linux-record: Squash cases with identical handling
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
c906108c 46
a14ed312 47static void target_info (char *, int);
c906108c 48
f0f9ff95
TT
49static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
0a4f40a2 51static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 52
5009afc5
AS
53static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
31568a15
TT
56static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
e0d24f8d 58
a30bf1f1 59static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 60
4229b31d
TT
61static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
098dba18
TT
64static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
8d657035
TT
67static void default_mourn_inferior (struct target_ops *self);
68
58a5184e
TT
69static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
936d2992
PA
76static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
8eaff7cd
TT
80static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
c25c4a8b 83static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 84
555bbdeb
TT
85static int return_zero (struct target_ops *);
86
87static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 88
a14ed312 89static void target_command (char *, int);
c906108c 90
a14ed312 91static struct target_ops *find_default_run_target (char *);
c906108c 92
c2250ad1
UW
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
0b5a2719
TT
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
16f796b1
TT
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
770234d3
TT
103static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
fe31bf5b
TT
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
a7068b60
TT
108static struct target_ops debug_target;
109
1101cb7b
TT
110#include "target-delegates.c"
111
a14ed312 112static void init_dummy_target (void);
c906108c 113
3cecbbbe
TT
114static void update_current_target (void);
115
89a1c21a
SM
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
c906108c
SS
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
258b763a 128static struct target_ops *target_stack;
c906108c
SS
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
cf7a04e8
DJ
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
8defab1a
DJ
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
d914c394
SS
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
c906108c
SS
165/* Non-zero if we want to see trace of target level stuff. */
166
ccce17b0 167static unsigned int targetdebug = 0;
3cecbbbe
TT
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
920d2a44
AC
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
c906108c 181
a14ed312 182static void setup_target_debug (void);
c906108c 183
c906108c
SS
184/* The user just typed 'target' without the name of a target. */
185
c906108c 186static void
fba45db2 187target_command (char *arg, int from_tty)
c906108c
SS
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
c35b1492
PA
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
aeaec162 236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
aeaec162 240 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
aeaec162 296target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 301 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
302 return 1;
303
304 return 0;
305}
306
aeaec162
TT
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
c22a2b88
TT
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
c906108c
SS
315
316void
c22a2b88 317complete_target_initialization (struct target_ops *t)
c906108c 318{
0088c768 319 /* Provide default values for all "must have" methods. */
0088c768 320
c35b1492 321 if (t->to_has_all_memory == NULL)
555bbdeb 322 t->to_has_all_memory = return_zero;
c35b1492
PA
323
324 if (t->to_has_memory == NULL)
555bbdeb 325 t->to_has_memory = return_zero;
c35b1492
PA
326
327 if (t->to_has_stack == NULL)
555bbdeb 328 t->to_has_stack = return_zero;
c35b1492
PA
329
330 if (t->to_has_registers == NULL)
555bbdeb 331 t->to_has_registers = return_zero;
c35b1492
PA
332
333 if (t->to_has_execution == NULL)
555bbdeb 334 t->to_has_execution = return_zero_has_execution;
1101cb7b 335
b3ccfe11
TT
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
1101cb7b 342 install_delegators (t);
c22a2b88
TT
343}
344
8981c758
TT
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
19ba03f4 350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
8981c758
TT
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
c22a2b88
TT
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
c35b1492 374
89a1c21a 375 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
376
377 if (targetlist == NULL)
1bedd215
AC
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
c906108c
SS
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
1bedd215 383`help target ' followed by the protocol name."),
c906108c 384 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
9852c492
YQ
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
c906108c
SS
398}
399
b48d48eb
MM
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
8981c758
TT
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
b48d48eb
MM
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
c906108c
SS
417/* Stub functions */
418
7d85a9c0
JB
419void
420target_kill (void)
421{
423a4807 422 current_target.to_kill (&current_target);
7d85a9c0
JB
423}
424
11cf8741 425void
9cbe5fff 426target_load (const char *arg, int from_tty)
11cf8741 427{
4e5d721f 428 target_dcache_invalidate ();
71a9f134 429 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
430}
431
5842f62a
PA
432/* Possible terminal states. */
433
434enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
7afa63c6 447static enum terminal_state terminal_state = terminal_is_ours;
5842f62a
PA
448
449/* See target.h. */
450
451void
452target_terminal_init (void)
453{
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457}
458
459/* See target.h. */
460
6fdebc3d
PA
461int
462target_terminal_is_inferior (void)
463{
464 return (terminal_state == terminal_is_inferior);
465}
466
467/* See target.h. */
468
2f99e8fc
YQ
469int
470target_terminal_is_ours (void)
471{
472 return (terminal_state == terminal_is_ours);
473}
474
475/* See target.h. */
476
d9d2d8b6
PA
477void
478target_terminal_inferior (void)
479{
480 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 481 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
485 return;
486
5842f62a
PA
487 if (terminal_state == terminal_is_inferior)
488 return;
489
d9d2d8b6
PA
490 /* If GDB is resuming the inferior in the foreground, install
491 inferior's terminal modes. */
d2f640d4 492 (*current_target.to_terminal_inferior) (&current_target);
5842f62a 493 terminal_state = terminal_is_inferior;
93692b58
PA
494
495 /* If the user hit C-c before, pretend that it was hit right
496 here. */
497 if (check_quit_flag ())
498 target_pass_ctrlc ();
5842f62a
PA
499}
500
501/* See target.h. */
502
503void
504target_terminal_ours (void)
505{
506 if (terminal_state == terminal_is_ours)
507 return;
508
509 (*current_target.to_terminal_ours) (&current_target);
510 terminal_state = terminal_is_ours;
511}
512
513/* See target.h. */
514
515void
516target_terminal_ours_for_output (void)
517{
518 if (terminal_state != terminal_is_inferior)
519 return;
520 (*current_target.to_terminal_ours_for_output) (&current_target);
521 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 522}
136d6dae 523
b0ed115f
TT
524/* See target.h. */
525
526int
527target_supports_terminal_ours (void)
528{
529 struct target_ops *t;
530
531 for (t = current_target.beneath; t != NULL; t = t->beneath)
532 {
533 if (t->to_terminal_ours != delegate_terminal_ours
534 && t->to_terminal_ours != tdefault_terminal_ours)
535 return 1;
536 }
537
538 return 0;
539}
540
1abf3a14
SM
541/* Restore the terminal to its previous state (helper for
542 make_cleanup_restore_target_terminal). */
543
544static void
545cleanup_restore_target_terminal (void *arg)
546{
19ba03f4 547 enum terminal_state *previous_state = (enum terminal_state *) arg;
1abf3a14
SM
548
549 switch (*previous_state)
550 {
551 case terminal_is_ours:
552 target_terminal_ours ();
553 break;
554 case terminal_is_ours_for_output:
555 target_terminal_ours_for_output ();
556 break;
557 case terminal_is_inferior:
558 target_terminal_inferior ();
559 break;
560 }
561}
562
563/* See target.h. */
564
565struct cleanup *
566make_cleanup_restore_target_terminal (void)
567{
8d749320 568 enum terminal_state *ts = XNEW (enum terminal_state);
1abf3a14
SM
569
570 *ts = terminal_state;
571
572 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
573}
574
c906108c 575static void
fba45db2 576tcomplain (void)
c906108c 577{
8a3fe4f8 578 error (_("You can't do that when your target is `%s'"),
c906108c
SS
579 current_target.to_shortname);
580}
581
582void
fba45db2 583noprocess (void)
c906108c 584{
8a3fe4f8 585 error (_("You can't do that without a process to debug."));
c906108c
SS
586}
587
c906108c 588static void
0a4f40a2 589default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 590{
a3f17187 591 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
592}
593
0ef643c8
JB
594/* A default implementation for the to_get_ada_task_ptid target method.
595
596 This function builds the PTID by using both LWP and TID as part of
597 the PTID lwp and tid elements. The pid used is the pid of the
598 inferior_ptid. */
599
2c0b251b 600static ptid_t
1e6b91a4 601default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
602{
603 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
604}
605
32231432 606static enum exec_direction_kind
4c612759 607default_execution_direction (struct target_ops *self)
32231432
PA
608{
609 if (!target_can_execute_reverse)
610 return EXEC_FORWARD;
611 else if (!target_can_async_p ())
612 return EXEC_FORWARD;
613 else
614 gdb_assert_not_reached ("\
615to_execution_direction must be implemented for reverse async");
616}
617
7998dfc3
AC
618/* Go through the target stack from top to bottom, copying over zero
619 entries in current_target, then filling in still empty entries. In
620 effect, we are doing class inheritance through the pushed target
621 vectors.
622
623 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
624 is currently implemented, is that it discards any knowledge of
625 which target an inherited method originally belonged to.
626 Consequently, new new target methods should instead explicitly and
627 locally search the target stack for the target that can handle the
628 request. */
c906108c
SS
629
630static void
7998dfc3 631update_current_target (void)
c906108c 632{
7998dfc3
AC
633 struct target_ops *t;
634
08d8bcd7 635 /* First, reset current's contents. */
7998dfc3
AC
636 memset (&current_target, 0, sizeof (current_target));
637
1101cb7b
TT
638 /* Install the delegators. */
639 install_delegators (&current_target);
640
be4ddd36
TT
641 current_target.to_stratum = target_stack->to_stratum;
642
7998dfc3
AC
643#define INHERIT(FIELD, TARGET) \
644 if (!current_target.FIELD) \
645 current_target.FIELD = (TARGET)->FIELD
646
be4ddd36
TT
647 /* Do not add any new INHERITs here. Instead, use the delegation
648 mechanism provided by make-target-delegates. */
7998dfc3
AC
649 for (t = target_stack; t; t = t->beneath)
650 {
651 INHERIT (to_shortname, t);
652 INHERIT (to_longname, t);
dc177b7a 653 INHERIT (to_attach_no_wait, t);
74174d2e 654 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 655 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 656 INHERIT (to_has_thread_control, t);
7998dfc3
AC
657 }
658#undef INHERIT
659
7998dfc3
AC
660 /* Finally, position the target-stack beneath the squashed
661 "current_target". That way code looking for a non-inherited
662 target method can quickly and simply find it. */
663 current_target.beneath = target_stack;
b4b61fdb
DJ
664
665 if (targetdebug)
666 setup_target_debug ();
c906108c
SS
667}
668
669/* Push a new target type into the stack of the existing target accessors,
670 possibly superseding some of the existing accessors.
671
c906108c
SS
672 Rather than allow an empty stack, we always have the dummy target at
673 the bottom stratum, so we can call the function vectors without
674 checking them. */
675
b26a4dcb 676void
fba45db2 677push_target (struct target_ops *t)
c906108c 678{
258b763a 679 struct target_ops **cur;
c906108c
SS
680
681 /* Check magic number. If wrong, it probably means someone changed
682 the struct definition, but not all the places that initialize one. */
683 if (t->to_magic != OPS_MAGIC)
684 {
c5aa993b
JM
685 fprintf_unfiltered (gdb_stderr,
686 "Magic number of %s target struct wrong\n",
687 t->to_shortname);
3e43a32a
MS
688 internal_error (__FILE__, __LINE__,
689 _("failed internal consistency check"));
c906108c
SS
690 }
691
258b763a
AC
692 /* Find the proper stratum to install this target in. */
693 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 694 {
258b763a 695 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
696 break;
697 }
698
258b763a 699 /* If there's already targets at this stratum, remove them. */
88c231eb 700 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
701 targets to CUR, and not just those at this stratum level. */
702 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
703 {
704 /* There's already something at this stratum level. Close it,
705 and un-hook it from the stack. */
706 struct target_ops *tmp = (*cur);
5d502164 707
258b763a
AC
708 (*cur) = (*cur)->beneath;
709 tmp->beneath = NULL;
460014f5 710 target_close (tmp);
258b763a 711 }
c906108c
SS
712
713 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
714 t->beneath = (*cur);
715 (*cur) = t;
c906108c
SS
716
717 update_current_target ();
c906108c
SS
718}
719
2bc416ba 720/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
721 Return how many times it was removed (0 or 1). */
722
723int
fba45db2 724unpush_target (struct target_ops *t)
c906108c 725{
258b763a
AC
726 struct target_ops **cur;
727 struct target_ops *tmp;
c906108c 728
c8d104ad
PA
729 if (t->to_stratum == dummy_stratum)
730 internal_error (__FILE__, __LINE__,
9b20d036 731 _("Attempt to unpush the dummy target"));
c8d104ad 732
c906108c 733 /* Look for the specified target. Note that we assume that a target
c378eb4e 734 can only occur once in the target stack. */
c906108c 735
258b763a
AC
736 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
737 {
738 if ((*cur) == t)
739 break;
740 }
c906108c 741
305436e0
PA
742 /* If we don't find target_ops, quit. Only open targets should be
743 closed. */
258b763a 744 if ((*cur) == NULL)
305436e0 745 return 0;
5269965e 746
c378eb4e 747 /* Unchain the target. */
258b763a
AC
748 tmp = (*cur);
749 (*cur) = (*cur)->beneath;
750 tmp->beneath = NULL;
c906108c
SS
751
752 update_current_target ();
c906108c 753
305436e0
PA
754 /* Finally close the target. Note we do this after unchaining, so
755 any target method calls from within the target_close
756 implementation don't end up in T anymore. */
460014f5 757 target_close (t);
305436e0 758
c906108c
SS
759 return 1;
760}
761
915ef8b1
PA
762/* Unpush TARGET and assert that it worked. */
763
764static void
765unpush_target_and_assert (struct target_ops *target)
766{
767 if (!unpush_target (target))
768 {
769 fprintf_unfiltered (gdb_stderr,
770 "pop_all_targets couldn't find target %s\n",
771 target->to_shortname);
772 internal_error (__FILE__, __LINE__,
773 _("failed internal consistency check"));
774 }
775}
776
aa76d38d 777void
460014f5 778pop_all_targets_above (enum strata above_stratum)
aa76d38d 779{
87ab71f0 780 while ((int) (current_target.to_stratum) > (int) above_stratum)
915ef8b1
PA
781 unpush_target_and_assert (target_stack);
782}
783
784/* See target.h. */
785
786void
787pop_all_targets_at_and_above (enum strata stratum)
788{
789 while ((int) (current_target.to_stratum) >= (int) stratum)
790 unpush_target_and_assert (target_stack);
aa76d38d
PA
791}
792
87ab71f0 793void
460014f5 794pop_all_targets (void)
87ab71f0 795{
460014f5 796 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
797}
798
c0edd9ed
JK
799/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
800
801int
802target_is_pushed (struct target_ops *t)
803{
84202f9c 804 struct target_ops *cur;
c0edd9ed
JK
805
806 /* Check magic number. If wrong, it probably means someone changed
807 the struct definition, but not all the places that initialize one. */
808 if (t->to_magic != OPS_MAGIC)
809 {
810 fprintf_unfiltered (gdb_stderr,
811 "Magic number of %s target struct wrong\n",
812 t->to_shortname);
3e43a32a
MS
813 internal_error (__FILE__, __LINE__,
814 _("failed internal consistency check"));
c0edd9ed
JK
815 }
816
84202f9c
TT
817 for (cur = target_stack; cur != NULL; cur = cur->beneath)
818 if (cur == t)
c0edd9ed
JK
819 return 1;
820
821 return 0;
822}
823
f0f9ff95
TT
824/* Default implementation of to_get_thread_local_address. */
825
826static void
827generic_tls_error (void)
828{
829 throw_error (TLS_GENERIC_ERROR,
830 _("Cannot find thread-local variables on this target"));
831}
832
72f5cf0e 833/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
834 current thread's thread-local storage with offset OFFSET. */
835CORE_ADDR
836target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
837{
838 volatile CORE_ADDR addr = 0;
f0f9ff95 839 struct target_ops *target = &current_target;
9e35dae4 840
f0f9ff95 841 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
842 {
843 ptid_t ptid = inferior_ptid;
9e35dae4 844
492d29ea 845 TRY
9e35dae4
DJ
846 {
847 CORE_ADDR lm_addr;
848
849 /* Fetch the load module address for this objfile. */
f5656ead 850 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 851 objfile);
9e35dae4 852
3e43a32a
MS
853 addr = target->to_get_thread_local_address (target, ptid,
854 lm_addr, offset);
9e35dae4
DJ
855 }
856 /* If an error occurred, print TLS related messages here. Otherwise,
857 throw the error to some higher catcher. */
492d29ea 858 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
859 {
860 int objfile_is_library = (objfile->flags & OBJF_SHARED);
861
862 switch (ex.error)
863 {
864 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
865 error (_("Cannot find thread-local variables "
866 "in this thread library."));
9e35dae4
DJ
867 break;
868 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
869 if (objfile_is_library)
870 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 871 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
872 else
873 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 874 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
875 break;
876 case TLS_NOT_ALLOCATED_YET_ERROR:
877 if (objfile_is_library)
878 error (_("The inferior has not yet allocated storage for"
879 " thread-local variables in\n"
880 "the shared library `%s'\n"
881 "for %s"),
4262abfb 882 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
883 else
884 error (_("The inferior has not yet allocated storage for"
885 " thread-local variables in\n"
886 "the executable `%s'\n"
887 "for %s"),
4262abfb 888 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
889 break;
890 case TLS_GENERIC_ERROR:
891 if (objfile_is_library)
892 error (_("Cannot find thread-local storage for %s, "
893 "shared library %s:\n%s"),
894 target_pid_to_str (ptid),
4262abfb 895 objfile_name (objfile), ex.message);
9e35dae4
DJ
896 else
897 error (_("Cannot find thread-local storage for %s, "
898 "executable file %s:\n%s"),
899 target_pid_to_str (ptid),
4262abfb 900 objfile_name (objfile), ex.message);
9e35dae4
DJ
901 break;
902 default:
903 throw_exception (ex);
904 break;
905 }
906 }
492d29ea 907 END_CATCH
9e35dae4
DJ
908 }
909 /* It wouldn't be wrong here to try a gdbarch method, too; finding
910 TLS is an ABI-specific thing. But we don't do that yet. */
911 else
912 error (_("Cannot find thread-local variables on this target"));
913
914 return addr;
915}
916
6be7b56e 917const char *
01cb8804 918target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
919{
920#define CASE(X) case X: return #X
01cb8804 921 switch (status)
6be7b56e
PA
922 {
923 CASE(TARGET_XFER_E_IO);
bc113b4e 924 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
925 default:
926 return "<unknown>";
927 }
928#undef CASE
929};
930
931
c906108c
SS
932#undef MIN
933#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
934
935/* target_read_string -- read a null terminated string, up to LEN bytes,
936 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
937 Set *STRING to a pointer to malloc'd memory containing the data; the caller
938 is responsible for freeing it. Return the number of bytes successfully
939 read. */
940
941int
fba45db2 942target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 943{
c2e8b827 944 int tlen, offset, i;
1b0ba102 945 gdb_byte buf[4];
c906108c
SS
946 int errcode = 0;
947 char *buffer;
948 int buffer_allocated;
949 char *bufptr;
950 unsigned int nbytes_read = 0;
951
6217bf3e
MS
952 gdb_assert (string);
953
c906108c
SS
954 /* Small for testing. */
955 buffer_allocated = 4;
224c3ddb 956 buffer = (char *) xmalloc (buffer_allocated);
c906108c
SS
957 bufptr = buffer;
958
c906108c
SS
959 while (len > 0)
960 {
961 tlen = MIN (len, 4 - (memaddr & 3));
962 offset = memaddr & 3;
963
1b0ba102 964 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
965 if (errcode != 0)
966 {
967 /* The transfer request might have crossed the boundary to an
c378eb4e 968 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
969 a single byte. */
970 tlen = 1;
971 offset = 0;
b8eb5af0 972 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
973 if (errcode != 0)
974 goto done;
975 }
976
977 if (bufptr - buffer + tlen > buffer_allocated)
978 {
979 unsigned int bytes;
5d502164 980
c906108c
SS
981 bytes = bufptr - buffer;
982 buffer_allocated *= 2;
224c3ddb 983 buffer = (char *) xrealloc (buffer, buffer_allocated);
c906108c
SS
984 bufptr = buffer + bytes;
985 }
986
987 for (i = 0; i < tlen; i++)
988 {
989 *bufptr++ = buf[i + offset];
990 if (buf[i + offset] == '\000')
991 {
992 nbytes_read += i + 1;
993 goto done;
994 }
995 }
996
997 memaddr += tlen;
998 len -= tlen;
999 nbytes_read += tlen;
1000 }
c5aa993b 1001done:
6217bf3e 1002 *string = buffer;
c906108c
SS
1003 if (errnop != NULL)
1004 *errnop = errcode;
c906108c
SS
1005 return nbytes_read;
1006}
1007
07b82ea5
PA
1008struct target_section_table *
1009target_get_section_table (struct target_ops *target)
1010{
7e35c012 1011 return (*target->to_get_section_table) (target);
07b82ea5
PA
1012}
1013
8db32d44 1014/* Find a section containing ADDR. */
07b82ea5 1015
0542c86d 1016struct target_section *
8db32d44
AC
1017target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1018{
07b82ea5 1019 struct target_section_table *table = target_get_section_table (target);
0542c86d 1020 struct target_section *secp;
07b82ea5
PA
1021
1022 if (table == NULL)
1023 return NULL;
1024
1025 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1026 {
1027 if (addr >= secp->addr && addr < secp->endaddr)
1028 return secp;
1029 }
1030 return NULL;
1031}
1032
0fec99e8
PA
1033
1034/* Helper for the memory xfer routines. Checks the attributes of the
1035 memory region of MEMADDR against the read or write being attempted.
1036 If the access is permitted returns true, otherwise returns false.
1037 REGION_P is an optional output parameter. If not-NULL, it is
1038 filled with a pointer to the memory region of MEMADDR. REG_LEN
1039 returns LEN trimmed to the end of the region. This is how much the
1040 caller can continue requesting, if the access is permitted. A
1041 single xfer request must not straddle memory region boundaries. */
1042
1043static int
1044memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1045 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1046 struct mem_region **region_p)
1047{
1048 struct mem_region *region;
1049
1050 region = lookup_mem_region (memaddr);
1051
1052 if (region_p != NULL)
1053 *region_p = region;
1054
1055 switch (region->attrib.mode)
1056 {
1057 case MEM_RO:
1058 if (writebuf != NULL)
1059 return 0;
1060 break;
1061
1062 case MEM_WO:
1063 if (readbuf != NULL)
1064 return 0;
1065 break;
1066
1067 case MEM_FLASH:
1068 /* We only support writing to flash during "load" for now. */
1069 if (writebuf != NULL)
1070 error (_("Writing to flash memory forbidden in this context"));
1071 break;
1072
1073 case MEM_NONE:
1074 return 0;
1075 }
1076
1077 /* region->hi == 0 means there's no upper bound. */
1078 if (memaddr + len < region->hi || region->hi == 0)
1079 *reg_len = len;
1080 else
1081 *reg_len = region->hi - memaddr;
1082
1083 return 1;
1084}
1085
9f713294
YQ
1086/* Read memory from more than one valid target. A core file, for
1087 instance, could have some of memory but delegate other bits to
1088 the target below it. So, we must manually try all targets. */
1089
cc9f16aa 1090enum target_xfer_status
17fde6d0 1091raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1092 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1093 ULONGEST *xfered_len)
9f713294 1094{
9b409511 1095 enum target_xfer_status res;
9f713294
YQ
1096
1097 do
1098 {
1099 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1100 readbuf, writebuf, memaddr, len,
1101 xfered_len);
1102 if (res == TARGET_XFER_OK)
9f713294
YQ
1103 break;
1104
633785ff 1105 /* Stop if the target reports that the memory is not available. */
bc113b4e 1106 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1107 break;
1108
9f713294
YQ
1109 /* We want to continue past core files to executables, but not
1110 past a running target's memory. */
1111 if (ops->to_has_all_memory (ops))
1112 break;
1113
1114 ops = ops->beneath;
1115 }
1116 while (ops != NULL);
1117
0f26cec1
PA
1118 /* The cache works at the raw memory level. Make sure the cache
1119 gets updated with raw contents no matter what kind of memory
1120 object was originally being written. Note we do write-through
1121 first, so that if it fails, we don't write to the cache contents
1122 that never made it to the target. */
1123 if (writebuf != NULL
1124 && !ptid_equal (inferior_ptid, null_ptid)
1125 && target_dcache_init_p ()
1126 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1127 {
1128 DCACHE *dcache = target_dcache_get ();
1129
1130 /* Note that writing to an area of memory which wasn't present
1131 in the cache doesn't cause it to be loaded in. */
1132 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1133 }
1134
9f713294
YQ
1135 return res;
1136}
1137
7f79c47e
DE
1138/* Perform a partial memory transfer.
1139 For docs see target.h, to_xfer_partial. */
cf7a04e8 1140
9b409511 1141static enum target_xfer_status
f0ba3972 1142memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1143 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1144 ULONGEST len, ULONGEST *xfered_len)
0779438d 1145{
9b409511 1146 enum target_xfer_status res;
0fec99e8 1147 ULONGEST reg_len;
cf7a04e8 1148 struct mem_region *region;
4e5d721f 1149 struct inferior *inf;
cf7a04e8 1150
07b82ea5
PA
1151 /* For accesses to unmapped overlay sections, read directly from
1152 files. Must do this first, as MEMADDR may need adjustment. */
1153 if (readbuf != NULL && overlay_debugging)
1154 {
1155 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1156
07b82ea5
PA
1157 if (pc_in_unmapped_range (memaddr, section))
1158 {
1159 struct target_section_table *table
1160 = target_get_section_table (ops);
1161 const char *section_name = section->the_bfd_section->name;
5d502164 1162
07b82ea5
PA
1163 memaddr = overlay_mapped_address (memaddr, section);
1164 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1165 memaddr, len, xfered_len,
07b82ea5
PA
1166 table->sections,
1167 table->sections_end,
1168 section_name);
1169 }
1170 }
1171
1172 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1173 if (readbuf != NULL && trust_readonly)
1174 {
0542c86d 1175 struct target_section *secp;
07b82ea5 1176 struct target_section_table *table;
cf7a04e8
DJ
1177
1178 secp = target_section_by_addr (ops, memaddr);
1179 if (secp != NULL
2b2848e2
DE
1180 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1181 secp->the_bfd_section)
cf7a04e8 1182 & SEC_READONLY))
07b82ea5
PA
1183 {
1184 table = target_get_section_table (ops);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1186 memaddr, len, xfered_len,
07b82ea5
PA
1187 table->sections,
1188 table->sections_end,
1189 NULL);
1190 }
98646950
UW
1191 }
1192
cf7a04e8 1193 /* Try GDB's internal data cache. */
cf7a04e8 1194
0fec99e8
PA
1195 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1196 &region))
1197 return TARGET_XFER_E_IO;
cf7a04e8 1198
6c95b8df 1199 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1200 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1201 else
1202 inf = NULL;
4e5d721f
DE
1203
1204 if (inf != NULL
0f26cec1 1205 && readbuf != NULL
2f4d8875
PA
1206 /* The dcache reads whole cache lines; that doesn't play well
1207 with reading from a trace buffer, because reading outside of
1208 the collected memory range fails. */
1209 && get_traceframe_number () == -1
4e5d721f 1210 && (region->attrib.cache
29453a14
YQ
1211 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1212 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1213 {
2a2f9fe4
YQ
1214 DCACHE *dcache = target_dcache_get_or_init ();
1215
0f26cec1
PA
1216 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1217 reg_len, xfered_len);
cf7a04e8
DJ
1218 }
1219
1220 /* If none of those methods found the memory we wanted, fall back
1221 to a target partial transfer. Normally a single call to
1222 to_xfer_partial is enough; if it doesn't recognize an object
1223 it will call the to_xfer_partial of the next target down.
1224 But for memory this won't do. Memory is the only target
9b409511
YQ
1225 object which can be read from more than one valid target.
1226 A core file, for instance, could have some of memory but
1227 delegate other bits to the target below it. So, we must
1228 manually try all targets. */
1229
1230 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1231 xfered_len);
cf7a04e8
DJ
1232
1233 /* If we still haven't got anything, return the last error. We
1234 give up. */
1235 return res;
0779438d
AC
1236}
1237
f0ba3972
PA
1238/* Perform a partial memory transfer. For docs see target.h,
1239 to_xfer_partial. */
1240
9b409511 1241static enum target_xfer_status
f0ba3972 1242memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1243 gdb_byte *readbuf, const gdb_byte *writebuf,
1244 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1245{
9b409511 1246 enum target_xfer_status res;
f0ba3972
PA
1247
1248 /* Zero length requests are ok and require no work. */
1249 if (len == 0)
9b409511 1250 return TARGET_XFER_EOF;
f0ba3972
PA
1251
1252 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1253 breakpoint insns, thus hiding out from higher layers whether
1254 there are software breakpoints inserted in the code stream. */
1255 if (readbuf != NULL)
1256 {
9b409511
YQ
1257 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1258 xfered_len);
f0ba3972 1259
9b409511 1260 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1261 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1262 }
1263 else
1264 {
d7f3ff3e 1265 gdb_byte *buf;
f0ba3972
PA
1266 struct cleanup *old_chain;
1267
67c059c2
AB
1268 /* A large write request is likely to be partially satisfied
1269 by memory_xfer_partial_1. We will continually malloc
1270 and free a copy of the entire write request for breakpoint
1271 shadow handling even though we only end up writing a small
1272 subset of it. Cap writes to 4KB to mitigate this. */
1273 len = min (4096, len);
1274
d7f3ff3e 1275 buf = (gdb_byte *) xmalloc (len);
f0ba3972
PA
1276 old_chain = make_cleanup (xfree, buf);
1277 memcpy (buf, writebuf, len);
1278
1279 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1280 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1281 xfered_len);
f0ba3972
PA
1282
1283 do_cleanups (old_chain);
1284 }
1285
1286 return res;
1287}
1288
8defab1a
DJ
1289static void
1290restore_show_memory_breakpoints (void *arg)
1291{
1292 show_memory_breakpoints = (uintptr_t) arg;
1293}
1294
1295struct cleanup *
1296make_show_memory_breakpoints_cleanup (int show)
1297{
1298 int current = show_memory_breakpoints;
8defab1a 1299
5d502164 1300 show_memory_breakpoints = show;
8defab1a
DJ
1301 return make_cleanup (restore_show_memory_breakpoints,
1302 (void *) (uintptr_t) current);
1303}
1304
7f79c47e
DE
1305/* For docs see target.h, to_xfer_partial. */
1306
9b409511 1307enum target_xfer_status
27394598
AC
1308target_xfer_partial (struct target_ops *ops,
1309 enum target_object object, const char *annex,
4ac248ca 1310 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1311 ULONGEST offset, ULONGEST len,
1312 ULONGEST *xfered_len)
27394598 1313{
9b409511 1314 enum target_xfer_status retval;
27394598
AC
1315
1316 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1317
ce6d0892
YQ
1318 /* Transfer is done when LEN is zero. */
1319 if (len == 0)
9b409511 1320 return TARGET_XFER_EOF;
ce6d0892 1321
d914c394
SS
1322 if (writebuf && !may_write_memory)
1323 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1324 core_addr_to_string_nz (offset), plongest (len));
1325
9b409511
YQ
1326 *xfered_len = 0;
1327
cf7a04e8
DJ
1328 /* If this is a memory transfer, let the memory-specific code
1329 have a look at it instead. Memory transfers are more
1330 complicated. */
29453a14
YQ
1331 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1332 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1333 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1334 writebuf, offset, len, xfered_len);
9f713294 1335 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1336 {
0fec99e8
PA
1337 /* Skip/avoid accessing the target if the memory region
1338 attributes block the access. Check this here instead of in
1339 raw_memory_xfer_partial as otherwise we'd end up checking
1340 this twice in the case of the memory_xfer_partial path is
1341 taken; once before checking the dcache, and another in the
1342 tail call to raw_memory_xfer_partial. */
1343 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1344 NULL))
1345 return TARGET_XFER_E_IO;
1346
9f713294 1347 /* Request the normal memory object from other layers. */
9b409511
YQ
1348 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1349 xfered_len);
cf7a04e8 1350 }
9f713294
YQ
1351 else
1352 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1353 writebuf, offset, len, xfered_len);
cf7a04e8 1354
27394598
AC
1355 if (targetdebug)
1356 {
1357 const unsigned char *myaddr = NULL;
1358
1359 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1360 "%s:target_xfer_partial "
9b409511 1361 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1362 ops->to_shortname,
1363 (int) object,
1364 (annex ? annex : "(null)"),
53b71562
JB
1365 host_address_to_string (readbuf),
1366 host_address_to_string (writebuf),
0b1553bc 1367 core_addr_to_string_nz (offset),
9b409511
YQ
1368 pulongest (len), retval,
1369 pulongest (*xfered_len));
27394598
AC
1370
1371 if (readbuf)
1372 myaddr = readbuf;
1373 if (writebuf)
1374 myaddr = writebuf;
9b409511 1375 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1376 {
1377 int i;
2bc416ba 1378
27394598 1379 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1380 for (i = 0; i < *xfered_len; i++)
27394598 1381 {
53b71562 1382 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1383 {
1384 if (targetdebug < 2 && i > 0)
1385 {
1386 fprintf_unfiltered (gdb_stdlog, " ...");
1387 break;
1388 }
1389 fprintf_unfiltered (gdb_stdlog, "\n");
1390 }
2bc416ba 1391
27394598
AC
1392 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1393 }
1394 }
2bc416ba 1395
27394598
AC
1396 fputc_unfiltered ('\n', gdb_stdlog);
1397 }
9b409511
YQ
1398
1399 /* Check implementations of to_xfer_partial update *XFERED_LEN
1400 properly. Do assertion after printing debug messages, so that we
1401 can find more clues on assertion failure from debugging messages. */
bc113b4e 1402 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1403 gdb_assert (*xfered_len > 0);
1404
27394598
AC
1405 return retval;
1406}
1407
578d3588
PA
1408/* Read LEN bytes of target memory at address MEMADDR, placing the
1409 results in GDB's memory at MYADDR. Returns either 0 for success or
d09f2c3f 1410 -1 if any error occurs.
c906108c
SS
1411
1412 If an error occurs, no guarantee is made about the contents of the data at
1413 MYADDR. In particular, the caller should not depend upon partial reads
1414 filling the buffer with good data. There is no way for the caller to know
1415 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1416 deal with partial reads should call target_read (which will retry until
c378eb4e 1417 it makes no progress, and then return how much was transferred). */
c906108c
SS
1418
1419int
1b162304 1420target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1421{
c35b1492
PA
1422 /* Dispatch to the topmost target, not the flattened current_target.
1423 Memory accesses check target->to_has_(all_)memory, and the
1424 flattened target doesn't inherit those. */
1425 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1426 myaddr, memaddr, len) == len)
1427 return 0;
0779438d 1428 else
d09f2c3f 1429 return -1;
c906108c
SS
1430}
1431
721ec300
GB
1432/* See target/target.h. */
1433
1434int
1435target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1436{
1437 gdb_byte buf[4];
1438 int r;
1439
1440 r = target_read_memory (memaddr, buf, sizeof buf);
1441 if (r != 0)
1442 return r;
1443 *result = extract_unsigned_integer (buf, sizeof buf,
1444 gdbarch_byte_order (target_gdbarch ()));
1445 return 0;
1446}
1447
aee4bf85
PA
1448/* Like target_read_memory, but specify explicitly that this is a read
1449 from the target's raw memory. That is, this read bypasses the
1450 dcache, breakpoint shadowing, etc. */
1451
1452int
1453target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1454{
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
1457 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
d09f2c3f 1461 return -1;
aee4bf85
PA
1462}
1463
4e5d721f
DE
1464/* Like target_read_memory, but specify explicitly that this is a read from
1465 the target's stack. This may trigger different cache behavior. */
1466
1467int
45aa4659 1468target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1469{
aee4bf85
PA
1470 /* See comment in target_read_memory about why the request starts at
1471 current_target.beneath. */
4e5d721f
DE
1472 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1473 myaddr, memaddr, len) == len)
1474 return 0;
1475 else
d09f2c3f 1476 return -1;
4e5d721f
DE
1477}
1478
29453a14
YQ
1479/* Like target_read_memory, but specify explicitly that this is a read from
1480 the target's code. This may trigger different cache behavior. */
1481
1482int
1483target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1484{
aee4bf85
PA
1485 /* See comment in target_read_memory about why the request starts at
1486 current_target.beneath. */
29453a14
YQ
1487 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1488 myaddr, memaddr, len) == len)
1489 return 0;
1490 else
d09f2c3f 1491 return -1;
29453a14
YQ
1492}
1493
7f79c47e 1494/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
d09f2c3f
PA
1495 Returns either 0 for success or -1 if any error occurs. If an
1496 error occurs, no guarantee is made about how much data got written.
1497 Callers that can deal with partial writes should call
1498 target_write. */
7f79c47e 1499
c906108c 1500int
45aa4659 1501target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1502{
aee4bf85
PA
1503 /* See comment in target_read_memory about why the request starts at
1504 current_target.beneath. */
c35b1492 1505 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1506 myaddr, memaddr, len) == len)
1507 return 0;
0779438d 1508 else
d09f2c3f 1509 return -1;
c906108c 1510}
c5aa993b 1511
f0ba3972 1512/* Write LEN bytes from MYADDR to target raw memory at address
d09f2c3f
PA
1513 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1514 If an error occurs, no guarantee is made about how much data got
1515 written. Callers that can deal with partial writes should call
1516 target_write. */
f0ba3972
PA
1517
1518int
45aa4659 1519target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1520{
aee4bf85
PA
1521 /* See comment in target_read_memory about why the request starts at
1522 current_target.beneath. */
f0ba3972
PA
1523 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1524 myaddr, memaddr, len) == len)
1525 return 0;
1526 else
d09f2c3f 1527 return -1;
f0ba3972
PA
1528}
1529
fd79ecee
DJ
1530/* Fetch the target's memory map. */
1531
1532VEC(mem_region_s) *
1533target_memory_map (void)
1534{
1535 VEC(mem_region_s) *result;
1536 struct mem_region *last_one, *this_one;
1537 int ix;
1538 struct target_ops *t;
1539
6b2c5a57 1540 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1541 if (result == NULL)
1542 return NULL;
1543
1544 qsort (VEC_address (mem_region_s, result),
1545 VEC_length (mem_region_s, result),
1546 sizeof (struct mem_region), mem_region_cmp);
1547
1548 /* Check that regions do not overlap. Simultaneously assign
1549 a numbering for the "mem" commands to use to refer to
1550 each region. */
1551 last_one = NULL;
1552 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1553 {
1554 this_one->number = ix;
1555
1556 if (last_one && last_one->hi > this_one->lo)
1557 {
1558 warning (_("Overlapping regions in memory map: ignoring"));
1559 VEC_free (mem_region_s, result);
1560 return NULL;
1561 }
1562 last_one = this_one;
1563 }
1564
1565 return result;
1566}
1567
a76d924d
DJ
1568void
1569target_flash_erase (ULONGEST address, LONGEST length)
1570{
e8a6c6ac 1571 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1572}
1573
1574void
1575target_flash_done (void)
1576{
f6fb2925 1577 current_target.to_flash_done (&current_target);
a76d924d
DJ
1578}
1579
920d2a44
AC
1580static void
1581show_trust_readonly (struct ui_file *file, int from_tty,
1582 struct cmd_list_element *c, const char *value)
1583{
3e43a32a
MS
1584 fprintf_filtered (file,
1585 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1586 value);
1587}
3a11626d 1588
7f79c47e 1589/* Target vector read/write partial wrapper functions. */
0088c768 1590
9b409511 1591static enum target_xfer_status
1e3ff5ad
AC
1592target_read_partial (struct target_ops *ops,
1593 enum target_object object,
1b0ba102 1594 const char *annex, gdb_byte *buf,
9b409511
YQ
1595 ULONGEST offset, ULONGEST len,
1596 ULONGEST *xfered_len)
1e3ff5ad 1597{
9b409511
YQ
1598 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1599 xfered_len);
1e3ff5ad
AC
1600}
1601
8a55ffb0 1602static enum target_xfer_status
1e3ff5ad
AC
1603target_write_partial (struct target_ops *ops,
1604 enum target_object object,
1b0ba102 1605 const char *annex, const gdb_byte *buf,
9b409511 1606 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1607{
9b409511
YQ
1608 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1609 xfered_len);
1e3ff5ad
AC
1610}
1611
1612/* Wrappers to perform the full transfer. */
7f79c47e
DE
1613
1614/* For docs on target_read see target.h. */
1615
1e3ff5ad
AC
1616LONGEST
1617target_read (struct target_ops *ops,
1618 enum target_object object,
1b0ba102 1619 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1620 ULONGEST offset, LONGEST len)
1621{
279a6fed 1622 LONGEST xfered_total = 0;
d309493c
SM
1623 int unit_size = 1;
1624
1625 /* If we are reading from a memory object, find the length of an addressable
1626 unit for that architecture. */
1627 if (object == TARGET_OBJECT_MEMORY
1628 || object == TARGET_OBJECT_STACK_MEMORY
1629 || object == TARGET_OBJECT_CODE_MEMORY
1630 || object == TARGET_OBJECT_RAW_MEMORY)
1631 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
5d502164 1632
279a6fed 1633 while (xfered_total < len)
1e3ff5ad 1634 {
279a6fed 1635 ULONGEST xfered_partial;
9b409511
YQ
1636 enum target_xfer_status status;
1637
1638 status = target_read_partial (ops, object, annex,
d309493c 1639 buf + xfered_total * unit_size,
279a6fed
SM
1640 offset + xfered_total, len - xfered_total,
1641 &xfered_partial);
5d502164 1642
1e3ff5ad 1643 /* Call an observer, notifying them of the xfer progress? */
9b409511 1644 if (status == TARGET_XFER_EOF)
279a6fed 1645 return xfered_total;
9b409511
YQ
1646 else if (status == TARGET_XFER_OK)
1647 {
279a6fed 1648 xfered_total += xfered_partial;
9b409511
YQ
1649 QUIT;
1650 }
1651 else
279a6fed 1652 return TARGET_XFER_E_IO;
9b409511 1653
1e3ff5ad
AC
1654 }
1655 return len;
1656}
1657
f1a507a1
JB
1658/* Assuming that the entire [begin, end) range of memory cannot be
1659 read, try to read whatever subrange is possible to read.
1660
1661 The function returns, in RESULT, either zero or one memory block.
1662 If there's a readable subrange at the beginning, it is completely
1663 read and returned. Any further readable subrange will not be read.
1664 Otherwise, if there's a readable subrange at the end, it will be
1665 completely read and returned. Any readable subranges before it
1666 (obviously, not starting at the beginning), will be ignored. In
1667 other cases -- either no readable subrange, or readable subrange(s)
1668 that is neither at the beginning, or end, nothing is returned.
1669
1670 The purpose of this function is to handle a read across a boundary
1671 of accessible memory in a case when memory map is not available.
1672 The above restrictions are fine for this case, but will give
1673 incorrect results if the memory is 'patchy'. However, supporting
1674 'patchy' memory would require trying to read every single byte,
1675 and it seems unacceptable solution. Explicit memory map is
1676 recommended for this case -- and target_read_memory_robust will
1677 take care of reading multiple ranges then. */
8dedea02
VP
1678
1679static void
3e43a32a 1680read_whatever_is_readable (struct target_ops *ops,
279a6fed 1681 const ULONGEST begin, const ULONGEST end,
d309493c 1682 int unit_size,
8dedea02 1683 VEC(memory_read_result_s) **result)
d5086790 1684{
224c3ddb 1685 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
8dedea02
VP
1686 ULONGEST current_begin = begin;
1687 ULONGEST current_end = end;
1688 int forward;
1689 memory_read_result_s r;
9b409511 1690 ULONGEST xfered_len;
8dedea02
VP
1691
1692 /* If we previously failed to read 1 byte, nothing can be done here. */
1693 if (end - begin <= 1)
13b3fd9b
MS
1694 {
1695 xfree (buf);
1696 return;
1697 }
8dedea02
VP
1698
1699 /* Check that either first or the last byte is readable, and give up
c378eb4e 1700 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1701 at the boundary of accessible region. */
1702 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1703 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1704 {
1705 forward = 1;
1706 ++current_begin;
1707 }
1708 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
279a6fed 1709 buf + (end - begin) - 1, end - 1, 1,
9b409511 1710 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1711 {
1712 forward = 0;
1713 --current_end;
1714 }
1715 else
1716 {
13b3fd9b 1717 xfree (buf);
8dedea02
VP
1718 return;
1719 }
1720
1721 /* Loop invariant is that the [current_begin, current_end) was previously
1722 found to be not readable as a whole.
1723
1724 Note loop condition -- if the range has 1 byte, we can't divide the range
1725 so there's no point trying further. */
1726 while (current_end - current_begin > 1)
1727 {
1728 ULONGEST first_half_begin, first_half_end;
1729 ULONGEST second_half_begin, second_half_end;
1730 LONGEST xfer;
279a6fed 1731 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
f1a507a1 1732
8dedea02
VP
1733 if (forward)
1734 {
1735 first_half_begin = current_begin;
1736 first_half_end = middle;
1737 second_half_begin = middle;
1738 second_half_end = current_end;
1739 }
1740 else
1741 {
1742 first_half_begin = middle;
1743 first_half_end = current_end;
1744 second_half_begin = current_begin;
1745 second_half_end = middle;
1746 }
1747
1748 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
d309493c 1749 buf + (first_half_begin - begin) * unit_size,
8dedea02
VP
1750 first_half_begin,
1751 first_half_end - first_half_begin);
1752
1753 if (xfer == first_half_end - first_half_begin)
1754 {
c378eb4e 1755 /* This half reads up fine. So, the error must be in the
3e43a32a 1756 other half. */
8dedea02
VP
1757 current_begin = second_half_begin;
1758 current_end = second_half_end;
1759 }
1760 else
1761 {
c378eb4e 1762 /* This half is not readable. Because we've tried one byte, we
279a6fed 1763 know some part of this half if actually readable. Go to the next
8dedea02
VP
1764 iteration to divide again and try to read.
1765
1766 We don't handle the other half, because this function only tries
1767 to read a single readable subrange. */
1768 current_begin = first_half_begin;
1769 current_end = first_half_end;
1770 }
1771 }
1772
1773 if (forward)
1774 {
1775 /* The [begin, current_begin) range has been read. */
1776 r.begin = begin;
1777 r.end = current_begin;
1778 r.data = buf;
1779 }
1780 else
1781 {
1782 /* The [current_end, end) range has been read. */
279a6fed 1783 LONGEST region_len = end - current_end;
f1a507a1 1784
224c3ddb 1785 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
d309493c
SM
1786 memcpy (r.data, buf + (current_end - begin) * unit_size,
1787 region_len * unit_size);
8dedea02
VP
1788 r.begin = current_end;
1789 r.end = end;
1790 xfree (buf);
1791 }
1792 VEC_safe_push(memory_read_result_s, (*result), &r);
1793}
1794
1795void
1796free_memory_read_result_vector (void *x)
1797{
19ba03f4 1798 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
8dedea02
VP
1799 memory_read_result_s *current;
1800 int ix;
1801
1802 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1803 {
1804 xfree (current->data);
1805 }
1806 VEC_free (memory_read_result_s, v);
1807}
1808
1809VEC(memory_read_result_s) *
279a6fed
SM
1810read_memory_robust (struct target_ops *ops,
1811 const ULONGEST offset, const LONGEST len)
8dedea02
VP
1812{
1813 VEC(memory_read_result_s) *result = 0;
d309493c 1814 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
8dedea02 1815
279a6fed
SM
1816 LONGEST xfered_total = 0;
1817 while (xfered_total < len)
d5086790 1818 {
279a6fed
SM
1819 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1820 LONGEST region_len;
5d502164 1821
8dedea02
VP
1822 /* If there is no explicit region, a fake one should be created. */
1823 gdb_assert (region);
1824
1825 if (region->hi == 0)
279a6fed 1826 region_len = len - xfered_total;
8dedea02 1827 else
279a6fed 1828 region_len = region->hi - offset;
8dedea02
VP
1829
1830 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1831 {
c378eb4e 1832 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1833 if the region is explicitly marked inaccessible, or
1834 'inaccessible-by-default' is in effect. */
279a6fed 1835 xfered_total += region_len;
8dedea02
VP
1836 }
1837 else
1838 {
279a6fed 1839 LONGEST to_read = min (len - xfered_total, region_len);
d309493c 1840 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
8dedea02 1841
279a6fed
SM
1842 LONGEST xfered_partial =
1843 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1844 (gdb_byte *) buffer,
1845 offset + xfered_total, to_read);
8dedea02 1846 /* Call an observer, notifying them of the xfer progress? */
279a6fed 1847 if (xfered_partial <= 0)
d5086790 1848 {
c378eb4e 1849 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1850 some subrange. */
1851 xfree (buffer);
e084c964
DB
1852 read_whatever_is_readable (ops, offset + xfered_total,
1853 offset + xfered_total + to_read,
1854 unit_size, &result);
279a6fed 1855 xfered_total += to_read;
d5086790 1856 }
8dedea02
VP
1857 else
1858 {
1859 struct memory_read_result r;
1860 r.data = buffer;
279a6fed
SM
1861 r.begin = offset + xfered_total;
1862 r.end = r.begin + xfered_partial;
8dedea02 1863 VEC_safe_push (memory_read_result_s, result, &r);
279a6fed 1864 xfered_total += xfered_partial;
8dedea02
VP
1865 }
1866 QUIT;
d5086790 1867 }
d5086790 1868 }
8dedea02 1869 return result;
d5086790
VP
1870}
1871
8dedea02 1872
cf7a04e8
DJ
1873/* An alternative to target_write with progress callbacks. */
1874
1e3ff5ad 1875LONGEST
cf7a04e8
DJ
1876target_write_with_progress (struct target_ops *ops,
1877 enum target_object object,
1878 const char *annex, const gdb_byte *buf,
1879 ULONGEST offset, LONGEST len,
1880 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad 1881{
279a6fed 1882 LONGEST xfered_total = 0;
d309493c
SM
1883 int unit_size = 1;
1884
1885 /* If we are writing to a memory object, find the length of an addressable
1886 unit for that architecture. */
1887 if (object == TARGET_OBJECT_MEMORY
1888 || object == TARGET_OBJECT_STACK_MEMORY
1889 || object == TARGET_OBJECT_CODE_MEMORY
1890 || object == TARGET_OBJECT_RAW_MEMORY)
1891 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
a76d924d
DJ
1892
1893 /* Give the progress callback a chance to set up. */
1894 if (progress)
1895 (*progress) (0, baton);
1896
279a6fed 1897 while (xfered_total < len)
1e3ff5ad 1898 {
279a6fed 1899 ULONGEST xfered_partial;
9b409511
YQ
1900 enum target_xfer_status status;
1901
1902 status = target_write_partial (ops, object, annex,
d309493c 1903 buf + xfered_total * unit_size,
279a6fed
SM
1904 offset + xfered_total, len - xfered_total,
1905 &xfered_partial);
cf7a04e8 1906
5c328c05 1907 if (status != TARGET_XFER_OK)
279a6fed 1908 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
cf7a04e8
DJ
1909
1910 if (progress)
279a6fed 1911 (*progress) (xfered_partial, baton);
cf7a04e8 1912
279a6fed 1913 xfered_total += xfered_partial;
1e3ff5ad
AC
1914 QUIT;
1915 }
1916 return len;
1917}
1918
7f79c47e
DE
1919/* For docs on target_write see target.h. */
1920
cf7a04e8
DJ
1921LONGEST
1922target_write (struct target_ops *ops,
1923 enum target_object object,
1924 const char *annex, const gdb_byte *buf,
1925 ULONGEST offset, LONGEST len)
1926{
1927 return target_write_with_progress (ops, object, annex, buf, offset, len,
1928 NULL, NULL);
1929}
1930
159f81f3
DJ
1931/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1932 the size of the transferred data. PADDING additional bytes are
1933 available in *BUF_P. This is a helper function for
1934 target_read_alloc; see the declaration of that function for more
1935 information. */
13547ab6 1936
159f81f3
DJ
1937static LONGEST
1938target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1939 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1940{
1941 size_t buf_alloc, buf_pos;
1942 gdb_byte *buf;
13547ab6
DJ
1943
1944 /* This function does not have a length parameter; it reads the
1945 entire OBJECT). Also, it doesn't support objects fetched partly
1946 from one target and partly from another (in a different stratum,
1947 e.g. a core file and an executable). Both reasons make it
1948 unsuitable for reading memory. */
1949 gdb_assert (object != TARGET_OBJECT_MEMORY);
1950
1951 /* Start by reading up to 4K at a time. The target will throttle
1952 this number down if necessary. */
1953 buf_alloc = 4096;
224c3ddb 1954 buf = (gdb_byte *) xmalloc (buf_alloc);
13547ab6
DJ
1955 buf_pos = 0;
1956 while (1)
1957 {
9b409511
YQ
1958 ULONGEST xfered_len;
1959 enum target_xfer_status status;
1960
1961 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1962 buf_pos, buf_alloc - buf_pos - padding,
1963 &xfered_len);
1964
1965 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1966 {
1967 /* Read all there was. */
1968 if (buf_pos == 0)
1969 xfree (buf);
1970 else
1971 *buf_p = buf;
1972 return buf_pos;
1973 }
9b409511
YQ
1974 else if (status != TARGET_XFER_OK)
1975 {
1976 /* An error occurred. */
1977 xfree (buf);
1978 return TARGET_XFER_E_IO;
1979 }
13547ab6 1980
9b409511 1981 buf_pos += xfered_len;
13547ab6
DJ
1982
1983 /* If the buffer is filling up, expand it. */
1984 if (buf_alloc < buf_pos * 2)
1985 {
1986 buf_alloc *= 2;
224c3ddb 1987 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
13547ab6
DJ
1988 }
1989
1990 QUIT;
1991 }
1992}
1993
159f81f3
DJ
1994/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1995 the size of the transferred data. See the declaration in "target.h"
1996 function for more information about the return value. */
1997
1998LONGEST
1999target_read_alloc (struct target_ops *ops, enum target_object object,
2000 const char *annex, gdb_byte **buf_p)
2001{
2002 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2003}
2004
2005/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2006 returned as a string, allocated using xmalloc. If an error occurs
2007 or the transfer is unsupported, NULL is returned. Empty objects
2008 are returned as allocated but empty strings. A warning is issued
2009 if the result contains any embedded NUL bytes. */
2010
2011char *
2012target_read_stralloc (struct target_ops *ops, enum target_object object,
2013 const char *annex)
2014{
39086a0e
PA
2015 gdb_byte *buffer;
2016 char *bufstr;
7313baad 2017 LONGEST i, transferred;
159f81f3 2018
39086a0e
PA
2019 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2020 bufstr = (char *) buffer;
159f81f3
DJ
2021
2022 if (transferred < 0)
2023 return NULL;
2024
2025 if (transferred == 0)
2026 return xstrdup ("");
2027
39086a0e 2028 bufstr[transferred] = 0;
7313baad
UW
2029
2030 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2031 for (i = strlen (bufstr); i < transferred; i++)
2032 if (bufstr[i] != 0)
7313baad
UW
2033 {
2034 warning (_("target object %d, annex %s, "
2035 "contained unexpected null characters"),
2036 (int) object, annex ? annex : "(none)");
2037 break;
2038 }
159f81f3 2039
39086a0e 2040 return bufstr;
159f81f3
DJ
2041}
2042
b6591e8b
AC
2043/* Memory transfer methods. */
2044
2045void
1b0ba102 2046get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2047 LONGEST len)
2048{
07b82ea5
PA
2049 /* This method is used to read from an alternate, non-current
2050 target. This read must bypass the overlay support (as symbols
2051 don't match this target), and GDB's internal cache (wrong cache
2052 for this target). */
2053 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2054 != len)
578d3588 2055 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2056}
2057
2058ULONGEST
5d502164
MS
2059get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2060 int len, enum bfd_endian byte_order)
b6591e8b 2061{
f6519ebc 2062 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2063
2064 gdb_assert (len <= sizeof (buf));
2065 get_target_memory (ops, addr, buf, len);
e17a4113 2066 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2067}
2068
3db08215
MM
2069/* See target.h. */
2070
d914c394
SS
2071int
2072target_insert_breakpoint (struct gdbarch *gdbarch,
2073 struct bp_target_info *bp_tgt)
2074{
2075 if (!may_insert_breakpoints)
2076 {
2077 warning (_("May not insert breakpoints"));
2078 return 1;
2079 }
2080
6b84065d
TT
2081 return current_target.to_insert_breakpoint (&current_target,
2082 gdbarch, bp_tgt);
d914c394
SS
2083}
2084
3db08215
MM
2085/* See target.h. */
2086
d914c394 2087int
6b84065d
TT
2088target_remove_breakpoint (struct gdbarch *gdbarch,
2089 struct bp_target_info *bp_tgt)
d914c394
SS
2090{
2091 /* This is kind of a weird case to handle, but the permission might
2092 have been changed after breakpoints were inserted - in which case
2093 we should just take the user literally and assume that any
2094 breakpoints should be left in place. */
2095 if (!may_insert_breakpoints)
2096 {
2097 warning (_("May not remove breakpoints"));
2098 return 1;
2099 }
2100
6b84065d
TT
2101 return current_target.to_remove_breakpoint (&current_target,
2102 gdbarch, bp_tgt);
d914c394
SS
2103}
2104
c906108c 2105static void
fba45db2 2106target_info (char *args, int from_tty)
c906108c
SS
2107{
2108 struct target_ops *t;
c906108c 2109 int has_all_mem = 0;
c5aa993b 2110
c906108c 2111 if (symfile_objfile != NULL)
4262abfb
JK
2112 printf_unfiltered (_("Symbols from \"%s\".\n"),
2113 objfile_name (symfile_objfile));
c906108c 2114
258b763a 2115 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2116 {
c35b1492 2117 if (!(*t->to_has_memory) (t))
c906108c
SS
2118 continue;
2119
c5aa993b 2120 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2121 continue;
2122 if (has_all_mem)
3e43a32a
MS
2123 printf_unfiltered (_("\tWhile running this, "
2124 "GDB does not access memory from...\n"));
c5aa993b
JM
2125 printf_unfiltered ("%s:\n", t->to_longname);
2126 (t->to_files_info) (t);
c35b1492 2127 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2128 }
2129}
2130
fd79ecee
DJ
2131/* This function is called before any new inferior is created, e.g.
2132 by running a program, attaching, or connecting to a target.
2133 It cleans up any state from previous invocations which might
2134 change between runs. This is a subset of what target_preopen
2135 resets (things which might change between targets). */
2136
2137void
2138target_pre_inferior (int from_tty)
2139{
c378eb4e 2140 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2141 inferior might have survived and is entirely wrong for the new
c378eb4e 2142 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2143 to reproduce:
2144
2145 bash$ ./foo&
2146 [1] 4711
2147 bash$ ./foo&
2148 [1] 4712
2149 bash$ gdb ./foo
2150 [...]
2151 (gdb) attach 4711
2152 (gdb) detach
2153 (gdb) attach 4712
2154 Cannot access memory at address 0xdeadbeef
2155 */
b9db4ced 2156
50c71eaf
PA
2157 /* In some OSs, the shared library list is the same/global/shared
2158 across inferiors. If code is shared between processes, so are
2159 memory regions and features. */
f5656ead 2160 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2161 {
2162 no_shared_libraries (NULL, from_tty);
2163
2164 invalidate_target_mem_regions ();
424163ea 2165
50c71eaf
PA
2166 target_clear_description ();
2167 }
8ffcbaaf 2168
e9756d52
PP
2169 /* attach_flag may be set if the previous process associated with
2170 the inferior was attached to. */
2171 current_inferior ()->attach_flag = 0;
2172
5d5658a1
PA
2173 current_inferior ()->highest_thread_num = 0;
2174
8ffcbaaf 2175 agent_capability_invalidate ();
fd79ecee
DJ
2176}
2177
b8fa0bfa
PA
2178/* Callback for iterate_over_inferiors. Gets rid of the given
2179 inferior. */
2180
2181static int
2182dispose_inferior (struct inferior *inf, void *args)
2183{
2184 struct thread_info *thread;
2185
2186 thread = any_thread_of_process (inf->pid);
2187 if (thread)
2188 {
2189 switch_to_thread (thread->ptid);
2190
2191 /* Core inferiors actually should be detached, not killed. */
2192 if (target_has_execution)
2193 target_kill ();
2194 else
2195 target_detach (NULL, 0);
2196 }
2197
2198 return 0;
2199}
2200
c906108c
SS
2201/* This is to be called by the open routine before it does
2202 anything. */
2203
2204void
fba45db2 2205target_preopen (int from_tty)
c906108c 2206{
c5aa993b 2207 dont_repeat ();
c906108c 2208
b8fa0bfa 2209 if (have_inferiors ())
c5aa993b 2210 {
adf40b2e 2211 if (!from_tty
b8fa0bfa
PA
2212 || !have_live_inferiors ()
2213 || query (_("A program is being debugged already. Kill it? ")))
2214 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2215 else
8a3fe4f8 2216 error (_("Program not killed."));
c906108c
SS
2217 }
2218
2219 /* Calling target_kill may remove the target from the stack. But if
2220 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2221 /* Leave the exec target, though. The user may be switching from a
2222 live process to a core of the same program. */
460014f5 2223 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2224
2225 target_pre_inferior (from_tty);
c906108c
SS
2226}
2227
2228/* Detach a target after doing deferred register stores. */
2229
2230void
52554a0e 2231target_detach (const char *args, int from_tty)
c906108c 2232{
136d6dae
VP
2233 struct target_ops* t;
2234
f5656ead 2235 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2236 /* Don't remove global breakpoints here. They're removed on
2237 disconnection from the target. */
2238 ;
2239 else
2240 /* If we're in breakpoints-always-inserted mode, have to remove
2241 them before detaching. */
dfd4cc63 2242 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2243
24291992
PA
2244 prepare_for_detach ();
2245
09da0d0a 2246 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2247}
2248
6ad8ae5c 2249void
fee354ee 2250target_disconnect (const char *args, int from_tty)
6ad8ae5c 2251{
50c71eaf
PA
2252 /* If we're in breakpoints-always-inserted mode or if breakpoints
2253 are global across processes, we have to remove them before
2254 disconnecting. */
74960c60
VP
2255 remove_breakpoints ();
2256
86a0854a 2257 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2258}
2259
117de6a9 2260ptid_t
47608cb1 2261target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2262{
a7068b60 2263 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2264}
2265
0b333c5e
PA
2266/* See target.h. */
2267
2268ptid_t
2269default_target_wait (struct target_ops *ops,
2270 ptid_t ptid, struct target_waitstatus *status,
2271 int options)
2272{
2273 status->kind = TARGET_WAITKIND_IGNORE;
2274 return minus_one_ptid;
2275}
2276
117de6a9
PA
2277char *
2278target_pid_to_str (ptid_t ptid)
2279{
770234d3 2280 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2281}
2282
73ede765 2283const char *
4694da01
TT
2284target_thread_name (struct thread_info *info)
2285{
825828fc 2286 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2287}
2288
e1ac3328 2289void
2ea28649 2290target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2291{
28439f5e
PA
2292 struct target_ops *t;
2293
4e5d721f 2294 target_dcache_invalidate ();
28439f5e 2295
6b84065d 2296 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2297
6b84065d 2298 registers_changed_ptid (ptid);
251bde03
PA
2299 /* We only set the internal executing state here. The user/frontend
2300 running state is set at a higher level. */
6b84065d 2301 set_executing (ptid, 1);
6b84065d 2302 clear_inline_frame_state (ptid);
e1ac3328 2303}
2455069d
UW
2304
2305void
2306target_pass_signals (int numsigs, unsigned char *pass_signals)
2307{
035cad7f 2308 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2309}
2310
9b224c5e
PA
2311void
2312target_program_signals (int numsigs, unsigned char *program_signals)
2313{
7d4f8efa
TT
2314 (*current_target.to_program_signals) (&current_target,
2315 numsigs, program_signals);
9b224c5e
PA
2316}
2317
098dba18
TT
2318static int
2319default_follow_fork (struct target_ops *self, int follow_child,
2320 int detach_fork)
2321{
2322 /* Some target returned a fork event, but did not know how to follow it. */
2323 internal_error (__FILE__, __LINE__,
2324 _("could not find a target to follow fork"));
2325}
2326
ee057212
DJ
2327/* Look through the list of possible targets for a target that can
2328 follow forks. */
2329
2330int
07107ca6 2331target_follow_fork (int follow_child, int detach_fork)
ee057212 2332{
a7068b60
TT
2333 return current_target.to_follow_fork (&current_target,
2334 follow_child, detach_fork);
ee057212
DJ
2335}
2336
94585166
DB
2337/* Target wrapper for follow exec hook. */
2338
2339void
2340target_follow_exec (struct inferior *inf, char *execd_pathname)
2341{
2342 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2343}
2344
8d657035
TT
2345static void
2346default_mourn_inferior (struct target_ops *self)
2347{
2348 internal_error (__FILE__, __LINE__,
2349 _("could not find a target to follow mourn inferior"));
2350}
2351
136d6dae
VP
2352void
2353target_mourn_inferior (void)
2354{
8d657035 2355 current_target.to_mourn_inferior (&current_target);
136d6dae 2356
8d657035
TT
2357 /* We no longer need to keep handles on any of the object files.
2358 Make sure to release them to avoid unnecessarily locking any
2359 of them while we're not actually debugging. */
2360 bfd_cache_close_all ();
136d6dae
VP
2361}
2362
424163ea
DJ
2363/* Look for a target which can describe architectural features, starting
2364 from TARGET. If we find one, return its description. */
2365
2366const struct target_desc *
2367target_read_description (struct target_ops *target)
2368{
2117c711 2369 return target->to_read_description (target);
424163ea
DJ
2370}
2371
58a5184e 2372/* This implements a basic search of memory, reading target memory and
08388c79
DE
2373 performing the search here (as opposed to performing the search in on the
2374 target side with, for example, gdbserver). */
2375
2376int
2377simple_search_memory (struct target_ops *ops,
2378 CORE_ADDR start_addr, ULONGEST search_space_len,
2379 const gdb_byte *pattern, ULONGEST pattern_len,
2380 CORE_ADDR *found_addrp)
2381{
2382 /* NOTE: also defined in find.c testcase. */
2383#define SEARCH_CHUNK_SIZE 16000
2384 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2385 /* Buffer to hold memory contents for searching. */
2386 gdb_byte *search_buf;
2387 unsigned search_buf_size;
2388 struct cleanup *old_cleanups;
2389
2390 search_buf_size = chunk_size + pattern_len - 1;
2391
2392 /* No point in trying to allocate a buffer larger than the search space. */
2393 if (search_space_len < search_buf_size)
2394 search_buf_size = search_space_len;
2395
224c3ddb 2396 search_buf = (gdb_byte *) malloc (search_buf_size);
08388c79 2397 if (search_buf == NULL)
5e1471f5 2398 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2399 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2400
2401 /* Prime the search buffer. */
2402
2403 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2404 search_buf, start_addr, search_buf_size) != search_buf_size)
2405 {
b3dc46ff
AB
2406 warning (_("Unable to access %s bytes of target "
2407 "memory at %s, halting search."),
2408 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2409 do_cleanups (old_cleanups);
2410 return -1;
2411 }
2412
2413 /* Perform the search.
2414
2415 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2416 When we've scanned N bytes we copy the trailing bytes to the start and
2417 read in another N bytes. */
2418
2419 while (search_space_len >= pattern_len)
2420 {
2421 gdb_byte *found_ptr;
2422 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2423
d7f3ff3e
SM
2424 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2425 pattern, pattern_len);
08388c79
DE
2426
2427 if (found_ptr != NULL)
2428 {
2429 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2430
08388c79
DE
2431 *found_addrp = found_addr;
2432 do_cleanups (old_cleanups);
2433 return 1;
2434 }
2435
2436 /* Not found in this chunk, skip to next chunk. */
2437
2438 /* Don't let search_space_len wrap here, it's unsigned. */
2439 if (search_space_len >= chunk_size)
2440 search_space_len -= chunk_size;
2441 else
2442 search_space_len = 0;
2443
2444 if (search_space_len >= pattern_len)
2445 {
2446 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2447 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2448 int nr_to_read;
2449
2450 /* Copy the trailing part of the previous iteration to the front
2451 of the buffer for the next iteration. */
2452 gdb_assert (keep_len == pattern_len - 1);
2453 memcpy (search_buf, search_buf + chunk_size, keep_len);
2454
2455 nr_to_read = min (search_space_len - keep_len, chunk_size);
2456
2457 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2458 search_buf + keep_len, read_addr,
2459 nr_to_read) != nr_to_read)
2460 {
b3dc46ff 2461 warning (_("Unable to access %s bytes of target "
9b20d036 2462 "memory at %s, halting search."),
b3dc46ff 2463 plongest (nr_to_read),
08388c79
DE
2464 hex_string (read_addr));
2465 do_cleanups (old_cleanups);
2466 return -1;
2467 }
2468
2469 start_addr += chunk_size;
2470 }
2471 }
2472
2473 /* Not found. */
2474
2475 do_cleanups (old_cleanups);
2476 return 0;
2477}
2478
58a5184e
TT
2479/* Default implementation of memory-searching. */
2480
2481static int
2482default_search_memory (struct target_ops *self,
2483 CORE_ADDR start_addr, ULONGEST search_space_len,
2484 const gdb_byte *pattern, ULONGEST pattern_len,
2485 CORE_ADDR *found_addrp)
2486{
2487 /* Start over from the top of the target stack. */
2488 return simple_search_memory (current_target.beneath,
2489 start_addr, search_space_len,
2490 pattern, pattern_len, found_addrp);
2491}
2492
08388c79
DE
2493/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2494 sequence of bytes in PATTERN with length PATTERN_LEN.
2495
2496 The result is 1 if found, 0 if not found, and -1 if there was an error
2497 requiring halting of the search (e.g. memory read error).
2498 If the pattern is found the address is recorded in FOUND_ADDRP. */
2499
2500int
2501target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2502 const gdb_byte *pattern, ULONGEST pattern_len,
2503 CORE_ADDR *found_addrp)
2504{
a7068b60
TT
2505 return current_target.to_search_memory (&current_target, start_addr,
2506 search_space_len,
2507 pattern, pattern_len, found_addrp);
08388c79
DE
2508}
2509
8edfe269
DJ
2510/* Look through the currently pushed targets. If none of them will
2511 be able to restart the currently running process, issue an error
2512 message. */
2513
2514void
2515target_require_runnable (void)
2516{
2517 struct target_ops *t;
2518
2519 for (t = target_stack; t != NULL; t = t->beneath)
2520 {
2521 /* If this target knows how to create a new program, then
2522 assume we will still be able to after killing the current
2523 one. Either killing and mourning will not pop T, or else
2524 find_default_run_target will find it again. */
2525 if (t->to_create_inferior != NULL)
2526 return;
2527
548740d6 2528 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2529 create inferiors. Assume they will be pushed again if
2530 necessary, and continue to the process_stratum. */
85e747d2 2531 if (t->to_stratum == thread_stratum
548740d6 2532 || t->to_stratum == record_stratum
85e747d2 2533 || t->to_stratum == arch_stratum)
8edfe269
DJ
2534 continue;
2535
3e43a32a
MS
2536 error (_("The \"%s\" target does not support \"run\". "
2537 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2538 t->to_shortname);
2539 }
2540
2541 /* This function is only called if the target is running. In that
2542 case there should have been a process_stratum target and it
c378eb4e 2543 should either know how to create inferiors, or not... */
9b20d036 2544 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2545}
2546
6a3cb8e8
PA
2547/* Whether GDB is allowed to fall back to the default run target for
2548 "run", "attach", etc. when no target is connected yet. */
2549static int auto_connect_native_target = 1;
2550
2551static void
2552show_auto_connect_native_target (struct ui_file *file, int from_tty,
2553 struct cmd_list_element *c, const char *value)
2554{
2555 fprintf_filtered (file,
2556 _("Whether GDB may automatically connect to the "
2557 "native target is %s.\n"),
2558 value);
2559}
2560
c906108c
SS
2561/* Look through the list of possible targets for a target that can
2562 execute a run or attach command without any other data. This is
2563 used to locate the default process stratum.
2564
5f667f2d
PA
2565 If DO_MESG is not NULL, the result is always valid (error() is
2566 called for errors); else, return NULL on error. */
c906108c
SS
2567
2568static struct target_ops *
fba45db2 2569find_default_run_target (char *do_mesg)
c906108c 2570{
c906108c 2571 struct target_ops *runable = NULL;
c906108c 2572
6a3cb8e8 2573 if (auto_connect_native_target)
c906108c 2574 {
89a1c21a 2575 struct target_ops *t;
6a3cb8e8 2576 int count = 0;
89a1c21a 2577 int i;
6a3cb8e8 2578
89a1c21a 2579 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2580 {
89a1c21a 2581 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2582 {
89a1c21a 2583 runable = t;
6a3cb8e8
PA
2584 ++count;
2585 }
c906108c 2586 }
6a3cb8e8
PA
2587
2588 if (count != 1)
2589 runable = NULL;
c906108c
SS
2590 }
2591
6a3cb8e8 2592 if (runable == NULL)
5f667f2d
PA
2593 {
2594 if (do_mesg)
2595 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2596 else
2597 return NULL;
2598 }
c906108c
SS
2599
2600 return runable;
2601}
2602
b3ccfe11 2603/* See target.h. */
c906108c 2604
b3ccfe11
TT
2605struct target_ops *
2606find_attach_target (void)
c906108c
SS
2607{
2608 struct target_ops *t;
2609
b3ccfe11
TT
2610 /* If a target on the current stack can attach, use it. */
2611 for (t = current_target.beneath; t != NULL; t = t->beneath)
2612 {
2613 if (t->to_attach != NULL)
2614 break;
2615 }
c906108c 2616
b3ccfe11
TT
2617 /* Otherwise, use the default run target for attaching. */
2618 if (t == NULL)
2619 t = find_default_run_target ("attach");
b84876c2 2620
b3ccfe11 2621 return t;
b84876c2
PA
2622}
2623
b3ccfe11 2624/* See target.h. */
b84876c2 2625
b3ccfe11
TT
2626struct target_ops *
2627find_run_target (void)
9908b566
VP
2628{
2629 struct target_ops *t;
2630
b3ccfe11
TT
2631 /* If a target on the current stack can attach, use it. */
2632 for (t = current_target.beneath; t != NULL; t = t->beneath)
2633 {
2634 if (t->to_create_inferior != NULL)
2635 break;
2636 }
5d502164 2637
b3ccfe11
TT
2638 /* Otherwise, use the default run target. */
2639 if (t == NULL)
2640 t = find_default_run_target ("run");
9908b566 2641
b3ccfe11 2642 return t;
9908b566
VP
2643}
2644
145b16a9
UW
2645/* Implement the "info proc" command. */
2646
451b7c33 2647int
7bc112c1 2648target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2649{
2650 struct target_ops *t;
2651
2652 /* If we're already connected to something that can get us OS
2653 related data, use it. Otherwise, try using the native
2654 target. */
2655 if (current_target.to_stratum >= process_stratum)
2656 t = current_target.beneath;
2657 else
2658 t = find_default_run_target (NULL);
2659
2660 for (; t != NULL; t = t->beneath)
2661 {
2662 if (t->to_info_proc != NULL)
2663 {
2664 t->to_info_proc (t, args, what);
2665
2666 if (targetdebug)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "target_info_proc (\"%s\", %d)\n", args, what);
2669
451b7c33 2670 return 1;
145b16a9
UW
2671 }
2672 }
2673
451b7c33 2674 return 0;
145b16a9
UW
2675}
2676
03583c20 2677static int
2bfc0540 2678find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2679{
2680 struct target_ops *t;
2681
2682 t = find_default_run_target (NULL);
2683 if (t && t->to_supports_disable_randomization)
2bfc0540 2684 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2685 return 0;
2686}
2687
2688int
2689target_supports_disable_randomization (void)
2690{
2691 struct target_ops *t;
2692
2693 for (t = &current_target; t != NULL; t = t->beneath)
2694 if (t->to_supports_disable_randomization)
2bfc0540 2695 return t->to_supports_disable_randomization (t);
03583c20
UW
2696
2697 return 0;
2698}
9908b566 2699
07e059b5
VP
2700char *
2701target_get_osdata (const char *type)
2702{
07e059b5
VP
2703 struct target_ops *t;
2704
739ef7fb
PA
2705 /* If we're already connected to something that can get us OS
2706 related data, use it. Otherwise, try using the native
2707 target. */
2708 if (current_target.to_stratum >= process_stratum)
6d097e65 2709 t = current_target.beneath;
739ef7fb
PA
2710 else
2711 t = find_default_run_target ("get OS data");
07e059b5
VP
2712
2713 if (!t)
2714 return NULL;
2715
6d097e65 2716 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2717}
2718
8eaff7cd
TT
2719static struct address_space *
2720default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2721{
2722 struct inferior *inf;
6c95b8df
PA
2723
2724 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2725 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2726
2727 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2728 internal_error (__FILE__, __LINE__,
9b20d036
MS
2729 _("Can't determine the current "
2730 "address space of thread %s\n"),
6c95b8df
PA
2731 target_pid_to_str (ptid));
2732
2733 return inf->aspace;
2734}
2735
8eaff7cd
TT
2736/* Determine the current address space of thread PTID. */
2737
2738struct address_space *
2739target_thread_address_space (ptid_t ptid)
2740{
2741 struct address_space *aspace;
2742
2743 aspace = current_target.to_thread_address_space (&current_target, ptid);
2744 gdb_assert (aspace != NULL);
2745
8eaff7cd
TT
2746 return aspace;
2747}
2748
7313baad
UW
2749
2750/* Target file operations. */
2751
2752static struct target_ops *
2753default_fileio_target (void)
2754{
2755 /* If we're already connected to something that can perform
2756 file I/O, use it. Otherwise, try using the native target. */
2757 if (current_target.to_stratum >= process_stratum)
2758 return current_target.beneath;
2759 else
2760 return find_default_run_target ("file I/O");
2761}
2762
1c4b552b
GB
2763/* File handle for target file operations. */
2764
2765typedef struct
2766{
2767 /* The target on which this file is open. */
2768 struct target_ops *t;
2769
2770 /* The file descriptor on the target. */
2771 int fd;
2772} fileio_fh_t;
2773
2774DEF_VEC_O (fileio_fh_t);
2775
2776/* Vector of currently open file handles. The value returned by
2777 target_fileio_open and passed as the FD argument to other
2778 target_fileio_* functions is an index into this vector. This
2779 vector's entries are never freed; instead, files are marked as
2780 closed, and the handle becomes available for reuse. */
2781static VEC (fileio_fh_t) *fileio_fhandles;
2782
2783/* Macro to check whether a fileio_fh_t represents a closed file. */
2784#define is_closed_fileio_fh(fd) ((fd) < 0)
2785
2786/* Index into fileio_fhandles of the lowest handle that might be
2787 closed. This permits handle reuse without searching the whole
2788 list each time a new file is opened. */
2789static int lowest_closed_fd;
2790
2791/* Acquire a target fileio file descriptor. */
2792
2793static int
2794acquire_fileio_fd (struct target_ops *t, int fd)
2795{
2796 fileio_fh_t *fh, buf;
2797
2798 gdb_assert (!is_closed_fileio_fh (fd));
2799
2800 /* Search for closed handles to reuse. */
2801 for (;
2802 VEC_iterate (fileio_fh_t, fileio_fhandles,
2803 lowest_closed_fd, fh);
2804 lowest_closed_fd++)
2805 if (is_closed_fileio_fh (fh->fd))
2806 break;
2807
2808 /* Push a new handle if no closed handles were found. */
2809 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2810 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2811
2812 /* Fill in the handle. */
2813 fh->t = t;
2814 fh->fd = fd;
2815
2816 /* Return its index, and start the next lookup at
2817 the next index. */
2818 return lowest_closed_fd++;
2819}
2820
2821/* Release a target fileio file descriptor. */
2822
2823static void
2824release_fileio_fd (int fd, fileio_fh_t *fh)
2825{
2826 fh->fd = -1;
2827 lowest_closed_fd = min (lowest_closed_fd, fd);
2828}
2829
2830/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2831
2832#define fileio_fd_to_fh(fd) \
2833 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2834
4313b8c0
GB
2835/* Helper for target_fileio_open and
2836 target_fileio_open_warn_if_slow. */
12e2a5fd 2837
4313b8c0
GB
2838static int
2839target_fileio_open_1 (struct inferior *inf, const char *filename,
2840 int flags, int mode, int warn_if_slow,
2841 int *target_errno)
7313baad
UW
2842{
2843 struct target_ops *t;
2844
2845 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2846 {
2847 if (t->to_fileio_open != NULL)
2848 {
07c138c8 2849 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
4313b8c0 2850 warn_if_slow, target_errno);
7313baad 2851
1c4b552b
GB
2852 if (fd < 0)
2853 fd = -1;
2854 else
2855 fd = acquire_fileio_fd (t, fd);
2856
7313baad
UW
2857 if (targetdebug)
2858 fprintf_unfiltered (gdb_stdlog,
4313b8c0 2859 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
07c138c8
GB
2860 " = %d (%d)\n",
2861 inf == NULL ? 0 : inf->num,
7313baad 2862 filename, flags, mode,
4313b8c0
GB
2863 warn_if_slow, fd,
2864 fd != -1 ? 0 : *target_errno);
7313baad
UW
2865 return fd;
2866 }
2867 }
2868
2869 *target_errno = FILEIO_ENOSYS;
2870 return -1;
2871}
2872
12e2a5fd
GB
2873/* See target.h. */
2874
4313b8c0
GB
2875int
2876target_fileio_open (struct inferior *inf, const char *filename,
2877 int flags, int mode, int *target_errno)
2878{
2879 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2880 target_errno);
2881}
2882
2883/* See target.h. */
2884
2885int
2886target_fileio_open_warn_if_slow (struct inferior *inf,
2887 const char *filename,
2888 int flags, int mode, int *target_errno)
2889{
2890 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2891 target_errno);
2892}
2893
2894/* See target.h. */
2895
7313baad
UW
2896int
2897target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2898 ULONGEST offset, int *target_errno)
2899{
1c4b552b
GB
2900 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2901 int ret = -1;
7313baad 2902
1c4b552b
GB
2903 if (is_closed_fileio_fh (fh->fd))
2904 *target_errno = EBADF;
2905 else
2906 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2907 len, offset, target_errno);
7313baad 2908
1c4b552b
GB
2909 if (targetdebug)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "target_fileio_pwrite (%d,...,%d,%s) "
2912 "= %d (%d)\n",
2913 fd, len, pulongest (offset),
2914 ret, ret != -1 ? 0 : *target_errno);
2915 return ret;
7313baad
UW
2916}
2917
12e2a5fd
GB
2918/* See target.h. */
2919
7313baad
UW
2920int
2921target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2922 ULONGEST offset, int *target_errno)
2923{
1c4b552b
GB
2924 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2925 int ret = -1;
7313baad 2926
1c4b552b
GB
2927 if (is_closed_fileio_fh (fh->fd))
2928 *target_errno = EBADF;
2929 else
2930 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2931 len, offset, target_errno);
7313baad 2932
1c4b552b
GB
2933 if (targetdebug)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "target_fileio_pread (%d,...,%d,%s) "
2936 "= %d (%d)\n",
2937 fd, len, pulongest (offset),
2938 ret, ret != -1 ? 0 : *target_errno);
9b15c1f0
GB
2939 return ret;
2940}
2941
2942/* See target.h. */
12e2a5fd 2943
9b15c1f0
GB
2944int
2945target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2946{
2947 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2948 int ret = -1;
2949
2950 if (is_closed_fileio_fh (fh->fd))
2951 *target_errno = EBADF;
2952 else
2953 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2954
2955 if (targetdebug)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "target_fileio_fstat (%d) = %d (%d)\n",
2958 fd, ret, ret != -1 ? 0 : *target_errno);
1c4b552b 2959 return ret;
7313baad
UW
2960}
2961
12e2a5fd
GB
2962/* See target.h. */
2963
7313baad
UW
2964int
2965target_fileio_close (int fd, int *target_errno)
2966{
1c4b552b
GB
2967 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2968 int ret = -1;
7313baad 2969
1c4b552b
GB
2970 if (is_closed_fileio_fh (fh->fd))
2971 *target_errno = EBADF;
2972 else
7313baad 2973 {
1c4b552b
GB
2974 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2975 release_fileio_fd (fd, fh);
7313baad
UW
2976 }
2977
1c4b552b
GB
2978 if (targetdebug)
2979 fprintf_unfiltered (gdb_stdlog,
2980 "target_fileio_close (%d) = %d (%d)\n",
2981 fd, ret, ret != -1 ? 0 : *target_errno);
2982 return ret;
7313baad
UW
2983}
2984
12e2a5fd
GB
2985/* See target.h. */
2986
7313baad 2987int
07c138c8
GB
2988target_fileio_unlink (struct inferior *inf, const char *filename,
2989 int *target_errno)
7313baad
UW
2990{
2991 struct target_ops *t;
2992
2993 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2994 {
2995 if (t->to_fileio_unlink != NULL)
2996 {
07c138c8
GB
2997 int ret = t->to_fileio_unlink (t, inf, filename,
2998 target_errno);
7313baad
UW
2999
3000 if (targetdebug)
3001 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3002 "target_fileio_unlink (%d,%s)"
3003 " = %d (%d)\n",
3004 inf == NULL ? 0 : inf->num, filename,
3005 ret, ret != -1 ? 0 : *target_errno);
7313baad
UW
3006 return ret;
3007 }
3008 }
3009
3010 *target_errno = FILEIO_ENOSYS;
3011 return -1;
3012}
3013
12e2a5fd
GB
3014/* See target.h. */
3015
b9e7b9c3 3016char *
07c138c8
GB
3017target_fileio_readlink (struct inferior *inf, const char *filename,
3018 int *target_errno)
b9e7b9c3
UW
3019{
3020 struct target_ops *t;
3021
3022 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3023 {
3024 if (t->to_fileio_readlink != NULL)
3025 {
07c138c8
GB
3026 char *ret = t->to_fileio_readlink (t, inf, filename,
3027 target_errno);
b9e7b9c3
UW
3028
3029 if (targetdebug)
3030 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3031 "target_fileio_readlink (%d,%s)"
3032 " = %s (%d)\n",
3033 inf == NULL ? 0 : inf->num,
b9e7b9c3
UW
3034 filename, ret? ret : "(nil)",
3035 ret? 0 : *target_errno);
3036 return ret;
3037 }
3038 }
3039
3040 *target_errno = FILEIO_ENOSYS;
3041 return NULL;
3042}
3043
7313baad
UW
3044static void
3045target_fileio_close_cleanup (void *opaque)
3046{
3047 int fd = *(int *) opaque;
3048 int target_errno;
3049
3050 target_fileio_close (fd, &target_errno);
3051}
3052
07c138c8
GB
3053/* Read target file FILENAME, in the filesystem as seen by INF. If
3054 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3055 remote targets, the remote stub). Store the result in *BUF_P and
3056 return the size of the transferred data. PADDING additional bytes
3057 are available in *BUF_P. This is a helper function for
3058 target_fileio_read_alloc; see the declaration of that function for
3059 more information. */
7313baad 3060
f7af1fcd
JK
3061static LONGEST
3062target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3063 gdb_byte **buf_p, int padding)
3064{
3065 struct cleanup *close_cleanup;
db1ff28b
JK
3066 size_t buf_alloc, buf_pos;
3067 gdb_byte *buf;
3068 LONGEST n;
3069 int fd;
3070 int target_errno;
f7af1fcd 3071
db1ff28b
JK
3072 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3073 &target_errno);
f7af1fcd
JK
3074 if (fd == -1)
3075 return -1;
3076
3077 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
db1ff28b
JK
3078
3079 /* Start by reading up to 4K at a time. The target will throttle
3080 this number down if necessary. */
3081 buf_alloc = 4096;
224c3ddb 3082 buf = (gdb_byte *) xmalloc (buf_alloc);
db1ff28b
JK
3083 buf_pos = 0;
3084 while (1)
3085 {
3086 n = target_fileio_pread (fd, &buf[buf_pos],
3087 buf_alloc - buf_pos - padding, buf_pos,
3088 &target_errno);
3089 if (n < 0)
3090 {
3091 /* An error occurred. */
3092 do_cleanups (close_cleanup);
3093 xfree (buf);
3094 return -1;
3095 }
3096 else if (n == 0)
3097 {
3098 /* Read all there was. */
3099 do_cleanups (close_cleanup);
3100 if (buf_pos == 0)
3101 xfree (buf);
3102 else
3103 *buf_p = buf;
3104 return buf_pos;
3105 }
3106
3107 buf_pos += n;
3108
3109 /* If the buffer is filling up, expand it. */
3110 if (buf_alloc < buf_pos * 2)
3111 {
3112 buf_alloc *= 2;
224c3ddb 3113 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
db1ff28b
JK
3114 }
3115
3116 QUIT;
3117 }
f7af1fcd
JK
3118}
3119
12e2a5fd 3120/* See target.h. */
7313baad
UW
3121
3122LONGEST
07c138c8
GB
3123target_fileio_read_alloc (struct inferior *inf, const char *filename,
3124 gdb_byte **buf_p)
7313baad 3125{
07c138c8 3126 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
7313baad
UW
3127}
3128
db1ff28b 3129/* See target.h. */
f7af1fcd
JK
3130
3131char *
3132target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3133{
db1ff28b
JK
3134 gdb_byte *buffer;
3135 char *bufstr;
3136 LONGEST i, transferred;
3137
3138 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3139 bufstr = (char *) buffer;
3140
3141 if (transferred < 0)
3142 return NULL;
3143
3144 if (transferred == 0)
3145 return xstrdup ("");
3146
3147 bufstr[transferred] = 0;
3148
3149 /* Check for embedded NUL bytes; but allow trailing NULs. */
3150 for (i = strlen (bufstr); i < transferred; i++)
3151 if (bufstr[i] != 0)
3152 {
3153 warning (_("target file %s "
3154 "contained unexpected null characters"),
3155 filename);
3156 break;
3157 }
3158
3159 return bufstr;
f7af1fcd 3160}
7313baad 3161
db1ff28b 3162
e0d24f8d 3163static int
31568a15
TT
3164default_region_ok_for_hw_watchpoint (struct target_ops *self,
3165 CORE_ADDR addr, int len)
e0d24f8d 3166{
f5656ead 3167 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3168}
3169
5009afc5
AS
3170static int
3171default_watchpoint_addr_within_range (struct target_ops *target,
3172 CORE_ADDR addr,
3173 CORE_ADDR start, int length)
3174{
3175 return addr >= start && addr < start + length;
3176}
3177
c2250ad1
UW
3178static struct gdbarch *
3179default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3180{
f5656ead 3181 return target_gdbarch ();
c2250ad1
UW
3182}
3183
c906108c 3184static int
555bbdeb
TT
3185return_zero (struct target_ops *ignore)
3186{
3187 return 0;
3188}
3189
3190static int
3191return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3192{
3193 return 0;
3194}
3195
ed9a39eb
JM
3196/*
3197 * Find the next target down the stack from the specified target.
3198 */
3199
3200struct target_ops *
fba45db2 3201find_target_beneath (struct target_ops *t)
ed9a39eb 3202{
258b763a 3203 return t->beneath;
ed9a39eb
JM
3204}
3205
8b06beed
TT
3206/* See target.h. */
3207
3208struct target_ops *
3209find_target_at (enum strata stratum)
3210{
3211 struct target_ops *t;
3212
3213 for (t = current_target.beneath; t != NULL; t = t->beneath)
3214 if (t->to_stratum == stratum)
3215 return t;
3216
3217 return NULL;
3218}
3219
c906108c
SS
3220\f
3221/* The inferior process has died. Long live the inferior! */
3222
3223void
fba45db2 3224generic_mourn_inferior (void)
c906108c 3225{
7f9f62ba 3226 ptid_t ptid;
c906108c 3227
7f9f62ba 3228 ptid = inferior_ptid;
39f77062 3229 inferior_ptid = null_ptid;
7f9f62ba 3230
f59f708a
PA
3231 /* Mark breakpoints uninserted in case something tries to delete a
3232 breakpoint while we delete the inferior's threads (which would
3233 fail, since the inferior is long gone). */
3234 mark_breakpoints_out ();
3235
7f9f62ba
PA
3236 if (!ptid_equal (ptid, null_ptid))
3237 {
3238 int pid = ptid_get_pid (ptid);
6c95b8df 3239 exit_inferior (pid);
7f9f62ba
PA
3240 }
3241
f59f708a
PA
3242 /* Note this wipes step-resume breakpoints, so needs to be done
3243 after exit_inferior, which ends up referencing the step-resume
3244 breakpoints through clear_thread_inferior_resources. */
c906108c 3245 breakpoint_init_inferior (inf_exited);
f59f708a 3246
c906108c
SS
3247 registers_changed ();
3248
c906108c
SS
3249 reopen_exec_file ();
3250 reinit_frame_cache ();
3251
9a4105ab
AC
3252 if (deprecated_detach_hook)
3253 deprecated_detach_hook ();
c906108c
SS
3254}
3255\f
fd0a2a6f
MK
3256/* Convert a normal process ID to a string. Returns the string in a
3257 static buffer. */
c906108c
SS
3258
3259char *
39f77062 3260normal_pid_to_str (ptid_t ptid)
c906108c 3261{
fd0a2a6f 3262 static char buf[32];
c906108c 3263
5fff8fc0 3264 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3265 return buf;
3266}
3267
2c0b251b 3268static char *
770234d3 3269default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3270{
3271 return normal_pid_to_str (ptid);
3272}
3273
9b4eba8e
HZ
3274/* Error-catcher for target_find_memory_regions. */
3275static int
2e73927c
TT
3276dummy_find_memory_regions (struct target_ops *self,
3277 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3278{
9b4eba8e 3279 error (_("Command not implemented for this target."));
be4d1333
MS
3280 return 0;
3281}
3282
9b4eba8e
HZ
3283/* Error-catcher for target_make_corefile_notes. */
3284static char *
fc6691b2
TT
3285dummy_make_corefile_notes (struct target_ops *self,
3286 bfd *ignore1, int *ignore2)
be4d1333 3287{
9b4eba8e 3288 error (_("Command not implemented for this target."));
be4d1333
MS
3289 return NULL;
3290}
3291
c906108c
SS
3292/* Set up the handful of non-empty slots needed by the dummy target
3293 vector. */
3294
3295static void
fba45db2 3296init_dummy_target (void)
c906108c
SS
3297{
3298 dummy_target.to_shortname = "None";
3299 dummy_target.to_longname = "None";
3300 dummy_target.to_doc = "";
03583c20
UW
3301 dummy_target.to_supports_disable_randomization
3302 = find_default_supports_disable_randomization;
c906108c 3303 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3304 dummy_target.to_has_all_memory = return_zero;
3305 dummy_target.to_has_memory = return_zero;
3306 dummy_target.to_has_stack = return_zero;
3307 dummy_target.to_has_registers = return_zero;
3308 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3309 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3310
3311 install_dummy_methods (&dummy_target);
c906108c 3312}
c906108c 3313\f
c906108c 3314
f1c07ab0 3315void
460014f5 3316target_close (struct target_ops *targ)
f1c07ab0 3317{
7fdc1521
TT
3318 gdb_assert (!target_is_pushed (targ));
3319
f1c07ab0 3320 if (targ->to_xclose != NULL)
460014f5 3321 targ->to_xclose (targ);
f1c07ab0 3322 else if (targ->to_close != NULL)
de90e03d 3323 targ->to_close (targ);
947b8855
PA
3324
3325 if (targetdebug)
460014f5 3326 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3327}
3328
28439f5e
PA
3329int
3330target_thread_alive (ptid_t ptid)
c906108c 3331{
a7068b60 3332 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3333}
3334
3335void
e8032dde 3336target_update_thread_list (void)
28439f5e 3337{
e8032dde 3338 current_target.to_update_thread_list (&current_target);
c906108c
SS
3339}
3340
d914c394
SS
3341void
3342target_stop (ptid_t ptid)
3343{
3344 if (!may_stop)
3345 {
3346 warning (_("May not interrupt or stop the target, ignoring attempt"));
3347 return;
3348 }
3349
1eab8a48 3350 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3351}
3352
bfedc46a
PA
3353void
3354target_interrupt (ptid_t ptid)
3355{
3356 if (!may_stop)
3357 {
3358 warning (_("May not interrupt or stop the target, ignoring attempt"));
3359 return;
3360 }
3361
3362 (*current_target.to_interrupt) (&current_target, ptid);
3363}
3364
abc56d60
PA
3365/* See target.h. */
3366
93692b58
PA
3367void
3368target_pass_ctrlc (void)
3369{
3370 (*current_target.to_pass_ctrlc) (&current_target);
3371}
3372
3373/* See target.h. */
3374
3375void
3376default_target_pass_ctrlc (struct target_ops *ops)
3377{
3378 target_interrupt (inferior_ptid);
3379}
3380
f8c1d06b
GB
3381/* See target/target.h. */
3382
3383void
03f4463b 3384target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3385{
3386 struct target_waitstatus status;
3387 int was_non_stop = non_stop;
3388
3389 non_stop = 1;
3390 target_stop (ptid);
3391
3392 memset (&status, 0, sizeof (status));
3393 target_wait (ptid, &status, 0);
3394
3395 non_stop = was_non_stop;
3396}
3397
3398/* See target/target.h. */
3399
3400void
03f4463b 3401target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3402{
3403 target_resume (ptid, 0, GDB_SIGNAL_0);
3404}
3405
09826ec5
PA
3406/* Concatenate ELEM to LIST, a comma separate list, and return the
3407 result. The LIST incoming argument is released. */
3408
3409static char *
3410str_comma_list_concat_elem (char *list, const char *elem)
3411{
3412 if (list == NULL)
3413 return xstrdup (elem);
3414 else
3415 return reconcat (list, list, ", ", elem, (char *) NULL);
3416}
3417
3418/* Helper for target_options_to_string. If OPT is present in
3419 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3420 Returns the new resulting string. OPT is removed from
3421 TARGET_OPTIONS. */
3422
3423static char *
3424do_option (int *target_options, char *ret,
3425 int opt, char *opt_str)
3426{
3427 if ((*target_options & opt) != 0)
3428 {
3429 ret = str_comma_list_concat_elem (ret, opt_str);
3430 *target_options &= ~opt;
3431 }
3432
3433 return ret;
3434}
3435
3436char *
3437target_options_to_string (int target_options)
3438{
3439 char *ret = NULL;
3440
3441#define DO_TARG_OPTION(OPT) \
3442 ret = do_option (&target_options, ret, OPT, #OPT)
3443
3444 DO_TARG_OPTION (TARGET_WNOHANG);
3445
3446 if (target_options != 0)
3447 ret = str_comma_list_concat_elem (ret, "unknown???");
3448
3449 if (ret == NULL)
3450 ret = xstrdup ("");
3451 return ret;
3452}
3453
bf0c5130 3454static void
56be3814
UW
3455debug_print_register (const char * func,
3456 struct regcache *regcache, int regno)
bf0c5130 3457{
f8d29908 3458 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3459
bf0c5130 3460 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3461 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3462 && gdbarch_register_name (gdbarch, regno) != NULL
3463 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3464 fprintf_unfiltered (gdb_stdlog, "(%s)",
3465 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3466 else
3467 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3468 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3469 {
e17a4113 3470 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3471 int i, size = register_size (gdbarch, regno);
e362b510 3472 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3473
0ff58721 3474 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3475 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3476 for (i = 0; i < size; i++)
bf0c5130
AC
3477 {
3478 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3479 }
81c4a259 3480 if (size <= sizeof (LONGEST))
bf0c5130 3481 {
e17a4113 3482 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3483
0b1553bc
UW
3484 fprintf_unfiltered (gdb_stdlog, " %s %s",
3485 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3486 }
3487 }
3488 fprintf_unfiltered (gdb_stdlog, "\n");
3489}
3490
28439f5e
PA
3491void
3492target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3493{
ad5989bd
TT
3494 current_target.to_fetch_registers (&current_target, regcache, regno);
3495 if (targetdebug)
3496 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3497}
3498
28439f5e
PA
3499void
3500target_store_registers (struct regcache *regcache, int regno)
c906108c 3501{
28439f5e 3502 struct target_ops *t;
5d502164 3503
d914c394
SS
3504 if (!may_write_registers)
3505 error (_("Writing to registers is not allowed (regno %d)"), regno);
3506
6b84065d
TT
3507 current_target.to_store_registers (&current_target, regcache, regno);
3508 if (targetdebug)
28439f5e 3509 {
6b84065d 3510 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3511 }
c906108c
SS
3512}
3513
dc146f7c
VP
3514int
3515target_core_of_thread (ptid_t ptid)
3516{
a7068b60 3517 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3518}
3519
936d2992
PA
3520int
3521simple_verify_memory (struct target_ops *ops,
3522 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3523{
3524 LONGEST total_xfered = 0;
3525
3526 while (total_xfered < size)
3527 {
3528 ULONGEST xfered_len;
3529 enum target_xfer_status status;
3530 gdb_byte buf[1024];
3531 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3532
3533 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3534 buf, NULL, lma + total_xfered, howmuch,
3535 &xfered_len);
3536 if (status == TARGET_XFER_OK
3537 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3538 {
3539 total_xfered += xfered_len;
3540 QUIT;
3541 }
3542 else
3543 return 0;
3544 }
3545 return 1;
3546}
3547
3548/* Default implementation of memory verification. */
3549
3550static int
3551default_verify_memory (struct target_ops *self,
3552 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3553{
3554 /* Start over from the top of the target stack. */
3555 return simple_verify_memory (current_target.beneath,
3556 data, memaddr, size);
3557}
3558
4a5e7a5b
PA
3559int
3560target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3561{
a7068b60
TT
3562 return current_target.to_verify_memory (&current_target,
3563 data, memaddr, size);
4a5e7a5b
PA
3564}
3565
9c06b0b4
TJB
3566/* The documentation for this function is in its prototype declaration in
3567 target.h. */
3568
3569int
f4b0a671
SM
3570target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3571 enum target_hw_bp_type rw)
9c06b0b4 3572{
a7068b60
TT
3573 return current_target.to_insert_mask_watchpoint (&current_target,
3574 addr, mask, rw);
9c06b0b4
TJB
3575}
3576
3577/* The documentation for this function is in its prototype declaration in
3578 target.h. */
3579
3580int
f4b0a671
SM
3581target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3582 enum target_hw_bp_type rw)
9c06b0b4 3583{
a7068b60
TT
3584 return current_target.to_remove_mask_watchpoint (&current_target,
3585 addr, mask, rw);
9c06b0b4
TJB
3586}
3587
3588/* The documentation for this function is in its prototype declaration
3589 in target.h. */
3590
3591int
3592target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3593{
6c7e5e5c
TT
3594 return current_target.to_masked_watch_num_registers (&current_target,
3595 addr, mask);
9c06b0b4
TJB
3596}
3597
f1310107
TJB
3598/* The documentation for this function is in its prototype declaration
3599 in target.h. */
3600
3601int
3602target_ranged_break_num_registers (void)
3603{
a134316b 3604 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3605}
3606
02d27625
MM
3607/* See target.h. */
3608
043c3577
MM
3609int
3610target_supports_btrace (enum btrace_format format)
3611{
3612 return current_target.to_supports_btrace (&current_target, format);
3613}
3614
3615/* See target.h. */
3616
02d27625 3617struct btrace_target_info *
f4abbc16 3618target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3619{
f4abbc16 3620 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3621}
3622
3623/* See target.h. */
3624
3625void
3626target_disable_btrace (struct btrace_target_info *btinfo)
3627{
8dc292d3 3628 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3629}
3630
3631/* See target.h. */
3632
3633void
3634target_teardown_btrace (struct btrace_target_info *btinfo)
3635{
9ace480d 3636 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3637}
3638
3639/* See target.h. */
3640
969c39fb 3641enum btrace_error
734b0e4b 3642target_read_btrace (struct btrace_data *btrace,
969c39fb 3643 struct btrace_target_info *btinfo,
02d27625
MM
3644 enum btrace_read_type type)
3645{
eb5b20d4 3646 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3647}
3648
d02ed0bb
MM
3649/* See target.h. */
3650
f4abbc16
MM
3651const struct btrace_config *
3652target_btrace_conf (const struct btrace_target_info *btinfo)
3653{
3654 return current_target.to_btrace_conf (&current_target, btinfo);
3655}
3656
3657/* See target.h. */
3658
7c1687a9
MM
3659void
3660target_stop_recording (void)
3661{
ee97f592 3662 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3663}
3664
3665/* See target.h. */
3666
d02ed0bb 3667void
85e1311a 3668target_save_record (const char *filename)
d02ed0bb 3669{
f09e2107 3670 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3671}
3672
3673/* See target.h. */
3674
3675int
3676target_supports_delete_record (void)
3677{
3678 struct target_ops *t;
3679
3680 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3681 if (t->to_delete_record != delegate_delete_record
3682 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3683 return 1;
3684
3685 return 0;
3686}
3687
3688/* See target.h. */
3689
3690void
3691target_delete_record (void)
3692{
07366925 3693 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3694}
3695
3696/* See target.h. */
3697
3698int
a52eab48 3699target_record_is_replaying (ptid_t ptid)
d02ed0bb 3700{
a52eab48 3701 return current_target.to_record_is_replaying (&current_target, ptid);
d02ed0bb
MM
3702}
3703
3704/* See target.h. */
3705
7ff27e9b
MM
3706int
3707target_record_will_replay (ptid_t ptid, int dir)
3708{
3709 return current_target.to_record_will_replay (&current_target, ptid, dir);
3710}
3711
3712/* See target.h. */
3713
797094dd
MM
3714void
3715target_record_stop_replaying (void)
3716{
3717 current_target.to_record_stop_replaying (&current_target);
3718}
3719
3720/* See target.h. */
3721
d02ed0bb
MM
3722void
3723target_goto_record_begin (void)
3724{
671e76cc 3725 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3726}
3727
3728/* See target.h. */
3729
3730void
3731target_goto_record_end (void)
3732{
e9179bb3 3733 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3734}
3735
3736/* See target.h. */
3737
3738void
3739target_goto_record (ULONGEST insn)
3740{
05969c84 3741 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3742}
3743
67c86d06
MM
3744/* See target.h. */
3745
3746void
3747target_insn_history (int size, int flags)
3748{
3679abfa 3749 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3750}
3751
3752/* See target.h. */
3753
3754void
3755target_insn_history_from (ULONGEST from, int size, int flags)
3756{
8444ab58 3757 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3758}
3759
3760/* See target.h. */
3761
3762void
3763target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3764{
c29302cc 3765 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3766}
3767
15984c13
MM
3768/* See target.h. */
3769
3770void
3771target_call_history (int size, int flags)
3772{
170049d4 3773 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3774}
3775
3776/* See target.h. */
3777
3778void
3779target_call_history_from (ULONGEST begin, int size, int flags)
3780{
16fc27d6 3781 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3782}
3783
3784/* See target.h. */
3785
3786void
3787target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3788{
115d9817 3789 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3790}
3791
ea001bdc
MM
3792/* See target.h. */
3793
3794const struct frame_unwind *
3795target_get_unwinder (void)
3796{
ac01945b 3797 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3798}
3799
3800/* See target.h. */
3801
3802const struct frame_unwind *
3803target_get_tailcall_unwinder (void)
3804{
ac01945b 3805 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3806}
3807
5fff78c4
MM
3808/* See target.h. */
3809
3810void
3811target_prepare_to_generate_core (void)
3812{
3813 current_target.to_prepare_to_generate_core (&current_target);
3814}
3815
3816/* See target.h. */
3817
3818void
3819target_done_generating_core (void)
3820{
3821 current_target.to_done_generating_core (&current_target);
3822}
3823
c906108c 3824static void
fba45db2 3825setup_target_debug (void)
c906108c
SS
3826{
3827 memcpy (&debug_target, &current_target, sizeof debug_target);
3828
a7068b60 3829 init_debug_target (&current_target);
c906108c 3830}
c906108c 3831\f
c5aa993b
JM
3832
3833static char targ_desc[] =
3e43a32a
MS
3834"Names of targets and files being debugged.\nShows the entire \
3835stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3836core-file, and process, if any), as well as the symbol file name.";
3837
a53f3625 3838static void
a30bf1f1
TT
3839default_rcmd (struct target_ops *self, const char *command,
3840 struct ui_file *output)
a53f3625
TT
3841{
3842 error (_("\"monitor\" command not supported by this target."));
3843}
3844
96baa820
JM
3845static void
3846do_monitor_command (char *cmd,
3847 int from_tty)
3848{
96baa820
JM
3849 target_rcmd (cmd, gdb_stdtarg);
3850}
3851
87680a14
JB
3852/* Print the name of each layers of our target stack. */
3853
3854static void
3855maintenance_print_target_stack (char *cmd, int from_tty)
3856{
3857 struct target_ops *t;
3858
3859 printf_filtered (_("The current target stack is:\n"));
3860
3861 for (t = target_stack; t != NULL; t = t->beneath)
3862 {
3863 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3864 }
3865}
3866
372316f1
PA
3867/* See target.h. */
3868
3869void
3870target_async (int enable)
3871{
3872 infrun_async (enable);
3873 current_target.to_async (&current_target, enable);
3874}
3875
65706a29
PA
3876/* See target.h. */
3877
3878void
3879target_thread_events (int enable)
3880{
3881 current_target.to_thread_events (&current_target, enable);
3882}
3883
329ea579
PA
3884/* Controls if targets can report that they can/are async. This is
3885 just for maintainers to use when debugging gdb. */
3886int target_async_permitted = 1;
c6ebd6cf
VP
3887
3888/* The set command writes to this variable. If the inferior is
b5419e49 3889 executing, target_async_permitted is *not* updated. */
329ea579 3890static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3891
3892static void
329ea579
PA
3893maint_set_target_async_command (char *args, int from_tty,
3894 struct cmd_list_element *c)
c6ebd6cf 3895{
c35b1492 3896 if (have_live_inferiors ())
c6ebd6cf
VP
3897 {
3898 target_async_permitted_1 = target_async_permitted;
3899 error (_("Cannot change this setting while the inferior is running."));
3900 }
3901
3902 target_async_permitted = target_async_permitted_1;
3903}
3904
3905static void
329ea579
PA
3906maint_show_target_async_command (struct ui_file *file, int from_tty,
3907 struct cmd_list_element *c,
3908 const char *value)
c6ebd6cf 3909{
3e43a32a
MS
3910 fprintf_filtered (file,
3911 _("Controlling the inferior in "
3912 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3913}
3914
fbea99ea
PA
3915/* Return true if the target operates in non-stop mode even with "set
3916 non-stop off". */
3917
3918static int
3919target_always_non_stop_p (void)
3920{
3921 return current_target.to_always_non_stop_p (&current_target);
3922}
3923
3924/* See target.h. */
3925
3926int
3927target_is_non_stop_p (void)
3928{
3929 return (non_stop
3930 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3931 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3932 && target_always_non_stop_p ()));
3933}
3934
3935/* Controls if targets can report that they always run in non-stop
3936 mode. This is just for maintainers to use when debugging gdb. */
3937enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3938
3939/* The set command writes to this variable. If the inferior is
3940 executing, target_non_stop_enabled is *not* updated. */
3941static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3942
3943/* Implementation of "maint set target-non-stop". */
3944
3945static void
3946maint_set_target_non_stop_command (char *args, int from_tty,
3947 struct cmd_list_element *c)
3948{
3949 if (have_live_inferiors ())
3950 {
3951 target_non_stop_enabled_1 = target_non_stop_enabled;
3952 error (_("Cannot change this setting while the inferior is running."));
3953 }
3954
3955 target_non_stop_enabled = target_non_stop_enabled_1;
3956}
3957
3958/* Implementation of "maint show target-non-stop". */
3959
3960static void
3961maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3962 struct cmd_list_element *c,
3963 const char *value)
3964{
3965 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3966 fprintf_filtered (file,
3967 _("Whether the target is always in non-stop mode "
3968 "is %s (currently %s).\n"), value,
3969 target_always_non_stop_p () ? "on" : "off");
3970 else
3971 fprintf_filtered (file,
3972 _("Whether the target is always in non-stop mode "
3973 "is %s.\n"), value);
3974}
3975
d914c394
SS
3976/* Temporary copies of permission settings. */
3977
3978static int may_write_registers_1 = 1;
3979static int may_write_memory_1 = 1;
3980static int may_insert_breakpoints_1 = 1;
3981static int may_insert_tracepoints_1 = 1;
3982static int may_insert_fast_tracepoints_1 = 1;
3983static int may_stop_1 = 1;
3984
3985/* Make the user-set values match the real values again. */
3986
3987void
3988update_target_permissions (void)
3989{
3990 may_write_registers_1 = may_write_registers;
3991 may_write_memory_1 = may_write_memory;
3992 may_insert_breakpoints_1 = may_insert_breakpoints;
3993 may_insert_tracepoints_1 = may_insert_tracepoints;
3994 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3995 may_stop_1 = may_stop;
3996}
3997
3998/* The one function handles (most of) the permission flags in the same
3999 way. */
4000
4001static void
4002set_target_permissions (char *args, int from_tty,
4003 struct cmd_list_element *c)
4004{
4005 if (target_has_execution)
4006 {
4007 update_target_permissions ();
4008 error (_("Cannot change this setting while the inferior is running."));
4009 }
4010
4011 /* Make the real values match the user-changed values. */
4012 may_write_registers = may_write_registers_1;
4013 may_insert_breakpoints = may_insert_breakpoints_1;
4014 may_insert_tracepoints = may_insert_tracepoints_1;
4015 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4016 may_stop = may_stop_1;
4017 update_observer_mode ();
4018}
4019
4020/* Set memory write permission independently of observer mode. */
4021
4022static void
4023set_write_memory_permission (char *args, int from_tty,
4024 struct cmd_list_element *c)
4025{
4026 /* Make the real values match the user-changed values. */
4027 may_write_memory = may_write_memory_1;
4028 update_observer_mode ();
4029}
4030
4031
c906108c 4032void
fba45db2 4033initialize_targets (void)
c906108c
SS
4034{
4035 init_dummy_target ();
4036 push_target (&dummy_target);
4037
4038 add_info ("target", target_info, targ_desc);
4039 add_info ("files", target_info, targ_desc);
4040
ccce17b0 4041 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4042Set target debugging."), _("\
4043Show target debugging."), _("\
333dabeb 4044When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
4045verbose."),
4046 set_targetdebug,
ccce17b0
YQ
4047 show_targetdebug,
4048 &setdebuglist, &showdebuglist);
3a11626d 4049
2bc416ba 4050 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4051 &trust_readonly, _("\
4052Set mode for reading from readonly sections."), _("\
4053Show mode for reading from readonly sections."), _("\
3a11626d
MS
4054When this mode is on, memory reads from readonly sections (such as .text)\n\
4055will be read from the object file instead of from the target. This will\n\
7915a72c 4056result in significant performance improvement for remote targets."),
2c5b56ce 4057 NULL,
920d2a44 4058 show_trust_readonly,
e707bbc2 4059 &setlist, &showlist);
96baa820
JM
4060
4061 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4062 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4063
87680a14
JB
4064 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4065 _("Print the name of each layer of the internal target stack."),
4066 &maintenanceprintlist);
4067
c6ebd6cf
VP
4068 add_setshow_boolean_cmd ("target-async", no_class,
4069 &target_async_permitted_1, _("\
4070Set whether gdb controls the inferior in asynchronous mode."), _("\
4071Show whether gdb controls the inferior in asynchronous mode."), _("\
4072Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4073 maint_set_target_async_command,
4074 maint_show_target_async_command,
4075 &maintenance_set_cmdlist,
4076 &maintenance_show_cmdlist);
c6ebd6cf 4077
fbea99ea
PA
4078 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4079 &target_non_stop_enabled_1, _("\
4080Set whether gdb always controls the inferior in non-stop mode."), _("\
4081Show whether gdb always controls the inferior in non-stop mode."), _("\
4082Tells gdb whether to control the inferior in non-stop mode."),
4083 maint_set_target_non_stop_command,
4084 maint_show_target_non_stop_command,
4085 &maintenance_set_cmdlist,
4086 &maintenance_show_cmdlist);
4087
d914c394
SS
4088 add_setshow_boolean_cmd ("may-write-registers", class_support,
4089 &may_write_registers_1, _("\
4090Set permission to write into registers."), _("\
4091Show permission to write into registers."), _("\
4092When this permission is on, GDB may write into the target's registers.\n\
4093Otherwise, any sort of write attempt will result in an error."),
4094 set_target_permissions, NULL,
4095 &setlist, &showlist);
4096
4097 add_setshow_boolean_cmd ("may-write-memory", class_support,
4098 &may_write_memory_1, _("\
4099Set permission to write into target memory."), _("\
4100Show permission to write into target memory."), _("\
4101When this permission is on, GDB may write into the target's memory.\n\
4102Otherwise, any sort of write attempt will result in an error."),
4103 set_write_memory_permission, NULL,
4104 &setlist, &showlist);
4105
4106 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4107 &may_insert_breakpoints_1, _("\
4108Set permission to insert breakpoints in the target."), _("\
4109Show permission to insert breakpoints in the target."), _("\
4110When this permission is on, GDB may insert breakpoints in the program.\n\
4111Otherwise, any sort of insertion attempt will result in an error."),
4112 set_target_permissions, NULL,
4113 &setlist, &showlist);
4114
4115 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4116 &may_insert_tracepoints_1, _("\
4117Set permission to insert tracepoints in the target."), _("\
4118Show permission to insert tracepoints in the target."), _("\
4119When this permission is on, GDB may insert tracepoints in the program.\n\
4120Otherwise, any sort of insertion attempt will result in an error."),
4121 set_target_permissions, NULL,
4122 &setlist, &showlist);
4123
4124 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4125 &may_insert_fast_tracepoints_1, _("\
4126Set permission to insert fast tracepoints in the target."), _("\
4127Show permission to insert fast tracepoints in the target."), _("\
4128When this permission is on, GDB may insert fast tracepoints.\n\
4129Otherwise, any sort of insertion attempt will result in an error."),
4130 set_target_permissions, NULL,
4131 &setlist, &showlist);
4132
4133 add_setshow_boolean_cmd ("may-interrupt", class_support,
4134 &may_stop_1, _("\
4135Set permission to interrupt or signal the target."), _("\
4136Show permission to interrupt or signal the target."), _("\
4137When this permission is on, GDB may interrupt/stop the target's execution.\n\
4138Otherwise, any attempt to interrupt or stop will be ignored."),
4139 set_target_permissions, NULL,
4140 &setlist, &showlist);
6a3cb8e8
PA
4141
4142 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4143 &auto_connect_native_target, _("\
4144Set whether GDB may automatically connect to the native target."), _("\
4145Show whether GDB may automatically connect to the native target."), _("\
4146When on, and GDB is not connected to a target yet, GDB\n\
4147attempts \"run\" and other commands with the native target."),
4148 NULL, show_auto_connect_native_target,
4149 &setlist, &showlist);
c906108c 4150}
This page took 2.038243 seconds and 4 git commands to generate.