fix test suite regression
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include <errno.h>
0e9f083f 24#include <string.h>
c906108c 25#include "target.h"
68c765e2 26#include "target-dcache.h"
c906108c
SS
27#include "gdbcmd.h"
28#include "symtab.h"
29#include "inferior.h"
45741a9c 30#include "infrun.h"
c906108c
SS
31#include "bfd.h"
32#include "symfile.h"
33#include "objfiles.h"
4930751a 34#include "dcache.h"
c906108c 35#include <signal.h>
4e052eda 36#include "regcache.h"
0088c768 37#include "gdb_assert.h"
b6591e8b 38#include "gdbcore.h"
9e35dae4 39#include "exceptions.h"
424163ea 40#include "target-descriptions.h"
e1ac3328 41#include "gdbthread.h"
b9db4ced 42#include "solib.h"
07b82ea5 43#include "exec.h"
edb3359d 44#include "inline-frame.h"
2f4d8875 45#include "tracepoint.h"
7313baad 46#include "gdb/fileio.h"
8ffcbaaf 47#include "agent.h"
8de71aab 48#include "auxv.h"
a7068b60 49#include "target-debug.h"
c906108c 50
a14ed312 51static void target_info (char *, int);
c906108c 52
f0f9ff95
TT
53static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
0a4f40a2 55static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 56
5009afc5
AS
57static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
31568a15
TT
60static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
e0d24f8d 62
a30bf1f1 63static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 64
4229b31d
TT
65static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
098dba18
TT
68static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
8d657035
TT
71static void default_mourn_inferior (struct target_ops *self);
72
58a5184e
TT
73static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
936d2992
PA
80static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
8eaff7cd
TT
84static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
c25c4a8b 87static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 88
555bbdeb
TT
89static int return_zero (struct target_ops *);
90
91static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 92
a14ed312 93static void target_command (char *, int);
c906108c 94
a14ed312 95static struct target_ops *find_default_run_target (char *);
c906108c 96
c2250ad1
UW
97static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
0b5a2719
TT
100static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
16f796b1
TT
104static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
770234d3
TT
107static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
fe31bf5b
TT
109static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
c0eca49f
TT
112static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
113 struct gdbarch *gdbarch);
114
a7068b60
TT
115static struct target_ops debug_target;
116
1101cb7b
TT
117#include "target-delegates.c"
118
a14ed312 119static void init_dummy_target (void);
c906108c 120
c906108c 121/* Pointer to array of target architecture structures; the size of the
2bc416ba 122 array; the current index into the array; the allocated size of the
c906108c
SS
123 array. */
124struct target_ops **target_structs;
125unsigned target_struct_size;
c906108c
SS
126unsigned target_struct_allocsize;
127#define DEFAULT_ALLOCSIZE 10
128
129/* The initial current target, so that there is always a semi-valid
130 current target. */
131
132static struct target_ops dummy_target;
133
134/* Top of target stack. */
135
258b763a 136static struct target_ops *target_stack;
c906108c
SS
137
138/* The target structure we are currently using to talk to a process
139 or file or whatever "inferior" we have. */
140
141struct target_ops current_target;
142
143/* Command list for target. */
144
145static struct cmd_list_element *targetlist = NULL;
146
cf7a04e8
DJ
147/* Nonzero if we should trust readonly sections from the
148 executable when reading memory. */
149
150static int trust_readonly = 0;
151
8defab1a
DJ
152/* Nonzero if we should show true memory content including
153 memory breakpoint inserted by gdb. */
154
155static int show_memory_breakpoints = 0;
156
d914c394
SS
157/* These globals control whether GDB attempts to perform these
158 operations; they are useful for targets that need to prevent
159 inadvertant disruption, such as in non-stop mode. */
160
161int may_write_registers = 1;
162
163int may_write_memory = 1;
164
165int may_insert_breakpoints = 1;
166
167int may_insert_tracepoints = 1;
168
169int may_insert_fast_tracepoints = 1;
170
171int may_stop = 1;
172
c906108c
SS
173/* Non-zero if we want to see trace of target level stuff. */
174
ccce17b0 175static unsigned int targetdebug = 0;
920d2a44
AC
176static void
177show_targetdebug (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179{
180 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
181}
c906108c 182
a14ed312 183static void setup_target_debug (void);
c906108c 184
c906108c
SS
185/* The user just typed 'target' without the name of a target. */
186
c906108c 187static void
fba45db2 188target_command (char *arg, int from_tty)
c906108c
SS
189{
190 fputs_filtered ("Argument required (target name). Try `help target'\n",
191 gdb_stdout);
192}
193
c35b1492
PA
194/* Default target_has_* methods for process_stratum targets. */
195
196int
197default_child_has_all_memory (struct target_ops *ops)
198{
199 /* If no inferior selected, then we can't read memory here. */
200 if (ptid_equal (inferior_ptid, null_ptid))
201 return 0;
202
203 return 1;
204}
205
206int
207default_child_has_memory (struct target_ops *ops)
208{
209 /* If no inferior selected, then we can't read memory here. */
210 if (ptid_equal (inferior_ptid, null_ptid))
211 return 0;
212
213 return 1;
214}
215
216int
217default_child_has_stack (struct target_ops *ops)
218{
219 /* If no inferior selected, there's no stack. */
220 if (ptid_equal (inferior_ptid, null_ptid))
221 return 0;
222
223 return 1;
224}
225
226int
227default_child_has_registers (struct target_ops *ops)
228{
229 /* Can't read registers from no inferior. */
230 if (ptid_equal (inferior_ptid, null_ptid))
231 return 0;
232
233 return 1;
234}
235
236int
aeaec162 237default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
238{
239 /* If there's no thread selected, then we can't make it run through
240 hoops. */
aeaec162 241 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
242 return 0;
243
244 return 1;
245}
246
247
248int
249target_has_all_memory_1 (void)
250{
251 struct target_ops *t;
252
253 for (t = current_target.beneath; t != NULL; t = t->beneath)
254 if (t->to_has_all_memory (t))
255 return 1;
256
257 return 0;
258}
259
260int
261target_has_memory_1 (void)
262{
263 struct target_ops *t;
264
265 for (t = current_target.beneath; t != NULL; t = t->beneath)
266 if (t->to_has_memory (t))
267 return 1;
268
269 return 0;
270}
271
272int
273target_has_stack_1 (void)
274{
275 struct target_ops *t;
276
277 for (t = current_target.beneath; t != NULL; t = t->beneath)
278 if (t->to_has_stack (t))
279 return 1;
280
281 return 0;
282}
283
284int
285target_has_registers_1 (void)
286{
287 struct target_ops *t;
288
289 for (t = current_target.beneath; t != NULL; t = t->beneath)
290 if (t->to_has_registers (t))
291 return 1;
292
293 return 0;
294}
295
296int
aeaec162 297target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
298{
299 struct target_ops *t;
300
301 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 302 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
303 return 1;
304
305 return 0;
306}
307
aeaec162
TT
308int
309target_has_execution_current (void)
310{
311 return target_has_execution_1 (inferior_ptid);
312}
313
c22a2b88
TT
314/* Complete initialization of T. This ensures that various fields in
315 T are set, if needed by the target implementation. */
c906108c
SS
316
317void
c22a2b88 318complete_target_initialization (struct target_ops *t)
c906108c 319{
0088c768 320 /* Provide default values for all "must have" methods. */
0088c768 321
c35b1492 322 if (t->to_has_all_memory == NULL)
555bbdeb 323 t->to_has_all_memory = return_zero;
c35b1492
PA
324
325 if (t->to_has_memory == NULL)
555bbdeb 326 t->to_has_memory = return_zero;
c35b1492
PA
327
328 if (t->to_has_stack == NULL)
555bbdeb 329 t->to_has_stack = return_zero;
c35b1492
PA
330
331 if (t->to_has_registers == NULL)
555bbdeb 332 t->to_has_registers = return_zero;
c35b1492
PA
333
334 if (t->to_has_execution == NULL)
555bbdeb 335 t->to_has_execution = return_zero_has_execution;
1101cb7b 336
b3ccfe11
TT
337 /* These methods can be called on an unpushed target and so require
338 a default implementation if the target might plausibly be the
339 default run target. */
340 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
341 && t->to_supports_non_stop != NULL));
342
1101cb7b 343 install_delegators (t);
c22a2b88
TT
344}
345
8981c758
TT
346/* This is used to implement the various target commands. */
347
348static void
349open_target (char *args, int from_tty, struct cmd_list_element *command)
350{
351 struct target_ops *ops = get_cmd_context (command);
352
353 if (targetdebug)
354 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
355 ops->to_shortname);
356
357 ops->to_open (args, from_tty);
358
359 if (targetdebug)
360 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
361 ops->to_shortname, args, from_tty);
362}
363
c22a2b88
TT
364/* Add possible target architecture T to the list and add a new
365 command 'target T->to_shortname'. Set COMPLETER as the command's
366 completer if not NULL. */
367
368void
369add_target_with_completer (struct target_ops *t,
370 completer_ftype *completer)
371{
372 struct cmd_list_element *c;
373
374 complete_target_initialization (t);
c35b1492 375
c906108c
SS
376 if (!target_structs)
377 {
378 target_struct_allocsize = DEFAULT_ALLOCSIZE;
379 target_structs = (struct target_ops **) xmalloc
380 (target_struct_allocsize * sizeof (*target_structs));
381 }
382 if (target_struct_size >= target_struct_allocsize)
383 {
384 target_struct_allocsize *= 2;
385 target_structs = (struct target_ops **)
c5aa993b
JM
386 xrealloc ((char *) target_structs,
387 target_struct_allocsize * sizeof (*target_structs));
c906108c
SS
388 }
389 target_structs[target_struct_size++] = t;
c906108c
SS
390
391 if (targetlist == NULL)
1bedd215
AC
392 add_prefix_cmd ("target", class_run, target_command, _("\
393Connect to a target machine or process.\n\
c906108c
SS
394The first argument is the type or protocol of the target machine.\n\
395Remaining arguments are interpreted by the target protocol. For more\n\
396information on the arguments for a particular protocol, type\n\
1bedd215 397`help target ' followed by the protocol name."),
c906108c 398 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
399 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
400 set_cmd_sfunc (c, open_target);
401 set_cmd_context (c, t);
9852c492
YQ
402 if (completer != NULL)
403 set_cmd_completer (c, completer);
404}
405
406/* Add a possible target architecture to the list. */
407
408void
409add_target (struct target_ops *t)
410{
411 add_target_with_completer (t, NULL);
c906108c
SS
412}
413
b48d48eb
MM
414/* See target.h. */
415
416void
417add_deprecated_target_alias (struct target_ops *t, char *alias)
418{
419 struct cmd_list_element *c;
420 char *alt;
421
422 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
423 see PR cli/15104. */
8981c758
TT
424 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
425 set_cmd_sfunc (c, open_target);
426 set_cmd_context (c, t);
b48d48eb
MM
427 alt = xstrprintf ("target %s", t->to_shortname);
428 deprecate_cmd (c, alt);
429}
430
c906108c
SS
431/* Stub functions */
432
7d85a9c0
JB
433void
434target_kill (void)
435{
423a4807 436 current_target.to_kill (&current_target);
7d85a9c0
JB
437}
438
11cf8741 439void
9cbe5fff 440target_load (const char *arg, int from_tty)
11cf8741 441{
4e5d721f 442 target_dcache_invalidate ();
71a9f134 443 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
444}
445
d9d2d8b6
PA
446void
447target_terminal_inferior (void)
448{
449 /* A background resume (``run&'') should leave GDB in control of the
c378eb4e 450 terminal. Use target_can_async_p, not target_is_async_p, since at
ba7f6c64
VP
451 this point the target is not async yet. However, if sync_execution
452 is not set, we know it will become async prior to resume. */
453 if (target_can_async_p () && !sync_execution)
d9d2d8b6
PA
454 return;
455
456 /* If GDB is resuming the inferior in the foreground, install
457 inferior's terminal modes. */
d2f640d4 458 (*current_target.to_terminal_inferior) (&current_target);
d9d2d8b6 459}
136d6dae 460
b0ed115f
TT
461/* See target.h. */
462
463int
464target_supports_terminal_ours (void)
465{
466 struct target_ops *t;
467
468 for (t = current_target.beneath; t != NULL; t = t->beneath)
469 {
470 if (t->to_terminal_ours != delegate_terminal_ours
471 && t->to_terminal_ours != tdefault_terminal_ours)
472 return 1;
473 }
474
475 return 0;
476}
477
c906108c 478static void
fba45db2 479tcomplain (void)
c906108c 480{
8a3fe4f8 481 error (_("You can't do that when your target is `%s'"),
c906108c
SS
482 current_target.to_shortname);
483}
484
485void
fba45db2 486noprocess (void)
c906108c 487{
8a3fe4f8 488 error (_("You can't do that without a process to debug."));
c906108c
SS
489}
490
c906108c 491static void
0a4f40a2 492default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 493{
a3f17187 494 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
495}
496
0ef643c8
JB
497/* A default implementation for the to_get_ada_task_ptid target method.
498
499 This function builds the PTID by using both LWP and TID as part of
500 the PTID lwp and tid elements. The pid used is the pid of the
501 inferior_ptid. */
502
2c0b251b 503static ptid_t
1e6b91a4 504default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
505{
506 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
507}
508
32231432 509static enum exec_direction_kind
4c612759 510default_execution_direction (struct target_ops *self)
32231432
PA
511{
512 if (!target_can_execute_reverse)
513 return EXEC_FORWARD;
514 else if (!target_can_async_p ())
515 return EXEC_FORWARD;
516 else
517 gdb_assert_not_reached ("\
518to_execution_direction must be implemented for reverse async");
519}
520
7998dfc3
AC
521/* Go through the target stack from top to bottom, copying over zero
522 entries in current_target, then filling in still empty entries. In
523 effect, we are doing class inheritance through the pushed target
524 vectors.
525
526 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
527 is currently implemented, is that it discards any knowledge of
528 which target an inherited method originally belonged to.
529 Consequently, new new target methods should instead explicitly and
530 locally search the target stack for the target that can handle the
531 request. */
c906108c
SS
532
533static void
7998dfc3 534update_current_target (void)
c906108c 535{
7998dfc3
AC
536 struct target_ops *t;
537
08d8bcd7 538 /* First, reset current's contents. */
7998dfc3
AC
539 memset (&current_target, 0, sizeof (current_target));
540
1101cb7b
TT
541 /* Install the delegators. */
542 install_delegators (&current_target);
543
be4ddd36
TT
544 current_target.to_stratum = target_stack->to_stratum;
545
7998dfc3
AC
546#define INHERIT(FIELD, TARGET) \
547 if (!current_target.FIELD) \
548 current_target.FIELD = (TARGET)->FIELD
549
be4ddd36
TT
550 /* Do not add any new INHERITs here. Instead, use the delegation
551 mechanism provided by make-target-delegates. */
7998dfc3
AC
552 for (t = target_stack; t; t = t->beneath)
553 {
554 INHERIT (to_shortname, t);
555 INHERIT (to_longname, t);
dc177b7a 556 INHERIT (to_attach_no_wait, t);
74174d2e 557 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 558 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 559 INHERIT (to_has_thread_control, t);
7998dfc3
AC
560 }
561#undef INHERIT
562
7998dfc3
AC
563 /* Finally, position the target-stack beneath the squashed
564 "current_target". That way code looking for a non-inherited
565 target method can quickly and simply find it. */
566 current_target.beneath = target_stack;
b4b61fdb
DJ
567
568 if (targetdebug)
569 setup_target_debug ();
c906108c
SS
570}
571
572/* Push a new target type into the stack of the existing target accessors,
573 possibly superseding some of the existing accessors.
574
c906108c
SS
575 Rather than allow an empty stack, we always have the dummy target at
576 the bottom stratum, so we can call the function vectors without
577 checking them. */
578
b26a4dcb 579void
fba45db2 580push_target (struct target_ops *t)
c906108c 581{
258b763a 582 struct target_ops **cur;
c906108c
SS
583
584 /* Check magic number. If wrong, it probably means someone changed
585 the struct definition, but not all the places that initialize one. */
586 if (t->to_magic != OPS_MAGIC)
587 {
c5aa993b
JM
588 fprintf_unfiltered (gdb_stderr,
589 "Magic number of %s target struct wrong\n",
590 t->to_shortname);
3e43a32a
MS
591 internal_error (__FILE__, __LINE__,
592 _("failed internal consistency check"));
c906108c
SS
593 }
594
258b763a
AC
595 /* Find the proper stratum to install this target in. */
596 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 597 {
258b763a 598 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
599 break;
600 }
601
258b763a 602 /* If there's already targets at this stratum, remove them. */
88c231eb 603 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
604 targets to CUR, and not just those at this stratum level. */
605 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
606 {
607 /* There's already something at this stratum level. Close it,
608 and un-hook it from the stack. */
609 struct target_ops *tmp = (*cur);
5d502164 610
258b763a
AC
611 (*cur) = (*cur)->beneath;
612 tmp->beneath = NULL;
460014f5 613 target_close (tmp);
258b763a 614 }
c906108c
SS
615
616 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
617 t->beneath = (*cur);
618 (*cur) = t;
c906108c
SS
619
620 update_current_target ();
c906108c
SS
621}
622
2bc416ba 623/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
624 Return how many times it was removed (0 or 1). */
625
626int
fba45db2 627unpush_target (struct target_ops *t)
c906108c 628{
258b763a
AC
629 struct target_ops **cur;
630 struct target_ops *tmp;
c906108c 631
c8d104ad
PA
632 if (t->to_stratum == dummy_stratum)
633 internal_error (__FILE__, __LINE__,
9b20d036 634 _("Attempt to unpush the dummy target"));
c8d104ad 635
c906108c 636 /* Look for the specified target. Note that we assume that a target
c378eb4e 637 can only occur once in the target stack. */
c906108c 638
258b763a
AC
639 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
640 {
641 if ((*cur) == t)
642 break;
643 }
c906108c 644
305436e0
PA
645 /* If we don't find target_ops, quit. Only open targets should be
646 closed. */
258b763a 647 if ((*cur) == NULL)
305436e0 648 return 0;
5269965e 649
c378eb4e 650 /* Unchain the target. */
258b763a
AC
651 tmp = (*cur);
652 (*cur) = (*cur)->beneath;
653 tmp->beneath = NULL;
c906108c
SS
654
655 update_current_target ();
c906108c 656
305436e0
PA
657 /* Finally close the target. Note we do this after unchaining, so
658 any target method calls from within the target_close
659 implementation don't end up in T anymore. */
460014f5 660 target_close (t);
305436e0 661
c906108c
SS
662 return 1;
663}
664
aa76d38d 665void
460014f5 666pop_all_targets_above (enum strata above_stratum)
aa76d38d 667{
87ab71f0 668 while ((int) (current_target.to_stratum) > (int) above_stratum)
aa76d38d 669 {
aa76d38d
PA
670 if (!unpush_target (target_stack))
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "pop_all_targets couldn't find target %s\n",
b52323fa 674 target_stack->to_shortname);
aa76d38d
PA
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 break;
678 }
679 }
680}
681
87ab71f0 682void
460014f5 683pop_all_targets (void)
87ab71f0 684{
460014f5 685 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
686}
687
c0edd9ed
JK
688/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
689
690int
691target_is_pushed (struct target_ops *t)
692{
84202f9c 693 struct target_ops *cur;
c0edd9ed
JK
694
695 /* Check magic number. If wrong, it probably means someone changed
696 the struct definition, but not all the places that initialize one. */
697 if (t->to_magic != OPS_MAGIC)
698 {
699 fprintf_unfiltered (gdb_stderr,
700 "Magic number of %s target struct wrong\n",
701 t->to_shortname);
3e43a32a
MS
702 internal_error (__FILE__, __LINE__,
703 _("failed internal consistency check"));
c0edd9ed
JK
704 }
705
84202f9c
TT
706 for (cur = target_stack; cur != NULL; cur = cur->beneath)
707 if (cur == t)
c0edd9ed
JK
708 return 1;
709
710 return 0;
711}
712
f0f9ff95
TT
713/* Default implementation of to_get_thread_local_address. */
714
715static void
716generic_tls_error (void)
717{
718 throw_error (TLS_GENERIC_ERROR,
719 _("Cannot find thread-local variables on this target"));
720}
721
72f5cf0e 722/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
723 current thread's thread-local storage with offset OFFSET. */
724CORE_ADDR
725target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
726{
727 volatile CORE_ADDR addr = 0;
f0f9ff95 728 struct target_ops *target = &current_target;
9e35dae4 729
f0f9ff95 730 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
731 {
732 ptid_t ptid = inferior_ptid;
733 volatile struct gdb_exception ex;
734
735 TRY_CATCH (ex, RETURN_MASK_ALL)
736 {
737 CORE_ADDR lm_addr;
738
739 /* Fetch the load module address for this objfile. */
f5656ead 740 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 741 objfile);
9e35dae4 742
3e43a32a
MS
743 addr = target->to_get_thread_local_address (target, ptid,
744 lm_addr, offset);
9e35dae4
DJ
745 }
746 /* If an error occurred, print TLS related messages here. Otherwise,
747 throw the error to some higher catcher. */
748 if (ex.reason < 0)
749 {
750 int objfile_is_library = (objfile->flags & OBJF_SHARED);
751
752 switch (ex.error)
753 {
754 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
755 error (_("Cannot find thread-local variables "
756 "in this thread library."));
9e35dae4
DJ
757 break;
758 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
759 if (objfile_is_library)
760 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 761 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
762 else
763 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 764 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
765 break;
766 case TLS_NOT_ALLOCATED_YET_ERROR:
767 if (objfile_is_library)
768 error (_("The inferior has not yet allocated storage for"
769 " thread-local variables in\n"
770 "the shared library `%s'\n"
771 "for %s"),
4262abfb 772 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
773 else
774 error (_("The inferior has not yet allocated storage for"
775 " thread-local variables in\n"
776 "the executable `%s'\n"
777 "for %s"),
4262abfb 778 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
779 break;
780 case TLS_GENERIC_ERROR:
781 if (objfile_is_library)
782 error (_("Cannot find thread-local storage for %s, "
783 "shared library %s:\n%s"),
784 target_pid_to_str (ptid),
4262abfb 785 objfile_name (objfile), ex.message);
9e35dae4
DJ
786 else
787 error (_("Cannot find thread-local storage for %s, "
788 "executable file %s:\n%s"),
789 target_pid_to_str (ptid),
4262abfb 790 objfile_name (objfile), ex.message);
9e35dae4
DJ
791 break;
792 default:
793 throw_exception (ex);
794 break;
795 }
796 }
797 }
798 /* It wouldn't be wrong here to try a gdbarch method, too; finding
799 TLS is an ABI-specific thing. But we don't do that yet. */
800 else
801 error (_("Cannot find thread-local variables on this target"));
802
803 return addr;
804}
805
6be7b56e 806const char *
01cb8804 807target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
808{
809#define CASE(X) case X: return #X
01cb8804 810 switch (status)
6be7b56e
PA
811 {
812 CASE(TARGET_XFER_E_IO);
bc113b4e 813 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
814 default:
815 return "<unknown>";
816 }
817#undef CASE
818};
819
820
c906108c
SS
821#undef MIN
822#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
823
824/* target_read_string -- read a null terminated string, up to LEN bytes,
825 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
826 Set *STRING to a pointer to malloc'd memory containing the data; the caller
827 is responsible for freeing it. Return the number of bytes successfully
828 read. */
829
830int
fba45db2 831target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 832{
c2e8b827 833 int tlen, offset, i;
1b0ba102 834 gdb_byte buf[4];
c906108c
SS
835 int errcode = 0;
836 char *buffer;
837 int buffer_allocated;
838 char *bufptr;
839 unsigned int nbytes_read = 0;
840
6217bf3e
MS
841 gdb_assert (string);
842
c906108c
SS
843 /* Small for testing. */
844 buffer_allocated = 4;
845 buffer = xmalloc (buffer_allocated);
846 bufptr = buffer;
847
c906108c
SS
848 while (len > 0)
849 {
850 tlen = MIN (len, 4 - (memaddr & 3));
851 offset = memaddr & 3;
852
1b0ba102 853 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
854 if (errcode != 0)
855 {
856 /* The transfer request might have crossed the boundary to an
c378eb4e 857 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
858 a single byte. */
859 tlen = 1;
860 offset = 0;
b8eb5af0 861 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
862 if (errcode != 0)
863 goto done;
864 }
865
866 if (bufptr - buffer + tlen > buffer_allocated)
867 {
868 unsigned int bytes;
5d502164 869
c906108c
SS
870 bytes = bufptr - buffer;
871 buffer_allocated *= 2;
872 buffer = xrealloc (buffer, buffer_allocated);
873 bufptr = buffer + bytes;
874 }
875
876 for (i = 0; i < tlen; i++)
877 {
878 *bufptr++ = buf[i + offset];
879 if (buf[i + offset] == '\000')
880 {
881 nbytes_read += i + 1;
882 goto done;
883 }
884 }
885
886 memaddr += tlen;
887 len -= tlen;
888 nbytes_read += tlen;
889 }
c5aa993b 890done:
6217bf3e 891 *string = buffer;
c906108c
SS
892 if (errnop != NULL)
893 *errnop = errcode;
c906108c
SS
894 return nbytes_read;
895}
896
07b82ea5
PA
897struct target_section_table *
898target_get_section_table (struct target_ops *target)
899{
7e35c012 900 return (*target->to_get_section_table) (target);
07b82ea5
PA
901}
902
8db32d44 903/* Find a section containing ADDR. */
07b82ea5 904
0542c86d 905struct target_section *
8db32d44
AC
906target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
907{
07b82ea5 908 struct target_section_table *table = target_get_section_table (target);
0542c86d 909 struct target_section *secp;
07b82ea5
PA
910
911 if (table == NULL)
912 return NULL;
913
914 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
915 {
916 if (addr >= secp->addr && addr < secp->endaddr)
917 return secp;
918 }
919 return NULL;
920}
921
9f713294
YQ
922/* Read memory from more than one valid target. A core file, for
923 instance, could have some of memory but delegate other bits to
924 the target below it. So, we must manually try all targets. */
925
9b409511 926static enum target_xfer_status
17fde6d0 927raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
928 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
929 ULONGEST *xfered_len)
9f713294 930{
9b409511 931 enum target_xfer_status res;
9f713294
YQ
932
933 do
934 {
935 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
936 readbuf, writebuf, memaddr, len,
937 xfered_len);
938 if (res == TARGET_XFER_OK)
9f713294
YQ
939 break;
940
633785ff 941 /* Stop if the target reports that the memory is not available. */
bc113b4e 942 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
943 break;
944
9f713294
YQ
945 /* We want to continue past core files to executables, but not
946 past a running target's memory. */
947 if (ops->to_has_all_memory (ops))
948 break;
949
950 ops = ops->beneath;
951 }
952 while (ops != NULL);
953
0f26cec1
PA
954 /* The cache works at the raw memory level. Make sure the cache
955 gets updated with raw contents no matter what kind of memory
956 object was originally being written. Note we do write-through
957 first, so that if it fails, we don't write to the cache contents
958 that never made it to the target. */
959 if (writebuf != NULL
960 && !ptid_equal (inferior_ptid, null_ptid)
961 && target_dcache_init_p ()
962 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
963 {
964 DCACHE *dcache = target_dcache_get ();
965
966 /* Note that writing to an area of memory which wasn't present
967 in the cache doesn't cause it to be loaded in. */
968 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
969 }
970
9f713294
YQ
971 return res;
972}
973
7f79c47e
DE
974/* Perform a partial memory transfer.
975 For docs see target.h, to_xfer_partial. */
cf7a04e8 976
9b409511 977static enum target_xfer_status
f0ba3972 978memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 979 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 980 ULONGEST len, ULONGEST *xfered_len)
0779438d 981{
9b409511 982 enum target_xfer_status res;
cf7a04e8
DJ
983 int reg_len;
984 struct mem_region *region;
4e5d721f 985 struct inferior *inf;
cf7a04e8 986
07b82ea5
PA
987 /* For accesses to unmapped overlay sections, read directly from
988 files. Must do this first, as MEMADDR may need adjustment. */
989 if (readbuf != NULL && overlay_debugging)
990 {
991 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 992
07b82ea5
PA
993 if (pc_in_unmapped_range (memaddr, section))
994 {
995 struct target_section_table *table
996 = target_get_section_table (ops);
997 const char *section_name = section->the_bfd_section->name;
5d502164 998
07b82ea5
PA
999 memaddr = overlay_mapped_address (memaddr, section);
1000 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1001 memaddr, len, xfered_len,
07b82ea5
PA
1002 table->sections,
1003 table->sections_end,
1004 section_name);
1005 }
1006 }
1007
1008 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1009 if (readbuf != NULL && trust_readonly)
1010 {
0542c86d 1011 struct target_section *secp;
07b82ea5 1012 struct target_section_table *table;
cf7a04e8
DJ
1013
1014 secp = target_section_by_addr (ops, memaddr);
1015 if (secp != NULL
2b2848e2
DE
1016 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1017 secp->the_bfd_section)
cf7a04e8 1018 & SEC_READONLY))
07b82ea5
PA
1019 {
1020 table = target_get_section_table (ops);
1021 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1022 memaddr, len, xfered_len,
07b82ea5
PA
1023 table->sections,
1024 table->sections_end,
1025 NULL);
1026 }
98646950
UW
1027 }
1028
cf7a04e8
DJ
1029 /* Try GDB's internal data cache. */
1030 region = lookup_mem_region (memaddr);
4b5752d0
VP
1031 /* region->hi == 0 means there's no upper bound. */
1032 if (memaddr + len < region->hi || region->hi == 0)
cf7a04e8
DJ
1033 reg_len = len;
1034 else
1035 reg_len = region->hi - memaddr;
1036
1037 switch (region->attrib.mode)
1038 {
1039 case MEM_RO:
1040 if (writebuf != NULL)
2ed4b548 1041 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1042 break;
1043
1044 case MEM_WO:
1045 if (readbuf != NULL)
2ed4b548 1046 return TARGET_XFER_E_IO;
cf7a04e8 1047 break;
a76d924d
DJ
1048
1049 case MEM_FLASH:
1050 /* We only support writing to flash during "load" for now. */
1051 if (writebuf != NULL)
1052 error (_("Writing to flash memory forbidden in this context"));
1053 break;
4b5752d0
VP
1054
1055 case MEM_NONE:
2ed4b548 1056 return TARGET_XFER_E_IO;
cf7a04e8
DJ
1057 }
1058
6c95b8df
PA
1059 if (!ptid_equal (inferior_ptid, null_ptid))
1060 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1061 else
1062 inf = NULL;
4e5d721f
DE
1063
1064 if (inf != NULL
0f26cec1 1065 && readbuf != NULL
2f4d8875
PA
1066 /* The dcache reads whole cache lines; that doesn't play well
1067 with reading from a trace buffer, because reading outside of
1068 the collected memory range fails. */
1069 && get_traceframe_number () == -1
4e5d721f 1070 && (region->attrib.cache
29453a14
YQ
1071 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1072 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1073 {
2a2f9fe4
YQ
1074 DCACHE *dcache = target_dcache_get_or_init ();
1075
0f26cec1
PA
1076 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1077 reg_len, xfered_len);
cf7a04e8
DJ
1078 }
1079
1080 /* If none of those methods found the memory we wanted, fall back
1081 to a target partial transfer. Normally a single call to
1082 to_xfer_partial is enough; if it doesn't recognize an object
1083 it will call the to_xfer_partial of the next target down.
1084 But for memory this won't do. Memory is the only target
9b409511
YQ
1085 object which can be read from more than one valid target.
1086 A core file, for instance, could have some of memory but
1087 delegate other bits to the target below it. So, we must
1088 manually try all targets. */
1089
1090 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1091 xfered_len);
cf7a04e8
DJ
1092
1093 /* If we still haven't got anything, return the last error. We
1094 give up. */
1095 return res;
0779438d
AC
1096}
1097
f0ba3972
PA
1098/* Perform a partial memory transfer. For docs see target.h,
1099 to_xfer_partial. */
1100
9b409511 1101static enum target_xfer_status
f0ba3972 1102memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1103 gdb_byte *readbuf, const gdb_byte *writebuf,
1104 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1105{
9b409511 1106 enum target_xfer_status res;
f0ba3972
PA
1107
1108 /* Zero length requests are ok and require no work. */
1109 if (len == 0)
9b409511 1110 return TARGET_XFER_EOF;
f0ba3972
PA
1111
1112 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1113 breakpoint insns, thus hiding out from higher layers whether
1114 there are software breakpoints inserted in the code stream. */
1115 if (readbuf != NULL)
1116 {
9b409511
YQ
1117 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1118 xfered_len);
f0ba3972 1119
9b409511 1120 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1121 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1122 }
1123 else
1124 {
1125 void *buf;
1126 struct cleanup *old_chain;
1127
67c059c2
AB
1128 /* A large write request is likely to be partially satisfied
1129 by memory_xfer_partial_1. We will continually malloc
1130 and free a copy of the entire write request for breakpoint
1131 shadow handling even though we only end up writing a small
1132 subset of it. Cap writes to 4KB to mitigate this. */
1133 len = min (4096, len);
1134
f0ba3972
PA
1135 buf = xmalloc (len);
1136 old_chain = make_cleanup (xfree, buf);
1137 memcpy (buf, writebuf, len);
1138
1139 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1140 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1141 xfered_len);
f0ba3972
PA
1142
1143 do_cleanups (old_chain);
1144 }
1145
1146 return res;
1147}
1148
8defab1a
DJ
1149static void
1150restore_show_memory_breakpoints (void *arg)
1151{
1152 show_memory_breakpoints = (uintptr_t) arg;
1153}
1154
1155struct cleanup *
1156make_show_memory_breakpoints_cleanup (int show)
1157{
1158 int current = show_memory_breakpoints;
8defab1a 1159
5d502164 1160 show_memory_breakpoints = show;
8defab1a
DJ
1161 return make_cleanup (restore_show_memory_breakpoints,
1162 (void *) (uintptr_t) current);
1163}
1164
7f79c47e
DE
1165/* For docs see target.h, to_xfer_partial. */
1166
9b409511 1167enum target_xfer_status
27394598
AC
1168target_xfer_partial (struct target_ops *ops,
1169 enum target_object object, const char *annex,
4ac248ca 1170 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1171 ULONGEST offset, ULONGEST len,
1172 ULONGEST *xfered_len)
27394598 1173{
9b409511 1174 enum target_xfer_status retval;
27394598
AC
1175
1176 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1177
ce6d0892
YQ
1178 /* Transfer is done when LEN is zero. */
1179 if (len == 0)
9b409511 1180 return TARGET_XFER_EOF;
ce6d0892 1181
d914c394
SS
1182 if (writebuf && !may_write_memory)
1183 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1184 core_addr_to_string_nz (offset), plongest (len));
1185
9b409511
YQ
1186 *xfered_len = 0;
1187
cf7a04e8
DJ
1188 /* If this is a memory transfer, let the memory-specific code
1189 have a look at it instead. Memory transfers are more
1190 complicated. */
29453a14
YQ
1191 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1192 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1193 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1194 writebuf, offset, len, xfered_len);
9f713294 1195 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1196 {
9f713294 1197 /* Request the normal memory object from other layers. */
9b409511
YQ
1198 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1199 xfered_len);
cf7a04e8 1200 }
9f713294
YQ
1201 else
1202 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1203 writebuf, offset, len, xfered_len);
cf7a04e8 1204
27394598
AC
1205 if (targetdebug)
1206 {
1207 const unsigned char *myaddr = NULL;
1208
1209 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1210 "%s:target_xfer_partial "
9b409511 1211 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1212 ops->to_shortname,
1213 (int) object,
1214 (annex ? annex : "(null)"),
53b71562
JB
1215 host_address_to_string (readbuf),
1216 host_address_to_string (writebuf),
0b1553bc 1217 core_addr_to_string_nz (offset),
9b409511
YQ
1218 pulongest (len), retval,
1219 pulongest (*xfered_len));
27394598
AC
1220
1221 if (readbuf)
1222 myaddr = readbuf;
1223 if (writebuf)
1224 myaddr = writebuf;
9b409511 1225 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1226 {
1227 int i;
2bc416ba 1228
27394598 1229 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1230 for (i = 0; i < *xfered_len; i++)
27394598 1231 {
53b71562 1232 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1233 {
1234 if (targetdebug < 2 && i > 0)
1235 {
1236 fprintf_unfiltered (gdb_stdlog, " ...");
1237 break;
1238 }
1239 fprintf_unfiltered (gdb_stdlog, "\n");
1240 }
2bc416ba 1241
27394598
AC
1242 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1243 }
1244 }
2bc416ba 1245
27394598
AC
1246 fputc_unfiltered ('\n', gdb_stdlog);
1247 }
9b409511
YQ
1248
1249 /* Check implementations of to_xfer_partial update *XFERED_LEN
1250 properly. Do assertion after printing debug messages, so that we
1251 can find more clues on assertion failure from debugging messages. */
bc113b4e 1252 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1253 gdb_assert (*xfered_len > 0);
1254
27394598
AC
1255 return retval;
1256}
1257
578d3588
PA
1258/* Read LEN bytes of target memory at address MEMADDR, placing the
1259 results in GDB's memory at MYADDR. Returns either 0 for success or
9b409511 1260 TARGET_XFER_E_IO if any error occurs.
c906108c
SS
1261
1262 If an error occurs, no guarantee is made about the contents of the data at
1263 MYADDR. In particular, the caller should not depend upon partial reads
1264 filling the buffer with good data. There is no way for the caller to know
1265 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1266 deal with partial reads should call target_read (which will retry until
c378eb4e 1267 it makes no progress, and then return how much was transferred). */
c906108c
SS
1268
1269int
1b162304 1270target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1271{
c35b1492
PA
1272 /* Dispatch to the topmost target, not the flattened current_target.
1273 Memory accesses check target->to_has_(all_)memory, and the
1274 flattened target doesn't inherit those. */
1275 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1276 myaddr, memaddr, len) == len)
1277 return 0;
0779438d 1278 else
578d3588 1279 return TARGET_XFER_E_IO;
c906108c
SS
1280}
1281
aee4bf85
PA
1282/* Like target_read_memory, but specify explicitly that this is a read
1283 from the target's raw memory. That is, this read bypasses the
1284 dcache, breakpoint shadowing, etc. */
1285
1286int
1287target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1288{
1289 /* See comment in target_read_memory about why the request starts at
1290 current_target.beneath. */
1291 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1292 myaddr, memaddr, len) == len)
1293 return 0;
1294 else
1295 return TARGET_XFER_E_IO;
1296}
1297
4e5d721f
DE
1298/* Like target_read_memory, but specify explicitly that this is a read from
1299 the target's stack. This may trigger different cache behavior. */
1300
1301int
45aa4659 1302target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1303{
aee4bf85
PA
1304 /* See comment in target_read_memory about why the request starts at
1305 current_target.beneath. */
4e5d721f
DE
1306 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1307 myaddr, memaddr, len) == len)
1308 return 0;
1309 else
578d3588 1310 return TARGET_XFER_E_IO;
4e5d721f
DE
1311}
1312
29453a14
YQ
1313/* Like target_read_memory, but specify explicitly that this is a read from
1314 the target's code. This may trigger different cache behavior. */
1315
1316int
1317target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1318{
aee4bf85
PA
1319 /* See comment in target_read_memory about why the request starts at
1320 current_target.beneath. */
29453a14
YQ
1321 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1322 myaddr, memaddr, len) == len)
1323 return 0;
1324 else
1325 return TARGET_XFER_E_IO;
1326}
1327
7f79c47e 1328/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
9b409511 1329 Returns either 0 for success or TARGET_XFER_E_IO if any
578d3588
PA
1330 error occurs. If an error occurs, no guarantee is made about how
1331 much data got written. Callers that can deal with partial writes
1332 should call target_write. */
7f79c47e 1333
c906108c 1334int
45aa4659 1335target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1336{
aee4bf85
PA
1337 /* See comment in target_read_memory about why the request starts at
1338 current_target.beneath. */
c35b1492 1339 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1340 myaddr, memaddr, len) == len)
1341 return 0;
0779438d 1342 else
578d3588 1343 return TARGET_XFER_E_IO;
c906108c 1344}
c5aa993b 1345
f0ba3972 1346/* Write LEN bytes from MYADDR to target raw memory at address
9b409511 1347 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
578d3588
PA
1348 if any error occurs. If an error occurs, no guarantee is made
1349 about how much data got written. Callers that can deal with
1350 partial writes should call target_write. */
f0ba3972
PA
1351
1352int
45aa4659 1353target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1354{
aee4bf85
PA
1355 /* See comment in target_read_memory about why the request starts at
1356 current_target.beneath. */
f0ba3972
PA
1357 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1358 myaddr, memaddr, len) == len)
1359 return 0;
1360 else
578d3588 1361 return TARGET_XFER_E_IO;
f0ba3972
PA
1362}
1363
fd79ecee
DJ
1364/* Fetch the target's memory map. */
1365
1366VEC(mem_region_s) *
1367target_memory_map (void)
1368{
1369 VEC(mem_region_s) *result;
1370 struct mem_region *last_one, *this_one;
1371 int ix;
1372 struct target_ops *t;
1373
6b2c5a57 1374 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1375 if (result == NULL)
1376 return NULL;
1377
1378 qsort (VEC_address (mem_region_s, result),
1379 VEC_length (mem_region_s, result),
1380 sizeof (struct mem_region), mem_region_cmp);
1381
1382 /* Check that regions do not overlap. Simultaneously assign
1383 a numbering for the "mem" commands to use to refer to
1384 each region. */
1385 last_one = NULL;
1386 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1387 {
1388 this_one->number = ix;
1389
1390 if (last_one && last_one->hi > this_one->lo)
1391 {
1392 warning (_("Overlapping regions in memory map: ignoring"));
1393 VEC_free (mem_region_s, result);
1394 return NULL;
1395 }
1396 last_one = this_one;
1397 }
1398
1399 return result;
1400}
1401
a76d924d
DJ
1402void
1403target_flash_erase (ULONGEST address, LONGEST length)
1404{
e8a6c6ac 1405 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1406}
1407
1408void
1409target_flash_done (void)
1410{
f6fb2925 1411 current_target.to_flash_done (&current_target);
a76d924d
DJ
1412}
1413
920d2a44
AC
1414static void
1415show_trust_readonly (struct ui_file *file, int from_tty,
1416 struct cmd_list_element *c, const char *value)
1417{
3e43a32a
MS
1418 fprintf_filtered (file,
1419 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1420 value);
1421}
3a11626d 1422
7f79c47e 1423/* Target vector read/write partial wrapper functions. */
0088c768 1424
9b409511 1425static enum target_xfer_status
1e3ff5ad
AC
1426target_read_partial (struct target_ops *ops,
1427 enum target_object object,
1b0ba102 1428 const char *annex, gdb_byte *buf,
9b409511
YQ
1429 ULONGEST offset, ULONGEST len,
1430 ULONGEST *xfered_len)
1e3ff5ad 1431{
9b409511
YQ
1432 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1433 xfered_len);
1e3ff5ad
AC
1434}
1435
8a55ffb0 1436static enum target_xfer_status
1e3ff5ad
AC
1437target_write_partial (struct target_ops *ops,
1438 enum target_object object,
1b0ba102 1439 const char *annex, const gdb_byte *buf,
9b409511 1440 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1441{
9b409511
YQ
1442 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1443 xfered_len);
1e3ff5ad
AC
1444}
1445
1446/* Wrappers to perform the full transfer. */
7f79c47e
DE
1447
1448/* For docs on target_read see target.h. */
1449
1e3ff5ad
AC
1450LONGEST
1451target_read (struct target_ops *ops,
1452 enum target_object object,
1b0ba102 1453 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1454 ULONGEST offset, LONGEST len)
1455{
1456 LONGEST xfered = 0;
5d502164 1457
1e3ff5ad
AC
1458 while (xfered < len)
1459 {
9b409511
YQ
1460 ULONGEST xfered_len;
1461 enum target_xfer_status status;
1462
1463 status = target_read_partial (ops, object, annex,
1464 (gdb_byte *) buf + xfered,
1465 offset + xfered, len - xfered,
1466 &xfered_len);
5d502164 1467
1e3ff5ad 1468 /* Call an observer, notifying them of the xfer progress? */
9b409511 1469 if (status == TARGET_XFER_EOF)
13547ab6 1470 return xfered;
9b409511
YQ
1471 else if (status == TARGET_XFER_OK)
1472 {
1473 xfered += xfered_len;
1474 QUIT;
1475 }
1476 else
0088c768 1477 return -1;
9b409511 1478
1e3ff5ad
AC
1479 }
1480 return len;
1481}
1482
f1a507a1
JB
1483/* Assuming that the entire [begin, end) range of memory cannot be
1484 read, try to read whatever subrange is possible to read.
1485
1486 The function returns, in RESULT, either zero or one memory block.
1487 If there's a readable subrange at the beginning, it is completely
1488 read and returned. Any further readable subrange will not be read.
1489 Otherwise, if there's a readable subrange at the end, it will be
1490 completely read and returned. Any readable subranges before it
1491 (obviously, not starting at the beginning), will be ignored. In
1492 other cases -- either no readable subrange, or readable subrange(s)
1493 that is neither at the beginning, or end, nothing is returned.
1494
1495 The purpose of this function is to handle a read across a boundary
1496 of accessible memory in a case when memory map is not available.
1497 The above restrictions are fine for this case, but will give
1498 incorrect results if the memory is 'patchy'. However, supporting
1499 'patchy' memory would require trying to read every single byte,
1500 and it seems unacceptable solution. Explicit memory map is
1501 recommended for this case -- and target_read_memory_robust will
1502 take care of reading multiple ranges then. */
8dedea02
VP
1503
1504static void
3e43a32a
MS
1505read_whatever_is_readable (struct target_ops *ops,
1506 ULONGEST begin, ULONGEST end,
8dedea02 1507 VEC(memory_read_result_s) **result)
d5086790 1508{
f1a507a1 1509 gdb_byte *buf = xmalloc (end - begin);
8dedea02
VP
1510 ULONGEST current_begin = begin;
1511 ULONGEST current_end = end;
1512 int forward;
1513 memory_read_result_s r;
9b409511 1514 ULONGEST xfered_len;
8dedea02
VP
1515
1516 /* If we previously failed to read 1 byte, nothing can be done here. */
1517 if (end - begin <= 1)
13b3fd9b
MS
1518 {
1519 xfree (buf);
1520 return;
1521 }
8dedea02
VP
1522
1523 /* Check that either first or the last byte is readable, and give up
c378eb4e 1524 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1525 at the boundary of accessible region. */
1526 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1527 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1528 {
1529 forward = 1;
1530 ++current_begin;
1531 }
1532 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1533 buf + (end-begin) - 1, end - 1, 1,
1534 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1535 {
1536 forward = 0;
1537 --current_end;
1538 }
1539 else
1540 {
13b3fd9b 1541 xfree (buf);
8dedea02
VP
1542 return;
1543 }
1544
1545 /* Loop invariant is that the [current_begin, current_end) was previously
1546 found to be not readable as a whole.
1547
1548 Note loop condition -- if the range has 1 byte, we can't divide the range
1549 so there's no point trying further. */
1550 while (current_end - current_begin > 1)
1551 {
1552 ULONGEST first_half_begin, first_half_end;
1553 ULONGEST second_half_begin, second_half_end;
1554 LONGEST xfer;
8dedea02 1555 ULONGEST middle = current_begin + (current_end - current_begin)/2;
f1a507a1 1556
8dedea02
VP
1557 if (forward)
1558 {
1559 first_half_begin = current_begin;
1560 first_half_end = middle;
1561 second_half_begin = middle;
1562 second_half_end = current_end;
1563 }
1564 else
1565 {
1566 first_half_begin = middle;
1567 first_half_end = current_end;
1568 second_half_begin = current_begin;
1569 second_half_end = middle;
1570 }
1571
1572 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1573 buf + (first_half_begin - begin),
1574 first_half_begin,
1575 first_half_end - first_half_begin);
1576
1577 if (xfer == first_half_end - first_half_begin)
1578 {
c378eb4e 1579 /* This half reads up fine. So, the error must be in the
3e43a32a 1580 other half. */
8dedea02
VP
1581 current_begin = second_half_begin;
1582 current_end = second_half_end;
1583 }
1584 else
1585 {
c378eb4e
MS
1586 /* This half is not readable. Because we've tried one byte, we
1587 know some part of this half if actually redable. Go to the next
8dedea02
VP
1588 iteration to divide again and try to read.
1589
1590 We don't handle the other half, because this function only tries
1591 to read a single readable subrange. */
1592 current_begin = first_half_begin;
1593 current_end = first_half_end;
1594 }
1595 }
1596
1597 if (forward)
1598 {
1599 /* The [begin, current_begin) range has been read. */
1600 r.begin = begin;
1601 r.end = current_begin;
1602 r.data = buf;
1603 }
1604 else
1605 {
1606 /* The [current_end, end) range has been read. */
1607 LONGEST rlen = end - current_end;
f1a507a1 1608
8dedea02
VP
1609 r.data = xmalloc (rlen);
1610 memcpy (r.data, buf + current_end - begin, rlen);
1611 r.begin = current_end;
1612 r.end = end;
1613 xfree (buf);
1614 }
1615 VEC_safe_push(memory_read_result_s, (*result), &r);
1616}
1617
1618void
1619free_memory_read_result_vector (void *x)
1620{
1621 VEC(memory_read_result_s) *v = x;
1622 memory_read_result_s *current;
1623 int ix;
1624
1625 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1626 {
1627 xfree (current->data);
1628 }
1629 VEC_free (memory_read_result_s, v);
1630}
1631
1632VEC(memory_read_result_s) *
1633read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1634{
1635 VEC(memory_read_result_s) *result = 0;
1636
1637 LONGEST xfered = 0;
d5086790
VP
1638 while (xfered < len)
1639 {
8dedea02
VP
1640 struct mem_region *region = lookup_mem_region (offset + xfered);
1641 LONGEST rlen;
5d502164 1642
8dedea02
VP
1643 /* If there is no explicit region, a fake one should be created. */
1644 gdb_assert (region);
1645
1646 if (region->hi == 0)
1647 rlen = len - xfered;
1648 else
1649 rlen = region->hi - offset;
1650
1651 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1652 {
c378eb4e 1653 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1654 if the region is explicitly marked inaccessible, or
1655 'inaccessible-by-default' is in effect. */
1656 xfered += rlen;
1657 }
1658 else
1659 {
1660 LONGEST to_read = min (len - xfered, rlen);
1661 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1662
1663 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1664 (gdb_byte *) buffer,
1665 offset + xfered, to_read);
1666 /* Call an observer, notifying them of the xfer progress? */
d5086790 1667 if (xfer <= 0)
d5086790 1668 {
c378eb4e 1669 /* Got an error reading full chunk. See if maybe we can read
8dedea02
VP
1670 some subrange. */
1671 xfree (buffer);
3e43a32a
MS
1672 read_whatever_is_readable (ops, offset + xfered,
1673 offset + xfered + to_read, &result);
8dedea02 1674 xfered += to_read;
d5086790 1675 }
8dedea02
VP
1676 else
1677 {
1678 struct memory_read_result r;
1679 r.data = buffer;
1680 r.begin = offset + xfered;
1681 r.end = r.begin + xfer;
1682 VEC_safe_push (memory_read_result_s, result, &r);
1683 xfered += xfer;
1684 }
1685 QUIT;
d5086790 1686 }
d5086790 1687 }
8dedea02 1688 return result;
d5086790
VP
1689}
1690
8dedea02 1691
cf7a04e8
DJ
1692/* An alternative to target_write with progress callbacks. */
1693
1e3ff5ad 1694LONGEST
cf7a04e8
DJ
1695target_write_with_progress (struct target_ops *ops,
1696 enum target_object object,
1697 const char *annex, const gdb_byte *buf,
1698 ULONGEST offset, LONGEST len,
1699 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad
AC
1700{
1701 LONGEST xfered = 0;
a76d924d
DJ
1702
1703 /* Give the progress callback a chance to set up. */
1704 if (progress)
1705 (*progress) (0, baton);
1706
1e3ff5ad
AC
1707 while (xfered < len)
1708 {
9b409511
YQ
1709 ULONGEST xfered_len;
1710 enum target_xfer_status status;
1711
1712 status = target_write_partial (ops, object, annex,
1713 (gdb_byte *) buf + xfered,
1714 offset + xfered, len - xfered,
1715 &xfered_len);
cf7a04e8 1716
5c328c05
YQ
1717 if (status != TARGET_XFER_OK)
1718 return status == TARGET_XFER_EOF ? xfered : -1;
cf7a04e8
DJ
1719
1720 if (progress)
9b409511 1721 (*progress) (xfered_len, baton);
cf7a04e8 1722
9b409511 1723 xfered += xfered_len;
1e3ff5ad
AC
1724 QUIT;
1725 }
1726 return len;
1727}
1728
7f79c47e
DE
1729/* For docs on target_write see target.h. */
1730
cf7a04e8
DJ
1731LONGEST
1732target_write (struct target_ops *ops,
1733 enum target_object object,
1734 const char *annex, const gdb_byte *buf,
1735 ULONGEST offset, LONGEST len)
1736{
1737 return target_write_with_progress (ops, object, annex, buf, offset, len,
1738 NULL, NULL);
1739}
1740
159f81f3
DJ
1741/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1742 the size of the transferred data. PADDING additional bytes are
1743 available in *BUF_P. This is a helper function for
1744 target_read_alloc; see the declaration of that function for more
1745 information. */
13547ab6 1746
159f81f3
DJ
1747static LONGEST
1748target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1749 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1750{
1751 size_t buf_alloc, buf_pos;
1752 gdb_byte *buf;
13547ab6
DJ
1753
1754 /* This function does not have a length parameter; it reads the
1755 entire OBJECT). Also, it doesn't support objects fetched partly
1756 from one target and partly from another (in a different stratum,
1757 e.g. a core file and an executable). Both reasons make it
1758 unsuitable for reading memory. */
1759 gdb_assert (object != TARGET_OBJECT_MEMORY);
1760
1761 /* Start by reading up to 4K at a time. The target will throttle
1762 this number down if necessary. */
1763 buf_alloc = 4096;
1764 buf = xmalloc (buf_alloc);
1765 buf_pos = 0;
1766 while (1)
1767 {
9b409511
YQ
1768 ULONGEST xfered_len;
1769 enum target_xfer_status status;
1770
1771 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1772 buf_pos, buf_alloc - buf_pos - padding,
1773 &xfered_len);
1774
1775 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1776 {
1777 /* Read all there was. */
1778 if (buf_pos == 0)
1779 xfree (buf);
1780 else
1781 *buf_p = buf;
1782 return buf_pos;
1783 }
9b409511
YQ
1784 else if (status != TARGET_XFER_OK)
1785 {
1786 /* An error occurred. */
1787 xfree (buf);
1788 return TARGET_XFER_E_IO;
1789 }
13547ab6 1790
9b409511 1791 buf_pos += xfered_len;
13547ab6
DJ
1792
1793 /* If the buffer is filling up, expand it. */
1794 if (buf_alloc < buf_pos * 2)
1795 {
1796 buf_alloc *= 2;
1797 buf = xrealloc (buf, buf_alloc);
1798 }
1799
1800 QUIT;
1801 }
1802}
1803
159f81f3
DJ
1804/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1805 the size of the transferred data. See the declaration in "target.h"
1806 function for more information about the return value. */
1807
1808LONGEST
1809target_read_alloc (struct target_ops *ops, enum target_object object,
1810 const char *annex, gdb_byte **buf_p)
1811{
1812 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1813}
1814
1815/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1816 returned as a string, allocated using xmalloc. If an error occurs
1817 or the transfer is unsupported, NULL is returned. Empty objects
1818 are returned as allocated but empty strings. A warning is issued
1819 if the result contains any embedded NUL bytes. */
1820
1821char *
1822target_read_stralloc (struct target_ops *ops, enum target_object object,
1823 const char *annex)
1824{
39086a0e
PA
1825 gdb_byte *buffer;
1826 char *bufstr;
7313baad 1827 LONGEST i, transferred;
159f81f3 1828
39086a0e
PA
1829 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1830 bufstr = (char *) buffer;
159f81f3
DJ
1831
1832 if (transferred < 0)
1833 return NULL;
1834
1835 if (transferred == 0)
1836 return xstrdup ("");
1837
39086a0e 1838 bufstr[transferred] = 0;
7313baad
UW
1839
1840 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
1841 for (i = strlen (bufstr); i < transferred; i++)
1842 if (bufstr[i] != 0)
7313baad
UW
1843 {
1844 warning (_("target object %d, annex %s, "
1845 "contained unexpected null characters"),
1846 (int) object, annex ? annex : "(none)");
1847 break;
1848 }
159f81f3 1849
39086a0e 1850 return bufstr;
159f81f3
DJ
1851}
1852
b6591e8b
AC
1853/* Memory transfer methods. */
1854
1855void
1b0ba102 1856get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
1857 LONGEST len)
1858{
07b82ea5
PA
1859 /* This method is used to read from an alternate, non-current
1860 target. This read must bypass the overlay support (as symbols
1861 don't match this target), and GDB's internal cache (wrong cache
1862 for this target). */
1863 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 1864 != len)
578d3588 1865 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
1866}
1867
1868ULONGEST
5d502164
MS
1869get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1870 int len, enum bfd_endian byte_order)
b6591e8b 1871{
f6519ebc 1872 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
1873
1874 gdb_assert (len <= sizeof (buf));
1875 get_target_memory (ops, addr, buf, len);
e17a4113 1876 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
1877}
1878
3db08215
MM
1879/* See target.h. */
1880
d914c394
SS
1881int
1882target_insert_breakpoint (struct gdbarch *gdbarch,
1883 struct bp_target_info *bp_tgt)
1884{
1885 if (!may_insert_breakpoints)
1886 {
1887 warning (_("May not insert breakpoints"));
1888 return 1;
1889 }
1890
6b84065d
TT
1891 return current_target.to_insert_breakpoint (&current_target,
1892 gdbarch, bp_tgt);
d914c394
SS
1893}
1894
3db08215
MM
1895/* See target.h. */
1896
d914c394 1897int
6b84065d
TT
1898target_remove_breakpoint (struct gdbarch *gdbarch,
1899 struct bp_target_info *bp_tgt)
d914c394
SS
1900{
1901 /* This is kind of a weird case to handle, but the permission might
1902 have been changed after breakpoints were inserted - in which case
1903 we should just take the user literally and assume that any
1904 breakpoints should be left in place. */
1905 if (!may_insert_breakpoints)
1906 {
1907 warning (_("May not remove breakpoints"));
1908 return 1;
1909 }
1910
6b84065d
TT
1911 return current_target.to_remove_breakpoint (&current_target,
1912 gdbarch, bp_tgt);
d914c394
SS
1913}
1914
c906108c 1915static void
fba45db2 1916target_info (char *args, int from_tty)
c906108c
SS
1917{
1918 struct target_ops *t;
c906108c 1919 int has_all_mem = 0;
c5aa993b 1920
c906108c 1921 if (symfile_objfile != NULL)
4262abfb
JK
1922 printf_unfiltered (_("Symbols from \"%s\".\n"),
1923 objfile_name (symfile_objfile));
c906108c 1924
258b763a 1925 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 1926 {
c35b1492 1927 if (!(*t->to_has_memory) (t))
c906108c
SS
1928 continue;
1929
c5aa993b 1930 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
1931 continue;
1932 if (has_all_mem)
3e43a32a
MS
1933 printf_unfiltered (_("\tWhile running this, "
1934 "GDB does not access memory from...\n"));
c5aa993b
JM
1935 printf_unfiltered ("%s:\n", t->to_longname);
1936 (t->to_files_info) (t);
c35b1492 1937 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
1938 }
1939}
1940
fd79ecee
DJ
1941/* This function is called before any new inferior is created, e.g.
1942 by running a program, attaching, or connecting to a target.
1943 It cleans up any state from previous invocations which might
1944 change between runs. This is a subset of what target_preopen
1945 resets (things which might change between targets). */
1946
1947void
1948target_pre_inferior (int from_tty)
1949{
c378eb4e 1950 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 1951 inferior might have survived and is entirely wrong for the new
c378eb4e 1952 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
1953 to reproduce:
1954
1955 bash$ ./foo&
1956 [1] 4711
1957 bash$ ./foo&
1958 [1] 4712
1959 bash$ gdb ./foo
1960 [...]
1961 (gdb) attach 4711
1962 (gdb) detach
1963 (gdb) attach 4712
1964 Cannot access memory at address 0xdeadbeef
1965 */
b9db4ced 1966
50c71eaf
PA
1967 /* In some OSs, the shared library list is the same/global/shared
1968 across inferiors. If code is shared between processes, so are
1969 memory regions and features. */
f5656ead 1970 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
1971 {
1972 no_shared_libraries (NULL, from_tty);
1973
1974 invalidate_target_mem_regions ();
424163ea 1975
50c71eaf
PA
1976 target_clear_description ();
1977 }
8ffcbaaf
YQ
1978
1979 agent_capability_invalidate ();
fd79ecee
DJ
1980}
1981
b8fa0bfa
PA
1982/* Callback for iterate_over_inferiors. Gets rid of the given
1983 inferior. */
1984
1985static int
1986dispose_inferior (struct inferior *inf, void *args)
1987{
1988 struct thread_info *thread;
1989
1990 thread = any_thread_of_process (inf->pid);
1991 if (thread)
1992 {
1993 switch_to_thread (thread->ptid);
1994
1995 /* Core inferiors actually should be detached, not killed. */
1996 if (target_has_execution)
1997 target_kill ();
1998 else
1999 target_detach (NULL, 0);
2000 }
2001
2002 return 0;
2003}
2004
c906108c
SS
2005/* This is to be called by the open routine before it does
2006 anything. */
2007
2008void
fba45db2 2009target_preopen (int from_tty)
c906108c 2010{
c5aa993b 2011 dont_repeat ();
c906108c 2012
b8fa0bfa 2013 if (have_inferiors ())
c5aa993b 2014 {
adf40b2e 2015 if (!from_tty
b8fa0bfa
PA
2016 || !have_live_inferiors ()
2017 || query (_("A program is being debugged already. Kill it? ")))
2018 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2019 else
8a3fe4f8 2020 error (_("Program not killed."));
c906108c
SS
2021 }
2022
2023 /* Calling target_kill may remove the target from the stack. But if
2024 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2025 /* Leave the exec target, though. The user may be switching from a
2026 live process to a core of the same program. */
460014f5 2027 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2028
2029 target_pre_inferior (from_tty);
c906108c
SS
2030}
2031
2032/* Detach a target after doing deferred register stores. */
2033
2034void
52554a0e 2035target_detach (const char *args, int from_tty)
c906108c 2036{
136d6dae
VP
2037 struct target_ops* t;
2038
f5656ead 2039 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2040 /* Don't remove global breakpoints here. They're removed on
2041 disconnection from the target. */
2042 ;
2043 else
2044 /* If we're in breakpoints-always-inserted mode, have to remove
2045 them before detaching. */
dfd4cc63 2046 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2047
24291992
PA
2048 prepare_for_detach ();
2049
09da0d0a 2050 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2051}
2052
6ad8ae5c 2053void
fee354ee 2054target_disconnect (const char *args, int from_tty)
6ad8ae5c 2055{
50c71eaf
PA
2056 /* If we're in breakpoints-always-inserted mode or if breakpoints
2057 are global across processes, we have to remove them before
2058 disconnecting. */
74960c60
VP
2059 remove_breakpoints ();
2060
86a0854a 2061 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2062}
2063
117de6a9 2064ptid_t
47608cb1 2065target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2066{
a7068b60 2067 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2068}
2069
2070char *
2071target_pid_to_str (ptid_t ptid)
2072{
770234d3 2073 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2074}
2075
4694da01
TT
2076char *
2077target_thread_name (struct thread_info *info)
2078{
825828fc 2079 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2080}
2081
e1ac3328 2082void
2ea28649 2083target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2084{
28439f5e
PA
2085 struct target_ops *t;
2086
4e5d721f 2087 target_dcache_invalidate ();
28439f5e 2088
6b84065d 2089 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2090
6b84065d 2091 registers_changed_ptid (ptid);
251bde03
PA
2092 /* We only set the internal executing state here. The user/frontend
2093 running state is set at a higher level. */
6b84065d 2094 set_executing (ptid, 1);
6b84065d 2095 clear_inline_frame_state (ptid);
e1ac3328 2096}
2455069d
UW
2097
2098void
2099target_pass_signals (int numsigs, unsigned char *pass_signals)
2100{
035cad7f 2101 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2102}
2103
9b224c5e
PA
2104void
2105target_program_signals (int numsigs, unsigned char *program_signals)
2106{
7d4f8efa
TT
2107 (*current_target.to_program_signals) (&current_target,
2108 numsigs, program_signals);
9b224c5e
PA
2109}
2110
098dba18
TT
2111static int
2112default_follow_fork (struct target_ops *self, int follow_child,
2113 int detach_fork)
2114{
2115 /* Some target returned a fork event, but did not know how to follow it. */
2116 internal_error (__FILE__, __LINE__,
2117 _("could not find a target to follow fork"));
2118}
2119
ee057212
DJ
2120/* Look through the list of possible targets for a target that can
2121 follow forks. */
2122
2123int
07107ca6 2124target_follow_fork (int follow_child, int detach_fork)
ee057212 2125{
a7068b60
TT
2126 return current_target.to_follow_fork (&current_target,
2127 follow_child, detach_fork);
ee057212
DJ
2128}
2129
8d657035
TT
2130static void
2131default_mourn_inferior (struct target_ops *self)
2132{
2133 internal_error (__FILE__, __LINE__,
2134 _("could not find a target to follow mourn inferior"));
2135}
2136
136d6dae
VP
2137void
2138target_mourn_inferior (void)
2139{
8d657035 2140 current_target.to_mourn_inferior (&current_target);
136d6dae 2141
8d657035
TT
2142 /* We no longer need to keep handles on any of the object files.
2143 Make sure to release them to avoid unnecessarily locking any
2144 of them while we're not actually debugging. */
2145 bfd_cache_close_all ();
136d6dae
VP
2146}
2147
424163ea
DJ
2148/* Look for a target which can describe architectural features, starting
2149 from TARGET. If we find one, return its description. */
2150
2151const struct target_desc *
2152target_read_description (struct target_ops *target)
2153{
2117c711 2154 return target->to_read_description (target);
424163ea
DJ
2155}
2156
58a5184e 2157/* This implements a basic search of memory, reading target memory and
08388c79
DE
2158 performing the search here (as opposed to performing the search in on the
2159 target side with, for example, gdbserver). */
2160
2161int
2162simple_search_memory (struct target_ops *ops,
2163 CORE_ADDR start_addr, ULONGEST search_space_len,
2164 const gdb_byte *pattern, ULONGEST pattern_len,
2165 CORE_ADDR *found_addrp)
2166{
2167 /* NOTE: also defined in find.c testcase. */
2168#define SEARCH_CHUNK_SIZE 16000
2169 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2170 /* Buffer to hold memory contents for searching. */
2171 gdb_byte *search_buf;
2172 unsigned search_buf_size;
2173 struct cleanup *old_cleanups;
2174
2175 search_buf_size = chunk_size + pattern_len - 1;
2176
2177 /* No point in trying to allocate a buffer larger than the search space. */
2178 if (search_space_len < search_buf_size)
2179 search_buf_size = search_space_len;
2180
2181 search_buf = malloc (search_buf_size);
2182 if (search_buf == NULL)
5e1471f5 2183 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2184 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2185
2186 /* Prime the search buffer. */
2187
2188 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2189 search_buf, start_addr, search_buf_size) != search_buf_size)
2190 {
b3dc46ff
AB
2191 warning (_("Unable to access %s bytes of target "
2192 "memory at %s, halting search."),
2193 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2194 do_cleanups (old_cleanups);
2195 return -1;
2196 }
2197
2198 /* Perform the search.
2199
2200 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2201 When we've scanned N bytes we copy the trailing bytes to the start and
2202 read in another N bytes. */
2203
2204 while (search_space_len >= pattern_len)
2205 {
2206 gdb_byte *found_ptr;
2207 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2208
2209 found_ptr = memmem (search_buf, nr_search_bytes,
2210 pattern, pattern_len);
2211
2212 if (found_ptr != NULL)
2213 {
2214 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2215
08388c79
DE
2216 *found_addrp = found_addr;
2217 do_cleanups (old_cleanups);
2218 return 1;
2219 }
2220
2221 /* Not found in this chunk, skip to next chunk. */
2222
2223 /* Don't let search_space_len wrap here, it's unsigned. */
2224 if (search_space_len >= chunk_size)
2225 search_space_len -= chunk_size;
2226 else
2227 search_space_len = 0;
2228
2229 if (search_space_len >= pattern_len)
2230 {
2231 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2232 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2233 int nr_to_read;
2234
2235 /* Copy the trailing part of the previous iteration to the front
2236 of the buffer for the next iteration. */
2237 gdb_assert (keep_len == pattern_len - 1);
2238 memcpy (search_buf, search_buf + chunk_size, keep_len);
2239
2240 nr_to_read = min (search_space_len - keep_len, chunk_size);
2241
2242 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2243 search_buf + keep_len, read_addr,
2244 nr_to_read) != nr_to_read)
2245 {
b3dc46ff 2246 warning (_("Unable to access %s bytes of target "
9b20d036 2247 "memory at %s, halting search."),
b3dc46ff 2248 plongest (nr_to_read),
08388c79
DE
2249 hex_string (read_addr));
2250 do_cleanups (old_cleanups);
2251 return -1;
2252 }
2253
2254 start_addr += chunk_size;
2255 }
2256 }
2257
2258 /* Not found. */
2259
2260 do_cleanups (old_cleanups);
2261 return 0;
2262}
2263
58a5184e
TT
2264/* Default implementation of memory-searching. */
2265
2266static int
2267default_search_memory (struct target_ops *self,
2268 CORE_ADDR start_addr, ULONGEST search_space_len,
2269 const gdb_byte *pattern, ULONGEST pattern_len,
2270 CORE_ADDR *found_addrp)
2271{
2272 /* Start over from the top of the target stack. */
2273 return simple_search_memory (current_target.beneath,
2274 start_addr, search_space_len,
2275 pattern, pattern_len, found_addrp);
2276}
2277
08388c79
DE
2278/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2279 sequence of bytes in PATTERN with length PATTERN_LEN.
2280
2281 The result is 1 if found, 0 if not found, and -1 if there was an error
2282 requiring halting of the search (e.g. memory read error).
2283 If the pattern is found the address is recorded in FOUND_ADDRP. */
2284
2285int
2286target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2287 const gdb_byte *pattern, ULONGEST pattern_len,
2288 CORE_ADDR *found_addrp)
2289{
a7068b60
TT
2290 return current_target.to_search_memory (&current_target, start_addr,
2291 search_space_len,
2292 pattern, pattern_len, found_addrp);
08388c79
DE
2293}
2294
8edfe269
DJ
2295/* Look through the currently pushed targets. If none of them will
2296 be able to restart the currently running process, issue an error
2297 message. */
2298
2299void
2300target_require_runnable (void)
2301{
2302 struct target_ops *t;
2303
2304 for (t = target_stack; t != NULL; t = t->beneath)
2305 {
2306 /* If this target knows how to create a new program, then
2307 assume we will still be able to after killing the current
2308 one. Either killing and mourning will not pop T, or else
2309 find_default_run_target will find it again. */
2310 if (t->to_create_inferior != NULL)
2311 return;
2312
548740d6 2313 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2314 create inferiors. Assume they will be pushed again if
2315 necessary, and continue to the process_stratum. */
85e747d2 2316 if (t->to_stratum == thread_stratum
548740d6 2317 || t->to_stratum == record_stratum
85e747d2 2318 || t->to_stratum == arch_stratum)
8edfe269
DJ
2319 continue;
2320
3e43a32a
MS
2321 error (_("The \"%s\" target does not support \"run\". "
2322 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2323 t->to_shortname);
2324 }
2325
2326 /* This function is only called if the target is running. In that
2327 case there should have been a process_stratum target and it
c378eb4e 2328 should either know how to create inferiors, or not... */
9b20d036 2329 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2330}
2331
6a3cb8e8
PA
2332/* Whether GDB is allowed to fall back to the default run target for
2333 "run", "attach", etc. when no target is connected yet. */
2334static int auto_connect_native_target = 1;
2335
2336static void
2337show_auto_connect_native_target (struct ui_file *file, int from_tty,
2338 struct cmd_list_element *c, const char *value)
2339{
2340 fprintf_filtered (file,
2341 _("Whether GDB may automatically connect to the "
2342 "native target is %s.\n"),
2343 value);
2344}
2345
c906108c
SS
2346/* Look through the list of possible targets for a target that can
2347 execute a run or attach command without any other data. This is
2348 used to locate the default process stratum.
2349
5f667f2d
PA
2350 If DO_MESG is not NULL, the result is always valid (error() is
2351 called for errors); else, return NULL on error. */
c906108c
SS
2352
2353static struct target_ops *
fba45db2 2354find_default_run_target (char *do_mesg)
c906108c 2355{
c906108c 2356 struct target_ops *runable = NULL;
c906108c 2357
6a3cb8e8 2358 if (auto_connect_native_target)
c906108c 2359 {
6a3cb8e8
PA
2360 struct target_ops **t;
2361 int count = 0;
2362
2363 for (t = target_structs; t < target_structs + target_struct_size;
2364 ++t)
c906108c 2365 {
6a3cb8e8
PA
2366 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2367 {
2368 runable = *t;
2369 ++count;
2370 }
c906108c 2371 }
6a3cb8e8
PA
2372
2373 if (count != 1)
2374 runable = NULL;
c906108c
SS
2375 }
2376
6a3cb8e8 2377 if (runable == NULL)
5f667f2d
PA
2378 {
2379 if (do_mesg)
2380 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2381 else
2382 return NULL;
2383 }
c906108c
SS
2384
2385 return runable;
2386}
2387
b3ccfe11 2388/* See target.h. */
c906108c 2389
b3ccfe11
TT
2390struct target_ops *
2391find_attach_target (void)
c906108c
SS
2392{
2393 struct target_ops *t;
2394
b3ccfe11
TT
2395 /* If a target on the current stack can attach, use it. */
2396 for (t = current_target.beneath; t != NULL; t = t->beneath)
2397 {
2398 if (t->to_attach != NULL)
2399 break;
2400 }
c906108c 2401
b3ccfe11
TT
2402 /* Otherwise, use the default run target for attaching. */
2403 if (t == NULL)
2404 t = find_default_run_target ("attach");
b84876c2 2405
b3ccfe11 2406 return t;
b84876c2
PA
2407}
2408
b3ccfe11 2409/* See target.h. */
b84876c2 2410
b3ccfe11
TT
2411struct target_ops *
2412find_run_target (void)
9908b566
VP
2413{
2414 struct target_ops *t;
2415
b3ccfe11
TT
2416 /* If a target on the current stack can attach, use it. */
2417 for (t = current_target.beneath; t != NULL; t = t->beneath)
2418 {
2419 if (t->to_create_inferior != NULL)
2420 break;
2421 }
5d502164 2422
b3ccfe11
TT
2423 /* Otherwise, use the default run target. */
2424 if (t == NULL)
2425 t = find_default_run_target ("run");
9908b566 2426
b3ccfe11 2427 return t;
9908b566
VP
2428}
2429
145b16a9
UW
2430/* Implement the "info proc" command. */
2431
451b7c33 2432int
7bc112c1 2433target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2434{
2435 struct target_ops *t;
2436
2437 /* If we're already connected to something that can get us OS
2438 related data, use it. Otherwise, try using the native
2439 target. */
2440 if (current_target.to_stratum >= process_stratum)
2441 t = current_target.beneath;
2442 else
2443 t = find_default_run_target (NULL);
2444
2445 for (; t != NULL; t = t->beneath)
2446 {
2447 if (t->to_info_proc != NULL)
2448 {
2449 t->to_info_proc (t, args, what);
2450
2451 if (targetdebug)
2452 fprintf_unfiltered (gdb_stdlog,
2453 "target_info_proc (\"%s\", %d)\n", args, what);
2454
451b7c33 2455 return 1;
145b16a9
UW
2456 }
2457 }
2458
451b7c33 2459 return 0;
145b16a9
UW
2460}
2461
03583c20 2462static int
2bfc0540 2463find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2464{
2465 struct target_ops *t;
2466
2467 t = find_default_run_target (NULL);
2468 if (t && t->to_supports_disable_randomization)
2bfc0540 2469 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2470 return 0;
2471}
2472
2473int
2474target_supports_disable_randomization (void)
2475{
2476 struct target_ops *t;
2477
2478 for (t = &current_target; t != NULL; t = t->beneath)
2479 if (t->to_supports_disable_randomization)
2bfc0540 2480 return t->to_supports_disable_randomization (t);
03583c20
UW
2481
2482 return 0;
2483}
9908b566 2484
07e059b5
VP
2485char *
2486target_get_osdata (const char *type)
2487{
07e059b5
VP
2488 struct target_ops *t;
2489
739ef7fb
PA
2490 /* If we're already connected to something that can get us OS
2491 related data, use it. Otherwise, try using the native
2492 target. */
2493 if (current_target.to_stratum >= process_stratum)
6d097e65 2494 t = current_target.beneath;
739ef7fb
PA
2495 else
2496 t = find_default_run_target ("get OS data");
07e059b5
VP
2497
2498 if (!t)
2499 return NULL;
2500
6d097e65 2501 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2502}
2503
8eaff7cd
TT
2504static struct address_space *
2505default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2506{
2507 struct inferior *inf;
6c95b8df
PA
2508
2509 /* Fall-back to the "main" address space of the inferior. */
2510 inf = find_inferior_pid (ptid_get_pid (ptid));
2511
2512 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2513 internal_error (__FILE__, __LINE__,
9b20d036
MS
2514 _("Can't determine the current "
2515 "address space of thread %s\n"),
6c95b8df
PA
2516 target_pid_to_str (ptid));
2517
2518 return inf->aspace;
2519}
2520
8eaff7cd
TT
2521/* Determine the current address space of thread PTID. */
2522
2523struct address_space *
2524target_thread_address_space (ptid_t ptid)
2525{
2526 struct address_space *aspace;
2527
2528 aspace = current_target.to_thread_address_space (&current_target, ptid);
2529 gdb_assert (aspace != NULL);
2530
8eaff7cd
TT
2531 return aspace;
2532}
2533
7313baad
UW
2534
2535/* Target file operations. */
2536
2537static struct target_ops *
2538default_fileio_target (void)
2539{
2540 /* If we're already connected to something that can perform
2541 file I/O, use it. Otherwise, try using the native target. */
2542 if (current_target.to_stratum >= process_stratum)
2543 return current_target.beneath;
2544 else
2545 return find_default_run_target ("file I/O");
2546}
2547
2548/* Open FILENAME on the target, using FLAGS and MODE. Return a
2549 target file descriptor, or -1 if an error occurs (and set
2550 *TARGET_ERRNO). */
2551int
2552target_fileio_open (const char *filename, int flags, int mode,
2553 int *target_errno)
2554{
2555 struct target_ops *t;
2556
2557 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2558 {
2559 if (t->to_fileio_open != NULL)
2560 {
cd897586 2561 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
7313baad
UW
2562
2563 if (targetdebug)
2564 fprintf_unfiltered (gdb_stdlog,
2565 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2566 filename, flags, mode,
2567 fd, fd != -1 ? 0 : *target_errno);
2568 return fd;
2569 }
2570 }
2571
2572 *target_errno = FILEIO_ENOSYS;
2573 return -1;
2574}
2575
2576/* Write up to LEN bytes from WRITE_BUF to FD on the target.
2577 Return the number of bytes written, or -1 if an error occurs
2578 (and set *TARGET_ERRNO). */
2579int
2580target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2581 ULONGEST offset, int *target_errno)
2582{
2583 struct target_ops *t;
2584
2585 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2586 {
2587 if (t->to_fileio_pwrite != NULL)
2588 {
0d866f62 2589 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
7313baad
UW
2590 target_errno);
2591
2592 if (targetdebug)
2593 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2594 "target_fileio_pwrite (%d,...,%d,%s) "
7313baad 2595 "= %d (%d)\n",
a71b5a38 2596 fd, len, pulongest (offset),
7313baad
UW
2597 ret, ret != -1 ? 0 : *target_errno);
2598 return ret;
2599 }
2600 }
2601
2602 *target_errno = FILEIO_ENOSYS;
2603 return -1;
2604}
2605
2606/* Read up to LEN bytes FD on the target into READ_BUF.
2607 Return the number of bytes read, or -1 if an error occurs
2608 (and set *TARGET_ERRNO). */
2609int
2610target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2611 ULONGEST offset, int *target_errno)
2612{
2613 struct target_ops *t;
2614
2615 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2616 {
2617 if (t->to_fileio_pread != NULL)
2618 {
a3be983c 2619 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
7313baad
UW
2620 target_errno);
2621
2622 if (targetdebug)
2623 fprintf_unfiltered (gdb_stdlog,
a71b5a38 2624 "target_fileio_pread (%d,...,%d,%s) "
7313baad 2625 "= %d (%d)\n",
a71b5a38 2626 fd, len, pulongest (offset),
7313baad
UW
2627 ret, ret != -1 ? 0 : *target_errno);
2628 return ret;
2629 }
2630 }
2631
2632 *target_errno = FILEIO_ENOSYS;
2633 return -1;
2634}
2635
2636/* Close FD on the target. Return 0, or -1 if an error occurs
2637 (and set *TARGET_ERRNO). */
2638int
2639target_fileio_close (int fd, int *target_errno)
2640{
2641 struct target_ops *t;
2642
2643 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2644 {
2645 if (t->to_fileio_close != NULL)
2646 {
df39ea25 2647 int ret = t->to_fileio_close (t, fd, target_errno);
7313baad
UW
2648
2649 if (targetdebug)
2650 fprintf_unfiltered (gdb_stdlog,
2651 "target_fileio_close (%d) = %d (%d)\n",
2652 fd, ret, ret != -1 ? 0 : *target_errno);
2653 return ret;
2654 }
2655 }
2656
2657 *target_errno = FILEIO_ENOSYS;
2658 return -1;
2659}
2660
2661/* Unlink FILENAME on the target. Return 0, or -1 if an error
2662 occurs (and set *TARGET_ERRNO). */
2663int
2664target_fileio_unlink (const char *filename, int *target_errno)
2665{
2666 struct target_ops *t;
2667
2668 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2669 {
2670 if (t->to_fileio_unlink != NULL)
2671 {
dbbca37d 2672 int ret = t->to_fileio_unlink (t, filename, target_errno);
7313baad
UW
2673
2674 if (targetdebug)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "target_fileio_unlink (%s) = %d (%d)\n",
2677 filename, ret, ret != -1 ? 0 : *target_errno);
2678 return ret;
2679 }
2680 }
2681
2682 *target_errno = FILEIO_ENOSYS;
2683 return -1;
2684}
2685
b9e7b9c3
UW
2686/* Read value of symbolic link FILENAME on the target. Return a
2687 null-terminated string allocated via xmalloc, or NULL if an error
2688 occurs (and set *TARGET_ERRNO). */
2689char *
2690target_fileio_readlink (const char *filename, int *target_errno)
2691{
2692 struct target_ops *t;
2693
2694 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2695 {
2696 if (t->to_fileio_readlink != NULL)
2697 {
fab5aa7c 2698 char *ret = t->to_fileio_readlink (t, filename, target_errno);
b9e7b9c3
UW
2699
2700 if (targetdebug)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "target_fileio_readlink (%s) = %s (%d)\n",
2703 filename, ret? ret : "(nil)",
2704 ret? 0 : *target_errno);
2705 return ret;
2706 }
2707 }
2708
2709 *target_errno = FILEIO_ENOSYS;
2710 return NULL;
2711}
2712
7313baad
UW
2713static void
2714target_fileio_close_cleanup (void *opaque)
2715{
2716 int fd = *(int *) opaque;
2717 int target_errno;
2718
2719 target_fileio_close (fd, &target_errno);
2720}
2721
2722/* Read target file FILENAME. Store the result in *BUF_P and
2723 return the size of the transferred data. PADDING additional bytes are
2724 available in *BUF_P. This is a helper function for
2725 target_fileio_read_alloc; see the declaration of that function for more
2726 information. */
2727
2728static LONGEST
2729target_fileio_read_alloc_1 (const char *filename,
2730 gdb_byte **buf_p, int padding)
2731{
2732 struct cleanup *close_cleanup;
2733 size_t buf_alloc, buf_pos;
2734 gdb_byte *buf;
2735 LONGEST n;
2736 int fd;
2737 int target_errno;
2738
2739 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2740 if (fd == -1)
2741 return -1;
2742
2743 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2744
2745 /* Start by reading up to 4K at a time. The target will throttle
2746 this number down if necessary. */
2747 buf_alloc = 4096;
2748 buf = xmalloc (buf_alloc);
2749 buf_pos = 0;
2750 while (1)
2751 {
2752 n = target_fileio_pread (fd, &buf[buf_pos],
2753 buf_alloc - buf_pos - padding, buf_pos,
2754 &target_errno);
2755 if (n < 0)
2756 {
2757 /* An error occurred. */
2758 do_cleanups (close_cleanup);
2759 xfree (buf);
2760 return -1;
2761 }
2762 else if (n == 0)
2763 {
2764 /* Read all there was. */
2765 do_cleanups (close_cleanup);
2766 if (buf_pos == 0)
2767 xfree (buf);
2768 else
2769 *buf_p = buf;
2770 return buf_pos;
2771 }
2772
2773 buf_pos += n;
2774
2775 /* If the buffer is filling up, expand it. */
2776 if (buf_alloc < buf_pos * 2)
2777 {
2778 buf_alloc *= 2;
2779 buf = xrealloc (buf, buf_alloc);
2780 }
2781
2782 QUIT;
2783 }
2784}
2785
2786/* Read target file FILENAME. Store the result in *BUF_P and return
2787 the size of the transferred data. See the declaration in "target.h"
2788 function for more information about the return value. */
2789
2790LONGEST
2791target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2792{
2793 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2794}
2795
2796/* Read target file FILENAME. The result is NUL-terminated and
2797 returned as a string, allocated using xmalloc. If an error occurs
2798 or the transfer is unsupported, NULL is returned. Empty objects
2799 are returned as allocated but empty strings. A warning is issued
2800 if the result contains any embedded NUL bytes. */
2801
2802char *
2803target_fileio_read_stralloc (const char *filename)
2804{
39086a0e
PA
2805 gdb_byte *buffer;
2806 char *bufstr;
7313baad
UW
2807 LONGEST i, transferred;
2808
39086a0e
PA
2809 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2810 bufstr = (char *) buffer;
7313baad
UW
2811
2812 if (transferred < 0)
2813 return NULL;
2814
2815 if (transferred == 0)
2816 return xstrdup ("");
2817
39086a0e 2818 bufstr[transferred] = 0;
7313baad
UW
2819
2820 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2821 for (i = strlen (bufstr); i < transferred; i++)
2822 if (bufstr[i] != 0)
7313baad
UW
2823 {
2824 warning (_("target file %s "
2825 "contained unexpected null characters"),
2826 filename);
2827 break;
2828 }
2829
39086a0e 2830 return bufstr;
7313baad
UW
2831}
2832
2833
e0d24f8d 2834static int
31568a15
TT
2835default_region_ok_for_hw_watchpoint (struct target_ops *self,
2836 CORE_ADDR addr, int len)
e0d24f8d 2837{
f5656ead 2838 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
2839}
2840
5009afc5
AS
2841static int
2842default_watchpoint_addr_within_range (struct target_ops *target,
2843 CORE_ADDR addr,
2844 CORE_ADDR start, int length)
2845{
2846 return addr >= start && addr < start + length;
2847}
2848
c2250ad1
UW
2849static struct gdbarch *
2850default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2851{
f5656ead 2852 return target_gdbarch ();
c2250ad1
UW
2853}
2854
c906108c 2855static int
555bbdeb
TT
2856return_zero (struct target_ops *ignore)
2857{
2858 return 0;
2859}
2860
2861static int
2862return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
2863{
2864 return 0;
2865}
2866
ed9a39eb
JM
2867/*
2868 * Find the next target down the stack from the specified target.
2869 */
2870
2871struct target_ops *
fba45db2 2872find_target_beneath (struct target_ops *t)
ed9a39eb 2873{
258b763a 2874 return t->beneath;
ed9a39eb
JM
2875}
2876
8b06beed
TT
2877/* See target.h. */
2878
2879struct target_ops *
2880find_target_at (enum strata stratum)
2881{
2882 struct target_ops *t;
2883
2884 for (t = current_target.beneath; t != NULL; t = t->beneath)
2885 if (t->to_stratum == stratum)
2886 return t;
2887
2888 return NULL;
2889}
2890
c906108c
SS
2891\f
2892/* The inferior process has died. Long live the inferior! */
2893
2894void
fba45db2 2895generic_mourn_inferior (void)
c906108c 2896{
7f9f62ba 2897 ptid_t ptid;
c906108c 2898
7f9f62ba 2899 ptid = inferior_ptid;
39f77062 2900 inferior_ptid = null_ptid;
7f9f62ba 2901
f59f708a
PA
2902 /* Mark breakpoints uninserted in case something tries to delete a
2903 breakpoint while we delete the inferior's threads (which would
2904 fail, since the inferior is long gone). */
2905 mark_breakpoints_out ();
2906
7f9f62ba
PA
2907 if (!ptid_equal (ptid, null_ptid))
2908 {
2909 int pid = ptid_get_pid (ptid);
6c95b8df 2910 exit_inferior (pid);
7f9f62ba
PA
2911 }
2912
f59f708a
PA
2913 /* Note this wipes step-resume breakpoints, so needs to be done
2914 after exit_inferior, which ends up referencing the step-resume
2915 breakpoints through clear_thread_inferior_resources. */
c906108c 2916 breakpoint_init_inferior (inf_exited);
f59f708a 2917
c906108c
SS
2918 registers_changed ();
2919
c906108c
SS
2920 reopen_exec_file ();
2921 reinit_frame_cache ();
2922
9a4105ab
AC
2923 if (deprecated_detach_hook)
2924 deprecated_detach_hook ();
c906108c
SS
2925}
2926\f
fd0a2a6f
MK
2927/* Convert a normal process ID to a string. Returns the string in a
2928 static buffer. */
c906108c
SS
2929
2930char *
39f77062 2931normal_pid_to_str (ptid_t ptid)
c906108c 2932{
fd0a2a6f 2933 static char buf[32];
c906108c 2934
5fff8fc0 2935 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
2936 return buf;
2937}
2938
2c0b251b 2939static char *
770234d3 2940default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
2941{
2942 return normal_pid_to_str (ptid);
2943}
2944
9b4eba8e
HZ
2945/* Error-catcher for target_find_memory_regions. */
2946static int
2e73927c
TT
2947dummy_find_memory_regions (struct target_ops *self,
2948 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 2949{
9b4eba8e 2950 error (_("Command not implemented for this target."));
be4d1333
MS
2951 return 0;
2952}
2953
9b4eba8e
HZ
2954/* Error-catcher for target_make_corefile_notes. */
2955static char *
fc6691b2
TT
2956dummy_make_corefile_notes (struct target_ops *self,
2957 bfd *ignore1, int *ignore2)
be4d1333 2958{
9b4eba8e 2959 error (_("Command not implemented for this target."));
be4d1333
MS
2960 return NULL;
2961}
2962
c906108c
SS
2963/* Set up the handful of non-empty slots needed by the dummy target
2964 vector. */
2965
2966static void
fba45db2 2967init_dummy_target (void)
c906108c
SS
2968{
2969 dummy_target.to_shortname = "None";
2970 dummy_target.to_longname = "None";
2971 dummy_target.to_doc = "";
03583c20
UW
2972 dummy_target.to_supports_disable_randomization
2973 = find_default_supports_disable_randomization;
c906108c 2974 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
2975 dummy_target.to_has_all_memory = return_zero;
2976 dummy_target.to_has_memory = return_zero;
2977 dummy_target.to_has_stack = return_zero;
2978 dummy_target.to_has_registers = return_zero;
2979 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 2980 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
2981
2982 install_dummy_methods (&dummy_target);
c906108c 2983}
c906108c 2984\f
c906108c 2985
f1c07ab0 2986void
460014f5 2987target_close (struct target_ops *targ)
f1c07ab0 2988{
7fdc1521
TT
2989 gdb_assert (!target_is_pushed (targ));
2990
f1c07ab0 2991 if (targ->to_xclose != NULL)
460014f5 2992 targ->to_xclose (targ);
f1c07ab0 2993 else if (targ->to_close != NULL)
de90e03d 2994 targ->to_close (targ);
947b8855
PA
2995
2996 if (targetdebug)
460014f5 2997 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
2998}
2999
28439f5e
PA
3000int
3001target_thread_alive (ptid_t ptid)
c906108c 3002{
a7068b60 3003 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3004}
3005
3006void
3007target_find_new_threads (void)
3008{
09b0dc2b 3009 current_target.to_find_new_threads (&current_target);
c906108c
SS
3010}
3011
d914c394
SS
3012void
3013target_stop (ptid_t ptid)
3014{
3015 if (!may_stop)
3016 {
3017 warning (_("May not interrupt or stop the target, ignoring attempt"));
3018 return;
3019 }
3020
1eab8a48 3021 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3022}
3023
09826ec5
PA
3024/* Concatenate ELEM to LIST, a comma separate list, and return the
3025 result. The LIST incoming argument is released. */
3026
3027static char *
3028str_comma_list_concat_elem (char *list, const char *elem)
3029{
3030 if (list == NULL)
3031 return xstrdup (elem);
3032 else
3033 return reconcat (list, list, ", ", elem, (char *) NULL);
3034}
3035
3036/* Helper for target_options_to_string. If OPT is present in
3037 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3038 Returns the new resulting string. OPT is removed from
3039 TARGET_OPTIONS. */
3040
3041static char *
3042do_option (int *target_options, char *ret,
3043 int opt, char *opt_str)
3044{
3045 if ((*target_options & opt) != 0)
3046 {
3047 ret = str_comma_list_concat_elem (ret, opt_str);
3048 *target_options &= ~opt;
3049 }
3050
3051 return ret;
3052}
3053
3054char *
3055target_options_to_string (int target_options)
3056{
3057 char *ret = NULL;
3058
3059#define DO_TARG_OPTION(OPT) \
3060 ret = do_option (&target_options, ret, OPT, #OPT)
3061
3062 DO_TARG_OPTION (TARGET_WNOHANG);
3063
3064 if (target_options != 0)
3065 ret = str_comma_list_concat_elem (ret, "unknown???");
3066
3067 if (ret == NULL)
3068 ret = xstrdup ("");
3069 return ret;
3070}
3071
bf0c5130 3072static void
56be3814
UW
3073debug_print_register (const char * func,
3074 struct regcache *regcache, int regno)
bf0c5130 3075{
f8d29908 3076 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3077
bf0c5130 3078 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3079 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3080 && gdbarch_register_name (gdbarch, regno) != NULL
3081 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3082 fprintf_unfiltered (gdb_stdlog, "(%s)",
3083 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3084 else
3085 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3086 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3087 {
e17a4113 3088 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3089 int i, size = register_size (gdbarch, regno);
e362b510 3090 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3091
0ff58721 3092 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3093 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3094 for (i = 0; i < size; i++)
bf0c5130
AC
3095 {
3096 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3097 }
81c4a259 3098 if (size <= sizeof (LONGEST))
bf0c5130 3099 {
e17a4113 3100 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3101
0b1553bc
UW
3102 fprintf_unfiltered (gdb_stdlog, " %s %s",
3103 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3104 }
3105 }
3106 fprintf_unfiltered (gdb_stdlog, "\n");
3107}
3108
28439f5e
PA
3109void
3110target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3111{
ad5989bd
TT
3112 current_target.to_fetch_registers (&current_target, regcache, regno);
3113 if (targetdebug)
3114 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3115}
3116
28439f5e
PA
3117void
3118target_store_registers (struct regcache *regcache, int regno)
c906108c 3119{
28439f5e 3120 struct target_ops *t;
5d502164 3121
d914c394
SS
3122 if (!may_write_registers)
3123 error (_("Writing to registers is not allowed (regno %d)"), regno);
3124
6b84065d
TT
3125 current_target.to_store_registers (&current_target, regcache, regno);
3126 if (targetdebug)
28439f5e 3127 {
6b84065d 3128 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3129 }
c906108c
SS
3130}
3131
dc146f7c
VP
3132int
3133target_core_of_thread (ptid_t ptid)
3134{
a7068b60 3135 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3136}
3137
936d2992
PA
3138int
3139simple_verify_memory (struct target_ops *ops,
3140 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3141{
3142 LONGEST total_xfered = 0;
3143
3144 while (total_xfered < size)
3145 {
3146 ULONGEST xfered_len;
3147 enum target_xfer_status status;
3148 gdb_byte buf[1024];
3149 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3150
3151 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3152 buf, NULL, lma + total_xfered, howmuch,
3153 &xfered_len);
3154 if (status == TARGET_XFER_OK
3155 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3156 {
3157 total_xfered += xfered_len;
3158 QUIT;
3159 }
3160 else
3161 return 0;
3162 }
3163 return 1;
3164}
3165
3166/* Default implementation of memory verification. */
3167
3168static int
3169default_verify_memory (struct target_ops *self,
3170 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3171{
3172 /* Start over from the top of the target stack. */
3173 return simple_verify_memory (current_target.beneath,
3174 data, memaddr, size);
3175}
3176
4a5e7a5b
PA
3177int
3178target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3179{
a7068b60
TT
3180 return current_target.to_verify_memory (&current_target,
3181 data, memaddr, size);
4a5e7a5b
PA
3182}
3183
9c06b0b4
TJB
3184/* The documentation for this function is in its prototype declaration in
3185 target.h. */
3186
3187int
3188target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3189{
a7068b60
TT
3190 return current_target.to_insert_mask_watchpoint (&current_target,
3191 addr, mask, rw);
9c06b0b4
TJB
3192}
3193
3194/* The documentation for this function is in its prototype declaration in
3195 target.h. */
3196
3197int
3198target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3199{
a7068b60
TT
3200 return current_target.to_remove_mask_watchpoint (&current_target,
3201 addr, mask, rw);
9c06b0b4
TJB
3202}
3203
3204/* The documentation for this function is in its prototype declaration
3205 in target.h. */
3206
3207int
3208target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3209{
6c7e5e5c
TT
3210 return current_target.to_masked_watch_num_registers (&current_target,
3211 addr, mask);
9c06b0b4
TJB
3212}
3213
f1310107
TJB
3214/* The documentation for this function is in its prototype declaration
3215 in target.h. */
3216
3217int
3218target_ranged_break_num_registers (void)
3219{
a134316b 3220 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3221}
3222
02d27625
MM
3223/* See target.h. */
3224
02d27625
MM
3225struct btrace_target_info *
3226target_enable_btrace (ptid_t ptid)
3227{
6dc7fcf4 3228 return current_target.to_enable_btrace (&current_target, ptid);
02d27625
MM
3229}
3230
3231/* See target.h. */
3232
3233void
3234target_disable_btrace (struct btrace_target_info *btinfo)
3235{
8dc292d3 3236 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3237}
3238
3239/* See target.h. */
3240
3241void
3242target_teardown_btrace (struct btrace_target_info *btinfo)
3243{
9ace480d 3244 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3245}
3246
3247/* See target.h. */
3248
969c39fb
MM
3249enum btrace_error
3250target_read_btrace (VEC (btrace_block_s) **btrace,
3251 struct btrace_target_info *btinfo,
02d27625
MM
3252 enum btrace_read_type type)
3253{
eb5b20d4 3254 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3255}
3256
d02ed0bb
MM
3257/* See target.h. */
3258
7c1687a9
MM
3259void
3260target_stop_recording (void)
3261{
ee97f592 3262 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3263}
3264
3265/* See target.h. */
3266
d02ed0bb 3267void
85e1311a 3268target_save_record (const char *filename)
d02ed0bb 3269{
f09e2107 3270 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3271}
3272
3273/* See target.h. */
3274
3275int
3276target_supports_delete_record (void)
3277{
3278 struct target_ops *t;
3279
3280 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3281 if (t->to_delete_record != delegate_delete_record
3282 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3283 return 1;
3284
3285 return 0;
3286}
3287
3288/* See target.h. */
3289
3290void
3291target_delete_record (void)
3292{
07366925 3293 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3294}
3295
3296/* See target.h. */
3297
3298int
3299target_record_is_replaying (void)
3300{
dd2e9d25 3301 return current_target.to_record_is_replaying (&current_target);
d02ed0bb
MM
3302}
3303
3304/* See target.h. */
3305
3306void
3307target_goto_record_begin (void)
3308{
671e76cc 3309 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3310}
3311
3312/* See target.h. */
3313
3314void
3315target_goto_record_end (void)
3316{
e9179bb3 3317 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3318}
3319
3320/* See target.h. */
3321
3322void
3323target_goto_record (ULONGEST insn)
3324{
05969c84 3325 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3326}
3327
67c86d06
MM
3328/* See target.h. */
3329
3330void
3331target_insn_history (int size, int flags)
3332{
3679abfa 3333 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3334}
3335
3336/* See target.h. */
3337
3338void
3339target_insn_history_from (ULONGEST from, int size, int flags)
3340{
8444ab58 3341 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3342}
3343
3344/* See target.h. */
3345
3346void
3347target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3348{
c29302cc 3349 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3350}
3351
15984c13
MM
3352/* See target.h. */
3353
3354void
3355target_call_history (int size, int flags)
3356{
170049d4 3357 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3358}
3359
3360/* See target.h. */
3361
3362void
3363target_call_history_from (ULONGEST begin, int size, int flags)
3364{
16fc27d6 3365 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3366}
3367
3368/* See target.h. */
3369
3370void
3371target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3372{
115d9817 3373 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3374}
3375
ea001bdc
MM
3376/* See target.h. */
3377
3378const struct frame_unwind *
3379target_get_unwinder (void)
3380{
ac01945b 3381 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3382}
3383
3384/* See target.h. */
3385
3386const struct frame_unwind *
3387target_get_tailcall_unwinder (void)
3388{
ac01945b 3389 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3390}
3391
c0eca49f 3392/* Default implementation of to_decr_pc_after_break. */
118e6252 3393
c0eca49f
TT
3394static CORE_ADDR
3395default_target_decr_pc_after_break (struct target_ops *ops,
118e6252
MM
3396 struct gdbarch *gdbarch)
3397{
118e6252
MM
3398 return gdbarch_decr_pc_after_break (gdbarch);
3399}
3400
3401/* See target.h. */
3402
3403CORE_ADDR
3404target_decr_pc_after_break (struct gdbarch *gdbarch)
3405{
c0eca49f 3406 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
118e6252
MM
3407}
3408
5fff78c4
MM
3409/* See target.h. */
3410
3411void
3412target_prepare_to_generate_core (void)
3413{
3414 current_target.to_prepare_to_generate_core (&current_target);
3415}
3416
3417/* See target.h. */
3418
3419void
3420target_done_generating_core (void)
3421{
3422 current_target.to_done_generating_core (&current_target);
3423}
3424
c906108c 3425static void
fba45db2 3426setup_target_debug (void)
c906108c
SS
3427{
3428 memcpy (&debug_target, &current_target, sizeof debug_target);
3429
a7068b60 3430 init_debug_target (&current_target);
c906108c 3431}
c906108c 3432\f
c5aa993b
JM
3433
3434static char targ_desc[] =
3e43a32a
MS
3435"Names of targets and files being debugged.\nShows the entire \
3436stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3437core-file, and process, if any), as well as the symbol file name.";
3438
a53f3625 3439static void
a30bf1f1
TT
3440default_rcmd (struct target_ops *self, const char *command,
3441 struct ui_file *output)
a53f3625
TT
3442{
3443 error (_("\"monitor\" command not supported by this target."));
3444}
3445
96baa820
JM
3446static void
3447do_monitor_command (char *cmd,
3448 int from_tty)
3449{
96baa820
JM
3450 target_rcmd (cmd, gdb_stdtarg);
3451}
3452
87680a14
JB
3453/* Print the name of each layers of our target stack. */
3454
3455static void
3456maintenance_print_target_stack (char *cmd, int from_tty)
3457{
3458 struct target_ops *t;
3459
3460 printf_filtered (_("The current target stack is:\n"));
3461
3462 for (t = target_stack; t != NULL; t = t->beneath)
3463 {
3464 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3465 }
3466}
3467
329ea579
PA
3468/* Controls if targets can report that they can/are async. This is
3469 just for maintainers to use when debugging gdb. */
3470int target_async_permitted = 1;
c6ebd6cf
VP
3471
3472/* The set command writes to this variable. If the inferior is
b5419e49 3473 executing, target_async_permitted is *not* updated. */
329ea579 3474static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3475
3476static void
329ea579
PA
3477maint_set_target_async_command (char *args, int from_tty,
3478 struct cmd_list_element *c)
c6ebd6cf 3479{
c35b1492 3480 if (have_live_inferiors ())
c6ebd6cf
VP
3481 {
3482 target_async_permitted_1 = target_async_permitted;
3483 error (_("Cannot change this setting while the inferior is running."));
3484 }
3485
3486 target_async_permitted = target_async_permitted_1;
3487}
3488
3489static void
329ea579
PA
3490maint_show_target_async_command (struct ui_file *file, int from_tty,
3491 struct cmd_list_element *c,
3492 const char *value)
c6ebd6cf 3493{
3e43a32a
MS
3494 fprintf_filtered (file,
3495 _("Controlling the inferior in "
3496 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3497}
3498
d914c394
SS
3499/* Temporary copies of permission settings. */
3500
3501static int may_write_registers_1 = 1;
3502static int may_write_memory_1 = 1;
3503static int may_insert_breakpoints_1 = 1;
3504static int may_insert_tracepoints_1 = 1;
3505static int may_insert_fast_tracepoints_1 = 1;
3506static int may_stop_1 = 1;
3507
3508/* Make the user-set values match the real values again. */
3509
3510void
3511update_target_permissions (void)
3512{
3513 may_write_registers_1 = may_write_registers;
3514 may_write_memory_1 = may_write_memory;
3515 may_insert_breakpoints_1 = may_insert_breakpoints;
3516 may_insert_tracepoints_1 = may_insert_tracepoints;
3517 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3518 may_stop_1 = may_stop;
3519}
3520
3521/* The one function handles (most of) the permission flags in the same
3522 way. */
3523
3524static void
3525set_target_permissions (char *args, int from_tty,
3526 struct cmd_list_element *c)
3527{
3528 if (target_has_execution)
3529 {
3530 update_target_permissions ();
3531 error (_("Cannot change this setting while the inferior is running."));
3532 }
3533
3534 /* Make the real values match the user-changed values. */
3535 may_write_registers = may_write_registers_1;
3536 may_insert_breakpoints = may_insert_breakpoints_1;
3537 may_insert_tracepoints = may_insert_tracepoints_1;
3538 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3539 may_stop = may_stop_1;
3540 update_observer_mode ();
3541}
3542
3543/* Set memory write permission independently of observer mode. */
3544
3545static void
3546set_write_memory_permission (char *args, int from_tty,
3547 struct cmd_list_element *c)
3548{
3549 /* Make the real values match the user-changed values. */
3550 may_write_memory = may_write_memory_1;
3551 update_observer_mode ();
3552}
3553
3554
c906108c 3555void
fba45db2 3556initialize_targets (void)
c906108c
SS
3557{
3558 init_dummy_target ();
3559 push_target (&dummy_target);
3560
3561 add_info ("target", target_info, targ_desc);
3562 add_info ("files", target_info, targ_desc);
3563
ccce17b0 3564 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
3565Set target debugging."), _("\
3566Show target debugging."), _("\
333dabeb
DJ
3567When non-zero, target debugging is enabled. Higher numbers are more\n\
3568verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
85c07804 3569command."),
ccce17b0
YQ
3570 NULL,
3571 show_targetdebug,
3572 &setdebuglist, &showdebuglist);
3a11626d 3573
2bc416ba 3574 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
3575 &trust_readonly, _("\
3576Set mode for reading from readonly sections."), _("\
3577Show mode for reading from readonly sections."), _("\
3a11626d
MS
3578When this mode is on, memory reads from readonly sections (such as .text)\n\
3579will be read from the object file instead of from the target. This will\n\
7915a72c 3580result in significant performance improvement for remote targets."),
2c5b56ce 3581 NULL,
920d2a44 3582 show_trust_readonly,
e707bbc2 3583 &setlist, &showlist);
96baa820
JM
3584
3585 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 3586 _("Send a command to the remote monitor (remote targets only)."));
96baa820 3587
87680a14
JB
3588 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3589 _("Print the name of each layer of the internal target stack."),
3590 &maintenanceprintlist);
3591
c6ebd6cf
VP
3592 add_setshow_boolean_cmd ("target-async", no_class,
3593 &target_async_permitted_1, _("\
3594Set whether gdb controls the inferior in asynchronous mode."), _("\
3595Show whether gdb controls the inferior in asynchronous mode."), _("\
3596Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
3597 maint_set_target_async_command,
3598 maint_show_target_async_command,
3599 &maintenance_set_cmdlist,
3600 &maintenance_show_cmdlist);
c6ebd6cf 3601
d914c394
SS
3602 add_setshow_boolean_cmd ("may-write-registers", class_support,
3603 &may_write_registers_1, _("\
3604Set permission to write into registers."), _("\
3605Show permission to write into registers."), _("\
3606When this permission is on, GDB may write into the target's registers.\n\
3607Otherwise, any sort of write attempt will result in an error."),
3608 set_target_permissions, NULL,
3609 &setlist, &showlist);
3610
3611 add_setshow_boolean_cmd ("may-write-memory", class_support,
3612 &may_write_memory_1, _("\
3613Set permission to write into target memory."), _("\
3614Show permission to write into target memory."), _("\
3615When this permission is on, GDB may write into the target's memory.\n\
3616Otherwise, any sort of write attempt will result in an error."),
3617 set_write_memory_permission, NULL,
3618 &setlist, &showlist);
3619
3620 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3621 &may_insert_breakpoints_1, _("\
3622Set permission to insert breakpoints in the target."), _("\
3623Show permission to insert breakpoints in the target."), _("\
3624When this permission is on, GDB may insert breakpoints in the program.\n\
3625Otherwise, any sort of insertion attempt will result in an error."),
3626 set_target_permissions, NULL,
3627 &setlist, &showlist);
3628
3629 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3630 &may_insert_tracepoints_1, _("\
3631Set permission to insert tracepoints in the target."), _("\
3632Show permission to insert tracepoints in the target."), _("\
3633When this permission is on, GDB may insert tracepoints in the program.\n\
3634Otherwise, any sort of insertion attempt will result in an error."),
3635 set_target_permissions, NULL,
3636 &setlist, &showlist);
3637
3638 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3639 &may_insert_fast_tracepoints_1, _("\
3640Set permission to insert fast tracepoints in the target."), _("\
3641Show permission to insert fast tracepoints in the target."), _("\
3642When this permission is on, GDB may insert fast tracepoints.\n\
3643Otherwise, any sort of insertion attempt will result in an error."),
3644 set_target_permissions, NULL,
3645 &setlist, &showlist);
3646
3647 add_setshow_boolean_cmd ("may-interrupt", class_support,
3648 &may_stop_1, _("\
3649Set permission to interrupt or signal the target."), _("\
3650Show permission to interrupt or signal the target."), _("\
3651When this permission is on, GDB may interrupt/stop the target's execution.\n\
3652Otherwise, any attempt to interrupt or stop will be ignored."),
3653 set_target_permissions, NULL,
3654 &setlist, &showlist);
6a3cb8e8
PA
3655
3656 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3657 &auto_connect_native_target, _("\
3658Set whether GDB may automatically connect to the native target."), _("\
3659Show whether GDB may automatically connect to the native target."), _("\
3660When on, and GDB is not connected to a target yet, GDB\n\
3661attempts \"run\" and other commands with the native target."),
3662 NULL, show_auto_connect_native_target,
3663 &setlist, &showlist);
c906108c 3664}
This page took 1.815342 seconds and 4 git commands to generate.