* dwarf2read.c (try_open_dwo_file): Use gdb_bfd_ref and
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 150
b7209cb4
FF
151/* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
c906108c 158 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 159 report all the functions that are actually present. */
c906108c
SS
160
161int auto_solib_add = 1;
c906108c 162\f
c5aa993b 163
c906108c
SS
164/* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 166 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 167 may be part of a larger string and we are only saving a substring. */
c906108c
SS
168
169char *
63ca651f 170obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 171{
52f0bd74 172 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
c378eb4e 175 inline memcpy? */
c906108c 176 {
aa1ee363
AC
177 const char *p1 = ptr;
178 char *p2 = p;
63ca651f 179 const char *end = ptr + size;
433759f7 180
c906108c
SS
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186}
187
3e43a32a
MS
188/* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
c906108c
SS
192
193char *
48cb83fd 194obconcat (struct obstack *obstackp, ...)
c906108c 195{
48cb83fd
JK
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
c906108c
SS
212}
213
0d14a781 214/* True if we are reading a symbol table. */
c906108c
SS
215
216int currently_reading_symtab = 0;
217
218static void
fba45db2 219decrement_reading_symtab (void *dummy)
c906108c
SS
220{
221 currently_reading_symtab--;
222}
223
ccefe4c4
TT
224/* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226struct cleanup *
227increment_reading_symtab (void)
c906108c 228{
ccefe4c4
TT
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
231}
232
5417f6dc
RM
233/* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
c906108c
SS
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242void
4efb68b1 243find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 244{
c5aa993b 245 asection **lowest = (asection **) obj;
c906108c 246
eb73e134 247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257}
258
a39a16c4
MM
259/* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261struct section_addr_info *
262alloc_section_addr_info (size_t num_sections)
263{
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274}
62557bbc
KB
275
276/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 277 an existing section table. */
62557bbc
KB
278
279extern struct section_addr_info *
0542c86d
PA
280build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
62557bbc
KB
282{
283 struct section_addr_info *sap;
0542c86d 284 const struct target_section *stp;
62557bbc
KB
285 int oidx;
286
a39a16c4 287 sap = alloc_section_addr_info (end - start);
62557bbc
KB
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
5417f6dc 291 if (bfd_get_section_flags (stp->bfd,
fbd35540 292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 293 && oidx < end - start)
62557bbc
KB
294 {
295 sap->other[oidx].addr = stp->addr;
5417f6dc 296 sap->other[oidx].name
fbd35540 297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304}
305
82ccf5a5 306/* Create a section_addr_info from section offsets in ABFD. */
089b4803 307
82ccf5a5
JK
308static struct section_addr_info *
309build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
310{
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
82ccf5a5
JK
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 318 {
82ccf5a5
JK
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
089b4803
TG
324 return sap;
325}
326
82ccf5a5
JK
327/* Create a section_addr_info from section offsets in OBJFILE. */
328
329struct section_addr_info *
330build_section_addr_info_from_objfile (const struct objfile *objfile)
331{
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346}
62557bbc 347
c378eb4e 348/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
349
350extern void
351free_section_addr_info (struct section_addr_info *sap)
352{
353 int idx;
354
a39a16c4 355 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 356 if (sap->other[idx].name)
b8c9b27d
KB
357 xfree (sap->other[idx].name);
358 xfree (sap);
62557bbc
KB
359}
360
361
e8289572
JB
362/* Initialize OBJFILE's sect_index_* members. */
363static void
364init_objfile_sect_indices (struct objfile *objfile)
c906108c 365{
e8289572 366 asection *sect;
c906108c 367 int i;
5417f6dc 368
b8fbeb18 369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 382 if (sect)
b8fbeb18
EZ
383 objfile->sect_index_rodata = sect->index;
384
bbcd32ad
FF
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
31d99776
DJ
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
bbcd32ad
FF
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
b8fbeb18 420}
c906108c 421
c1bd25fd
DJ
422/* The arguments to place_section. */
423
424struct place_section_arg
425{
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428};
429
430/* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
2c0b251b 433static void
c1bd25fd
DJ
434place_section (bfd *abfd, asection *sect, void *obj)
435{
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
3bd72c6f 439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 440
2711e456
DJ
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
450 start_addr = (arg->lowest + align - 1) & -align;
451
c1bd25fd
DJ
452 do {
453 asection *cur_sec;
c1bd25fd 454
c1bd25fd
DJ
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
c1bd25fd
DJ
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
2711e456
DJ
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
3bd72c6f 482 break;
c1bd25fd
DJ
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 492}
e8289572 493
75242ef4
JK
494/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
e8289572
JB
497
498void
75242ef4
JK
499relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
e8289572
JB
502{
503 int i;
504
75242ef4 505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 506
c378eb4e 507 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 509 {
75242ef4 510 struct other_sections *osp;
e8289572 511
75242ef4 512 osp = &addrs->other[i];
5488dafb 513 if (osp->sectindex == -1)
e8289572
JB
514 continue;
515
c378eb4e 516 /* Record all sections in offsets. */
e8289572 517 /* The section_offsets in the objfile are here filled in using
c378eb4e 518 the BFD index. */
75242ef4
JK
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521}
522
1276c759
JK
523/* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529static const char *
530addr_section_name (const char *s)
531{
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538}
539
82ccf5a5
JK
540/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543static int
544addrs_section_compar (const void *ap, const void *bp)
545{
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 548 int retval;
82ccf5a5 549
1276c759 550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
551 if (retval)
552 return retval;
553
5488dafb 554 return a->sectindex - b->sectindex;
82ccf5a5
JK
555}
556
557/* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560static struct other_sections **
561addrs_section_sort (struct section_addr_info *addrs)
562{
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575}
576
75242ef4 577/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
580
581void
582addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583{
584 asection *lower_sect;
75242ef4
JK
585 CORE_ADDR lower_offset;
586 int i;
82ccf5a5
JK
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
591
592 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
e8289572 601 }
75242ef4
JK
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
82ccf5a5
JK
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
c378eb4e
MS
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
1276c759 632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
633
634 while (*abfd_addrs_sorted
1276c759
JK
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
82ccf5a5
JK
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
1276c759
JK
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
82ccf5a5
JK
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
75242ef4
JK
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
82ccf5a5 669 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
670
671 if (sect)
75242ef4 672 {
c378eb4e 673 /* This is the index used by BFD. */
82ccf5a5 674 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
675
676 if (addrs->other[i].addr != 0)
75242ef4 677 {
82ccf5a5 678 addrs->other[i].addr -= sect->addr;
75242ef4 679 lower_offset = addrs->other[i].addr;
75242ef4
JK
680 }
681 else
672d9c23 682 addrs->other[i].addr = lower_offset;
75242ef4
JK
683 }
684 else
672d9c23 685 {
1276c759
JK
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
b0fcb67f
JK
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
4d9743af
JK
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
1276c759
JK
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 704 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
672d9c23 716 addrs->other[i].addr = 0;
5488dafb 717 addrs->other[i].sectindex = -1;
672d9c23 718 }
75242ef4 719 }
82ccf5a5
JK
720
721 do_cleanups (my_cleanup);
75242ef4
JK
722}
723
724/* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730void
731default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733{
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
e8289572 740
c1bd25fd
DJ
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
2711e456
DJ
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
2711e456
DJ
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
30510692 803 offsets[cur_sec->index]);
2711e456
DJ
804 offsets[cur_sec->index] = 0;
805 }
806 }
c1bd25fd
DJ
807 }
808
e8289572 809 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 810 .rodata sections. */
e8289572
JB
811 init_objfile_sect_indices (objfile);
812}
813
814
31d99776
DJ
815/* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821struct symfile_segment_data *
822default_symfile_segments (bfd *abfd)
823{
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877}
878
c906108c
SS
879/* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
96baa820
JM
882 OBJFILE is where the symbols are to be read from.
883
7e8580c1
JB
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
96baa820 904
7eedccfa
PP
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
c906108c
SS
908
909void
7e8580c1
JB
910syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
7eedccfa 914 int add_flags)
c906108c 915{
a39a16c4 916 struct section_addr_info *local_addr = NULL;
c906108c 917 struct cleanup *old_chain;
7eedccfa 918 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 919
7e8580c1 920 gdb_assert (! (addrs && offsets));
2acceee2 921
c906108c 922 init_entry_point_info (objfile);
31d99776 923 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 924
75245b24 925 if (objfile->sf == NULL)
c378eb4e 926 return; /* No symbols. */
75245b24 927
c906108c
SS
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
74b7792f 930 old_chain = make_cleanup_free_objfile (objfile);
c906108c 931
a39a16c4
MM
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
c378eb4e 934 no load address was specified. */
a39a16c4
MM
935 if (! addrs && ! offsets)
936 {
5417f6dc 937 local_addr
a39a16c4
MM
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
c5aa993b 945 if (mainline)
c906108c
SS
946 {
947 /* We will modify the main symbol table, make sure that all its users
c5aa993b 948 will be cleaned up if an error occurs during symbol reading. */
74b7792f 949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
adb7f338 956 gdb_assert (symfile_objfile == NULL);
c906108c
SS
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
c906108c 963
c5aa993b 964 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
53a5351d 969 and assume that <addr> is where that got loaded.
c906108c 970
53a5351d
JM
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
0d15807d 973 if (addrs && addrs->other[0].name)
75242ef4 974 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
c378eb4e 978 initial symbol reading for this file. */
c906108c 979
c5aa993b 980 (*objfile->sf->sym_init) (objfile);
7eedccfa 981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 982
7e8580c1
JB
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
8b92e4d5 993 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
c906108c 998
f4352531 999 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1000
b11896a5
TT
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
1010/* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1013
c906108c 1014void
7eedccfa 1015new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1016{
c906108c 1017 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1018 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1019 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1020 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
c1e56572 1025 clear_symtab_users (add_flags);
c906108c 1026 }
7eedccfa 1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1028 {
69de3c6a 1029 breakpoint_re_set ();
c906108c
SS
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1034}
1035
1036/* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
5417f6dc
RM
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1041
7eedccfa
PP
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1048
63524580
JK
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
c906108c 1052 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1053 Upon failure, jumps back to command level (never returns). */
7eedccfa 1054
7904e09f 1055static struct objfile *
7eedccfa
PP
1056symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
7904e09f
JB
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
63524580 1061 int flags, struct objfile *parent)
c906108c
SS
1062{
1063 struct objfile *objfile;
a39a16c4 1064 struct cleanup *my_cleanups;
5417f6dc 1065 const char *name = bfd_get_filename (abfd);
7eedccfa 1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1067 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1068 const int should_print = ((from_tty || info_verbose)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1071
9291a0cd 1072 if (readnow_symbol_files)
b11896a5
TT
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
9291a0cd 1077
5417f6dc 1078 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1079
5417f6dc
RM
1080 /* Give user a chance to burp if we'd be
1081 interactively wiping out any existing symbols. */
c906108c
SS
1082
1083 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1084 && mainline
c906108c 1085 && from_tty
9e2f0ad4 1086 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1087 error (_("Not confirmed."));
c906108c 1088
0838fb57 1089 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1090 discard_cleanups (my_cleanups);
c906108c 1091
63524580
JK
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
78a4a9b9
AC
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
c378eb4e 1097 performed, or need to read an unmapped symbol table. */
b11896a5 1098 if (should_print)
c906108c 1099 {
769d7dc4
AC
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1102 else
c906108c 1103 {
55333a84
DE
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
c906108c 1107 }
c906108c 1108 }
78a4a9b9 1109 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1110 add_flags);
c906108c
SS
1111
1112 /* We now have at least a partial symbol table. Check to see if the
1113 user requested that all symbols be read on initial access via either
1114 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1115 all partial symbol tables for this objfile if so. */
c906108c 1116
9291a0cd 1117 if ((flags & OBJF_READNOW))
c906108c 1118 {
b11896a5 1119 if (should_print)
c906108c 1120 {
a3f17187 1121 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125
ccefe4c4
TT
1126 if (objfile->sf)
1127 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1128 }
1129
b11896a5 1130 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1131 {
1132 wrap_here ("");
55333a84 1133 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1134 wrap_here ("");
1135 }
1136
b11896a5 1137 if (should_print)
c906108c 1138 {
769d7dc4
AC
1139 if (deprecated_post_add_symbol_hook)
1140 deprecated_post_add_symbol_hook ();
c906108c 1141 else
55333a84 1142 printf_unfiltered (_("done.\n"));
c906108c
SS
1143 }
1144
481d0f41
JB
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
109f874e 1150 if (objfile->sf == NULL)
8caee43b
PP
1151 {
1152 observer_notify_new_objfile (objfile);
c378eb4e 1153 return objfile; /* No symbols. */
8caee43b 1154 }
109f874e 1155
7eedccfa 1156 new_symfile_objfile (objfile, add_flags);
c906108c 1157
06d3b283 1158 observer_notify_new_objfile (objfile);
c906108c 1159
ce7d4522 1160 bfd_cache_close_all ();
c906108c
SS
1161 return (objfile);
1162}
1163
9cce227f
TG
1164/* Add BFD as a separate debug file for OBJFILE. */
1165
1166void
1167symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1168{
15d123c9 1169 struct objfile *new_objfile;
089b4803
TG
1170 struct section_addr_info *sap;
1171 struct cleanup *my_cleanup;
1172
1173 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1174 because sections of BFD may not match sections of OBJFILE and because
1175 vma may have been modified by tools such as prelink. */
1176 sap = build_section_addr_info_from_objfile (objfile);
1177 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1178
15d123c9 1179 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1180 (bfd, symfile_flags,
089b4803 1181 sap, NULL, 0,
9cce227f 1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1183 | OBJF_USERLOADED),
1184 objfile);
089b4803
TG
1185
1186 do_cleanups (my_cleanup);
9cce227f 1187}
7904e09f 1188
eb4556d7
JB
1189/* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191
1192 See symbol_file_add_with_addrs_or_offsets's comments for
1193 details. */
1194struct objfile *
7eedccfa 1195symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1196 struct section_addr_info *addrs,
63524580 1197 int flags, struct objfile *parent)
eb4556d7 1198{
7eedccfa 1199 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1200 flags, parent);
eb4556d7
JB
1201}
1202
1203
7904e09f
JB
1204/* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1206 for details. */
1207struct objfile *
7eedccfa
PP
1208symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1209 int flags)
7904e09f 1210{
7eedccfa 1211 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1212 flags, NULL);
7904e09f
JB
1213}
1214
1215
d7db6da9
FN
1216/* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
5417f6dc 1223
1adeb98a
FN
1224void
1225symbol_file_add_main (char *args, int from_tty)
1226{
d7db6da9
FN
1227 symbol_file_add_main_1 (args, from_tty, 0);
1228}
1229
1230static void
1231symbol_file_add_main_1 (char *args, int from_tty, int flags)
1232{
7dcd53a0
TT
1233 const int add_flags = (current_inferior ()->symfile_flags
1234 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1235
7eedccfa 1236 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1237
d7db6da9
FN
1238 /* Getting new symbols may change our opinion about
1239 what is frameless. */
1240 reinit_frame_cache ();
1241
7dcd53a0
TT
1242 if ((flags & SYMFILE_NO_READ) == 0)
1243 set_initial_language ();
1adeb98a
FN
1244}
1245
1246void
1247symbol_file_clear (int from_tty)
1248{
1249 if ((have_full_symbols () || have_partial_symbols ())
1250 && from_tty
0430b0d6
AS
1251 && (symfile_objfile
1252 ? !query (_("Discard symbol table from `%s'? "),
1253 symfile_objfile->name)
1254 : !query (_("Discard symbol table? "))))
8a3fe4f8 1255 error (_("Not confirmed."));
1adeb98a 1256
0133421a
JK
1257 /* solib descriptors may have handles to objfiles. Wipe them before their
1258 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1259 no_shared_libraries (NULL, from_tty);
1260
0133421a
JK
1261 free_all_objfiles ();
1262
adb7f338 1263 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1264 if (from_tty)
1265 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1266}
1267
5b5d99cf
JB
1268static char *
1269get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270{
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
5417f6dc 1276
5b5d99cf
JB
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1283
5b5d99cf
JB
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
c378eb4e 1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1293
5b5d99cf
JB
1294 *crc32_out = crc32;
1295 return contents;
1296}
1297
904578ed
JK
1298/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1299 return 1. Otherwise print a warning and return 0. ABFD seek position is
1300 not preserved. */
1301
1302static int
1303get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1304{
1305 unsigned long file_crc = 0;
1306
1307 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1308 {
1309 warning (_("Problem reading \"%s\" for CRC: %s"),
1310 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1311 return 0;
1312 }
1313
1314 for (;;)
1315 {
1316 gdb_byte buffer[8 * 1024];
1317 bfd_size_type count;
1318
1319 count = bfd_bread (buffer, sizeof (buffer), abfd);
1320 if (count == (bfd_size_type) -1)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326 if (count == 0)
1327 break;
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 }
1330
1331 *file_crc_return = file_crc;
1332 return 1;
1333}
1334
5b5d99cf 1335static int
287ccc17 1336separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
f1838a98 1341 bfd *abfd;
32a0e547 1342 struct stat parent_stat, abfd_stat;
904578ed 1343 int verified_as_different;
32a0e547
JK
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1349 the separate debug infos with the same basename can exist. */
32a0e547 1350
0ba1096a 1351 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1352 return 0;
5b5d99cf 1353
874f5765 1354 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1355
1356 if (!abfd)
5b5d99cf
JB
1357 return 0;
1358
0ba1096a 1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Do not indicate a duplicate library in that
1364 case. While there is no guarantee that a system that provides
1365 meaningful inode numbers will never set st_ino to zero, this is
1366 merely an optimization, so we do not need to worry about false
1367 negatives. */
1368
1369 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1370 && abfd_stat.st_ino != 0
1371 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1372 {
904578ed
JK
1373 if (abfd_stat.st_dev == parent_stat.st_dev
1374 && abfd_stat.st_ino == parent_stat.st_ino)
1375 {
cbb099e8 1376 gdb_bfd_unref (abfd);
904578ed
JK
1377 return 0;
1378 }
1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
904578ed 1384 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1385
cbb099e8 1386 gdb_bfd_unref (abfd);
5b5d99cf 1387
904578ed
JK
1388 if (!file_crc_p)
1389 return 0;
1390
287ccc17
JK
1391 if (crc != file_crc)
1392 {
904578ed
JK
1393 /* If one (or both) the files are accessed for example the via "remote:"
1394 gdbserver way it does not support the bfd_stat operation. Verify
1395 whether those two files are not the same manually. */
1396
1397 if (!verified_as_different && !parent_objfile->crc32_p)
1398 {
1399 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1400 &parent_objfile->crc32);
1401 if (!parent_objfile->crc32_p)
1402 return 0;
1403 }
1404
0e8aefe7 1405 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1406 warning (_("the debug information found in \"%s\""
1407 " does not match \"%s\" (CRC mismatch).\n"),
1408 name, parent_objfile->name);
1409
287ccc17
JK
1410 return 0;
1411 }
1412
1413 return 1;
5b5d99cf
JB
1414}
1415
aa28a74e 1416char *debug_file_directory = NULL;
920d2a44
AC
1417static void
1418show_debug_file_directory (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420{
3e43a32a
MS
1421 fprintf_filtered (file,
1422 _("The directory where separate debug "
1423 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1424 value);
1425}
5b5d99cf
JB
1426
1427#if ! defined (DEBUG_SUBDIRECTORY)
1428#define DEBUG_SUBDIRECTORY ".debug"
1429#endif
1430
1db33378
PP
1431/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1432 where the original file resides (may not be the same as
1433 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1434 looking for. Returns the name of the debuginfo, of NULL. */
1435
1436static char *
1437find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
9cce227f 1441{
1db33378
PP
1442 char *debugdir;
1443 char *debugfile;
9cce227f 1444 int i;
e4ab2fad
JK
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
5b5d99cf 1448
1db33378 1449 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1450 i = strlen (dir);
1db33378
PP
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1ffa32ee 1453
25522fae
JK
1454 debugfile = xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1db33378 1458 + strlen (debuglink)
25522fae 1459 + 1);
5b5d99cf
JB
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1db33378 1463 strcat (debugfile, debuglink);
5b5d99cf 1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1466 return debugfile;
5417f6dc 1467
5b5d99cf
JB
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1db33378 1472 strcat (debugfile, debuglink);
5b5d99cf 1473
32a0e547 1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1475 return debugfile;
5417f6dc 1476
24ddea62 1477 /* Then try in the global debugfile directories.
f888f159 1478
24ddea62
JK
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
5417f6dc 1481
e4ab2fad
JK
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1484
e4ab2fad
JK
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
aa28a74e 1488 strcat (debugfile, "/");
24ddea62 1489 strcat (debugfile, dir);
1db33378 1490 strcat (debugfile, debuglink);
aa28a74e 1491
32a0e547 1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1493 return debugfile;
24ddea62
JK
1494
1495 /* If the file is in the sysroot, try using its base path in the
1496 global debugfile directory. */
1db33378
PP
1497 if (canon_dir != NULL
1498 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1499 strlen (gdb_sysroot)) == 0
1db33378 1500 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1501 {
e4ab2fad 1502 strcpy (debugfile, debugdir);
1db33378 1503 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1504 strcat (debugfile, "/");
1db33378 1505 strcat (debugfile, debuglink);
24ddea62 1506
32a0e547 1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1508 return debugfile;
24ddea62 1509 }
aa28a74e 1510 }
f888f159 1511
e4ab2fad 1512 do_cleanups (back_to);
25522fae 1513 xfree (debugfile);
1db33378
PP
1514 return NULL;
1515}
1516
1517/* Modify PATH to contain only "directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521static void
1522terminate_after_last_dir_separator (char *path)
1523{
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534}
1535
1536/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539char *
1540find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541{
1542 char *debuglink;
1543 char *dir, *canon_dir;
1544 char *debugfile;
1545 unsigned long crc32;
1546 struct cleanup *cleanups;
1547
1548 debuglink = get_debug_link_info (objfile, &crc32);
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return NULL;
1555 }
1556
71bdabee 1557 cleanups = make_cleanup (xfree, debuglink);
1db33378 1558 dir = xstrdup (objfile->name);
71bdabee 1559 make_cleanup (xfree, dir);
1db33378
PP
1560 terminate_after_last_dir_separator (dir);
1561 canon_dir = lrealpath (dir);
1562
1563 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1564 crc32, objfile);
1565 xfree (canon_dir);
1566
1567 if (debugfile == NULL)
1568 {
1569#ifdef HAVE_LSTAT
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1576 {
1577 char *symlink_dir;
1578
1579 symlink_dir = lrealpath (objfile->name);
1580 if (symlink_dir != NULL)
1581 {
1582 make_cleanup (xfree, symlink_dir);
1583 terminate_after_last_dir_separator (symlink_dir);
1584 if (strcmp (dir, symlink_dir) != 0)
1585 {
1586 /* Different directory, so try using it. */
1587 debugfile = find_separate_debug_file (symlink_dir,
1588 symlink_dir,
1589 debuglink,
1590 crc32,
1591 objfile);
1592 }
1593 }
1594 }
1595#endif /* HAVE_LSTAT */
1596 }
aa28a74e 1597
1db33378 1598 do_cleanups (cleanups);
25522fae 1599 return debugfile;
5b5d99cf
JB
1600}
1601
1602
c906108c
SS
1603/* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
c906108c
SS
1615 conventions (because it is confusing and inconvenient). */
1616
1617void
fba45db2 1618symbol_file_command (char *args, int from_tty)
c906108c 1619{
c906108c
SS
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1adeb98a 1624 symbol_file_clear (from_tty);
c906108c
SS
1625 }
1626 else
1627 {
d1a41061 1628 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1629 int flags = OBJF_USERLOADED;
1630 struct cleanup *cleanups;
1631 char *name = NULL;
1632
7a292a7a 1633 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1634 while (*argv != NULL)
1635 {
78a4a9b9
AC
1636 if (strcmp (*argv, "-readnow") == 0)
1637 flags |= OBJF_READNOW;
1638 else if (**argv == '-')
8a3fe4f8 1639 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1640 else
1641 {
cb2f3a29 1642 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1643 name = *argv;
78a4a9b9 1644 }
cb2f3a29 1645
c906108c
SS
1646 argv++;
1647 }
1648
1649 if (name == NULL)
cb2f3a29
MK
1650 error (_("no symbol file name was specified"));
1651
c906108c
SS
1652 do_cleanups (cleanups);
1653 }
1654}
1655
1656/* Set the initial language.
1657
cb2f3a29
MK
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
c906108c 1666
8b60591b 1667void
fba45db2 1668set_initial_language (void)
c906108c 1669{
c5aa993b 1670 enum language lang = language_unknown;
c906108c 1671
01f8c46d
JK
1672 if (language_of_main != language_unknown)
1673 lang = language_of_main;
1674 else
1675 {
1676 const char *filename;
f888f159 1677
01f8c46d
JK
1678 filename = find_main_filename ();
1679 if (filename != NULL)
1680 lang = deduce_language_from_filename (filename);
1681 }
cb2f3a29 1682
ccefe4c4
TT
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
c906108c 1687 }
ccefe4c4
TT
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1691}
1692
874f5765 1693/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1694 open it normally. Returns a new reference to the BFD. On error,
1695 returns NULL with the BFD error set. */
874f5765
TG
1696
1697bfd *
1698bfd_open_maybe_remote (const char *name)
1699{
1700 if (remote_filename_p (name))
cbb099e8 1701 return gdb_bfd_ref (remote_bfd_open (name, gnutarget));
874f5765 1702 else
cbb099e8 1703 return gdb_bfd_ref (bfd_openr (name, gnutarget));
874f5765
TG
1704}
1705
1706
cb2f3a29
MK
1707/* Open the file specified by NAME and hand it off to BFD for
1708 preliminary analysis. Return a newly initialized bfd *, which
1709 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1710 absolute). In case of trouble, error() is called. */
c906108c
SS
1711
1712bfd *
fba45db2 1713symfile_bfd_open (char *name)
c906108c
SS
1714{
1715 bfd *sym_bfd;
1716 int desc;
1717 char *absolute_name;
1718
f1838a98
UW
1719 if (remote_filename_p (name))
1720 {
1721 name = xstrdup (name);
cbb099e8 1722 sym_bfd = gdb_bfd_ref (remote_bfd_open (name, gnutarget));
f1838a98
UW
1723 if (!sym_bfd)
1724 {
1725 make_cleanup (xfree, name);
1726 error (_("`%s': can't open to read symbols: %s."), name,
1727 bfd_errmsg (bfd_get_error ()));
1728 }
1729
1730 if (!bfd_check_format (sym_bfd, bfd_object))
1731 {
cbb099e8 1732 gdb_bfd_unref (sym_bfd);
f1838a98
UW
1733 make_cleanup (xfree, name);
1734 error (_("`%s': can't read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736 }
1737
1738 return sym_bfd;
1739 }
1740
cb2f3a29 1741 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1742
1743 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1744 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1745 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1746#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1747 if (desc < 0)
1748 {
1749 char *exename = alloca (strlen (name) + 5);
433759f7 1750
c906108c 1751 strcat (strcpy (exename, name), ".exe");
014d698b 1752 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1753 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1754 }
1755#endif
1756 if (desc < 0)
1757 {
b8c9b27d 1758 make_cleanup (xfree, name);
c906108c
SS
1759 perror_with_name (name);
1760 }
cb2f3a29
MK
1761
1762 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
c378eb4e 1763 bfd. It'll be freed in free_objfile(). */
cb2f3a29
MK
1764 xfree (name);
1765 name = absolute_name;
c906108c 1766
cbb099e8 1767 sym_bfd = gdb_bfd_ref (bfd_fopen (name, gnutarget, FOPEN_RB, desc));
c906108c
SS
1768 if (!sym_bfd)
1769 {
b8c9b27d 1770 make_cleanup (xfree, name);
f1838a98 1771 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1772 bfd_errmsg (bfd_get_error ()));
1773 }
549c1eea 1774 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1775
1776 if (!bfd_check_format (sym_bfd, bfd_object))
1777 {
cbb099e8 1778 make_cleanup_bfd_close (sym_bfd);
b8c9b27d 1779 make_cleanup (xfree, name);
f1838a98 1780 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1781 bfd_errmsg (bfd_get_error ()));
1782 }
cb2f3a29
MK
1783
1784 return sym_bfd;
c906108c
SS
1785}
1786
cb2f3a29
MK
1787/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1788 the section was not found. */
1789
0e931cf0
JB
1790int
1791get_section_index (struct objfile *objfile, char *section_name)
1792{
1793 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1794
0e931cf0
JB
1795 if (sect)
1796 return sect->index;
1797 else
1798 return -1;
1799}
1800
cb2f3a29
MK
1801/* Link SF into the global symtab_fns list. Called on startup by the
1802 _initialize routine in each object file format reader, to register
b021a221 1803 information about each format the reader is prepared to handle. */
c906108c
SS
1804
1805void
00b5771c 1806add_symtab_fns (const struct sym_fns *sf)
c906108c 1807{
00b5771c 1808 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1809}
1810
cb2f3a29
MK
1811/* Initialize OBJFILE to read symbols from its associated BFD. It
1812 either returns or calls error(). The result is an initialized
1813 struct sym_fns in the objfile structure, that contains cached
1814 information about the symbol file. */
c906108c 1815
00b5771c 1816static const struct sym_fns *
31d99776 1817find_sym_fns (bfd *abfd)
c906108c 1818{
00b5771c 1819 const struct sym_fns *sf;
31d99776 1820 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1821 int i;
c906108c 1822
75245b24
MS
1823 if (our_flavour == bfd_target_srec_flavour
1824 || our_flavour == bfd_target_ihex_flavour
1825 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1826 return NULL; /* No symbols. */
75245b24 1827
00b5771c 1828 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1829 if (our_flavour == sf->sym_flavour)
1830 return sf;
cb2f3a29 1831
8a3fe4f8 1832 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1833 bfd_get_target (abfd));
c906108c
SS
1834}
1835\f
cb2f3a29 1836
c906108c
SS
1837/* This function runs the load command of our current target. */
1838
1839static void
fba45db2 1840load_command (char *arg, int from_tty)
c906108c 1841{
e5cc9f32
JB
1842 dont_repeat ();
1843
4487aabf
PA
1844 /* The user might be reloading because the binary has changed. Take
1845 this opportunity to check. */
1846 reopen_exec_file ();
1847 reread_symbols ();
1848
c906108c 1849 if (arg == NULL)
1986bccd
AS
1850 {
1851 char *parg;
1852 int count = 0;
1853
1854 parg = arg = get_exec_file (1);
1855
1856 /* Count how many \ " ' tab space there are in the name. */
1857 while ((parg = strpbrk (parg, "\\\"'\t ")))
1858 {
1859 parg++;
1860 count++;
1861 }
1862
1863 if (count)
1864 {
1865 /* We need to quote this string so buildargv can pull it apart. */
1866 char *temp = xmalloc (strlen (arg) + count + 1 );
1867 char *ptemp = temp;
1868 char *prev;
1869
1870 make_cleanup (xfree, temp);
1871
1872 prev = parg = arg;
1873 while ((parg = strpbrk (parg, "\\\"'\t ")))
1874 {
1875 strncpy (ptemp, prev, parg - prev);
1876 ptemp += parg - prev;
1877 prev = parg++;
1878 *ptemp++ = '\\';
1879 }
1880 strcpy (ptemp, prev);
1881
1882 arg = temp;
1883 }
1884 }
1885
c906108c 1886 target_load (arg, from_tty);
2889e661
JB
1887
1888 /* After re-loading the executable, we don't really know which
1889 overlays are mapped any more. */
1890 overlay_cache_invalid = 1;
c906108c
SS
1891}
1892
1893/* This version of "load" should be usable for any target. Currently
1894 it is just used for remote targets, not inftarg.c or core files,
1895 on the theory that only in that case is it useful.
1896
1897 Avoiding xmodem and the like seems like a win (a) because we don't have
1898 to worry about finding it, and (b) On VMS, fork() is very slow and so
1899 we don't want to run a subprocess. On the other hand, I'm not sure how
1900 performance compares. */
917317f4 1901
917317f4
JM
1902static int validate_download = 0;
1903
e4f9b4d5
MS
1904/* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906static void
1907add_section_size_callback (bfd *abfd, asection *asec, void *data)
1908{
1909 bfd_size_type *sum = data;
1910
2c500098 1911 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1912}
1913
1914/* Opaque data for load_section_callback. */
1915struct load_section_data {
1916 unsigned long load_offset;
a76d924d
DJ
1917 struct load_progress_data *progress_data;
1918 VEC(memory_write_request_s) *requests;
1919};
1920
1921/* Opaque data for load_progress. */
1922struct load_progress_data {
1923 /* Cumulative data. */
e4f9b4d5
MS
1924 unsigned long write_count;
1925 unsigned long data_count;
1926 bfd_size_type total_size;
a76d924d
DJ
1927};
1928
1929/* Opaque data for load_progress for a single section. */
1930struct load_progress_section_data {
1931 struct load_progress_data *cumulative;
cf7a04e8 1932
a76d924d 1933 /* Per-section data. */
cf7a04e8
DJ
1934 const char *section_name;
1935 ULONGEST section_sent;
1936 ULONGEST section_size;
1937 CORE_ADDR lma;
1938 gdb_byte *buffer;
e4f9b4d5
MS
1939};
1940
a76d924d 1941/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1942
1943static void
1944load_progress (ULONGEST bytes, void *untyped_arg)
1945{
a76d924d
DJ
1946 struct load_progress_section_data *args = untyped_arg;
1947 struct load_progress_data *totals;
1948
1949 if (args == NULL)
1950 /* Writing padding data. No easy way to get at the cumulative
1951 stats, so just ignore this. */
1952 return;
1953
1954 totals = args->cumulative;
1955
1956 if (bytes == 0 && args->section_sent == 0)
1957 {
1958 /* The write is just starting. Let the user know we've started
1959 this section. */
79a45e25 1960 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1961 args->section_name, hex_string (args->section_size),
1962 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1963 return;
1964 }
cf7a04e8
DJ
1965
1966 if (validate_download)
1967 {
1968 /* Broken memories and broken monitors manifest themselves here
1969 when bring new computers to life. This doubles already slow
1970 downloads. */
1971 /* NOTE: cagney/1999-10-18: A more efficient implementation
1972 might add a verify_memory() method to the target vector and
1973 then use that. remote.c could implement that method using
1974 the ``qCRC'' packet. */
1975 gdb_byte *check = xmalloc (bytes);
1976 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1977
1978 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1979 error (_("Download verify read failed at %s"),
1980 paddress (target_gdbarch, args->lma));
cf7a04e8 1981 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1982 error (_("Download verify compare failed at %s"),
1983 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1984 do_cleanups (verify_cleanups);
1985 }
a76d924d 1986 totals->data_count += bytes;
cf7a04e8
DJ
1987 args->lma += bytes;
1988 args->buffer += bytes;
a76d924d 1989 totals->write_count += 1;
cf7a04e8
DJ
1990 args->section_sent += bytes;
1991 if (quit_flag
1992 || (deprecated_ui_load_progress_hook != NULL
1993 && deprecated_ui_load_progress_hook (args->section_name,
1994 args->section_sent)))
1995 error (_("Canceled the download"));
1996
1997 if (deprecated_show_load_progress != NULL)
1998 deprecated_show_load_progress (args->section_name,
1999 args->section_sent,
2000 args->section_size,
a76d924d
DJ
2001 totals->data_count,
2002 totals->total_size);
cf7a04e8
DJ
2003}
2004
e4f9b4d5
MS
2005/* Callback service function for generic_load (bfd_map_over_sections). */
2006
2007static void
2008load_section_callback (bfd *abfd, asection *asec, void *data)
2009{
a76d924d 2010 struct memory_write_request *new_request;
e4f9b4d5 2011 struct load_section_data *args = data;
a76d924d 2012 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2013 bfd_size_type size = bfd_get_section_size (asec);
2014 gdb_byte *buffer;
cf7a04e8 2015 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2016
cf7a04e8
DJ
2017 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2018 return;
e4f9b4d5 2019
cf7a04e8
DJ
2020 if (size == 0)
2021 return;
e4f9b4d5 2022
a76d924d
DJ
2023 new_request = VEC_safe_push (memory_write_request_s,
2024 args->requests, NULL);
2025 memset (new_request, 0, sizeof (struct memory_write_request));
2026 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2027 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2028 new_request->end = new_request->begin + size; /* FIXME Should size
2029 be in instead? */
a76d924d
DJ
2030 new_request->data = xmalloc (size);
2031 new_request->baton = section_data;
cf7a04e8 2032
a76d924d 2033 buffer = new_request->data;
cf7a04e8 2034
a76d924d
DJ
2035 section_data->cumulative = args->progress_data;
2036 section_data->section_name = sect_name;
2037 section_data->section_size = size;
2038 section_data->lma = new_request->begin;
2039 section_data->buffer = buffer;
cf7a04e8
DJ
2040
2041 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2042}
2043
2044/* Clean up an entire memory request vector, including load
2045 data and progress records. */
cf7a04e8 2046
a76d924d
DJ
2047static void
2048clear_memory_write_data (void *arg)
2049{
2050 VEC(memory_write_request_s) **vec_p = arg;
2051 VEC(memory_write_request_s) *vec = *vec_p;
2052 int i;
2053 struct memory_write_request *mr;
cf7a04e8 2054
a76d924d
DJ
2055 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2056 {
2057 xfree (mr->data);
2058 xfree (mr->baton);
2059 }
2060 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2061}
2062
c906108c 2063void
917317f4 2064generic_load (char *args, int from_tty)
c906108c 2065{
c906108c 2066 bfd *loadfile_bfd;
2b71414d 2067 struct timeval start_time, end_time;
917317f4 2068 char *filename;
1986bccd 2069 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2070 struct load_section_data cbdata;
a76d924d 2071 struct load_progress_data total_progress;
79a45e25 2072 struct ui_out *uiout = current_uiout;
a76d924d 2073
e4f9b4d5 2074 CORE_ADDR entry;
1986bccd 2075 char **argv;
e4f9b4d5 2076
a76d924d
DJ
2077 memset (&cbdata, 0, sizeof (cbdata));
2078 memset (&total_progress, 0, sizeof (total_progress));
2079 cbdata.progress_data = &total_progress;
2080
2081 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2082
d1a41061
PP
2083 if (args == NULL)
2084 error_no_arg (_("file to load"));
1986bccd 2085
d1a41061 2086 argv = gdb_buildargv (args);
1986bccd
AS
2087 make_cleanup_freeargv (argv);
2088
2089 filename = tilde_expand (argv[0]);
2090 make_cleanup (xfree, filename);
2091
2092 if (argv[1] != NULL)
917317f4
JM
2093 {
2094 char *endptr;
ba5f2f8a 2095
1986bccd
AS
2096 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2097
2098 /* If the last word was not a valid number then
2099 treat it as a file name with spaces in. */
2100 if (argv[1] == endptr)
2101 error (_("Invalid download offset:%s."), argv[1]);
2102
2103 if (argv[2] != NULL)
2104 error (_("Too many parameters."));
917317f4 2105 }
c906108c 2106
c378eb4e 2107 /* Open the file for loading. */
cbb099e8 2108 loadfile_bfd = gdb_bfd_ref (bfd_openr (filename, gnutarget));
c906108c
SS
2109 if (loadfile_bfd == NULL)
2110 {
2111 perror_with_name (filename);
2112 return;
2113 }
917317f4 2114
5c65bbb6 2115 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2116
c5aa993b 2117 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2118 {
8a3fe4f8 2119 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2120 bfd_errmsg (bfd_get_error ()));
2121 }
c5aa993b 2122
5417f6dc 2123 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2124 (void *) &total_progress.total_size);
2125
2126 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2127
2b71414d 2128 gettimeofday (&start_time, NULL);
c906108c 2129
a76d924d
DJ
2130 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2131 load_progress) != 0)
2132 error (_("Load failed"));
c906108c 2133
2b71414d 2134 gettimeofday (&end_time, NULL);
ba5f2f8a 2135
e4f9b4d5 2136 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2137 ui_out_text (uiout, "Start address ");
5af949e3 2138 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2139 ui_out_text (uiout, ", load size ");
a76d924d 2140 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2141 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2142 /* We were doing this in remote-mips.c, I suspect it is right
2143 for other targets too. */
fb14de7b 2144 regcache_write_pc (get_current_regcache (), entry);
c906108c 2145
38963c97
DJ
2146 /* Reset breakpoints, now that we have changed the load image. For
2147 instance, breakpoints may have been set (or reset, by
2148 post_create_inferior) while connected to the target but before we
2149 loaded the program. In that case, the prologue analyzer could
2150 have read instructions from the target to find the right
2151 breakpoint locations. Loading has changed the contents of that
2152 memory. */
2153
2154 breakpoint_re_set ();
2155
7ca9f392
AC
2156 /* FIXME: are we supposed to call symbol_file_add or not? According
2157 to a comment from remote-mips.c (where a call to symbol_file_add
2158 was commented out), making the call confuses GDB if more than one
2159 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2160 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2161
a76d924d
DJ
2162 print_transfer_performance (gdb_stdout, total_progress.data_count,
2163 total_progress.write_count,
2164 &start_time, &end_time);
c906108c
SS
2165
2166 do_cleanups (old_cleanups);
2167}
2168
c378eb4e 2169/* Report how fast the transfer went. */
c906108c 2170
917317f4
JM
2171/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2172 replaced by print_transfer_performance (with a very different
c378eb4e 2173 function signature). */
917317f4 2174
c906108c 2175void
fba45db2
KB
2176report_transfer_performance (unsigned long data_count, time_t start_time,
2177 time_t end_time)
c906108c 2178{
2b71414d
DJ
2179 struct timeval start, end;
2180
2181 start.tv_sec = start_time;
2182 start.tv_usec = 0;
2183 end.tv_sec = end_time;
2184 end.tv_usec = 0;
2185
2186 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2187}
2188
2189void
d9fcf2fb 2190print_transfer_performance (struct ui_file *stream,
917317f4
JM
2191 unsigned long data_count,
2192 unsigned long write_count,
2b71414d
DJ
2193 const struct timeval *start_time,
2194 const struct timeval *end_time)
917317f4 2195{
9f43d28c 2196 ULONGEST time_count;
79a45e25 2197 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2198
2199 /* Compute the elapsed time in milliseconds, as a tradeoff between
2200 accuracy and overflow. */
2201 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2202 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2203
8b93c638
JM
2204 ui_out_text (uiout, "Transfer rate: ");
2205 if (time_count > 0)
2206 {
9f43d28c
DJ
2207 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2208
2209 if (ui_out_is_mi_like_p (uiout))
2210 {
2211 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2212 ui_out_text (uiout, " bits/sec");
2213 }
2214 else if (rate < 1024)
2215 {
2216 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2217 ui_out_text (uiout, " bytes/sec");
2218 }
2219 else
2220 {
2221 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2222 ui_out_text (uiout, " KB/sec");
2223 }
8b93c638
JM
2224 }
2225 else
2226 {
ba5f2f8a 2227 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2228 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2229 }
2230 if (write_count > 0)
2231 {
2232 ui_out_text (uiout, ", ");
ba5f2f8a 2233 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2234 ui_out_text (uiout, " bytes/write");
2235 }
2236 ui_out_text (uiout, ".\n");
c906108c
SS
2237}
2238
2239/* This function allows the addition of incrementally linked object files.
2240 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2241/* Note: ezannoni 2000-04-13 This function/command used to have a
2242 special case syntax for the rombug target (Rombug is the boot
2243 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2244 rombug case, the user doesn't need to supply a text address,
2245 instead a call to target_link() (in target.c) would supply the
c378eb4e 2246 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2247
c906108c 2248static void
fba45db2 2249add_symbol_file_command (char *args, int from_tty)
c906108c 2250{
5af949e3 2251 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2252 char *filename = NULL;
2df3850c 2253 int flags = OBJF_USERLOADED;
c906108c 2254 char *arg;
db162d44 2255 int section_index = 0;
2acceee2
JM
2256 int argcnt = 0;
2257 int sec_num = 0;
2258 int i;
db162d44
EZ
2259 int expecting_sec_name = 0;
2260 int expecting_sec_addr = 0;
5b96932b 2261 char **argv;
db162d44 2262
a39a16c4 2263 struct sect_opt
2acceee2 2264 {
2acceee2
JM
2265 char *name;
2266 char *value;
a39a16c4 2267 };
db162d44 2268
a39a16c4
MM
2269 struct section_addr_info *section_addrs;
2270 struct sect_opt *sect_opts = NULL;
2271 size_t num_sect_opts = 0;
3017564a 2272 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2273
a39a16c4 2274 num_sect_opts = 16;
5417f6dc 2275 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2276 * sizeof (struct sect_opt));
2277
c906108c
SS
2278 dont_repeat ();
2279
2280 if (args == NULL)
8a3fe4f8 2281 error (_("add-symbol-file takes a file name and an address"));
c906108c 2282
d1a41061 2283 argv = gdb_buildargv (args);
5b96932b 2284 make_cleanup_freeargv (argv);
db162d44 2285
5b96932b
AS
2286 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2287 {
c378eb4e 2288 /* Process the argument. */
db162d44 2289 if (argcnt == 0)
c906108c 2290 {
c378eb4e 2291 /* The first argument is the file name. */
db162d44 2292 filename = tilde_expand (arg);
3017564a 2293 make_cleanup (xfree, filename);
c906108c 2294 }
db162d44 2295 else
7a78ae4e
ND
2296 if (argcnt == 1)
2297 {
2298 /* The second argument is always the text address at which
c378eb4e 2299 to load the program. */
7a78ae4e
ND
2300 sect_opts[section_index].name = ".text";
2301 sect_opts[section_index].value = arg;
f414f22f 2302 if (++section_index >= num_sect_opts)
a39a16c4
MM
2303 {
2304 num_sect_opts *= 2;
5417f6dc 2305 sect_opts = ((struct sect_opt *)
a39a16c4 2306 xrealloc (sect_opts,
5417f6dc 2307 num_sect_opts
a39a16c4
MM
2308 * sizeof (struct sect_opt)));
2309 }
7a78ae4e
ND
2310 }
2311 else
2312 {
2313 /* It's an option (starting with '-') or it's an argument
c378eb4e 2314 to an option. */
7a78ae4e
ND
2315
2316 if (*arg == '-')
2317 {
78a4a9b9
AC
2318 if (strcmp (arg, "-readnow") == 0)
2319 flags |= OBJF_READNOW;
2320 else if (strcmp (arg, "-s") == 0)
2321 {
2322 expecting_sec_name = 1;
2323 expecting_sec_addr = 1;
2324 }
7a78ae4e
ND
2325 }
2326 else
2327 {
2328 if (expecting_sec_name)
db162d44 2329 {
7a78ae4e
ND
2330 sect_opts[section_index].name = arg;
2331 expecting_sec_name = 0;
db162d44
EZ
2332 }
2333 else
7a78ae4e
ND
2334 if (expecting_sec_addr)
2335 {
2336 sect_opts[section_index].value = arg;
2337 expecting_sec_addr = 0;
f414f22f 2338 if (++section_index >= num_sect_opts)
a39a16c4
MM
2339 {
2340 num_sect_opts *= 2;
5417f6dc 2341 sect_opts = ((struct sect_opt *)
a39a16c4 2342 xrealloc (sect_opts,
5417f6dc 2343 num_sect_opts
a39a16c4
MM
2344 * sizeof (struct sect_opt)));
2345 }
7a78ae4e
ND
2346 }
2347 else
3e43a32a 2348 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2349 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2350 }
2351 }
c906108c 2352 }
c906108c 2353
927890d0
JB
2354 /* This command takes at least two arguments. The first one is a
2355 filename, and the second is the address where this file has been
2356 loaded. Abort now if this address hasn't been provided by the
2357 user. */
2358 if (section_index < 1)
2359 error (_("The address where %s has been loaded is missing"), filename);
2360
c378eb4e 2361 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2362 a sect_addr_info structure to be passed around to other
2363 functions. We have to split this up into separate print
bb599908 2364 statements because hex_string returns a local static
c378eb4e 2365 string. */
5417f6dc 2366
a3f17187 2367 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2368 section_addrs = alloc_section_addr_info (section_index);
2369 make_cleanup (xfree, section_addrs);
db162d44 2370 for (i = 0; i < section_index; i++)
c906108c 2371 {
db162d44
EZ
2372 CORE_ADDR addr;
2373 char *val = sect_opts[i].value;
2374 char *sec = sect_opts[i].name;
5417f6dc 2375
ae822768 2376 addr = parse_and_eval_address (val);
db162d44 2377
db162d44 2378 /* Here we store the section offsets in the order they were
c378eb4e 2379 entered on the command line. */
a39a16c4
MM
2380 section_addrs->other[sec_num].name = sec;
2381 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2382 printf_unfiltered ("\t%s_addr = %s\n", sec,
2383 paddress (gdbarch, addr));
db162d44
EZ
2384 sec_num++;
2385
5417f6dc 2386 /* The object's sections are initialized when a
db162d44 2387 call is made to build_objfile_section_table (objfile).
5417f6dc 2388 This happens in reread_symbols.
db162d44
EZ
2389 At this point, we don't know what file type this is,
2390 so we can't determine what section names are valid. */
2acceee2 2391 }
db162d44 2392
2acceee2 2393 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2394 error (_("Not confirmed."));
c906108c 2395
7eedccfa
PP
2396 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2397 section_addrs, flags);
c906108c
SS
2398
2399 /* Getting new symbols may change our opinion about what is
2400 frameless. */
2401 reinit_frame_cache ();
db162d44 2402 do_cleanups (my_cleanups);
c906108c
SS
2403}
2404\f
70992597 2405
4ac39b97
JK
2406typedef struct objfile *objfilep;
2407
2408DEF_VEC_P (objfilep);
2409
c906108c
SS
2410/* Re-read symbols if a symbol-file has changed. */
2411void
fba45db2 2412reread_symbols (void)
c906108c
SS
2413{
2414 struct objfile *objfile;
2415 long new_modtime;
c906108c
SS
2416 struct stat new_statbuf;
2417 int res;
4ac39b97
JK
2418 VEC (objfilep) *new_objfiles = NULL;
2419 struct cleanup *all_cleanups;
2420
2421 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2422
2423 /* With the addition of shared libraries, this should be modified,
2424 the load time should be saved in the partial symbol tables, since
2425 different tables may come from different source files. FIXME.
2426 This routine should then walk down each partial symbol table
c378eb4e 2427 and see if the symbol table that it originates from has been changed. */
c906108c 2428
c5aa993b
JM
2429 for (objfile = object_files; objfile; objfile = objfile->next)
2430 {
9cce227f
TG
2431 /* solib-sunos.c creates one objfile with obfd. */
2432 if (objfile->obfd == NULL)
2433 continue;
2434
2435 /* Separate debug objfiles are handled in the main objfile. */
2436 if (objfile->separate_debug_objfile_backlink)
2437 continue;
2438
02aeec7b
JB
2439 /* If this object is from an archive (what you usually create with
2440 `ar', often called a `static library' on most systems, though
2441 a `shared library' on AIX is also an archive), then you should
2442 stat on the archive name, not member name. */
9cce227f
TG
2443 if (objfile->obfd->my_archive)
2444 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2445 else
9cce227f
TG
2446 res = stat (objfile->name, &new_statbuf);
2447 if (res != 0)
2448 {
c378eb4e 2449 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2450 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2451 objfile->name);
2452 continue;
2453 }
2454 new_modtime = new_statbuf.st_mtime;
2455 if (new_modtime != objfile->mtime)
2456 {
2457 struct cleanup *old_cleanups;
2458 struct section_offsets *offsets;
2459 int num_offsets;
2460 char *obfd_filename;
2461
2462 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2463 objfile->name);
2464
2465 /* There are various functions like symbol_file_add,
2466 symfile_bfd_open, syms_from_objfile, etc., which might
2467 appear to do what we want. But they have various other
2468 effects which we *don't* want. So we just do stuff
2469 ourselves. We don't worry about mapped files (for one thing,
2470 any mapped file will be out of date). */
2471
2472 /* If we get an error, blow away this objfile (not sure if
2473 that is the correct response for things like shared
2474 libraries). */
2475 old_cleanups = make_cleanup_free_objfile (objfile);
2476 /* We need to do this whenever any symbols go away. */
2477 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2478
0ba1096a
KT
2479 if (exec_bfd != NULL
2480 && filename_cmp (bfd_get_filename (objfile->obfd),
2481 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2482 {
2483 /* Reload EXEC_BFD without asking anything. */
2484
2485 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2486 }
2487
f6eeced0
JK
2488 /* Keep the calls order approx. the same as in free_objfile. */
2489
2490 /* Free the separate debug objfiles. It will be
2491 automatically recreated by sym_read. */
2492 free_objfile_separate_debug (objfile);
2493
2494 /* Remove any references to this objfile in the global
2495 value lists. */
2496 preserve_values (objfile);
2497
2498 /* Nuke all the state that we will re-read. Much of the following
2499 code which sets things to NULL really is necessary to tell
2500 other parts of GDB that there is nothing currently there.
2501
2502 Try to keep the freeing order compatible with free_objfile. */
2503
2504 if (objfile->sf != NULL)
2505 {
2506 (*objfile->sf->sym_finish) (objfile);
2507 }
2508
2509 clear_objfile_data (objfile);
2510
9cce227f
TG
2511 /* Clean up any state BFD has sitting around. We don't need
2512 to close the descriptor but BFD lacks a way of closing the
2513 BFD without closing the descriptor. */
2514 obfd_filename = bfd_get_filename (objfile->obfd);
cbb099e8 2515 gdb_bfd_unref (objfile->obfd);
874f5765 2516 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2517 if (objfile->obfd == NULL)
2518 error (_("Can't open %s to read symbols."), objfile->name);
9cce227f
TG
2519 /* bfd_openr sets cacheable to true, which is what we want. */
2520 if (!bfd_check_format (objfile->obfd, bfd_object))
2521 error (_("Can't read symbols from %s: %s."), objfile->name,
2522 bfd_errmsg (bfd_get_error ()));
2523
2524 /* Save the offsets, we will nuke them with the rest of the
2525 objfile_obstack. */
2526 num_offsets = objfile->num_sections;
2527 offsets = ((struct section_offsets *)
2528 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2529 memcpy (offsets, objfile->section_offsets,
2530 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2531
9cce227f
TG
2532 /* FIXME: Do we have to free a whole linked list, or is this
2533 enough? */
2534 if (objfile->global_psymbols.list)
2535 xfree (objfile->global_psymbols.list);
2536 memset (&objfile->global_psymbols, 0,
2537 sizeof (objfile->global_psymbols));
2538 if (objfile->static_psymbols.list)
2539 xfree (objfile->static_psymbols.list);
2540 memset (&objfile->static_psymbols, 0,
2541 sizeof (objfile->static_psymbols));
2542
c378eb4e 2543 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2544 psymbol_bcache_free (objfile->psymbol_cache);
2545 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2546 bcache_xfree (objfile->macro_cache);
cbd70537 2547 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2548 bcache_xfree (objfile->filename_cache);
cbd70537 2549 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2550 if (objfile->demangled_names_hash != NULL)
2551 {
2552 htab_delete (objfile->demangled_names_hash);
2553 objfile->demangled_names_hash = NULL;
2554 }
2555 obstack_free (&objfile->objfile_obstack, 0);
2556 objfile->sections = NULL;
2557 objfile->symtabs = NULL;
2558 objfile->psymtabs = NULL;
2559 objfile->psymtabs_addrmap = NULL;
2560 objfile->free_psymtabs = NULL;
34eaf542 2561 objfile->template_symbols = NULL;
9cce227f
TG
2562 objfile->msymbols = NULL;
2563 objfile->deprecated_sym_private = NULL;
2564 objfile->minimal_symbol_count = 0;
2565 memset (&objfile->msymbol_hash, 0,
2566 sizeof (objfile->msymbol_hash));
2567 memset (&objfile->msymbol_demangled_hash, 0,
2568 sizeof (objfile->msymbol_demangled_hash));
2569
9cce227f
TG
2570 /* obstack_init also initializes the obstack so it is
2571 empty. We could use obstack_specify_allocation but
d82ea6a8 2572 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2573 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2574 build_objfile_section_table (objfile);
9cce227f
TG
2575 terminate_minimal_symbol_table (objfile);
2576
2577 /* We use the same section offsets as from last time. I'm not
2578 sure whether that is always correct for shared libraries. */
2579 objfile->section_offsets = (struct section_offsets *)
2580 obstack_alloc (&objfile->objfile_obstack,
2581 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2582 memcpy (objfile->section_offsets, offsets,
2583 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2584 objfile->num_sections = num_offsets;
2585
2586 /* What the hell is sym_new_init for, anyway? The concept of
2587 distinguishing between the main file and additional files
2588 in this way seems rather dubious. */
2589 if (objfile == symfile_objfile)
c906108c 2590 {
9cce227f 2591 (*objfile->sf->sym_new_init) (objfile);
c906108c 2592 }
9cce227f
TG
2593
2594 (*objfile->sf->sym_init) (objfile);
2595 clear_complaints (&symfile_complaints, 1, 1);
2596 /* Do not set flags as this is safe and we don't want to be
2597 verbose. */
2598 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2599 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2600 {
2601 objfile->flags &= ~OBJF_PSYMTABS_READ;
2602 require_partial_symbols (objfile, 0);
2603 }
2604
9cce227f 2605 if (!objfile_has_symbols (objfile))
c906108c 2606 {
9cce227f
TG
2607 wrap_here ("");
2608 printf_unfiltered (_("(no debugging symbols found)\n"));
2609 wrap_here ("");
c5aa993b 2610 }
9cce227f
TG
2611
2612 /* We're done reading the symbol file; finish off complaints. */
2613 clear_complaints (&symfile_complaints, 0, 1);
2614
2615 /* Getting new symbols may change our opinion about what is
2616 frameless. */
2617
2618 reinit_frame_cache ();
2619
2620 /* Discard cleanups as symbol reading was successful. */
2621 discard_cleanups (old_cleanups);
2622
2623 /* If the mtime has changed between the time we set new_modtime
2624 and now, we *want* this to be out of date, so don't call stat
2625 again now. */
2626 objfile->mtime = new_modtime;
9cce227f 2627 init_entry_point_info (objfile);
4ac39b97
JK
2628
2629 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2630 }
2631 }
c906108c 2632
4ac39b97 2633 if (new_objfiles)
ea53e89f 2634 {
4ac39b97
JK
2635 int ix;
2636
ff3536bc
UW
2637 /* Notify objfiles that we've modified objfile sections. */
2638 objfiles_changed ();
2639
c1e56572 2640 clear_symtab_users (0);
4ac39b97
JK
2641
2642 /* clear_objfile_data for each objfile was called before freeing it and
2643 observer_notify_new_objfile (NULL) has been called by
2644 clear_symtab_users above. Notify the new files now. */
2645 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2646 observer_notify_new_objfile (objfile);
2647
ea53e89f
JB
2648 /* At least one objfile has changed, so we can consider that
2649 the executable we're debugging has changed too. */
781b42b0 2650 observer_notify_executable_changed ();
ea53e89f 2651 }
4ac39b97
JK
2652
2653 do_cleanups (all_cleanups);
c906108c 2654}
c906108c
SS
2655\f
2656
c5aa993b
JM
2657
2658typedef struct
2659{
2660 char *ext;
c906108c 2661 enum language lang;
c5aa993b
JM
2662}
2663filename_language;
c906108c 2664
c5aa993b 2665static filename_language *filename_language_table;
c906108c
SS
2666static int fl_table_size, fl_table_next;
2667
2668static void
fba45db2 2669add_filename_language (char *ext, enum language lang)
c906108c
SS
2670{
2671 if (fl_table_next >= fl_table_size)
2672 {
2673 fl_table_size += 10;
5417f6dc 2674 filename_language_table =
25bf3106
PM
2675 xrealloc (filename_language_table,
2676 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2677 }
2678
4fcf66da 2679 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2680 filename_language_table[fl_table_next].lang = lang;
2681 fl_table_next++;
2682}
2683
2684static char *ext_args;
920d2a44
AC
2685static void
2686show_ext_args (struct ui_file *file, int from_tty,
2687 struct cmd_list_element *c, const char *value)
2688{
3e43a32a
MS
2689 fprintf_filtered (file,
2690 _("Mapping between filename extension "
2691 "and source language is \"%s\".\n"),
920d2a44
AC
2692 value);
2693}
c906108c
SS
2694
2695static void
26c41df3 2696set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2697{
2698 int i;
2699 char *cp = ext_args;
2700 enum language lang;
2701
c378eb4e 2702 /* First arg is filename extension, starting with '.' */
c906108c 2703 if (*cp != '.')
8a3fe4f8 2704 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2705
2706 /* Find end of first arg. */
c5aa993b 2707 while (*cp && !isspace (*cp))
c906108c
SS
2708 cp++;
2709
2710 if (*cp == '\0')
3e43a32a
MS
2711 error (_("'%s': two arguments required -- "
2712 "filename extension and language"),
c906108c
SS
2713 ext_args);
2714
c378eb4e 2715 /* Null-terminate first arg. */
c5aa993b 2716 *cp++ = '\0';
c906108c
SS
2717
2718 /* Find beginning of second arg, which should be a source language. */
2719 while (*cp && isspace (*cp))
2720 cp++;
2721
2722 if (*cp == '\0')
3e43a32a
MS
2723 error (_("'%s': two arguments required -- "
2724 "filename extension and language"),
c906108c
SS
2725 ext_args);
2726
2727 /* Lookup the language from among those we know. */
2728 lang = language_enum (cp);
2729
2730 /* Now lookup the filename extension: do we already know it? */
2731 for (i = 0; i < fl_table_next; i++)
2732 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2733 break;
2734
2735 if (i >= fl_table_next)
2736 {
c378eb4e 2737 /* New file extension. */
c906108c
SS
2738 add_filename_language (ext_args, lang);
2739 }
2740 else
2741 {
c378eb4e 2742 /* Redefining a previously known filename extension. */
c906108c
SS
2743
2744 /* if (from_tty) */
2745 /* query ("Really make files of type %s '%s'?", */
2746 /* ext_args, language_str (lang)); */
2747
b8c9b27d 2748 xfree (filename_language_table[i].ext);
4fcf66da 2749 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2750 filename_language_table[i].lang = lang;
2751 }
2752}
2753
2754static void
fba45db2 2755info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2756{
2757 int i;
2758
a3f17187 2759 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2760 printf_filtered ("\n\n");
2761 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2762 printf_filtered ("\t%s\t- %s\n",
2763 filename_language_table[i].ext,
c906108c
SS
2764 language_str (filename_language_table[i].lang));
2765}
2766
2767static void
fba45db2 2768init_filename_language_table (void)
c906108c 2769{
c378eb4e 2770 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2771 {
2772 fl_table_size = 20;
2773 fl_table_next = 0;
c5aa993b 2774 filename_language_table =
c906108c 2775 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2776 add_filename_language (".c", language_c);
6aecb9c2 2777 add_filename_language (".d", language_d);
c5aa993b
JM
2778 add_filename_language (".C", language_cplus);
2779 add_filename_language (".cc", language_cplus);
2780 add_filename_language (".cp", language_cplus);
2781 add_filename_language (".cpp", language_cplus);
2782 add_filename_language (".cxx", language_cplus);
2783 add_filename_language (".c++", language_cplus);
2784 add_filename_language (".java", language_java);
c906108c 2785 add_filename_language (".class", language_java);
da2cf7e0 2786 add_filename_language (".m", language_objc);
c5aa993b
JM
2787 add_filename_language (".f", language_fortran);
2788 add_filename_language (".F", language_fortran);
fd5700c7
JK
2789 add_filename_language (".for", language_fortran);
2790 add_filename_language (".FOR", language_fortran);
2791 add_filename_language (".ftn", language_fortran);
2792 add_filename_language (".FTN", language_fortran);
2793 add_filename_language (".fpp", language_fortran);
2794 add_filename_language (".FPP", language_fortran);
2795 add_filename_language (".f90", language_fortran);
2796 add_filename_language (".F90", language_fortran);
2797 add_filename_language (".f95", language_fortran);
2798 add_filename_language (".F95", language_fortran);
2799 add_filename_language (".f03", language_fortran);
2800 add_filename_language (".F03", language_fortran);
2801 add_filename_language (".f08", language_fortran);
2802 add_filename_language (".F08", language_fortran);
c5aa993b 2803 add_filename_language (".s", language_asm);
aa707ed0 2804 add_filename_language (".sx", language_asm);
c5aa993b 2805 add_filename_language (".S", language_asm);
c6fd39cd
PM
2806 add_filename_language (".pas", language_pascal);
2807 add_filename_language (".p", language_pascal);
2808 add_filename_language (".pp", language_pascal);
963a6417
PH
2809 add_filename_language (".adb", language_ada);
2810 add_filename_language (".ads", language_ada);
2811 add_filename_language (".a", language_ada);
2812 add_filename_language (".ada", language_ada);
dde59185 2813 add_filename_language (".dg", language_ada);
c906108c
SS
2814 }
2815}
2816
2817enum language
dd786858 2818deduce_language_from_filename (const char *filename)
c906108c
SS
2819{
2820 int i;
2821 char *cp;
2822
2823 if (filename != NULL)
2824 if ((cp = strrchr (filename, '.')) != NULL)
2825 for (i = 0; i < fl_table_next; i++)
2826 if (strcmp (cp, filename_language_table[i].ext) == 0)
2827 return filename_language_table[i].lang;
2828
2829 return language_unknown;
2830}
2831\f
2832/* allocate_symtab:
2833
2834 Allocate and partly initialize a new symbol table. Return a pointer
2835 to it. error() if no space.
2836
2837 Caller must set these fields:
c5aa993b
JM
2838 LINETABLE(symtab)
2839 symtab->blockvector
2840 symtab->dirname
2841 symtab->free_code
2842 symtab->free_ptr
c906108c
SS
2843 */
2844
2845struct symtab *
72b9f47f 2846allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2847{
52f0bd74 2848 struct symtab *symtab;
c906108c
SS
2849
2850 symtab = (struct symtab *)
4a146b47 2851 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2852 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2853 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2854 objfile->filename_cache);
c5aa993b
JM
2855 symtab->fullname = NULL;
2856 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2857 symtab->debugformat = "unknown";
c906108c 2858
c378eb4e 2859 /* Hook it to the objfile it comes from. */
c906108c 2860
c5aa993b
JM
2861 symtab->objfile = objfile;
2862 symtab->next = objfile->symtabs;
2863 objfile->symtabs = symtab;
c906108c 2864
45cfd468
DE
2865 if (symtab_create_debug)
2866 {
2867 /* Be a bit clever with debugging messages, and don't print objfile
2868 every time, only when it changes. */
2869 static char *last_objfile_name = NULL;
2870
2871 if (last_objfile_name == NULL
2872 || strcmp (last_objfile_name, objfile->name) != 0)
2873 {
2874 xfree (last_objfile_name);
2875 last_objfile_name = xstrdup (objfile->name);
2876 fprintf_unfiltered (gdb_stdlog,
2877 "Creating one or more symtabs for objfile %s ...\n",
2878 last_objfile_name);
2879 }
2880 fprintf_unfiltered (gdb_stdlog,
2881 "Created symtab 0x%lx for module %s.\n",
2882 (long) symtab, filename);
2883 }
2884
c906108c
SS
2885 return (symtab);
2886}
c906108c 2887\f
c5aa993b 2888
c906108c 2889/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2890 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2891
2892void
c1e56572 2893clear_symtab_users (int add_flags)
c906108c
SS
2894{
2895 /* Someday, we should do better than this, by only blowing away
2896 the things that really need to be blown. */
c0501be5
DJ
2897
2898 /* Clear the "current" symtab first, because it is no longer valid.
2899 breakpoint_re_set may try to access the current symtab. */
2900 clear_current_source_symtab_and_line ();
2901
c906108c 2902 clear_displays ();
c1e56572
JK
2903 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2904 breakpoint_re_set ();
1bfeeb0f 2905 clear_last_displayed_sal ();
c906108c 2906 clear_pc_function_cache ();
06d3b283 2907 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2908
2909 /* Clear globals which might have pointed into a removed objfile.
2910 FIXME: It's not clear which of these are supposed to persist
2911 between expressions and which ought to be reset each time. */
2912 expression_context_block = NULL;
2913 innermost_block = NULL;
8756216b
DP
2914
2915 /* Varobj may refer to old symbols, perform a cleanup. */
2916 varobj_invalidate ();
2917
c906108c
SS
2918}
2919
74b7792f
AC
2920static void
2921clear_symtab_users_cleanup (void *ignore)
2922{
c1e56572 2923 clear_symtab_users (0);
74b7792f 2924}
c906108c 2925\f
c906108c
SS
2926/* OVERLAYS:
2927 The following code implements an abstraction for debugging overlay sections.
2928
2929 The target model is as follows:
2930 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2931 same VMA, each with its own unique LMA (or load address).
c906108c 2932 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2933 sections, one by one, from the load address into the VMA address.
5417f6dc 2934 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2935 sections should be considered to be mapped from the VMA to the LMA.
2936 This information is used for symbol lookup, and memory read/write.
5417f6dc 2937 For instance, if a section has been mapped then its contents
c5aa993b 2938 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2939
2940 Two levels of debugger support for overlays are available. One is
2941 "manual", in which the debugger relies on the user to tell it which
2942 overlays are currently mapped. This level of support is
2943 implemented entirely in the core debugger, and the information about
2944 whether a section is mapped is kept in the objfile->obj_section table.
2945
2946 The second level of support is "automatic", and is only available if
2947 the target-specific code provides functionality to read the target's
2948 overlay mapping table, and translate its contents for the debugger
2949 (by updating the mapped state information in the obj_section tables).
2950
2951 The interface is as follows:
c5aa993b
JM
2952 User commands:
2953 overlay map <name> -- tell gdb to consider this section mapped
2954 overlay unmap <name> -- tell gdb to consider this section unmapped
2955 overlay list -- list the sections that GDB thinks are mapped
2956 overlay read-target -- get the target's state of what's mapped
2957 overlay off/manual/auto -- set overlay debugging state
2958 Functional interface:
2959 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2960 section, return that section.
5417f6dc 2961 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2962 the pc, either in its VMA or its LMA
714835d5 2963 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2964 section_is_overlay(sect): true if section's VMA != LMA
2965 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2966 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2967 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2968 overlay_mapped_address(...): map an address from section's LMA to VMA
2969 overlay_unmapped_address(...): map an address from section's VMA to LMA
2970 symbol_overlayed_address(...): Return a "current" address for symbol:
2971 either in VMA or LMA depending on whether
c378eb4e 2972 the symbol's section is currently mapped. */
c906108c
SS
2973
2974/* Overlay debugging state: */
2975
d874f1e2 2976enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2977int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2978
c906108c 2979/* Function: section_is_overlay (SECTION)
5417f6dc 2980 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2981 SECTION is loaded at an address different from where it will "run". */
2982
2983int
714835d5 2984section_is_overlay (struct obj_section *section)
c906108c 2985{
714835d5
UW
2986 if (overlay_debugging && section)
2987 {
2988 bfd *abfd = section->objfile->obfd;
2989 asection *bfd_section = section->the_bfd_section;
f888f159 2990
714835d5
UW
2991 if (bfd_section_lma (abfd, bfd_section) != 0
2992 && bfd_section_lma (abfd, bfd_section)
2993 != bfd_section_vma (abfd, bfd_section))
2994 return 1;
2995 }
c906108c
SS
2996
2997 return 0;
2998}
2999
3000/* Function: overlay_invalidate_all (void)
3001 Invalidate the mapped state of all overlay sections (mark it as stale). */
3002
3003static void
fba45db2 3004overlay_invalidate_all (void)
c906108c 3005{
c5aa993b 3006 struct objfile *objfile;
c906108c
SS
3007 struct obj_section *sect;
3008
3009 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3010 if (section_is_overlay (sect))
3011 sect->ovly_mapped = -1;
c906108c
SS
3012}
3013
714835d5 3014/* Function: section_is_mapped (SECTION)
5417f6dc 3015 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3016
3017 Access to the ovly_mapped flag is restricted to this function, so
3018 that we can do automatic update. If the global flag
3019 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3020 overlay_invalidate_all. If the mapped state of the particular
3021 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3022
714835d5
UW
3023int
3024section_is_mapped (struct obj_section *osect)
c906108c 3025{
9216df95
UW
3026 struct gdbarch *gdbarch;
3027
714835d5 3028 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3029 return 0;
3030
c5aa993b 3031 switch (overlay_debugging)
c906108c
SS
3032 {
3033 default:
d874f1e2 3034 case ovly_off:
c5aa993b 3035 return 0; /* overlay debugging off */
d874f1e2 3036 case ovly_auto: /* overlay debugging automatic */
1c772458 3037 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3038 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3039 gdbarch = get_objfile_arch (osect->objfile);
3040 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3041 {
3042 if (overlay_cache_invalid)
3043 {
3044 overlay_invalidate_all ();
3045 overlay_cache_invalid = 0;
3046 }
3047 if (osect->ovly_mapped == -1)
9216df95 3048 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3049 }
3050 /* fall thru to manual case */
d874f1e2 3051 case ovly_on: /* overlay debugging manual */
c906108c
SS
3052 return osect->ovly_mapped == 1;
3053 }
3054}
3055
c906108c
SS
3056/* Function: pc_in_unmapped_range
3057 If PC falls into the lma range of SECTION, return true, else false. */
3058
3059CORE_ADDR
714835d5 3060pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3061{
714835d5
UW
3062 if (section_is_overlay (section))
3063 {
3064 bfd *abfd = section->objfile->obfd;
3065 asection *bfd_section = section->the_bfd_section;
fbd35540 3066
714835d5
UW
3067 /* We assume the LMA is relocated by the same offset as the VMA. */
3068 bfd_vma size = bfd_get_section_size (bfd_section);
3069 CORE_ADDR offset = obj_section_offset (section);
3070
3071 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3072 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3073 return 1;
3074 }
c906108c 3075
c906108c
SS
3076 return 0;
3077}
3078
3079/* Function: pc_in_mapped_range
3080 If PC falls into the vma range of SECTION, return true, else false. */
3081
3082CORE_ADDR
714835d5 3083pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3084{
714835d5
UW
3085 if (section_is_overlay (section))
3086 {
3087 if (obj_section_addr (section) <= pc
3088 && pc < obj_section_endaddr (section))
3089 return 1;
3090 }
c906108c 3091
c906108c
SS
3092 return 0;
3093}
3094
9ec8e6a0
JB
3095
3096/* Return true if the mapped ranges of sections A and B overlap, false
3097 otherwise. */
b9362cc7 3098static int
714835d5 3099sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3100{
714835d5
UW
3101 CORE_ADDR a_start = obj_section_addr (a);
3102 CORE_ADDR a_end = obj_section_endaddr (a);
3103 CORE_ADDR b_start = obj_section_addr (b);
3104 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3105
3106 return (a_start < b_end && b_start < a_end);
3107}
3108
c906108c
SS
3109/* Function: overlay_unmapped_address (PC, SECTION)
3110 Returns the address corresponding to PC in the unmapped (load) range.
3111 May be the same as PC. */
3112
3113CORE_ADDR
714835d5 3114overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3115{
714835d5
UW
3116 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3117 {
3118 bfd *abfd = section->objfile->obfd;
3119 asection *bfd_section = section->the_bfd_section;
fbd35540 3120
714835d5
UW
3121 return pc + bfd_section_lma (abfd, bfd_section)
3122 - bfd_section_vma (abfd, bfd_section);
3123 }
c906108c
SS
3124
3125 return pc;
3126}
3127
3128/* Function: overlay_mapped_address (PC, SECTION)
3129 Returns the address corresponding to PC in the mapped (runtime) range.
3130 May be the same as PC. */
3131
3132CORE_ADDR
714835d5 3133overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3134{
714835d5
UW
3135 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3136 {
3137 bfd *abfd = section->objfile->obfd;
3138 asection *bfd_section = section->the_bfd_section;
fbd35540 3139
714835d5
UW
3140 return pc + bfd_section_vma (abfd, bfd_section)
3141 - bfd_section_lma (abfd, bfd_section);
3142 }
c906108c
SS
3143
3144 return pc;
3145}
3146
3147
5417f6dc 3148/* Function: symbol_overlayed_address
c906108c
SS
3149 Return one of two addresses (relative to the VMA or to the LMA),
3150 depending on whether the section is mapped or not. */
3151
c5aa993b 3152CORE_ADDR
714835d5 3153symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3154{
3155 if (overlay_debugging)
3156 {
c378eb4e 3157 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3158 if (section == 0)
3159 return address;
c378eb4e
MS
3160 /* If the symbol's section is not an overlay, just return its
3161 address. */
c906108c
SS
3162 if (!section_is_overlay (section))
3163 return address;
c378eb4e 3164 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3165 if (section_is_mapped (section))
3166 return address;
3167 /*
3168 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3169 * then return its LOADED address rather than its vma address!!
3170 */
3171 return overlay_unmapped_address (address, section);
3172 }
3173 return address;
3174}
3175
5417f6dc 3176/* Function: find_pc_overlay (PC)
c906108c
SS
3177 Return the best-match overlay section for PC:
3178 If PC matches a mapped overlay section's VMA, return that section.
3179 Else if PC matches an unmapped section's VMA, return that section.
3180 Else if PC matches an unmapped section's LMA, return that section. */
3181
714835d5 3182struct obj_section *
fba45db2 3183find_pc_overlay (CORE_ADDR pc)
c906108c 3184{
c5aa993b 3185 struct objfile *objfile;
c906108c
SS
3186 struct obj_section *osect, *best_match = NULL;
3187
3188 if (overlay_debugging)
3189 ALL_OBJSECTIONS (objfile, osect)
714835d5 3190 if (section_is_overlay (osect))
c5aa993b 3191 {
714835d5 3192 if (pc_in_mapped_range (pc, osect))
c5aa993b 3193 {
714835d5
UW
3194 if (section_is_mapped (osect))
3195 return osect;
c5aa993b
JM
3196 else
3197 best_match = osect;
3198 }
714835d5 3199 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3200 best_match = osect;
3201 }
714835d5 3202 return best_match;
c906108c
SS
3203}
3204
3205/* Function: find_pc_mapped_section (PC)
5417f6dc 3206 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3207 currently marked as MAPPED, return that section. Else return NULL. */
3208
714835d5 3209struct obj_section *
fba45db2 3210find_pc_mapped_section (CORE_ADDR pc)
c906108c 3211{
c5aa993b 3212 struct objfile *objfile;
c906108c
SS
3213 struct obj_section *osect;
3214
3215 if (overlay_debugging)
3216 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3217 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3218 return osect;
c906108c
SS
3219
3220 return NULL;
3221}
3222
3223/* Function: list_overlays_command
c378eb4e 3224 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3225
3226void
fba45db2 3227list_overlays_command (char *args, int from_tty)
c906108c 3228{
c5aa993b
JM
3229 int nmapped = 0;
3230 struct objfile *objfile;
c906108c
SS
3231 struct obj_section *osect;
3232
3233 if (overlay_debugging)
3234 ALL_OBJSECTIONS (objfile, osect)
714835d5 3235 if (section_is_mapped (osect))
c5aa993b 3236 {
5af949e3 3237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3238 const char *name;
3239 bfd_vma lma, vma;
3240 int size;
3241
3242 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3243 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3244 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3245 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3246
3247 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3248 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3249 puts_filtered (" - ");
5af949e3 3250 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3251 printf_filtered (", mapped at ");
5af949e3 3252 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3253 puts_filtered (" - ");
5af949e3 3254 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3255 puts_filtered ("\n");
3256
3257 nmapped++;
3258 }
c906108c 3259 if (nmapped == 0)
a3f17187 3260 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3261}
3262
3263/* Function: map_overlay_command
3264 Mark the named section as mapped (ie. residing at its VMA address). */
3265
3266void
fba45db2 3267map_overlay_command (char *args, int from_tty)
c906108c 3268{
c5aa993b
JM
3269 struct objfile *objfile, *objfile2;
3270 struct obj_section *sec, *sec2;
c906108c
SS
3271
3272 if (!overlay_debugging)
3e43a32a
MS
3273 error (_("Overlay debugging not enabled. Use "
3274 "either the 'overlay auto' or\n"
3275 "the 'overlay manual' command."));
c906108c
SS
3276
3277 if (args == 0 || *args == 0)
8a3fe4f8 3278 error (_("Argument required: name of an overlay section"));
c906108c 3279
c378eb4e 3280 /* First, find a section matching the user supplied argument. */
c906108c
SS
3281 ALL_OBJSECTIONS (objfile, sec)
3282 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3283 {
c378eb4e 3284 /* Now, check to see if the section is an overlay. */
714835d5 3285 if (!section_is_overlay (sec))
c5aa993b
JM
3286 continue; /* not an overlay section */
3287
c378eb4e 3288 /* Mark the overlay as "mapped". */
c5aa993b
JM
3289 sec->ovly_mapped = 1;
3290
3291 /* Next, make a pass and unmap any sections that are
3292 overlapped by this new section: */
3293 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3294 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3295 {
3296 if (info_verbose)
a3f17187 3297 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3298 bfd_section_name (objfile->obfd,
3299 sec2->the_bfd_section));
c378eb4e 3300 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3301 }
3302 return;
3303 }
8a3fe4f8 3304 error (_("No overlay section called %s"), args);
c906108c
SS
3305}
3306
3307/* Function: unmap_overlay_command
5417f6dc 3308 Mark the overlay section as unmapped
c906108c
SS
3309 (ie. resident in its LMA address range, rather than the VMA range). */
3310
3311void
fba45db2 3312unmap_overlay_command (char *args, int from_tty)
c906108c 3313{
c5aa993b 3314 struct objfile *objfile;
c906108c
SS
3315 struct obj_section *sec;
3316
3317 if (!overlay_debugging)
3e43a32a
MS
3318 error (_("Overlay debugging not enabled. "
3319 "Use either the 'overlay auto' or\n"
3320 "the 'overlay manual' command."));
c906108c
SS
3321
3322 if (args == 0 || *args == 0)
8a3fe4f8 3323 error (_("Argument required: name of an overlay section"));
c906108c 3324
c378eb4e 3325 /* First, find a section matching the user supplied argument. */
c906108c
SS
3326 ALL_OBJSECTIONS (objfile, sec)
3327 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3328 {
3329 if (!sec->ovly_mapped)
8a3fe4f8 3330 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3331 sec->ovly_mapped = 0;
3332 return;
3333 }
8a3fe4f8 3334 error (_("No overlay section called %s"), args);
c906108c
SS
3335}
3336
3337/* Function: overlay_auto_command
3338 A utility command to turn on overlay debugging.
c378eb4e 3339 Possibly this should be done via a set/show command. */
c906108c
SS
3340
3341static void
fba45db2 3342overlay_auto_command (char *args, int from_tty)
c906108c 3343{
d874f1e2 3344 overlay_debugging = ovly_auto;
1900040c 3345 enable_overlay_breakpoints ();
c906108c 3346 if (info_verbose)
a3f17187 3347 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3348}
3349
3350/* Function: overlay_manual_command
3351 A utility command to turn on overlay debugging.
c378eb4e 3352 Possibly this should be done via a set/show command. */
c906108c
SS
3353
3354static void
fba45db2 3355overlay_manual_command (char *args, int from_tty)
c906108c 3356{
d874f1e2 3357 overlay_debugging = ovly_on;
1900040c 3358 disable_overlay_breakpoints ();
c906108c 3359 if (info_verbose)
a3f17187 3360 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3361}
3362
3363/* Function: overlay_off_command
3364 A utility command to turn on overlay debugging.
c378eb4e 3365 Possibly this should be done via a set/show command. */
c906108c
SS
3366
3367static void
fba45db2 3368overlay_off_command (char *args, int from_tty)
c906108c 3369{
d874f1e2 3370 overlay_debugging = ovly_off;
1900040c 3371 disable_overlay_breakpoints ();
c906108c 3372 if (info_verbose)
a3f17187 3373 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3374}
3375
3376static void
fba45db2 3377overlay_load_command (char *args, int from_tty)
c906108c 3378{
e17c207e
UW
3379 struct gdbarch *gdbarch = get_current_arch ();
3380
3381 if (gdbarch_overlay_update_p (gdbarch))
3382 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3383 else
8a3fe4f8 3384 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3385}
3386
3387/* Function: overlay_command
c378eb4e 3388 A place-holder for a mis-typed command. */
c906108c 3389
c378eb4e 3390/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3391struct cmd_list_element *overlaylist;
3392
3393static void
fba45db2 3394overlay_command (char *args, int from_tty)
c906108c 3395{
c5aa993b 3396 printf_unfiltered
c906108c
SS
3397 ("\"overlay\" must be followed by the name of an overlay command.\n");
3398 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3399}
3400
3401
3402/* Target Overlays for the "Simplest" overlay manager:
3403
5417f6dc
RM
3404 This is GDB's default target overlay layer. It works with the
3405 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3406 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3407 so targets that use a different runtime overlay manager can
c906108c
SS
3408 substitute their own overlay_update function and take over the
3409 function pointer.
3410
3411 The overlay_update function pokes around in the target's data structures
3412 to see what overlays are mapped, and updates GDB's overlay mapping with
3413 this information.
3414
3415 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3416 unsigned _novlys; /# number of overlay sections #/
3417 unsigned _ovly_table[_novlys][4] = {
3418 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3419 {..., ..., ..., ...},
3420 }
3421 unsigned _novly_regions; /# number of overlay regions #/
3422 unsigned _ovly_region_table[_novly_regions][3] = {
3423 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3424 {..., ..., ...},
3425 }
c906108c
SS
3426 These functions will attempt to update GDB's mappedness state in the
3427 symbol section table, based on the target's mappedness state.
3428
3429 To do this, we keep a cached copy of the target's _ovly_table, and
3430 attempt to detect when the cached copy is invalidated. The main
3431 entry point is "simple_overlay_update(SECT), which looks up SECT in
3432 the cached table and re-reads only the entry for that section from
c378eb4e 3433 the target (whenever possible). */
c906108c
SS
3434
3435/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3436static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3437static unsigned cache_novlys = 0;
c906108c 3438static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3439enum ovly_index
3440 {
3441 VMA, SIZE, LMA, MAPPED
3442 };
c906108c 3443
c378eb4e 3444/* Throw away the cached copy of _ovly_table. */
c906108c 3445static void
fba45db2 3446simple_free_overlay_table (void)
c906108c
SS
3447{
3448 if (cache_ovly_table)
b8c9b27d 3449 xfree (cache_ovly_table);
c5aa993b 3450 cache_novlys = 0;
c906108c
SS
3451 cache_ovly_table = NULL;
3452 cache_ovly_table_base = 0;
3453}
3454
9216df95 3455/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3456 Convert to host order. int LEN is number of ints. */
c906108c 3457static void
9216df95 3458read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3459 int len, int size, enum bfd_endian byte_order)
c906108c 3460{
c378eb4e 3461 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3462 gdb_byte *buf = alloca (len * size);
c5aa993b 3463 int i;
c906108c 3464
9216df95 3465 read_memory (memaddr, buf, len * size);
c906108c 3466 for (i = 0; i < len; i++)
e17a4113 3467 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3468}
3469
3470/* Find and grab a copy of the target _ovly_table
c378eb4e 3471 (and _novlys, which is needed for the table's size). */
c5aa993b 3472static int
fba45db2 3473simple_read_overlay_table (void)
c906108c 3474{
0d43edd1 3475 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3476 struct gdbarch *gdbarch;
3477 int word_size;
e17a4113 3478 enum bfd_endian byte_order;
c906108c
SS
3479
3480 simple_free_overlay_table ();
9b27852e 3481 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3482 if (! novlys_msym)
c906108c 3483 {
8a3fe4f8 3484 error (_("Error reading inferior's overlay table: "
0d43edd1 3485 "couldn't find `_novlys' variable\n"
8a3fe4f8 3486 "in inferior. Use `overlay manual' mode."));
0d43edd1 3487 return 0;
c906108c 3488 }
0d43edd1 3489
9b27852e 3490 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3491 if (! ovly_table_msym)
3492 {
8a3fe4f8 3493 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3494 "`_ovly_table' array\n"
8a3fe4f8 3495 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3496 return 0;
3497 }
3498
9216df95
UW
3499 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3500 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3501 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3502
e17a4113
UW
3503 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3504 4, byte_order);
0d43edd1
JB
3505 cache_ovly_table
3506 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3507 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3508 read_target_long_array (cache_ovly_table_base,
777ea8f1 3509 (unsigned int *) cache_ovly_table,
e17a4113 3510 cache_novlys * 4, word_size, byte_order);
0d43edd1 3511
c5aa993b 3512 return 1; /* SUCCESS */
c906108c
SS
3513}
3514
5417f6dc 3515/* Function: simple_overlay_update_1
c906108c
SS
3516 A helper function for simple_overlay_update. Assuming a cached copy
3517 of _ovly_table exists, look through it to find an entry whose vma,
3518 lma and size match those of OSECT. Re-read the entry and make sure
3519 it still matches OSECT (else the table may no longer be valid).
3520 Set OSECT's mapped state to match the entry. Return: 1 for
3521 success, 0 for failure. */
3522
3523static int
fba45db2 3524simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3525{
3526 int i, size;
fbd35540
MS
3527 bfd *obfd = osect->objfile->obfd;
3528 asection *bsect = osect->the_bfd_section;
9216df95
UW
3529 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3530 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3532
2c500098 3533 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3534 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3535 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3536 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3537 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3538 {
9216df95
UW
3539 read_target_long_array (cache_ovly_table_base + i * word_size,
3540 (unsigned int *) cache_ovly_table[i],
e17a4113 3541 4, word_size, byte_order);
fbd35540
MS
3542 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3543 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3544 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3545 {
3546 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3547 return 1;
3548 }
c378eb4e 3549 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3550 return 0;
3551 }
3552 return 0;
3553}
3554
3555/* Function: simple_overlay_update
5417f6dc
RM
3556 If OSECT is NULL, then update all sections' mapped state
3557 (after re-reading the entire target _ovly_table).
3558 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3559 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3560 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3561 re-read the entire cache, and go ahead and update all sections. */
3562
1c772458 3563void
fba45db2 3564simple_overlay_update (struct obj_section *osect)
c906108c 3565{
c5aa993b 3566 struct objfile *objfile;
c906108c 3567
c378eb4e 3568 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3569 if (osect)
c378eb4e 3570 /* Have we got a cached copy of the target's overlay table? */
c906108c 3571 if (cache_ovly_table != NULL)
9cc89665
MS
3572 {
3573 /* Does its cached location match what's currently in the
3574 symtab? */
3575 struct minimal_symbol *minsym
3576 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3577
3578 if (minsym == NULL)
3579 error (_("Error reading inferior's overlay table: couldn't "
3580 "find `_ovly_table' array\n"
3581 "in inferior. Use `overlay manual' mode."));
3582
3583 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3584 /* Then go ahead and try to look up this single section in
3585 the cache. */
3586 if (simple_overlay_update_1 (osect))
3587 /* Found it! We're done. */
3588 return;
3589 }
c906108c
SS
3590
3591 /* Cached table no good: need to read the entire table anew.
3592 Or else we want all the sections, in which case it's actually
3593 more efficient to read the whole table in one block anyway. */
3594
0d43edd1
JB
3595 if (! simple_read_overlay_table ())
3596 return;
3597
c378eb4e 3598 /* Now may as well update all sections, even if only one was requested. */
c906108c 3599 ALL_OBJSECTIONS (objfile, osect)
714835d5 3600 if (section_is_overlay (osect))
c5aa993b
JM
3601 {
3602 int i, size;
fbd35540
MS
3603 bfd *obfd = osect->objfile->obfd;
3604 asection *bsect = osect->the_bfd_section;
c5aa993b 3605
2c500098 3606 size = bfd_get_section_size (bsect);
c5aa993b 3607 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3610 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3611 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3612 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3613 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3614 }
3615 }
c906108c
SS
3616}
3617
086df311
DJ
3618/* Set the output sections and output offsets for section SECTP in
3619 ABFD. The relocation code in BFD will read these offsets, so we
3620 need to be sure they're initialized. We map each section to itself,
3621 with no offset; this means that SECTP->vma will be honored. */
3622
3623static void
3624symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3625{
3626 sectp->output_section = sectp;
3627 sectp->output_offset = 0;
3628}
3629
ac8035ab
TG
3630/* Default implementation for sym_relocate. */
3631
3632
3633bfd_byte *
3634default_symfile_relocate (struct objfile *objfile, asection *sectp,
3635 bfd_byte *buf)
3636{
3019eac3
DE
3637 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3638 DWO file. */
3639 bfd *abfd = sectp->owner;
ac8035ab
TG
3640
3641 /* We're only interested in sections with relocation
3642 information. */
3643 if ((sectp->flags & SEC_RELOC) == 0)
3644 return NULL;
3645
3646 /* We will handle section offsets properly elsewhere, so relocate as if
3647 all sections begin at 0. */
3648 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3649
3650 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3651}
3652
086df311
DJ
3653/* Relocate the contents of a debug section SECTP in ABFD. The
3654 contents are stored in BUF if it is non-NULL, or returned in a
3655 malloc'd buffer otherwise.
3656
3657 For some platforms and debug info formats, shared libraries contain
3658 relocations against the debug sections (particularly for DWARF-2;
3659 one affected platform is PowerPC GNU/Linux, although it depends on
3660 the version of the linker in use). Also, ELF object files naturally
3661 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3662 the relocations in order to get the locations of symbols correct.
3663 Another example that may require relocation processing, is the
3664 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3665 debug section. */
086df311
DJ
3666
3667bfd_byte *
ac8035ab
TG
3668symfile_relocate_debug_section (struct objfile *objfile,
3669 asection *sectp, bfd_byte *buf)
086df311 3670{
ac8035ab 3671 gdb_assert (objfile->sf->sym_relocate);
086df311 3672
ac8035ab 3673 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3674}
c906108c 3675
31d99776
DJ
3676struct symfile_segment_data *
3677get_symfile_segment_data (bfd *abfd)
3678{
00b5771c 3679 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3680
3681 if (sf == NULL)
3682 return NULL;
3683
3684 return sf->sym_segments (abfd);
3685}
3686
3687void
3688free_symfile_segment_data (struct symfile_segment_data *data)
3689{
3690 xfree (data->segment_bases);
3691 xfree (data->segment_sizes);
3692 xfree (data->segment_info);
3693 xfree (data);
3694}
3695
28c32713
JB
3696
3697/* Given:
3698 - DATA, containing segment addresses from the object file ABFD, and
3699 the mapping from ABFD's sections onto the segments that own them,
3700 and
3701 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3702 segment addresses reported by the target,
3703 store the appropriate offsets for each section in OFFSETS.
3704
3705 If there are fewer entries in SEGMENT_BASES than there are segments
3706 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3707
8d385431
DJ
3708 If there are more entries, then ignore the extra. The target may
3709 not be able to distinguish between an empty data segment and a
3710 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3711int
3712symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3713 struct section_offsets *offsets,
3714 int num_segment_bases,
3715 const CORE_ADDR *segment_bases)
3716{
3717 int i;
3718 asection *sect;
3719
28c32713
JB
3720 /* It doesn't make sense to call this function unless you have some
3721 segment base addresses. */
202b96c1 3722 gdb_assert (num_segment_bases > 0);
28c32713 3723
31d99776
DJ
3724 /* If we do not have segment mappings for the object file, we
3725 can not relocate it by segments. */
3726 gdb_assert (data != NULL);
3727 gdb_assert (data->num_segments > 0);
3728
31d99776
DJ
3729 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3730 {
31d99776
DJ
3731 int which = data->segment_info[i];
3732
28c32713
JB
3733 gdb_assert (0 <= which && which <= data->num_segments);
3734
3735 /* Don't bother computing offsets for sections that aren't
3736 loaded as part of any segment. */
3737 if (! which)
3738 continue;
3739
3740 /* Use the last SEGMENT_BASES entry as the address of any extra
3741 segments mentioned in DATA->segment_info. */
31d99776 3742 if (which > num_segment_bases)
28c32713 3743 which = num_segment_bases;
31d99776 3744
28c32713
JB
3745 offsets->offsets[i] = (segment_bases[which - 1]
3746 - data->segment_bases[which - 1]);
31d99776
DJ
3747 }
3748
3749 return 1;
3750}
3751
3752static void
3753symfile_find_segment_sections (struct objfile *objfile)
3754{
3755 bfd *abfd = objfile->obfd;
3756 int i;
3757 asection *sect;
3758 struct symfile_segment_data *data;
3759
3760 data = get_symfile_segment_data (objfile->obfd);
3761 if (data == NULL)
3762 return;
3763
3764 if (data->num_segments != 1 && data->num_segments != 2)
3765 {
3766 free_symfile_segment_data (data);
3767 return;
3768 }
3769
3770 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3771 {
31d99776
DJ
3772 int which = data->segment_info[i];
3773
3774 if (which == 1)
3775 {
3776 if (objfile->sect_index_text == -1)
3777 objfile->sect_index_text = sect->index;
3778
3779 if (objfile->sect_index_rodata == -1)
3780 objfile->sect_index_rodata = sect->index;
3781 }
3782 else if (which == 2)
3783 {
3784 if (objfile->sect_index_data == -1)
3785 objfile->sect_index_data = sect->index;
3786
3787 if (objfile->sect_index_bss == -1)
3788 objfile->sect_index_bss = sect->index;
3789 }
3790 }
3791
3792 free_symfile_segment_data (data);
3793}
3794
c906108c 3795void
fba45db2 3796_initialize_symfile (void)
c906108c
SS
3797{
3798 struct cmd_list_element *c;
c5aa993b 3799
1a966eab
AC
3800 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3801Load symbol table from executable file FILE.\n\
c906108c 3802The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3803to execute."), &cmdlist);
5ba2abeb 3804 set_cmd_completer (c, filename_completer);
c906108c 3805
1a966eab 3806 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3807Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3808Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3809 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3810The optional arguments are section-name section-address pairs and\n\
3811should be specified if the data and bss segments are not contiguous\n\
1a966eab 3812with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3813 &cmdlist);
5ba2abeb 3814 set_cmd_completer (c, filename_completer);
c906108c 3815
1a966eab
AC
3816 c = add_cmd ("load", class_files, load_command, _("\
3817Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3818for access from GDB.\n\
3819A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3820 set_cmd_completer (c, filename_completer);
c906108c 3821
c5aa993b 3822 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3823 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3824 "overlay ", 0, &cmdlist);
3825
3826 add_com_alias ("ovly", "overlay", class_alias, 1);
3827 add_com_alias ("ov", "overlay", class_alias, 1);
3828
c5aa993b 3829 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3830 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3831
c5aa993b 3832 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3833 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3834
c5aa993b 3835 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3836 _("List mappings of overlay sections."), &overlaylist);
c906108c 3837
c5aa993b 3838 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3839 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3840 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3841 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3842 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3843 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3844 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3845 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3846
3847 /* Filename extension to source language lookup table: */
3848 init_filename_language_table ();
26c41df3
AC
3849 add_setshow_string_noescape_cmd ("extension-language", class_files,
3850 &ext_args, _("\
3851Set mapping between filename extension and source language."), _("\
3852Show mapping between filename extension and source language."), _("\
3853Usage: set extension-language .foo bar"),
3854 set_ext_lang_command,
920d2a44 3855 show_ext_args,
26c41df3 3856 &setlist, &showlist);
c906108c 3857
c5aa993b 3858 add_info ("extensions", info_ext_lang_command,
1bedd215 3859 _("All filename extensions associated with a source language."));
917317f4 3860
525226b5
AC
3861 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3862 &debug_file_directory, _("\
24ddea62
JK
3863Set the directories where separate debug symbols are searched for."), _("\
3864Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3865Separate debug symbols are first searched for in the same\n\
3866directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3867and lastly at the path of the directory of the binary with\n\
24ddea62 3868each global debug-file-directory component prepended."),
525226b5 3869 NULL,
920d2a44 3870 show_debug_file_directory,
525226b5 3871 &setlist, &showlist);
c906108c 3872}
This page took 2.365199 seconds and 4 git commands to generate.