2007-07-31 Michael Snyder <msnyder@access-company.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
c906108c 56
c906108c
SS
57#include <sys/types.h>
58#include <fcntl.h>
59#include "gdb_string.h"
60#include "gdb_stat.h"
61#include <ctype.h>
62#include <time.h>
2b71414d 63#include <sys/time.h>
c906108c 64
c906108c 65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void set_initial_language (void);
c906108c 92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
a14ed312 99static void add_shared_symbol_files_command (char *, int);
c906108c 100
5b5d99cf
JB
101static void reread_separate_symbols (struct objfile *objfile);
102
a14ed312 103static void cashier_psymtab (struct partial_symtab *);
c906108c 104
a14ed312 105bfd *symfile_bfd_open (char *);
c906108c 106
0e931cf0
JB
107int get_section_index (struct objfile *, char *);
108
31d99776 109static struct sym_fns *find_sym_fns (bfd *);
c906108c 110
a14ed312 111static void decrement_reading_symtab (void *);
c906108c 112
a14ed312 113static void overlay_invalidate_all (void);
c906108c 114
a14ed312 115static int overlay_is_mapped (struct obj_section *);
c906108c 116
a14ed312 117void list_overlays_command (char *, int);
c906108c 118
a14ed312 119void map_overlay_command (char *, int);
c906108c 120
a14ed312 121void unmap_overlay_command (char *, int);
c906108c 122
a14ed312 123static void overlay_auto_command (char *, int);
c906108c 124
a14ed312 125static void overlay_manual_command (char *, int);
c906108c 126
a14ed312 127static void overlay_off_command (char *, int);
c906108c 128
a14ed312 129static void overlay_load_command (char *, int);
c906108c 130
a14ed312 131static void overlay_command (char *, int);
c906108c 132
a14ed312 133static void simple_free_overlay_table (void);
c906108c 134
a14ed312 135static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 136
a14ed312 137static int simple_read_overlay_table (void);
c906108c 138
a14ed312 139static int simple_overlay_update_1 (struct obj_section *);
c906108c 140
a14ed312 141static void add_filename_language (char *ext, enum language lang);
392a587b 142
a14ed312 143static void info_ext_lang_command (char *args, int from_tty);
392a587b 144
5b5d99cf
JB
145static char *find_separate_debug_file (struct objfile *objfile);
146
a14ed312 147static void init_filename_language_table (void);
392a587b 148
31d99776
DJ
149static void symfile_find_segment_sections (struct objfile *objfile);
150
a14ed312 151void _initialize_symfile (void);
c906108c
SS
152
153/* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157static struct sym_fns *symtab_fns = NULL;
158
159/* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162#ifdef SYMBOL_RELOADING_DEFAULT
163int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164#else
165int symbol_reloading = 0;
166#endif
920d2a44
AC
167static void
168show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("\
172Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174}
175
c906108c 176
b7209cb4
FF
177/* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
c906108c 184 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 185 report all the functions that are actually present. */
c906108c
SS
186
187int auto_solib_add = 1;
b7209cb4
FF
188
189/* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197int auto_solib_limit;
c906108c 198\f
c5aa993b 199
0fe19209
DC
200/* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
c906108c
SS
202
203static int
0cd64fe2 204compare_psymbols (const void *s1p, const void *s2p)
c906108c 205{
0fe19209
DC
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
4725b721
PH
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
211}
212
213void
fba45db2 214sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
215{
216 /* Sort the global list; don't sort the static list */
217
c5aa993b
JM
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
220 compare_psymbols);
221}
222
c906108c
SS
223/* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228char *
63ca651f 229obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 230{
52f0bd74 231 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
aa1ee363
AC
236 const char *p1 = ptr;
237 char *p2 = p;
63ca651f 238 const char *end = ptr + size;
c906108c
SS
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244}
245
246/* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249char *
fba45db2
KB
250obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
c906108c 252{
52f0bd74
AC
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259}
260
261/* True if we are nested inside psymtab_to_symtab. */
262
263int currently_reading_symtab = 0;
264
265static void
fba45db2 266decrement_reading_symtab (void *dummy)
c906108c
SS
267{
268 currently_reading_symtab--;
269}
270
271/* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276struct symtab *
aa1ee363 277psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
278{
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
c5aa993b 285 {
c906108c
SS
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293}
294
5417f6dc
RM
295/* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
c906108c
SS
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304void
4efb68b1 305find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 306{
c5aa993b 307 asection **lowest = (asection **) obj;
c906108c
SS
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319}
320
a39a16c4
MM
321/* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323struct section_addr_info *
324alloc_section_addr_info (size_t num_sections)
325{
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336}
62557bbc 337
7b90c3f9
JB
338
339/* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341struct section_addr_info *
342copy_section_addr_info (struct section_addr_info *addrs)
343{
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360}
361
362
363
62557bbc
KB
364/* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367extern struct section_addr_info *
368build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370{
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
a39a16c4 375 sap = alloc_section_addr_info (end - start);
62557bbc
KB
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
5417f6dc 379 if (bfd_get_section_flags (stp->bfd,
fbd35540 380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 381 && oidx < end - start)
62557bbc
KB
382 {
383 sap->other[oidx].addr = stp->addr;
5417f6dc 384 sap->other[oidx].name
fbd35540 385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392}
393
394
395/* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397extern void
398free_section_addr_info (struct section_addr_info *sap)
399{
400 int idx;
401
a39a16c4 402 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 403 if (sap->other[idx].name)
b8c9b27d
KB
404 xfree (sap->other[idx].name);
405 xfree (sap);
62557bbc
KB
406}
407
408
e8289572
JB
409/* Initialize OBJFILE's sect_index_* members. */
410static void
411init_objfile_sect_indices (struct objfile *objfile)
c906108c 412{
e8289572 413 asection *sect;
c906108c 414 int i;
5417f6dc 415
b8fbeb18 416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 417 if (sect)
b8fbeb18
EZ
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_rodata = sect->index;
431
bbcd32ad
FF
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
31d99776
DJ
435 accomodate that. First, check for a file with the standard
436 one or two segments. */
437
438 symfile_find_segment_sections (objfile);
439
440 /* Except when explicitly adding symbol files at some address,
441 section_offsets contains nothing but zeros, so it doesn't matter
442 which slot in section_offsets the individual sect_index_* members
443 index into. So if they are all zero, it is safe to just point
444 all the currently uninitialized indices to the first slot. But
445 beware: if this is the main executable, it may be relocated
446 later, e.g. by the remote qOffsets packet, and then this will
447 be wrong! That's why we try segments first. */
bbcd32ad
FF
448
449 for (i = 0; i < objfile->num_sections; i++)
450 {
451 if (ANOFFSET (objfile->section_offsets, i) != 0)
452 {
453 break;
454 }
455 }
456 if (i == objfile->num_sections)
457 {
458 if (objfile->sect_index_text == -1)
459 objfile->sect_index_text = 0;
460 if (objfile->sect_index_data == -1)
461 objfile->sect_index_data = 0;
462 if (objfile->sect_index_bss == -1)
463 objfile->sect_index_bss = 0;
464 if (objfile->sect_index_rodata == -1)
465 objfile->sect_index_rodata = 0;
466 }
b8fbeb18 467}
c906108c 468
c1bd25fd
DJ
469/* The arguments to place_section. */
470
471struct place_section_arg
472{
473 struct section_offsets *offsets;
474 CORE_ADDR lowest;
475};
476
477/* Find a unique offset to use for loadable section SECT if
478 the user did not provide an offset. */
479
480void
481place_section (bfd *abfd, asection *sect, void *obj)
482{
483 struct place_section_arg *arg = obj;
484 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
485 int done;
3bd72c6f 486 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 487
2711e456
DJ
488 /* We are only interested in allocated sections. */
489 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
490 return;
491
492 /* If the user specified an offset, honor it. */
493 if (offsets[sect->index] != 0)
494 return;
495
496 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
497 start_addr = (arg->lowest + align - 1) & -align;
498
c1bd25fd
DJ
499 do {
500 asection *cur_sec;
c1bd25fd 501
c1bd25fd
DJ
502 done = 1;
503
504 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
505 {
506 int indx = cur_sec->index;
507 CORE_ADDR cur_offset;
508
509 /* We don't need to compare against ourself. */
510 if (cur_sec == sect)
511 continue;
512
2711e456
DJ
513 /* We can only conflict with allocated sections. */
514 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
515 continue;
516
517 /* If the section offset is 0, either the section has not been placed
518 yet, or it was the lowest section placed (in which case LOWEST
519 will be past its end). */
520 if (offsets[indx] == 0)
521 continue;
522
523 /* If this section would overlap us, then we must move up. */
524 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
525 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
526 {
527 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
528 start_addr = (start_addr + align - 1) & -align;
529 done = 0;
3bd72c6f 530 break;
c1bd25fd
DJ
531 }
532
533 /* Otherwise, we appear to be OK. So far. */
534 }
535 }
536 while (!done);
537
538 offsets[sect->index] = start_addr;
539 arg->lowest = start_addr + bfd_get_section_size (sect);
540
541 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
542}
e8289572
JB
543
544/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 545 of how to represent it for fast symbol reading. This is the default
e8289572
JB
546 version of the sym_fns.sym_offsets function for symbol readers that
547 don't need to do anything special. It allocates a section_offsets table
548 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
549
550void
551default_symfile_offsets (struct objfile *objfile,
552 struct section_addr_info *addrs)
553{
554 int i;
555
a39a16c4 556 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 557 objfile->section_offsets = (struct section_offsets *)
5417f6dc 558 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 560 memset (objfile->section_offsets, 0,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
562
563 /* Now calculate offsets for section that were specified by the
564 caller. */
a39a16c4 565 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
566 {
567 struct other_sections *osp ;
568
569 osp = &addrs->other[i] ;
570 if (osp->addr == 0)
571 continue;
572
573 /* Record all sections in offsets */
574 /* The section_offsets in the objfile are here filled in using
575 the BFD index. */
576 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
577 }
578
c1bd25fd
DJ
579 /* For relocatable files, all loadable sections will start at zero.
580 The zero is meaningless, so try to pick arbitrary addresses such
581 that no loadable sections overlap. This algorithm is quadratic,
582 but the number of sections in a single object file is generally
583 small. */
584 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
585 {
586 struct place_section_arg arg;
2711e456
DJ
587 bfd *abfd = objfile->obfd;
588 asection *cur_sec;
589 CORE_ADDR lowest = 0;
590
591 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
592 /* We do not expect this to happen; just skip this step if the
593 relocatable file has a section with an assigned VMA. */
594 if (bfd_section_vma (abfd, cur_sec) != 0)
595 break;
596
597 if (cur_sec == NULL)
598 {
599 CORE_ADDR *offsets = objfile->section_offsets->offsets;
600
601 /* Pick non-overlapping offsets for sections the user did not
602 place explicitly. */
603 arg.offsets = objfile->section_offsets;
604 arg.lowest = 0;
605 bfd_map_over_sections (objfile->obfd, place_section, &arg);
606
607 /* Correctly filling in the section offsets is not quite
608 enough. Relocatable files have two properties that
609 (most) shared objects do not:
610
611 - Their debug information will contain relocations. Some
612 shared libraries do also, but many do not, so this can not
613 be assumed.
614
615 - If there are multiple code sections they will be loaded
616 at different relative addresses in memory than they are
617 in the objfile, since all sections in the file will start
618 at address zero.
619
620 Because GDB has very limited ability to map from an
621 address in debug info to the correct code section,
622 it relies on adding SECT_OFF_TEXT to things which might be
623 code. If we clear all the section offsets, and set the
624 section VMAs instead, then symfile_relocate_debug_section
625 will return meaningful debug information pointing at the
626 correct sections.
627
628 GDB has too many different data structures for section
629 addresses - a bfd, objfile, and so_list all have section
630 tables, as does exec_ops. Some of these could probably
631 be eliminated. */
632
633 for (cur_sec = abfd->sections; cur_sec != NULL;
634 cur_sec = cur_sec->next)
635 {
636 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
637 continue;
638
639 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
640 offsets[cur_sec->index] = 0;
641 }
642 }
c1bd25fd
DJ
643 }
644
e8289572
JB
645 /* Remember the bfd indexes for the .text, .data, .bss and
646 .rodata sections. */
647 init_objfile_sect_indices (objfile);
648}
649
650
31d99776
DJ
651/* Divide the file into segments, which are individual relocatable units.
652 This is the default version of the sym_fns.sym_segments function for
653 symbol readers that do not have an explicit representation of segments.
654 It assumes that object files do not have segments, and fully linked
655 files have a single segment. */
656
657struct symfile_segment_data *
658default_symfile_segments (bfd *abfd)
659{
660 int num_sections, i;
661 asection *sect;
662 struct symfile_segment_data *data;
663 CORE_ADDR low, high;
664
665 /* Relocatable files contain enough information to position each
666 loadable section independently; they should not be relocated
667 in segments. */
668 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
669 return NULL;
670
671 /* Make sure there is at least one loadable section in the file. */
672 for (sect = abfd->sections; sect != NULL; sect = sect->next)
673 {
674 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
675 continue;
676
677 break;
678 }
679 if (sect == NULL)
680 return NULL;
681
682 low = bfd_get_section_vma (abfd, sect);
683 high = low + bfd_get_section_size (sect);
684
685 data = XZALLOC (struct symfile_segment_data);
686 data->num_segments = 1;
687 data->segment_bases = XCALLOC (1, CORE_ADDR);
688 data->segment_sizes = XCALLOC (1, CORE_ADDR);
689
690 num_sections = bfd_count_sections (abfd);
691 data->segment_info = XCALLOC (num_sections, int);
692
693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
694 {
695 CORE_ADDR vma;
696
697 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
698 continue;
699
700 vma = bfd_get_section_vma (abfd, sect);
701 if (vma < low)
702 low = vma;
703 if (vma + bfd_get_section_size (sect) > high)
704 high = vma + bfd_get_section_size (sect);
705
706 data->segment_info[i] = 1;
707 }
708
709 data->segment_bases[0] = low;
710 data->segment_sizes[0] = high - low;
711
712 return data;
713}
714
c906108c
SS
715/* Process a symbol file, as either the main file or as a dynamically
716 loaded file.
717
96baa820
JM
718 OBJFILE is where the symbols are to be read from.
719
7e8580c1
JB
720 ADDRS is the list of section load addresses. If the user has given
721 an 'add-symbol-file' command, then this is the list of offsets and
722 addresses he or she provided as arguments to the command; or, if
723 we're handling a shared library, these are the actual addresses the
724 sections are loaded at, according to the inferior's dynamic linker
725 (as gleaned by GDB's shared library code). We convert each address
726 into an offset from the section VMA's as it appears in the object
727 file, and then call the file's sym_offsets function to convert this
728 into a format-specific offset table --- a `struct section_offsets'.
729 If ADDRS is non-zero, OFFSETS must be zero.
730
731 OFFSETS is a table of section offsets already in the right
732 format-specific representation. NUM_OFFSETS is the number of
733 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
734 assume this is the proper table the call to sym_offsets described
735 above would produce. Instead of calling sym_offsets, we just dump
736 it right into objfile->section_offsets. (When we're re-reading
737 symbols from an objfile, we don't have the original load address
738 list any more; all we have is the section offset table.) If
739 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
740
741 MAINLINE is nonzero if this is the main symbol file, or zero if
742 it's an extra symbol file such as dynamically loaded code.
743
744 VERBO is nonzero if the caller has printed a verbose message about
745 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
746
747void
7e8580c1
JB
748syms_from_objfile (struct objfile *objfile,
749 struct section_addr_info *addrs,
750 struct section_offsets *offsets,
751 int num_offsets,
752 int mainline,
753 int verbo)
c906108c 754{
a39a16c4 755 struct section_addr_info *local_addr = NULL;
c906108c 756 struct cleanup *old_chain;
2acceee2 757
7e8580c1 758 gdb_assert (! (addrs && offsets));
2acceee2 759
c906108c 760 init_entry_point_info (objfile);
31d99776 761 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 762
75245b24
MS
763 if (objfile->sf == NULL)
764 return; /* No symbols. */
765
c906108c
SS
766 /* Make sure that partially constructed symbol tables will be cleaned up
767 if an error occurs during symbol reading. */
74b7792f 768 old_chain = make_cleanup_free_objfile (objfile);
c906108c 769
a39a16c4
MM
770 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
771 list. We now establish the convention that an addr of zero means
772 no load address was specified. */
773 if (! addrs && ! offsets)
774 {
5417f6dc 775 local_addr
a39a16c4
MM
776 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
777 make_cleanup (xfree, local_addr);
778 addrs = local_addr;
779 }
780
781 /* Now either addrs or offsets is non-zero. */
782
c5aa993b 783 if (mainline)
c906108c
SS
784 {
785 /* We will modify the main symbol table, make sure that all its users
c5aa993b 786 will be cleaned up if an error occurs during symbol reading. */
74b7792f 787 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
788
789 /* Since no error yet, throw away the old symbol table. */
790
791 if (symfile_objfile != NULL)
792 {
793 free_objfile (symfile_objfile);
794 symfile_objfile = NULL;
795 }
796
797 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
798 If the user wants to get rid of them, they should do "symbol-file"
799 without arguments first. Not sure this is the best behavior
800 (PR 2207). */
c906108c 801
c5aa993b 802 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
803 }
804
805 /* Convert addr into an offset rather than an absolute address.
806 We find the lowest address of a loaded segment in the objfile,
53a5351d 807 and assume that <addr> is where that got loaded.
c906108c 808
53a5351d
JM
809 We no longer warn if the lowest section is not a text segment (as
810 happens for the PA64 port. */
1549f619 811 if (!mainline && addrs && addrs->other[0].name)
c906108c 812 {
1549f619
EZ
813 asection *lower_sect;
814 asection *sect;
815 CORE_ADDR lower_offset;
816 int i;
817
5417f6dc 818 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
819 continguous sections. FIXME!! won't work without call to find
820 .text first, but this assumes text is lowest section. */
821 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
822 if (lower_sect == NULL)
c906108c 823 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 824 &lower_sect);
2acceee2 825 if (lower_sect == NULL)
8a3fe4f8 826 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 827 objfile->name);
5417f6dc 828 else
b8fbeb18 829 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 830 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
831 objfile->name,
832 bfd_section_name (objfile->obfd, lower_sect),
833 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
834 if (lower_sect != NULL)
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836 else
837 lower_offset = 0;
5417f6dc 838
13de58df 839 /* Calculate offsets for the loadable sections.
2acceee2
JM
840 FIXME! Sections must be in order of increasing loadable section
841 so that contiguous sections can use the lower-offset!!!
5417f6dc 842
13de58df
JB
843 Adjust offsets if the segments are not contiguous.
844 If the section is contiguous, its offset should be set to
2acceee2
JM
845 the offset of the highest loadable section lower than it
846 (the loadable section directly below it in memory).
847 this_offset = lower_offset = lower_addr - lower_orig_addr */
848
1549f619 849 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
850 {
851 if (addrs->other[i].addr != 0)
852 {
853 sect = bfd_get_section_by_name (objfile->obfd,
854 addrs->other[i].name);
855 if (sect)
856 {
857 addrs->other[i].addr
858 -= bfd_section_vma (objfile->obfd, sect);
859 lower_offset = addrs->other[i].addr;
860 /* This is the index used by BFD. */
861 addrs->other[i].sectindex = sect->index ;
862 }
863 else
864 {
8a3fe4f8 865 warning (_("section %s not found in %s"),
5417f6dc 866 addrs->other[i].name,
7e8580c1
JB
867 objfile->name);
868 addrs->other[i].addr = 0;
869 }
870 }
871 else
872 addrs->other[i].addr = lower_offset;
873 }
c906108c
SS
874 }
875
876 /* Initialize symbol reading routines for this objfile, allow complaints to
877 appear for this new file, and record how verbose to be, then do the
878 initial symbol reading for this file. */
879
c5aa993b 880 (*objfile->sf->sym_init) (objfile);
b9caf505 881 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 882
7e8580c1
JB
883 if (addrs)
884 (*objfile->sf->sym_offsets) (objfile, addrs);
885 else
886 {
887 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
888
889 /* Just copy in the offset table directly as given to us. */
890 objfile->num_sections = num_offsets;
891 objfile->section_offsets
892 = ((struct section_offsets *)
8b92e4d5 893 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
894 memcpy (objfile->section_offsets, offsets, size);
895
896 init_objfile_sect_indices (objfile);
897 }
c906108c 898
52d16ba8 899#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
900 /* This is a SVR4/SunOS specific hack, I think. In any event, it
901 screws RS/6000. sym_offsets should be doing this sort of thing,
902 because it knows the mapping between bfd sections and
903 section_offsets. */
904 /* This is a hack. As far as I can tell, section offsets are not
905 target dependent. They are all set to addr with a couple of
906 exceptions. The exceptions are sysvr4 shared libraries, whose
907 offsets are kept in solib structures anyway and rs6000 xcoff
908 which handles shared libraries in a completely unique way.
909
910 Section offsets are built similarly, except that they are built
911 by adding addr in all cases because there is no clear mapping
912 from section_offsets into actual sections. Note that solib.c
96baa820 913 has a different algorithm for finding section offsets.
c906108c
SS
914
915 These should probably all be collapsed into some target
916 independent form of shared library support. FIXME. */
917
2acceee2 918 if (addrs)
c906108c
SS
919 {
920 struct obj_section *s;
921
5417f6dc
RM
922 /* Map section offsets in "addr" back to the object's
923 sections by comparing the section names with bfd's
2acceee2
JM
924 section names. Then adjust the section address by
925 the offset. */ /* for gdb/13815 */
5417f6dc 926
96baa820 927 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 928 {
2acceee2
JM
929 CORE_ADDR s_addr = 0;
930 int i;
931
5417f6dc 932 for (i = 0;
a39a16c4 933 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 934 i++)
5417f6dc
RM
935 if (strcmp (bfd_section_name (s->objfile->obfd,
936 s->the_bfd_section),
fbd35540 937 addrs->other[i].name) == 0)
2acceee2 938 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 939
c906108c 940 s->addr -= s->offset;
2acceee2 941 s->addr += s_addr;
c906108c 942 s->endaddr -= s->offset;
2acceee2
JM
943 s->endaddr += s_addr;
944 s->offset += s_addr;
c906108c
SS
945 }
946 }
52d16ba8 947#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 948
96baa820 949 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 950
c906108c
SS
951 /* Don't allow char * to have a typename (else would get caddr_t).
952 Ditto void *. FIXME: Check whether this is now done by all the
953 symbol readers themselves (many of them now do), and if so remove
954 it from here. */
955
956 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
957 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
958
959 /* Mark the objfile has having had initial symbol read attempted. Note
960 that this does not mean we found any symbols... */
961
c5aa993b 962 objfile->flags |= OBJF_SYMS;
c906108c
SS
963
964 /* Discard cleanups as symbol reading was successful. */
965
966 discard_cleanups (old_chain);
c906108c
SS
967}
968
969/* Perform required actions after either reading in the initial
970 symbols for a new objfile, or mapping in the symbols from a reusable
971 objfile. */
c5aa993b 972
c906108c 973void
fba45db2 974new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
975{
976
977 /* If this is the main symbol file we have to clean up all users of the
978 old main symbol file. Otherwise it is sufficient to fixup all the
979 breakpoints that may have been redefined by this symbol file. */
980 if (mainline)
981 {
982 /* OK, make it the "real" symbol file. */
983 symfile_objfile = objfile;
984
985 clear_symtab_users ();
986 }
987 else
988 {
989 breakpoint_re_set ();
990 }
991
992 /* We're done reading the symbol file; finish off complaints. */
b9caf505 993 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
994}
995
996/* Process a symbol file, as either the main file or as a dynamically
997 loaded file.
998
5417f6dc
RM
999 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1000 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
1001
1002 FROM_TTY says how verbose to be.
1003
1004 MAINLINE specifies whether this is the main symbol file, or whether
1005 it's an extra symbol file such as dynamically loaded code.
1006
1007 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1008 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1009 non-zero.
c906108c 1010
c906108c
SS
1011 Upon success, returns a pointer to the objfile that was added.
1012 Upon failure, jumps back to command level (never returns). */
7904e09f 1013static struct objfile *
5417f6dc 1014symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
1015 struct section_addr_info *addrs,
1016 struct section_offsets *offsets,
1017 int num_offsets,
1018 int mainline, int flags)
c906108c
SS
1019{
1020 struct objfile *objfile;
1021 struct partial_symtab *psymtab;
5b5d99cf 1022 char *debugfile;
7b90c3f9 1023 struct section_addr_info *orig_addrs = NULL;
a39a16c4 1024 struct cleanup *my_cleanups;
5417f6dc 1025 const char *name = bfd_get_filename (abfd);
c906108c 1026
5417f6dc 1027 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1028
5417f6dc
RM
1029 /* Give user a chance to burp if we'd be
1030 interactively wiping out any existing symbols. */
c906108c
SS
1031
1032 if ((have_full_symbols () || have_partial_symbols ())
1033 && mainline
1034 && from_tty
1035 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 1036 error (_("Not confirmed."));
c906108c 1037
2df3850c 1038 objfile = allocate_objfile (abfd, flags);
5417f6dc 1039 discard_cleanups (my_cleanups);
c906108c 1040
a39a16c4 1041 if (addrs)
63cd24fe 1042 {
7b90c3f9
JB
1043 orig_addrs = copy_section_addr_info (addrs);
1044 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 1045 }
a39a16c4 1046
78a4a9b9
AC
1047 /* We either created a new mapped symbol table, mapped an existing
1048 symbol table file which has not had initial symbol reading
1049 performed, or need to read an unmapped symbol table. */
1050 if (from_tty || info_verbose)
c906108c 1051 {
769d7dc4
AC
1052 if (deprecated_pre_add_symbol_hook)
1053 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1054 else
c906108c 1055 {
a3f17187 1056 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
1057 wrap_here ("");
1058 gdb_flush (gdb_stdout);
1059 }
c906108c 1060 }
78a4a9b9
AC
1061 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1062 mainline, from_tty);
c906108c
SS
1063
1064 /* We now have at least a partial symbol table. Check to see if the
1065 user requested that all symbols be read on initial access via either
1066 the gdb startup command line or on a per symbol file basis. Expand
1067 all partial symbol tables for this objfile if so. */
1068
2acceee2 1069 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
1070 {
1071 if (from_tty || info_verbose)
1072 {
a3f17187 1073 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1074 wrap_here ("");
1075 gdb_flush (gdb_stdout);
1076 }
1077
c5aa993b 1078 for (psymtab = objfile->psymtabs;
c906108c 1079 psymtab != NULL;
c5aa993b 1080 psymtab = psymtab->next)
c906108c
SS
1081 {
1082 psymtab_to_symtab (psymtab);
1083 }
1084 }
1085
5b5d99cf
JB
1086 debugfile = find_separate_debug_file (objfile);
1087 if (debugfile)
1088 {
5b5d99cf
JB
1089 if (addrs != NULL)
1090 {
1091 objfile->separate_debug_objfile
a39a16c4 1092 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1093 }
1094 else
1095 {
1096 objfile->separate_debug_objfile
1097 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1098 }
1099 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1100 = objfile;
5417f6dc 1101
5b5d99cf
JB
1102 /* Put the separate debug object before the normal one, this is so that
1103 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1104 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1105
5b5d99cf
JB
1106 xfree (debugfile);
1107 }
5417f6dc 1108
cb3c37b2
JB
1109 if (!have_partial_symbols () && !have_full_symbols ())
1110 {
1111 wrap_here ("");
a3f17187 1112 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
1113 if (from_tty || info_verbose)
1114 printf_filtered ("...");
1115 else
1116 printf_filtered ("\n");
cb3c37b2
JB
1117 wrap_here ("");
1118 }
1119
c906108c
SS
1120 if (from_tty || info_verbose)
1121 {
769d7dc4
AC
1122 if (deprecated_post_add_symbol_hook)
1123 deprecated_post_add_symbol_hook ();
c906108c 1124 else
c5aa993b 1125 {
a3f17187 1126 printf_unfiltered (_("done.\n"));
c5aa993b 1127 }
c906108c
SS
1128 }
1129
481d0f41
JB
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
a39a16c4
MM
1135 do_cleanups (my_cleanups);
1136
109f874e
MS
1137 if (objfile->sf == NULL)
1138 return objfile; /* No symbols. */
1139
c906108c
SS
1140 new_symfile_objfile (objfile, mainline, from_tty);
1141
06d3b283 1142 observer_notify_new_objfile (objfile);
c906108c 1143
ce7d4522 1144 bfd_cache_close_all ();
c906108c
SS
1145 return (objfile);
1146}
1147
7904e09f 1148
eb4556d7
JB
1149/* Process the symbol file ABFD, as either the main file or as a
1150 dynamically loaded file.
1151
1152 See symbol_file_add_with_addrs_or_offsets's comments for
1153 details. */
1154struct objfile *
1155symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1156 struct section_addr_info *addrs,
1157 int mainline, int flags)
1158{
1159 return symbol_file_add_with_addrs_or_offsets (abfd,
1160 from_tty, addrs, 0, 0,
1161 mainline, flags);
1162}
1163
1164
7904e09f
JB
1165/* Process a symbol file, as either the main file or as a dynamically
1166 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1167 for details. */
1168struct objfile *
1169symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1170 int mainline, int flags)
1171{
eb4556d7
JB
1172 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1173 addrs, mainline, flags);
7904e09f
JB
1174}
1175
1176
d7db6da9
FN
1177/* Call symbol_file_add() with default values and update whatever is
1178 affected by the loading of a new main().
1179 Used when the file is supplied in the gdb command line
1180 and by some targets with special loading requirements.
1181 The auxiliary function, symbol_file_add_main_1(), has the flags
1182 argument for the switches that can only be specified in the symbol_file
1183 command itself. */
5417f6dc 1184
1adeb98a
FN
1185void
1186symbol_file_add_main (char *args, int from_tty)
1187{
d7db6da9
FN
1188 symbol_file_add_main_1 (args, from_tty, 0);
1189}
1190
1191static void
1192symbol_file_add_main_1 (char *args, int from_tty, int flags)
1193{
1194 symbol_file_add (args, from_tty, NULL, 1, flags);
1195
d7db6da9
FN
1196 /* Getting new symbols may change our opinion about
1197 what is frameless. */
1198 reinit_frame_cache ();
1199
1200 set_initial_language ();
1adeb98a
FN
1201}
1202
1203void
1204symbol_file_clear (int from_tty)
1205{
1206 if ((have_full_symbols () || have_partial_symbols ())
1207 && from_tty
0430b0d6
AS
1208 && (symfile_objfile
1209 ? !query (_("Discard symbol table from `%s'? "),
1210 symfile_objfile->name)
1211 : !query (_("Discard symbol table? "))))
8a3fe4f8 1212 error (_("Not confirmed."));
1adeb98a
FN
1213 free_all_objfiles ();
1214
1215 /* solib descriptors may have handles to objfiles. Since their
1216 storage has just been released, we'd better wipe the solib
1217 descriptors as well.
1218 */
1219#if defined(SOLIB_RESTART)
1220 SOLIB_RESTART ();
1221#endif
1222
1223 symfile_objfile = NULL;
1224 if (from_tty)
a3f17187 1225 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1226}
1227
5b5d99cf
JB
1228static char *
1229get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1230{
1231 asection *sect;
1232 bfd_size_type debuglink_size;
1233 unsigned long crc32;
1234 char *contents;
1235 int crc_offset;
1236 unsigned char *p;
5417f6dc 1237
5b5d99cf
JB
1238 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1239
1240 if (sect == NULL)
1241 return NULL;
1242
1243 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1244
5b5d99cf
JB
1245 contents = xmalloc (debuglink_size);
1246 bfd_get_section_contents (objfile->obfd, sect, contents,
1247 (file_ptr)0, (bfd_size_type)debuglink_size);
1248
1249 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1250 crc_offset = strlen (contents) + 1;
1251 crc_offset = (crc_offset + 3) & ~3;
1252
1253 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1254
5b5d99cf
JB
1255 *crc32_out = crc32;
1256 return contents;
1257}
1258
1259static int
1260separate_debug_file_exists (const char *name, unsigned long crc)
1261{
1262 unsigned long file_crc = 0;
1263 int fd;
777ea8f1 1264 gdb_byte buffer[8*1024];
5b5d99cf
JB
1265 int count;
1266
1267 fd = open (name, O_RDONLY | O_BINARY);
1268 if (fd < 0)
1269 return 0;
1270
1271 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1272 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1273
1274 close (fd);
1275
1276 return crc == file_crc;
1277}
1278
aa28a74e 1279char *debug_file_directory = NULL;
920d2a44
AC
1280static void
1281show_debug_file_directory (struct ui_file *file, int from_tty,
1282 struct cmd_list_element *c, const char *value)
1283{
1284 fprintf_filtered (file, _("\
1285The directory where separate debug symbols are searched for is \"%s\".\n"),
1286 value);
1287}
5b5d99cf
JB
1288
1289#if ! defined (DEBUG_SUBDIRECTORY)
1290#define DEBUG_SUBDIRECTORY ".debug"
1291#endif
1292
1293static char *
1294find_separate_debug_file (struct objfile *objfile)
1295{
1296 asection *sect;
1297 char *basename;
1298 char *dir;
1299 char *debugfile;
1300 char *name_copy;
aa28a74e 1301 char *canon_name;
5b5d99cf
JB
1302 bfd_size_type debuglink_size;
1303 unsigned long crc32;
1304 int i;
1305
1306 basename = get_debug_link_info (objfile, &crc32);
1307
1308 if (basename == NULL)
1309 return NULL;
5417f6dc 1310
5b5d99cf
JB
1311 dir = xstrdup (objfile->name);
1312
fe36c4f4
JB
1313 /* Strip off the final filename part, leaving the directory name,
1314 followed by a slash. Objfile names should always be absolute and
1315 tilde-expanded, so there should always be a slash in there
1316 somewhere. */
5b5d99cf
JB
1317 for (i = strlen(dir) - 1; i >= 0; i--)
1318 {
1319 if (IS_DIR_SEPARATOR (dir[i]))
1320 break;
1321 }
fe36c4f4 1322 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1323 dir[i+1] = '\0';
5417f6dc 1324
5b5d99cf
JB
1325 debugfile = alloca (strlen (debug_file_directory) + 1
1326 + strlen (dir)
1327 + strlen (DEBUG_SUBDIRECTORY)
1328 + strlen ("/")
5417f6dc 1329 + strlen (basename)
5b5d99cf
JB
1330 + 1);
1331
1332 /* First try in the same directory as the original file. */
1333 strcpy (debugfile, dir);
1334 strcat (debugfile, basename);
1335
1336 if (separate_debug_file_exists (debugfile, crc32))
1337 {
1338 xfree (basename);
1339 xfree (dir);
1340 return xstrdup (debugfile);
1341 }
5417f6dc 1342
5b5d99cf
JB
1343 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1344 strcpy (debugfile, dir);
1345 strcat (debugfile, DEBUG_SUBDIRECTORY);
1346 strcat (debugfile, "/");
1347 strcat (debugfile, basename);
1348
1349 if (separate_debug_file_exists (debugfile, crc32))
1350 {
1351 xfree (basename);
1352 xfree (dir);
1353 return xstrdup (debugfile);
1354 }
5417f6dc 1355
5b5d99cf
JB
1356 /* Then try in the global debugfile directory. */
1357 strcpy (debugfile, debug_file_directory);
1358 strcat (debugfile, "/");
1359 strcat (debugfile, dir);
5b5d99cf
JB
1360 strcat (debugfile, basename);
1361
1362 if (separate_debug_file_exists (debugfile, crc32))
1363 {
1364 xfree (basename);
1365 xfree (dir);
1366 return xstrdup (debugfile);
1367 }
5417f6dc 1368
aa28a74e
DJ
1369 /* If the file is in the sysroot, try using its base path in the
1370 global debugfile directory. */
1371 canon_name = lrealpath (dir);
1372 if (canon_name
1373 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1374 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1375 {
1376 strcpy (debugfile, debug_file_directory);
1377 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1378 strcat (debugfile, "/");
1379 strcat (debugfile, basename);
1380
1381 if (separate_debug_file_exists (debugfile, crc32))
1382 {
1383 xfree (canon_name);
1384 xfree (basename);
1385 xfree (dir);
1386 return xstrdup (debugfile);
1387 }
1388 }
1389
1390 if (canon_name)
1391 xfree (canon_name);
1392
5b5d99cf
JB
1393 xfree (basename);
1394 xfree (dir);
1395 return NULL;
1396}
1397
1398
c906108c
SS
1399/* This is the symbol-file command. Read the file, analyze its
1400 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1401 the command is rather bizarre:
1402
1403 1. The function buildargv implements various quoting conventions
1404 which are undocumented and have little or nothing in common with
1405 the way things are quoted (or not quoted) elsewhere in GDB.
1406
1407 2. Options are used, which are not generally used in GDB (perhaps
1408 "set mapped on", "set readnow on" would be better)
1409
1410 3. The order of options matters, which is contrary to GNU
c906108c
SS
1411 conventions (because it is confusing and inconvenient). */
1412
1413void
fba45db2 1414symbol_file_command (char *args, int from_tty)
c906108c 1415{
c906108c
SS
1416 dont_repeat ();
1417
1418 if (args == NULL)
1419 {
1adeb98a 1420 symbol_file_clear (from_tty);
c906108c
SS
1421 }
1422 else
1423 {
cb2f3a29
MK
1424 char **argv = buildargv (args);
1425 int flags = OBJF_USERLOADED;
1426 struct cleanup *cleanups;
1427 char *name = NULL;
1428
1429 if (argv == NULL)
1430 nomem (0);
1431
7a292a7a 1432 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1433 while (*argv != NULL)
1434 {
78a4a9b9
AC
1435 if (strcmp (*argv, "-readnow") == 0)
1436 flags |= OBJF_READNOW;
1437 else if (**argv == '-')
8a3fe4f8 1438 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1439 else
1440 {
cb2f3a29 1441 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1442 name = *argv;
78a4a9b9 1443 }
cb2f3a29 1444
c906108c
SS
1445 argv++;
1446 }
1447
1448 if (name == NULL)
cb2f3a29
MK
1449 error (_("no symbol file name was specified"));
1450
c906108c
SS
1451 do_cleanups (cleanups);
1452 }
1453}
1454
1455/* Set the initial language.
1456
cb2f3a29
MK
1457 FIXME: A better solution would be to record the language in the
1458 psymtab when reading partial symbols, and then use it (if known) to
1459 set the language. This would be a win for formats that encode the
1460 language in an easily discoverable place, such as DWARF. For
1461 stabs, we can jump through hoops looking for specially named
1462 symbols or try to intuit the language from the specific type of
1463 stabs we find, but we can't do that until later when we read in
1464 full symbols. */
c906108c
SS
1465
1466static void
fba45db2 1467set_initial_language (void)
c906108c
SS
1468{
1469 struct partial_symtab *pst;
c5aa993b 1470 enum language lang = language_unknown;
c906108c
SS
1471
1472 pst = find_main_psymtab ();
1473 if (pst != NULL)
1474 {
c5aa993b 1475 if (pst->filename != NULL)
cb2f3a29
MK
1476 lang = deduce_language_from_filename (pst->filename);
1477
c906108c
SS
1478 if (lang == language_unknown)
1479 {
c5aa993b
JM
1480 /* Make C the default language */
1481 lang = language_c;
c906108c 1482 }
cb2f3a29 1483
c906108c 1484 set_language (lang);
cb2f3a29 1485 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1486 }
1487}
1488
cb2f3a29
MK
1489/* Open the file specified by NAME and hand it off to BFD for
1490 preliminary analysis. Return a newly initialized bfd *, which
1491 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1492 absolute). In case of trouble, error() is called. */
c906108c
SS
1493
1494bfd *
fba45db2 1495symfile_bfd_open (char *name)
c906108c
SS
1496{
1497 bfd *sym_bfd;
1498 int desc;
1499 char *absolute_name;
1500
cb2f3a29 1501 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1502
1503 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1504 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1505 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1506#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1507 if (desc < 0)
1508 {
1509 char *exename = alloca (strlen (name) + 5);
1510 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1511 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1512 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1513 }
1514#endif
1515 if (desc < 0)
1516 {
b8c9b27d 1517 make_cleanup (xfree, name);
c906108c
SS
1518 perror_with_name (name);
1519 }
cb2f3a29
MK
1520
1521 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1522 bfd. It'll be freed in free_objfile(). */
1523 xfree (name);
1524 name = absolute_name;
c906108c 1525
9f76c2cd 1526 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1527 if (!sym_bfd)
1528 {
1529 close (desc);
b8c9b27d 1530 make_cleanup (xfree, name);
8a3fe4f8 1531 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1532 bfd_errmsg (bfd_get_error ()));
1533 }
549c1eea 1534 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1535
1536 if (!bfd_check_format (sym_bfd, bfd_object))
1537 {
cb2f3a29
MK
1538 /* FIXME: should be checking for errors from bfd_close (for one
1539 thing, on error it does not free all the storage associated
1540 with the bfd). */
1541 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1542 make_cleanup (xfree, name);
8a3fe4f8 1543 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1544 bfd_errmsg (bfd_get_error ()));
1545 }
cb2f3a29
MK
1546
1547 return sym_bfd;
c906108c
SS
1548}
1549
cb2f3a29
MK
1550/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1551 the section was not found. */
1552
0e931cf0
JB
1553int
1554get_section_index (struct objfile *objfile, char *section_name)
1555{
1556 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1557
0e931cf0
JB
1558 if (sect)
1559 return sect->index;
1560 else
1561 return -1;
1562}
1563
cb2f3a29
MK
1564/* Link SF into the global symtab_fns list. Called on startup by the
1565 _initialize routine in each object file format reader, to register
1566 information about each format the the reader is prepared to
1567 handle. */
c906108c
SS
1568
1569void
fba45db2 1570add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1571{
1572 sf->next = symtab_fns;
1573 symtab_fns = sf;
1574}
1575
cb2f3a29
MK
1576/* Initialize OBJFILE to read symbols from its associated BFD. It
1577 either returns or calls error(). The result is an initialized
1578 struct sym_fns in the objfile structure, that contains cached
1579 information about the symbol file. */
c906108c 1580
31d99776
DJ
1581static struct sym_fns *
1582find_sym_fns (bfd *abfd)
c906108c
SS
1583{
1584 struct sym_fns *sf;
31d99776 1585 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1586
75245b24
MS
1587 if (our_flavour == bfd_target_srec_flavour
1588 || our_flavour == bfd_target_ihex_flavour
1589 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1590 return NULL; /* No symbols. */
75245b24 1591
c5aa993b 1592 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1593 if (our_flavour == sf->sym_flavour)
1594 return sf;
cb2f3a29 1595
8a3fe4f8 1596 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1597 bfd_get_target (abfd));
c906108c
SS
1598}
1599\f
cb2f3a29 1600
c906108c
SS
1601/* This function runs the load command of our current target. */
1602
1603static void
fba45db2 1604load_command (char *arg, int from_tty)
c906108c
SS
1605{
1606 if (arg == NULL)
1986bccd
AS
1607 {
1608 char *parg;
1609 int count = 0;
1610
1611 parg = arg = get_exec_file (1);
1612
1613 /* Count how many \ " ' tab space there are in the name. */
1614 while ((parg = strpbrk (parg, "\\\"'\t ")))
1615 {
1616 parg++;
1617 count++;
1618 }
1619
1620 if (count)
1621 {
1622 /* We need to quote this string so buildargv can pull it apart. */
1623 char *temp = xmalloc (strlen (arg) + count + 1 );
1624 char *ptemp = temp;
1625 char *prev;
1626
1627 make_cleanup (xfree, temp);
1628
1629 prev = parg = arg;
1630 while ((parg = strpbrk (parg, "\\\"'\t ")))
1631 {
1632 strncpy (ptemp, prev, parg - prev);
1633 ptemp += parg - prev;
1634 prev = parg++;
1635 *ptemp++ = '\\';
1636 }
1637 strcpy (ptemp, prev);
1638
1639 arg = temp;
1640 }
1641 }
1642
6490cafe
DJ
1643 /* The user might be reloading because the binary has changed. Take
1644 this opportunity to check. */
1645 reopen_exec_file ();
1646 reread_symbols ();
1647
c906108c 1648 target_load (arg, from_tty);
2889e661
JB
1649
1650 /* After re-loading the executable, we don't really know which
1651 overlays are mapped any more. */
1652 overlay_cache_invalid = 1;
c906108c
SS
1653}
1654
1655/* This version of "load" should be usable for any target. Currently
1656 it is just used for remote targets, not inftarg.c or core files,
1657 on the theory that only in that case is it useful.
1658
1659 Avoiding xmodem and the like seems like a win (a) because we don't have
1660 to worry about finding it, and (b) On VMS, fork() is very slow and so
1661 we don't want to run a subprocess. On the other hand, I'm not sure how
1662 performance compares. */
917317f4 1663
917317f4
JM
1664static int validate_download = 0;
1665
e4f9b4d5
MS
1666/* Callback service function for generic_load (bfd_map_over_sections). */
1667
1668static void
1669add_section_size_callback (bfd *abfd, asection *asec, void *data)
1670{
1671 bfd_size_type *sum = data;
1672
2c500098 1673 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1674}
1675
1676/* Opaque data for load_section_callback. */
1677struct load_section_data {
1678 unsigned long load_offset;
a76d924d
DJ
1679 struct load_progress_data *progress_data;
1680 VEC(memory_write_request_s) *requests;
1681};
1682
1683/* Opaque data for load_progress. */
1684struct load_progress_data {
1685 /* Cumulative data. */
e4f9b4d5
MS
1686 unsigned long write_count;
1687 unsigned long data_count;
1688 bfd_size_type total_size;
a76d924d
DJ
1689};
1690
1691/* Opaque data for load_progress for a single section. */
1692struct load_progress_section_data {
1693 struct load_progress_data *cumulative;
cf7a04e8 1694
a76d924d 1695 /* Per-section data. */
cf7a04e8
DJ
1696 const char *section_name;
1697 ULONGEST section_sent;
1698 ULONGEST section_size;
1699 CORE_ADDR lma;
1700 gdb_byte *buffer;
e4f9b4d5
MS
1701};
1702
a76d924d 1703/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1704
1705static void
1706load_progress (ULONGEST bytes, void *untyped_arg)
1707{
a76d924d
DJ
1708 struct load_progress_section_data *args = untyped_arg;
1709 struct load_progress_data *totals;
1710
1711 if (args == NULL)
1712 /* Writing padding data. No easy way to get at the cumulative
1713 stats, so just ignore this. */
1714 return;
1715
1716 totals = args->cumulative;
1717
1718 if (bytes == 0 && args->section_sent == 0)
1719 {
1720 /* The write is just starting. Let the user know we've started
1721 this section. */
1722 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1723 args->section_name, paddr_nz (args->section_size),
1724 paddr_nz (args->lma));
1725 return;
1726 }
cf7a04e8
DJ
1727
1728 if (validate_download)
1729 {
1730 /* Broken memories and broken monitors manifest themselves here
1731 when bring new computers to life. This doubles already slow
1732 downloads. */
1733 /* NOTE: cagney/1999-10-18: A more efficient implementation
1734 might add a verify_memory() method to the target vector and
1735 then use that. remote.c could implement that method using
1736 the ``qCRC'' packet. */
1737 gdb_byte *check = xmalloc (bytes);
1738 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1739
1740 if (target_read_memory (args->lma, check, bytes) != 0)
1741 error (_("Download verify read failed at 0x%s"),
1742 paddr (args->lma));
1743 if (memcmp (args->buffer, check, bytes) != 0)
1744 error (_("Download verify compare failed at 0x%s"),
1745 paddr (args->lma));
1746 do_cleanups (verify_cleanups);
1747 }
a76d924d 1748 totals->data_count += bytes;
cf7a04e8
DJ
1749 args->lma += bytes;
1750 args->buffer += bytes;
a76d924d 1751 totals->write_count += 1;
cf7a04e8
DJ
1752 args->section_sent += bytes;
1753 if (quit_flag
1754 || (deprecated_ui_load_progress_hook != NULL
1755 && deprecated_ui_load_progress_hook (args->section_name,
1756 args->section_sent)))
1757 error (_("Canceled the download"));
1758
1759 if (deprecated_show_load_progress != NULL)
1760 deprecated_show_load_progress (args->section_name,
1761 args->section_sent,
1762 args->section_size,
a76d924d
DJ
1763 totals->data_count,
1764 totals->total_size);
cf7a04e8
DJ
1765}
1766
e4f9b4d5
MS
1767/* Callback service function for generic_load (bfd_map_over_sections). */
1768
1769static void
1770load_section_callback (bfd *abfd, asection *asec, void *data)
1771{
a76d924d 1772 struct memory_write_request *new_request;
e4f9b4d5 1773 struct load_section_data *args = data;
a76d924d 1774 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1775 bfd_size_type size = bfd_get_section_size (asec);
1776 gdb_byte *buffer;
cf7a04e8 1777 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1778
cf7a04e8
DJ
1779 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1780 return;
e4f9b4d5 1781
cf7a04e8
DJ
1782 if (size == 0)
1783 return;
e4f9b4d5 1784
a76d924d
DJ
1785 new_request = VEC_safe_push (memory_write_request_s,
1786 args->requests, NULL);
1787 memset (new_request, 0, sizeof (struct memory_write_request));
1788 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1789 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1790 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1791 new_request->data = xmalloc (size);
1792 new_request->baton = section_data;
cf7a04e8 1793
a76d924d 1794 buffer = new_request->data;
cf7a04e8 1795
a76d924d
DJ
1796 section_data->cumulative = args->progress_data;
1797 section_data->section_name = sect_name;
1798 section_data->section_size = size;
1799 section_data->lma = new_request->begin;
1800 section_data->buffer = buffer;
cf7a04e8
DJ
1801
1802 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1803}
1804
1805/* Clean up an entire memory request vector, including load
1806 data and progress records. */
cf7a04e8 1807
a76d924d
DJ
1808static void
1809clear_memory_write_data (void *arg)
1810{
1811 VEC(memory_write_request_s) **vec_p = arg;
1812 VEC(memory_write_request_s) *vec = *vec_p;
1813 int i;
1814 struct memory_write_request *mr;
cf7a04e8 1815
a76d924d
DJ
1816 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1817 {
1818 xfree (mr->data);
1819 xfree (mr->baton);
1820 }
1821 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1822}
1823
c906108c 1824void
917317f4 1825generic_load (char *args, int from_tty)
c906108c 1826{
c906108c 1827 bfd *loadfile_bfd;
2b71414d 1828 struct timeval start_time, end_time;
917317f4 1829 char *filename;
1986bccd 1830 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1831 struct load_section_data cbdata;
a76d924d
DJ
1832 struct load_progress_data total_progress;
1833
e4f9b4d5 1834 CORE_ADDR entry;
1986bccd 1835 char **argv;
e4f9b4d5 1836
a76d924d
DJ
1837 memset (&cbdata, 0, sizeof (cbdata));
1838 memset (&total_progress, 0, sizeof (total_progress));
1839 cbdata.progress_data = &total_progress;
1840
1841 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1842
1986bccd
AS
1843 argv = buildargv (args);
1844
1845 if (argv == NULL)
1846 nomem(0);
1847
1848 make_cleanup_freeargv (argv);
1849
1850 filename = tilde_expand (argv[0]);
1851 make_cleanup (xfree, filename);
1852
1853 if (argv[1] != NULL)
917317f4
JM
1854 {
1855 char *endptr;
ba5f2f8a 1856
1986bccd
AS
1857 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1858
1859 /* If the last word was not a valid number then
1860 treat it as a file name with spaces in. */
1861 if (argv[1] == endptr)
1862 error (_("Invalid download offset:%s."), argv[1]);
1863
1864 if (argv[2] != NULL)
1865 error (_("Too many parameters."));
917317f4 1866 }
c906108c 1867
917317f4 1868 /* Open the file for loading. */
c906108c
SS
1869 loadfile_bfd = bfd_openr (filename, gnutarget);
1870 if (loadfile_bfd == NULL)
1871 {
1872 perror_with_name (filename);
1873 return;
1874 }
917317f4 1875
c906108c
SS
1876 /* FIXME: should be checking for errors from bfd_close (for one thing,
1877 on error it does not free all the storage associated with the
1878 bfd). */
5c65bbb6 1879 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1880
c5aa993b 1881 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1882 {
8a3fe4f8 1883 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1884 bfd_errmsg (bfd_get_error ()));
1885 }
c5aa993b 1886
5417f6dc 1887 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1888 (void *) &total_progress.total_size);
1889
1890 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1891
2b71414d 1892 gettimeofday (&start_time, NULL);
c906108c 1893
a76d924d
DJ
1894 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1895 load_progress) != 0)
1896 error (_("Load failed"));
c906108c 1897
2b71414d 1898 gettimeofday (&end_time, NULL);
ba5f2f8a 1899
e4f9b4d5 1900 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1901 ui_out_text (uiout, "Start address ");
1902 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1903 ui_out_text (uiout, ", load size ");
a76d924d 1904 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1905 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1906 /* We were doing this in remote-mips.c, I suspect it is right
1907 for other targets too. */
1908 write_pc (entry);
c906108c 1909
7ca9f392
AC
1910 /* FIXME: are we supposed to call symbol_file_add or not? According
1911 to a comment from remote-mips.c (where a call to symbol_file_add
1912 was commented out), making the call confuses GDB if more than one
1913 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1914 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1915
a76d924d
DJ
1916 print_transfer_performance (gdb_stdout, total_progress.data_count,
1917 total_progress.write_count,
1918 &start_time, &end_time);
c906108c
SS
1919
1920 do_cleanups (old_cleanups);
1921}
1922
1923/* Report how fast the transfer went. */
1924
917317f4
JM
1925/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1926 replaced by print_transfer_performance (with a very different
1927 function signature). */
1928
c906108c 1929void
fba45db2
KB
1930report_transfer_performance (unsigned long data_count, time_t start_time,
1931 time_t end_time)
c906108c 1932{
2b71414d
DJ
1933 struct timeval start, end;
1934
1935 start.tv_sec = start_time;
1936 start.tv_usec = 0;
1937 end.tv_sec = end_time;
1938 end.tv_usec = 0;
1939
1940 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1941}
1942
1943void
d9fcf2fb 1944print_transfer_performance (struct ui_file *stream,
917317f4
JM
1945 unsigned long data_count,
1946 unsigned long write_count,
2b71414d
DJ
1947 const struct timeval *start_time,
1948 const struct timeval *end_time)
917317f4 1949{
9f43d28c 1950 ULONGEST time_count;
2b71414d
DJ
1951
1952 /* Compute the elapsed time in milliseconds, as a tradeoff between
1953 accuracy and overflow. */
1954 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1955 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1956
8b93c638
JM
1957 ui_out_text (uiout, "Transfer rate: ");
1958 if (time_count > 0)
1959 {
9f43d28c
DJ
1960 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
1961
1962 if (ui_out_is_mi_like_p (uiout))
1963 {
1964 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
1965 ui_out_text (uiout, " bits/sec");
1966 }
1967 else if (rate < 1024)
1968 {
1969 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
1970 ui_out_text (uiout, " bytes/sec");
1971 }
1972 else
1973 {
1974 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
1975 ui_out_text (uiout, " KB/sec");
1976 }
8b93c638
JM
1977 }
1978 else
1979 {
ba5f2f8a 1980 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1981 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1982 }
1983 if (write_count > 0)
1984 {
1985 ui_out_text (uiout, ", ");
ba5f2f8a 1986 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1987 ui_out_text (uiout, " bytes/write");
1988 }
1989 ui_out_text (uiout, ".\n");
c906108c
SS
1990}
1991
1992/* This function allows the addition of incrementally linked object files.
1993 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1994/* Note: ezannoni 2000-04-13 This function/command used to have a
1995 special case syntax for the rombug target (Rombug is the boot
1996 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1997 rombug case, the user doesn't need to supply a text address,
1998 instead a call to target_link() (in target.c) would supply the
1999 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2000
c906108c 2001static void
fba45db2 2002add_symbol_file_command (char *args, int from_tty)
c906108c 2003{
db162d44 2004 char *filename = NULL;
2df3850c 2005 int flags = OBJF_USERLOADED;
c906108c 2006 char *arg;
2acceee2 2007 int expecting_option = 0;
db162d44 2008 int section_index = 0;
2acceee2
JM
2009 int argcnt = 0;
2010 int sec_num = 0;
2011 int i;
db162d44
EZ
2012 int expecting_sec_name = 0;
2013 int expecting_sec_addr = 0;
5b96932b 2014 char **argv;
db162d44 2015
a39a16c4 2016 struct sect_opt
2acceee2 2017 {
2acceee2
JM
2018 char *name;
2019 char *value;
a39a16c4 2020 };
db162d44 2021
a39a16c4
MM
2022 struct section_addr_info *section_addrs;
2023 struct sect_opt *sect_opts = NULL;
2024 size_t num_sect_opts = 0;
3017564a 2025 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2026
a39a16c4 2027 num_sect_opts = 16;
5417f6dc 2028 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2029 * sizeof (struct sect_opt));
2030
c906108c
SS
2031 dont_repeat ();
2032
2033 if (args == NULL)
8a3fe4f8 2034 error (_("add-symbol-file takes a file name and an address"));
c906108c 2035
5b96932b
AS
2036 argv = buildargv (args);
2037 make_cleanup_freeargv (argv);
db162d44 2038
5b96932b
AS
2039 if (argv == NULL)
2040 nomem (0);
db162d44 2041
5b96932b
AS
2042 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2043 {
2044 /* Process the argument. */
db162d44 2045 if (argcnt == 0)
c906108c 2046 {
db162d44
EZ
2047 /* The first argument is the file name. */
2048 filename = tilde_expand (arg);
3017564a 2049 make_cleanup (xfree, filename);
c906108c 2050 }
db162d44 2051 else
7a78ae4e
ND
2052 if (argcnt == 1)
2053 {
2054 /* The second argument is always the text address at which
2055 to load the program. */
2056 sect_opts[section_index].name = ".text";
2057 sect_opts[section_index].value = arg;
f414f22f 2058 if (++section_index >= num_sect_opts)
a39a16c4
MM
2059 {
2060 num_sect_opts *= 2;
5417f6dc 2061 sect_opts = ((struct sect_opt *)
a39a16c4 2062 xrealloc (sect_opts,
5417f6dc 2063 num_sect_opts
a39a16c4
MM
2064 * sizeof (struct sect_opt)));
2065 }
7a78ae4e
ND
2066 }
2067 else
2068 {
2069 /* It's an option (starting with '-') or it's an argument
2070 to an option */
2071
2072 if (*arg == '-')
2073 {
78a4a9b9
AC
2074 if (strcmp (arg, "-readnow") == 0)
2075 flags |= OBJF_READNOW;
2076 else if (strcmp (arg, "-s") == 0)
2077 {
2078 expecting_sec_name = 1;
2079 expecting_sec_addr = 1;
2080 }
7a78ae4e
ND
2081 }
2082 else
2083 {
2084 if (expecting_sec_name)
db162d44 2085 {
7a78ae4e
ND
2086 sect_opts[section_index].name = arg;
2087 expecting_sec_name = 0;
db162d44
EZ
2088 }
2089 else
7a78ae4e
ND
2090 if (expecting_sec_addr)
2091 {
2092 sect_opts[section_index].value = arg;
2093 expecting_sec_addr = 0;
f414f22f 2094 if (++section_index >= num_sect_opts)
a39a16c4
MM
2095 {
2096 num_sect_opts *= 2;
5417f6dc 2097 sect_opts = ((struct sect_opt *)
a39a16c4 2098 xrealloc (sect_opts,
5417f6dc 2099 num_sect_opts
a39a16c4
MM
2100 * sizeof (struct sect_opt)));
2101 }
7a78ae4e
ND
2102 }
2103 else
8a3fe4f8 2104 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2105 }
2106 }
c906108c 2107 }
c906108c 2108
927890d0
JB
2109 /* This command takes at least two arguments. The first one is a
2110 filename, and the second is the address where this file has been
2111 loaded. Abort now if this address hasn't been provided by the
2112 user. */
2113 if (section_index < 1)
2114 error (_("The address where %s has been loaded is missing"), filename);
2115
db162d44
EZ
2116 /* Print the prompt for the query below. And save the arguments into
2117 a sect_addr_info structure to be passed around to other
2118 functions. We have to split this up into separate print
bb599908 2119 statements because hex_string returns a local static
db162d44 2120 string. */
5417f6dc 2121
a3f17187 2122 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2123 section_addrs = alloc_section_addr_info (section_index);
2124 make_cleanup (xfree, section_addrs);
db162d44 2125 for (i = 0; i < section_index; i++)
c906108c 2126 {
db162d44
EZ
2127 CORE_ADDR addr;
2128 char *val = sect_opts[i].value;
2129 char *sec = sect_opts[i].name;
5417f6dc 2130
ae822768 2131 addr = parse_and_eval_address (val);
db162d44 2132
db162d44
EZ
2133 /* Here we store the section offsets in the order they were
2134 entered on the command line. */
a39a16c4
MM
2135 section_addrs->other[sec_num].name = sec;
2136 section_addrs->other[sec_num].addr = addr;
46f45a4a 2137 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 2138 sec, hex_string ((unsigned long)addr));
db162d44
EZ
2139 sec_num++;
2140
5417f6dc 2141 /* The object's sections are initialized when a
db162d44 2142 call is made to build_objfile_section_table (objfile).
5417f6dc 2143 This happens in reread_symbols.
db162d44
EZ
2144 At this point, we don't know what file type this is,
2145 so we can't determine what section names are valid. */
2acceee2 2146 }
db162d44 2147
2acceee2 2148 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2149 error (_("Not confirmed."));
c906108c 2150
a39a16c4 2151 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2152
2153 /* Getting new symbols may change our opinion about what is
2154 frameless. */
2155 reinit_frame_cache ();
db162d44 2156 do_cleanups (my_cleanups);
c906108c
SS
2157}
2158\f
2159static void
fba45db2 2160add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2161{
2162#ifdef ADD_SHARED_SYMBOL_FILES
2163 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2164#else
8a3fe4f8 2165 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2166#endif
c906108c
SS
2167}
2168\f
2169/* Re-read symbols if a symbol-file has changed. */
2170void
fba45db2 2171reread_symbols (void)
c906108c
SS
2172{
2173 struct objfile *objfile;
2174 long new_modtime;
2175 int reread_one = 0;
2176 struct stat new_statbuf;
2177 int res;
2178
2179 /* With the addition of shared libraries, this should be modified,
2180 the load time should be saved in the partial symbol tables, since
2181 different tables may come from different source files. FIXME.
2182 This routine should then walk down each partial symbol table
2183 and see if the symbol table that it originates from has been changed */
2184
c5aa993b
JM
2185 for (objfile = object_files; objfile; objfile = objfile->next)
2186 {
2187 if (objfile->obfd)
2188 {
52d16ba8 2189#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2190 /* If this object is from a shared library, then you should
2191 stat on the library name, not member name. */
c906108c 2192
c5aa993b
JM
2193 if (objfile->obfd->my_archive)
2194 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2195 else
c906108c 2196#endif
c5aa993b
JM
2197 res = stat (objfile->name, &new_statbuf);
2198 if (res != 0)
c906108c 2199 {
c5aa993b 2200 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2201 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2202 objfile->name);
2203 continue;
c906108c 2204 }
c5aa993b
JM
2205 new_modtime = new_statbuf.st_mtime;
2206 if (new_modtime != objfile->mtime)
c906108c 2207 {
c5aa993b
JM
2208 struct cleanup *old_cleanups;
2209 struct section_offsets *offsets;
2210 int num_offsets;
c5aa993b
JM
2211 char *obfd_filename;
2212
a3f17187 2213 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2214 objfile->name);
2215
2216 /* There are various functions like symbol_file_add,
2217 symfile_bfd_open, syms_from_objfile, etc., which might
2218 appear to do what we want. But they have various other
2219 effects which we *don't* want. So we just do stuff
2220 ourselves. We don't worry about mapped files (for one thing,
2221 any mapped file will be out of date). */
2222
2223 /* If we get an error, blow away this objfile (not sure if
2224 that is the correct response for things like shared
2225 libraries). */
74b7792f 2226 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2227 /* We need to do this whenever any symbols go away. */
74b7792f 2228 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2229
2230 /* Clean up any state BFD has sitting around. We don't need
2231 to close the descriptor but BFD lacks a way of closing the
2232 BFD without closing the descriptor. */
2233 obfd_filename = bfd_get_filename (objfile->obfd);
2234 if (!bfd_close (objfile->obfd))
8a3fe4f8 2235 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2236 bfd_errmsg (bfd_get_error ()));
2237 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2238 if (objfile->obfd == NULL)
8a3fe4f8 2239 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2240 /* bfd_openr sets cacheable to true, which is what we want. */
2241 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2242 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2243 bfd_errmsg (bfd_get_error ()));
2244
2245 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2246 objfile_obstack. */
c5aa993b 2247 num_offsets = objfile->num_sections;
5417f6dc 2248 offsets = ((struct section_offsets *)
a39a16c4 2249 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2250 memcpy (offsets, objfile->section_offsets,
a39a16c4 2251 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2252
ae5a43e0
DJ
2253 /* Remove any references to this objfile in the global
2254 value lists. */
2255 preserve_values (objfile);
2256
c5aa993b
JM
2257 /* Nuke all the state that we will re-read. Much of the following
2258 code which sets things to NULL really is necessary to tell
2259 other parts of GDB that there is nothing currently there. */
2260
2261 /* FIXME: Do we have to free a whole linked list, or is this
2262 enough? */
2263 if (objfile->global_psymbols.list)
2dc74dc1 2264 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2265 memset (&objfile->global_psymbols, 0,
2266 sizeof (objfile->global_psymbols));
2267 if (objfile->static_psymbols.list)
2dc74dc1 2268 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2269 memset (&objfile->static_psymbols, 0,
2270 sizeof (objfile->static_psymbols));
2271
2272 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2273 bcache_xfree (objfile->psymbol_cache);
2274 objfile->psymbol_cache = bcache_xmalloc ();
2275 bcache_xfree (objfile->macro_cache);
2276 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2277 if (objfile->demangled_names_hash != NULL)
2278 {
2279 htab_delete (objfile->demangled_names_hash);
2280 objfile->demangled_names_hash = NULL;
2281 }
b99607ea 2282 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2283 objfile->sections = NULL;
2284 objfile->symtabs = NULL;
2285 objfile->psymtabs = NULL;
2286 objfile->free_psymtabs = NULL;
a1b8c067 2287 objfile->cp_namespace_symtab = NULL;
c5aa993b 2288 objfile->msymbols = NULL;
0a6ddd08 2289 objfile->deprecated_sym_private = NULL;
c5aa993b 2290 objfile->minimal_symbol_count = 0;
0a83117a
MS
2291 memset (&objfile->msymbol_hash, 0,
2292 sizeof (objfile->msymbol_hash));
2293 memset (&objfile->msymbol_demangled_hash, 0,
2294 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2295 objfile->fundamental_types = NULL;
7b097ae3 2296 clear_objfile_data (objfile);
c5aa993b
JM
2297 if (objfile->sf != NULL)
2298 {
2299 (*objfile->sf->sym_finish) (objfile);
2300 }
2301
2302 /* We never make this a mapped file. */
2303 objfile->md = NULL;
af5f3db6
AC
2304 objfile->psymbol_cache = bcache_xmalloc ();
2305 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2306 /* obstack_init also initializes the obstack so it is
2307 empty. We could use obstack_specify_allocation but
2308 gdb_obstack.h specifies the alloc/dealloc
2309 functions. */
2310 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2311 if (build_objfile_section_table (objfile))
2312 {
8a3fe4f8 2313 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2314 objfile->name, bfd_errmsg (bfd_get_error ()));
2315 }
15831452 2316 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2317
2318 /* We use the same section offsets as from last time. I'm not
2319 sure whether that is always correct for shared libraries. */
2320 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2321 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2322 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2323 memcpy (objfile->section_offsets, offsets,
a39a16c4 2324 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2325 objfile->num_sections = num_offsets;
2326
2327 /* What the hell is sym_new_init for, anyway? The concept of
2328 distinguishing between the main file and additional files
2329 in this way seems rather dubious. */
2330 if (objfile == symfile_objfile)
2331 {
2332 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2333 }
2334
2335 (*objfile->sf->sym_init) (objfile);
b9caf505 2336 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2337 /* The "mainline" parameter is a hideous hack; I think leaving it
2338 zero is OK since dbxread.c also does what it needs to do if
2339 objfile->global_psymbols.size is 0. */
96baa820 2340 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2341 if (!have_partial_symbols () && !have_full_symbols ())
2342 {
2343 wrap_here ("");
a3f17187 2344 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2345 wrap_here ("");
2346 }
2347 objfile->flags |= OBJF_SYMS;
2348
2349 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2350 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2351
c5aa993b
JM
2352 /* Getting new symbols may change our opinion about what is
2353 frameless. */
c906108c 2354
c5aa993b 2355 reinit_frame_cache ();
c906108c 2356
c5aa993b
JM
2357 /* Discard cleanups as symbol reading was successful. */
2358 discard_cleanups (old_cleanups);
c906108c 2359
c5aa993b
JM
2360 /* If the mtime has changed between the time we set new_modtime
2361 and now, we *want* this to be out of date, so don't call stat
2362 again now. */
2363 objfile->mtime = new_modtime;
2364 reread_one = 1;
5b5d99cf 2365 reread_separate_symbols (objfile);
c5aa993b 2366 }
c906108c
SS
2367 }
2368 }
c906108c
SS
2369
2370 if (reread_one)
ea53e89f
JB
2371 {
2372 clear_symtab_users ();
2373 /* At least one objfile has changed, so we can consider that
2374 the executable we're debugging has changed too. */
2375 observer_notify_executable_changed (NULL);
2376 }
2377
c906108c 2378}
5b5d99cf
JB
2379
2380
2381/* Handle separate debug info for OBJFILE, which has just been
2382 re-read:
2383 - If we had separate debug info before, but now we don't, get rid
2384 of the separated objfile.
2385 - If we didn't have separated debug info before, but now we do,
2386 read in the new separated debug info file.
2387 - If the debug link points to a different file, toss the old one
2388 and read the new one.
2389 This function does *not* handle the case where objfile is still
2390 using the same separate debug info file, but that file's timestamp
2391 has changed. That case should be handled by the loop in
2392 reread_symbols already. */
2393static void
2394reread_separate_symbols (struct objfile *objfile)
2395{
2396 char *debug_file;
2397 unsigned long crc32;
2398
2399 /* Does the updated objfile's debug info live in a
2400 separate file? */
2401 debug_file = find_separate_debug_file (objfile);
2402
2403 if (objfile->separate_debug_objfile)
2404 {
2405 /* There are two cases where we need to get rid of
2406 the old separated debug info objfile:
2407 - if the new primary objfile doesn't have
2408 separated debug info, or
2409 - if the new primary objfile has separate debug
2410 info, but it's under a different filename.
5417f6dc 2411
5b5d99cf
JB
2412 If the old and new objfiles both have separate
2413 debug info, under the same filename, then we're
2414 okay --- if the separated file's contents have
2415 changed, we will have caught that when we
2416 visited it in this function's outermost
2417 loop. */
2418 if (! debug_file
2419 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2420 free_objfile (objfile->separate_debug_objfile);
2421 }
2422
2423 /* If the new objfile has separate debug info, and we
2424 haven't loaded it already, do so now. */
2425 if (debug_file
2426 && ! objfile->separate_debug_objfile)
2427 {
2428 /* Use the same section offset table as objfile itself.
2429 Preserve the flags from objfile that make sense. */
2430 objfile->separate_debug_objfile
2431 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2432 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2433 info_verbose, /* from_tty: Don't override the default. */
2434 0, /* No addr table. */
2435 objfile->section_offsets, objfile->num_sections,
2436 0, /* Not mainline. See comments about this above. */
78a4a9b9 2437 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2438 | OBJF_USERLOADED)));
2439 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2440 = objfile;
2441 }
2442}
2443
2444
c906108c
SS
2445\f
2446
c5aa993b
JM
2447
2448typedef struct
2449{
2450 char *ext;
c906108c 2451 enum language lang;
c5aa993b
JM
2452}
2453filename_language;
c906108c 2454
c5aa993b 2455static filename_language *filename_language_table;
c906108c
SS
2456static int fl_table_size, fl_table_next;
2457
2458static void
fba45db2 2459add_filename_language (char *ext, enum language lang)
c906108c
SS
2460{
2461 if (fl_table_next >= fl_table_size)
2462 {
2463 fl_table_size += 10;
5417f6dc 2464 filename_language_table =
25bf3106
PM
2465 xrealloc (filename_language_table,
2466 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2467 }
2468
4fcf66da 2469 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2470 filename_language_table[fl_table_next].lang = lang;
2471 fl_table_next++;
2472}
2473
2474static char *ext_args;
920d2a44
AC
2475static void
2476show_ext_args (struct ui_file *file, int from_tty,
2477 struct cmd_list_element *c, const char *value)
2478{
2479 fprintf_filtered (file, _("\
2480Mapping between filename extension and source language is \"%s\".\n"),
2481 value);
2482}
c906108c
SS
2483
2484static void
26c41df3 2485set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2486{
2487 int i;
2488 char *cp = ext_args;
2489 enum language lang;
2490
2491 /* First arg is filename extension, starting with '.' */
2492 if (*cp != '.')
8a3fe4f8 2493 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2494
2495 /* Find end of first arg. */
c5aa993b 2496 while (*cp && !isspace (*cp))
c906108c
SS
2497 cp++;
2498
2499 if (*cp == '\0')
8a3fe4f8 2500 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2501 ext_args);
2502
2503 /* Null-terminate first arg */
c5aa993b 2504 *cp++ = '\0';
c906108c
SS
2505
2506 /* Find beginning of second arg, which should be a source language. */
2507 while (*cp && isspace (*cp))
2508 cp++;
2509
2510 if (*cp == '\0')
8a3fe4f8 2511 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2512 ext_args);
2513
2514 /* Lookup the language from among those we know. */
2515 lang = language_enum (cp);
2516
2517 /* Now lookup the filename extension: do we already know it? */
2518 for (i = 0; i < fl_table_next; i++)
2519 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2520 break;
2521
2522 if (i >= fl_table_next)
2523 {
2524 /* new file extension */
2525 add_filename_language (ext_args, lang);
2526 }
2527 else
2528 {
2529 /* redefining a previously known filename extension */
2530
2531 /* if (from_tty) */
2532 /* query ("Really make files of type %s '%s'?", */
2533 /* ext_args, language_str (lang)); */
2534
b8c9b27d 2535 xfree (filename_language_table[i].ext);
4fcf66da 2536 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2537 filename_language_table[i].lang = lang;
2538 }
2539}
2540
2541static void
fba45db2 2542info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2543{
2544 int i;
2545
a3f17187 2546 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2547 printf_filtered ("\n\n");
2548 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2549 printf_filtered ("\t%s\t- %s\n",
2550 filename_language_table[i].ext,
c906108c
SS
2551 language_str (filename_language_table[i].lang));
2552}
2553
2554static void
fba45db2 2555init_filename_language_table (void)
c906108c
SS
2556{
2557 if (fl_table_size == 0) /* protect against repetition */
2558 {
2559 fl_table_size = 20;
2560 fl_table_next = 0;
c5aa993b 2561 filename_language_table =
c906108c 2562 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2563 add_filename_language (".c", language_c);
2564 add_filename_language (".C", language_cplus);
2565 add_filename_language (".cc", language_cplus);
2566 add_filename_language (".cp", language_cplus);
2567 add_filename_language (".cpp", language_cplus);
2568 add_filename_language (".cxx", language_cplus);
2569 add_filename_language (".c++", language_cplus);
2570 add_filename_language (".java", language_java);
c906108c 2571 add_filename_language (".class", language_java);
da2cf7e0 2572 add_filename_language (".m", language_objc);
c5aa993b
JM
2573 add_filename_language (".f", language_fortran);
2574 add_filename_language (".F", language_fortran);
2575 add_filename_language (".s", language_asm);
2576 add_filename_language (".S", language_asm);
c6fd39cd
PM
2577 add_filename_language (".pas", language_pascal);
2578 add_filename_language (".p", language_pascal);
2579 add_filename_language (".pp", language_pascal);
963a6417
PH
2580 add_filename_language (".adb", language_ada);
2581 add_filename_language (".ads", language_ada);
2582 add_filename_language (".a", language_ada);
2583 add_filename_language (".ada", language_ada);
c906108c
SS
2584 }
2585}
2586
2587enum language
fba45db2 2588deduce_language_from_filename (char *filename)
c906108c
SS
2589{
2590 int i;
2591 char *cp;
2592
2593 if (filename != NULL)
2594 if ((cp = strrchr (filename, '.')) != NULL)
2595 for (i = 0; i < fl_table_next; i++)
2596 if (strcmp (cp, filename_language_table[i].ext) == 0)
2597 return filename_language_table[i].lang;
2598
2599 return language_unknown;
2600}
2601\f
2602/* allocate_symtab:
2603
2604 Allocate and partly initialize a new symbol table. Return a pointer
2605 to it. error() if no space.
2606
2607 Caller must set these fields:
c5aa993b
JM
2608 LINETABLE(symtab)
2609 symtab->blockvector
2610 symtab->dirname
2611 symtab->free_code
2612 symtab->free_ptr
2613 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2614 */
2615
2616struct symtab *
fba45db2 2617allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2618{
52f0bd74 2619 struct symtab *symtab;
c906108c
SS
2620
2621 symtab = (struct symtab *)
4a146b47 2622 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2623 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2624 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2625 &objfile->objfile_obstack);
c5aa993b
JM
2626 symtab->fullname = NULL;
2627 symtab->language = deduce_language_from_filename (filename);
2628 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2629 &objfile->objfile_obstack);
c906108c
SS
2630
2631 /* Hook it to the objfile it comes from */
2632
c5aa993b
JM
2633 symtab->objfile = objfile;
2634 symtab->next = objfile->symtabs;
2635 objfile->symtabs = symtab;
c906108c 2636
c906108c
SS
2637 return (symtab);
2638}
2639
2640struct partial_symtab *
fba45db2 2641allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2642{
2643 struct partial_symtab *psymtab;
2644
c5aa993b 2645 if (objfile->free_psymtabs)
c906108c 2646 {
c5aa993b
JM
2647 psymtab = objfile->free_psymtabs;
2648 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2649 }
2650 else
2651 psymtab = (struct partial_symtab *)
8b92e4d5 2652 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2653 sizeof (struct partial_symtab));
2654
2655 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2656 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2657 &objfile->objfile_obstack);
c5aa993b 2658 psymtab->symtab = NULL;
c906108c
SS
2659
2660 /* Prepend it to the psymtab list for the objfile it belongs to.
2661 Psymtabs are searched in most recent inserted -> least recent
2662 inserted order. */
2663
c5aa993b
JM
2664 psymtab->objfile = objfile;
2665 psymtab->next = objfile->psymtabs;
2666 objfile->psymtabs = psymtab;
c906108c
SS
2667#if 0
2668 {
2669 struct partial_symtab **prev_pst;
c5aa993b
JM
2670 psymtab->objfile = objfile;
2671 psymtab->next = NULL;
2672 prev_pst = &(objfile->psymtabs);
c906108c 2673 while ((*prev_pst) != NULL)
c5aa993b 2674 prev_pst = &((*prev_pst)->next);
c906108c 2675 (*prev_pst) = psymtab;
c5aa993b 2676 }
c906108c 2677#endif
c5aa993b 2678
c906108c
SS
2679 return (psymtab);
2680}
2681
2682void
fba45db2 2683discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2684{
2685 struct partial_symtab **prev_pst;
2686
2687 /* From dbxread.c:
2688 Empty psymtabs happen as a result of header files which don't
2689 have any symbols in them. There can be a lot of them. But this
2690 check is wrong, in that a psymtab with N_SLINE entries but
2691 nothing else is not empty, but we don't realize that. Fixing
2692 that without slowing things down might be tricky. */
2693
2694 /* First, snip it out of the psymtab chain */
2695
2696 prev_pst = &(pst->objfile->psymtabs);
2697 while ((*prev_pst) != pst)
2698 prev_pst = &((*prev_pst)->next);
2699 (*prev_pst) = pst->next;
2700
2701 /* Next, put it on a free list for recycling */
2702
2703 pst->next = pst->objfile->free_psymtabs;
2704 pst->objfile->free_psymtabs = pst;
2705}
c906108c 2706\f
c5aa993b 2707
c906108c
SS
2708/* Reset all data structures in gdb which may contain references to symbol
2709 table data. */
2710
2711void
fba45db2 2712clear_symtab_users (void)
c906108c
SS
2713{
2714 /* Someday, we should do better than this, by only blowing away
2715 the things that really need to be blown. */
c0501be5
DJ
2716
2717 /* Clear the "current" symtab first, because it is no longer valid.
2718 breakpoint_re_set may try to access the current symtab. */
2719 clear_current_source_symtab_and_line ();
2720
c906108c 2721 clear_displays ();
c906108c
SS
2722 breakpoint_re_set ();
2723 set_default_breakpoint (0, 0, 0, 0);
c906108c 2724 clear_pc_function_cache ();
06d3b283 2725 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2726
2727 /* Clear globals which might have pointed into a removed objfile.
2728 FIXME: It's not clear which of these are supposed to persist
2729 between expressions and which ought to be reset each time. */
2730 expression_context_block = NULL;
2731 innermost_block = NULL;
8756216b
DP
2732
2733 /* Varobj may refer to old symbols, perform a cleanup. */
2734 varobj_invalidate ();
2735
c906108c
SS
2736}
2737
74b7792f
AC
2738static void
2739clear_symtab_users_cleanup (void *ignore)
2740{
2741 clear_symtab_users ();
2742}
2743
c906108c
SS
2744/* clear_symtab_users_once:
2745
2746 This function is run after symbol reading, or from a cleanup.
2747 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2748 has been blown away, but the other GDB data structures that may
c906108c
SS
2749 reference it have not yet been cleared or re-directed. (The old
2750 symtab was zapped, and the cleanup queued, in free_named_symtab()
2751 below.)
2752
2753 This function can be queued N times as a cleanup, or called
2754 directly; it will do all the work the first time, and then will be a
2755 no-op until the next time it is queued. This works by bumping a
2756 counter at queueing time. Much later when the cleanup is run, or at
2757 the end of symbol processing (in case the cleanup is discarded), if
2758 the queued count is greater than the "done-count", we do the work
2759 and set the done-count to the queued count. If the queued count is
2760 less than or equal to the done-count, we just ignore the call. This
2761 is needed because reading a single .o file will often replace many
2762 symtabs (one per .h file, for example), and we don't want to reset
2763 the breakpoints N times in the user's face.
2764
2765 The reason we both queue a cleanup, and call it directly after symbol
2766 reading, is because the cleanup protects us in case of errors, but is
2767 discarded if symbol reading is successful. */
2768
2769#if 0
2770/* FIXME: As free_named_symtabs is currently a big noop this function
2771 is no longer needed. */
a14ed312 2772static void clear_symtab_users_once (void);
c906108c
SS
2773
2774static int clear_symtab_users_queued;
2775static int clear_symtab_users_done;
2776
2777static void
fba45db2 2778clear_symtab_users_once (void)
c906108c
SS
2779{
2780 /* Enforce once-per-`do_cleanups'-semantics */
2781 if (clear_symtab_users_queued <= clear_symtab_users_done)
2782 return;
2783 clear_symtab_users_done = clear_symtab_users_queued;
2784
2785 clear_symtab_users ();
2786}
2787#endif
2788
2789/* Delete the specified psymtab, and any others that reference it. */
2790
2791static void
fba45db2 2792cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2793{
2794 struct partial_symtab *ps, *pprev = NULL;
2795 int i;
2796
2797 /* Find its previous psymtab in the chain */
c5aa993b
JM
2798 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2799 {
2800 if (ps == pst)
2801 break;
2802 pprev = ps;
2803 }
c906108c 2804
c5aa993b
JM
2805 if (ps)
2806 {
2807 /* Unhook it from the chain. */
2808 if (ps == pst->objfile->psymtabs)
2809 pst->objfile->psymtabs = ps->next;
2810 else
2811 pprev->next = ps->next;
2812
2813 /* FIXME, we can't conveniently deallocate the entries in the
2814 partial_symbol lists (global_psymbols/static_psymbols) that
2815 this psymtab points to. These just take up space until all
2816 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2817 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2818
2819 /* We need to cashier any psymtab that has this one as a dependency... */
2820 again:
2821 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2822 {
2823 for (i = 0; i < ps->number_of_dependencies; i++)
2824 {
2825 if (ps->dependencies[i] == pst)
2826 {
2827 cashier_psymtab (ps);
2828 goto again; /* Must restart, chain has been munged. */
2829 }
2830 }
c906108c 2831 }
c906108c 2832 }
c906108c
SS
2833}
2834
2835/* If a symtab or psymtab for filename NAME is found, free it along
2836 with any dependent breakpoints, displays, etc.
2837 Used when loading new versions of object modules with the "add-file"
2838 command. This is only called on the top-level symtab or psymtab's name;
2839 it is not called for subsidiary files such as .h files.
2840
2841 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2842 FIXME. The return value appears to never be used.
c906108c
SS
2843
2844 FIXME. I think this is not the best way to do this. We should
2845 work on being gentler to the environment while still cleaning up
2846 all stray pointers into the freed symtab. */
2847
2848int
fba45db2 2849free_named_symtabs (char *name)
c906108c
SS
2850{
2851#if 0
2852 /* FIXME: With the new method of each objfile having it's own
2853 psymtab list, this function needs serious rethinking. In particular,
2854 why was it ever necessary to toss psymtabs with specific compilation
2855 unit filenames, as opposed to all psymtabs from a particular symbol
2856 file? -- fnf
2857 Well, the answer is that some systems permit reloading of particular
2858 compilation units. We want to blow away any old info about these
2859 compilation units, regardless of which objfiles they arrived in. --gnu. */
2860
52f0bd74
AC
2861 struct symtab *s;
2862 struct symtab *prev;
2863 struct partial_symtab *ps;
c906108c
SS
2864 struct blockvector *bv;
2865 int blewit = 0;
2866
2867 /* We only wack things if the symbol-reload switch is set. */
2868 if (!symbol_reloading)
2869 return 0;
2870
2871 /* Some symbol formats have trouble providing file names... */
2872 if (name == 0 || *name == '\0')
2873 return 0;
2874
2875 /* Look for a psymtab with the specified name. */
2876
2877again2:
c5aa993b
JM
2878 for (ps = partial_symtab_list; ps; ps = ps->next)
2879 {
6314a349 2880 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2881 {
2882 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2883 goto again2; /* Must restart, chain has been munged */
2884 }
c906108c 2885 }
c906108c
SS
2886
2887 /* Look for a symtab with the specified name. */
2888
2889 for (s = symtab_list; s; s = s->next)
2890 {
6314a349 2891 if (strcmp (name, s->filename) == 0)
c906108c
SS
2892 break;
2893 prev = s;
2894 }
2895
2896 if (s)
2897 {
2898 if (s == symtab_list)
2899 symtab_list = s->next;
2900 else
2901 prev->next = s->next;
2902
2903 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2904 or not they depend on the symtab being freed. This should be
2905 changed so that only those data structures affected are deleted. */
c906108c
SS
2906
2907 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2908 This test is necessary due to a bug in "dbxread.c" that
2909 causes empty symtabs to be created for N_SO symbols that
2910 contain the pathname of the object file. (This problem
2911 has been fixed in GDB 3.9x). */
c906108c
SS
2912
2913 bv = BLOCKVECTOR (s);
2914 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2915 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2916 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2917 {
e2e0b3e5 2918 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2919 name);
c906108c
SS
2920 clear_symtab_users_queued++;
2921 make_cleanup (clear_symtab_users_once, 0);
2922 blewit = 1;
c5aa993b
JM
2923 }
2924 else
e2e0b3e5
AC
2925 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2926 name);
c906108c
SS
2927
2928 free_symtab (s);
2929 }
2930 else
2931 {
2932 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2933 even though no symtab was found, since the file might have
2934 been compiled without debugging, and hence not be associated
2935 with a symtab. In order to handle this correctly, we would need
2936 to keep a list of text address ranges for undebuggable files.
2937 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2938 ;
2939 }
2940
2941 /* FIXME, what about the minimal symbol table? */
2942 return blewit;
2943#else
2944 return (0);
2945#endif
2946}
2947\f
2948/* Allocate and partially fill a partial symtab. It will be
2949 completely filled at the end of the symbol list.
2950
d4f3574e 2951 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2952
2953struct partial_symtab *
fba45db2
KB
2954start_psymtab_common (struct objfile *objfile,
2955 struct section_offsets *section_offsets, char *filename,
2956 CORE_ADDR textlow, struct partial_symbol **global_syms,
2957 struct partial_symbol **static_syms)
c906108c
SS
2958{
2959 struct partial_symtab *psymtab;
2960
2961 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2962 psymtab->section_offsets = section_offsets;
2963 psymtab->textlow = textlow;
2964 psymtab->texthigh = psymtab->textlow; /* default */
2965 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2966 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2967 return (psymtab);
2968}
2969\f
2970/* Add a symbol with a long value to a psymtab.
5417f6dc 2971 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2972 Return the partial symbol that has been added. */
2973
2974/* NOTE: carlton/2003-09-11: The reason why we return the partial
2975 symbol is so that callers can get access to the symbol's demangled
2976 name, which they don't have any cheap way to determine otherwise.
2977 (Currenly, dwarf2read.c is the only file who uses that information,
2978 though it's possible that other readers might in the future.)
2979 Elena wasn't thrilled about that, and I don't blame her, but we
2980 couldn't come up with a better way to get that information. If
2981 it's needed in other situations, we could consider breaking up
2982 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2983 cache. */
2984
2985const struct partial_symbol *
176620f1 2986add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2987 enum address_class class,
2988 struct psymbol_allocation_list *list, long val, /* Value as a long */
2989 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2990 enum language language, struct objfile *objfile)
c906108c 2991{
52f0bd74 2992 struct partial_symbol *psym;
c906108c
SS
2993 char *buf = alloca (namelength + 1);
2994 /* psymbol is static so that there will be no uninitialized gaps in the
2995 structure which might contain random data, causing cache misses in
2996 bcache. */
2997 static struct partial_symbol psymbol;
2998
2999 /* Create local copy of the partial symbol */
3000 memcpy (buf, name, namelength);
3001 buf[namelength] = '\0';
c906108c
SS
3002 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3003 if (val != 0)
3004 {
3005 SYMBOL_VALUE (&psymbol) = val;
3006 }
3007 else
3008 {
3009 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3010 }
3011 SYMBOL_SECTION (&psymbol) = 0;
3012 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 3013 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 3014 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
3015
3016 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
3017
3018 /* Stash the partial symbol away in the cache */
3a16a68c
AC
3019 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3020 objfile->psymbol_cache);
c906108c
SS
3021
3022 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3023 if (list->next >= list->list + list->size)
3024 {
3025 extend_psymbol_list (list, objfile);
3026 }
3027 *list->next++ = psym;
3028 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
3029
3030 return psym;
c906108c
SS
3031}
3032
c906108c
SS
3033/* Initialize storage for partial symbols. */
3034
3035void
fba45db2 3036init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3037{
3038 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3039
3040 if (objfile->global_psymbols.list)
c906108c 3041 {
2dc74dc1 3042 xfree (objfile->global_psymbols.list);
c906108c 3043 }
c5aa993b 3044 if (objfile->static_psymbols.list)
c906108c 3045 {
2dc74dc1 3046 xfree (objfile->static_psymbols.list);
c906108c 3047 }
c5aa993b 3048
c906108c
SS
3049 /* Current best guess is that approximately a twentieth
3050 of the total symbols (in a debugging file) are global or static
3051 oriented symbols */
c906108c 3052
c5aa993b
JM
3053 objfile->global_psymbols.size = total_symbols / 10;
3054 objfile->static_psymbols.size = total_symbols / 10;
3055
3056 if (objfile->global_psymbols.size > 0)
c906108c 3057 {
c5aa993b
JM
3058 objfile->global_psymbols.next =
3059 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3060 xmalloc ((objfile->global_psymbols.size
3061 * sizeof (struct partial_symbol *)));
c906108c 3062 }
c5aa993b 3063 if (objfile->static_psymbols.size > 0)
c906108c 3064 {
c5aa993b
JM
3065 objfile->static_psymbols.next =
3066 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3067 xmalloc ((objfile->static_psymbols.size
3068 * sizeof (struct partial_symbol *)));
c906108c
SS
3069 }
3070}
3071
3072/* OVERLAYS:
3073 The following code implements an abstraction for debugging overlay sections.
3074
3075 The target model is as follows:
3076 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3077 same VMA, each with its own unique LMA (or load address).
c906108c 3078 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3079 sections, one by one, from the load address into the VMA address.
5417f6dc 3080 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3081 sections should be considered to be mapped from the VMA to the LMA.
3082 This information is used for symbol lookup, and memory read/write.
5417f6dc 3083 For instance, if a section has been mapped then its contents
c5aa993b 3084 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3085
3086 Two levels of debugger support for overlays are available. One is
3087 "manual", in which the debugger relies on the user to tell it which
3088 overlays are currently mapped. This level of support is
3089 implemented entirely in the core debugger, and the information about
3090 whether a section is mapped is kept in the objfile->obj_section table.
3091
3092 The second level of support is "automatic", and is only available if
3093 the target-specific code provides functionality to read the target's
3094 overlay mapping table, and translate its contents for the debugger
3095 (by updating the mapped state information in the obj_section tables).
3096
3097 The interface is as follows:
c5aa993b
JM
3098 User commands:
3099 overlay map <name> -- tell gdb to consider this section mapped
3100 overlay unmap <name> -- tell gdb to consider this section unmapped
3101 overlay list -- list the sections that GDB thinks are mapped
3102 overlay read-target -- get the target's state of what's mapped
3103 overlay off/manual/auto -- set overlay debugging state
3104 Functional interface:
3105 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3106 section, return that section.
5417f6dc 3107 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3108 the pc, either in its VMA or its LMA
3109 overlay_is_mapped(sect): true if overlay is marked as mapped
3110 section_is_overlay(sect): true if section's VMA != LMA
3111 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3112 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3113 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3114 overlay_mapped_address(...): map an address from section's LMA to VMA
3115 overlay_unmapped_address(...): map an address from section's VMA to LMA
3116 symbol_overlayed_address(...): Return a "current" address for symbol:
3117 either in VMA or LMA depending on whether
3118 the symbol's section is currently mapped
c906108c
SS
3119 */
3120
3121/* Overlay debugging state: */
3122
d874f1e2 3123enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3124int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3125
c906108c 3126/* Function: section_is_overlay (SECTION)
5417f6dc 3127 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3128 SECTION is loaded at an address different from where it will "run". */
3129
3130int
fba45db2 3131section_is_overlay (asection *section)
c906108c 3132{
fbd35540
MS
3133 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3134
c906108c
SS
3135 if (overlay_debugging)
3136 if (section && section->lma != 0 &&
3137 section->vma != section->lma)
3138 return 1;
3139
3140 return 0;
3141}
3142
3143/* Function: overlay_invalidate_all (void)
3144 Invalidate the mapped state of all overlay sections (mark it as stale). */
3145
3146static void
fba45db2 3147overlay_invalidate_all (void)
c906108c 3148{
c5aa993b 3149 struct objfile *objfile;
c906108c
SS
3150 struct obj_section *sect;
3151
3152 ALL_OBJSECTIONS (objfile, sect)
3153 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3154 sect->ovly_mapped = -1;
c906108c
SS
3155}
3156
3157/* Function: overlay_is_mapped (SECTION)
5417f6dc 3158 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3159 Private: public access is thru function section_is_mapped.
3160
3161 Access to the ovly_mapped flag is restricted to this function, so
3162 that we can do automatic update. If the global flag
3163 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3164 overlay_invalidate_all. If the mapped state of the particular
3165 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3166
c5aa993b 3167static int
fba45db2 3168overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3169{
3170 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3171 return 0;
3172
c5aa993b 3173 switch (overlay_debugging)
c906108c
SS
3174 {
3175 default:
d874f1e2 3176 case ovly_off:
c5aa993b 3177 return 0; /* overlay debugging off */
d874f1e2 3178 case ovly_auto: /* overlay debugging automatic */
1c772458 3179 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3180 there's really nothing useful to do here (can't really go auto) */
1c772458 3181 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3182 {
3183 if (overlay_cache_invalid)
3184 {
3185 overlay_invalidate_all ();
3186 overlay_cache_invalid = 0;
3187 }
3188 if (osect->ovly_mapped == -1)
1c772458 3189 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3190 }
3191 /* fall thru to manual case */
d874f1e2 3192 case ovly_on: /* overlay debugging manual */
c906108c
SS
3193 return osect->ovly_mapped == 1;
3194 }
3195}
3196
3197/* Function: section_is_mapped
3198 Returns true if section is an overlay, and is currently mapped. */
3199
3200int
fba45db2 3201section_is_mapped (asection *section)
c906108c 3202{
c5aa993b 3203 struct objfile *objfile;
c906108c
SS
3204 struct obj_section *osect;
3205
3206 if (overlay_debugging)
3207 if (section && section_is_overlay (section))
3208 ALL_OBJSECTIONS (objfile, osect)
3209 if (osect->the_bfd_section == section)
c5aa993b 3210 return overlay_is_mapped (osect);
c906108c
SS
3211
3212 return 0;
3213}
3214
3215/* Function: pc_in_unmapped_range
3216 If PC falls into the lma range of SECTION, return true, else false. */
3217
3218CORE_ADDR
fba45db2 3219pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3220{
fbd35540
MS
3221 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3222
c906108c
SS
3223 int size;
3224
3225 if (overlay_debugging)
3226 if (section && section_is_overlay (section))
3227 {
2c500098 3228 size = bfd_get_section_size (section);
c906108c
SS
3229 if (section->lma <= pc && pc < section->lma + size)
3230 return 1;
3231 }
3232 return 0;
3233}
3234
3235/* Function: pc_in_mapped_range
3236 If PC falls into the vma range of SECTION, return true, else false. */
3237
3238CORE_ADDR
fba45db2 3239pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3240{
fbd35540
MS
3241 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3242
c906108c
SS
3243 int size;
3244
3245 if (overlay_debugging)
3246 if (section && section_is_overlay (section))
3247 {
2c500098 3248 size = bfd_get_section_size (section);
c906108c
SS
3249 if (section->vma <= pc && pc < section->vma + size)
3250 return 1;
3251 }
3252 return 0;
3253}
3254
9ec8e6a0
JB
3255
3256/* Return true if the mapped ranges of sections A and B overlap, false
3257 otherwise. */
b9362cc7 3258static int
9ec8e6a0
JB
3259sections_overlap (asection *a, asection *b)
3260{
fbd35540
MS
3261 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3262
9ec8e6a0 3263 CORE_ADDR a_start = a->vma;
2c500098 3264 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3265 CORE_ADDR b_start = b->vma;
2c500098 3266 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3267
3268 return (a_start < b_end && b_start < a_end);
3269}
3270
c906108c
SS
3271/* Function: overlay_unmapped_address (PC, SECTION)
3272 Returns the address corresponding to PC in the unmapped (load) range.
3273 May be the same as PC. */
3274
3275CORE_ADDR
fba45db2 3276overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3277{
fbd35540
MS
3278 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3279
c906108c
SS
3280 if (overlay_debugging)
3281 if (section && section_is_overlay (section) &&
3282 pc_in_mapped_range (pc, section))
3283 return pc + section->lma - section->vma;
3284
3285 return pc;
3286}
3287
3288/* Function: overlay_mapped_address (PC, SECTION)
3289 Returns the address corresponding to PC in the mapped (runtime) range.
3290 May be the same as PC. */
3291
3292CORE_ADDR
fba45db2 3293overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3294{
fbd35540
MS
3295 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3296
c906108c
SS
3297 if (overlay_debugging)
3298 if (section && section_is_overlay (section) &&
3299 pc_in_unmapped_range (pc, section))
3300 return pc + section->vma - section->lma;
3301
3302 return pc;
3303}
3304
3305
5417f6dc 3306/* Function: symbol_overlayed_address
c906108c
SS
3307 Return one of two addresses (relative to the VMA or to the LMA),
3308 depending on whether the section is mapped or not. */
3309
c5aa993b 3310CORE_ADDR
fba45db2 3311symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3312{
3313 if (overlay_debugging)
3314 {
3315 /* If the symbol has no section, just return its regular address. */
3316 if (section == 0)
3317 return address;
3318 /* If the symbol's section is not an overlay, just return its address */
3319 if (!section_is_overlay (section))
3320 return address;
3321 /* If the symbol's section is mapped, just return its address */
3322 if (section_is_mapped (section))
3323 return address;
3324 /*
3325 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3326 * then return its LOADED address rather than its vma address!!
3327 */
3328 return overlay_unmapped_address (address, section);
3329 }
3330 return address;
3331}
3332
5417f6dc 3333/* Function: find_pc_overlay (PC)
c906108c
SS
3334 Return the best-match overlay section for PC:
3335 If PC matches a mapped overlay section's VMA, return that section.
3336 Else if PC matches an unmapped section's VMA, return that section.
3337 Else if PC matches an unmapped section's LMA, return that section. */
3338
3339asection *
fba45db2 3340find_pc_overlay (CORE_ADDR pc)
c906108c 3341{
c5aa993b 3342 struct objfile *objfile;
c906108c
SS
3343 struct obj_section *osect, *best_match = NULL;
3344
3345 if (overlay_debugging)
3346 ALL_OBJSECTIONS (objfile, osect)
3347 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3348 {
3349 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3350 {
3351 if (overlay_is_mapped (osect))
3352 return osect->the_bfd_section;
3353 else
3354 best_match = osect;
3355 }
3356 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3357 best_match = osect;
3358 }
c906108c
SS
3359 return best_match ? best_match->the_bfd_section : NULL;
3360}
3361
3362/* Function: find_pc_mapped_section (PC)
5417f6dc 3363 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3364 currently marked as MAPPED, return that section. Else return NULL. */
3365
3366asection *
fba45db2 3367find_pc_mapped_section (CORE_ADDR pc)
c906108c 3368{
c5aa993b 3369 struct objfile *objfile;
c906108c
SS
3370 struct obj_section *osect;
3371
3372 if (overlay_debugging)
3373 ALL_OBJSECTIONS (objfile, osect)
3374 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3375 overlay_is_mapped (osect))
c5aa993b 3376 return osect->the_bfd_section;
c906108c
SS
3377
3378 return NULL;
3379}
3380
3381/* Function: list_overlays_command
3382 Print a list of mapped sections and their PC ranges */
3383
3384void
fba45db2 3385list_overlays_command (char *args, int from_tty)
c906108c 3386{
c5aa993b
JM
3387 int nmapped = 0;
3388 struct objfile *objfile;
c906108c
SS
3389 struct obj_section *osect;
3390
3391 if (overlay_debugging)
3392 ALL_OBJSECTIONS (objfile, osect)
3393 if (overlay_is_mapped (osect))
c5aa993b
JM
3394 {
3395 const char *name;
3396 bfd_vma lma, vma;
3397 int size;
3398
3399 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3400 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3401 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3402 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3403
3404 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3405 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3406 puts_filtered (" - ");
66bf4b3a 3407 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3408 printf_filtered (", mapped at ");
66bf4b3a 3409 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3410 puts_filtered (" - ");
66bf4b3a 3411 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3412 puts_filtered ("\n");
3413
3414 nmapped++;
3415 }
c906108c 3416 if (nmapped == 0)
a3f17187 3417 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3418}
3419
3420/* Function: map_overlay_command
3421 Mark the named section as mapped (ie. residing at its VMA address). */
3422
3423void
fba45db2 3424map_overlay_command (char *args, int from_tty)
c906108c 3425{
c5aa993b
JM
3426 struct objfile *objfile, *objfile2;
3427 struct obj_section *sec, *sec2;
3428 asection *bfdsec;
c906108c
SS
3429
3430 if (!overlay_debugging)
8a3fe4f8 3431 error (_("\
515ad16c 3432Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3433the 'overlay manual' command."));
c906108c
SS
3434
3435 if (args == 0 || *args == 0)
8a3fe4f8 3436 error (_("Argument required: name of an overlay section"));
c906108c
SS
3437
3438 /* First, find a section matching the user supplied argument */
3439 ALL_OBJSECTIONS (objfile, sec)
3440 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3441 {
3442 /* Now, check to see if the section is an overlay. */
3443 bfdsec = sec->the_bfd_section;
3444 if (!section_is_overlay (bfdsec))
3445 continue; /* not an overlay section */
3446
3447 /* Mark the overlay as "mapped" */
3448 sec->ovly_mapped = 1;
3449
3450 /* Next, make a pass and unmap any sections that are
3451 overlapped by this new section: */
3452 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3453 if (sec2->ovly_mapped
3454 && sec != sec2
3455 && sec->the_bfd_section != sec2->the_bfd_section
3456 && sections_overlap (sec->the_bfd_section,
3457 sec2->the_bfd_section))
c5aa993b
JM
3458 {
3459 if (info_verbose)
a3f17187 3460 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3461 bfd_section_name (objfile->obfd,
3462 sec2->the_bfd_section));
3463 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3464 }
3465 return;
3466 }
8a3fe4f8 3467 error (_("No overlay section called %s"), args);
c906108c
SS
3468}
3469
3470/* Function: unmap_overlay_command
5417f6dc 3471 Mark the overlay section as unmapped
c906108c
SS
3472 (ie. resident in its LMA address range, rather than the VMA range). */
3473
3474void
fba45db2 3475unmap_overlay_command (char *args, int from_tty)
c906108c 3476{
c5aa993b 3477 struct objfile *objfile;
c906108c
SS
3478 struct obj_section *sec;
3479
3480 if (!overlay_debugging)
8a3fe4f8 3481 error (_("\
515ad16c 3482Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3483the 'overlay manual' command."));
c906108c
SS
3484
3485 if (args == 0 || *args == 0)
8a3fe4f8 3486 error (_("Argument required: name of an overlay section"));
c906108c
SS
3487
3488 /* First, find a section matching the user supplied argument */
3489 ALL_OBJSECTIONS (objfile, sec)
3490 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3491 {
3492 if (!sec->ovly_mapped)
8a3fe4f8 3493 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3494 sec->ovly_mapped = 0;
3495 return;
3496 }
8a3fe4f8 3497 error (_("No overlay section called %s"), args);
c906108c
SS
3498}
3499
3500/* Function: overlay_auto_command
3501 A utility command to turn on overlay debugging.
3502 Possibly this should be done via a set/show command. */
3503
3504static void
fba45db2 3505overlay_auto_command (char *args, int from_tty)
c906108c 3506{
d874f1e2 3507 overlay_debugging = ovly_auto;
1900040c 3508 enable_overlay_breakpoints ();
c906108c 3509 if (info_verbose)
a3f17187 3510 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3511}
3512
3513/* Function: overlay_manual_command
3514 A utility command to turn on overlay debugging.
3515 Possibly this should be done via a set/show command. */
3516
3517static void
fba45db2 3518overlay_manual_command (char *args, int from_tty)
c906108c 3519{
d874f1e2 3520 overlay_debugging = ovly_on;
1900040c 3521 disable_overlay_breakpoints ();
c906108c 3522 if (info_verbose)
a3f17187 3523 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3524}
3525
3526/* Function: overlay_off_command
3527 A utility command to turn on overlay debugging.
3528 Possibly this should be done via a set/show command. */
3529
3530static void
fba45db2 3531overlay_off_command (char *args, int from_tty)
c906108c 3532{
d874f1e2 3533 overlay_debugging = ovly_off;
1900040c 3534 disable_overlay_breakpoints ();
c906108c 3535 if (info_verbose)
a3f17187 3536 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3537}
3538
3539static void
fba45db2 3540overlay_load_command (char *args, int from_tty)
c906108c 3541{
1c772458
UW
3542 if (gdbarch_overlay_update_p (current_gdbarch))
3543 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3544 else
8a3fe4f8 3545 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3546}
3547
3548/* Function: overlay_command
3549 A place-holder for a mis-typed command */
3550
3551/* Command list chain containing all defined "overlay" subcommands. */
3552struct cmd_list_element *overlaylist;
3553
3554static void
fba45db2 3555overlay_command (char *args, int from_tty)
c906108c 3556{
c5aa993b 3557 printf_unfiltered
c906108c
SS
3558 ("\"overlay\" must be followed by the name of an overlay command.\n");
3559 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3560}
3561
3562
3563/* Target Overlays for the "Simplest" overlay manager:
3564
5417f6dc
RM
3565 This is GDB's default target overlay layer. It works with the
3566 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3567 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3568 so targets that use a different runtime overlay manager can
c906108c
SS
3569 substitute their own overlay_update function and take over the
3570 function pointer.
3571
3572 The overlay_update function pokes around in the target's data structures
3573 to see what overlays are mapped, and updates GDB's overlay mapping with
3574 this information.
3575
3576 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3577 unsigned _novlys; /# number of overlay sections #/
3578 unsigned _ovly_table[_novlys][4] = {
3579 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3580 {..., ..., ..., ...},
3581 }
3582 unsigned _novly_regions; /# number of overlay regions #/
3583 unsigned _ovly_region_table[_novly_regions][3] = {
3584 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3585 {..., ..., ...},
3586 }
c906108c
SS
3587 These functions will attempt to update GDB's mappedness state in the
3588 symbol section table, based on the target's mappedness state.
3589
3590 To do this, we keep a cached copy of the target's _ovly_table, and
3591 attempt to detect when the cached copy is invalidated. The main
3592 entry point is "simple_overlay_update(SECT), which looks up SECT in
3593 the cached table and re-reads only the entry for that section from
3594 the target (whenever possible).
3595 */
3596
3597/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3598static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3599#if 0
c5aa993b 3600static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3601#endif
c5aa993b 3602static unsigned cache_novlys = 0;
c906108c 3603#if 0
c5aa993b 3604static unsigned cache_novly_regions = 0;
c906108c
SS
3605#endif
3606static CORE_ADDR cache_ovly_table_base = 0;
3607#if 0
3608static CORE_ADDR cache_ovly_region_table_base = 0;
3609#endif
c5aa993b
JM
3610enum ovly_index
3611 {
3612 VMA, SIZE, LMA, MAPPED
3613 };
9a76efb6
UW
3614#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3615 / TARGET_CHAR_BIT)
c906108c
SS
3616
3617/* Throw away the cached copy of _ovly_table */
3618static void
fba45db2 3619simple_free_overlay_table (void)
c906108c
SS
3620{
3621 if (cache_ovly_table)
b8c9b27d 3622 xfree (cache_ovly_table);
c5aa993b 3623 cache_novlys = 0;
c906108c
SS
3624 cache_ovly_table = NULL;
3625 cache_ovly_table_base = 0;
3626}
3627
3628#if 0
3629/* Throw away the cached copy of _ovly_region_table */
3630static void
fba45db2 3631simple_free_overlay_region_table (void)
c906108c
SS
3632{
3633 if (cache_ovly_region_table)
b8c9b27d 3634 xfree (cache_ovly_region_table);
c5aa993b 3635 cache_novly_regions = 0;
c906108c
SS
3636 cache_ovly_region_table = NULL;
3637 cache_ovly_region_table_base = 0;
3638}
3639#endif
3640
3641/* Read an array of ints from the target into a local buffer.
3642 Convert to host order. int LEN is number of ints */
3643static void
fba45db2 3644read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3645{
34c0bd93 3646 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3647 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3648 int i;
c906108c
SS
3649
3650 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3651 for (i = 0; i < len; i++)
c5aa993b 3652 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3653 TARGET_LONG_BYTES);
3654}
3655
3656/* Find and grab a copy of the target _ovly_table
3657 (and _novlys, which is needed for the table's size) */
c5aa993b 3658static int
fba45db2 3659simple_read_overlay_table (void)
c906108c 3660{
0d43edd1 3661 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3662
3663 simple_free_overlay_table ();
9b27852e 3664 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3665 if (! novlys_msym)
c906108c 3666 {
8a3fe4f8 3667 error (_("Error reading inferior's overlay table: "
0d43edd1 3668 "couldn't find `_novlys' variable\n"
8a3fe4f8 3669 "in inferior. Use `overlay manual' mode."));
0d43edd1 3670 return 0;
c906108c 3671 }
0d43edd1 3672
9b27852e 3673 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3674 if (! ovly_table_msym)
3675 {
8a3fe4f8 3676 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3677 "`_ovly_table' array\n"
8a3fe4f8 3678 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3679 return 0;
3680 }
3681
3682 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3683 cache_ovly_table
3684 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3685 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3686 read_target_long_array (cache_ovly_table_base,
777ea8f1 3687 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3688 cache_novlys * 4);
3689
c5aa993b 3690 return 1; /* SUCCESS */
c906108c
SS
3691}
3692
3693#if 0
3694/* Find and grab a copy of the target _ovly_region_table
3695 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3696static int
fba45db2 3697simple_read_overlay_region_table (void)
c906108c
SS
3698{
3699 struct minimal_symbol *msym;
3700
3701 simple_free_overlay_region_table ();
9b27852e 3702 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3703 if (msym != NULL)
3704 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3705 else
3706 return 0; /* failure */
c906108c
SS
3707 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3708 if (cache_ovly_region_table != NULL)
3709 {
9b27852e 3710 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3711 if (msym != NULL)
3712 {
3713 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3714 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3715 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3716 cache_novly_regions * 3);
3717 }
c5aa993b
JM
3718 else
3719 return 0; /* failure */
c906108c 3720 }
c5aa993b
JM
3721 else
3722 return 0; /* failure */
3723 return 1; /* SUCCESS */
c906108c
SS
3724}
3725#endif
3726
5417f6dc 3727/* Function: simple_overlay_update_1
c906108c
SS
3728 A helper function for simple_overlay_update. Assuming a cached copy
3729 of _ovly_table exists, look through it to find an entry whose vma,
3730 lma and size match those of OSECT. Re-read the entry and make sure
3731 it still matches OSECT (else the table may no longer be valid).
3732 Set OSECT's mapped state to match the entry. Return: 1 for
3733 success, 0 for failure. */
3734
3735static int
fba45db2 3736simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3737{
3738 int i, size;
fbd35540
MS
3739 bfd *obfd = osect->objfile->obfd;
3740 asection *bsect = osect->the_bfd_section;
c906108c 3741
2c500098 3742 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3743 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3744 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3745 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3746 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3747 {
3748 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3749 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3750 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3751 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3752 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3753 {
3754 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3755 return 1;
3756 }
fbd35540 3757 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3758 return 0;
3759 }
3760 return 0;
3761}
3762
3763/* Function: simple_overlay_update
5417f6dc
RM
3764 If OSECT is NULL, then update all sections' mapped state
3765 (after re-reading the entire target _ovly_table).
3766 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3767 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3768 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3769 re-read the entire cache, and go ahead and update all sections. */
3770
1c772458 3771void
fba45db2 3772simple_overlay_update (struct obj_section *osect)
c906108c 3773{
c5aa993b 3774 struct objfile *objfile;
c906108c
SS
3775
3776 /* Were we given an osect to look up? NULL means do all of them. */
3777 if (osect)
3778 /* Have we got a cached copy of the target's overlay table? */
3779 if (cache_ovly_table != NULL)
3780 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3781 if (cache_ovly_table_base ==
9b27852e 3782 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3783 /* Then go ahead and try to look up this single section in the cache */
3784 if (simple_overlay_update_1 (osect))
3785 /* Found it! We're done. */
3786 return;
3787
3788 /* Cached table no good: need to read the entire table anew.
3789 Or else we want all the sections, in which case it's actually
3790 more efficient to read the whole table in one block anyway. */
3791
0d43edd1
JB
3792 if (! simple_read_overlay_table ())
3793 return;
3794
c906108c
SS
3795 /* Now may as well update all sections, even if only one was requested. */
3796 ALL_OBJSECTIONS (objfile, osect)
3797 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3798 {
3799 int i, size;
fbd35540
MS
3800 bfd *obfd = osect->objfile->obfd;
3801 asection *bsect = osect->the_bfd_section;
c5aa993b 3802
2c500098 3803 size = bfd_get_section_size (bsect);
c5aa993b 3804 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3805 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3806 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3807 /* && cache_ovly_table[i][SIZE] == size */ )
3808 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3809 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3810 break; /* finished with inner for loop: break out */
3811 }
3812 }
c906108c
SS
3813}
3814
086df311
DJ
3815/* Set the output sections and output offsets for section SECTP in
3816 ABFD. The relocation code in BFD will read these offsets, so we
3817 need to be sure they're initialized. We map each section to itself,
3818 with no offset; this means that SECTP->vma will be honored. */
3819
3820static void
3821symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3822{
3823 sectp->output_section = sectp;
3824 sectp->output_offset = 0;
3825}
3826
3827/* Relocate the contents of a debug section SECTP in ABFD. The
3828 contents are stored in BUF if it is non-NULL, or returned in a
3829 malloc'd buffer otherwise.
3830
3831 For some platforms and debug info formats, shared libraries contain
3832 relocations against the debug sections (particularly for DWARF-2;
3833 one affected platform is PowerPC GNU/Linux, although it depends on
3834 the version of the linker in use). Also, ELF object files naturally
3835 have unresolved relocations for their debug sections. We need to apply
3836 the relocations in order to get the locations of symbols correct. */
3837
3838bfd_byte *
3839symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3840{
3841 /* We're only interested in debugging sections with relocation
3842 information. */
3843 if ((sectp->flags & SEC_RELOC) == 0)
3844 return NULL;
3845 if ((sectp->flags & SEC_DEBUGGING) == 0)
3846 return NULL;
3847
3848 /* We will handle section offsets properly elsewhere, so relocate as if
3849 all sections begin at 0. */
3850 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3851
97606a13 3852 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3853}
c906108c 3854
31d99776
DJ
3855struct symfile_segment_data *
3856get_symfile_segment_data (bfd *abfd)
3857{
3858 struct sym_fns *sf = find_sym_fns (abfd);
3859
3860 if (sf == NULL)
3861 return NULL;
3862
3863 return sf->sym_segments (abfd);
3864}
3865
3866void
3867free_symfile_segment_data (struct symfile_segment_data *data)
3868{
3869 xfree (data->segment_bases);
3870 xfree (data->segment_sizes);
3871 xfree (data->segment_info);
3872 xfree (data);
3873}
3874
3875int
3876symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3877 struct section_offsets *offsets,
3878 int num_segment_bases,
3879 const CORE_ADDR *segment_bases)
3880{
3881 int i;
3882 asection *sect;
3883
3884 /* If we do not have segment mappings for the object file, we
3885 can not relocate it by segments. */
3886 gdb_assert (data != NULL);
3887 gdb_assert (data->num_segments > 0);
3888
3889 /* If more offsets are provided than we have segments, make sure the
3890 excess offsets are all the same as the last segment's offset.
3891 This allows "Text=X;Data=X" for files which have only a single
3892 segment. */
3893 if (num_segment_bases > data->num_segments)
3894 for (i = data->num_segments; i < num_segment_bases; i++)
3895 if (segment_bases[i] != segment_bases[data->num_segments - 1])
3896 return 0;
3897
3898 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3899 {
3900 CORE_ADDR vma;
3901 int which = data->segment_info[i];
3902
3903 if (which > num_segment_bases)
3904 offsets->offsets[i] = segment_bases[num_segment_bases - 1];
3905 else if (which > 0)
3906 offsets->offsets[i] = segment_bases[which - 1];
3907 else
3908 continue;
3909
3910 offsets->offsets[i] -= data->segment_bases[which - 1];
3911 }
3912
3913 return 1;
3914}
3915
3916static void
3917symfile_find_segment_sections (struct objfile *objfile)
3918{
3919 bfd *abfd = objfile->obfd;
3920 int i;
3921 asection *sect;
3922 struct symfile_segment_data *data;
3923
3924 data = get_symfile_segment_data (objfile->obfd);
3925 if (data == NULL)
3926 return;
3927
3928 if (data->num_segments != 1 && data->num_segments != 2)
3929 {
3930 free_symfile_segment_data (data);
3931 return;
3932 }
3933
3934 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3935 {
3936 CORE_ADDR vma;
3937 int which = data->segment_info[i];
3938
3939 if (which == 1)
3940 {
3941 if (objfile->sect_index_text == -1)
3942 objfile->sect_index_text = sect->index;
3943
3944 if (objfile->sect_index_rodata == -1)
3945 objfile->sect_index_rodata = sect->index;
3946 }
3947 else if (which == 2)
3948 {
3949 if (objfile->sect_index_data == -1)
3950 objfile->sect_index_data = sect->index;
3951
3952 if (objfile->sect_index_bss == -1)
3953 objfile->sect_index_bss = sect->index;
3954 }
3955 }
3956
3957 free_symfile_segment_data (data);
3958}
3959
c906108c 3960void
fba45db2 3961_initialize_symfile (void)
c906108c
SS
3962{
3963 struct cmd_list_element *c;
c5aa993b 3964
1a966eab
AC
3965 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3966Load symbol table from executable file FILE.\n\
c906108c 3967The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3968to execute."), &cmdlist);
5ba2abeb 3969 set_cmd_completer (c, filename_completer);
c906108c 3970
1a966eab 3971 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3972Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3973Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3974ADDR is the starting address of the file's text.\n\
db162d44
EZ
3975The optional arguments are section-name section-address pairs and\n\
3976should be specified if the data and bss segments are not contiguous\n\
1a966eab 3977with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3978 &cmdlist);
5ba2abeb 3979 set_cmd_completer (c, filename_completer);
c906108c
SS
3980
3981 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3982 add_shared_symbol_files_command, _("\
3983Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3984 &cmdlist);
c906108c
SS
3985 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3986 &cmdlist);
3987
1a966eab
AC
3988 c = add_cmd ("load", class_files, load_command, _("\
3989Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3990for access from GDB.\n\
3991A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3992 set_cmd_completer (c, filename_completer);
c906108c 3993
5bf193a2
AC
3994 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3995 &symbol_reloading, _("\
3996Set dynamic symbol table reloading multiple times in one run."), _("\
3997Show dynamic symbol table reloading multiple times in one run."), NULL,
3998 NULL,
920d2a44 3999 show_symbol_reloading,
5bf193a2 4000 &setlist, &showlist);
c906108c 4001
c5aa993b 4002 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4003 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4004 "overlay ", 0, &cmdlist);
4005
4006 add_com_alias ("ovly", "overlay", class_alias, 1);
4007 add_com_alias ("ov", "overlay", class_alias, 1);
4008
c5aa993b 4009 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4010 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4011
c5aa993b 4012 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4013 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4014
c5aa993b 4015 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4016 _("List mappings of overlay sections."), &overlaylist);
c906108c 4017
c5aa993b 4018 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4019 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4020 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4021 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4022 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4023 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4024 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4025 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4026
4027 /* Filename extension to source language lookup table: */
4028 init_filename_language_table ();
26c41df3
AC
4029 add_setshow_string_noescape_cmd ("extension-language", class_files,
4030 &ext_args, _("\
4031Set mapping between filename extension and source language."), _("\
4032Show mapping between filename extension and source language."), _("\
4033Usage: set extension-language .foo bar"),
4034 set_ext_lang_command,
920d2a44 4035 show_ext_args,
26c41df3 4036 &setlist, &showlist);
c906108c 4037
c5aa993b 4038 add_info ("extensions", info_ext_lang_command,
1bedd215 4039 _("All filename extensions associated with a source language."));
917317f4 4040
525226b5
AC
4041 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4042 &debug_file_directory, _("\
4043Set the directory where separate debug symbols are searched for."), _("\
4044Show the directory where separate debug symbols are searched for."), _("\
4045Separate debug symbols are first searched for in the same\n\
4046directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4047and lastly at the path of the directory of the binary with\n\
4048the global debug-file directory prepended."),
4049 NULL,
920d2a44 4050 show_debug_file_directory,
525226b5 4051 &setlist, &showlist);
c906108c 4052}
This page took 0.959917 seconds and 4 git commands to generate.