Commit | Line | Data |
---|---|---|
a76d924d DJ |
1 | /* Parts of target interface that deal with accessing memory and memory-like |
2 | objects. | |
3 | ||
b811d2c2 | 4 | Copyright (C) 2006-2020 Free Software Foundation, Inc. |
a76d924d DJ |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
a76d924d DJ |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
a76d924d DJ |
20 | |
21 | #include "defs.h" | |
a76d924d DJ |
22 | #include "target.h" |
23 | #include "memory-map.h" | |
24 | ||
268a13a5 | 25 | #include "gdbsupport/gdb_sys_time.h" |
325fac50 | 26 | #include <algorithm> |
a76d924d | 27 | |
55089490 TT |
28 | static bool |
29 | compare_block_starting_address (const memory_write_request &a_req, | |
30 | const memory_write_request &b_req) | |
a76d924d | 31 | { |
55089490 | 32 | return a_req.begin < b_req.begin; |
a76d924d DJ |
33 | } |
34 | ||
35 | /* Adds to RESULT all memory write requests from BLOCK that are | |
36 | in [BEGIN, END) range. | |
37 | ||
38 | If any memory request is only partially in the specified range, | |
39 | that part of the memory request will be added. */ | |
40 | ||
41 | static void | |
55089490 TT |
42 | claim_memory (const std::vector<memory_write_request> &blocks, |
43 | std::vector<memory_write_request> *result, | |
a76d924d DJ |
44 | ULONGEST begin, |
45 | ULONGEST end) | |
46 | { | |
a76d924d DJ |
47 | ULONGEST claimed_begin; |
48 | ULONGEST claimed_end; | |
a76d924d | 49 | |
55089490 | 50 | for (const memory_write_request &r : blocks) |
a76d924d DJ |
51 | { |
52 | /* If the request doesn't overlap [BEGIN, END), skip it. We | |
53 | must handle END == 0 meaning the top of memory; we don't yet | |
54 | check for R->end == 0, which would also mean the top of | |
55 | memory, but there's an assertion in | |
56 | target_write_memory_blocks which checks for that. */ | |
57 | ||
55089490 | 58 | if (begin >= r.end) |
a76d924d | 59 | continue; |
55089490 | 60 | if (end != 0 && end <= r.begin) |
a76d924d DJ |
61 | continue; |
62 | ||
55089490 | 63 | claimed_begin = std::max (begin, r.begin); |
a76d924d | 64 | if (end == 0) |
55089490 | 65 | claimed_end = r.end; |
a76d924d | 66 | else |
55089490 | 67 | claimed_end = std::min (end, r.end); |
a76d924d | 68 | |
55089490 TT |
69 | if (claimed_begin == r.begin && claimed_end == r.end) |
70 | result->push_back (r); | |
a76d924d DJ |
71 | else |
72 | { | |
55089490 TT |
73 | struct memory_write_request n = r; |
74 | ||
75 | n.begin = claimed_begin; | |
76 | n.end = claimed_end; | |
77 | n.data += claimed_begin - r.begin; | |
5d502164 | 78 | |
55089490 | 79 | result->push_back (n); |
a76d924d DJ |
80 | } |
81 | } | |
82 | } | |
83 | ||
84 | /* Given a vector of struct memory_write_request objects in BLOCKS, | |
85 | add memory requests for flash memory into FLASH_BLOCKS, and for | |
86 | regular memory to REGULAR_BLOCKS. */ | |
87 | ||
88 | static void | |
55089490 TT |
89 | split_regular_and_flash_blocks (const std::vector<memory_write_request> &blocks, |
90 | std::vector<memory_write_request> *regular_blocks, | |
91 | std::vector<memory_write_request> *flash_blocks) | |
a76d924d DJ |
92 | { |
93 | struct mem_region *region; | |
94 | CORE_ADDR cur_address; | |
95 | ||
96 | /* This implementation runs in O(length(regions)*length(blocks)) time. | |
97 | However, in most cases the number of blocks will be small, so this does | |
98 | not matter. | |
99 | ||
100 | Note also that it's extremely unlikely that a memory write request | |
101 | will span more than one memory region, however for safety we handle | |
102 | such situations. */ | |
103 | ||
104 | cur_address = 0; | |
105 | while (1) | |
106 | { | |
55089490 | 107 | std::vector<memory_write_request> *r; |
a76d924d | 108 | |
5d502164 | 109 | region = lookup_mem_region (cur_address); |
a76d924d DJ |
110 | r = region->attrib.mode == MEM_FLASH ? flash_blocks : regular_blocks; |
111 | cur_address = region->hi; | |
112 | claim_memory (blocks, r, region->lo, region->hi); | |
113 | ||
114 | if (cur_address == 0) | |
115 | break; | |
116 | } | |
117 | } | |
118 | ||
119 | /* Given an ADDRESS, if BEGIN is non-NULL this function sets *BEGIN | |
120 | to the start of the flash block containing the address. Similarly, | |
121 | if END is non-NULL *END will be set to the address one past the end | |
122 | of the block containing the address. */ | |
123 | ||
124 | static void | |
125 | block_boundaries (CORE_ADDR address, CORE_ADDR *begin, CORE_ADDR *end) | |
126 | { | |
127 | struct mem_region *region; | |
128 | unsigned blocksize; | |
d9b477e3 | 129 | CORE_ADDR offset_in_region; |
a76d924d DJ |
130 | |
131 | region = lookup_mem_region (address); | |
132 | gdb_assert (region->attrib.mode == MEM_FLASH); | |
133 | blocksize = region->attrib.blocksize; | |
d9b477e3 KB |
134 | |
135 | offset_in_region = address - region->lo; | |
136 | ||
a76d924d | 137 | if (begin) |
d9b477e3 | 138 | *begin = region->lo + offset_in_region / blocksize * blocksize; |
a76d924d | 139 | if (end) |
d9b477e3 | 140 | *end = region->lo + (offset_in_region + blocksize - 1) / blocksize * blocksize; |
a76d924d DJ |
141 | } |
142 | ||
143 | /* Given the list of memory requests to be WRITTEN, this function | |
144 | returns write requests covering each group of flash blocks which must | |
145 | be erased. */ | |
146 | ||
55089490 TT |
147 | static std::vector<memory_write_request> |
148 | blocks_to_erase (const std::vector<memory_write_request> &written) | |
a76d924d | 149 | { |
55089490 | 150 | std::vector<memory_write_request> result; |
a76d924d | 151 | |
55089490 | 152 | for (const memory_write_request &request : written) |
a76d924d DJ |
153 | { |
154 | CORE_ADDR begin, end; | |
155 | ||
55089490 TT |
156 | block_boundaries (request.begin, &begin, 0); |
157 | block_boundaries (request.end - 1, 0, &end); | |
a76d924d | 158 | |
55089490 TT |
159 | if (!result.empty () && result.back ().end >= begin) |
160 | result.back ().end = end; | |
a76d924d | 161 | else |
55089490 | 162 | result.emplace_back (begin, end); |
a76d924d DJ |
163 | } |
164 | ||
165 | return result; | |
166 | } | |
167 | ||
168 | /* Given ERASED_BLOCKS, a list of blocks that will be erased with | |
169 | flash erase commands, and WRITTEN_BLOCKS, the list of memory | |
170 | addresses that will be written, compute the set of memory addresses | |
171 | that will be erased but not rewritten (e.g. padding within a block | |
172 | which is only partially filled by "load"). */ | |
173 | ||
55089490 TT |
174 | static std::vector<memory_write_request> |
175 | compute_garbled_blocks (const std::vector<memory_write_request> &erased_blocks, | |
176 | const std::vector<memory_write_request> &written_blocks) | |
a76d924d | 177 | { |
55089490 | 178 | std::vector<memory_write_request> result; |
a76d924d | 179 | |
55089490 TT |
180 | unsigned j; |
181 | unsigned je = written_blocks.size (); | |
a76d924d DJ |
182 | |
183 | /* Look at each erased memory_write_request in turn, and | |
184 | see what part of it is subsequently written to. | |
185 | ||
186 | This implementation is O(length(erased) * length(written)). If | |
187 | the lists are sorted at this point it could be rewritten more | |
188 | efficiently, but the complexity is not generally worthwhile. */ | |
189 | ||
55089490 | 190 | for (const memory_write_request &erased_iter : erased_blocks) |
a76d924d DJ |
191 | { |
192 | /* Make a deep copy -- it will be modified inside the loop, but | |
193 | we don't want to modify original vector. */ | |
55089490 | 194 | struct memory_write_request erased = erased_iter; |
a76d924d DJ |
195 | |
196 | for (j = 0; j != je;) | |
197 | { | |
55089490 | 198 | const memory_write_request *written = &written_blocks[j]; |
a76d924d DJ |
199 | |
200 | /* Now try various cases. */ | |
201 | ||
202 | /* If WRITTEN is fully to the left of ERASED, check the next | |
203 | written memory_write_request. */ | |
204 | if (written->end <= erased.begin) | |
205 | { | |
206 | ++j; | |
207 | continue; | |
208 | } | |
209 | ||
210 | /* If WRITTEN is fully to the right of ERASED, then ERASED | |
211 | is not written at all. WRITTEN might affect other | |
212 | blocks. */ | |
213 | if (written->begin >= erased.end) | |
214 | { | |
55089490 | 215 | result.push_back (erased); |
a76d924d DJ |
216 | goto next_erased; |
217 | } | |
218 | ||
219 | /* If all of ERASED is completely written, we can move on to | |
220 | the next erased region. */ | |
221 | if (written->begin <= erased.begin | |
222 | && written->end >= erased.end) | |
223 | { | |
224 | goto next_erased; | |
225 | } | |
226 | ||
227 | /* If there is an unwritten part at the beginning of ERASED, | |
228 | then we should record that part and try this inner loop | |
229 | again for the remainder. */ | |
230 | if (written->begin > erased.begin) | |
231 | { | |
55089490 | 232 | result.emplace_back (erased.begin, written->begin); |
a76d924d DJ |
233 | erased.begin = written->begin; |
234 | continue; | |
235 | } | |
236 | ||
237 | /* If there is an unwritten part at the end of ERASED, we | |
238 | forget about the part that was written to and wait to see | |
239 | if the next write request writes more of ERASED. We can't | |
240 | push it yet. */ | |
241 | if (written->end < erased.end) | |
242 | { | |
243 | erased.begin = written->end; | |
244 | ++j; | |
245 | continue; | |
246 | } | |
247 | } | |
248 | ||
249 | /* If we ran out of write requests without doing anything about | |
250 | ERASED, then that means it's really erased. */ | |
55089490 | 251 | result.push_back (erased); |
a76d924d DJ |
252 | |
253 | next_erased: | |
254 | ; | |
255 | } | |
256 | ||
257 | return result; | |
258 | } | |
259 | ||
a76d924d | 260 | int |
55089490 | 261 | target_write_memory_blocks (const std::vector<memory_write_request> &requests, |
a76d924d DJ |
262 | enum flash_preserve_mode preserve_flash_p, |
263 | void (*progress_cb) (ULONGEST, void *)) | |
264 | { | |
55089490 | 265 | std::vector<memory_write_request> blocks = requests; |
55089490 TT |
266 | std::vector<memory_write_request> regular; |
267 | std::vector<memory_write_request> flash; | |
268 | std::vector<memory_write_request> erased, garbled; | |
a76d924d DJ |
269 | |
270 | /* END == 0 would represent wraparound: a write to the very last | |
271 | byte of the address space. This file was not written with that | |
272 | possibility in mind. This is fixable, but a lot of work for a | |
273 | rare problem; so for now, fail noisily here instead of obscurely | |
274 | later. */ | |
55089490 TT |
275 | for (const memory_write_request &iter : requests) |
276 | gdb_assert (iter.end != 0); | |
a76d924d DJ |
277 | |
278 | /* Sort the blocks by their start address. */ | |
55089490 | 279 | std::sort (blocks.begin (), blocks.end (), compare_block_starting_address); |
a76d924d DJ |
280 | |
281 | /* Split blocks into list of regular memory blocks, | |
c378eb4e | 282 | and list of flash memory blocks. */ |
a76d924d DJ |
283 | split_regular_and_flash_blocks (blocks, ®ular, &flash); |
284 | ||
285 | /* If a variable is added to forbid flash write, even during "load", | |
286 | it should be checked here. Similarly, if this function is used | |
287 | for other situations besides "load" in which writing to flash | |
288 | is undesirable, that should be checked here. */ | |
289 | ||
290 | /* Find flash blocks to erase. */ | |
291 | erased = blocks_to_erase (flash); | |
a76d924d DJ |
292 | |
293 | /* Find what flash regions will be erased, and not overwritten; then | |
294 | either preserve or discard the old contents. */ | |
295 | garbled = compute_garbled_blocks (erased, flash); | |
a76d924d | 296 | |
55089490 TT |
297 | std::vector<gdb::unique_xmalloc_ptr<gdb_byte>> mem_holders; |
298 | if (!garbled.empty ()) | |
a76d924d DJ |
299 | { |
300 | if (preserve_flash_p == flash_preserve) | |
301 | { | |
a76d924d DJ |
302 | /* Read in regions that must be preserved and add them to |
303 | the list of blocks we read. */ | |
55089490 | 304 | for (memory_write_request &iter : garbled) |
a76d924d | 305 | { |
55089490 TT |
306 | gdb_assert (iter.data == NULL); |
307 | gdb::unique_xmalloc_ptr<gdb_byte> holder | |
308 | ((gdb_byte *) xmalloc (iter.end - iter.begin)); | |
309 | iter.data = holder.get (); | |
310 | mem_holders.push_back (std::move (holder)); | |
311 | int err = target_read_memory (iter.begin, iter.data, | |
312 | iter.end - iter.begin); | |
a76d924d | 313 | if (err != 0) |
55089490 | 314 | return err; |
a76d924d | 315 | |
55089490 | 316 | flash.push_back (iter); |
a76d924d DJ |
317 | } |
318 | ||
55089490 TT |
319 | std::sort (flash.begin (), flash.end (), |
320 | compare_block_starting_address); | |
a76d924d DJ |
321 | } |
322 | } | |
323 | ||
324 | /* We could coalesce adjacent memory blocks here, to reduce the | |
325 | number of write requests for small sections. However, we would | |
326 | have to reallocate and copy the data pointers, which could be | |
327 | large; large sections are more common in loadable objects than | |
328 | large numbers of small sections (although the reverse can be true | |
329 | in object files). So, we issue at least one write request per | |
330 | passed struct memory_write_request. The remote stub will still | |
331 | have the opportunity to batch flash requests. */ | |
332 | ||
333 | /* Write regular blocks. */ | |
55089490 | 334 | for (const memory_write_request &iter : regular) |
a76d924d DJ |
335 | { |
336 | LONGEST len; | |
337 | ||
8b88a78e | 338 | len = target_write_with_progress (current_top_target (), |
a76d924d | 339 | TARGET_OBJECT_MEMORY, NULL, |
55089490 TT |
340 | iter.data, iter.begin, |
341 | iter.end - iter.begin, | |
342 | progress_cb, iter.baton); | |
343 | if (len < (LONGEST) (iter.end - iter.begin)) | |
a76d924d DJ |
344 | { |
345 | /* Call error? */ | |
55089490 | 346 | return -1; |
a76d924d DJ |
347 | } |
348 | } | |
349 | ||
55089490 | 350 | if (!erased.empty ()) |
a76d924d DJ |
351 | { |
352 | /* Erase all pages. */ | |
55089490 TT |
353 | for (const memory_write_request &iter : erased) |
354 | target_flash_erase (iter.begin, iter.end - iter.begin); | |
a76d924d DJ |
355 | |
356 | /* Write flash data. */ | |
55089490 | 357 | for (const memory_write_request &iter : flash) |
a76d924d DJ |
358 | { |
359 | LONGEST len; | |
360 | ||
8b88a78e | 361 | len = target_write_with_progress (current_top_target (), |
a76d924d | 362 | TARGET_OBJECT_FLASH, NULL, |
55089490 TT |
363 | iter.data, iter.begin, |
364 | iter.end - iter.begin, | |
365 | progress_cb, iter.baton); | |
366 | if (len < (LONGEST) (iter.end - iter.begin)) | |
a76d924d DJ |
367 | error (_("Error writing data to flash")); |
368 | } | |
369 | ||
370 | target_flash_done (); | |
371 | } | |
372 | ||
55089490 | 373 | return 0; |
a76d924d | 374 | } |