* dwarf2read.c (read_func_scope): Also scan specification DIEs
[deliverable/binutils-gdb.git] / gdb / symtab.c
CommitLineData
c906108c 1/* Symbol table lookup for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4c38e0a4
JB
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
88987551 33#include "gdb_regex.h"
c906108c
SS
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
c5f0f3d0 38#include "linespec.h"
0378c332 39#include "source.h"
a7fdf62f 40#include "filenames.h" /* for FILENAME_CMP */
1bae87b9 41#include "objc-lang.h"
1f8173e6 42#include "ada-lang.h"
cd6c7346 43#include "p-lang.h"
ff013f42 44#include "addrmap.h"
c906108c 45
2de7ced7
DJ
46#include "hashtab.h"
47
04ea0df1 48#include "gdb_obstack.h"
fe898f56 49#include "block.h"
de4f826b 50#include "dictionary.h"
c906108c
SS
51
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
015a42b4 57#include "cp-abi.h"
71c25dea 58#include "cp-support.h"
ea53e89f 59#include "observer.h"
94277a38 60#include "gdb_assert.h"
3a40aaa0 61#include "solist.h"
9a044a89
TT
62#include "macrotab.h"
63#include "macroscope.h"
c906108c 64
ccefe4c4
TT
65#include "psymtab.h"
66
c906108c
SS
67/* Prototypes for local functions */
68
a14ed312 69static void completion_list_add_name (char *, char *, int, char *, char *);
c906108c 70
a14ed312 71static void rbreak_command (char *, int);
c906108c 72
a14ed312 73static void types_info (char *, int);
c906108c 74
a14ed312 75static void functions_info (char *, int);
c906108c 76
a14ed312 77static void variables_info (char *, int);
c906108c 78
a14ed312 79static void sources_info (char *, int);
c906108c 80
d092d1a2 81static void output_source_filename (const char *, int *);
c906108c 82
a14ed312 83static int find_line_common (struct linetable *, int, int *);
c906108c 84
50641945
FN
85/* This one is used by linespec.c */
86
87char *operator_chars (char *p, char **end);
88
3121eff0 89static struct symbol *lookup_symbol_aux (const char *name,
3121eff0 90 const struct block *block,
176620f1 91 const domain_enum domain,
53c5240f 92 enum language language,
21b556f4 93 int *is_a_field_of_this);
fba7f19c 94
e4051eeb
DC
95static
96struct symbol *lookup_symbol_aux_local (const char *name,
e4051eeb 97 const struct block *block,
13387711
SW
98 const domain_enum domain,
99 enum language language);
8155455b
DC
100
101static
102struct symbol *lookup_symbol_aux_symtabs (int block_index,
103 const char *name,
21b556f4 104 const domain_enum domain);
8155455b
DC
105
106static
ccefe4c4
TT
107struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
108 int block_index,
109 const char *name,
110 const domain_enum domain);
c906108c 111
176620f1 112static void print_symbol_info (domain_enum,
a14ed312 113 struct symtab *, struct symbol *, int, char *);
c906108c 114
a14ed312 115static void print_msymbol_info (struct minimal_symbol *);
c906108c 116
176620f1 117static void symtab_symbol_info (char *, domain_enum, int);
c906108c 118
a14ed312 119void _initialize_symtab (void);
c906108c
SS
120
121/* */
122
717d2f5a
JB
123/* Allow the user to configure the debugger behavior with respect
124 to multiple-choice menus when more than one symbol matches during
125 a symbol lookup. */
126
7fc830e2
MK
127const char multiple_symbols_ask[] = "ask";
128const char multiple_symbols_all[] = "all";
129const char multiple_symbols_cancel[] = "cancel";
717d2f5a
JB
130static const char *multiple_symbols_modes[] =
131{
132 multiple_symbols_ask,
133 multiple_symbols_all,
134 multiple_symbols_cancel,
135 NULL
136};
137static const char *multiple_symbols_mode = multiple_symbols_all;
138
139/* Read-only accessor to AUTO_SELECT_MODE. */
140
141const char *
142multiple_symbols_select_mode (void)
143{
144 return multiple_symbols_mode;
145}
146
c906108c 147/* Block in which the most recently searched-for symbol was found.
9af17804 148 Might be better to make this a parameter to lookup_symbol and
c906108c
SS
149 value_of_this. */
150
151const struct block *block_found;
152
c906108c
SS
153/* Check for a symtab of a specific name; first in symtabs, then in
154 psymtabs. *If* there is no '/' in the name, a match after a '/'
155 in the symtab filename will also work. */
156
1b15f1fa
TT
157struct symtab *
158lookup_symtab (const char *name)
c906108c 159{
ccefe4c4
TT
160 int found;
161 struct symtab *s = NULL;
52f0bd74 162 struct objfile *objfile;
58d370e0 163 char *real_path = NULL;
f079a2e5 164 char *full_path = NULL;
58d370e0
TT
165
166 /* Here we are interested in canonicalizing an absolute path, not
167 absolutizing a relative path. */
168 if (IS_ABSOLUTE_PATH (name))
f079a2e5
JB
169 {
170 full_path = xfullpath (name);
171 make_cleanup (xfree, full_path);
172 real_path = gdb_realpath (name);
173 make_cleanup (xfree, real_path);
174 }
c906108c 175
c5aa993b 176got_symtab:
c906108c
SS
177
178 /* First, search for an exact match */
179
180 ALL_SYMTABS (objfile, s)
58d370e0 181 {
a7fdf62f 182 if (FILENAME_CMP (name, s->filename) == 0)
58d370e0 183 {
58d370e0
TT
184 return s;
185 }
9af17804 186
58d370e0
TT
187 /* If the user gave us an absolute path, try to find the file in
188 this symtab and use its absolute path. */
9af17804 189
f079a2e5
JB
190 if (full_path != NULL)
191 {
09bcec80
BR
192 const char *fp = symtab_to_fullname (s);
193 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
194 {
195 return s;
196 }
f079a2e5
JB
197 }
198
58d370e0
TT
199 if (real_path != NULL)
200 {
09bcec80
BR
201 char *fullname = symtab_to_fullname (s);
202 if (fullname != NULL)
203 {
204 char *rp = gdb_realpath (fullname);
205 make_cleanup (xfree, rp);
206 if (FILENAME_CMP (real_path, rp) == 0)
207 {
208 return s;
209 }
210 }
58d370e0
TT
211 }
212 }
213
c906108c
SS
214 /* Now, search for a matching tail (only if name doesn't have any dirs) */
215
caadab2c 216 if (lbasename (name) == name)
c906108c 217 ALL_SYMTABS (objfile, s)
c5aa993b 218 {
31889e00 219 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
c5aa993b
JM
220 return s;
221 }
c906108c
SS
222
223 /* Same search rules as above apply here, but now we look thru the
224 psymtabs. */
225
ccefe4c4
TT
226 found = 0;
227 ALL_OBJFILES (objfile)
228 {
229 if (objfile->sf
230 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
231 &s))
232 {
233 found = 1;
234 break;
235 }
236 }
c906108c 237
ccefe4c4 238 if (s != NULL)
c906108c 239 return s;
ccefe4c4
TT
240 if (!found)
241 return NULL;
c906108c
SS
242
243 /* At this point, we have located the psymtab for this file, but
244 the conversion to a symtab has failed. This usually happens
245 when we are looking up an include file. In this case,
246 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
247 been created. So, we need to run through the symtabs again in
248 order to find the file.
249 XXX - This is a crock, and should be fixed inside of the the
250 symbol parsing routines. */
251 goto got_symtab;
252}
c906108c
SS
253\f
254/* Mangle a GDB method stub type. This actually reassembles the pieces of the
255 full method name, which consist of the class name (from T), the unadorned
256 method name from METHOD_ID, and the signature for the specific overload,
257 specified by SIGNATURE_ID. Note that this function is g++ specific. */
258
259char *
fba45db2 260gdb_mangle_name (struct type *type, int method_id, int signature_id)
c906108c
SS
261{
262 int mangled_name_len;
263 char *mangled_name;
264 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
265 struct fn_field *method = &f[signature_id];
266 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
267 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
268 char *newname = type_name_no_tag (type);
269
270 /* Does the form of physname indicate that it is the full mangled name
271 of a constructor (not just the args)? */
272 int is_full_physname_constructor;
273
274 int is_constructor;
015a42b4 275 int is_destructor = is_destructor_name (physname);
c906108c
SS
276 /* Need a new type prefix. */
277 char *const_prefix = method->is_const ? "C" : "";
278 char *volatile_prefix = method->is_volatile ? "V" : "";
279 char buf[20];
280 int len = (newname == NULL ? 0 : strlen (newname));
281
43630227
PS
282 /* Nothing to do if physname already contains a fully mangled v3 abi name
283 or an operator name. */
284 if ((physname[0] == '_' && physname[1] == 'Z')
285 || is_operator_name (field_name))
235d1e03
EZ
286 return xstrdup (physname);
287
015a42b4 288 is_full_physname_constructor = is_constructor_name (physname);
c906108c
SS
289
290 is_constructor =
6314a349 291 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
c906108c
SS
292
293 if (!is_destructor)
c5aa993b 294 is_destructor = (strncmp (physname, "__dt", 4) == 0);
c906108c
SS
295
296 if (is_destructor || is_full_physname_constructor)
297 {
c5aa993b
JM
298 mangled_name = (char *) xmalloc (strlen (physname) + 1);
299 strcpy (mangled_name, physname);
c906108c
SS
300 return mangled_name;
301 }
302
303 if (len == 0)
304 {
305 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
306 }
307 else if (physname[0] == 't' || physname[0] == 'Q')
308 {
309 /* The physname for template and qualified methods already includes
c5aa993b 310 the class name. */
c906108c
SS
311 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
312 newname = NULL;
313 len = 0;
314 }
315 else
316 {
317 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
318 }
319 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
235d1e03 320 + strlen (buf) + len + strlen (physname) + 1);
c906108c 321
c906108c 322 {
c5aa993b 323 mangled_name = (char *) xmalloc (mangled_name_len);
c906108c
SS
324 if (is_constructor)
325 mangled_name[0] = '\0';
326 else
327 strcpy (mangled_name, field_name);
328 }
329 strcat (mangled_name, buf);
330 /* If the class doesn't have a name, i.e. newname NULL, then we just
331 mangle it using 0 for the length of the class. Thus it gets mangled
c5aa993b 332 as something starting with `::' rather than `classname::'. */
c906108c
SS
333 if (newname != NULL)
334 strcat (mangled_name, newname);
335
336 strcat (mangled_name, physname);
337 return (mangled_name);
338}
12af6855
JB
339
340\f
89aad1f9
EZ
341/* Initialize the language dependent portion of a symbol
342 depending upon the language for the symbol. */
343void
344symbol_init_language_specific (struct general_symbol_info *gsymbol,
345 enum language language)
346{
347 gsymbol->language = language;
348 if (gsymbol->language == language_cplus
5784d15e
AF
349 || gsymbol->language == language_java
350 || gsymbol->language == language_objc)
89aad1f9
EZ
351 {
352 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
353 }
89aad1f9
EZ
354 else
355 {
356 memset (&gsymbol->language_specific, 0,
357 sizeof (gsymbol->language_specific));
358 }
359}
360
2de7ced7
DJ
361/* Functions to initialize a symbol's mangled name. */
362
04a679b8
TT
363/* Objects of this type are stored in the demangled name hash table. */
364struct demangled_name_entry
365{
366 char *mangled;
367 char demangled[1];
368};
369
370/* Hash function for the demangled name hash. */
371static hashval_t
372hash_demangled_name_entry (const void *data)
373{
374 const struct demangled_name_entry *e = data;
375 return htab_hash_string (e->mangled);
376}
377
378/* Equality function for the demangled name hash. */
379static int
380eq_demangled_name_entry (const void *a, const void *b)
381{
382 const struct demangled_name_entry *da = a;
383 const struct demangled_name_entry *db = b;
384 return strcmp (da->mangled, db->mangled) == 0;
385}
386
2de7ced7
DJ
387/* Create the hash table used for demangled names. Each hash entry is
388 a pair of strings; one for the mangled name and one for the demangled
389 name. The entry is hashed via just the mangled name. */
390
391static void
392create_demangled_names_hash (struct objfile *objfile)
393{
394 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
9af17804 395 The hash table code will round this up to the next prime number.
2de7ced7
DJ
396 Choosing a much larger table size wastes memory, and saves only about
397 1% in symbol reading. */
398
aa2ee5f6 399 objfile->demangled_names_hash = htab_create_alloc
04a679b8 400 (256, hash_demangled_name_entry, eq_demangled_name_entry,
aa2ee5f6 401 NULL, xcalloc, xfree);
2de7ced7 402}
12af6855 403
2de7ced7 404/* Try to determine the demangled name for a symbol, based on the
12af6855
JB
405 language of that symbol. If the language is set to language_auto,
406 it will attempt to find any demangling algorithm that works and
2de7ced7
DJ
407 then set the language appropriately. The returned name is allocated
408 by the demangler and should be xfree'd. */
12af6855 409
2de7ced7
DJ
410static char *
411symbol_find_demangled_name (struct general_symbol_info *gsymbol,
412 const char *mangled)
12af6855 413{
12af6855
JB
414 char *demangled = NULL;
415
416 if (gsymbol->language == language_unknown)
417 gsymbol->language = language_auto;
1bae87b9
AF
418
419 if (gsymbol->language == language_objc
420 || gsymbol->language == language_auto)
421 {
422 demangled =
423 objc_demangle (mangled, 0);
424 if (demangled != NULL)
425 {
426 gsymbol->language = language_objc;
427 return demangled;
428 }
429 }
12af6855
JB
430 if (gsymbol->language == language_cplus
431 || gsymbol->language == language_auto)
432 {
433 demangled =
94af9270 434 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
12af6855 435 if (demangled != NULL)
2de7ced7
DJ
436 {
437 gsymbol->language = language_cplus;
438 return demangled;
439 }
12af6855
JB
440 }
441 if (gsymbol->language == language_java)
442 {
443 demangled =
2de7ced7 444 cplus_demangle (mangled,
12af6855
JB
445 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
446 if (demangled != NULL)
2de7ced7
DJ
447 {
448 gsymbol->language = language_java;
449 return demangled;
450 }
451 }
452 return NULL;
453}
454
980cae7a 455/* Set both the mangled and demangled (if any) names for GSYMBOL based
04a679b8
TT
456 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
457 objfile's obstack; but if COPY_NAME is 0 and if NAME is
458 NUL-terminated, then this function assumes that NAME is already
459 correctly saved (either permanently or with a lifetime tied to the
460 objfile), and it will not be copied.
461
462 The hash table corresponding to OBJFILE is used, and the memory
463 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
464 so the pointer can be discarded after calling this function. */
2de7ced7 465
d2a52b27
DC
466/* We have to be careful when dealing with Java names: when we run
467 into a Java minimal symbol, we don't know it's a Java symbol, so it
468 gets demangled as a C++ name. This is unfortunate, but there's not
469 much we can do about it: but when demangling partial symbols and
470 regular symbols, we'd better not reuse the wrong demangled name.
471 (See PR gdb/1039.) We solve this by putting a distinctive prefix
472 on Java names when storing them in the hash table. */
473
474/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
475 don't mind the Java prefix so much: different languages have
476 different demangling requirements, so it's only natural that we
477 need to keep language data around in our demangling cache. But
478 it's not good that the minimal symbol has the wrong demangled name.
479 Unfortunately, I can't think of any easy solution to that
480 problem. */
481
482#define JAVA_PREFIX "##JAVA$$"
483#define JAVA_PREFIX_LEN 8
484
2de7ced7
DJ
485void
486symbol_set_names (struct general_symbol_info *gsymbol,
04a679b8
TT
487 const char *linkage_name, int len, int copy_name,
488 struct objfile *objfile)
2de7ced7 489{
04a679b8 490 struct demangled_name_entry **slot;
980cae7a
DC
491 /* A 0-terminated copy of the linkage name. */
492 const char *linkage_name_copy;
d2a52b27
DC
493 /* A copy of the linkage name that might have a special Java prefix
494 added to it, for use when looking names up in the hash table. */
495 const char *lookup_name;
496 /* The length of lookup_name. */
497 int lookup_len;
04a679b8 498 struct demangled_name_entry entry;
2de7ced7 499
b06ead72
JB
500 if (gsymbol->language == language_ada)
501 {
502 /* In Ada, we do the symbol lookups using the mangled name, so
503 we can save some space by not storing the demangled name.
504
505 As a side note, we have also observed some overlap between
506 the C++ mangling and Ada mangling, similarly to what has
507 been observed with Java. Because we don't store the demangled
508 name with the symbol, we don't need to use the same trick
509 as Java. */
04a679b8
TT
510 if (!copy_name)
511 gsymbol->name = (char *) linkage_name;
512 else
513 {
514 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
515 memcpy (gsymbol->name, linkage_name, len);
516 gsymbol->name[len] = '\0';
517 }
b06ead72
JB
518 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
519
520 return;
521 }
522
04a679b8
TT
523 if (objfile->demangled_names_hash == NULL)
524 create_demangled_names_hash (objfile);
525
980cae7a
DC
526 /* The stabs reader generally provides names that are not
527 NUL-terminated; most of the other readers don't do this, so we
d2a52b27
DC
528 can just use the given copy, unless we're in the Java case. */
529 if (gsymbol->language == language_java)
530 {
531 char *alloc_name;
532 lookup_len = len + JAVA_PREFIX_LEN;
533
534 alloc_name = alloca (lookup_len + 1);
535 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
536 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
537 alloc_name[lookup_len] = '\0';
538
539 lookup_name = alloc_name;
540 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
541 }
542 else if (linkage_name[len] != '\0')
2de7ced7 543 {
980cae7a 544 char *alloc_name;
d2a52b27 545 lookup_len = len;
980cae7a 546
d2a52b27 547 alloc_name = alloca (lookup_len + 1);
980cae7a 548 memcpy (alloc_name, linkage_name, len);
d2a52b27 549 alloc_name[lookup_len] = '\0';
980cae7a 550
d2a52b27 551 lookup_name = alloc_name;
980cae7a 552 linkage_name_copy = alloc_name;
2de7ced7
DJ
553 }
554 else
980cae7a 555 {
d2a52b27
DC
556 lookup_len = len;
557 lookup_name = linkage_name;
980cae7a
DC
558 linkage_name_copy = linkage_name;
559 }
2de7ced7 560
04a679b8
TT
561 entry.mangled = (char *) lookup_name;
562 slot = ((struct demangled_name_entry **)
563 htab_find_slot (objfile->demangled_names_hash,
564 &entry, INSERT));
2de7ced7
DJ
565
566 /* If this name is not in the hash table, add it. */
567 if (*slot == NULL)
568 {
980cae7a
DC
569 char *demangled_name = symbol_find_demangled_name (gsymbol,
570 linkage_name_copy);
2de7ced7
DJ
571 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
572
04a679b8
TT
573 /* Suppose we have demangled_name==NULL, copy_name==0, and
574 lookup_name==linkage_name. In this case, we already have the
575 mangled name saved, and we don't have a demangled name. So,
576 you might think we could save a little space by not recording
577 this in the hash table at all.
578
579 It turns out that it is actually important to still save such
580 an entry in the hash table, because storing this name gives
581 us better backache hit rates for partial symbols. */
582 if (!copy_name && lookup_name == linkage_name)
583 {
584 *slot = obstack_alloc (&objfile->objfile_obstack,
585 offsetof (struct demangled_name_entry,
586 demangled)
587 + demangled_len + 1);
588 (*slot)->mangled = (char *) lookup_name;
589 }
590 else
591 {
592 /* If we must copy the mangled name, put it directly after
593 the demangled name so we can have a single
594 allocation. */
595 *slot = obstack_alloc (&objfile->objfile_obstack,
596 offsetof (struct demangled_name_entry,
597 demangled)
598 + lookup_len + demangled_len + 2);
599 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
600 strcpy ((*slot)->mangled, lookup_name);
601 }
602
980cae7a 603 if (demangled_name != NULL)
2de7ced7 604 {
04a679b8 605 strcpy ((*slot)->demangled, demangled_name);
2de7ced7
DJ
606 xfree (demangled_name);
607 }
608 else
04a679b8 609 (*slot)->demangled[0] = '\0';
2de7ced7
DJ
610 }
611
72dcaf82 612 gsymbol->name = (*slot)->mangled + lookup_len - len;
04a679b8 613 if ((*slot)->demangled[0] != '\0')
2de7ced7 614 gsymbol->language_specific.cplus_specific.demangled_name
04a679b8 615 = (*slot)->demangled;
2de7ced7
DJ
616 else
617 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
618}
619
22abf04a
DC
620/* Return the source code name of a symbol. In languages where
621 demangling is necessary, this is the demangled name. */
622
623char *
624symbol_natural_name (const struct general_symbol_info *gsymbol)
625{
9af17804 626 switch (gsymbol->language)
22abf04a 627 {
1f8173e6
PH
628 case language_cplus:
629 case language_java:
630 case language_objc:
631 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
632 return gsymbol->language_specific.cplus_specific.demangled_name;
633 break;
634 case language_ada:
635 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
636 return gsymbol->language_specific.cplus_specific.demangled_name;
637 else
638 return ada_decode_symbol (gsymbol);
639 break;
640 default:
641 break;
22abf04a 642 }
1f8173e6 643 return gsymbol->name;
22abf04a
DC
644}
645
9cc0d196
EZ
646/* Return the demangled name for a symbol based on the language for
647 that symbol. If no demangled name exists, return NULL. */
648char *
df8a16a1 649symbol_demangled_name (const struct general_symbol_info *gsymbol)
9cc0d196 650{
9af17804 651 switch (gsymbol->language)
1f8173e6
PH
652 {
653 case language_cplus:
654 case language_java:
655 case language_objc:
656 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
657 return gsymbol->language_specific.cplus_specific.demangled_name;
658 break;
659 case language_ada:
660 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
661 return gsymbol->language_specific.cplus_specific.demangled_name;
662 else
663 return ada_decode_symbol (gsymbol);
664 break;
665 default:
666 break;
667 }
668 return NULL;
9cc0d196 669}
fe39c653 670
4725b721
PH
671/* Return the search name of a symbol---generally the demangled or
672 linkage name of the symbol, depending on how it will be searched for.
9af17804 673 If there is no distinct demangled name, then returns the same value
4725b721 674 (same pointer) as SYMBOL_LINKAGE_NAME. */
fc062ac6
JB
675char *
676symbol_search_name (const struct general_symbol_info *gsymbol)
677{
1f8173e6
PH
678 if (gsymbol->language == language_ada)
679 return gsymbol->name;
680 else
681 return symbol_natural_name (gsymbol);
4725b721
PH
682}
683
fe39c653
EZ
684/* Initialize the structure fields to zero values. */
685void
686init_sal (struct symtab_and_line *sal)
687{
6c95b8df 688 sal->pspace = NULL;
fe39c653
EZ
689 sal->symtab = 0;
690 sal->section = 0;
691 sal->line = 0;
692 sal->pc = 0;
693 sal->end = 0;
ed0616c6
VP
694 sal->explicit_pc = 0;
695 sal->explicit_line = 0;
fe39c653 696}
c906108c
SS
697\f
698
94277a38
DJ
699/* Return 1 if the two sections are the same, or if they could
700 plausibly be copies of each other, one in an original object
701 file and another in a separated debug file. */
702
703int
714835d5
UW
704matching_obj_sections (struct obj_section *obj_first,
705 struct obj_section *obj_second)
94277a38 706{
714835d5
UW
707 asection *first = obj_first? obj_first->the_bfd_section : NULL;
708 asection *second = obj_second? obj_second->the_bfd_section : NULL;
94277a38
DJ
709 struct objfile *obj;
710
711 /* If they're the same section, then they match. */
712 if (first == second)
713 return 1;
714
715 /* If either is NULL, give up. */
716 if (first == NULL || second == NULL)
717 return 0;
718
719 /* This doesn't apply to absolute symbols. */
720 if (first->owner == NULL || second->owner == NULL)
721 return 0;
722
723 /* If they're in the same object file, they must be different sections. */
724 if (first->owner == second->owner)
725 return 0;
726
727 /* Check whether the two sections are potentially corresponding. They must
728 have the same size, address, and name. We can't compare section indexes,
729 which would be more reliable, because some sections may have been
730 stripped. */
731 if (bfd_get_section_size (first) != bfd_get_section_size (second))
732 return 0;
733
818f79f6 734 /* In-memory addresses may start at a different offset, relativize them. */
94277a38 735 if (bfd_get_section_vma (first->owner, first)
818f79f6
DJ
736 - bfd_get_start_address (first->owner)
737 != bfd_get_section_vma (second->owner, second)
738 - bfd_get_start_address (second->owner))
94277a38
DJ
739 return 0;
740
741 if (bfd_get_section_name (first->owner, first) == NULL
742 || bfd_get_section_name (second->owner, second) == NULL
743 || strcmp (bfd_get_section_name (first->owner, first),
744 bfd_get_section_name (second->owner, second)) != 0)
745 return 0;
746
747 /* Otherwise check that they are in corresponding objfiles. */
748
749 ALL_OBJFILES (obj)
750 if (obj->obfd == first->owner)
751 break;
752 gdb_assert (obj != NULL);
753
754 if (obj->separate_debug_objfile != NULL
755 && obj->separate_debug_objfile->obfd == second->owner)
756 return 1;
757 if (obj->separate_debug_objfile_backlink != NULL
758 && obj->separate_debug_objfile_backlink->obfd == second->owner)
759 return 1;
760
761 return 0;
762}
c5aa993b 763
ccefe4c4
TT
764struct symtab *
765find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
c906108c 766{
52f0bd74 767 struct objfile *objfile;
8a48e967
DJ
768 struct minimal_symbol *msymbol;
769
770 /* If we know that this is not a text address, return failure. This is
771 necessary because we loop based on texthigh and textlow, which do
772 not include the data ranges. */
773 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
774 if (msymbol
712f90be
TT
775 && (MSYMBOL_TYPE (msymbol) == mst_data
776 || MSYMBOL_TYPE (msymbol) == mst_bss
777 || MSYMBOL_TYPE (msymbol) == mst_abs
778 || MSYMBOL_TYPE (msymbol) == mst_file_data
779 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 780 return NULL;
c906108c 781
ff013f42 782 ALL_OBJFILES (objfile)
ccefe4c4
TT
783 {
784 struct symtab *result = NULL;
785 if (objfile->sf)
786 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
787 pc, section, 0);
788 if (result)
789 return result;
790 }
ff013f42
JK
791
792 return NULL;
c906108c 793}
c906108c
SS
794\f
795/* Debug symbols usually don't have section information. We need to dig that
796 out of the minimal symbols and stash that in the debug symbol. */
797
ccefe4c4 798void
907fc202
UW
799fixup_section (struct general_symbol_info *ginfo,
800 CORE_ADDR addr, struct objfile *objfile)
c906108c
SS
801{
802 struct minimal_symbol *msym;
c906108c 803
bccdca4a
UW
804 /* First, check whether a minimal symbol with the same name exists
805 and points to the same address. The address check is required
806 e.g. on PowerPC64, where the minimal symbol for a function will
807 point to the function descriptor, while the debug symbol will
808 point to the actual function code. */
907fc202
UW
809 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
810 if (msym)
7a78d0ee 811 {
714835d5 812 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
7a78d0ee
KB
813 ginfo->section = SYMBOL_SECTION (msym);
814 }
907fc202 815 else
19e2d14b
KB
816 {
817 /* Static, function-local variables do appear in the linker
818 (minimal) symbols, but are frequently given names that won't
819 be found via lookup_minimal_symbol(). E.g., it has been
820 observed in frv-uclinux (ELF) executables that a static,
821 function-local variable named "foo" might appear in the
822 linker symbols as "foo.6" or "foo.3". Thus, there is no
823 point in attempting to extend the lookup-by-name mechanism to
824 handle this case due to the fact that there can be multiple
825 names.
9af17804 826
19e2d14b
KB
827 So, instead, search the section table when lookup by name has
828 failed. The ``addr'' and ``endaddr'' fields may have already
829 been relocated. If so, the relocation offset (i.e. the
830 ANOFFSET value) needs to be subtracted from these values when
831 performing the comparison. We unconditionally subtract it,
832 because, when no relocation has been performed, the ANOFFSET
833 value will simply be zero.
9af17804 834
19e2d14b
KB
835 The address of the symbol whose section we're fixing up HAS
836 NOT BEEN adjusted (relocated) yet. It can't have been since
837 the section isn't yet known and knowing the section is
838 necessary in order to add the correct relocation value. In
839 other words, we wouldn't even be in this function (attempting
840 to compute the section) if it were already known.
841
842 Note that it is possible to search the minimal symbols
843 (subtracting the relocation value if necessary) to find the
844 matching minimal symbol, but this is overkill and much less
845 efficient. It is not necessary to find the matching minimal
9af17804
DE
846 symbol, only its section.
847
19e2d14b
KB
848 Note that this technique (of doing a section table search)
849 can fail when unrelocated section addresses overlap. For
850 this reason, we still attempt a lookup by name prior to doing
851 a search of the section table. */
9af17804 852
19e2d14b 853 struct obj_section *s;
19e2d14b
KB
854 ALL_OBJFILE_OSECTIONS (objfile, s)
855 {
856 int idx = s->the_bfd_section->index;
857 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
858
f1f6aadf
PA
859 if (obj_section_addr (s) - offset <= addr
860 && addr < obj_section_endaddr (s) - offset)
19e2d14b 861 {
714835d5 862 ginfo->obj_section = s;
19e2d14b
KB
863 ginfo->section = idx;
864 return;
865 }
866 }
867 }
c906108c
SS
868}
869
870struct symbol *
fba45db2 871fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
c906108c 872{
907fc202
UW
873 CORE_ADDR addr;
874
c906108c
SS
875 if (!sym)
876 return NULL;
877
714835d5 878 if (SYMBOL_OBJ_SECTION (sym))
c906108c
SS
879 return sym;
880
907fc202
UW
881 /* We either have an OBJFILE, or we can get at it from the sym's
882 symtab. Anything else is a bug. */
883 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
884
885 if (objfile == NULL)
886 objfile = SYMBOL_SYMTAB (sym)->objfile;
887
888 /* We should have an objfile by now. */
889 gdb_assert (objfile);
890
891 switch (SYMBOL_CLASS (sym))
892 {
893 case LOC_STATIC:
894 case LOC_LABEL:
907fc202
UW
895 addr = SYMBOL_VALUE_ADDRESS (sym);
896 break;
897 case LOC_BLOCK:
898 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
899 break;
900
901 default:
902 /* Nothing else will be listed in the minsyms -- no use looking
903 it up. */
904 return sym;
905 }
906
907 fixup_section (&sym->ginfo, addr, objfile);
c906108c
SS
908
909 return sym;
910}
911
c906108c 912/* Find the definition for a specified symbol name NAME
176620f1 913 in domain DOMAIN, visible from lexical block BLOCK.
c906108c 914 Returns the struct symbol pointer, or zero if no symbol is found.
c906108c
SS
915 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
916 NAME is a field of the current implied argument `this'. If so set
9af17804 917 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
c906108c
SS
918 BLOCK_FOUND is set to the block in which NAME is found (in the case of
919 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
920
921/* This function has a bunch of loops in it and it would seem to be
922 attractive to put in some QUIT's (though I'm not really sure
923 whether it can run long enough to be really important). But there
924 are a few calls for which it would appear to be bad news to quit
7ca9f392
AC
925 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
926 that there is C++ code below which can error(), but that probably
927 doesn't affect these calls since they are looking for a known
928 variable and thus can probably assume it will never hit the C++
929 code). */
c906108c
SS
930
931struct symbol *
53c5240f
PA
932lookup_symbol_in_language (const char *name, const struct block *block,
933 const domain_enum domain, enum language lang,
2570f2b7 934 int *is_a_field_of_this)
c906108c 935{
729051e6
DJ
936 char *demangled_name = NULL;
937 const char *modified_name = NULL;
fba7f19c 938 struct symbol *returnval;
9ee6bb93 939 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
c906108c 940
729051e6
DJ
941 modified_name = name;
942
987504bb 943 /* If we are using C++ or Java, demangle the name before doing a lookup, so
729051e6 944 we can always binary search. */
53c5240f 945 if (lang == language_cplus)
729051e6
DJ
946 {
947 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
948 if (demangled_name)
949 {
729051e6 950 modified_name = demangled_name;
9ee6bb93 951 make_cleanup (xfree, demangled_name);
729051e6 952 }
71c25dea
TT
953 else
954 {
955 /* If we were given a non-mangled name, canonicalize it
956 according to the language (so far only for C++). */
957 demangled_name = cp_canonicalize_string (name);
958 if (demangled_name)
959 {
960 modified_name = demangled_name;
961 make_cleanup (xfree, demangled_name);
962 }
963 }
729051e6 964 }
53c5240f 965 else if (lang == language_java)
987504bb 966 {
9af17804 967 demangled_name = cplus_demangle (name,
987504bb
JJ
968 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
969 if (demangled_name)
970 {
987504bb 971 modified_name = demangled_name;
9ee6bb93 972 make_cleanup (xfree, demangled_name);
987504bb
JJ
973 }
974 }
729051e6 975
63872f9d
JG
976 if (case_sensitivity == case_sensitive_off)
977 {
978 char *copy;
979 int len, i;
980
981 len = strlen (name);
982 copy = (char *) alloca (len + 1);
983 for (i= 0; i < len; i++)
984 copy[i] = tolower (name[i]);
985 copy[len] = 0;
fba7f19c 986 modified_name = copy;
63872f9d 987 }
fba7f19c 988
94af9270
KS
989 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
990 is_a_field_of_this);
9ee6bb93 991 do_cleanups (cleanup);
fba7f19c 992
9af17804 993 return returnval;
fba7f19c
EZ
994}
995
53c5240f
PA
996/* Behave like lookup_symbol_in_language, but performed with the
997 current language. */
998
999struct symbol *
1000lookup_symbol (const char *name, const struct block *block,
2570f2b7 1001 domain_enum domain, int *is_a_field_of_this)
53c5240f
PA
1002{
1003 return lookup_symbol_in_language (name, block, domain,
1004 current_language->la_language,
2570f2b7 1005 is_a_field_of_this);
53c5240f
PA
1006}
1007
1008/* Behave like lookup_symbol except that NAME is the natural name
5ad1c190
DC
1009 of the symbol that we're looking for and, if LINKAGE_NAME is
1010 non-NULL, ensure that the symbol's linkage name matches as
1011 well. */
1012
fba7f19c 1013static struct symbol *
94af9270
KS
1014lookup_symbol_aux (const char *name, const struct block *block,
1015 const domain_enum domain, enum language language,
1016 int *is_a_field_of_this)
fba7f19c 1017{
8155455b 1018 struct symbol *sym;
53c5240f 1019 const struct language_defn *langdef;
ccefe4c4 1020 struct objfile *objfile;
406bc4de 1021
9a146a11
EZ
1022 /* Make sure we do something sensible with is_a_field_of_this, since
1023 the callers that set this parameter to some non-null value will
1024 certainly use it later and expect it to be either 0 or 1.
1025 If we don't set it, the contents of is_a_field_of_this are
1026 undefined. */
1027 if (is_a_field_of_this != NULL)
1028 *is_a_field_of_this = 0;
1029
e4051eeb
DC
1030 /* Search specified block and its superiors. Don't search
1031 STATIC_BLOCK or GLOBAL_BLOCK. */
c906108c 1032
13387711 1033 sym = lookup_symbol_aux_local (name, block, domain, language);
8155455b
DC
1034 if (sym != NULL)
1035 return sym;
c906108c 1036
53c5240f 1037 /* If requested to do so by the caller and if appropriate for LANGUAGE,
13387711 1038 check to see if NAME is a field of `this'. */
53c5240f
PA
1039
1040 langdef = language_def (language);
5f9a71c3 1041
2b2d9e11
VP
1042 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1043 && block != NULL)
c906108c 1044 {
2b2d9e11 1045 struct symbol *sym = NULL;
8540c487 1046 const struct block *function_block = block;
2b2d9e11
VP
1047 /* 'this' is only defined in the function's block, so find the
1048 enclosing function block. */
8540c487
SW
1049 for (; function_block && !BLOCK_FUNCTION (function_block);
1050 function_block = BLOCK_SUPERBLOCK (function_block));
2b2d9e11 1051
8540c487
SW
1052 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1053 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
94af9270 1054 VAR_DOMAIN);
2b2d9e11 1055 if (sym)
c906108c 1056 {
2b2d9e11 1057 struct type *t = sym->type;
9af17804 1058
2b2d9e11
VP
1059 /* I'm not really sure that type of this can ever
1060 be typedefed; just be safe. */
1061 CHECK_TYPEDEF (t);
1062 if (TYPE_CODE (t) == TYPE_CODE_PTR
1063 || TYPE_CODE (t) == TYPE_CODE_REF)
1064 t = TYPE_TARGET_TYPE (t);
9af17804 1065
2b2d9e11
VP
1066 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1067 && TYPE_CODE (t) != TYPE_CODE_UNION)
9af17804 1068 error (_("Internal error: `%s' is not an aggregate"),
2b2d9e11 1069 langdef->la_name_of_this);
9af17804 1070
2b2d9e11
VP
1071 if (check_field (t, name))
1072 {
1073 *is_a_field_of_this = 1;
2b2d9e11
VP
1074 return NULL;
1075 }
c906108c
SS
1076 }
1077 }
1078
53c5240f 1079 /* Now do whatever is appropriate for LANGUAGE to look
5f9a71c3 1080 up static and global variables. */
c906108c 1081
94af9270 1082 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
8155455b
DC
1083 if (sym != NULL)
1084 return sym;
c906108c 1085
8155455b
DC
1086 /* Now search all static file-level symbols. Not strictly correct,
1087 but more useful than an error. Do the symtabs first, then check
1088 the psymtabs. If a psymtab indicates the existence of the
1089 desired name as a file-level static, then do psymtab-to-symtab
c906108c
SS
1090 conversion on the fly and return the found symbol. */
1091
94af9270 1092 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
8155455b
DC
1093 if (sym != NULL)
1094 return sym;
9af17804 1095
ccefe4c4
TT
1096 ALL_OBJFILES (objfile)
1097 {
1098 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1099 if (sym != NULL)
1100 return sym;
1101 }
c906108c 1102
8155455b 1103 return NULL;
c906108c 1104}
8155455b 1105
e4051eeb 1106/* Check to see if the symbol is defined in BLOCK or its superiors.
89a9d1b1 1107 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
8155455b
DC
1108
1109static struct symbol *
94af9270 1110lookup_symbol_aux_local (const char *name, const struct block *block,
13387711
SW
1111 const domain_enum domain,
1112 enum language language)
8155455b
DC
1113{
1114 struct symbol *sym;
89a9d1b1 1115 const struct block *static_block = block_static_block (block);
13387711
SW
1116 const char *scope = block_scope (block);
1117
e4051eeb
DC
1118 /* Check if either no block is specified or it's a global block. */
1119
89a9d1b1
DC
1120 if (static_block == NULL)
1121 return NULL;
e4051eeb 1122
89a9d1b1 1123 while (block != static_block)
f61e8913 1124 {
94af9270 1125 sym = lookup_symbol_aux_block (name, block, domain);
f61e8913
DC
1126 if (sym != NULL)
1127 return sym;
edb3359d 1128
13387711
SW
1129 if (language == language_cplus)
1130 {
1131 sym = cp_lookup_symbol_imports (scope,
1132 name,
1133 block,
1134 domain,
1135 1,
1136 1);
1137 if (sym != NULL)
1138 return sym;
1139 }
1140
edb3359d
DJ
1141 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1142 break;
f61e8913
DC
1143 block = BLOCK_SUPERBLOCK (block);
1144 }
1145
edb3359d 1146 /* We've reached the edge of the function without finding a result. */
e4051eeb 1147
f61e8913
DC
1148 return NULL;
1149}
1150
3a40aaa0
UW
1151/* Look up OBJFILE to BLOCK. */
1152
1153static struct objfile *
1154lookup_objfile_from_block (const struct block *block)
1155{
1156 struct objfile *obj;
1157 struct symtab *s;
1158
1159 if (block == NULL)
1160 return NULL;
1161
1162 block = block_global_block (block);
1163 /* Go through SYMTABS. */
1164 ALL_SYMTABS (obj, s)
1165 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
61f0d762
JK
1166 {
1167 if (obj->separate_debug_objfile_backlink)
1168 obj = obj->separate_debug_objfile_backlink;
1169
1170 return obj;
1171 }
3a40aaa0
UW
1172
1173 return NULL;
1174}
1175
6c9353d3
PA
1176/* Look up a symbol in a block; if found, fixup the symbol, and set
1177 block_found appropriately. */
f61e8913 1178
5f9a71c3 1179struct symbol *
94af9270 1180lookup_symbol_aux_block (const char *name, const struct block *block,
21b556f4 1181 const domain_enum domain)
f61e8913
DC
1182{
1183 struct symbol *sym;
f61e8913 1184
94af9270 1185 sym = lookup_block_symbol (block, name, domain);
f61e8913 1186 if (sym)
8155455b 1187 {
f61e8913 1188 block_found = block;
21b556f4 1189 return fixup_symbol_section (sym, NULL);
8155455b
DC
1190 }
1191
1192 return NULL;
1193}
1194
3a40aaa0
UW
1195/* Check all global symbols in OBJFILE in symtabs and
1196 psymtabs. */
1197
1198struct symbol *
15d123c9 1199lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
3a40aaa0 1200 const char *name,
21b556f4 1201 const domain_enum domain)
3a40aaa0 1202{
15d123c9 1203 const struct objfile *objfile;
3a40aaa0
UW
1204 struct symbol *sym;
1205 struct blockvector *bv;
1206 const struct block *block;
1207 struct symtab *s;
3a40aaa0 1208
15d123c9
TG
1209 for (objfile = main_objfile;
1210 objfile;
1211 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1212 {
1213 /* Go through symtabs. */
1214 ALL_OBJFILE_SYMTABS (objfile, s)
1215 {
1216 bv = BLOCKVECTOR (s);
1217 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
94af9270 1218 sym = lookup_block_symbol (block, name, domain);
15d123c9
TG
1219 if (sym)
1220 {
1221 block_found = block;
1222 return fixup_symbol_section (sym, (struct objfile *)objfile);
1223 }
1224 }
1225
ccefe4c4
TT
1226 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1227 name, domain);
1228 if (sym)
1229 return sym;
15d123c9 1230 }
56e3f43c 1231
3a40aaa0
UW
1232 return NULL;
1233}
1234
8155455b
DC
1235/* Check to see if the symbol is defined in one of the symtabs.
1236 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1237 depending on whether or not we want to search global symbols or
1238 static symbols. */
1239
1240static struct symbol *
94af9270 1241lookup_symbol_aux_symtabs (int block_index, const char *name,
21b556f4 1242 const domain_enum domain)
8155455b
DC
1243{
1244 struct symbol *sym;
1245 struct objfile *objfile;
1246 struct blockvector *bv;
1247 const struct block *block;
1248 struct symtab *s;
1249
11309657 1250 ALL_PRIMARY_SYMTABS (objfile, s)
8155455b
DC
1251 {
1252 bv = BLOCKVECTOR (s);
1253 block = BLOCKVECTOR_BLOCK (bv, block_index);
94af9270 1254 sym = lookup_block_symbol (block, name, domain);
8155455b
DC
1255 if (sym)
1256 {
1257 block_found = block;
8155455b
DC
1258 return fixup_symbol_section (sym, objfile);
1259 }
1260 }
1261
1262 return NULL;
1263}
1264
ccefe4c4
TT
1265/* A helper function for lookup_symbol_aux that interfaces with the
1266 "quick" symbol table functions. */
8155455b
DC
1267
1268static struct symbol *
ccefe4c4
TT
1269lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1270 const char *name, const domain_enum domain)
8155455b 1271{
ccefe4c4 1272 struct symtab *symtab;
8155455b
DC
1273 struct blockvector *bv;
1274 const struct block *block;
1275 struct partial_symtab *ps;
ccefe4c4 1276 struct symbol *sym;
8155455b 1277
ccefe4c4
TT
1278 if (!objfile->sf)
1279 return NULL;
1280 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1281 if (!symtab)
1282 return NULL;
8155455b 1283
ccefe4c4
TT
1284 bv = BLOCKVECTOR (symtab);
1285 block = BLOCKVECTOR_BLOCK (bv, kind);
1286 sym = lookup_block_symbol (block, name, domain);
1287 if (!sym)
1288 {
1289 /* This shouldn't be necessary, but as a last resort try
1290 looking in the statics even though the psymtab claimed
1291 the symbol was global, or vice-versa. It's possible
1292 that the psymtab gets it wrong in some cases. */
1293
1294 /* FIXME: carlton/2002-09-30: Should we really do that?
1295 If that happens, isn't it likely to be a GDB error, in
1296 which case we should fix the GDB error rather than
1297 silently dealing with it here? So I'd vote for
1298 removing the check for the symbol in the other
1299 block. */
1300 block = BLOCKVECTOR_BLOCK (bv,
1301 kind == GLOBAL_BLOCK ?
1302 STATIC_BLOCK : GLOBAL_BLOCK);
1303 sym = lookup_block_symbol (block, name, domain);
1304 if (!sym)
1305 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1306 kind == GLOBAL_BLOCK ? "global" : "static",
1307 name, symtab->filename, name, name);
1308 }
1309 return fixup_symbol_section (sym, objfile);
8155455b
DC
1310}
1311
5f9a71c3
DC
1312/* A default version of lookup_symbol_nonlocal for use by languages
1313 that can't think of anything better to do. This implements the C
1314 lookup rules. */
1315
1316struct symbol *
1317basic_lookup_symbol_nonlocal (const char *name,
5f9a71c3 1318 const struct block *block,
21b556f4 1319 const domain_enum domain)
5f9a71c3
DC
1320{
1321 struct symbol *sym;
1322
1323 /* NOTE: carlton/2003-05-19: The comments below were written when
1324 this (or what turned into this) was part of lookup_symbol_aux;
1325 I'm much less worried about these questions now, since these
1326 decisions have turned out well, but I leave these comments here
1327 for posterity. */
1328
1329 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1330 not it would be appropriate to search the current global block
1331 here as well. (That's what this code used to do before the
1332 is_a_field_of_this check was moved up.) On the one hand, it's
1333 redundant with the lookup_symbol_aux_symtabs search that happens
1334 next. On the other hand, if decode_line_1 is passed an argument
1335 like filename:var, then the user presumably wants 'var' to be
1336 searched for in filename. On the third hand, there shouldn't be
1337 multiple global variables all of which are named 'var', and it's
1338 not like decode_line_1 has ever restricted its search to only
1339 global variables in a single filename. All in all, only
1340 searching the static block here seems best: it's correct and it's
1341 cleanest. */
1342
1343 /* NOTE: carlton/2002-12-05: There's also a possible performance
1344 issue here: if you usually search for global symbols in the
1345 current file, then it would be slightly better to search the
1346 current global block before searching all the symtabs. But there
1347 are other factors that have a much greater effect on performance
1348 than that one, so I don't think we should worry about that for
1349 now. */
1350
94af9270 1351 sym = lookup_symbol_static (name, block, domain);
5f9a71c3
DC
1352 if (sym != NULL)
1353 return sym;
1354
94af9270 1355 return lookup_symbol_global (name, block, domain);
5f9a71c3
DC
1356}
1357
1358/* Lookup a symbol in the static block associated to BLOCK, if there
1359 is one; do nothing if BLOCK is NULL or a global block. */
1360
1361struct symbol *
1362lookup_symbol_static (const char *name,
5f9a71c3 1363 const struct block *block,
21b556f4 1364 const domain_enum domain)
5f9a71c3
DC
1365{
1366 const struct block *static_block = block_static_block (block);
1367
1368 if (static_block != NULL)
94af9270 1369 return lookup_symbol_aux_block (name, static_block, domain);
5f9a71c3
DC
1370 else
1371 return NULL;
1372}
1373
1374/* Lookup a symbol in all files' global blocks (searching psymtabs if
1375 necessary). */
1376
1377struct symbol *
1378lookup_symbol_global (const char *name,
3a40aaa0 1379 const struct block *block,
21b556f4 1380 const domain_enum domain)
5f9a71c3 1381{
3a40aaa0
UW
1382 struct symbol *sym = NULL;
1383 struct objfile *objfile = NULL;
1384
1385 /* Call library-specific lookup procedure. */
1386 objfile = lookup_objfile_from_block (block);
1387 if (objfile != NULL)
94af9270 1388 sym = solib_global_lookup (objfile, name, domain);
3a40aaa0
UW
1389 if (sym != NULL)
1390 return sym;
5f9a71c3 1391
94af9270 1392 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
5f9a71c3
DC
1393 if (sym != NULL)
1394 return sym;
1395
ccefe4c4
TT
1396 ALL_OBJFILES (objfile)
1397 {
1398 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1399 if (sym)
1400 return sym;
1401 }
1402
1403 return NULL;
5f9a71c3
DC
1404}
1405
5eeb2539 1406int
9af17804 1407symbol_matches_domain (enum language symbol_language,
5eeb2539
AR
1408 domain_enum symbol_domain,
1409 domain_enum domain)
1410{
9af17804 1411 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
5eeb2539
AR
1412 A Java class declaration also defines a typedef for the class.
1413 Similarly, any Ada type declaration implicitly defines a typedef. */
1414 if (symbol_language == language_cplus
1415 || symbol_language == language_java
1416 || symbol_language == language_ada)
1417 {
1418 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1419 && symbol_domain == STRUCT_DOMAIN)
1420 return 1;
1421 }
1422 /* For all other languages, strict match is required. */
1423 return (symbol_domain == domain);
1424}
1425
ccefe4c4
TT
1426/* Look up a type named NAME in the struct_domain. The type returned
1427 must not be opaque -- i.e., must have at least one field
1428 defined. */
c906108c 1429
ccefe4c4
TT
1430struct type *
1431lookup_transparent_type (const char *name)
c906108c 1432{
ccefe4c4
TT
1433 return current_language->la_lookup_transparent_type (name);
1434}
9af17804 1435
ccefe4c4
TT
1436/* A helper for basic_lookup_transparent_type that interfaces with the
1437 "quick" symbol table functions. */
357e46e7 1438
ccefe4c4
TT
1439static struct type *
1440basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1441 const char *name)
1442{
1443 struct symtab *symtab;
1444 struct blockvector *bv;
1445 struct block *block;
1446 struct symbol *sym;
c906108c 1447
ccefe4c4
TT
1448 if (!objfile->sf)
1449 return NULL;
1450 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1451 if (!symtab)
1452 return NULL;
c906108c 1453
ccefe4c4
TT
1454 bv = BLOCKVECTOR (symtab);
1455 block = BLOCKVECTOR_BLOCK (bv, kind);
1456 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1457 if (!sym)
9af17804 1458 {
ccefe4c4
TT
1459 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1460
1461 /* This shouldn't be necessary, but as a last resort
1462 * try looking in the 'other kind' even though the psymtab
1463 * claimed the symbol was one thing. It's possible that
1464 * the psymtab gets it wrong in some cases.
1465 */
1466 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1467 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1468 if (!sym)
1469 /* FIXME; error is wrong in one case */
1470 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1471%s may be an inlined function, or may be a template function\n\
1472(if a template, try specifying an instantiation: %s<type>)."),
1473 name, symtab->filename, name, name);
c906108c 1474 }
ccefe4c4
TT
1475 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1476 return SYMBOL_TYPE (sym);
c906108c 1477
ccefe4c4 1478 return NULL;
b368761e 1479}
c906108c 1480
b368761e
DC
1481/* The standard implementation of lookup_transparent_type. This code
1482 was modeled on lookup_symbol -- the parts not relevant to looking
1483 up types were just left out. In particular it's assumed here that
1484 types are available in struct_domain and only at file-static or
1485 global blocks. */
c906108c
SS
1486
1487struct type *
b368761e 1488basic_lookup_transparent_type (const char *name)
c906108c 1489{
52f0bd74
AC
1490 struct symbol *sym;
1491 struct symtab *s = NULL;
c906108c 1492 struct blockvector *bv;
52f0bd74
AC
1493 struct objfile *objfile;
1494 struct block *block;
ccefe4c4 1495 struct type *t;
c906108c
SS
1496
1497 /* Now search all the global symbols. Do the symtab's first, then
1498 check the psymtab's. If a psymtab indicates the existence
1499 of the desired name as a global, then do psymtab-to-symtab
1500 conversion on the fly and return the found symbol. */
c5aa993b 1501
11309657 1502 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1503 {
1504 bv = BLOCKVECTOR (s);
1505 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
94af9270 1506 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
c5aa993b
JM
1507 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1508 {
1509 return SYMBOL_TYPE (sym);
1510 }
1511 }
c906108c 1512
ccefe4c4 1513 ALL_OBJFILES (objfile)
c5aa993b 1514 {
ccefe4c4
TT
1515 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1516 if (t)
1517 return t;
c5aa993b 1518 }
c906108c
SS
1519
1520 /* Now search the static file-level symbols.
1521 Not strictly correct, but more useful than an error.
1522 Do the symtab's first, then
1523 check the psymtab's. If a psymtab indicates the existence
1524 of the desired name as a file-level static, then do psymtab-to-symtab
1525 conversion on the fly and return the found symbol.
1526 */
1527
11309657 1528 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1529 {
1530 bv = BLOCKVECTOR (s);
1531 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
94af9270 1532 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
c5aa993b
JM
1533 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1534 {
1535 return SYMBOL_TYPE (sym);
1536 }
1537 }
c906108c 1538
ccefe4c4 1539 ALL_OBJFILES (objfile)
c5aa993b 1540 {
ccefe4c4
TT
1541 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1542 if (t)
1543 return t;
c5aa993b 1544 }
ccefe4c4 1545
c906108c
SS
1546 return (struct type *) 0;
1547}
1548
1549
ccefe4c4 1550/* Find the name of the file containing main(). */
c906108c
SS
1551/* FIXME: What about languages without main() or specially linked
1552 executables that have no main() ? */
1553
ccefe4c4
TT
1554char *
1555find_main_filename (void)
c906108c 1556{
52f0bd74 1557 struct objfile *objfile;
ccefe4c4 1558 char *result, *name = main_name ();
c906108c 1559
ccefe4c4 1560 ALL_OBJFILES (objfile)
c5aa993b 1561 {
ccefe4c4
TT
1562 if (!objfile->sf)
1563 continue;
1564 result = objfile->sf->qf->find_symbol_file (objfile, name);
1565 if (result)
1566 return result;
c5aa993b 1567 }
c906108c
SS
1568 return (NULL);
1569}
1570
176620f1 1571/* Search BLOCK for symbol NAME in DOMAIN.
c906108c
SS
1572
1573 Note that if NAME is the demangled form of a C++ symbol, we will fail
1574 to find a match during the binary search of the non-encoded names, but
1575 for now we don't worry about the slight inefficiency of looking for
1576 a match we'll never find, since it will go pretty quick. Once the
1577 binary search terminates, we drop through and do a straight linear
1bae87b9 1578 search on the symbols. Each symbol which is marked as being a ObjC/C++
9af17804 1579 symbol (language_cplus or language_objc set) has both the encoded and
1bae87b9 1580 non-encoded names tested for a match.
3121eff0 1581*/
c906108c
SS
1582
1583struct symbol *
aa1ee363 1584lookup_block_symbol (const struct block *block, const char *name,
176620f1 1585 const domain_enum domain)
c906108c 1586{
de4f826b
DC
1587 struct dict_iterator iter;
1588 struct symbol *sym;
c906108c 1589
de4f826b 1590 if (!BLOCK_FUNCTION (block))
261397f8 1591 {
de4f826b
DC
1592 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1593 sym != NULL;
1594 sym = dict_iter_name_next (name, &iter))
261397f8 1595 {
5eeb2539 1596 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
94af9270 1597 SYMBOL_DOMAIN (sym), domain))
261397f8
DJ
1598 return sym;
1599 }
1600 return NULL;
1601 }
526e70c0 1602 else
c906108c 1603 {
526e70c0
DC
1604 /* Note that parameter symbols do not always show up last in the
1605 list; this loop makes sure to take anything else other than
1606 parameter symbols first; it only uses parameter symbols as a
1607 last resort. Note that this only takes up extra computation
1608 time on a match. */
de4f826b
DC
1609
1610 struct symbol *sym_found = NULL;
1611
1612 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1613 sym != NULL;
1614 sym = dict_iter_name_next (name, &iter))
c906108c 1615 {
5eeb2539 1616 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
94af9270 1617 SYMBOL_DOMAIN (sym), domain))
c906108c 1618 {
c906108c 1619 sym_found = sym;
2a2d4dc3 1620 if (!SYMBOL_IS_ARGUMENT (sym))
c906108c
SS
1621 {
1622 break;
1623 }
1624 }
c906108c 1625 }
de4f826b 1626 return (sym_found); /* Will be NULL if not found. */
c906108c 1627 }
c906108c
SS
1628}
1629
c906108c
SS
1630/* Find the symtab associated with PC and SECTION. Look through the
1631 psymtabs and read in another symtab if necessary. */
1632
1633struct symtab *
714835d5 1634find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
c906108c 1635{
52f0bd74 1636 struct block *b;
c906108c 1637 struct blockvector *bv;
52f0bd74
AC
1638 struct symtab *s = NULL;
1639 struct symtab *best_s = NULL;
1640 struct partial_symtab *ps;
1641 struct objfile *objfile;
6c95b8df 1642 struct program_space *pspace;
c906108c 1643 CORE_ADDR distance = 0;
8a48e967
DJ
1644 struct minimal_symbol *msymbol;
1645
6c95b8df
PA
1646 pspace = current_program_space;
1647
8a48e967
DJ
1648 /* If we know that this is not a text address, return failure. This is
1649 necessary because we loop based on the block's high and low code
1650 addresses, which do not include the data ranges, and because
1651 we call find_pc_sect_psymtab which has a similar restriction based
1652 on the partial_symtab's texthigh and textlow. */
1653 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1654 if (msymbol
712f90be
TT
1655 && (MSYMBOL_TYPE (msymbol) == mst_data
1656 || MSYMBOL_TYPE (msymbol) == mst_bss
1657 || MSYMBOL_TYPE (msymbol) == mst_abs
1658 || MSYMBOL_TYPE (msymbol) == mst_file_data
1659 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 1660 return NULL;
c906108c
SS
1661
1662 /* Search all symtabs for the one whose file contains our address, and which
1663 is the smallest of all the ones containing the address. This is designed
1664 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1665 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1666 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1667
1668 This happens for native ecoff format, where code from included files
1669 gets its own symtab. The symtab for the included file should have
1670 been read in already via the dependency mechanism.
1671 It might be swifter to create several symtabs with the same name
1672 like xcoff does (I'm not sure).
1673
1674 It also happens for objfiles that have their functions reordered.
1675 For these, the symtab we are looking for is not necessarily read in. */
1676
11309657 1677 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1678 {
1679 bv = BLOCKVECTOR (s);
1680 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
c906108c 1681
c5aa993b 1682 if (BLOCK_START (b) <= pc
c5aa993b 1683 && BLOCK_END (b) > pc
c5aa993b
JM
1684 && (distance == 0
1685 || BLOCK_END (b) - BLOCK_START (b) < distance))
1686 {
1687 /* For an objfile that has its functions reordered,
1688 find_pc_psymtab will find the proper partial symbol table
1689 and we simply return its corresponding symtab. */
1690 /* In order to better support objfiles that contain both
1691 stabs and coff debugging info, we continue on if a psymtab
1692 can't be found. */
ccefe4c4 1693 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
c5aa993b 1694 {
ccefe4c4
TT
1695 struct symtab *result;
1696 result
1697 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1698 msymbol,
1699 pc, section,
1700 0);
1701 if (result)
1702 return result;
c5aa993b
JM
1703 }
1704 if (section != 0)
1705 {
de4f826b 1706 struct dict_iterator iter;
261397f8 1707 struct symbol *sym = NULL;
c906108c 1708
de4f826b 1709 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 1710 {
261397f8 1711 fixup_symbol_section (sym, objfile);
714835d5 1712 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
c5aa993b
JM
1713 break;
1714 }
de4f826b 1715 if (sym == NULL)
c5aa993b
JM
1716 continue; /* no symbol in this symtab matches section */
1717 }
1718 distance = BLOCK_END (b) - BLOCK_START (b);
1719 best_s = s;
1720 }
1721 }
c906108c
SS
1722
1723 if (best_s != NULL)
c5aa993b 1724 return (best_s);
c906108c 1725
ccefe4c4
TT
1726 ALL_OBJFILES (objfile)
1727 {
1728 struct symtab *result;
1729 if (!objfile->sf)
1730 continue;
1731 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1732 msymbol,
1733 pc, section,
1734 1);
1735 if (result)
1736 return result;
1737 }
1738
1739 return NULL;
c906108c
SS
1740}
1741
1742/* Find the symtab associated with PC. Look through the psymtabs and
1743 read in another symtab if necessary. Backward compatibility, no section */
1744
1745struct symtab *
fba45db2 1746find_pc_symtab (CORE_ADDR pc)
c906108c
SS
1747{
1748 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1749}
c906108c 1750\f
c5aa993b 1751
7e73cedf 1752/* Find the source file and line number for a given PC value and SECTION.
c906108c
SS
1753 Return a structure containing a symtab pointer, a line number,
1754 and a pc range for the entire source line.
1755 The value's .pc field is NOT the specified pc.
1756 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1757 use the line that ends there. Otherwise, in that case, the line
1758 that begins there is used. */
1759
1760/* The big complication here is that a line may start in one file, and end just
1761 before the start of another file. This usually occurs when you #include
1762 code in the middle of a subroutine. To properly find the end of a line's PC
1763 range, we must search all symtabs associated with this compilation unit, and
1764 find the one whose first PC is closer than that of the next line in this
1765 symtab. */
1766
1767/* If it's worth the effort, we could be using a binary search. */
1768
1769struct symtab_and_line
714835d5 1770find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
c906108c
SS
1771{
1772 struct symtab *s;
52f0bd74
AC
1773 struct linetable *l;
1774 int len;
1775 int i;
1776 struct linetable_entry *item;
c906108c
SS
1777 struct symtab_and_line val;
1778 struct blockvector *bv;
1779 struct minimal_symbol *msymbol;
1780 struct minimal_symbol *mfunsym;
1781
1782 /* Info on best line seen so far, and where it starts, and its file. */
1783
1784 struct linetable_entry *best = NULL;
1785 CORE_ADDR best_end = 0;
1786 struct symtab *best_symtab = 0;
1787
1788 /* Store here the first line number
1789 of a file which contains the line at the smallest pc after PC.
1790 If we don't find a line whose range contains PC,
1791 we will use a line one less than this,
1792 with a range from the start of that file to the first line's pc. */
1793 struct linetable_entry *alt = NULL;
1794 struct symtab *alt_symtab = 0;
1795
1796 /* Info on best line seen in this file. */
1797
1798 struct linetable_entry *prev;
1799
1800 /* If this pc is not from the current frame,
1801 it is the address of the end of a call instruction.
1802 Quite likely that is the start of the following statement.
1803 But what we want is the statement containing the instruction.
1804 Fudge the pc to make sure we get that. */
1805
fe39c653 1806 init_sal (&val); /* initialize to zeroes */
c906108c 1807
6c95b8df
PA
1808 val.pspace = current_program_space;
1809
b77b1eb7
JB
1810 /* It's tempting to assume that, if we can't find debugging info for
1811 any function enclosing PC, that we shouldn't search for line
1812 number info, either. However, GAS can emit line number info for
1813 assembly files --- very helpful when debugging hand-written
1814 assembly code. In such a case, we'd have no debug info for the
1815 function, but we would have line info. */
648f4f79 1816
c906108c
SS
1817 if (notcurrent)
1818 pc -= 1;
1819
c5aa993b 1820 /* elz: added this because this function returned the wrong
c906108c
SS
1821 information if the pc belongs to a stub (import/export)
1822 to call a shlib function. This stub would be anywhere between
9af17804
DE
1823 two functions in the target, and the line info was erroneously
1824 taken to be the one of the line before the pc.
c5aa993b 1825 */
c906108c 1826 /* RT: Further explanation:
c5aa993b 1827
c906108c
SS
1828 * We have stubs (trampolines) inserted between procedures.
1829 *
1830 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1831 * exists in the main image.
1832 *
1833 * In the minimal symbol table, we have a bunch of symbols
1834 * sorted by start address. The stubs are marked as "trampoline",
1835 * the others appear as text. E.g.:
1836 *
9af17804 1837 * Minimal symbol table for main image
c906108c
SS
1838 * main: code for main (text symbol)
1839 * shr1: stub (trampoline symbol)
1840 * foo: code for foo (text symbol)
1841 * ...
1842 * Minimal symbol table for "shr1" image:
1843 * ...
1844 * shr1: code for shr1 (text symbol)
1845 * ...
1846 *
1847 * So the code below is trying to detect if we are in the stub
1848 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1849 * and if found, do the symbolization from the real-code address
1850 * rather than the stub address.
1851 *
1852 * Assumptions being made about the minimal symbol table:
1853 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1854 * if we're really in the trampoline. If we're beyond it (say
9af17804 1855 * we're in "foo" in the above example), it'll have a closer
c906108c
SS
1856 * symbol (the "foo" text symbol for example) and will not
1857 * return the trampoline.
1858 * 2. lookup_minimal_symbol_text() will find a real text symbol
1859 * corresponding to the trampoline, and whose address will
1860 * be different than the trampoline address. I put in a sanity
1861 * check for the address being the same, to avoid an
1862 * infinite recursion.
1863 */
c5aa993b
JM
1864 msymbol = lookup_minimal_symbol_by_pc (pc);
1865 if (msymbol != NULL)
c906108c 1866 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
c5aa993b 1867 {
2335f48e 1868 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
5520a790 1869 NULL);
c5aa993b
JM
1870 if (mfunsym == NULL)
1871 /* I eliminated this warning since it is coming out
1872 * in the following situation:
1873 * gdb shmain // test program with shared libraries
1874 * (gdb) break shr1 // function in shared lib
1875 * Warning: In stub for ...
9af17804 1876 * In the above situation, the shared lib is not loaded yet,
c5aa993b
JM
1877 * so of course we can't find the real func/line info,
1878 * but the "break" still works, and the warning is annoying.
1879 * So I commented out the warning. RT */
2335f48e 1880 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b 1881 /* fall through */
82cf6c60 1882 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
c5aa993b
JM
1883 /* Avoid infinite recursion */
1884 /* See above comment about why warning is commented out */
2335f48e 1885 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b
JM
1886 /* fall through */
1887 else
82cf6c60 1888 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
c5aa993b 1889 }
c906108c
SS
1890
1891
1892 s = find_pc_sect_symtab (pc, section);
1893 if (!s)
1894 {
1895 /* if no symbol information, return previous pc */
1896 if (notcurrent)
1897 pc++;
1898 val.pc = pc;
1899 return val;
1900 }
1901
1902 bv = BLOCKVECTOR (s);
1903
1904 /* Look at all the symtabs that share this blockvector.
1905 They all have the same apriori range, that we found was right;
1906 but they have different line tables. */
1907
1908 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1909 {
1910 /* Find the best line in this symtab. */
1911 l = LINETABLE (s);
1912 if (!l)
c5aa993b 1913 continue;
c906108c
SS
1914 len = l->nitems;
1915 if (len <= 0)
1916 {
1917 /* I think len can be zero if the symtab lacks line numbers
1918 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1919 I'm not sure which, and maybe it depends on the symbol
1920 reader). */
1921 continue;
1922 }
1923
1924 prev = NULL;
1925 item = l->item; /* Get first line info */
1926
1927 /* Is this file's first line closer than the first lines of other files?
c5aa993b 1928 If so, record this file, and its first line, as best alternate. */
c906108c
SS
1929 if (item->pc > pc && (!alt || item->pc < alt->pc))
1930 {
1931 alt = item;
1932 alt_symtab = s;
1933 }
1934
1935 for (i = 0; i < len; i++, item++)
1936 {
1937 /* Leave prev pointing to the linetable entry for the last line
1938 that started at or before PC. */
1939 if (item->pc > pc)
1940 break;
1941
1942 prev = item;
1943 }
1944
1945 /* At this point, prev points at the line whose start addr is <= pc, and
c5aa993b
JM
1946 item points at the next line. If we ran off the end of the linetable
1947 (pc >= start of the last line), then prev == item. If pc < start of
1948 the first line, prev will not be set. */
c906108c
SS
1949
1950 /* Is this file's best line closer than the best in the other files?
083ae935
DJ
1951 If so, record this file, and its best line, as best so far. Don't
1952 save prev if it represents the end of a function (i.e. line number
1953 0) instead of a real line. */
c906108c 1954
083ae935 1955 if (prev && prev->line && (!best || prev->pc > best->pc))
c906108c
SS
1956 {
1957 best = prev;
1958 best_symtab = s;
25d53da1
KB
1959
1960 /* Discard BEST_END if it's before the PC of the current BEST. */
1961 if (best_end <= best->pc)
1962 best_end = 0;
c906108c 1963 }
25d53da1
KB
1964
1965 /* If another line (denoted by ITEM) is in the linetable and its
1966 PC is after BEST's PC, but before the current BEST_END, then
1967 use ITEM's PC as the new best_end. */
1968 if (best && i < len && item->pc > best->pc
1969 && (best_end == 0 || best_end > item->pc))
1970 best_end = item->pc;
c906108c
SS
1971 }
1972
1973 if (!best_symtab)
1974 {
e86e87f7
DJ
1975 /* If we didn't find any line number info, just return zeros.
1976 We used to return alt->line - 1 here, but that could be
1977 anywhere; if we don't have line number info for this PC,
1978 don't make some up. */
1979 val.pc = pc;
c906108c 1980 }
e8717518
FF
1981 else if (best->line == 0)
1982 {
1983 /* If our best fit is in a range of PC's for which no line
1984 number info is available (line number is zero) then we didn't
1985 find any valid line information. */
1986 val.pc = pc;
1987 }
c906108c
SS
1988 else
1989 {
1990 val.symtab = best_symtab;
1991 val.line = best->line;
1992 val.pc = best->pc;
1993 if (best_end && (!alt || best_end < alt->pc))
1994 val.end = best_end;
1995 else if (alt)
1996 val.end = alt->pc;
1997 else
1998 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
1999 }
2000 val.section = section;
2001 return val;
2002}
2003
2004/* Backward compatibility (no section) */
2005
2006struct symtab_and_line
fba45db2 2007find_pc_line (CORE_ADDR pc, int notcurrent)
c906108c 2008{
714835d5 2009 struct obj_section *section;
c906108c
SS
2010
2011 section = find_pc_overlay (pc);
2012 if (pc_in_unmapped_range (pc, section))
2013 pc = overlay_mapped_address (pc, section);
2014 return find_pc_sect_line (pc, section, notcurrent);
2015}
c906108c 2016\f
c906108c
SS
2017/* Find line number LINE in any symtab whose name is the same as
2018 SYMTAB.
2019
2020 If found, return the symtab that contains the linetable in which it was
2021 found, set *INDEX to the index in the linetable of the best entry
2022 found, and set *EXACT_MATCH nonzero if the value returned is an
2023 exact match.
2024
2025 If not found, return NULL. */
2026
50641945 2027struct symtab *
fba45db2 2028find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
c906108c 2029{
6f43c46f 2030 int exact = 0; /* Initialized here to avoid a compiler warning. */
c906108c
SS
2031
2032 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2033 so far seen. */
2034
2035 int best_index;
2036 struct linetable *best_linetable;
2037 struct symtab *best_symtab;
2038
2039 /* First try looking it up in the given symtab. */
2040 best_linetable = LINETABLE (symtab);
2041 best_symtab = symtab;
2042 best_index = find_line_common (best_linetable, line, &exact);
2043 if (best_index < 0 || !exact)
2044 {
2045 /* Didn't find an exact match. So we better keep looking for
c5aa993b
JM
2046 another symtab with the same name. In the case of xcoff,
2047 multiple csects for one source file (produced by IBM's FORTRAN
2048 compiler) produce multiple symtabs (this is unavoidable
2049 assuming csects can be at arbitrary places in memory and that
2050 the GLOBAL_BLOCK of a symtab has a begin and end address). */
c906108c
SS
2051
2052 /* BEST is the smallest linenumber > LINE so far seen,
c5aa993b
JM
2053 or 0 if none has been seen so far.
2054 BEST_INDEX and BEST_LINETABLE identify the item for it. */
c906108c
SS
2055 int best;
2056
2057 struct objfile *objfile;
2058 struct symtab *s;
2059
2060 if (best_index >= 0)
2061 best = best_linetable->item[best_index].line;
2062 else
2063 best = 0;
2064
ccefe4c4 2065 ALL_OBJFILES (objfile)
51432cca 2066 {
ccefe4c4
TT
2067 if (objfile->sf)
2068 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2069 symtab->filename);
51432cca
CES
2070 }
2071
3ffc00b8
JB
2072 /* Get symbol full file name if possible. */
2073 symtab_to_fullname (symtab);
2074
c906108c 2075 ALL_SYMTABS (objfile, s)
c5aa993b
JM
2076 {
2077 struct linetable *l;
2078 int ind;
c906108c 2079
3ffc00b8 2080 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
c5aa993b 2081 continue;
3ffc00b8
JB
2082 if (symtab->fullname != NULL
2083 && symtab_to_fullname (s) != NULL
2084 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2085 continue;
c5aa993b
JM
2086 l = LINETABLE (s);
2087 ind = find_line_common (l, line, &exact);
2088 if (ind >= 0)
2089 {
2090 if (exact)
2091 {
2092 best_index = ind;
2093 best_linetable = l;
2094 best_symtab = s;
2095 goto done;
2096 }
2097 if (best == 0 || l->item[ind].line < best)
2098 {
2099 best = l->item[ind].line;
2100 best_index = ind;
2101 best_linetable = l;
2102 best_symtab = s;
2103 }
2104 }
2105 }
c906108c 2106 }
c5aa993b 2107done:
c906108c
SS
2108 if (best_index < 0)
2109 return NULL;
2110
2111 if (index)
2112 *index = best_index;
2113 if (exact_match)
2114 *exact_match = exact;
2115
2116 return best_symtab;
2117}
2118\f
2119/* Set the PC value for a given source file and line number and return true.
2120 Returns zero for invalid line number (and sets the PC to 0).
2121 The source file is specified with a struct symtab. */
2122
2123int
fba45db2 2124find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
c906108c
SS
2125{
2126 struct linetable *l;
2127 int ind;
2128
2129 *pc = 0;
2130 if (symtab == 0)
2131 return 0;
2132
2133 symtab = find_line_symtab (symtab, line, &ind, NULL);
2134 if (symtab != NULL)
2135 {
2136 l = LINETABLE (symtab);
2137 *pc = l->item[ind].pc;
2138 return 1;
2139 }
2140 else
2141 return 0;
2142}
2143
2144/* Find the range of pc values in a line.
2145 Store the starting pc of the line into *STARTPTR
2146 and the ending pc (start of next line) into *ENDPTR.
2147 Returns 1 to indicate success.
2148 Returns 0 if could not find the specified line. */
2149
2150int
fba45db2
KB
2151find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2152 CORE_ADDR *endptr)
c906108c
SS
2153{
2154 CORE_ADDR startaddr;
2155 struct symtab_and_line found_sal;
2156
2157 startaddr = sal.pc;
c5aa993b 2158 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
c906108c
SS
2159 return 0;
2160
2161 /* This whole function is based on address. For example, if line 10 has
2162 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2163 "info line *0x123" should say the line goes from 0x100 to 0x200
2164 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2165 This also insures that we never give a range like "starts at 0x134
2166 and ends at 0x12c". */
2167
2168 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2169 if (found_sal.line != sal.line)
2170 {
2171 /* The specified line (sal) has zero bytes. */
2172 *startptr = found_sal.pc;
2173 *endptr = found_sal.pc;
2174 }
2175 else
2176 {
2177 *startptr = found_sal.pc;
2178 *endptr = found_sal.end;
2179 }
2180 return 1;
2181}
2182
2183/* Given a line table and a line number, return the index into the line
2184 table for the pc of the nearest line whose number is >= the specified one.
2185 Return -1 if none is found. The value is >= 0 if it is an index.
2186
2187 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2188
2189static int
aa1ee363 2190find_line_common (struct linetable *l, int lineno,
fba45db2 2191 int *exact_match)
c906108c 2192{
52f0bd74
AC
2193 int i;
2194 int len;
c906108c
SS
2195
2196 /* BEST is the smallest linenumber > LINENO so far seen,
2197 or 0 if none has been seen so far.
2198 BEST_INDEX identifies the item for it. */
2199
2200 int best_index = -1;
2201 int best = 0;
2202
b7589f7d
DJ
2203 *exact_match = 0;
2204
c906108c
SS
2205 if (lineno <= 0)
2206 return -1;
2207 if (l == 0)
2208 return -1;
2209
2210 len = l->nitems;
2211 for (i = 0; i < len; i++)
2212 {
aa1ee363 2213 struct linetable_entry *item = &(l->item[i]);
c906108c
SS
2214
2215 if (item->line == lineno)
2216 {
2217 /* Return the first (lowest address) entry which matches. */
2218 *exact_match = 1;
2219 return i;
2220 }
2221
2222 if (item->line > lineno && (best == 0 || item->line < best))
2223 {
2224 best = item->line;
2225 best_index = i;
2226 }
2227 }
2228
2229 /* If we got here, we didn't get an exact match. */
c906108c
SS
2230 return best_index;
2231}
2232
2233int
fba45db2 2234find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
c906108c
SS
2235{
2236 struct symtab_and_line sal;
2237 sal = find_pc_line (pc, 0);
2238 *startptr = sal.pc;
2239 *endptr = sal.end;
2240 return sal.symtab != 0;
2241}
2242
bccdca4a
UW
2243/* Given a function start address PC and SECTION, find the first
2244 address after the function prologue. */
2245CORE_ADDR
2246find_function_start_pc (struct gdbarch *gdbarch,
714835d5 2247 CORE_ADDR pc, struct obj_section *section)
bccdca4a
UW
2248{
2249 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2250 so that gdbarch_skip_prologue has something unique to work on. */
2251 if (section_is_overlay (section) && !section_is_mapped (section))
2252 pc = overlay_unmapped_address (pc, section);
2253
2254 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2255 pc = gdbarch_skip_prologue (gdbarch, pc);
2256
2257 /* For overlays, map pc back into its mapped VMA range. */
2258 pc = overlay_mapped_address (pc, section);
2259
2260 return pc;
2261}
2262
8c7a1ee8
EZ
2263/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2264 address for that function that has an entry in SYMTAB's line info
2265 table. If such an entry cannot be found, return FUNC_ADDR
2266 unaltered. */
2267CORE_ADDR
2268skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2269{
2270 CORE_ADDR func_start, func_end;
2271 struct linetable *l;
2272 int ind, i, len;
2273 int best_lineno = 0;
2274 CORE_ADDR best_pc = func_addr;
2275
2276 /* Give up if this symbol has no lineinfo table. */
2277 l = LINETABLE (symtab);
2278 if (l == NULL)
2279 return func_addr;
2280
2281 /* Get the range for the function's PC values, or give up if we
2282 cannot, for some reason. */
2283 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2284 return func_addr;
2285
2286 /* Linetable entries are ordered by PC values, see the commentary in
2287 symtab.h where `struct linetable' is defined. Thus, the first
2288 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2289 address we are looking for. */
2290 for (i = 0; i < l->nitems; i++)
2291 {
2292 struct linetable_entry *item = &(l->item[i]);
2293
2294 /* Don't use line numbers of zero, they mark special entries in
2295 the table. See the commentary on symtab.h before the
2296 definition of struct linetable. */
2297 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2298 return item->pc;
2299 }
2300
2301 return func_addr;
2302}
2303
c906108c
SS
2304/* Given a function symbol SYM, find the symtab and line for the start
2305 of the function.
2306 If the argument FUNFIRSTLINE is nonzero, we want the first line
2307 of real code inside the function. */
2308
50641945 2309struct symtab_and_line
fba45db2 2310find_function_start_sal (struct symbol *sym, int funfirstline)
c906108c 2311{
bccdca4a
UW
2312 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2313 struct objfile *objfile = lookup_objfile_from_block (block);
2314 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2315
c906108c
SS
2316 CORE_ADDR pc;
2317 struct symtab_and_line sal;
edb3359d 2318 struct block *b, *function_block;
c906108c 2319
6c95b8df
PA
2320 struct cleanup *old_chain;
2321
2322 old_chain = save_current_space_and_thread ();
2323 switch_to_program_space_and_thread (objfile->pspace);
2324
bccdca4a
UW
2325 pc = BLOCK_START (block);
2326 fixup_symbol_section (sym, objfile);
c906108c 2327 if (funfirstline)
bccdca4a
UW
2328 {
2329 /* Skip "first line" of function (which is actually its prologue). */
714835d5 2330 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
c906108c 2331 }
714835d5 2332 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
c906108c 2333
a433963d 2334 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
c906108c
SS
2335 line is still part of the same function. */
2336 if (sal.pc != pc
bccdca4a
UW
2337 && BLOCK_START (block) <= sal.end
2338 && sal.end < BLOCK_END (block))
c906108c
SS
2339 {
2340 /* First pc of next line */
2341 pc = sal.end;
2342 /* Recalculate the line number (might not be N+1). */
714835d5 2343 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
c906108c 2344 }
4309257c
PM
2345
2346 /* On targets with executable formats that don't have a concept of
2347 constructors (ELF with .init has, PE doesn't), gcc emits a call
2348 to `__main' in `main' between the prologue and before user
2349 code. */
2350 if (funfirstline
d80b854b 2351 && gdbarch_skip_main_prologue_p (gdbarch)
4309257c
PM
2352 && SYMBOL_LINKAGE_NAME (sym)
2353 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2354 {
d80b854b 2355 pc = gdbarch_skip_main_prologue (gdbarch, pc);
4309257c 2356 /* Recalculate the line number (might not be N+1). */
714835d5 2357 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
4309257c
PM
2358 }
2359
8c7a1ee8
EZ
2360 /* If we still don't have a valid source line, try to find the first
2361 PC in the lineinfo table that belongs to the same function. This
2362 happens with COFF debug info, which does not seem to have an
2363 entry in lineinfo table for the code after the prologue which has
2364 no direct relation to source. For example, this was found to be
2365 the case with the DJGPP target using "gcc -gcoff" when the
2366 compiler inserted code after the prologue to make sure the stack
2367 is aligned. */
2368 if (funfirstline && sal.symtab == NULL)
2369 {
2370 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2371 /* Recalculate the line number. */
2372 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2373 }
2374
c906108c 2375 sal.pc = pc;
6c95b8df 2376 sal.pspace = objfile->pspace;
c906108c 2377
edb3359d
DJ
2378 /* Check if we are now inside an inlined function. If we can,
2379 use the call site of the function instead. */
2380 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2381 function_block = NULL;
2382 while (b != NULL)
2383 {
2384 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2385 function_block = b;
2386 else if (BLOCK_FUNCTION (b) != NULL)
2387 break;
2388 b = BLOCK_SUPERBLOCK (b);
2389 }
2390 if (function_block != NULL
2391 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2392 {
2393 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2394 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2395 }
2396
6c95b8df 2397 do_cleanups (old_chain);
c906108c
SS
2398 return sal;
2399}
50641945 2400
c906108c
SS
2401/* If P is of the form "operator[ \t]+..." where `...' is
2402 some legitimate operator text, return a pointer to the
2403 beginning of the substring of the operator text.
2404 Otherwise, return "". */
2405char *
fba45db2 2406operator_chars (char *p, char **end)
c906108c
SS
2407{
2408 *end = "";
2409 if (strncmp (p, "operator", 8))
2410 return *end;
2411 p += 8;
2412
2413 /* Don't get faked out by `operator' being part of a longer
2414 identifier. */
c5aa993b 2415 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
c906108c
SS
2416 return *end;
2417
2418 /* Allow some whitespace between `operator' and the operator symbol. */
2419 while (*p == ' ' || *p == '\t')
2420 p++;
2421
2422 /* Recognize 'operator TYPENAME'. */
2423
c5aa993b 2424 if (isalpha (*p) || *p == '_' || *p == '$')
c906108c 2425 {
aa1ee363 2426 char *q = p + 1;
c5aa993b 2427 while (isalnum (*q) || *q == '_' || *q == '$')
c906108c
SS
2428 q++;
2429 *end = q;
2430 return p;
2431 }
2432
53e8ad3d
MS
2433 while (*p)
2434 switch (*p)
2435 {
2436 case '\\': /* regexp quoting */
2437 if (p[1] == '*')
2438 {
2439 if (p[2] == '=') /* 'operator\*=' */
2440 *end = p + 3;
2441 else /* 'operator\*' */
2442 *end = p + 2;
2443 return p;
2444 }
2445 else if (p[1] == '[')
2446 {
2447 if (p[2] == ']')
8a3fe4f8 2448 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
53e8ad3d
MS
2449 else if (p[2] == '\\' && p[3] == ']')
2450 {
2451 *end = p + 4; /* 'operator\[\]' */
2452 return p;
2453 }
2454 else
8a3fe4f8 2455 error (_("nothing is allowed between '[' and ']'"));
53e8ad3d 2456 }
9af17804 2457 else
53e8ad3d
MS
2458 {
2459 /* Gratuitous qoute: skip it and move on. */
2460 p++;
2461 continue;
2462 }
2463 break;
2464 case '!':
2465 case '=':
2466 case '*':
2467 case '/':
2468 case '%':
2469 case '^':
2470 if (p[1] == '=')
2471 *end = p + 2;
2472 else
2473 *end = p + 1;
2474 return p;
2475 case '<':
2476 case '>':
2477 case '+':
2478 case '-':
2479 case '&':
2480 case '|':
2481 if (p[0] == '-' && p[1] == '>')
2482 {
2483 /* Struct pointer member operator 'operator->'. */
2484 if (p[2] == '*')
2485 {
2486 *end = p + 3; /* 'operator->*' */
2487 return p;
2488 }
2489 else if (p[2] == '\\')
2490 {
2491 *end = p + 4; /* Hopefully 'operator->\*' */
2492 return p;
2493 }
2494 else
2495 {
2496 *end = p + 2; /* 'operator->' */
2497 return p;
2498 }
2499 }
2500 if (p[1] == '=' || p[1] == p[0])
2501 *end = p + 2;
2502 else
2503 *end = p + 1;
2504 return p;
2505 case '~':
2506 case ',':
c5aa993b 2507 *end = p + 1;
53e8ad3d
MS
2508 return p;
2509 case '(':
2510 if (p[1] != ')')
8a3fe4f8 2511 error (_("`operator ()' must be specified without whitespace in `()'"));
c5aa993b 2512 *end = p + 2;
53e8ad3d
MS
2513 return p;
2514 case '?':
2515 if (p[1] != ':')
8a3fe4f8 2516 error (_("`operator ?:' must be specified without whitespace in `?:'"));
53e8ad3d
MS
2517 *end = p + 2;
2518 return p;
2519 case '[':
2520 if (p[1] != ']')
8a3fe4f8 2521 error (_("`operator []' must be specified without whitespace in `[]'"));
53e8ad3d
MS
2522 *end = p + 2;
2523 return p;
2524 default:
8a3fe4f8 2525 error (_("`operator %s' not supported"), p);
53e8ad3d
MS
2526 break;
2527 }
2528
c906108c
SS
2529 *end = "";
2530 return *end;
2531}
c906108c 2532\f
c5aa993b 2533
c94fdfd0
EZ
2534/* If FILE is not already in the table of files, return zero;
2535 otherwise return non-zero. Optionally add FILE to the table if ADD
2536 is non-zero. If *FIRST is non-zero, forget the old table
2537 contents. */
2538static int
2539filename_seen (const char *file, int add, int *first)
c906108c 2540{
c94fdfd0
EZ
2541 /* Table of files seen so far. */
2542 static const char **tab = NULL;
c906108c
SS
2543 /* Allocated size of tab in elements.
2544 Start with one 256-byte block (when using GNU malloc.c).
2545 24 is the malloc overhead when range checking is in effect. */
2546 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2547 /* Current size of tab in elements. */
2548 static int tab_cur_size;
c94fdfd0 2549 const char **p;
c906108c
SS
2550
2551 if (*first)
2552 {
2553 if (tab == NULL)
c94fdfd0 2554 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
c906108c
SS
2555 tab_cur_size = 0;
2556 }
2557
c94fdfd0 2558 /* Is FILE in tab? */
c906108c 2559 for (p = tab; p < tab + tab_cur_size; p++)
c94fdfd0
EZ
2560 if (strcmp (*p, file) == 0)
2561 return 1;
2562
2563 /* No; maybe add it to tab. */
2564 if (add)
c906108c 2565 {
c94fdfd0
EZ
2566 if (tab_cur_size == tab_alloc_size)
2567 {
2568 tab_alloc_size *= 2;
2569 tab = (const char **) xrealloc ((char *) tab,
2570 tab_alloc_size * sizeof (*tab));
2571 }
2572 tab[tab_cur_size++] = file;
c906108c 2573 }
c906108c 2574
c94fdfd0
EZ
2575 return 0;
2576}
2577
2578/* Slave routine for sources_info. Force line breaks at ,'s.
2579 NAME is the name to print and *FIRST is nonzero if this is the first
2580 name printed. Set *FIRST to zero. */
2581static void
d092d1a2 2582output_source_filename (const char *name, int *first)
c94fdfd0
EZ
2583{
2584 /* Since a single source file can result in several partial symbol
2585 tables, we need to avoid printing it more than once. Note: if
2586 some of the psymtabs are read in and some are not, it gets
2587 printed both under "Source files for which symbols have been
2588 read" and "Source files for which symbols will be read in on
2589 demand". I consider this a reasonable way to deal with the
2590 situation. I'm not sure whether this can also happen for
2591 symtabs; it doesn't hurt to check. */
2592
2593 /* Was NAME already seen? */
2594 if (filename_seen (name, 1, first))
2595 {
2596 /* Yes; don't print it again. */
2597 return;
2598 }
2599 /* No; print it and reset *FIRST. */
c906108c
SS
2600 if (*first)
2601 {
2602 *first = 0;
2603 }
2604 else
2605 {
2606 printf_filtered (", ");
2607 }
2608
2609 wrap_here ("");
2610 fputs_filtered (name, gdb_stdout);
c5aa993b 2611}
c906108c 2612
ccefe4c4
TT
2613/* A callback for map_partial_symbol_filenames. */
2614static void
2615output_partial_symbol_filename (const char *fullname, const char *filename,
2616 void *data)
2617{
2618 output_source_filename (fullname ? fullname : filename, data);
2619}
2620
c906108c 2621static void
fba45db2 2622sources_info (char *ignore, int from_tty)
c906108c 2623{
52f0bd74
AC
2624 struct symtab *s;
2625 struct partial_symtab *ps;
2626 struct objfile *objfile;
c906108c 2627 int first;
c5aa993b 2628
c906108c
SS
2629 if (!have_full_symbols () && !have_partial_symbols ())
2630 {
8a3fe4f8 2631 error (_("No symbol table is loaded. Use the \"file\" command."));
c906108c 2632 }
c5aa993b 2633
c906108c
SS
2634 printf_filtered ("Source files for which symbols have been read in:\n\n");
2635
2636 first = 1;
2637 ALL_SYMTABS (objfile, s)
c5aa993b 2638 {
d092d1a2
DJ
2639 const char *fullname = symtab_to_fullname (s);
2640 output_source_filename (fullname ? fullname : s->filename, &first);
c5aa993b 2641 }
c906108c 2642 printf_filtered ("\n\n");
c5aa993b 2643
c906108c
SS
2644 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2645
2646 first = 1;
ccefe4c4 2647 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
c906108c
SS
2648 printf_filtered ("\n");
2649}
2650
2651static int
ccefe4c4 2652file_matches (const char *file, char *files[], int nfiles)
c906108c
SS
2653{
2654 int i;
2655
2656 if (file != NULL && nfiles != 0)
2657 {
2658 for (i = 0; i < nfiles; i++)
c5aa993b 2659 {
31889e00 2660 if (strcmp (files[i], lbasename (file)) == 0)
c5aa993b
JM
2661 return 1;
2662 }
c906108c
SS
2663 }
2664 else if (nfiles == 0)
2665 return 1;
2666 return 0;
2667}
2668
2669/* Free any memory associated with a search. */
2670void
fba45db2 2671free_search_symbols (struct symbol_search *symbols)
c906108c
SS
2672{
2673 struct symbol_search *p;
2674 struct symbol_search *next;
2675
2676 for (p = symbols; p != NULL; p = next)
2677 {
2678 next = p->next;
b8c9b27d 2679 xfree (p);
c906108c
SS
2680 }
2681}
2682
5bd98722
AC
2683static void
2684do_free_search_symbols_cleanup (void *symbols)
2685{
2686 free_search_symbols (symbols);
2687}
2688
2689struct cleanup *
2690make_cleanup_free_search_symbols (struct symbol_search *symbols)
2691{
2692 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2693}
2694
434d2d4f
DJ
2695/* Helper function for sort_search_symbols and qsort. Can only
2696 sort symbols, not minimal symbols. */
2697static int
2698compare_search_syms (const void *sa, const void *sb)
2699{
2700 struct symbol_search **sym_a = (struct symbol_search **) sa;
2701 struct symbol_search **sym_b = (struct symbol_search **) sb;
2702
de5ad195
DC
2703 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2704 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
434d2d4f
DJ
2705}
2706
2707/* Sort the ``nfound'' symbols in the list after prevtail. Leave
2708 prevtail where it is, but update its next pointer to point to
2709 the first of the sorted symbols. */
2710static struct symbol_search *
2711sort_search_symbols (struct symbol_search *prevtail, int nfound)
2712{
2713 struct symbol_search **symbols, *symp, *old_next;
2714 int i;
2715
2716 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2717 * nfound);
2718 symp = prevtail->next;
2719 for (i = 0; i < nfound; i++)
2720 {
2721 symbols[i] = symp;
2722 symp = symp->next;
2723 }
2724 /* Generally NULL. */
2725 old_next = symp;
2726
2727 qsort (symbols, nfound, sizeof (struct symbol_search *),
2728 compare_search_syms);
2729
2730 symp = prevtail;
2731 for (i = 0; i < nfound; i++)
2732 {
2733 symp->next = symbols[i];
2734 symp = symp->next;
2735 }
2736 symp->next = old_next;
2737
8ed32cc0 2738 xfree (symbols);
434d2d4f
DJ
2739 return symp;
2740}
5bd98722 2741
ccefe4c4
TT
2742/* An object of this type is passed as the user_data to the
2743 expand_symtabs_matching method. */
2744struct search_symbols_data
2745{
2746 int nfiles;
2747 char **files;
2748 char *regexp;
2749};
2750
2751/* A callback for expand_symtabs_matching. */
2752static int
2753search_symbols_file_matches (const char *filename, void *user_data)
2754{
2755 struct search_symbols_data *data = user_data;
2756 return file_matches (filename, data->files, data->nfiles);
2757}
2758
2759/* A callback for expand_symtabs_matching. */
2760static int
2761search_symbols_name_matches (const char *symname, void *user_data)
2762{
2763 struct search_symbols_data *data = user_data;
2764 return data->regexp == NULL || re_exec (symname);
2765}
2766
c906108c
SS
2767/* Search the symbol table for matches to the regular expression REGEXP,
2768 returning the results in *MATCHES.
2769
2770 Only symbols of KIND are searched:
176620f1
EZ
2771 FUNCTIONS_DOMAIN - search all functions
2772 TYPES_DOMAIN - search all type names
176620f1 2773 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
c5aa993b 2774 and constants (enums)
c906108c
SS
2775
2776 free_search_symbols should be called when *MATCHES is no longer needed.
434d2d4f
DJ
2777
2778 The results are sorted locally; each symtab's global and static blocks are
2779 separately alphabetized.
c5aa993b 2780 */
c906108c 2781void
176620f1 2782search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
fd118b61 2783 struct symbol_search **matches)
c906108c 2784{
52f0bd74 2785 struct symtab *s;
52f0bd74 2786 struct blockvector *bv;
52f0bd74
AC
2787 struct block *b;
2788 int i = 0;
de4f826b 2789 struct dict_iterator iter;
52f0bd74 2790 struct symbol *sym;
c906108c
SS
2791 struct objfile *objfile;
2792 struct minimal_symbol *msymbol;
2793 char *val;
2794 int found_misc = 0;
2795 static enum minimal_symbol_type types[]
c5aa993b
JM
2796 =
2797 {mst_data, mst_text, mst_abs, mst_unknown};
c906108c 2798 static enum minimal_symbol_type types2[]
c5aa993b
JM
2799 =
2800 {mst_bss, mst_file_text, mst_abs, mst_unknown};
c906108c 2801 static enum minimal_symbol_type types3[]
c5aa993b
JM
2802 =
2803 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
c906108c 2804 static enum minimal_symbol_type types4[]
c5aa993b
JM
2805 =
2806 {mst_file_bss, mst_text, mst_abs, mst_unknown};
c906108c
SS
2807 enum minimal_symbol_type ourtype;
2808 enum minimal_symbol_type ourtype2;
2809 enum minimal_symbol_type ourtype3;
2810 enum minimal_symbol_type ourtype4;
2811 struct symbol_search *sr;
2812 struct symbol_search *psr;
2813 struct symbol_search *tail;
2814 struct cleanup *old_chain = NULL;
ccefe4c4 2815 struct search_symbols_data datum;
c906108c 2816
176620f1 2817 if (kind < VARIABLES_DOMAIN)
8a3fe4f8 2818 error (_("must search on specific domain"));
c906108c 2819
176620f1
EZ
2820 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2821 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2822 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2823 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
c906108c
SS
2824
2825 sr = *matches = NULL;
2826 tail = NULL;
2827
2828 if (regexp != NULL)
2829 {
2830 /* Make sure spacing is right for C++ operators.
2831 This is just a courtesy to make the matching less sensitive
2832 to how many spaces the user leaves between 'operator'
2833 and <TYPENAME> or <OPERATOR>. */
2834 char *opend;
2835 char *opname = operator_chars (regexp, &opend);
2836 if (*opname)
c5aa993b
JM
2837 {
2838 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2839 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2840 {
2841 /* There should 1 space between 'operator' and 'TYPENAME'. */
2842 if (opname[-1] != ' ' || opname[-2] == ' ')
2843 fix = 1;
2844 }
2845 else
2846 {
2847 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2848 if (opname[-1] == ' ')
2849 fix = 0;
2850 }
2851 /* If wrong number of spaces, fix it. */
2852 if (fix >= 0)
2853 {
045f55a6 2854 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
c5aa993b
JM
2855 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2856 regexp = tmp;
2857 }
2858 }
2859
c906108c 2860 if (0 != (val = re_comp (regexp)))
8a3fe4f8 2861 error (_("Invalid regexp (%s): %s"), val, regexp);
c906108c
SS
2862 }
2863
2864 /* Search through the partial symtabs *first* for all symbols
2865 matching the regexp. That way we don't have to reproduce all of
2866 the machinery below. */
2867
ccefe4c4
TT
2868 datum.nfiles = nfiles;
2869 datum.files = files;
2870 datum.regexp = regexp;
2871 ALL_OBJFILES (objfile)
c5aa993b 2872 {
ccefe4c4
TT
2873 if (objfile->sf)
2874 objfile->sf->qf->expand_symtabs_matching (objfile,
2875 search_symbols_file_matches,
2876 search_symbols_name_matches,
2877 kind,
2878 &datum);
c5aa993b 2879 }
c906108c
SS
2880
2881 /* Here, we search through the minimal symbol tables for functions
2882 and variables that match, and force their symbols to be read.
2883 This is in particular necessary for demangled variable names,
2884 which are no longer put into the partial symbol tables.
2885 The symbol will then be found during the scan of symtabs below.
2886
2887 For functions, find_pc_symtab should succeed if we have debug info
2888 for the function, for variables we have to call lookup_symbol
2889 to determine if the variable has debug info.
2890 If the lookup fails, set found_misc so that we will rescan to print
2891 any matching symbols without debug info.
c5aa993b 2892 */
c906108c 2893
176620f1 2894 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
c906108c
SS
2895 {
2896 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b 2897 {
89295b4d
PP
2898 QUIT;
2899
c5aa993b
JM
2900 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2901 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2902 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2903 MSYMBOL_TYPE (msymbol) == ourtype4)
2904 {
25120b0d
DC
2905 if (regexp == NULL
2906 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
2907 {
2908 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2909 {
b1262a02
DC
2910 /* FIXME: carlton/2003-02-04: Given that the
2911 semantics of lookup_symbol keeps on changing
2912 slightly, it would be a nice idea if we had a
2913 function lookup_symbol_minsym that found the
2914 symbol associated to a given minimal symbol (if
2915 any). */
176620f1 2916 if (kind == FUNCTIONS_DOMAIN
2335f48e 2917 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
b1262a02 2918 (struct block *) NULL,
2570f2b7 2919 VAR_DOMAIN, 0)
53c5240f 2920 == NULL)
b1262a02 2921 found_misc = 1;
c5aa993b
JM
2922 }
2923 }
2924 }
2925 }
c906108c
SS
2926 }
2927
11309657 2928 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
2929 {
2930 bv = BLOCKVECTOR (s);
c5aa993b
JM
2931 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
2932 {
434d2d4f
DJ
2933 struct symbol_search *prevtail = tail;
2934 int nfound = 0;
c5aa993b 2935 b = BLOCKVECTOR_BLOCK (bv, i);
de4f826b 2936 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 2937 {
cb1df416 2938 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
c5aa993b 2939 QUIT;
cb1df416
DJ
2940
2941 if (file_matches (real_symtab->filename, files, nfiles)
25120b0d
DC
2942 && ((regexp == NULL
2943 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
176620f1 2944 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
0fe7935b 2945 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
c5aa993b
JM
2946 && SYMBOL_CLASS (sym) != LOC_BLOCK
2947 && SYMBOL_CLASS (sym) != LOC_CONST)
176620f1 2948 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
bd2e94ce 2949 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
c5aa993b
JM
2950 {
2951 /* match */
2952 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
2953 psr->block = i;
cb1df416 2954 psr->symtab = real_symtab;
c5aa993b
JM
2955 psr->symbol = sym;
2956 psr->msymbol = NULL;
2957 psr->next = NULL;
2958 if (tail == NULL)
434d2d4f 2959 sr = psr;
c5aa993b
JM
2960 else
2961 tail->next = psr;
2962 tail = psr;
434d2d4f
DJ
2963 nfound ++;
2964 }
2965 }
2966 if (nfound > 0)
2967 {
2968 if (prevtail == NULL)
2969 {
2970 struct symbol_search dummy;
2971
2972 dummy.next = sr;
2973 tail = sort_search_symbols (&dummy, nfound);
2974 sr = dummy.next;
2975
2976 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b 2977 }
434d2d4f
DJ
2978 else
2979 tail = sort_search_symbols (prevtail, nfound);
c5aa993b
JM
2980 }
2981 }
c5aa993b 2982 }
c906108c
SS
2983
2984 /* If there are no eyes, avoid all contact. I mean, if there are
2985 no debug symbols, then print directly from the msymbol_vector. */
2986
176620f1 2987 if (found_misc || kind != FUNCTIONS_DOMAIN)
c906108c
SS
2988 {
2989 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b 2990 {
89295b4d
PP
2991 QUIT;
2992
c5aa993b
JM
2993 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2994 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2995 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2996 MSYMBOL_TYPE (msymbol) == ourtype4)
2997 {
25120b0d
DC
2998 if (regexp == NULL
2999 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
3000 {
3001 /* Functions: Look up by address. */
176620f1 3002 if (kind != FUNCTIONS_DOMAIN ||
c5aa993b
JM
3003 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3004 {
3005 /* Variables/Absolutes: Look up by name */
2335f48e 3006 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2570f2b7
UW
3007 (struct block *) NULL, VAR_DOMAIN, 0)
3008 == NULL)
c5aa993b
JM
3009 {
3010 /* match */
3011 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3012 psr->block = i;
3013 psr->msymbol = msymbol;
3014 psr->symtab = NULL;
3015 psr->symbol = NULL;
3016 psr->next = NULL;
3017 if (tail == NULL)
3018 {
3019 sr = psr;
5bd98722 3020 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b
JM
3021 }
3022 else
3023 tail->next = psr;
3024 tail = psr;
3025 }
3026 }
3027 }
3028 }
3029 }
c906108c
SS
3030 }
3031
3032 *matches = sr;
3033 if (sr != NULL)
3034 discard_cleanups (old_chain);
3035}
3036
3037/* Helper function for symtab_symbol_info, this function uses
3038 the data returned from search_symbols() to print information
3039 regarding the match to gdb_stdout.
c5aa993b 3040 */
c906108c 3041static void
176620f1 3042print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
fba45db2 3043 int block, char *last)
c906108c
SS
3044{
3045 if (last == NULL || strcmp (last, s->filename) != 0)
3046 {
3047 fputs_filtered ("\nFile ", gdb_stdout);
3048 fputs_filtered (s->filename, gdb_stdout);
3049 fputs_filtered (":\n", gdb_stdout);
3050 }
3051
176620f1 3052 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
c906108c 3053 printf_filtered ("static ");
c5aa993b 3054
c906108c 3055 /* Typedef that is not a C++ class */
176620f1
EZ
3056 if (kind == TYPES_DOMAIN
3057 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
a5238fbc 3058 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
c906108c 3059 /* variable, func, or typedef-that-is-c++-class */
176620f1
EZ
3060 else if (kind < TYPES_DOMAIN ||
3061 (kind == TYPES_DOMAIN &&
3062 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
c906108c
SS
3063 {
3064 type_print (SYMBOL_TYPE (sym),
c5aa993b 3065 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
de5ad195 3066 ? "" : SYMBOL_PRINT_NAME (sym)),
c5aa993b 3067 gdb_stdout, 0);
c906108c
SS
3068
3069 printf_filtered (";\n");
3070 }
c906108c
SS
3071}
3072
3073/* This help function for symtab_symbol_info() prints information
3074 for non-debugging symbols to gdb_stdout.
c5aa993b 3075 */
c906108c 3076static void
fba45db2 3077print_msymbol_info (struct minimal_symbol *msymbol)
c906108c 3078{
d80b854b 3079 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3ac4495a
MS
3080 char *tmp;
3081
d80b854b 3082 if (gdbarch_addr_bit (gdbarch) <= 32)
bb599908
PH
3083 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3084 & (CORE_ADDR) 0xffffffff,
3085 8);
3ac4495a 3086 else
bb599908
PH
3087 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3088 16);
3ac4495a 3089 printf_filtered ("%s %s\n",
de5ad195 3090 tmp, SYMBOL_PRINT_NAME (msymbol));
c906108c
SS
3091}
3092
3093/* This is the guts of the commands "info functions", "info types", and
3094 "info variables". It calls search_symbols to find all matches and then
3095 print_[m]symbol_info to print out some useful information about the
3096 matches.
c5aa993b 3097 */
c906108c 3098static void
176620f1 3099symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
c906108c
SS
3100{
3101 static char *classnames[]
c5aa993b
JM
3102 =
3103 {"variable", "function", "type", "method"};
c906108c
SS
3104 struct symbol_search *symbols;
3105 struct symbol_search *p;
3106 struct cleanup *old_chain;
3107 char *last_filename = NULL;
3108 int first = 1;
3109
3110 /* must make sure that if we're interrupted, symbols gets freed */
3111 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
5bd98722 3112 old_chain = make_cleanup_free_search_symbols (symbols);
c906108c
SS
3113
3114 printf_filtered (regexp
c5aa993b
JM
3115 ? "All %ss matching regular expression \"%s\":\n"
3116 : "All defined %ss:\n",
176620f1 3117 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
c906108c
SS
3118
3119 for (p = symbols; p != NULL; p = p->next)
3120 {
3121 QUIT;
3122
3123 if (p->msymbol != NULL)
c5aa993b
JM
3124 {
3125 if (first)
3126 {
3127 printf_filtered ("\nNon-debugging symbols:\n");
3128 first = 0;
3129 }
3130 print_msymbol_info (p->msymbol);
3131 }
c906108c 3132 else
c5aa993b
JM
3133 {
3134 print_symbol_info (kind,
3135 p->symtab,
3136 p->symbol,
3137 p->block,
3138 last_filename);
3139 last_filename = p->symtab->filename;
3140 }
c906108c
SS
3141 }
3142
3143 do_cleanups (old_chain);
3144}
3145
3146static void
fba45db2 3147variables_info (char *regexp, int from_tty)
c906108c 3148{
176620f1 3149 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
c906108c
SS
3150}
3151
3152static void
fba45db2 3153functions_info (char *regexp, int from_tty)
c906108c 3154{
176620f1 3155 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
c906108c
SS
3156}
3157
357e46e7 3158
c906108c 3159static void
fba45db2 3160types_info (char *regexp, int from_tty)
c906108c 3161{
176620f1 3162 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
c906108c
SS
3163}
3164
c906108c 3165/* Breakpoint all functions matching regular expression. */
8926118c 3166
8b93c638 3167void
fba45db2 3168rbreak_command_wrapper (char *regexp, int from_tty)
8b93c638
JM
3169{
3170 rbreak_command (regexp, from_tty);
3171}
8926118c 3172
95a42b64
TT
3173/* A cleanup function that calls end_rbreak_breakpoints. */
3174
3175static void
3176do_end_rbreak_breakpoints (void *ignore)
3177{
3178 end_rbreak_breakpoints ();
3179}
3180
c906108c 3181static void
fba45db2 3182rbreak_command (char *regexp, int from_tty)
c906108c
SS
3183{
3184 struct symbol_search *ss;
3185 struct symbol_search *p;
3186 struct cleanup *old_chain;
95a42b64
TT
3187 char *string = NULL;
3188 int len = 0;
c906108c 3189
176620f1 3190 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
5bd98722 3191 old_chain = make_cleanup_free_search_symbols (ss);
95a42b64 3192 make_cleanup (free_current_contents, &string);
c906108c 3193
95a42b64
TT
3194 start_rbreak_breakpoints ();
3195 make_cleanup (do_end_rbreak_breakpoints, NULL);
c906108c
SS
3196 for (p = ss; p != NULL; p = p->next)
3197 {
3198 if (p->msymbol == NULL)
c5aa993b 3199 {
95a42b64
TT
3200 int newlen = (strlen (p->symtab->filename)
3201 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3202 + 4);
3203 if (newlen > len)
3204 {
3205 string = xrealloc (string, newlen);
3206 len = newlen;
3207 }
c5aa993b
JM
3208 strcpy (string, p->symtab->filename);
3209 strcat (string, ":'");
2335f48e 3210 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
c5aa993b
JM
3211 strcat (string, "'");
3212 break_command (string, from_tty);
176620f1 3213 print_symbol_info (FUNCTIONS_DOMAIN,
c5aa993b
JM
3214 p->symtab,
3215 p->symbol,
3216 p->block,
3217 p->symtab->filename);
3218 }
c906108c 3219 else
c5aa993b 3220 {
95a42b64
TT
3221 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3222 + 3);
3223 if (newlen > len)
3224 {
3225 string = xrealloc (string, newlen);
3226 len = newlen;
3227 }
6214f497
DJ
3228 strcpy (string, "'");
3229 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3230 strcat (string, "'");
3231
3232 break_command (string, from_tty);
c5aa993b 3233 printf_filtered ("<function, no debug info> %s;\n",
de5ad195 3234 SYMBOL_PRINT_NAME (p->msymbol));
c5aa993b 3235 }
c906108c
SS
3236 }
3237
3238 do_cleanups (old_chain);
3239}
c906108c 3240\f
c5aa993b 3241
c906108c
SS
3242/* Helper routine for make_symbol_completion_list. */
3243
3244static int return_val_size;
3245static int return_val_index;
3246static char **return_val;
3247
3248#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
c906108c 3249 completion_list_add_name \
2335f48e 3250 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
c906108c
SS
3251
3252/* Test to see if the symbol specified by SYMNAME (which is already
c5aa993b
JM
3253 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3254 characters. If so, add it to the current completion list. */
c906108c
SS
3255
3256static void
fba45db2
KB
3257completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3258 char *text, char *word)
c906108c
SS
3259{
3260 int newsize;
3261 int i;
3262
3263 /* clip symbols that cannot match */
3264
3265 if (strncmp (symname, sym_text, sym_text_len) != 0)
3266 {
3267 return;
3268 }
3269
c906108c
SS
3270 /* We have a match for a completion, so add SYMNAME to the current list
3271 of matches. Note that the name is moved to freshly malloc'd space. */
3272
3273 {
3274 char *new;
3275 if (word == sym_text)
3276 {
3277 new = xmalloc (strlen (symname) + 5);
3278 strcpy (new, symname);
3279 }
3280 else if (word > sym_text)
3281 {
3282 /* Return some portion of symname. */
3283 new = xmalloc (strlen (symname) + 5);
3284 strcpy (new, symname + (word - sym_text));
3285 }
3286 else
3287 {
3288 /* Return some of SYM_TEXT plus symname. */
3289 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3290 strncpy (new, word, sym_text - word);
3291 new[sym_text - word] = '\0';
3292 strcat (new, symname);
3293 }
3294
c906108c
SS
3295 if (return_val_index + 3 > return_val_size)
3296 {
3297 newsize = (return_val_size *= 2) * sizeof (char *);
3298 return_val = (char **) xrealloc ((char *) return_val, newsize);
3299 }
3300 return_val[return_val_index++] = new;
3301 return_val[return_val_index] = NULL;
3302 }
3303}
3304
69636828
AF
3305/* ObjC: In case we are completing on a selector, look as the msymbol
3306 again and feed all the selectors into the mill. */
3307
3308static void
3309completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3310 int sym_text_len, char *text, char *word)
3311{
3312 static char *tmp = NULL;
3313 static unsigned int tmplen = 0;
9af17804 3314
69636828
AF
3315 char *method, *category, *selector;
3316 char *tmp2 = NULL;
9af17804 3317
69636828
AF
3318 method = SYMBOL_NATURAL_NAME (msymbol);
3319
3320 /* Is it a method? */
3321 if ((method[0] != '-') && (method[0] != '+'))
3322 return;
3323
3324 if (sym_text[0] == '[')
3325 /* Complete on shortened method method. */
3326 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
9af17804 3327
69636828
AF
3328 while ((strlen (method) + 1) >= tmplen)
3329 {
3330 if (tmplen == 0)
3331 tmplen = 1024;
3332 else
3333 tmplen *= 2;
3334 tmp = xrealloc (tmp, tmplen);
3335 }
3336 selector = strchr (method, ' ');
3337 if (selector != NULL)
3338 selector++;
9af17804 3339
69636828 3340 category = strchr (method, '(');
9af17804 3341
69636828
AF
3342 if ((category != NULL) && (selector != NULL))
3343 {
3344 memcpy (tmp, method, (category - method));
3345 tmp[category - method] = ' ';
3346 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3347 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3348 if (sym_text[0] == '[')
3349 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3350 }
9af17804 3351
69636828
AF
3352 if (selector != NULL)
3353 {
3354 /* Complete on selector only. */
3355 strcpy (tmp, selector);
3356 tmp2 = strchr (tmp, ']');
3357 if (tmp2 != NULL)
3358 *tmp2 = '\0';
9af17804 3359
69636828
AF
3360 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3361 }
3362}
3363
3364/* Break the non-quoted text based on the characters which are in
3365 symbols. FIXME: This should probably be language-specific. */
3366
3367static char *
3368language_search_unquoted_string (char *text, char *p)
3369{
3370 for (; p > text; --p)
3371 {
3372 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3373 continue;
3374 else
3375 {
3376 if ((current_language->la_language == language_objc))
3377 {
3378 if (p[-1] == ':') /* might be part of a method name */
3379 continue;
3380 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3381 p -= 2; /* beginning of a method name */
3382 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3383 { /* might be part of a method name */
3384 char *t = p;
3385
3386 /* Seeing a ' ' or a '(' is not conclusive evidence
3387 that we are in the middle of a method name. However,
3388 finding "-[" or "+[" should be pretty un-ambiguous.
3389 Unfortunately we have to find it now to decide. */
3390
3391 while (t > text)
3392 if (isalnum (t[-1]) || t[-1] == '_' ||
3393 t[-1] == ' ' || t[-1] == ':' ||
3394 t[-1] == '(' || t[-1] == ')')
3395 --t;
3396 else
3397 break;
3398
3399 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3400 p = t - 2; /* method name detected */
3401 /* else we leave with p unchanged */
3402 }
3403 }
3404 break;
3405 }
3406 }
3407 return p;
3408}
3409
edb3359d
DJ
3410static void
3411completion_list_add_fields (struct symbol *sym, char *sym_text,
3412 int sym_text_len, char *text, char *word)
3413{
3414 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3415 {
3416 struct type *t = SYMBOL_TYPE (sym);
3417 enum type_code c = TYPE_CODE (t);
3418 int j;
3419
3420 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3421 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3422 if (TYPE_FIELD_NAME (t, j))
3423 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3424 sym_text, sym_text_len, text, word);
3425 }
3426}
3427
ccefe4c4
TT
3428/* Type of the user_data argument passed to add_macro_name or
3429 add_partial_symbol_name. The contents are simply whatever is
3430 needed by completion_list_add_name. */
3431struct add_name_data
9a044a89
TT
3432{
3433 char *sym_text;
3434 int sym_text_len;
3435 char *text;
3436 char *word;
3437};
3438
3439/* A callback used with macro_for_each and macro_for_each_in_scope.
3440 This adds a macro's name to the current completion list. */
3441static void
3442add_macro_name (const char *name, const struct macro_definition *ignore,
3443 void *user_data)
3444{
ccefe4c4
TT
3445 struct add_name_data *datum = (struct add_name_data *) user_data;
3446 completion_list_add_name ((char *) name,
3447 datum->sym_text, datum->sym_text_len,
3448 datum->text, datum->word);
3449}
3450
3451/* A callback for map_partial_symbol_names. */
3452static void
3453add_partial_symbol_name (const char *name, void *user_data)
3454{
3455 struct add_name_data *datum = (struct add_name_data *) user_data;
9a044a89
TT
3456 completion_list_add_name ((char *) name,
3457 datum->sym_text, datum->sym_text_len,
3458 datum->text, datum->word);
3459}
3460
c906108c 3461char **
41d27058 3462default_make_symbol_completion_list (char *text, char *word)
c906108c 3463{
41d27058
JB
3464 /* Problem: All of the symbols have to be copied because readline
3465 frees them. I'm not going to worry about this; hopefully there
3466 won't be that many. */
3467
de4f826b
DC
3468 struct symbol *sym;
3469 struct symtab *s;
de4f826b
DC
3470 struct minimal_symbol *msymbol;
3471 struct objfile *objfile;
edb3359d
DJ
3472 struct block *b;
3473 const struct block *surrounding_static_block, *surrounding_global_block;
de4f826b 3474 struct dict_iterator iter;
c906108c
SS
3475 /* The symbol we are completing on. Points in same buffer as text. */
3476 char *sym_text;
3477 /* Length of sym_text. */
3478 int sym_text_len;
ccefe4c4 3479 struct add_name_data datum;
c906108c 3480
41d27058 3481 /* Now look for the symbol we are supposed to complete on. */
c906108c
SS
3482 {
3483 char *p;
3484 char quote_found;
3485 char *quote_pos = NULL;
3486
3487 /* First see if this is a quoted string. */
3488 quote_found = '\0';
3489 for (p = text; *p != '\0'; ++p)
3490 {
3491 if (quote_found != '\0')
3492 {
3493 if (*p == quote_found)
3494 /* Found close quote. */
3495 quote_found = '\0';
3496 else if (*p == '\\' && p[1] == quote_found)
3497 /* A backslash followed by the quote character
c5aa993b 3498 doesn't end the string. */
c906108c
SS
3499 ++p;
3500 }
3501 else if (*p == '\'' || *p == '"')
3502 {
3503 quote_found = *p;
3504 quote_pos = p;
3505 }
3506 }
3507 if (quote_found == '\'')
3508 /* A string within single quotes can be a symbol, so complete on it. */
3509 sym_text = quote_pos + 1;
3510 else if (quote_found == '"')
3511 /* A double-quoted string is never a symbol, nor does it make sense
c5aa993b 3512 to complete it any other way. */
c94fdfd0
EZ
3513 {
3514 return_val = (char **) xmalloc (sizeof (char *));
3515 return_val[0] = NULL;
3516 return return_val;
3517 }
c906108c
SS
3518 else
3519 {
3520 /* It is not a quoted string. Break it based on the characters
3521 which are in symbols. */
3522 while (p > text)
3523 {
95699ff0
KS
3524 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3525 || p[-1] == ':')
c906108c
SS
3526 --p;
3527 else
3528 break;
3529 }
3530 sym_text = p;
3531 }
3532 }
3533
3534 sym_text_len = strlen (sym_text);
3535
3536 return_val_size = 100;
3537 return_val_index = 0;
3538 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3539 return_val[0] = NULL;
3540
ccefe4c4
TT
3541 datum.sym_text = sym_text;
3542 datum.sym_text_len = sym_text_len;
3543 datum.text = text;
3544 datum.word = word;
3545
c906108c
SS
3546 /* Look through the partial symtabs for all symbols which begin
3547 by matching SYM_TEXT. Add each one that you find to the list. */
ccefe4c4 3548 map_partial_symbol_names (add_partial_symbol_name, &datum);
c906108c
SS
3549
3550 /* At this point scan through the misc symbol vectors and add each
3551 symbol you find to the list. Eventually we want to ignore
3552 anything that isn't a text symbol (everything else will be
3553 handled by the psymtab code above). */
3554
3555 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b
JM
3556 {
3557 QUIT;
3558 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
9af17804 3559
69636828 3560 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
c5aa993b 3561 }
c906108c
SS
3562
3563 /* Search upwards from currently selected frame (so that we can
edb3359d
DJ
3564 complete on local vars). Also catch fields of types defined in
3565 this places which match our text string. Only complete on types
3566 visible from current context. */
3567
3568 b = get_selected_block (0);
3569 surrounding_static_block = block_static_block (b);
3570 surrounding_global_block = block_global_block (b);
3571 if (surrounding_static_block != NULL)
3572 while (b != surrounding_static_block)
3573 {
3574 QUIT;
c906108c 3575
edb3359d
DJ
3576 ALL_BLOCK_SYMBOLS (b, iter, sym)
3577 {
3578 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3579 word);
3580 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3581 word);
3582 }
c5aa993b 3583
edb3359d
DJ
3584 /* Stop when we encounter an enclosing function. Do not stop for
3585 non-inlined functions - the locals of the enclosing function
3586 are in scope for a nested function. */
3587 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3588 break;
3589 b = BLOCK_SUPERBLOCK (b);
3590 }
c906108c 3591
edb3359d 3592 /* Add fields from the file's types; symbols will be added below. */
c906108c 3593
edb3359d
DJ
3594 if (surrounding_static_block != NULL)
3595 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3596 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3597
3598 if (surrounding_global_block != NULL)
3599 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3600 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
c906108c
SS
3601
3602 /* Go through the symtabs and check the externs and statics for
3603 symbols which match. */
3604
11309657 3605 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3606 {
3607 QUIT;
3608 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 3609 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3610 {
c5aa993b
JM
3611 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3612 }
3613 }
c906108c 3614
11309657 3615 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3616 {
3617 QUIT;
3618 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
de4f826b 3619 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3620 {
c5aa993b
JM
3621 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3622 }
3623 }
c906108c 3624
9a044a89
TT
3625 if (current_language->la_macro_expansion == macro_expansion_c)
3626 {
3627 struct macro_scope *scope;
9a044a89
TT
3628
3629 /* Add any macros visible in the default scope. Note that this
3630 may yield the occasional wrong result, because an expression
3631 might be evaluated in a scope other than the default. For
3632 example, if the user types "break file:line if <TAB>", the
3633 resulting expression will be evaluated at "file:line" -- but
3634 at there does not seem to be a way to detect this at
3635 completion time. */
3636 scope = default_macro_scope ();
3637 if (scope)
3638 {
3639 macro_for_each_in_scope (scope->file, scope->line,
3640 add_macro_name, &datum);
3641 xfree (scope);
3642 }
3643
3644 /* User-defined macros are always visible. */
3645 macro_for_each (macro_user_macros, add_macro_name, &datum);
3646 }
3647
c906108c
SS
3648 return (return_val);
3649}
3650
41d27058
JB
3651/* Return a NULL terminated array of all symbols (regardless of class)
3652 which begin by matching TEXT. If the answer is no symbols, then
3653 the return value is an array which contains only a NULL pointer. */
3654
3655char **
3656make_symbol_completion_list (char *text, char *word)
3657{
3658 return current_language->la_make_symbol_completion_list (text, word);
3659}
3660
d8906c6f
TJB
3661/* Like make_symbol_completion_list, but suitable for use as a
3662 completion function. */
3663
3664char **
3665make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3666 char *text, char *word)
3667{
3668 return make_symbol_completion_list (text, word);
3669}
3670
c94fdfd0
EZ
3671/* Like make_symbol_completion_list, but returns a list of symbols
3672 defined in a source file FILE. */
3673
3674char **
3675make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3676{
52f0bd74
AC
3677 struct symbol *sym;
3678 struct symtab *s;
3679 struct block *b;
de4f826b 3680 struct dict_iterator iter;
c94fdfd0
EZ
3681 /* The symbol we are completing on. Points in same buffer as text. */
3682 char *sym_text;
3683 /* Length of sym_text. */
3684 int sym_text_len;
3685
3686 /* Now look for the symbol we are supposed to complete on.
3687 FIXME: This should be language-specific. */
3688 {
3689 char *p;
3690 char quote_found;
3691 char *quote_pos = NULL;
3692
3693 /* First see if this is a quoted string. */
3694 quote_found = '\0';
3695 for (p = text; *p != '\0'; ++p)
3696 {
3697 if (quote_found != '\0')
3698 {
3699 if (*p == quote_found)
3700 /* Found close quote. */
3701 quote_found = '\0';
3702 else if (*p == '\\' && p[1] == quote_found)
3703 /* A backslash followed by the quote character
3704 doesn't end the string. */
3705 ++p;
3706 }
3707 else if (*p == '\'' || *p == '"')
3708 {
3709 quote_found = *p;
3710 quote_pos = p;
3711 }
3712 }
3713 if (quote_found == '\'')
3714 /* A string within single quotes can be a symbol, so complete on it. */
3715 sym_text = quote_pos + 1;
3716 else if (quote_found == '"')
3717 /* A double-quoted string is never a symbol, nor does it make sense
3718 to complete it any other way. */
3719 {
3720 return_val = (char **) xmalloc (sizeof (char *));
3721 return_val[0] = NULL;
3722 return return_val;
3723 }
3724 else
3725 {
69636828
AF
3726 /* Not a quoted string. */
3727 sym_text = language_search_unquoted_string (text, p);
c94fdfd0
EZ
3728 }
3729 }
3730
3731 sym_text_len = strlen (sym_text);
3732
3733 return_val_size = 10;
3734 return_val_index = 0;
3735 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3736 return_val[0] = NULL;
3737
3738 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3739 in). */
3740 s = lookup_symtab (srcfile);
3741 if (s == NULL)
3742 {
3743 /* Maybe they typed the file with leading directories, while the
3744 symbol tables record only its basename. */
31889e00 3745 const char *tail = lbasename (srcfile);
c94fdfd0
EZ
3746
3747 if (tail > srcfile)
3748 s = lookup_symtab (tail);
3749 }
3750
3751 /* If we have no symtab for that file, return an empty list. */
3752 if (s == NULL)
3753 return (return_val);
3754
3755 /* Go through this symtab and check the externs and statics for
3756 symbols which match. */
3757
3758 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 3759 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 3760 {
c94fdfd0
EZ
3761 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3762 }
3763
3764 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
de4f826b 3765 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 3766 {
c94fdfd0
EZ
3767 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3768 }
3769
3770 return (return_val);
3771}
3772
3773/* A helper function for make_source_files_completion_list. It adds
3774 another file name to a list of possible completions, growing the
3775 list as necessary. */
3776
3777static void
3778add_filename_to_list (const char *fname, char *text, char *word,
3779 char ***list, int *list_used, int *list_alloced)
3780{
3781 char *new;
3782 size_t fnlen = strlen (fname);
3783
3784 if (*list_used + 1 >= *list_alloced)
3785 {
3786 *list_alloced *= 2;
3787 *list = (char **) xrealloc ((char *) *list,
3788 *list_alloced * sizeof (char *));
3789 }
3790
3791 if (word == text)
3792 {
3793 /* Return exactly fname. */
3794 new = xmalloc (fnlen + 5);
3795 strcpy (new, fname);
3796 }
3797 else if (word > text)
3798 {
3799 /* Return some portion of fname. */
3800 new = xmalloc (fnlen + 5);
3801 strcpy (new, fname + (word - text));
3802 }
3803 else
3804 {
3805 /* Return some of TEXT plus fname. */
3806 new = xmalloc (fnlen + (text - word) + 5);
3807 strncpy (new, word, text - word);
3808 new[text - word] = '\0';
3809 strcat (new, fname);
3810 }
3811 (*list)[*list_used] = new;
3812 (*list)[++*list_used] = NULL;
3813}
3814
3815static int
3816not_interesting_fname (const char *fname)
3817{
3818 static const char *illegal_aliens[] = {
3819 "_globals_", /* inserted by coff_symtab_read */
3820 NULL
3821 };
3822 int i;
3823
3824 for (i = 0; illegal_aliens[i]; i++)
3825 {
3826 if (strcmp (fname, illegal_aliens[i]) == 0)
3827 return 1;
3828 }
3829 return 0;
3830}
3831
ccefe4c4
TT
3832/* An object of this type is passed as the user_data argument to
3833 map_partial_symbol_filenames. */
3834struct add_partial_filename_data
3835{
3836 int *first;
3837 char *text;
3838 char *word;
3839 int text_len;
3840 char ***list;
3841 int *list_used;
3842 int *list_alloced;
3843};
3844
3845/* A callback for map_partial_symbol_filenames. */
3846static void
3847maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3848 void *user_data)
3849{
3850 struct add_partial_filename_data *data = user_data;
3851
3852 if (not_interesting_fname (filename))
3853 return;
3854 if (!filename_seen (filename, 1, data->first)
3855#if HAVE_DOS_BASED_FILE_SYSTEM
3856 && strncasecmp (filename, data->text, data->text_len) == 0
3857#else
3858 && strncmp (filename, data->text, data->text_len) == 0
3859#endif
3860 )
3861 {
3862 /* This file matches for a completion; add it to the
3863 current list of matches. */
3864 add_filename_to_list (filename, data->text, data->word,
3865 data->list, data->list_used, data->list_alloced);
3866 }
3867 else
3868 {
3869 const char *base_name = lbasename (filename);
3870 if (base_name != filename
3871 && !filename_seen (base_name, 1, data->first)
3872#if HAVE_DOS_BASED_FILE_SYSTEM
3873 && strncasecmp (base_name, data->text, data->text_len) == 0
3874#else
3875 && strncmp (base_name, data->text, data->text_len) == 0
3876#endif
3877 )
3878 add_filename_to_list (base_name, data->text, data->word,
3879 data->list, data->list_used, data->list_alloced);
3880 }
3881}
3882
c94fdfd0
EZ
3883/* Return a NULL terminated array of all source files whose names
3884 begin with matching TEXT. The file names are looked up in the
3885 symbol tables of this program. If the answer is no matchess, then
3886 the return value is an array which contains only a NULL pointer. */
3887
3888char **
3889make_source_files_completion_list (char *text, char *word)
3890{
52f0bd74 3891 struct symtab *s;
52f0bd74 3892 struct objfile *objfile;
c94fdfd0
EZ
3893 int first = 1;
3894 int list_alloced = 1;
3895 int list_used = 0;
3896 size_t text_len = strlen (text);
3897 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
31889e00 3898 const char *base_name;
ccefe4c4 3899 struct add_partial_filename_data datum;
c94fdfd0
EZ
3900
3901 list[0] = NULL;
3902
3903 if (!have_full_symbols () && !have_partial_symbols ())
3904 return list;
3905
3906 ALL_SYMTABS (objfile, s)
3907 {
3908 if (not_interesting_fname (s->filename))
3909 continue;
3910 if (!filename_seen (s->filename, 1, &first)
3911#if HAVE_DOS_BASED_FILE_SYSTEM
3912 && strncasecmp (s->filename, text, text_len) == 0
3913#else
3914 && strncmp (s->filename, text, text_len) == 0
3915#endif
3916 )
3917 {
3918 /* This file matches for a completion; add it to the current
3919 list of matches. */
3920 add_filename_to_list (s->filename, text, word,
3921 &list, &list_used, &list_alloced);
3922 }
3923 else
3924 {
3925 /* NOTE: We allow the user to type a base name when the
3926 debug info records leading directories, but not the other
3927 way around. This is what subroutines of breakpoint
3928 command do when they parse file names. */
31889e00 3929 base_name = lbasename (s->filename);
c94fdfd0
EZ
3930 if (base_name != s->filename
3931 && !filename_seen (base_name, 1, &first)
3932#if HAVE_DOS_BASED_FILE_SYSTEM
3933 && strncasecmp (base_name, text, text_len) == 0
3934#else
3935 && strncmp (base_name, text, text_len) == 0
3936#endif
3937 )
3938 add_filename_to_list (base_name, text, word,
3939 &list, &list_used, &list_alloced);
3940 }
3941 }
3942
ccefe4c4
TT
3943 datum.first = &first;
3944 datum.text = text;
3945 datum.word = word;
3946 datum.text_len = text_len;
3947 datum.list = &list;
3948 datum.list_used = &list_used;
3949 datum.list_alloced = &list_alloced;
3950 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
c94fdfd0
EZ
3951
3952 return list;
3953}
3954
c906108c
SS
3955/* Determine if PC is in the prologue of a function. The prologue is the area
3956 between the first instruction of a function, and the first executable line.
3957 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3958
3959 If non-zero, func_start is where we think the prologue starts, possibly
3960 by previous examination of symbol table information.
3961 */
3962
3963int
d80b854b 3964in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
c906108c
SS
3965{
3966 struct symtab_and_line sal;
3967 CORE_ADDR func_addr, func_end;
3968
54cf9c03
EZ
3969 /* We have several sources of information we can consult to figure
3970 this out.
3971 - Compilers usually emit line number info that marks the prologue
3972 as its own "source line". So the ending address of that "line"
3973 is the end of the prologue. If available, this is the most
3974 reliable method.
3975 - The minimal symbols and partial symbols, which can usually tell
3976 us the starting and ending addresses of a function.
3977 - If we know the function's start address, we can call the
a433963d 3978 architecture-defined gdbarch_skip_prologue function to analyze the
54cf9c03
EZ
3979 instruction stream and guess where the prologue ends.
3980 - Our `func_start' argument; if non-zero, this is the caller's
3981 best guess as to the function's entry point. At the time of
3982 this writing, handle_inferior_event doesn't get this right, so
3983 it should be our last resort. */
3984
3985 /* Consult the partial symbol table, to find which function
3986 the PC is in. */
3987 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3988 {
3989 CORE_ADDR prologue_end;
c906108c 3990
54cf9c03
EZ
3991 /* We don't even have minsym information, so fall back to using
3992 func_start, if given. */
3993 if (! func_start)
3994 return 1; /* We *might* be in a prologue. */
c906108c 3995
d80b854b 3996 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
c906108c 3997
54cf9c03
EZ
3998 return func_start <= pc && pc < prologue_end;
3999 }
c906108c 4000
54cf9c03
EZ
4001 /* If we have line number information for the function, that's
4002 usually pretty reliable. */
4003 sal = find_pc_line (func_addr, 0);
c906108c 4004
54cf9c03
EZ
4005 /* Now sal describes the source line at the function's entry point,
4006 which (by convention) is the prologue. The end of that "line",
4007 sal.end, is the end of the prologue.
4008
4009 Note that, for functions whose source code is all on a single
4010 line, the line number information doesn't always end up this way.
4011 So we must verify that our purported end-of-prologue address is
4012 *within* the function, not at its start or end. */
4013 if (sal.line == 0
4014 || sal.end <= func_addr
4015 || func_end <= sal.end)
4016 {
4017 /* We don't have any good line number info, so use the minsym
4018 information, together with the architecture-specific prologue
4019 scanning code. */
d80b854b 4020 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
c906108c 4021
54cf9c03
EZ
4022 return func_addr <= pc && pc < prologue_end;
4023 }
c906108c 4024
54cf9c03
EZ
4025 /* We have line number info, and it looks good. */
4026 return func_addr <= pc && pc < sal.end;
c906108c
SS
4027}
4028
634aa483
AC
4029/* Given PC at the function's start address, attempt to find the
4030 prologue end using SAL information. Return zero if the skip fails.
4031
4032 A non-optimized prologue traditionally has one SAL for the function
4033 and a second for the function body. A single line function has
4034 them both pointing at the same line.
4035
4036 An optimized prologue is similar but the prologue may contain
4037 instructions (SALs) from the instruction body. Need to skip those
4038 while not getting into the function body.
4039
4040 The functions end point and an increasing SAL line are used as
4041 indicators of the prologue's endpoint.
4042
4043 This code is based on the function refine_prologue_limit (versions
4044 found in both ia64 and ppc). */
4045
4046CORE_ADDR
d80b854b 4047skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
634aa483
AC
4048{
4049 struct symtab_and_line prologue_sal;
4050 CORE_ADDR start_pc;
4051 CORE_ADDR end_pc;
d54be744 4052 struct block *bl;
634aa483
AC
4053
4054 /* Get an initial range for the function. */
4055 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
d80b854b 4056 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
634aa483
AC
4057
4058 prologue_sal = find_pc_line (start_pc, 0);
4059 if (prologue_sal.line != 0)
4060 {
d54be744
DJ
4061 /* For langauges other than assembly, treat two consecutive line
4062 entries at the same address as a zero-instruction prologue.
4063 The GNU assembler emits separate line notes for each instruction
4064 in a multi-instruction macro, but compilers generally will not
4065 do this. */
4066 if (prologue_sal.symtab->language != language_asm)
4067 {
4068 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4069 int exact;
4070 int idx = 0;
4071
4072 /* Skip any earlier lines, and any end-of-sequence marker
4073 from a previous function. */
4074 while (linetable->item[idx].pc != prologue_sal.pc
4075 || linetable->item[idx].line == 0)
4076 idx++;
4077
4078 if (idx+1 < linetable->nitems
4079 && linetable->item[idx+1].line != 0
4080 && linetable->item[idx+1].pc == start_pc)
4081 return start_pc;
4082 }
4083
576c2025
FF
4084 /* If there is only one sal that covers the entire function,
4085 then it is probably a single line function, like
4086 "foo(){}". */
91934273 4087 if (prologue_sal.end >= end_pc)
4e463ff5 4088 return 0;
d54be744 4089
634aa483
AC
4090 while (prologue_sal.end < end_pc)
4091 {
4092 struct symtab_and_line sal;
4093
4094 sal = find_pc_line (prologue_sal.end, 0);
4095 if (sal.line == 0)
4096 break;
4097 /* Assume that a consecutive SAL for the same (or larger)
4098 line mark the prologue -> body transition. */
4099 if (sal.line >= prologue_sal.line)
4100 break;
edb3359d
DJ
4101
4102 /* The line number is smaller. Check that it's from the
4103 same function, not something inlined. If it's inlined,
4104 then there is no point comparing the line numbers. */
4105 bl = block_for_pc (prologue_sal.end);
4106 while (bl)
4107 {
4108 if (block_inlined_p (bl))
4109 break;
4110 if (BLOCK_FUNCTION (bl))
4111 {
4112 bl = NULL;
4113 break;
4114 }
4115 bl = BLOCK_SUPERBLOCK (bl);
4116 }
4117 if (bl != NULL)
4118 break;
4119
634aa483
AC
4120 /* The case in which compiler's optimizer/scheduler has
4121 moved instructions into the prologue. We look ahead in
4122 the function looking for address ranges whose
4123 corresponding line number is less the first one that we
4124 found for the function. This is more conservative then
4125 refine_prologue_limit which scans a large number of SALs
4126 looking for any in the prologue */
4127 prologue_sal = sal;
4128 }
4129 }
d54be744
DJ
4130
4131 if (prologue_sal.end < end_pc)
4132 /* Return the end of this line, or zero if we could not find a
4133 line. */
4134 return prologue_sal.end;
4135 else
4136 /* Don't return END_PC, which is past the end of the function. */
4137 return prologue_sal.pc;
634aa483 4138}
c906108c 4139\f
50641945
FN
4140struct symtabs_and_lines
4141decode_line_spec (char *string, int funfirstline)
4142{
4143 struct symtabs_and_lines sals;
0378c332 4144 struct symtab_and_line cursal;
9af17804 4145
50641945 4146 if (string == 0)
8a3fe4f8 4147 error (_("Empty line specification."));
9af17804 4148
0378c332 4149 /* We use whatever is set as the current source line. We do not try
9af17804 4150 and get a default or it will recursively call us! */
0378c332 4151 cursal = get_current_source_symtab_and_line ();
9af17804 4152
50641945 4153 sals = decode_line_1 (&string, funfirstline,
0378c332 4154 cursal.symtab, cursal.line,
bffe1ece 4155 (char ***) NULL, NULL);
0378c332 4156
50641945 4157 if (*string)
8a3fe4f8 4158 error (_("Junk at end of line specification: %s"), string);
50641945
FN
4159 return sals;
4160}
c5aa993b 4161
51cc5b07
AC
4162/* Track MAIN */
4163static char *name_of_main;
4164
4165void
4166set_main_name (const char *name)
4167{
4168 if (name_of_main != NULL)
4169 {
4170 xfree (name_of_main);
4171 name_of_main = NULL;
4172 }
4173 if (name != NULL)
4174 {
4175 name_of_main = xstrdup (name);
4176 }
4177}
4178
ea53e89f
JB
4179/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4180 accordingly. */
4181
4182static void
4183find_main_name (void)
4184{
cd6c7346 4185 const char *new_main_name;
ea53e89f
JB
4186
4187 /* Try to see if the main procedure is in Ada. */
4188 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4189 be to add a new method in the language vector, and call this
4190 method for each language until one of them returns a non-empty
4191 name. This would allow us to remove this hard-coded call to
4192 an Ada function. It is not clear that this is a better approach
4193 at this point, because all methods need to be written in a way
4194 such that false positives never be returned. For instance, it is
4195 important that a method does not return a wrong name for the main
4196 procedure if the main procedure is actually written in a different
4197 language. It is easy to guaranty this with Ada, since we use a
4198 special symbol generated only when the main in Ada to find the name
4199 of the main procedure. It is difficult however to see how this can
4200 be guarantied for languages such as C, for instance. This suggests
4201 that order of call for these methods becomes important, which means
4202 a more complicated approach. */
4203 new_main_name = ada_main_name ();
4204 if (new_main_name != NULL)
9af17804 4205 {
ea53e89f
JB
4206 set_main_name (new_main_name);
4207 return;
4208 }
4209
cd6c7346
PM
4210 new_main_name = pascal_main_name ();
4211 if (new_main_name != NULL)
9af17804 4212 {
cd6c7346
PM
4213 set_main_name (new_main_name);
4214 return;
4215 }
4216
ea53e89f
JB
4217 /* The languages above didn't identify the name of the main procedure.
4218 Fallback to "main". */
4219 set_main_name ("main");
4220}
4221
51cc5b07
AC
4222char *
4223main_name (void)
4224{
ea53e89f
JB
4225 if (name_of_main == NULL)
4226 find_main_name ();
4227
4228 return name_of_main;
51cc5b07
AC
4229}
4230
ea53e89f
JB
4231/* Handle ``executable_changed'' events for the symtab module. */
4232
4233static void
781b42b0 4234symtab_observer_executable_changed (void)
ea53e89f
JB
4235{
4236 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4237 set_main_name (NULL);
4238}
51cc5b07 4239
ed0616c6
VP
4240/* Helper to expand_line_sal below. Appends new sal to SAL,
4241 initializing it from SYMTAB, LINENO and PC. */
4242static void
4243append_expanded_sal (struct symtabs_and_lines *sal,
6c95b8df 4244 struct program_space *pspace,
ed0616c6
VP
4245 struct symtab *symtab,
4246 int lineno, CORE_ADDR pc)
4247{
9af17804
DE
4248 sal->sals = xrealloc (sal->sals,
4249 sizeof (sal->sals[0])
ed0616c6
VP
4250 * (sal->nelts + 1));
4251 init_sal (sal->sals + sal->nelts);
6c95b8df 4252 sal->sals[sal->nelts].pspace = pspace;
ed0616c6
VP
4253 sal->sals[sal->nelts].symtab = symtab;
4254 sal->sals[sal->nelts].section = NULL;
4255 sal->sals[sal->nelts].end = 0;
9af17804 4256 sal->sals[sal->nelts].line = lineno;
ed0616c6 4257 sal->sals[sal->nelts].pc = pc;
9af17804 4258 ++sal->nelts;
ed0616c6
VP
4259}
4260
aad80b26 4261/* Helper to expand_line_sal below. Search in the symtabs for any
3ffc00b8
JB
4262 linetable entry that exactly matches FULLNAME and LINENO and append
4263 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4264 use FILENAME and LINENO instead. If there is at least one match,
4265 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4266 and BEST_SYMTAB. */
aad80b26
JG
4267
4268static int
3ffc00b8 4269append_exact_match_to_sals (char *filename, char *fullname, int lineno,
aad80b26
JG
4270 struct symtabs_and_lines *ret,
4271 struct linetable_entry **best_item,
4272 struct symtab **best_symtab)
4273{
6c95b8df 4274 struct program_space *pspace;
aad80b26
JG
4275 struct objfile *objfile;
4276 struct symtab *symtab;
4277 int exact = 0;
4278 int j;
4279 *best_item = 0;
4280 *best_symtab = 0;
6c95b8df
PA
4281
4282 ALL_PSPACES (pspace)
4283 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
aad80b26 4284 {
3ffc00b8 4285 if (FILENAME_CMP (filename, symtab->filename) == 0)
aad80b26
JG
4286 {
4287 struct linetable *l;
4288 int len;
3ffc00b8
JB
4289 if (fullname != NULL
4290 && symtab_to_fullname (symtab) != NULL
4291 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4292 continue;
aad80b26
JG
4293 l = LINETABLE (symtab);
4294 if (!l)
4295 continue;
4296 len = l->nitems;
4297
4298 for (j = 0; j < len; j++)
4299 {
4300 struct linetable_entry *item = &(l->item[j]);
4301
4302 if (item->line == lineno)
4303 {
4304 exact = 1;
6c95b8df
PA
4305 append_expanded_sal (ret, objfile->pspace,
4306 symtab, lineno, item->pc);
aad80b26
JG
4307 }
4308 else if (!exact && item->line > lineno
4309 && (*best_item == NULL
4310 || item->line < (*best_item)->line))
4311 {
4312 *best_item = item;
4313 *best_symtab = symtab;
4314 }
4315 }
4316 }
4317 }
4318 return exact;
4319}
4320
6c95b8df
PA
4321/* Compute a set of all sals in all program spaces that correspond to
4322 same file and line as SAL and return those. If there are several
4323 sals that belong to the same block, only one sal for the block is
4324 included in results. */
9af17804 4325
ed0616c6
VP
4326struct symtabs_and_lines
4327expand_line_sal (struct symtab_and_line sal)
4328{
4329 struct symtabs_and_lines ret, this_line;
4330 int i, j;
4331 struct objfile *objfile;
4332 struct partial_symtab *psymtab;
4333 struct symtab *symtab;
4334 int lineno;
4335 int deleted = 0;
4336 struct block **blocks = NULL;
4337 int *filter;
6c95b8df 4338 struct cleanup *old_chain;
ed0616c6
VP
4339
4340 ret.nelts = 0;
4341 ret.sals = NULL;
4342
6c95b8df 4343 /* Only expand sals that represent file.c:line. */
ed0616c6
VP
4344 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4345 {
4346 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4347 ret.sals[0] = sal;
4348 ret.nelts = 1;
4349 return ret;
4350 }
4351 else
4352 {
6c95b8df 4353 struct program_space *pspace;
ed0616c6
VP
4354 struct linetable_entry *best_item = 0;
4355 struct symtab *best_symtab = 0;
4356 int exact = 0;
6c95b8df 4357 char *match_filename;
ed0616c6
VP
4358
4359 lineno = sal.line;
6c95b8df 4360 match_filename = sal.symtab->filename;
ed0616c6 4361
9af17804
DE
4362 /* We need to find all symtabs for a file which name
4363 is described by sal. We cannot just directly
ed0616c6 4364 iterate over symtabs, since a symtab might not be
9af17804 4365 yet created. We also cannot iterate over psymtabs,
ed0616c6
VP
4366 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4367 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
9af17804 4368 corresponding to an included file. Therefore, we do
ed0616c6
VP
4369 first pass over psymtabs, reading in those with
4370 the right name. Then, we iterate over symtabs, knowing
4371 that all symtabs we're interested in are loaded. */
4372
6c95b8df
PA
4373 old_chain = save_current_program_space ();
4374 ALL_PSPACES (pspace)
ccefe4c4
TT
4375 {
4376 set_current_program_space (pspace);
4377 ALL_PSPACE_OBJFILES (pspace, objfile)
ed0616c6 4378 {
ccefe4c4
TT
4379 if (objfile->sf)
4380 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4381 sal.symtab->filename);
ed0616c6 4382 }
ccefe4c4 4383 }
6c95b8df 4384 do_cleanups (old_chain);
ed0616c6 4385
aad80b26
JG
4386 /* Now search the symtab for exact matches and append them. If
4387 none is found, append the best_item and all its exact
4388 matches. */
3ffc00b8
JB
4389 symtab_to_fullname (sal.symtab);
4390 exact = append_exact_match_to_sals (sal.symtab->filename,
4391 sal.symtab->fullname, lineno,
aad80b26 4392 &ret, &best_item, &best_symtab);
ed0616c6 4393 if (!exact && best_item)
3ffc00b8
JB
4394 append_exact_match_to_sals (best_symtab->filename,
4395 best_symtab->fullname, best_item->line,
aad80b26 4396 &ret, &best_item, &best_symtab);
ed0616c6
VP
4397 }
4398
4399 /* For optimized code, compiler can scatter one source line accross
4400 disjoint ranges of PC values, even when no duplicate functions
4401 or inline functions are involved. For example, 'for (;;)' inside
4402 non-template non-inline non-ctor-or-dtor function can result
4403 in two PC ranges. In this case, we don't want to set breakpoint
4404 on first PC of each range. To filter such cases, we use containing
4405 blocks -- for each PC found above we see if there are other PCs
9af17804 4406 that are in the same block. If yes, the other PCs are filtered out. */
ed0616c6 4407
6c95b8df 4408 old_chain = save_current_program_space ();
db009c8a
JB
4409 filter = alloca (ret.nelts * sizeof (int));
4410 blocks = alloca (ret.nelts * sizeof (struct block *));
ed0616c6
VP
4411 for (i = 0; i < ret.nelts; ++i)
4412 {
6c95b8df
PA
4413 struct blockvector *bl;
4414 struct block *b;
4415
4416 set_current_program_space (ret.sals[i].pspace);
4417
ed0616c6 4418 filter[i] = 1;
6c95b8df
PA
4419 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4420
ed0616c6 4421 }
6c95b8df 4422 do_cleanups (old_chain);
ed0616c6
VP
4423
4424 for (i = 0; i < ret.nelts; ++i)
4425 if (blocks[i] != NULL)
4426 for (j = i+1; j < ret.nelts; ++j)
4427 if (blocks[j] == blocks[i])
4428 {
4429 filter[j] = 0;
4430 ++deleted;
4431 break;
4432 }
9af17804 4433
ed0616c6 4434 {
9af17804 4435 struct symtab_and_line *final =
ed0616c6 4436 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
9af17804 4437
ed0616c6
VP
4438 for (i = 0, j = 0; i < ret.nelts; ++i)
4439 if (filter[i])
4440 final[j++] = ret.sals[i];
9af17804 4441
ed0616c6
VP
4442 ret.nelts -= deleted;
4443 xfree (ret.sals);
4444 ret.sals = final;
4445 }
4446
4447 return ret;
4448}
4449
a6c727b2
DJ
4450/* Return 1 if the supplied producer string matches the ARM RealView
4451 compiler (armcc). */
4452
4453int
4454producer_is_realview (const char *producer)
4455{
4456 static const char *const arm_idents[] = {
4457 "ARM C Compiler, ADS",
4458 "Thumb C Compiler, ADS",
4459 "ARM C++ Compiler, ADS",
4460 "Thumb C++ Compiler, ADS",
4461 "ARM/Thumb C/C++ Compiler, RVCT",
4462 "ARM C/C++ Compiler, RVCT"
4463 };
4464 int i;
4465
4466 if (producer == NULL)
4467 return 0;
4468
4469 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4470 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4471 return 1;
4472
4473 return 0;
4474}
ed0616c6 4475
c906108c 4476void
fba45db2 4477_initialize_symtab (void)
c906108c 4478{
1bedd215
AC
4479 add_info ("variables", variables_info, _("\
4480All global and static variable names, or those matching REGEXP."));
c906108c 4481 if (dbx_commands)
1bedd215
AC
4482 add_com ("whereis", class_info, variables_info, _("\
4483All global and static variable names, or those matching REGEXP."));
c906108c
SS
4484
4485 add_info ("functions", functions_info,
1bedd215 4486 _("All function names, or those matching REGEXP."));
c906108c
SS
4487
4488 /* FIXME: This command has at least the following problems:
4489 1. It prints builtin types (in a very strange and confusing fashion).
4490 2. It doesn't print right, e.g. with
c5aa993b
JM
4491 typedef struct foo *FOO
4492 type_print prints "FOO" when we want to make it (in this situation)
4493 print "struct foo *".
c906108c
SS
4494 I also think "ptype" or "whatis" is more likely to be useful (but if
4495 there is much disagreement "info types" can be fixed). */
4496 add_info ("types", types_info,
1bedd215 4497 _("All type names, or those matching REGEXP."));
c906108c 4498
c906108c 4499 add_info ("sources", sources_info,
1bedd215 4500 _("Source files in the program."));
c906108c
SS
4501
4502 add_com ("rbreak", class_breakpoint, rbreak_command,
1bedd215 4503 _("Set a breakpoint for all functions matching REGEXP."));
c906108c
SS
4504
4505 if (xdb_commands)
4506 {
1bedd215
AC
4507 add_com ("lf", class_info, sources_info,
4508 _("Source files in the program"));
4509 add_com ("lg", class_info, variables_info, _("\
4510All global and static variable names, or those matching REGEXP."));
c906108c
SS
4511 }
4512
717d2f5a
JB
4513 add_setshow_enum_cmd ("multiple-symbols", no_class,
4514 multiple_symbols_modes, &multiple_symbols_mode,
4515 _("\
4516Set the debugger behavior when more than one symbol are possible matches\n\
4517in an expression."), _("\
4518Show how the debugger handles ambiguities in expressions."), _("\
4519Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4520 NULL, NULL, &setlist, &showlist);
4521
ea53e89f 4522 observer_attach_executable_changed (symtab_observer_executable_changed);
c906108c 4523}
This page took 1.241112 seconds and 4 git commands to generate.