 SYMBOL_VALUE (&psymbol) = val;
2883 }
2884 else
2885 {
2886 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2887 }
2888 SYMBOL_SECTION (&psymbol) = 0;
2889 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2890 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2891 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2892
2893 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2894
2895 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2896 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2897 objfile->psymbol_cache);
c906108c
SS
2898
2899 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2900 if (list->next >= list->list + list->size)
2901 {
2902 extend_psymbol_list (list, objfile);
2903 }
2904 *list->next++ = psym;
2905 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2906
2907 return psym;
c906108c
SS
2908}
2909
2910/* Add a symbol with a long value to a psymtab. This differs from
2911 * add_psymbol_to_list above in taking both a mangled and a demangled
2912 * name. */
2913
2914void
fba45db2 2915add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2916 int dem_namelength, domain_enum domain,
fba45db2
KB
2917 enum address_class class,
2918 struct psymbol_allocation_list *list, long val, /* Value as a long */
2919 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2920 enum language language,
2921 struct objfile *objfile)
c906108c 2922{
52f0bd74 2923 struct partial_symbol *psym;
c906108c
SS
2924 char *buf = alloca (namelength + 1);
2925 /* psymbol is static so that there will be no uninitialized gaps in the
2926 structure which might contain random data, causing cache misses in
2927 bcache. */
2928 static struct partial_symbol psymbol;
2929
2930 /* Create local copy of the partial symbol */
2931
2932 memcpy (buf, name, namelength);
2933 buf[namelength] = '\0';
3a16a68c
AC
2934 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2935 objfile->psymbol_cache);
c906108c
SS
2936
2937 buf = alloca (dem_namelength + 1);
2938 memcpy (buf, dem_name, dem_namelength);
2939 buf[dem_namelength] = '\0';
c5aa993b 2940
c906108c
SS
2941 switch (language)
2942 {
c5aa993b
JM
2943 case language_c:
2944 case language_cplus:
2945 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2946 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2947 break;
c906108c
SS
2948 /* FIXME What should be done for the default case? Ignoring for now. */
2949 }
2950
2951 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2952 if (val != 0)
2953 {
2954 SYMBOL_VALUE (&psymbol) = val;
2955 }
2956 else
2957 {
2958 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2959 }
2960 SYMBOL_SECTION (&psymbol) = 0;
2961 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2962 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2963 PSYMBOL_CLASS (&psymbol) = class;
2964 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2965
2966 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2967 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2968 objfile->psymbol_cache);
c906108c
SS
2969
2970 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2971 if (list->next >= list->list + list->size)
2972 {
2973 extend_psymbol_list (list, objfile);
2974 }
2975 *list->next++ = psym;
2976 OBJSTAT (objfile, n_psyms++);
2977}
2978
2979/* Initialize storage for partial symbols. */
2980
2981void
fba45db2 2982init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2983{
2984 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2985
2986 if (objfile->global_psymbols.list)
c906108c 2987 {
2dc74dc1 2988 xfree (objfile->global_psymbols.list);
c906108c 2989 }
c5aa993b 2990 if (objfile->static_psymbols.list)
c906108c 2991 {
2dc74dc1 2992 xfree (objfile->static_psymbols.list);
c906108c 2993 }
c5aa993b 2994
c906108c
SS
2995 /* Current best guess is that approximately a twentieth
2996 of the total symbols (in a debugging file) are global or static
2997 oriented symbols */
c906108c 2998
c5aa993b
JM
2999 objfile->global_psymbols.size = total_symbols / 10;
3000 objfile->static_psymbols.size = total_symbols / 10;
3001
3002 if (objfile->global_psymbols.size > 0)
c906108c 3003 {
c5aa993b
JM
3004 objfile->global_psymbols.next =
3005 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3006 xmalloc ((objfile->global_psymbols.size
3007 * sizeof (struct partial_symbol *)));
c906108c 3008 }
c5aa993b 3009 if (objfile->static_psymbols.size > 0)
c906108c 3010 {
c5aa993b
JM
3011 objfile->static_psymbols.next =
3012 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3013 xmalloc ((objfile->static_psymbols.size
3014 * sizeof (struct partial_symbol *)));
c906108c
SS
3015 }
3016}
3017
3018/* OVERLAYS:
3019 The following code implements an abstraction for debugging overlay sections.
3020
3021 The target model is as follows:
3022 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3023 same VMA, each with its own unique LMA (or load address).
c906108c 3024 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3025 sections, one by one, from the load address into the VMA address.
5417f6dc 3026 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3027 sections should be considered to be mapped from the VMA to the LMA.
3028 This information is used for symbol lookup, and memory read/write.
5417f6dc 3029 For instance, if a section has been mapped then its contents
c5aa993b 3030 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3031
3032 Two levels of debugger support for overlays are available. One is
3033 "manual", in which the debugger relies on the user to tell it which
3034 overlays are currently mapped. This level of support is
3035 implemented entirely in the core debugger, and the information about
3036 whether a section is mapped is kept in the objfile->obj_section table.
3037
3038 The second level of support is "automatic", and is only available if
3039 the target-specific code provides functionality to read the target's
3040 overlay mapping table, and translate its contents for the debugger
3041 (by updating the mapped state information in the obj_section tables).
3042
3043 The interface is as follows:
c5aa993b
JM
3044 User commands:
3045 overlay map <name> -- tell gdb to consider this section mapped
3046 overlay unmap <name> -- tell gdb to consider this section unmapped
3047 overlay list -- list the sections that GDB thinks are mapped
3048 overlay read-target -- get the target's state of what's mapped
3049 overlay off/manual/auto -- set overlay debugging state
3050 Functional interface:
3051 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3052 section, return that section.
5417f6dc 3053 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3054 the pc, either in its VMA or its LMA
3055 overlay_is_mapped(sect): true if overlay is marked as mapped
3056 section_is_overlay(sect): true if section's VMA != LMA
3057 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3058 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3059 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3060 overlay_mapped_address(...): map an address from section's LMA to VMA
3061 overlay_unmapped_address(...): map an address from section's VMA to LMA
3062 symbol_overlayed_address(...): Return a "current" address for symbol:
3063 either in VMA or LMA depending on whether
3064 the symbol's section is currently mapped
c906108c
SS
3065 */
3066
3067/* Overlay debugging state: */
3068
d874f1e2 3069enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3070int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3071
3072/* Target vector for refreshing overlay mapped state */
a14ed312 3073static void simple_overlay_update (struct obj_section *);
507f3c78 3074void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
3075
3076/* Function: section_is_overlay (SECTION)
5417f6dc 3077 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3078 SECTION is loaded at an address different from where it will "run". */
3079
3080int
fba45db2 3081section_is_overlay (asection *section)
c906108c 3082{
fbd35540
MS
3083 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3084
c906108c
SS
3085 if (overlay_debugging)
3086 if (section && section->lma != 0 &&
3087 section->vma != section->lma)
3088 return 1;
3089
3090 return 0;
3091}
3092
3093/* Function: overlay_invalidate_all (void)
3094 Invalidate the mapped state of all overlay sections (mark it as stale). */
3095
3096static void
fba45db2 3097overlay_invalidate_all (void)
c906108c 3098{
c5aa993b 3099 struct objfile *objfile;
c906108c
SS
3100 struct obj_section *sect;
3101
3102 ALL_OBJSECTIONS (objfile, sect)
3103 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3104 sect->ovly_mapped = -1;
c906108c
SS
3105}
3106
3107/* Function: overlay_is_mapped (SECTION)
5417f6dc 3108 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3109 Private: public access is thru function section_is_mapped.
3110
3111 Access to the ovly_mapped flag is restricted to this function, so
3112 that we can do automatic update. If the global flag
3113 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3114 overlay_invalidate_all. If the mapped state of the particular
3115 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3116
c5aa993b 3117static int
fba45db2 3118overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3119{
3120 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3121 return 0;
3122
c5aa993b 3123 switch (overlay_debugging)
c906108c
SS
3124 {
3125 default:
d874f1e2 3126 case ovly_off:
c5aa993b 3127 return 0; /* overlay debugging off */
d874f1e2 3128 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3129 /* Unles there is a target_overlay_update function,
c5aa993b 3130 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3131 if (target_overlay_update)
3132 {
3133 if (overlay_cache_invalid)
3134 {
3135 overlay_invalidate_all ();
3136 overlay_cache_invalid = 0;
3137 }
3138 if (osect->ovly_mapped == -1)
3139 (*target_overlay_update) (osect);
3140 }
3141 /* fall thru to manual case */
d874f1e2 3142 case ovly_on: /* overlay debugging manual */
c906108c
SS
3143 return osect->ovly_mapped == 1;
3144 }
3145}
3146
3147/* Function: section_is_mapped
3148 Returns true if section is an overlay, and is currently mapped. */
3149
3150int
fba45db2 3151section_is_mapped (asection *section)
c906108c 3152{
c5aa993b 3153 struct objfile *objfile;
c906108c
SS
3154 struct obj_section *osect;
3155
3156 if (overlay_debugging)
3157 if (section && section_is_overlay (section))
3158 ALL_OBJSECTIONS (objfile, osect)
3159 if (osect->the_bfd_section == section)
c5aa993b 3160 return overlay_is_mapped (osect);
c906108c
SS
3161
3162 return 0;
3163}
3164
3165/* Function: pc_in_unmapped_range
3166 If PC falls into the lma range of SECTION, return true, else false. */
3167
3168CORE_ADDR
fba45db2 3169pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3170{
fbd35540
MS
3171 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3172
c906108c
SS
3173 int size;
3174
3175 if (overlay_debugging)
3176 if (section && section_is_overlay (section))
3177 {
2c500098 3178 size = bfd_get_section_size (section);
c906108c
SS
3179 if (section->lma <= pc && pc < section->lma + size)
3180 return 1;
3181 }
3182 return 0;
3183}
3184
3185/* Function: pc_in_mapped_range
3186 If PC falls into the vma range of SECTION, return true, else false. */
3187
3188CORE_ADDR
fba45db2 3189pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3190{
fbd35540
MS
3191 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3192
c906108c
SS
3193 int size;
3194
3195 if (overlay_debugging)
3196 if (section && section_is_overlay (section))
3197 {
2c500098 3198 size = bfd_get_section_size (section);
c906108c
SS
3199 if (section->vma <= pc && pc < section->vma + size)
3200 return 1;
3201 }
3202 return 0;
3203}
3204
9ec8e6a0
JB
3205
3206/* Return true if the mapped ranges of sections A and B overlap, false
3207 otherwise. */
b9362cc7 3208static int
9ec8e6a0
JB
3209sections_overlap (asection *a, asection *b)
3210{
fbd35540
MS
3211 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3212
9ec8e6a0 3213 CORE_ADDR a_start = a->vma;
2c500098 3214 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3215 CORE_ADDR b_start = b->vma;
2c500098 3216 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3217
3218 return (a_start < b_end && b_start < a_end);
3219}
3220
c906108c
SS
3221/* Function: overlay_unmapped_address (PC, SECTION)
3222 Returns the address corresponding to PC in the unmapped (load) range.
3223 May be the same as PC. */
3224
3225CORE_ADDR
fba45db2 3226overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3227{
fbd35540
MS
3228 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3229
c906108c
SS
3230 if (overlay_debugging)
3231 if (section && section_is_overlay (section) &&
3232 pc_in_mapped_range (pc, section))
3233 return pc + section->lma - section->vma;
3234
3235 return pc;
3236}
3237
3238/* Function: overlay_mapped_address (PC, SECTION)
3239 Returns the address corresponding to PC in the mapped (runtime) range.
3240 May be the same as PC. */
3241
3242CORE_ADDR
fba45db2 3243overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3244{
fbd35540
MS
3245 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3246
c906108c
SS
3247 if (overlay_debugging)
3248 if (section && section_is_overlay (section) &&
3249 pc_in_unmapped_range (pc, section))
3250 return pc + section->vma - section->lma;
3251
3252 return pc;
3253}
3254
3255
5417f6dc 3256/* Function: symbol_overlayed_address
c906108c
SS
3257 Return one of two addresses (relative to the VMA or to the LMA),
3258 depending on whether the section is mapped or not. */
3259
c5aa993b 3260CORE_ADDR
fba45db2 3261symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3262{
3263 if (overlay_debugging)
3264 {
3265 /* If the symbol has no section, just return its regular address. */
3266 if (section == 0)
3267 return address;
3268 /* If the symbol's section is not an overlay, just return its address */
3269 if (!section_is_overlay (section))
3270 return address;
3271 /* If the symbol's section is mapped, just return its address */
3272 if (section_is_mapped (section))
3273 return address;
3274 /*
3275 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3276 * then return its LOADED address rather than its vma address!!
3277 */
3278 return overlay_unmapped_address (address, section);
3279 }
3280 return address;
3281}
3282
5417f6dc 3283/* Function: find_pc_overlay (PC)
c906108c
SS
3284 Return the best-match overlay section for PC:
3285 If PC matches a mapped overlay section's VMA, return that section.
3286 Else if PC matches an unmapped section's VMA, return that section.
3287 Else if PC matches an unmapped section's LMA, return that section. */
3288
3289asection *
fba45db2 3290find_pc_overlay (CORE_ADDR pc)
c906108c 3291{
c5aa993b 3292 struct objfile *objfile;
c906108c
SS
3293 struct obj_section *osect, *best_match = NULL;
3294
3295 if (overlay_debugging)
3296 ALL_OBJSECTIONS (objfile, osect)
3297 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3298 {
3299 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3300 {
3301 if (overlay_is_mapped (osect))
3302 return osect->the_bfd_section;
3303 else
3304 best_match = osect;
3305 }
3306 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3307 best_match = osect;
3308 }
c906108c
SS
3309 return best_match ? best_match->the_bfd_section : NULL;
3310}
3311
3312/* Function: find_pc_mapped_section (PC)
5417f6dc 3313 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3314 currently marked as MAPPED, return that section. Else return NULL. */
3315
3316asection *
fba45db2 3317find_pc_mapped_section (CORE_ADDR pc)
c906108c 3318{
c5aa993b 3319 struct objfile *objfile;
c906108c
SS
3320 struct obj_section *osect;
3321
3322 if (overlay_debugging)
3323 ALL_OBJSECTIONS (objfile, osect)
3324 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3325 overlay_is_mapped (osect))
c5aa993b 3326 return osect->the_bfd_section;
c906108c
SS
3327
3328 return NULL;
3329}
3330
3331/* Function: list_overlays_command
3332 Print a list of mapped sections and their PC ranges */
3333
3334void
fba45db2 3335list_overlays_command (char *args, int from_tty)
c906108c 3336{
c5aa993b
JM
3337 int nmapped = 0;
3338 struct objfile *objfile;
c906108c
SS
3339 struct obj_section *osect;
3340
3341 if (overlay_debugging)
3342 ALL_OBJSECTIONS (objfile, osect)
3343 if (overlay_is_mapped (osect))
c5aa993b
JM
3344 {
3345 const char *name;
3346 bfd_vma lma, vma;
3347 int size;
3348
3349 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3350 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3351 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3352 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3353
3354 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3355 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3356 puts_filtered (" - ");
66bf4b3a 3357 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3358 printf_filtered (", mapped at ");
66bf4b3a 3359 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3360 puts_filtered (" - ");
66bf4b3a 3361 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3362 puts_filtered ("\n");
3363
3364 nmapped++;
3365 }
c906108c 3366 if (nmapped == 0)
a3f17187 3367 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3368}
3369
3370/* Function: map_overlay_command
3371 Mark the named section as mapped (ie. residing at its VMA address). */
3372
3373void
fba45db2 3374map_overlay_command (char *args, int from_tty)
c906108c 3375{
c5aa993b
JM
3376 struct objfile *objfile, *objfile2;
3377 struct obj_section *sec, *sec2;
3378 asection *bfdsec;
c906108c
SS
3379
3380 if (!overlay_debugging)
8a3fe4f8 3381 error (_("\
515ad16c 3382Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3383the 'overlay manual' command."));
c906108c
SS
3384
3385 if (args == 0 || *args == 0)
8a3fe4f8 3386 error (_("Argument required: name of an overlay section"));
c906108c
SS
3387
3388 /* First, find a section matching the user supplied argument */
3389 ALL_OBJSECTIONS (objfile, sec)
3390 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3391 {
3392 /* Now, check to see if the section is an overlay. */
3393 bfdsec = sec->the_bfd_section;
3394 if (!section_is_overlay (bfdsec))
3395 continue; /* not an overlay section */
3396
3397 /* Mark the overlay as "mapped" */
3398 sec->ovly_mapped = 1;
3399
3400 /* Next, make a pass and unmap any sections that are
3401 overlapped by this new section: */
3402 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3403 if (sec2->ovly_mapped
3404 && sec != sec2
3405 && sec->the_bfd_section != sec2->the_bfd_section
3406 && sections_overlap (sec->the_bfd_section,
3407 sec2->the_bfd_section))
c5aa993b
JM
3408 {
3409 if (info_verbose)
a3f17187 3410 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3411 bfd_section_name (objfile->obfd,
3412 sec2->the_bfd_section));
3413 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3414 }
3415 return;
3416 }
8a3fe4f8 3417 error (_("No overlay section called %s"), args);
c906108c
SS
3418}
3419
3420/* Function: unmap_overlay_command
5417f6dc 3421 Mark the overlay section as unmapped
c906108c
SS
3422 (ie. resident in its LMA address range, rather than the VMA range). */
3423
3424void
fba45db2 3425unmap_overlay_command (char *args, int from_tty)
c906108c 3426{
c5aa993b 3427 struct objfile *objfile;
c906108c
SS
3428 struct obj_section *sec;
3429
3430 if (!overlay_debugging)
8a3fe4f8 3431 error (_("\
515ad16c 3432Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3433the 'overlay manual' command."));
c906108c
SS
3434
3435 if (args == 0 || *args == 0)
8a3fe4f8 3436 error (_("Argument required: name of an overlay section"));
c906108c
SS
3437
3438 /* First, find a section matching the user supplied argument */
3439 ALL_OBJSECTIONS (objfile, sec)
3440 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3441 {
3442 if (!sec->ovly_mapped)
8a3fe4f8 3443 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3444 sec->ovly_mapped = 0;
3445 return;
3446 }
8a3fe4f8 3447 error (_("No overlay section called %s"), args);
c906108c
SS
3448}
3449
3450/* Function: overlay_auto_command
3451 A utility command to turn on overlay debugging.
3452 Possibly this should be done via a set/show command. */
3453
3454static void
fba45db2 3455overlay_auto_command (char *args, int from_tty)
c906108c 3456{
d874f1e2 3457 overlay_debugging = ovly_auto;
1900040c 3458 enable_overlay_breakpoints ();
c906108c 3459 if (info_verbose)
a3f17187 3460 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3461}
3462
3463/* Function: overlay_manual_command
3464 A utility command to turn on overlay debugging.
3465 Possibly this should be done via a set/show command. */
3466
3467static void
fba45db2 3468overlay_manual_command (char *args, int from_tty)
c906108c 3469{
d874f1e2 3470 overlay_debugging = ovly_on;
1900040c 3471 disable_overlay_breakpoints ();
c906108c 3472 if (info_verbose)
a3f17187 3473 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3474}
3475
3476/* Function: overlay_off_command
3477 A utility command to turn on overlay debugging.
3478 Possibly this should be done via a set/show command. */
3479
3480static void
fba45db2 3481overlay_off_command (char *args, int from_tty)
c906108c 3482{
d874f1e2 3483 overlay_debugging = ovly_off;
1900040c 3484 disable_overlay_breakpoints ();
c906108c 3485 if (info_verbose)
a3f17187 3486 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3487}
3488
3489static void
fba45db2 3490overlay_load_command (char *args, int from_tty)
c906108c
SS
3491{
3492 if (target_overlay_update)
3493 (*target_overlay_update) (NULL);
3494 else
8a3fe4f8 3495 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3496}
3497
3498/* Function: overlay_command
3499 A place-holder for a mis-typed command */
3500
3501/* Command list chain containing all defined "overlay" subcommands. */
3502struct cmd_list_element *overlaylist;
3503
3504static void
fba45db2 3505overlay_command (char *args, int from_tty)
c906108c 3506{
c5aa993b 3507 printf_unfiltered
c906108c
SS
3508 ("\"overlay\" must be followed by the name of an overlay command.\n");
3509 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3510}
3511
3512
3513/* Target Overlays for the "Simplest" overlay manager:
3514
5417f6dc
RM
3515 This is GDB's default target overlay layer. It works with the
3516 minimal overlay manager supplied as an example by Cygnus. The
3517 entry point is via a function pointer "target_overlay_update",
3518 so targets that use a different runtime overlay manager can
c906108c
SS
3519 substitute their own overlay_update function and take over the
3520 function pointer.
3521
3522 The overlay_update function pokes around in the target's data structures
3523 to see what overlays are mapped, and updates GDB's overlay mapping with
3524 this information.
3525
3526 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3527 unsigned _novlys; /# number of overlay sections #/
3528 unsigned _ovly_table[_novlys][4] = {
3529 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3530 {..., ..., ..., ...},
3531 }
3532 unsigned _novly_regions; /# number of overlay regions #/
3533 unsigned _ovly_region_table[_novly_regions][3] = {
3534 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3535 {..., ..., ...},
3536 }
c906108c
SS
3537 These functions will attempt to update GDB's mappedness state in the
3538 symbol section table, based on the target's mappedness state.
3539
3540 To do this, we keep a cached copy of the target's _ovly_table, and
3541 attempt to detect when the cached copy is invalidated. The main
3542 entry point is "simple_overlay_update(SECT), which looks up SECT in
3543 the cached table and re-reads only the entry for that section from
3544 the target (whenever possible).
3545 */
3546
3547/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3548static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3549#if 0
c5aa993b 3550static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3551#endif
c5aa993b 3552static unsigned cache_novlys = 0;
c906108c 3553#if 0
c5aa993b 3554static unsigned cache_novly_regions = 0;
c906108c
SS
3555#endif
3556static CORE_ADDR cache_ovly_table_base = 0;
3557#if 0
3558static CORE_ADDR cache_ovly_region_table_base = 0;
3559#endif
c5aa993b
JM
3560enum ovly_index
3561 {
3562 VMA, SIZE, LMA, MAPPED
3563 };
c906108c
SS
3564#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3565
3566/* Throw away the cached copy of _ovly_table */
3567static void
fba45db2 3568simple_free_overlay_table (void)
c906108c
SS
3569{
3570 if (cache_ovly_table)
b8c9b27d 3571 xfree (cache_ovly_table);
c5aa993b 3572 cache_novlys = 0;
c906108c
SS
3573 cache_ovly_table = NULL;
3574 cache_ovly_table_base = 0;
3575}
3576
3577#if 0
3578/* Throw away the cached copy of _ovly_region_table */
3579static void
fba45db2 3580simple_free_overlay_region_table (void)
c906108c
SS
3581{
3582 if (cache_ovly_region_table)
b8c9b27d 3583 xfree (cache_ovly_region_table);
c5aa993b 3584 cache_novly_regions = 0;
c906108c
SS
3585 cache_ovly_region_table = NULL;
3586 cache_ovly_region_table_base = 0;
3587}
3588#endif
3589
3590/* Read an array of ints from the target into a local buffer.
3591 Convert to host order. int LEN is number of ints */
3592static void
fba45db2 3593read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3594{
34c0bd93 3595 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3596 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3597 int i;
c906108c
SS
3598
3599 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3600 for (i = 0; i < len; i++)
c5aa993b 3601 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3602 TARGET_LONG_BYTES);
3603}
3604
3605/* Find and grab a copy of the target _ovly_table
3606 (and _novlys, which is needed for the table's size) */
c5aa993b 3607static int
fba45db2 3608simple_read_overlay_table (void)
c906108c 3609{
0d43edd1 3610 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3611
3612 simple_free_overlay_table ();
9b27852e 3613 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3614 if (! novlys_msym)
c906108c 3615 {
8a3fe4f8 3616 error (_("Error reading inferior's overlay table: "
0d43edd1 3617 "couldn't find `_novlys' variable\n"
8a3fe4f8 3618 "in inferior. Use `overlay manual' mode."));
0d43edd1 3619 return 0;
c906108c 3620 }
0d43edd1 3621
9b27852e 3622 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3623 if (! ovly_table_msym)
3624 {
8a3fe4f8 3625 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3626 "`_ovly_table' array\n"
8a3fe4f8 3627 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3628 return 0;
3629 }
3630
3631 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3632 cache_ovly_table
3633 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3634 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3635 read_target_long_array (cache_ovly_table_base,
777ea8f1 3636 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3637 cache_novlys * 4);
3638
c5aa993b 3639 return 1; /* SUCCESS */
c906108c
SS
3640}
3641
3642#if 0
3643/* Find and grab a copy of the target _ovly_region_table
3644 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3645static int
fba45db2 3646simple_read_overlay_region_table (void)
c906108c
SS
3647{
3648 struct minimal_symbol *msym;
3649
3650 simple_free_overlay_region_table ();
9b27852e 3651 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3652 if (msym != NULL)
3653 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3654 else
3655 return 0; /* failure */
c906108c
SS
3656 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3657 if (cache_ovly_region_table != NULL)
3658 {
9b27852e 3659 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3660 if (msym != NULL)
3661 {
3662 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3663 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3664 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3665 cache_novly_regions * 3);
3666 }
c5aa993b
JM
3667 else
3668 return 0; /* failure */
c906108c 3669 }
c5aa993b
JM
3670 else
3671 return 0; /* failure */
3672 return 1; /* SUCCESS */
c906108c
SS
3673}
3674#endif
3675
5417f6dc 3676/* Function: simple_overlay_update_1
c906108c
SS
3677 A helper function for simple_overlay_update. Assuming a cached copy
3678 of _ovly_table exists, look through it to find an entry whose vma,
3679 lma and size match those of OSECT. Re-read the entry and make sure
3680 it still matches OSECT (else the table may no longer be valid).
3681 Set OSECT's mapped state to match the entry. Return: 1 for
3682 success, 0 for failure. */
3683
3684static int
fba45db2 3685simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3686{
3687 int i, size;
fbd35540
MS
3688 bfd *obfd = osect->objfile->obfd;
3689 asection *bsect = osect->the_bfd_section;
c906108c 3690
2c500098 3691 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3692 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3693 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3694 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3695 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3696 {
3697 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3698 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3699 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3700 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3701 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3702 {
3703 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3704 return 1;
3705 }
fbd35540 3706 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3707 return 0;
3708 }
3709 return 0;
3710}
3711
3712/* Function: simple_overlay_update
5417f6dc
RM
3713 If OSECT is NULL, then update all sections' mapped state
3714 (after re-reading the entire target _ovly_table).
3715 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3716 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3717 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3718 re-read the entire cache, and go ahead and update all sections. */
3719
3720static void
fba45db2 3721simple_overlay_update (struct obj_section *osect)
c906108c 3722{
c5aa993b 3723 struct objfile *objfile;
c906108c
SS
3724
3725 /* Were we given an osect to look up? NULL means do all of them. */
3726 if (osect)
3727 /* Have we got a cached copy of the target's overlay table? */
3728 if (cache_ovly_table != NULL)
3729 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3730 if (cache_ovly_table_base ==
9b27852e 3731 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3732 /* Then go ahead and try to look up this single section in the cache */
3733 if (simple_overlay_update_1 (osect))
3734 /* Found it! We're done. */
3735 return;
3736
3737 /* Cached table no good: need to read the entire table anew.
3738 Or else we want all the sections, in which case it's actually
3739 more efficient to read the whole table in one block anyway. */
3740
0d43edd1
JB
3741 if (! simple_read_overlay_table ())
3742 return;
3743
c906108c
SS
3744 /* Now may as well update all sections, even if only one was requested. */
3745 ALL_OBJSECTIONS (objfile, osect)
3746 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3747 {
3748 int i, size;
fbd35540
MS
3749 bfd *obfd = osect->objfile->obfd;
3750 asection *bsect = osect->the_bfd_section;
c5aa993b 3751
2c500098 3752 size = bfd_get_section_size (bsect);
c5aa993b 3753 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3754 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3755 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3756 /* && cache_ovly_table[i][SIZE] == size */ )
3757 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3758 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3759 break; /* finished with inner for loop: break out */
3760 }
3761 }
c906108c
SS
3762}
3763
086df311
DJ
3764/* Set the output sections and output offsets for section SECTP in
3765 ABFD. The relocation code in BFD will read these offsets, so we
3766 need to be sure they're initialized. We map each section to itself,
3767 with no offset; this means that SECTP->vma will be honored. */
3768
3769static void
3770symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3771{
3772 sectp->output_section = sectp;
3773 sectp->output_offset = 0;
3774}
3775
3776/* Relocate the contents of a debug section SECTP in ABFD. The
3777 contents are stored in BUF if it is non-NULL, or returned in a
3778 malloc'd buffer otherwise.
3779
3780 For some platforms and debug info formats, shared libraries contain
3781 relocations against the debug sections (particularly for DWARF-2;
3782 one affected platform is PowerPC GNU/Linux, although it depends on
3783 the version of the linker in use). Also, ELF object files naturally
3784 have unresolved relocations for their debug sections. We need to apply
3785 the relocations in order to get the locations of symbols correct. */
3786
3787bfd_byte *
3788symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3789{
3790 /* We're only interested in debugging sections with relocation
3791 information. */
3792 if ((sectp->flags & SEC_RELOC) == 0)
3793 return NULL;
3794 if ((sectp->flags & SEC_DEBUGGING) == 0)
3795 return NULL;
3796
3797 /* We will handle section offsets properly elsewhere, so relocate as if
3798 all sections begin at 0. */
3799 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3800
97606a13 3801 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3802}
c906108c
SS
3803
3804void
fba45db2 3805_initialize_symfile (void)
c906108c
SS
3806{
3807 struct cmd_list_element *c;
c5aa993b 3808
1a966eab
AC
3809 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3810Load symbol table from executable file FILE.\n\
c906108c 3811The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3812to execute."), &cmdlist);
5ba2abeb 3813 set_cmd_completer (c, filename_completer);
c906108c 3814
1a966eab 3815 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3816Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3817Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3818ADDR is the starting address of the file's text.\n\
db162d44
EZ
3819The optional arguments are section-name section-address pairs and\n\
3820should be specified if the data and bss segments are not contiguous\n\
1a966eab 3821with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3822 &cmdlist);
5ba2abeb 3823 set_cmd_completer (c, filename_completer);
c906108c
SS
3824
3825 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3826 add_shared_symbol_files_command, _("\
3827Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3828 &cmdlist);
c906108c
SS
3829 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3830 &cmdlist);
3831
1a966eab
AC
3832 c = add_cmd ("load", class_files, load_command, _("\
3833Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3834for access from GDB.\n\
3835A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3836 set_cmd_completer (c, filename_completer);
c906108c 3837
5bf193a2
AC
3838 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3839 &symbol_reloading, _("\
3840Set dynamic symbol table reloading multiple times in one run."), _("\
3841Show dynamic symbol table reloading multiple times in one run."), NULL,
3842 NULL,
920d2a44 3843 show_symbol_reloading,
5bf193a2 3844 &setlist, &showlist);
c906108c 3845
c5aa993b 3846 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3847 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3848 "overlay ", 0, &cmdlist);
3849
3850 add_com_alias ("ovly", "overlay", class_alias, 1);
3851 add_com_alias ("ov", "overlay", class_alias, 1);
3852
c5aa993b 3853 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3854 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3855
c5aa993b 3856 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3857 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3858
c5aa993b 3859 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3860 _("List mappings of overlay sections."), &overlaylist);
c906108c 3861
c5aa993b 3862 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3863 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3864 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3865 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3866 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3867 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3868 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3869 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3870
3871 /* Filename extension to source language lookup table: */
3872 init_filename_language_table ();
26c41df3
AC
3873 add_setshow_string_noescape_cmd ("extension-language", class_files,
3874 &ext_args, _("\
3875Set mapping between filename extension and source language."), _("\
3876Show mapping between filename extension and source language."), _("\
3877Usage: set extension-language .foo bar"),
3878 set_ext_lang_command,
920d2a44 3879 show_ext_args,
26c41df3 3880 &setlist, &showlist);
c906108c 3881
c5aa993b 3882 add_info ("extensions", info_ext_lang_command,
1bedd215 3883 _("All filename extensions associated with a source language."));
917317f4 3884
525226b5
AC
3885 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3886 &debug_file_directory, _("\
3887Set the directory where separate debug symbols are searched for."), _("\
3888Show the directory where separate debug symbols are searched for."), _("\
3889Separate debug symbols are first searched for in the same\n\
3890directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3891and lastly at the path of the directory of the binary with\n\
3892the global debug-file directory prepended."),
3893 NULL,
920d2a44 3894 show_debug_file_directory,
525226b5 3895 &setlist, &showlist);
c906108c 3896}
This page took 0.914233 seconds and 4 git commands to generate.