S390: Hardware breakpoint support
[deliverable/binutils-gdb.git] / gdb / target.c
CommitLineData
c906108c 1/* Select target systems and architectures at runtime for GDB.
7998dfc3 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
7998dfc3 4
c906108c
SS
5 Contributed by Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c 23#include "target.h"
68c765e2 24#include "target-dcache.h"
c906108c
SS
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
45741a9c 28#include "infrun.h"
c906108c
SS
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
4930751a 32#include "dcache.h"
c906108c 33#include <signal.h>
4e052eda 34#include "regcache.h"
b6591e8b 35#include "gdbcore.h"
424163ea 36#include "target-descriptions.h"
e1ac3328 37#include "gdbthread.h"
b9db4ced 38#include "solib.h"
07b82ea5 39#include "exec.h"
edb3359d 40#include "inline-frame.h"
2f4d8875 41#include "tracepoint.h"
7313baad 42#include "gdb/fileio.h"
8ffcbaaf 43#include "agent.h"
8de71aab 44#include "auxv.h"
a7068b60 45#include "target-debug.h"
41fd2b0f
PA
46#include "top.h"
47#include "event-top.h"
c906108c 48
a14ed312 49static void target_info (char *, int);
c906108c 50
f0f9ff95
TT
51static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
0a4f40a2 53static void default_terminal_info (struct target_ops *, const char *, int);
c906108c 54
5009afc5
AS
55static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
31568a15
TT
58static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
e0d24f8d 60
a30bf1f1 61static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
a53f3625 62
4229b31d
TT
63static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
098dba18
TT
66static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
8d657035
TT
69static void default_mourn_inferior (struct target_ops *self);
70
58a5184e
TT
71static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
936d2992
PA
78static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
8eaff7cd
TT
82static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
c25c4a8b 85static void tcomplain (void) ATTRIBUTE_NORETURN;
c906108c 86
555bbdeb
TT
87static int return_zero (struct target_ops *);
88
89static int return_zero_has_execution (struct target_ops *, ptid_t);
c906108c 90
a14ed312 91static void target_command (char *, int);
c906108c 92
a14ed312 93static struct target_ops *find_default_run_target (char *);
c906108c 94
c2250ad1
UW
95static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
0b5a2719
TT
98static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
16f796b1
TT
102static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
770234d3
TT
105static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
fe31bf5b
TT
107static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
a7068b60
TT
110static struct target_ops debug_target;
111
1101cb7b
TT
112#include "target-delegates.c"
113
a14ed312 114static void init_dummy_target (void);
c906108c 115
3cecbbbe
TT
116static void update_current_target (void);
117
89a1c21a
SM
118/* Vector of existing target structures. */
119typedef struct target_ops *target_ops_p;
120DEF_VEC_P (target_ops_p);
121static VEC (target_ops_p) *target_structs;
c906108c
SS
122
123/* The initial current target, so that there is always a semi-valid
124 current target. */
125
126static struct target_ops dummy_target;
127
128/* Top of target stack. */
129
258b763a 130static struct target_ops *target_stack;
c906108c
SS
131
132/* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135struct target_ops current_target;
136
137/* Command list for target. */
138
139static struct cmd_list_element *targetlist = NULL;
140
cf7a04e8
DJ
141/* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144static int trust_readonly = 0;
145
8defab1a
DJ
146/* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149static int show_memory_breakpoints = 0;
150
d914c394
SS
151/* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155int may_write_registers = 1;
156
157int may_write_memory = 1;
158
159int may_insert_breakpoints = 1;
160
161int may_insert_tracepoints = 1;
162
163int may_insert_fast_tracepoints = 1;
164
165int may_stop = 1;
166
c906108c
SS
167/* Non-zero if we want to see trace of target level stuff. */
168
ccce17b0 169static unsigned int targetdebug = 0;
3cecbbbe
TT
170
171static void
172set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173{
174 update_current_target ();
175}
176
920d2a44
AC
177static void
178show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182}
c906108c 183
a14ed312 184static void setup_target_debug (void);
c906108c 185
c906108c
SS
186/* The user just typed 'target' without the name of a target. */
187
c906108c 188static void
fba45db2 189target_command (char *arg, int from_tty)
c906108c
SS
190{
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193}
194
c35b1492
PA
195/* Default target_has_* methods for process_stratum targets. */
196
197int
198default_child_has_all_memory (struct target_ops *ops)
199{
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205}
206
207int
208default_child_has_memory (struct target_ops *ops)
209{
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215}
216
217int
218default_child_has_stack (struct target_ops *ops)
219{
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225}
226
227int
228default_child_has_registers (struct target_ops *ops)
229{
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235}
236
237int
aeaec162 238default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
c35b1492
PA
239{
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
aeaec162 242 if (ptid_equal (the_ptid, null_ptid))
c35b1492
PA
243 return 0;
244
245 return 1;
246}
247
248
249int
250target_has_all_memory_1 (void)
251{
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259}
260
261int
262target_has_memory_1 (void)
263{
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271}
272
273int
274target_has_stack_1 (void)
275{
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283}
284
285int
286target_has_registers_1 (void)
287{
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295}
296
297int
aeaec162 298target_has_execution_1 (ptid_t the_ptid)
c35b1492
PA
299{
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
aeaec162 303 if (t->to_has_execution (t, the_ptid))
c35b1492
PA
304 return 1;
305
306 return 0;
307}
308
aeaec162
TT
309int
310target_has_execution_current (void)
311{
312 return target_has_execution_1 (inferior_ptid);
313}
314
c22a2b88
TT
315/* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
c906108c
SS
317
318void
c22a2b88 319complete_target_initialization (struct target_ops *t)
c906108c 320{
0088c768 321 /* Provide default values for all "must have" methods. */
0088c768 322
c35b1492 323 if (t->to_has_all_memory == NULL)
555bbdeb 324 t->to_has_all_memory = return_zero;
c35b1492
PA
325
326 if (t->to_has_memory == NULL)
555bbdeb 327 t->to_has_memory = return_zero;
c35b1492
PA
328
329 if (t->to_has_stack == NULL)
555bbdeb 330 t->to_has_stack = return_zero;
c35b1492
PA
331
332 if (t->to_has_registers == NULL)
555bbdeb 333 t->to_has_registers = return_zero;
c35b1492
PA
334
335 if (t->to_has_execution == NULL)
555bbdeb 336 t->to_has_execution = return_zero_has_execution;
1101cb7b 337
b3ccfe11
TT
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
1101cb7b 344 install_delegators (t);
c22a2b88
TT
345}
346
8981c758
TT
347/* This is used to implement the various target commands. */
348
349static void
350open_target (char *args, int from_tty, struct cmd_list_element *command)
351{
19ba03f4 352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
8981c758
TT
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363}
364
c22a2b88
TT
365/* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369void
370add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372{
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
c35b1492 376
89a1c21a 377 VEC_safe_push (target_ops_p, target_structs, t);
c906108c
SS
378
379 if (targetlist == NULL)
1bedd215
AC
380 add_prefix_cmd ("target", class_run, target_command, _("\
381Connect to a target machine or process.\n\
c906108c
SS
382The first argument is the type or protocol of the target machine.\n\
383Remaining arguments are interpreted by the target protocol. For more\n\
384information on the arguments for a particular protocol, type\n\
1bedd215 385`help target ' followed by the protocol name."),
c906108c 386 &targetlist, "target ", 0, &cmdlist);
8981c758
TT
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
9852c492
YQ
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392}
393
394/* Add a possible target architecture to the list. */
395
396void
397add_target (struct target_ops *t)
398{
399 add_target_with_completer (t, NULL);
c906108c
SS
400}
401
b48d48eb
MM
402/* See target.h. */
403
404void
405add_deprecated_target_alias (struct target_ops *t, char *alias)
406{
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
8981c758
TT
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
b48d48eb
MM
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417}
418
c906108c
SS
419/* Stub functions */
420
7d85a9c0
JB
421void
422target_kill (void)
423{
423a4807 424 current_target.to_kill (&current_target);
7d85a9c0
JB
425}
426
11cf8741 427void
9cbe5fff 428target_load (const char *arg, int from_tty)
11cf8741 429{
4e5d721f 430 target_dcache_invalidate ();
71a9f134 431 (*current_target.to_load) (&current_target, arg, from_tty);
11cf8741
JM
432}
433
5842f62a
PA
434/* Possible terminal states. */
435
436enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
7afa63c6 449static enum terminal_state terminal_state = terminal_is_ours;
5842f62a
PA
450
451/* See target.h. */
452
453void
454target_terminal_init (void)
455{
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459}
460
461/* See target.h. */
462
6fdebc3d
PA
463int
464target_terminal_is_inferior (void)
465{
466 return (terminal_state == terminal_is_inferior);
467}
468
469/* See target.h. */
470
2f99e8fc
YQ
471int
472target_terminal_is_ours (void)
473{
474 return (terminal_state == terminal_is_ours);
475}
476
477/* See target.h. */
478
d9d2d8b6
PA
479void
480target_terminal_inferior (void)
481{
41fd2b0f
PA
482 struct ui *ui = current_ui;
483
d9d2d8b6 484 /* A background resume (``run&'') should leave GDB in control of the
3b12939d
PA
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
d9d2d8b6
PA
487 return;
488
215d3118
PA
489 /* Since we always run the inferior in the main console (unless "set
490 inferior-tty" is in effect), when some UI other than the main one
491 calls target_terminal_inferior/target_terminal_inferior, then we
215d3118
PA
492 leave the main UI's terminal settings as is. */
493 if (ui != main_ui)
494 return;
495
5842f62a
PA
496 if (terminal_state == terminal_is_inferior)
497 return;
498
d9d2d8b6
PA
499 /* If GDB is resuming the inferior in the foreground, install
500 inferior's terminal modes. */
d2f640d4 501 (*current_target.to_terminal_inferior) (&current_target);
5842f62a 502 terminal_state = terminal_is_inferior;
93692b58
PA
503
504 /* If the user hit C-c before, pretend that it was hit right
505 here. */
506 if (check_quit_flag ())
507 target_pass_ctrlc ();
5842f62a
PA
508}
509
510/* See target.h. */
511
512void
513target_terminal_ours (void)
514{
41fd2b0f
PA
515 struct ui *ui = current_ui;
516
215d3118
PA
517 /* See target_terminal_inferior. */
518 if (ui != main_ui)
519 return;
520
5842f62a
PA
521 if (terminal_state == terminal_is_ours)
522 return;
523
524 (*current_target.to_terminal_ours) (&current_target);
525 terminal_state = terminal_is_ours;
526}
527
528/* See target.h. */
529
530void
531target_terminal_ours_for_output (void)
532{
215d3118
PA
533 struct ui *ui = current_ui;
534
535 /* See target_terminal_inferior. */
536 if (ui != main_ui)
537 return;
538
5842f62a
PA
539 if (terminal_state != terminal_is_inferior)
540 return;
541 (*current_target.to_terminal_ours_for_output) (&current_target);
542 terminal_state = terminal_is_ours_for_output;
d9d2d8b6 543}
136d6dae 544
b0ed115f
TT
545/* See target.h. */
546
547int
548target_supports_terminal_ours (void)
549{
550 struct target_ops *t;
551
552 for (t = current_target.beneath; t != NULL; t = t->beneath)
553 {
554 if (t->to_terminal_ours != delegate_terminal_ours
555 && t->to_terminal_ours != tdefault_terminal_ours)
556 return 1;
557 }
558
559 return 0;
560}
561
1abf3a14
SM
562/* Restore the terminal to its previous state (helper for
563 make_cleanup_restore_target_terminal). */
564
565static void
566cleanup_restore_target_terminal (void *arg)
567{
19ba03f4 568 enum terminal_state *previous_state = (enum terminal_state *) arg;
1abf3a14
SM
569
570 switch (*previous_state)
571 {
572 case terminal_is_ours:
573 target_terminal_ours ();
574 break;
575 case terminal_is_ours_for_output:
576 target_terminal_ours_for_output ();
577 break;
578 case terminal_is_inferior:
579 target_terminal_inferior ();
580 break;
581 }
582}
583
584/* See target.h. */
585
586struct cleanup *
587make_cleanup_restore_target_terminal (void)
588{
8d749320 589 enum terminal_state *ts = XNEW (enum terminal_state);
1abf3a14
SM
590
591 *ts = terminal_state;
592
593 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
594}
595
c906108c 596static void
fba45db2 597tcomplain (void)
c906108c 598{
8a3fe4f8 599 error (_("You can't do that when your target is `%s'"),
c906108c
SS
600 current_target.to_shortname);
601}
602
603void
fba45db2 604noprocess (void)
c906108c 605{
8a3fe4f8 606 error (_("You can't do that without a process to debug."));
c906108c
SS
607}
608
c906108c 609static void
0a4f40a2 610default_terminal_info (struct target_ops *self, const char *args, int from_tty)
c906108c 611{
a3f17187 612 printf_unfiltered (_("No saved terminal information.\n"));
c906108c
SS
613}
614
0ef643c8
JB
615/* A default implementation for the to_get_ada_task_ptid target method.
616
617 This function builds the PTID by using both LWP and TID as part of
618 the PTID lwp and tid elements. The pid used is the pid of the
619 inferior_ptid. */
620
2c0b251b 621static ptid_t
1e6b91a4 622default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
0ef643c8
JB
623{
624 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
625}
626
32231432 627static enum exec_direction_kind
4c612759 628default_execution_direction (struct target_ops *self)
32231432
PA
629{
630 if (!target_can_execute_reverse)
631 return EXEC_FORWARD;
632 else if (!target_can_async_p ())
633 return EXEC_FORWARD;
634 else
635 gdb_assert_not_reached ("\
636to_execution_direction must be implemented for reverse async");
637}
638
7998dfc3
AC
639/* Go through the target stack from top to bottom, copying over zero
640 entries in current_target, then filling in still empty entries. In
641 effect, we are doing class inheritance through the pushed target
642 vectors.
643
644 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
645 is currently implemented, is that it discards any knowledge of
646 which target an inherited method originally belonged to.
647 Consequently, new new target methods should instead explicitly and
648 locally search the target stack for the target that can handle the
649 request. */
c906108c
SS
650
651static void
7998dfc3 652update_current_target (void)
c906108c 653{
7998dfc3
AC
654 struct target_ops *t;
655
08d8bcd7 656 /* First, reset current's contents. */
7998dfc3
AC
657 memset (&current_target, 0, sizeof (current_target));
658
1101cb7b
TT
659 /* Install the delegators. */
660 install_delegators (&current_target);
661
be4ddd36
TT
662 current_target.to_stratum = target_stack->to_stratum;
663
7998dfc3
AC
664#define INHERIT(FIELD, TARGET) \
665 if (!current_target.FIELD) \
666 current_target.FIELD = (TARGET)->FIELD
667
be4ddd36
TT
668 /* Do not add any new INHERITs here. Instead, use the delegation
669 mechanism provided by make-target-delegates. */
7998dfc3
AC
670 for (t = target_stack; t; t = t->beneath)
671 {
672 INHERIT (to_shortname, t);
673 INHERIT (to_longname, t);
dc177b7a 674 INHERIT (to_attach_no_wait, t);
74174d2e 675 INHERIT (to_have_steppable_watchpoint, t);
7998dfc3 676 INHERIT (to_have_continuable_watchpoint, t);
7998dfc3 677 INHERIT (to_has_thread_control, t);
7998dfc3
AC
678 }
679#undef INHERIT
680
7998dfc3
AC
681 /* Finally, position the target-stack beneath the squashed
682 "current_target". That way code looking for a non-inherited
683 target method can quickly and simply find it. */
684 current_target.beneath = target_stack;
b4b61fdb
DJ
685
686 if (targetdebug)
687 setup_target_debug ();
c906108c
SS
688}
689
690/* Push a new target type into the stack of the existing target accessors,
691 possibly superseding some of the existing accessors.
692
c906108c
SS
693 Rather than allow an empty stack, we always have the dummy target at
694 the bottom stratum, so we can call the function vectors without
695 checking them. */
696
b26a4dcb 697void
fba45db2 698push_target (struct target_ops *t)
c906108c 699{
258b763a 700 struct target_ops **cur;
c906108c
SS
701
702 /* Check magic number. If wrong, it probably means someone changed
703 the struct definition, but not all the places that initialize one. */
704 if (t->to_magic != OPS_MAGIC)
705 {
c5aa993b
JM
706 fprintf_unfiltered (gdb_stderr,
707 "Magic number of %s target struct wrong\n",
708 t->to_shortname);
3e43a32a
MS
709 internal_error (__FILE__, __LINE__,
710 _("failed internal consistency check"));
c906108c
SS
711 }
712
258b763a
AC
713 /* Find the proper stratum to install this target in. */
714 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
c906108c 715 {
258b763a 716 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
c906108c
SS
717 break;
718 }
719
258b763a 720 /* If there's already targets at this stratum, remove them. */
88c231eb 721 /* FIXME: cagney/2003-10-15: I think this should be popping all
258b763a
AC
722 targets to CUR, and not just those at this stratum level. */
723 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
724 {
725 /* There's already something at this stratum level. Close it,
726 and un-hook it from the stack. */
727 struct target_ops *tmp = (*cur);
5d502164 728
258b763a
AC
729 (*cur) = (*cur)->beneath;
730 tmp->beneath = NULL;
460014f5 731 target_close (tmp);
258b763a 732 }
c906108c
SS
733
734 /* We have removed all targets in our stratum, now add the new one. */
258b763a
AC
735 t->beneath = (*cur);
736 (*cur) = t;
c906108c
SS
737
738 update_current_target ();
c906108c
SS
739}
740
2bc416ba 741/* Remove a target_ops vector from the stack, wherever it may be.
c906108c
SS
742 Return how many times it was removed (0 or 1). */
743
744int
fba45db2 745unpush_target (struct target_ops *t)
c906108c 746{
258b763a
AC
747 struct target_ops **cur;
748 struct target_ops *tmp;
c906108c 749
c8d104ad
PA
750 if (t->to_stratum == dummy_stratum)
751 internal_error (__FILE__, __LINE__,
9b20d036 752 _("Attempt to unpush the dummy target"));
c8d104ad 753
c906108c 754 /* Look for the specified target. Note that we assume that a target
c378eb4e 755 can only occur once in the target stack. */
c906108c 756
258b763a
AC
757 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758 {
759 if ((*cur) == t)
760 break;
761 }
c906108c 762
305436e0
PA
763 /* If we don't find target_ops, quit. Only open targets should be
764 closed. */
258b763a 765 if ((*cur) == NULL)
305436e0 766 return 0;
5269965e 767
c378eb4e 768 /* Unchain the target. */
258b763a
AC
769 tmp = (*cur);
770 (*cur) = (*cur)->beneath;
771 tmp->beneath = NULL;
c906108c
SS
772
773 update_current_target ();
c906108c 774
305436e0
PA
775 /* Finally close the target. Note we do this after unchaining, so
776 any target method calls from within the target_close
777 implementation don't end up in T anymore. */
460014f5 778 target_close (t);
305436e0 779
c906108c
SS
780 return 1;
781}
782
915ef8b1
PA
783/* Unpush TARGET and assert that it worked. */
784
785static void
786unpush_target_and_assert (struct target_ops *target)
787{
788 if (!unpush_target (target))
789 {
790 fprintf_unfiltered (gdb_stderr,
791 "pop_all_targets couldn't find target %s\n",
792 target->to_shortname);
793 internal_error (__FILE__, __LINE__,
794 _("failed internal consistency check"));
795 }
796}
797
aa76d38d 798void
460014f5 799pop_all_targets_above (enum strata above_stratum)
aa76d38d 800{
87ab71f0 801 while ((int) (current_target.to_stratum) > (int) above_stratum)
915ef8b1
PA
802 unpush_target_and_assert (target_stack);
803}
804
805/* See target.h. */
806
807void
808pop_all_targets_at_and_above (enum strata stratum)
809{
810 while ((int) (current_target.to_stratum) >= (int) stratum)
811 unpush_target_and_assert (target_stack);
aa76d38d
PA
812}
813
87ab71f0 814void
460014f5 815pop_all_targets (void)
87ab71f0 816{
460014f5 817 pop_all_targets_above (dummy_stratum);
87ab71f0
PA
818}
819
c0edd9ed
JK
820/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
821
822int
823target_is_pushed (struct target_ops *t)
824{
84202f9c 825 struct target_ops *cur;
c0edd9ed
JK
826
827 /* Check magic number. If wrong, it probably means someone changed
828 the struct definition, but not all the places that initialize one. */
829 if (t->to_magic != OPS_MAGIC)
830 {
831 fprintf_unfiltered (gdb_stderr,
832 "Magic number of %s target struct wrong\n",
833 t->to_shortname);
3e43a32a
MS
834 internal_error (__FILE__, __LINE__,
835 _("failed internal consistency check"));
c0edd9ed
JK
836 }
837
84202f9c
TT
838 for (cur = target_stack; cur != NULL; cur = cur->beneath)
839 if (cur == t)
c0edd9ed
JK
840 return 1;
841
842 return 0;
843}
844
f0f9ff95
TT
845/* Default implementation of to_get_thread_local_address. */
846
847static void
848generic_tls_error (void)
849{
850 throw_error (TLS_GENERIC_ERROR,
851 _("Cannot find thread-local variables on this target"));
852}
853
72f5cf0e 854/* Using the objfile specified in OBJFILE, find the address for the
9e35dae4
DJ
855 current thread's thread-local storage with offset OFFSET. */
856CORE_ADDR
857target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
858{
859 volatile CORE_ADDR addr = 0;
f0f9ff95 860 struct target_ops *target = &current_target;
9e35dae4 861
f0f9ff95 862 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
9e35dae4
DJ
863 {
864 ptid_t ptid = inferior_ptid;
9e35dae4 865
492d29ea 866 TRY
9e35dae4
DJ
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
f5656ead 871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
9e35dae4 872 objfile);
9e35dae4 873
3e43a32a
MS
874 addr = target->to_get_thread_local_address (target, ptid,
875 lm_addr, offset);
9e35dae4
DJ
876 }
877 /* If an error occurred, print TLS related messages here. Otherwise,
878 throw the error to some higher catcher. */
492d29ea 879 CATCH (ex, RETURN_MASK_ALL)
9e35dae4
DJ
880 {
881 int objfile_is_library = (objfile->flags & OBJF_SHARED);
882
883 switch (ex.error)
884 {
885 case TLS_NO_LIBRARY_SUPPORT_ERROR:
3e43a32a
MS
886 error (_("Cannot find thread-local variables "
887 "in this thread library."));
9e35dae4
DJ
888 break;
889 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
890 if (objfile_is_library)
891 error (_("Cannot find shared library `%s' in dynamic"
4262abfb 892 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
893 else
894 error (_("Cannot find executable file `%s' in dynamic"
4262abfb 895 " linker's load module list"), objfile_name (objfile));
9e35dae4
DJ
896 break;
897 case TLS_NOT_ALLOCATED_YET_ERROR:
898 if (objfile_is_library)
899 error (_("The inferior has not yet allocated storage for"
900 " thread-local variables in\n"
901 "the shared library `%s'\n"
902 "for %s"),
4262abfb 903 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
904 else
905 error (_("The inferior has not yet allocated storage for"
906 " thread-local variables in\n"
907 "the executable `%s'\n"
908 "for %s"),
4262abfb 909 objfile_name (objfile), target_pid_to_str (ptid));
9e35dae4
DJ
910 break;
911 case TLS_GENERIC_ERROR:
912 if (objfile_is_library)
913 error (_("Cannot find thread-local storage for %s, "
914 "shared library %s:\n%s"),
915 target_pid_to_str (ptid),
4262abfb 916 objfile_name (objfile), ex.message);
9e35dae4
DJ
917 else
918 error (_("Cannot find thread-local storage for %s, "
919 "executable file %s:\n%s"),
920 target_pid_to_str (ptid),
4262abfb 921 objfile_name (objfile), ex.message);
9e35dae4
DJ
922 break;
923 default:
924 throw_exception (ex);
925 break;
926 }
927 }
492d29ea 928 END_CATCH
9e35dae4
DJ
929 }
930 /* It wouldn't be wrong here to try a gdbarch method, too; finding
931 TLS is an ABI-specific thing. But we don't do that yet. */
932 else
933 error (_("Cannot find thread-local variables on this target"));
934
935 return addr;
936}
937
6be7b56e 938const char *
01cb8804 939target_xfer_status_to_string (enum target_xfer_status status)
6be7b56e
PA
940{
941#define CASE(X) case X: return #X
01cb8804 942 switch (status)
6be7b56e
PA
943 {
944 CASE(TARGET_XFER_E_IO);
bc113b4e 945 CASE(TARGET_XFER_UNAVAILABLE);
6be7b56e
PA
946 default:
947 return "<unknown>";
948 }
949#undef CASE
950};
951
952
c906108c
SS
953#undef MIN
954#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
955
956/* target_read_string -- read a null terminated string, up to LEN bytes,
957 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
958 Set *STRING to a pointer to malloc'd memory containing the data; the caller
959 is responsible for freeing it. Return the number of bytes successfully
960 read. */
961
962int
fba45db2 963target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
c906108c 964{
c2e8b827 965 int tlen, offset, i;
1b0ba102 966 gdb_byte buf[4];
c906108c
SS
967 int errcode = 0;
968 char *buffer;
969 int buffer_allocated;
970 char *bufptr;
971 unsigned int nbytes_read = 0;
972
6217bf3e
MS
973 gdb_assert (string);
974
c906108c
SS
975 /* Small for testing. */
976 buffer_allocated = 4;
224c3ddb 977 buffer = (char *) xmalloc (buffer_allocated);
c906108c
SS
978 bufptr = buffer;
979
c906108c
SS
980 while (len > 0)
981 {
982 tlen = MIN (len, 4 - (memaddr & 3));
983 offset = memaddr & 3;
984
1b0ba102 985 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
c906108c
SS
986 if (errcode != 0)
987 {
988 /* The transfer request might have crossed the boundary to an
c378eb4e 989 unallocated region of memory. Retry the transfer, requesting
c906108c
SS
990 a single byte. */
991 tlen = 1;
992 offset = 0;
b8eb5af0 993 errcode = target_read_memory (memaddr, buf, 1);
c906108c
SS
994 if (errcode != 0)
995 goto done;
996 }
997
998 if (bufptr - buffer + tlen > buffer_allocated)
999 {
1000 unsigned int bytes;
5d502164 1001
c906108c
SS
1002 bytes = bufptr - buffer;
1003 buffer_allocated *= 2;
224c3ddb 1004 buffer = (char *) xrealloc (buffer, buffer_allocated);
c906108c
SS
1005 bufptr = buffer + bytes;
1006 }
1007
1008 for (i = 0; i < tlen; i++)
1009 {
1010 *bufptr++ = buf[i + offset];
1011 if (buf[i + offset] == '\000')
1012 {
1013 nbytes_read += i + 1;
1014 goto done;
1015 }
1016 }
1017
1018 memaddr += tlen;
1019 len -= tlen;
1020 nbytes_read += tlen;
1021 }
c5aa993b 1022done:
6217bf3e 1023 *string = buffer;
c906108c
SS
1024 if (errnop != NULL)
1025 *errnop = errcode;
c906108c
SS
1026 return nbytes_read;
1027}
1028
07b82ea5
PA
1029struct target_section_table *
1030target_get_section_table (struct target_ops *target)
1031{
7e35c012 1032 return (*target->to_get_section_table) (target);
07b82ea5
PA
1033}
1034
8db32d44 1035/* Find a section containing ADDR. */
07b82ea5 1036
0542c86d 1037struct target_section *
8db32d44
AC
1038target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1039{
07b82ea5 1040 struct target_section_table *table = target_get_section_table (target);
0542c86d 1041 struct target_section *secp;
07b82ea5
PA
1042
1043 if (table == NULL)
1044 return NULL;
1045
1046 for (secp = table->sections; secp < table->sections_end; secp++)
8db32d44
AC
1047 {
1048 if (addr >= secp->addr && addr < secp->endaddr)
1049 return secp;
1050 }
1051 return NULL;
1052}
1053
0fec99e8
PA
1054
1055/* Helper for the memory xfer routines. Checks the attributes of the
1056 memory region of MEMADDR against the read or write being attempted.
1057 If the access is permitted returns true, otherwise returns false.
1058 REGION_P is an optional output parameter. If not-NULL, it is
1059 filled with a pointer to the memory region of MEMADDR. REG_LEN
1060 returns LEN trimmed to the end of the region. This is how much the
1061 caller can continue requesting, if the access is permitted. A
1062 single xfer request must not straddle memory region boundaries. */
1063
1064static int
1065memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1066 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1067 struct mem_region **region_p)
1068{
1069 struct mem_region *region;
1070
1071 region = lookup_mem_region (memaddr);
1072
1073 if (region_p != NULL)
1074 *region_p = region;
1075
1076 switch (region->attrib.mode)
1077 {
1078 case MEM_RO:
1079 if (writebuf != NULL)
1080 return 0;
1081 break;
1082
1083 case MEM_WO:
1084 if (readbuf != NULL)
1085 return 0;
1086 break;
1087
1088 case MEM_FLASH:
1089 /* We only support writing to flash during "load" for now. */
1090 if (writebuf != NULL)
1091 error (_("Writing to flash memory forbidden in this context"));
1092 break;
1093
1094 case MEM_NONE:
1095 return 0;
1096 }
1097
1098 /* region->hi == 0 means there's no upper bound. */
1099 if (memaddr + len < region->hi || region->hi == 0)
1100 *reg_len = len;
1101 else
1102 *reg_len = region->hi - memaddr;
1103
1104 return 1;
1105}
1106
9f713294
YQ
1107/* Read memory from more than one valid target. A core file, for
1108 instance, could have some of memory but delegate other bits to
1109 the target below it. So, we must manually try all targets. */
1110
cc9f16aa 1111enum target_xfer_status
17fde6d0 1112raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
9b409511
YQ
1113 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1114 ULONGEST *xfered_len)
9f713294 1115{
9b409511 1116 enum target_xfer_status res;
9f713294
YQ
1117
1118 do
1119 {
1120 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511
YQ
1121 readbuf, writebuf, memaddr, len,
1122 xfered_len);
1123 if (res == TARGET_XFER_OK)
9f713294
YQ
1124 break;
1125
633785ff 1126 /* Stop if the target reports that the memory is not available. */
bc113b4e 1127 if (res == TARGET_XFER_UNAVAILABLE)
633785ff
MM
1128 break;
1129
9f713294
YQ
1130 /* We want to continue past core files to executables, but not
1131 past a running target's memory. */
1132 if (ops->to_has_all_memory (ops))
1133 break;
1134
1135 ops = ops->beneath;
1136 }
1137 while (ops != NULL);
1138
0f26cec1
PA
1139 /* The cache works at the raw memory level. Make sure the cache
1140 gets updated with raw contents no matter what kind of memory
1141 object was originally being written. Note we do write-through
1142 first, so that if it fails, we don't write to the cache contents
1143 that never made it to the target. */
1144 if (writebuf != NULL
1145 && !ptid_equal (inferior_ptid, null_ptid)
1146 && target_dcache_init_p ()
1147 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1148 {
1149 DCACHE *dcache = target_dcache_get ();
1150
1151 /* Note that writing to an area of memory which wasn't present
1152 in the cache doesn't cause it to be loaded in. */
1153 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1154 }
1155
9f713294
YQ
1156 return res;
1157}
1158
7f79c47e
DE
1159/* Perform a partial memory transfer.
1160 For docs see target.h, to_xfer_partial. */
cf7a04e8 1161
9b409511 1162static enum target_xfer_status
f0ba3972 1163memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
17fde6d0 1164 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
9b409511 1165 ULONGEST len, ULONGEST *xfered_len)
0779438d 1166{
9b409511 1167 enum target_xfer_status res;
0fec99e8 1168 ULONGEST reg_len;
cf7a04e8 1169 struct mem_region *region;
4e5d721f 1170 struct inferior *inf;
cf7a04e8 1171
07b82ea5
PA
1172 /* For accesses to unmapped overlay sections, read directly from
1173 files. Must do this first, as MEMADDR may need adjustment. */
1174 if (readbuf != NULL && overlay_debugging)
1175 {
1176 struct obj_section *section = find_pc_overlay (memaddr);
5d502164 1177
07b82ea5
PA
1178 if (pc_in_unmapped_range (memaddr, section))
1179 {
1180 struct target_section_table *table
1181 = target_get_section_table (ops);
1182 const char *section_name = section->the_bfd_section->name;
5d502164 1183
07b82ea5
PA
1184 memaddr = overlay_mapped_address (memaddr, section);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1186 memaddr, len, xfered_len,
07b82ea5
PA
1187 table->sections,
1188 table->sections_end,
1189 section_name);
1190 }
1191 }
1192
1193 /* Try the executable files, if "trust-readonly-sections" is set. */
cf7a04e8
DJ
1194 if (readbuf != NULL && trust_readonly)
1195 {
0542c86d 1196 struct target_section *secp;
07b82ea5 1197 struct target_section_table *table;
cf7a04e8
DJ
1198
1199 secp = target_section_by_addr (ops, memaddr);
1200 if (secp != NULL
2b2848e2
DE
1201 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1202 secp->the_bfd_section)
cf7a04e8 1203 & SEC_READONLY))
07b82ea5
PA
1204 {
1205 table = target_get_section_table (ops);
1206 return section_table_xfer_memory_partial (readbuf, writebuf,
9b409511 1207 memaddr, len, xfered_len,
07b82ea5
PA
1208 table->sections,
1209 table->sections_end,
1210 NULL);
1211 }
98646950
UW
1212 }
1213
cf7a04e8 1214 /* Try GDB's internal data cache. */
cf7a04e8 1215
0fec99e8
PA
1216 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1217 &region))
1218 return TARGET_XFER_E_IO;
cf7a04e8 1219
6c95b8df 1220 if (!ptid_equal (inferior_ptid, null_ptid))
c9657e70 1221 inf = find_inferior_ptid (inferior_ptid);
6c95b8df
PA
1222 else
1223 inf = NULL;
4e5d721f
DE
1224
1225 if (inf != NULL
0f26cec1 1226 && readbuf != NULL
2f4d8875
PA
1227 /* The dcache reads whole cache lines; that doesn't play well
1228 with reading from a trace buffer, because reading outside of
1229 the collected memory range fails. */
1230 && get_traceframe_number () == -1
4e5d721f 1231 && (region->attrib.cache
29453a14
YQ
1232 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1233 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
cf7a04e8 1234 {
2a2f9fe4
YQ
1235 DCACHE *dcache = target_dcache_get_or_init ();
1236
0f26cec1
PA
1237 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1238 reg_len, xfered_len);
cf7a04e8
DJ
1239 }
1240
1241 /* If none of those methods found the memory we wanted, fall back
1242 to a target partial transfer. Normally a single call to
1243 to_xfer_partial is enough; if it doesn't recognize an object
1244 it will call the to_xfer_partial of the next target down.
1245 But for memory this won't do. Memory is the only target
9b409511
YQ
1246 object which can be read from more than one valid target.
1247 A core file, for instance, could have some of memory but
1248 delegate other bits to the target below it. So, we must
1249 manually try all targets. */
1250
1251 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1252 xfered_len);
cf7a04e8
DJ
1253
1254 /* If we still haven't got anything, return the last error. We
1255 give up. */
1256 return res;
0779438d
AC
1257}
1258
f0ba3972
PA
1259/* Perform a partial memory transfer. For docs see target.h,
1260 to_xfer_partial. */
1261
9b409511 1262static enum target_xfer_status
f0ba3972 1263memory_xfer_partial (struct target_ops *ops, enum target_object object,
9b409511
YQ
1264 gdb_byte *readbuf, const gdb_byte *writebuf,
1265 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
f0ba3972 1266{
9b409511 1267 enum target_xfer_status res;
f0ba3972
PA
1268
1269 /* Zero length requests are ok and require no work. */
1270 if (len == 0)
9b409511 1271 return TARGET_XFER_EOF;
f0ba3972
PA
1272
1273 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1274 breakpoint insns, thus hiding out from higher layers whether
1275 there are software breakpoints inserted in the code stream. */
1276 if (readbuf != NULL)
1277 {
9b409511
YQ
1278 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1279 xfered_len);
f0ba3972 1280
9b409511 1281 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
c63528fc 1282 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
f0ba3972
PA
1283 }
1284 else
1285 {
d7f3ff3e 1286 gdb_byte *buf;
f0ba3972
PA
1287 struct cleanup *old_chain;
1288
67c059c2
AB
1289 /* A large write request is likely to be partially satisfied
1290 by memory_xfer_partial_1. We will continually malloc
1291 and free a copy of the entire write request for breakpoint
1292 shadow handling even though we only end up writing a small
09c98b44
DB
1293 subset of it. Cap writes to a limit specified by the target
1294 to mitigate this. */
1295 len = min (ops->to_get_memory_xfer_limit (ops), len);
67c059c2 1296
d7f3ff3e 1297 buf = (gdb_byte *) xmalloc (len);
f0ba3972
PA
1298 old_chain = make_cleanup (xfree, buf);
1299 memcpy (buf, writebuf, len);
1300
1301 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
9b409511
YQ
1302 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1303 xfered_len);
f0ba3972
PA
1304
1305 do_cleanups (old_chain);
1306 }
1307
1308 return res;
1309}
1310
8defab1a
DJ
1311static void
1312restore_show_memory_breakpoints (void *arg)
1313{
1314 show_memory_breakpoints = (uintptr_t) arg;
1315}
1316
1317struct cleanup *
1318make_show_memory_breakpoints_cleanup (int show)
1319{
1320 int current = show_memory_breakpoints;
8defab1a 1321
5d502164 1322 show_memory_breakpoints = show;
8defab1a
DJ
1323 return make_cleanup (restore_show_memory_breakpoints,
1324 (void *) (uintptr_t) current);
1325}
1326
7f79c47e
DE
1327/* For docs see target.h, to_xfer_partial. */
1328
9b409511 1329enum target_xfer_status
27394598
AC
1330target_xfer_partial (struct target_ops *ops,
1331 enum target_object object, const char *annex,
4ac248ca 1332 gdb_byte *readbuf, const gdb_byte *writebuf,
9b409511
YQ
1333 ULONGEST offset, ULONGEST len,
1334 ULONGEST *xfered_len)
27394598 1335{
9b409511 1336 enum target_xfer_status retval;
27394598
AC
1337
1338 gdb_assert (ops->to_xfer_partial != NULL);
cf7a04e8 1339
ce6d0892
YQ
1340 /* Transfer is done when LEN is zero. */
1341 if (len == 0)
9b409511 1342 return TARGET_XFER_EOF;
ce6d0892 1343
d914c394
SS
1344 if (writebuf && !may_write_memory)
1345 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1346 core_addr_to_string_nz (offset), plongest (len));
1347
9b409511
YQ
1348 *xfered_len = 0;
1349
cf7a04e8
DJ
1350 /* If this is a memory transfer, let the memory-specific code
1351 have a look at it instead. Memory transfers are more
1352 complicated. */
29453a14
YQ
1353 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1354 || object == TARGET_OBJECT_CODE_MEMORY)
4e5d721f 1355 retval = memory_xfer_partial (ops, object, readbuf,
9b409511 1356 writebuf, offset, len, xfered_len);
9f713294 1357 else if (object == TARGET_OBJECT_RAW_MEMORY)
cf7a04e8 1358 {
0fec99e8
PA
1359 /* Skip/avoid accessing the target if the memory region
1360 attributes block the access. Check this here instead of in
1361 raw_memory_xfer_partial as otherwise we'd end up checking
1362 this twice in the case of the memory_xfer_partial path is
1363 taken; once before checking the dcache, and another in the
1364 tail call to raw_memory_xfer_partial. */
1365 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1366 NULL))
1367 return TARGET_XFER_E_IO;
1368
9f713294 1369 /* Request the normal memory object from other layers. */
9b409511
YQ
1370 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1371 xfered_len);
cf7a04e8 1372 }
9f713294
YQ
1373 else
1374 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
9b409511 1375 writebuf, offset, len, xfered_len);
cf7a04e8 1376
27394598
AC
1377 if (targetdebug)
1378 {
1379 const unsigned char *myaddr = NULL;
1380
1381 fprintf_unfiltered (gdb_stdlog,
3e43a32a 1382 "%s:target_xfer_partial "
9b409511 1383 "(%d, %s, %s, %s, %s, %s) = %d, %s",
27394598
AC
1384 ops->to_shortname,
1385 (int) object,
1386 (annex ? annex : "(null)"),
53b71562
JB
1387 host_address_to_string (readbuf),
1388 host_address_to_string (writebuf),
0b1553bc 1389 core_addr_to_string_nz (offset),
9b409511
YQ
1390 pulongest (len), retval,
1391 pulongest (*xfered_len));
27394598
AC
1392
1393 if (readbuf)
1394 myaddr = readbuf;
1395 if (writebuf)
1396 myaddr = writebuf;
9b409511 1397 if (retval == TARGET_XFER_OK && myaddr != NULL)
27394598
AC
1398 {
1399 int i;
2bc416ba 1400
27394598 1401 fputs_unfiltered (", bytes =", gdb_stdlog);
9b409511 1402 for (i = 0; i < *xfered_len; i++)
27394598 1403 {
53b71562 1404 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
27394598
AC
1405 {
1406 if (targetdebug < 2 && i > 0)
1407 {
1408 fprintf_unfiltered (gdb_stdlog, " ...");
1409 break;
1410 }
1411 fprintf_unfiltered (gdb_stdlog, "\n");
1412 }
2bc416ba 1413
27394598
AC
1414 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1415 }
1416 }
2bc416ba 1417
27394598
AC
1418 fputc_unfiltered ('\n', gdb_stdlog);
1419 }
9b409511
YQ
1420
1421 /* Check implementations of to_xfer_partial update *XFERED_LEN
1422 properly. Do assertion after printing debug messages, so that we
1423 can find more clues on assertion failure from debugging messages. */
bc113b4e 1424 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
9b409511
YQ
1425 gdb_assert (*xfered_len > 0);
1426
27394598
AC
1427 return retval;
1428}
1429
578d3588
PA
1430/* Read LEN bytes of target memory at address MEMADDR, placing the
1431 results in GDB's memory at MYADDR. Returns either 0 for success or
d09f2c3f 1432 -1 if any error occurs.
c906108c
SS
1433
1434 If an error occurs, no guarantee is made about the contents of the data at
1435 MYADDR. In particular, the caller should not depend upon partial reads
1436 filling the buffer with good data. There is no way for the caller to know
1437 how much good data might have been transfered anyway. Callers that can
cf7a04e8 1438 deal with partial reads should call target_read (which will retry until
c378eb4e 1439 it makes no progress, and then return how much was transferred). */
c906108c
SS
1440
1441int
1b162304 1442target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
c906108c 1443{
c35b1492
PA
1444 /* Dispatch to the topmost target, not the flattened current_target.
1445 Memory accesses check target->to_has_(all_)memory, and the
1446 flattened target doesn't inherit those. */
1447 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1448 myaddr, memaddr, len) == len)
1449 return 0;
0779438d 1450 else
d09f2c3f 1451 return -1;
c906108c
SS
1452}
1453
721ec300
GB
1454/* See target/target.h. */
1455
1456int
1457target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1458{
1459 gdb_byte buf[4];
1460 int r;
1461
1462 r = target_read_memory (memaddr, buf, sizeof buf);
1463 if (r != 0)
1464 return r;
1465 *result = extract_unsigned_integer (buf, sizeof buf,
1466 gdbarch_byte_order (target_gdbarch ()));
1467 return 0;
1468}
1469
aee4bf85
PA
1470/* Like target_read_memory, but specify explicitly that this is a read
1471 from the target's raw memory. That is, this read bypasses the
1472 dcache, breakpoint shadowing, etc. */
1473
1474int
1475target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1476{
1477 /* See comment in target_read_memory about why the request starts at
1478 current_target.beneath. */
1479 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1480 myaddr, memaddr, len) == len)
1481 return 0;
1482 else
d09f2c3f 1483 return -1;
aee4bf85
PA
1484}
1485
4e5d721f
DE
1486/* Like target_read_memory, but specify explicitly that this is a read from
1487 the target's stack. This may trigger different cache behavior. */
1488
1489int
45aa4659 1490target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
4e5d721f 1491{
aee4bf85
PA
1492 /* See comment in target_read_memory about why the request starts at
1493 current_target.beneath. */
4e5d721f
DE
1494 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1495 myaddr, memaddr, len) == len)
1496 return 0;
1497 else
d09f2c3f 1498 return -1;
4e5d721f
DE
1499}
1500
29453a14
YQ
1501/* Like target_read_memory, but specify explicitly that this is a read from
1502 the target's code. This may trigger different cache behavior. */
1503
1504int
1505target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1506{
aee4bf85
PA
1507 /* See comment in target_read_memory about why the request starts at
1508 current_target.beneath. */
29453a14
YQ
1509 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1510 myaddr, memaddr, len) == len)
1511 return 0;
1512 else
d09f2c3f 1513 return -1;
29453a14
YQ
1514}
1515
7f79c47e 1516/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
d09f2c3f
PA
1517 Returns either 0 for success or -1 if any error occurs. If an
1518 error occurs, no guarantee is made about how much data got written.
1519 Callers that can deal with partial writes should call
1520 target_write. */
7f79c47e 1521
c906108c 1522int
45aa4659 1523target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
c906108c 1524{
aee4bf85
PA
1525 /* See comment in target_read_memory about why the request starts at
1526 current_target.beneath. */
c35b1492 1527 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
cf7a04e8
DJ
1528 myaddr, memaddr, len) == len)
1529 return 0;
0779438d 1530 else
d09f2c3f 1531 return -1;
c906108c 1532}
c5aa993b 1533
f0ba3972 1534/* Write LEN bytes from MYADDR to target raw memory at address
d09f2c3f
PA
1535 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1536 If an error occurs, no guarantee is made about how much data got
1537 written. Callers that can deal with partial writes should call
1538 target_write. */
f0ba3972
PA
1539
1540int
45aa4659 1541target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
f0ba3972 1542{
aee4bf85
PA
1543 /* See comment in target_read_memory about why the request starts at
1544 current_target.beneath. */
f0ba3972
PA
1545 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1546 myaddr, memaddr, len) == len)
1547 return 0;
1548 else
d09f2c3f 1549 return -1;
f0ba3972
PA
1550}
1551
fd79ecee
DJ
1552/* Fetch the target's memory map. */
1553
1554VEC(mem_region_s) *
1555target_memory_map (void)
1556{
1557 VEC(mem_region_s) *result;
1558 struct mem_region *last_one, *this_one;
1559 int ix;
6b2c5a57 1560 result = current_target.to_memory_map (&current_target);
fd79ecee
DJ
1561 if (result == NULL)
1562 return NULL;
1563
1564 qsort (VEC_address (mem_region_s, result),
1565 VEC_length (mem_region_s, result),
1566 sizeof (struct mem_region), mem_region_cmp);
1567
1568 /* Check that regions do not overlap. Simultaneously assign
1569 a numbering for the "mem" commands to use to refer to
1570 each region. */
1571 last_one = NULL;
1572 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1573 {
1574 this_one->number = ix;
1575
1576 if (last_one && last_one->hi > this_one->lo)
1577 {
1578 warning (_("Overlapping regions in memory map: ignoring"));
1579 VEC_free (mem_region_s, result);
1580 return NULL;
1581 }
1582 last_one = this_one;
1583 }
1584
1585 return result;
1586}
1587
a76d924d
DJ
1588void
1589target_flash_erase (ULONGEST address, LONGEST length)
1590{
e8a6c6ac 1591 current_target.to_flash_erase (&current_target, address, length);
a76d924d
DJ
1592}
1593
1594void
1595target_flash_done (void)
1596{
f6fb2925 1597 current_target.to_flash_done (&current_target);
a76d924d
DJ
1598}
1599
920d2a44
AC
1600static void
1601show_trust_readonly (struct ui_file *file, int from_tty,
1602 struct cmd_list_element *c, const char *value)
1603{
3e43a32a
MS
1604 fprintf_filtered (file,
1605 _("Mode for reading from readonly sections is %s.\n"),
920d2a44
AC
1606 value);
1607}
3a11626d 1608
7f79c47e 1609/* Target vector read/write partial wrapper functions. */
0088c768 1610
9b409511 1611static enum target_xfer_status
1e3ff5ad
AC
1612target_read_partial (struct target_ops *ops,
1613 enum target_object object,
1b0ba102 1614 const char *annex, gdb_byte *buf,
9b409511
YQ
1615 ULONGEST offset, ULONGEST len,
1616 ULONGEST *xfered_len)
1e3ff5ad 1617{
9b409511
YQ
1618 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1619 xfered_len);
1e3ff5ad
AC
1620}
1621
8a55ffb0 1622static enum target_xfer_status
1e3ff5ad
AC
1623target_write_partial (struct target_ops *ops,
1624 enum target_object object,
1b0ba102 1625 const char *annex, const gdb_byte *buf,
9b409511 1626 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1e3ff5ad 1627{
9b409511
YQ
1628 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1629 xfered_len);
1e3ff5ad
AC
1630}
1631
1632/* Wrappers to perform the full transfer. */
7f79c47e
DE
1633
1634/* For docs on target_read see target.h. */
1635
1e3ff5ad
AC
1636LONGEST
1637target_read (struct target_ops *ops,
1638 enum target_object object,
1b0ba102 1639 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
1640 ULONGEST offset, LONGEST len)
1641{
279a6fed 1642 LONGEST xfered_total = 0;
d309493c
SM
1643 int unit_size = 1;
1644
1645 /* If we are reading from a memory object, find the length of an addressable
1646 unit for that architecture. */
1647 if (object == TARGET_OBJECT_MEMORY
1648 || object == TARGET_OBJECT_STACK_MEMORY
1649 || object == TARGET_OBJECT_CODE_MEMORY
1650 || object == TARGET_OBJECT_RAW_MEMORY)
1651 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
5d502164 1652
279a6fed 1653 while (xfered_total < len)
1e3ff5ad 1654 {
279a6fed 1655 ULONGEST xfered_partial;
9b409511
YQ
1656 enum target_xfer_status status;
1657
1658 status = target_read_partial (ops, object, annex,
d309493c 1659 buf + xfered_total * unit_size,
279a6fed
SM
1660 offset + xfered_total, len - xfered_total,
1661 &xfered_partial);
5d502164 1662
1e3ff5ad 1663 /* Call an observer, notifying them of the xfer progress? */
9b409511 1664 if (status == TARGET_XFER_EOF)
279a6fed 1665 return xfered_total;
9b409511
YQ
1666 else if (status == TARGET_XFER_OK)
1667 {
279a6fed 1668 xfered_total += xfered_partial;
9b409511
YQ
1669 QUIT;
1670 }
1671 else
279a6fed 1672 return TARGET_XFER_E_IO;
9b409511 1673
1e3ff5ad
AC
1674 }
1675 return len;
1676}
1677
f1a507a1
JB
1678/* Assuming that the entire [begin, end) range of memory cannot be
1679 read, try to read whatever subrange is possible to read.
1680
1681 The function returns, in RESULT, either zero or one memory block.
1682 If there's a readable subrange at the beginning, it is completely
1683 read and returned. Any further readable subrange will not be read.
1684 Otherwise, if there's a readable subrange at the end, it will be
1685 completely read and returned. Any readable subranges before it
1686 (obviously, not starting at the beginning), will be ignored. In
1687 other cases -- either no readable subrange, or readable subrange(s)
1688 that is neither at the beginning, or end, nothing is returned.
1689
1690 The purpose of this function is to handle a read across a boundary
1691 of accessible memory in a case when memory map is not available.
1692 The above restrictions are fine for this case, but will give
1693 incorrect results if the memory is 'patchy'. However, supporting
1694 'patchy' memory would require trying to read every single byte,
1695 and it seems unacceptable solution. Explicit memory map is
1696 recommended for this case -- and target_read_memory_robust will
1697 take care of reading multiple ranges then. */
8dedea02
VP
1698
1699static void
3e43a32a 1700read_whatever_is_readable (struct target_ops *ops,
279a6fed 1701 const ULONGEST begin, const ULONGEST end,
d309493c 1702 int unit_size,
8dedea02 1703 VEC(memory_read_result_s) **result)
d5086790 1704{
224c3ddb 1705 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
8dedea02
VP
1706 ULONGEST current_begin = begin;
1707 ULONGEST current_end = end;
1708 int forward;
1709 memory_read_result_s r;
9b409511 1710 ULONGEST xfered_len;
8dedea02
VP
1711
1712 /* If we previously failed to read 1 byte, nothing can be done here. */
1713 if (end - begin <= 1)
13b3fd9b
MS
1714 {
1715 xfree (buf);
1716 return;
1717 }
8dedea02
VP
1718
1719 /* Check that either first or the last byte is readable, and give up
c378eb4e 1720 if not. This heuristic is meant to permit reading accessible memory
8dedea02
VP
1721 at the boundary of accessible region. */
1722 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
9b409511 1723 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1724 {
1725 forward = 1;
1726 ++current_begin;
1727 }
1728 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
279a6fed 1729 buf + (end - begin) - 1, end - 1, 1,
9b409511 1730 &xfered_len) == TARGET_XFER_OK)
8dedea02
VP
1731 {
1732 forward = 0;
1733 --current_end;
1734 }
1735 else
1736 {
13b3fd9b 1737 xfree (buf);
8dedea02
VP
1738 return;
1739 }
1740
1741 /* Loop invariant is that the [current_begin, current_end) was previously
1742 found to be not readable as a whole.
1743
1744 Note loop condition -- if the range has 1 byte, we can't divide the range
1745 so there's no point trying further. */
1746 while (current_end - current_begin > 1)
1747 {
1748 ULONGEST first_half_begin, first_half_end;
1749 ULONGEST second_half_begin, second_half_end;
1750 LONGEST xfer;
279a6fed 1751 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
f1a507a1 1752
8dedea02
VP
1753 if (forward)
1754 {
1755 first_half_begin = current_begin;
1756 first_half_end = middle;
1757 second_half_begin = middle;
1758 second_half_end = current_end;
1759 }
1760 else
1761 {
1762 first_half_begin = middle;
1763 first_half_end = current_end;
1764 second_half_begin = current_begin;
1765 second_half_end = middle;
1766 }
1767
1768 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
d309493c 1769 buf + (first_half_begin - begin) * unit_size,
8dedea02
VP
1770 first_half_begin,
1771 first_half_end - first_half_begin);
1772
1773 if (xfer == first_half_end - first_half_begin)
1774 {
c378eb4e 1775 /* This half reads up fine. So, the error must be in the
3e43a32a 1776 other half. */
8dedea02
VP
1777 current_begin = second_half_begin;
1778 current_end = second_half_end;
1779 }
1780 else
1781 {
c378eb4e 1782 /* This half is not readable. Because we've tried one byte, we
279a6fed 1783 know some part of this half if actually readable. Go to the next
8dedea02
VP
1784 iteration to divide again and try to read.
1785
1786 We don't handle the other half, because this function only tries
1787 to read a single readable subrange. */
1788 current_begin = first_half_begin;
1789 current_end = first_half_end;
1790 }
1791 }
1792
1793 if (forward)
1794 {
1795 /* The [begin, current_begin) range has been read. */
1796 r.begin = begin;
1797 r.end = current_begin;
1798 r.data = buf;
1799 }
1800 else
1801 {
1802 /* The [current_end, end) range has been read. */
279a6fed 1803 LONGEST region_len = end - current_end;
f1a507a1 1804
224c3ddb 1805 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
d309493c
SM
1806 memcpy (r.data, buf + (current_end - begin) * unit_size,
1807 region_len * unit_size);
8dedea02
VP
1808 r.begin = current_end;
1809 r.end = end;
1810 xfree (buf);
1811 }
1812 VEC_safe_push(memory_read_result_s, (*result), &r);
1813}
1814
1815void
1816free_memory_read_result_vector (void *x)
1817{
9d78f827 1818 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
8dedea02
VP
1819 memory_read_result_s *current;
1820 int ix;
1821
9d78f827 1822 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
8dedea02
VP
1823 {
1824 xfree (current->data);
1825 }
9d78f827 1826 VEC_free (memory_read_result_s, *v);
8dedea02
VP
1827}
1828
1829VEC(memory_read_result_s) *
279a6fed
SM
1830read_memory_robust (struct target_ops *ops,
1831 const ULONGEST offset, const LONGEST len)
8dedea02
VP
1832{
1833 VEC(memory_read_result_s) *result = 0;
d309493c 1834 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
9d78f827
TT
1835 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1836 &result);
8dedea02 1837
279a6fed
SM
1838 LONGEST xfered_total = 0;
1839 while (xfered_total < len)
d5086790 1840 {
279a6fed
SM
1841 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1842 LONGEST region_len;
5d502164 1843
8dedea02
VP
1844 /* If there is no explicit region, a fake one should be created. */
1845 gdb_assert (region);
1846
1847 if (region->hi == 0)
279a6fed 1848 region_len = len - xfered_total;
8dedea02 1849 else
279a6fed 1850 region_len = region->hi - offset;
8dedea02
VP
1851
1852 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
d5086790 1853 {
c378eb4e 1854 /* Cannot read this region. Note that we can end up here only
8dedea02
VP
1855 if the region is explicitly marked inaccessible, or
1856 'inaccessible-by-default' is in effect. */
279a6fed 1857 xfered_total += region_len;
8dedea02
VP
1858 }
1859 else
1860 {
279a6fed 1861 LONGEST to_read = min (len - xfered_total, region_len);
d309493c 1862 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
9d78f827 1863 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
8dedea02 1864
279a6fed
SM
1865 LONGEST xfered_partial =
1866 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1867 (gdb_byte *) buffer,
1868 offset + xfered_total, to_read);
8dedea02 1869 /* Call an observer, notifying them of the xfer progress? */
279a6fed 1870 if (xfered_partial <= 0)
d5086790 1871 {
c378eb4e 1872 /* Got an error reading full chunk. See if maybe we can read
8dedea02 1873 some subrange. */
9d78f827 1874 do_cleanups (inner_cleanup);
e084c964
DB
1875 read_whatever_is_readable (ops, offset + xfered_total,
1876 offset + xfered_total + to_read,
1877 unit_size, &result);
279a6fed 1878 xfered_total += to_read;
d5086790 1879 }
8dedea02
VP
1880 else
1881 {
1882 struct memory_read_result r;
9d78f827
TT
1883
1884 discard_cleanups (inner_cleanup);
8dedea02 1885 r.data = buffer;
279a6fed
SM
1886 r.begin = offset + xfered_total;
1887 r.end = r.begin + xfered_partial;
8dedea02 1888 VEC_safe_push (memory_read_result_s, result, &r);
279a6fed 1889 xfered_total += xfered_partial;
8dedea02
VP
1890 }
1891 QUIT;
d5086790 1892 }
d5086790 1893 }
9d78f827
TT
1894
1895 discard_cleanups (cleanup);
8dedea02 1896 return result;
d5086790
VP
1897}
1898
8dedea02 1899
cf7a04e8
DJ
1900/* An alternative to target_write with progress callbacks. */
1901
1e3ff5ad 1902LONGEST
cf7a04e8
DJ
1903target_write_with_progress (struct target_ops *ops,
1904 enum target_object object,
1905 const char *annex, const gdb_byte *buf,
1906 ULONGEST offset, LONGEST len,
1907 void (*progress) (ULONGEST, void *), void *baton)
1e3ff5ad 1908{
279a6fed 1909 LONGEST xfered_total = 0;
d309493c
SM
1910 int unit_size = 1;
1911
1912 /* If we are writing to a memory object, find the length of an addressable
1913 unit for that architecture. */
1914 if (object == TARGET_OBJECT_MEMORY
1915 || object == TARGET_OBJECT_STACK_MEMORY
1916 || object == TARGET_OBJECT_CODE_MEMORY
1917 || object == TARGET_OBJECT_RAW_MEMORY)
1918 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
a76d924d
DJ
1919
1920 /* Give the progress callback a chance to set up. */
1921 if (progress)
1922 (*progress) (0, baton);
1923
279a6fed 1924 while (xfered_total < len)
1e3ff5ad 1925 {
279a6fed 1926 ULONGEST xfered_partial;
9b409511
YQ
1927 enum target_xfer_status status;
1928
1929 status = target_write_partial (ops, object, annex,
d309493c 1930 buf + xfered_total * unit_size,
279a6fed
SM
1931 offset + xfered_total, len - xfered_total,
1932 &xfered_partial);
cf7a04e8 1933
5c328c05 1934 if (status != TARGET_XFER_OK)
279a6fed 1935 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
cf7a04e8
DJ
1936
1937 if (progress)
279a6fed 1938 (*progress) (xfered_partial, baton);
cf7a04e8 1939
279a6fed 1940 xfered_total += xfered_partial;
1e3ff5ad
AC
1941 QUIT;
1942 }
1943 return len;
1944}
1945
7f79c47e
DE
1946/* For docs on target_write see target.h. */
1947
cf7a04e8
DJ
1948LONGEST
1949target_write (struct target_ops *ops,
1950 enum target_object object,
1951 const char *annex, const gdb_byte *buf,
1952 ULONGEST offset, LONGEST len)
1953{
1954 return target_write_with_progress (ops, object, annex, buf, offset, len,
1955 NULL, NULL);
1956}
1957
159f81f3
DJ
1958/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1959 the size of the transferred data. PADDING additional bytes are
1960 available in *BUF_P. This is a helper function for
1961 target_read_alloc; see the declaration of that function for more
1962 information. */
13547ab6 1963
159f81f3
DJ
1964static LONGEST
1965target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1966 const char *annex, gdb_byte **buf_p, int padding)
13547ab6
DJ
1967{
1968 size_t buf_alloc, buf_pos;
1969 gdb_byte *buf;
13547ab6
DJ
1970
1971 /* This function does not have a length parameter; it reads the
1972 entire OBJECT). Also, it doesn't support objects fetched partly
1973 from one target and partly from another (in a different stratum,
1974 e.g. a core file and an executable). Both reasons make it
1975 unsuitable for reading memory. */
1976 gdb_assert (object != TARGET_OBJECT_MEMORY);
1977
1978 /* Start by reading up to 4K at a time. The target will throttle
1979 this number down if necessary. */
1980 buf_alloc = 4096;
224c3ddb 1981 buf = (gdb_byte *) xmalloc (buf_alloc);
13547ab6
DJ
1982 buf_pos = 0;
1983 while (1)
1984 {
9b409511
YQ
1985 ULONGEST xfered_len;
1986 enum target_xfer_status status;
1987
1988 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1989 buf_pos, buf_alloc - buf_pos - padding,
1990 &xfered_len);
1991
1992 if (status == TARGET_XFER_EOF)
13547ab6
DJ
1993 {
1994 /* Read all there was. */
1995 if (buf_pos == 0)
1996 xfree (buf);
1997 else
1998 *buf_p = buf;
1999 return buf_pos;
2000 }
9b409511
YQ
2001 else if (status != TARGET_XFER_OK)
2002 {
2003 /* An error occurred. */
2004 xfree (buf);
2005 return TARGET_XFER_E_IO;
2006 }
13547ab6 2007
9b409511 2008 buf_pos += xfered_len;
13547ab6
DJ
2009
2010 /* If the buffer is filling up, expand it. */
2011 if (buf_alloc < buf_pos * 2)
2012 {
2013 buf_alloc *= 2;
224c3ddb 2014 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
13547ab6
DJ
2015 }
2016
2017 QUIT;
2018 }
2019}
2020
159f81f3
DJ
2021/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2022 the size of the transferred data. See the declaration in "target.h"
2023 function for more information about the return value. */
2024
2025LONGEST
2026target_read_alloc (struct target_ops *ops, enum target_object object,
2027 const char *annex, gdb_byte **buf_p)
2028{
2029 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2030}
2031
2032/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2033 returned as a string, allocated using xmalloc. If an error occurs
2034 or the transfer is unsupported, NULL is returned. Empty objects
2035 are returned as allocated but empty strings. A warning is issued
2036 if the result contains any embedded NUL bytes. */
2037
2038char *
2039target_read_stralloc (struct target_ops *ops, enum target_object object,
2040 const char *annex)
2041{
39086a0e
PA
2042 gdb_byte *buffer;
2043 char *bufstr;
7313baad 2044 LONGEST i, transferred;
159f81f3 2045
39086a0e
PA
2046 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2047 bufstr = (char *) buffer;
159f81f3
DJ
2048
2049 if (transferred < 0)
2050 return NULL;
2051
2052 if (transferred == 0)
2053 return xstrdup ("");
2054
39086a0e 2055 bufstr[transferred] = 0;
7313baad
UW
2056
2057 /* Check for embedded NUL bytes; but allow trailing NULs. */
39086a0e
PA
2058 for (i = strlen (bufstr); i < transferred; i++)
2059 if (bufstr[i] != 0)
7313baad
UW
2060 {
2061 warning (_("target object %d, annex %s, "
2062 "contained unexpected null characters"),
2063 (int) object, annex ? annex : "(none)");
2064 break;
2065 }
159f81f3 2066
39086a0e 2067 return bufstr;
159f81f3
DJ
2068}
2069
b6591e8b
AC
2070/* Memory transfer methods. */
2071
2072void
1b0ba102 2073get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
b6591e8b
AC
2074 LONGEST len)
2075{
07b82ea5
PA
2076 /* This method is used to read from an alternate, non-current
2077 target. This read must bypass the overlay support (as symbols
2078 don't match this target), and GDB's internal cache (wrong cache
2079 for this target). */
2080 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
b6591e8b 2081 != len)
578d3588 2082 memory_error (TARGET_XFER_E_IO, addr);
b6591e8b
AC
2083}
2084
2085ULONGEST
5d502164
MS
2086get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2087 int len, enum bfd_endian byte_order)
b6591e8b 2088{
f6519ebc 2089 gdb_byte buf[sizeof (ULONGEST)];
b6591e8b
AC
2090
2091 gdb_assert (len <= sizeof (buf));
2092 get_target_memory (ops, addr, buf, len);
e17a4113 2093 return extract_unsigned_integer (buf, len, byte_order);
b6591e8b
AC
2094}
2095
3db08215
MM
2096/* See target.h. */
2097
d914c394
SS
2098int
2099target_insert_breakpoint (struct gdbarch *gdbarch,
2100 struct bp_target_info *bp_tgt)
2101{
2102 if (!may_insert_breakpoints)
2103 {
2104 warning (_("May not insert breakpoints"));
2105 return 1;
2106 }
2107
6b84065d
TT
2108 return current_target.to_insert_breakpoint (&current_target,
2109 gdbarch, bp_tgt);
d914c394
SS
2110}
2111
3db08215
MM
2112/* See target.h. */
2113
d914c394 2114int
6b84065d 2115target_remove_breakpoint (struct gdbarch *gdbarch,
73971819
PA
2116 struct bp_target_info *bp_tgt,
2117 enum remove_bp_reason reason)
d914c394
SS
2118{
2119 /* This is kind of a weird case to handle, but the permission might
2120 have been changed after breakpoints were inserted - in which case
2121 we should just take the user literally and assume that any
2122 breakpoints should be left in place. */
2123 if (!may_insert_breakpoints)
2124 {
2125 warning (_("May not remove breakpoints"));
2126 return 1;
2127 }
2128
6b84065d 2129 return current_target.to_remove_breakpoint (&current_target,
73971819 2130 gdbarch, bp_tgt, reason);
d914c394
SS
2131}
2132
c906108c 2133static void
fba45db2 2134target_info (char *args, int from_tty)
c906108c
SS
2135{
2136 struct target_ops *t;
c906108c 2137 int has_all_mem = 0;
c5aa993b 2138
c906108c 2139 if (symfile_objfile != NULL)
4262abfb
JK
2140 printf_unfiltered (_("Symbols from \"%s\".\n"),
2141 objfile_name (symfile_objfile));
c906108c 2142
258b763a 2143 for (t = target_stack; t != NULL; t = t->beneath)
c906108c 2144 {
c35b1492 2145 if (!(*t->to_has_memory) (t))
c906108c
SS
2146 continue;
2147
c5aa993b 2148 if ((int) (t->to_stratum) <= (int) dummy_stratum)
c906108c
SS
2149 continue;
2150 if (has_all_mem)
3e43a32a
MS
2151 printf_unfiltered (_("\tWhile running this, "
2152 "GDB does not access memory from...\n"));
c5aa993b
JM
2153 printf_unfiltered ("%s:\n", t->to_longname);
2154 (t->to_files_info) (t);
c35b1492 2155 has_all_mem = (*t->to_has_all_memory) (t);
c906108c
SS
2156 }
2157}
2158
fd79ecee
DJ
2159/* This function is called before any new inferior is created, e.g.
2160 by running a program, attaching, or connecting to a target.
2161 It cleans up any state from previous invocations which might
2162 change between runs. This is a subset of what target_preopen
2163 resets (things which might change between targets). */
2164
2165void
2166target_pre_inferior (int from_tty)
2167{
c378eb4e 2168 /* Clear out solib state. Otherwise the solib state of the previous
b9db4ced 2169 inferior might have survived and is entirely wrong for the new
c378eb4e 2170 target. This has been observed on GNU/Linux using glibc 2.3. How
b9db4ced
UW
2171 to reproduce:
2172
2173 bash$ ./foo&
2174 [1] 4711
2175 bash$ ./foo&
2176 [1] 4712
2177 bash$ gdb ./foo
2178 [...]
2179 (gdb) attach 4711
2180 (gdb) detach
2181 (gdb) attach 4712
2182 Cannot access memory at address 0xdeadbeef
2183 */
b9db4ced 2184
50c71eaf
PA
2185 /* In some OSs, the shared library list is the same/global/shared
2186 across inferiors. If code is shared between processes, so are
2187 memory regions and features. */
f5656ead 2188 if (!gdbarch_has_global_solist (target_gdbarch ()))
50c71eaf
PA
2189 {
2190 no_shared_libraries (NULL, from_tty);
2191
2192 invalidate_target_mem_regions ();
424163ea 2193
50c71eaf
PA
2194 target_clear_description ();
2195 }
8ffcbaaf 2196
e9756d52
PP
2197 /* attach_flag may be set if the previous process associated with
2198 the inferior was attached to. */
2199 current_inferior ()->attach_flag = 0;
2200
5d5658a1
PA
2201 current_inferior ()->highest_thread_num = 0;
2202
8ffcbaaf 2203 agent_capability_invalidate ();
fd79ecee
DJ
2204}
2205
b8fa0bfa
PA
2206/* Callback for iterate_over_inferiors. Gets rid of the given
2207 inferior. */
2208
2209static int
2210dispose_inferior (struct inferior *inf, void *args)
2211{
2212 struct thread_info *thread;
2213
2214 thread = any_thread_of_process (inf->pid);
2215 if (thread)
2216 {
2217 switch_to_thread (thread->ptid);
2218
2219 /* Core inferiors actually should be detached, not killed. */
2220 if (target_has_execution)
2221 target_kill ();
2222 else
2223 target_detach (NULL, 0);
2224 }
2225
2226 return 0;
2227}
2228
c906108c
SS
2229/* This is to be called by the open routine before it does
2230 anything. */
2231
2232void
fba45db2 2233target_preopen (int from_tty)
c906108c 2234{
c5aa993b 2235 dont_repeat ();
c906108c 2236
b8fa0bfa 2237 if (have_inferiors ())
c5aa993b 2238 {
adf40b2e 2239 if (!from_tty
b8fa0bfa
PA
2240 || !have_live_inferiors ()
2241 || query (_("A program is being debugged already. Kill it? ")))
2242 iterate_over_inferiors (dispose_inferior, NULL);
c906108c 2243 else
8a3fe4f8 2244 error (_("Program not killed."));
c906108c
SS
2245 }
2246
2247 /* Calling target_kill may remove the target from the stack. But if
2248 it doesn't (which seems like a win for UDI), remove it now. */
87ab71f0
PA
2249 /* Leave the exec target, though. The user may be switching from a
2250 live process to a core of the same program. */
460014f5 2251 pop_all_targets_above (file_stratum);
fd79ecee
DJ
2252
2253 target_pre_inferior (from_tty);
c906108c
SS
2254}
2255
2256/* Detach a target after doing deferred register stores. */
2257
2258void
52554a0e 2259target_detach (const char *args, int from_tty)
c906108c 2260{
f5656ead 2261 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
50c71eaf
PA
2262 /* Don't remove global breakpoints here. They're removed on
2263 disconnection from the target. */
2264 ;
2265 else
2266 /* If we're in breakpoints-always-inserted mode, have to remove
2267 them before detaching. */
dfd4cc63 2268 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
74960c60 2269
24291992
PA
2270 prepare_for_detach ();
2271
09da0d0a 2272 current_target.to_detach (&current_target, args, from_tty);
c906108c
SS
2273}
2274
6ad8ae5c 2275void
fee354ee 2276target_disconnect (const char *args, int from_tty)
6ad8ae5c 2277{
50c71eaf
PA
2278 /* If we're in breakpoints-always-inserted mode or if breakpoints
2279 are global across processes, we have to remove them before
2280 disconnecting. */
74960c60
VP
2281 remove_breakpoints ();
2282
86a0854a 2283 current_target.to_disconnect (&current_target, args, from_tty);
6ad8ae5c
DJ
2284}
2285
f2b9e3df
SDJ
2286/* See target/target.h. */
2287
117de6a9 2288ptid_t
47608cb1 2289target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
117de6a9 2290{
a7068b60 2291 return (current_target.to_wait) (&current_target, ptid, status, options);
117de6a9
PA
2292}
2293
0b333c5e
PA
2294/* See target.h. */
2295
2296ptid_t
2297default_target_wait (struct target_ops *ops,
2298 ptid_t ptid, struct target_waitstatus *status,
2299 int options)
2300{
2301 status->kind = TARGET_WAITKIND_IGNORE;
2302 return minus_one_ptid;
2303}
2304
117de6a9
PA
2305char *
2306target_pid_to_str (ptid_t ptid)
2307{
770234d3 2308 return (*current_target.to_pid_to_str) (&current_target, ptid);
117de6a9
PA
2309}
2310
73ede765 2311const char *
4694da01
TT
2312target_thread_name (struct thread_info *info)
2313{
825828fc 2314 return current_target.to_thread_name (&current_target, info);
4694da01
TT
2315}
2316
e1ac3328 2317void
2ea28649 2318target_resume (ptid_t ptid, int step, enum gdb_signal signal)
e1ac3328 2319{
4e5d721f 2320 target_dcache_invalidate ();
28439f5e 2321
6b84065d 2322 current_target.to_resume (&current_target, ptid, step, signal);
28439f5e 2323
6b84065d 2324 registers_changed_ptid (ptid);
251bde03
PA
2325 /* We only set the internal executing state here. The user/frontend
2326 running state is set at a higher level. */
6b84065d 2327 set_executing (ptid, 1);
6b84065d 2328 clear_inline_frame_state (ptid);
e1ac3328 2329}
2455069d
UW
2330
2331void
2332target_pass_signals (int numsigs, unsigned char *pass_signals)
2333{
035cad7f 2334 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2455069d
UW
2335}
2336
9b224c5e
PA
2337void
2338target_program_signals (int numsigs, unsigned char *program_signals)
2339{
7d4f8efa
TT
2340 (*current_target.to_program_signals) (&current_target,
2341 numsigs, program_signals);
9b224c5e
PA
2342}
2343
098dba18
TT
2344static int
2345default_follow_fork (struct target_ops *self, int follow_child,
2346 int detach_fork)
2347{
2348 /* Some target returned a fork event, but did not know how to follow it. */
2349 internal_error (__FILE__, __LINE__,
2350 _("could not find a target to follow fork"));
2351}
2352
ee057212
DJ
2353/* Look through the list of possible targets for a target that can
2354 follow forks. */
2355
2356int
07107ca6 2357target_follow_fork (int follow_child, int detach_fork)
ee057212 2358{
a7068b60
TT
2359 return current_target.to_follow_fork (&current_target,
2360 follow_child, detach_fork);
ee057212
DJ
2361}
2362
94585166
DB
2363/* Target wrapper for follow exec hook. */
2364
2365void
2366target_follow_exec (struct inferior *inf, char *execd_pathname)
2367{
2368 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2369}
2370
8d657035
TT
2371static void
2372default_mourn_inferior (struct target_ops *self)
2373{
2374 internal_error (__FILE__, __LINE__,
2375 _("could not find a target to follow mourn inferior"));
2376}
2377
136d6dae
VP
2378void
2379target_mourn_inferior (void)
2380{
8d657035 2381 current_target.to_mourn_inferior (&current_target);
136d6dae 2382
8d657035
TT
2383 /* We no longer need to keep handles on any of the object files.
2384 Make sure to release them to avoid unnecessarily locking any
2385 of them while we're not actually debugging. */
2386 bfd_cache_close_all ();
136d6dae
VP
2387}
2388
424163ea
DJ
2389/* Look for a target which can describe architectural features, starting
2390 from TARGET. If we find one, return its description. */
2391
2392const struct target_desc *
2393target_read_description (struct target_ops *target)
2394{
2117c711 2395 return target->to_read_description (target);
424163ea
DJ
2396}
2397
58a5184e 2398/* This implements a basic search of memory, reading target memory and
08388c79
DE
2399 performing the search here (as opposed to performing the search in on the
2400 target side with, for example, gdbserver). */
2401
2402int
2403simple_search_memory (struct target_ops *ops,
2404 CORE_ADDR start_addr, ULONGEST search_space_len,
2405 const gdb_byte *pattern, ULONGEST pattern_len,
2406 CORE_ADDR *found_addrp)
2407{
2408 /* NOTE: also defined in find.c testcase. */
2409#define SEARCH_CHUNK_SIZE 16000
2410 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2411 /* Buffer to hold memory contents for searching. */
2412 gdb_byte *search_buf;
2413 unsigned search_buf_size;
2414 struct cleanup *old_cleanups;
2415
2416 search_buf_size = chunk_size + pattern_len - 1;
2417
2418 /* No point in trying to allocate a buffer larger than the search space. */
2419 if (search_space_len < search_buf_size)
2420 search_buf_size = search_space_len;
2421
224c3ddb 2422 search_buf = (gdb_byte *) malloc (search_buf_size);
08388c79 2423 if (search_buf == NULL)
5e1471f5 2424 error (_("Unable to allocate memory to perform the search."));
08388c79
DE
2425 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2426
2427 /* Prime the search buffer. */
2428
2429 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2430 search_buf, start_addr, search_buf_size) != search_buf_size)
2431 {
b3dc46ff
AB
2432 warning (_("Unable to access %s bytes of target "
2433 "memory at %s, halting search."),
2434 pulongest (search_buf_size), hex_string (start_addr));
08388c79
DE
2435 do_cleanups (old_cleanups);
2436 return -1;
2437 }
2438
2439 /* Perform the search.
2440
2441 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2442 When we've scanned N bytes we copy the trailing bytes to the start and
2443 read in another N bytes. */
2444
2445 while (search_space_len >= pattern_len)
2446 {
2447 gdb_byte *found_ptr;
2448 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2449
d7f3ff3e
SM
2450 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2451 pattern, pattern_len);
08388c79
DE
2452
2453 if (found_ptr != NULL)
2454 {
2455 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
5d502164 2456
08388c79
DE
2457 *found_addrp = found_addr;
2458 do_cleanups (old_cleanups);
2459 return 1;
2460 }
2461
2462 /* Not found in this chunk, skip to next chunk. */
2463
2464 /* Don't let search_space_len wrap here, it's unsigned. */
2465 if (search_space_len >= chunk_size)
2466 search_space_len -= chunk_size;
2467 else
2468 search_space_len = 0;
2469
2470 if (search_space_len >= pattern_len)
2471 {
2472 unsigned keep_len = search_buf_size - chunk_size;
8a35fb51 2473 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
08388c79
DE
2474 int nr_to_read;
2475
2476 /* Copy the trailing part of the previous iteration to the front
2477 of the buffer for the next iteration. */
2478 gdb_assert (keep_len == pattern_len - 1);
2479 memcpy (search_buf, search_buf + chunk_size, keep_len);
2480
2481 nr_to_read = min (search_space_len - keep_len, chunk_size);
2482
2483 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2484 search_buf + keep_len, read_addr,
2485 nr_to_read) != nr_to_read)
2486 {
b3dc46ff 2487 warning (_("Unable to access %s bytes of target "
9b20d036 2488 "memory at %s, halting search."),
b3dc46ff 2489 plongest (nr_to_read),
08388c79
DE
2490 hex_string (read_addr));
2491 do_cleanups (old_cleanups);
2492 return -1;
2493 }
2494
2495 start_addr += chunk_size;
2496 }
2497 }
2498
2499 /* Not found. */
2500
2501 do_cleanups (old_cleanups);
2502 return 0;
2503}
2504
58a5184e
TT
2505/* Default implementation of memory-searching. */
2506
2507static int
2508default_search_memory (struct target_ops *self,
2509 CORE_ADDR start_addr, ULONGEST search_space_len,
2510 const gdb_byte *pattern, ULONGEST pattern_len,
2511 CORE_ADDR *found_addrp)
2512{
2513 /* Start over from the top of the target stack. */
2514 return simple_search_memory (current_target.beneath,
2515 start_addr, search_space_len,
2516 pattern, pattern_len, found_addrp);
2517}
2518
08388c79
DE
2519/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2520 sequence of bytes in PATTERN with length PATTERN_LEN.
2521
2522 The result is 1 if found, 0 if not found, and -1 if there was an error
2523 requiring halting of the search (e.g. memory read error).
2524 If the pattern is found the address is recorded in FOUND_ADDRP. */
2525
2526int
2527target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2528 const gdb_byte *pattern, ULONGEST pattern_len,
2529 CORE_ADDR *found_addrp)
2530{
a7068b60
TT
2531 return current_target.to_search_memory (&current_target, start_addr,
2532 search_space_len,
2533 pattern, pattern_len, found_addrp);
08388c79
DE
2534}
2535
8edfe269
DJ
2536/* Look through the currently pushed targets. If none of them will
2537 be able to restart the currently running process, issue an error
2538 message. */
2539
2540void
2541target_require_runnable (void)
2542{
2543 struct target_ops *t;
2544
2545 for (t = target_stack; t != NULL; t = t->beneath)
2546 {
2547 /* If this target knows how to create a new program, then
2548 assume we will still be able to after killing the current
2549 one. Either killing and mourning will not pop T, or else
2550 find_default_run_target will find it again. */
2551 if (t->to_create_inferior != NULL)
2552 return;
2553
548740d6 2554 /* Do not worry about targets at certain strata that can not
8edfe269
DJ
2555 create inferiors. Assume they will be pushed again if
2556 necessary, and continue to the process_stratum. */
85e747d2 2557 if (t->to_stratum == thread_stratum
548740d6 2558 || t->to_stratum == record_stratum
85e747d2 2559 || t->to_stratum == arch_stratum)
8edfe269
DJ
2560 continue;
2561
3e43a32a
MS
2562 error (_("The \"%s\" target does not support \"run\". "
2563 "Try \"help target\" or \"continue\"."),
8edfe269
DJ
2564 t->to_shortname);
2565 }
2566
2567 /* This function is only called if the target is running. In that
2568 case there should have been a process_stratum target and it
c378eb4e 2569 should either know how to create inferiors, or not... */
9b20d036 2570 internal_error (__FILE__, __LINE__, _("No targets found"));
8edfe269
DJ
2571}
2572
6a3cb8e8
PA
2573/* Whether GDB is allowed to fall back to the default run target for
2574 "run", "attach", etc. when no target is connected yet. */
2575static int auto_connect_native_target = 1;
2576
2577static void
2578show_auto_connect_native_target (struct ui_file *file, int from_tty,
2579 struct cmd_list_element *c, const char *value)
2580{
2581 fprintf_filtered (file,
2582 _("Whether GDB may automatically connect to the "
2583 "native target is %s.\n"),
2584 value);
2585}
2586
c906108c
SS
2587/* Look through the list of possible targets for a target that can
2588 execute a run or attach command without any other data. This is
2589 used to locate the default process stratum.
2590
5f667f2d
PA
2591 If DO_MESG is not NULL, the result is always valid (error() is
2592 called for errors); else, return NULL on error. */
c906108c
SS
2593
2594static struct target_ops *
fba45db2 2595find_default_run_target (char *do_mesg)
c906108c 2596{
c906108c 2597 struct target_ops *runable = NULL;
c906108c 2598
6a3cb8e8 2599 if (auto_connect_native_target)
c906108c 2600 {
89a1c21a 2601 struct target_ops *t;
6a3cb8e8 2602 int count = 0;
89a1c21a 2603 int i;
6a3cb8e8 2604
89a1c21a 2605 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
c906108c 2606 {
89a1c21a 2607 if (t->to_can_run != delegate_can_run && target_can_run (t))
6a3cb8e8 2608 {
89a1c21a 2609 runable = t;
6a3cb8e8
PA
2610 ++count;
2611 }
c906108c 2612 }
6a3cb8e8
PA
2613
2614 if (count != 1)
2615 runable = NULL;
c906108c
SS
2616 }
2617
6a3cb8e8 2618 if (runable == NULL)
5f667f2d
PA
2619 {
2620 if (do_mesg)
2621 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2622 else
2623 return NULL;
2624 }
c906108c
SS
2625
2626 return runable;
2627}
2628
b3ccfe11 2629/* See target.h. */
c906108c 2630
b3ccfe11
TT
2631struct target_ops *
2632find_attach_target (void)
c906108c
SS
2633{
2634 struct target_ops *t;
2635
b3ccfe11
TT
2636 /* If a target on the current stack can attach, use it. */
2637 for (t = current_target.beneath; t != NULL; t = t->beneath)
2638 {
2639 if (t->to_attach != NULL)
2640 break;
2641 }
c906108c 2642
b3ccfe11
TT
2643 /* Otherwise, use the default run target for attaching. */
2644 if (t == NULL)
2645 t = find_default_run_target ("attach");
b84876c2 2646
b3ccfe11 2647 return t;
b84876c2
PA
2648}
2649
b3ccfe11 2650/* See target.h. */
b84876c2 2651
b3ccfe11
TT
2652struct target_ops *
2653find_run_target (void)
9908b566
VP
2654{
2655 struct target_ops *t;
2656
b3ccfe11
TT
2657 /* If a target on the current stack can attach, use it. */
2658 for (t = current_target.beneath; t != NULL; t = t->beneath)
2659 {
2660 if (t->to_create_inferior != NULL)
2661 break;
2662 }
5d502164 2663
b3ccfe11
TT
2664 /* Otherwise, use the default run target. */
2665 if (t == NULL)
2666 t = find_default_run_target ("run");
9908b566 2667
b3ccfe11 2668 return t;
9908b566
VP
2669}
2670
145b16a9
UW
2671/* Implement the "info proc" command. */
2672
451b7c33 2673int
7bc112c1 2674target_info_proc (const char *args, enum info_proc_what what)
145b16a9
UW
2675{
2676 struct target_ops *t;
2677
2678 /* If we're already connected to something that can get us OS
2679 related data, use it. Otherwise, try using the native
2680 target. */
2681 if (current_target.to_stratum >= process_stratum)
2682 t = current_target.beneath;
2683 else
2684 t = find_default_run_target (NULL);
2685
2686 for (; t != NULL; t = t->beneath)
2687 {
2688 if (t->to_info_proc != NULL)
2689 {
2690 t->to_info_proc (t, args, what);
2691
2692 if (targetdebug)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "target_info_proc (\"%s\", %d)\n", args, what);
2695
451b7c33 2696 return 1;
145b16a9
UW
2697 }
2698 }
2699
451b7c33 2700 return 0;
145b16a9
UW
2701}
2702
03583c20 2703static int
2bfc0540 2704find_default_supports_disable_randomization (struct target_ops *self)
03583c20
UW
2705{
2706 struct target_ops *t;
2707
2708 t = find_default_run_target (NULL);
2709 if (t && t->to_supports_disable_randomization)
2bfc0540 2710 return (t->to_supports_disable_randomization) (t);
03583c20
UW
2711 return 0;
2712}
2713
2714int
2715target_supports_disable_randomization (void)
2716{
2717 struct target_ops *t;
2718
2719 for (t = &current_target; t != NULL; t = t->beneath)
2720 if (t->to_supports_disable_randomization)
2bfc0540 2721 return t->to_supports_disable_randomization (t);
03583c20
UW
2722
2723 return 0;
2724}
9908b566 2725
07e059b5
VP
2726char *
2727target_get_osdata (const char *type)
2728{
07e059b5
VP
2729 struct target_ops *t;
2730
739ef7fb
PA
2731 /* If we're already connected to something that can get us OS
2732 related data, use it. Otherwise, try using the native
2733 target. */
2734 if (current_target.to_stratum >= process_stratum)
6d097e65 2735 t = current_target.beneath;
739ef7fb
PA
2736 else
2737 t = find_default_run_target ("get OS data");
07e059b5
VP
2738
2739 if (!t)
2740 return NULL;
2741
6d097e65 2742 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
07e059b5
VP
2743}
2744
8eaff7cd
TT
2745static struct address_space *
2746default_thread_address_space (struct target_ops *self, ptid_t ptid)
6c95b8df
PA
2747{
2748 struct inferior *inf;
6c95b8df
PA
2749
2750 /* Fall-back to the "main" address space of the inferior. */
c9657e70 2751 inf = find_inferior_ptid (ptid);
6c95b8df
PA
2752
2753 if (inf == NULL || inf->aspace == NULL)
3e43a32a 2754 internal_error (__FILE__, __LINE__,
9b20d036
MS
2755 _("Can't determine the current "
2756 "address space of thread %s\n"),
6c95b8df
PA
2757 target_pid_to_str (ptid));
2758
2759 return inf->aspace;
2760}
2761
8eaff7cd
TT
2762/* Determine the current address space of thread PTID. */
2763
2764struct address_space *
2765target_thread_address_space (ptid_t ptid)
2766{
2767 struct address_space *aspace;
2768
2769 aspace = current_target.to_thread_address_space (&current_target, ptid);
2770 gdb_assert (aspace != NULL);
2771
8eaff7cd
TT
2772 return aspace;
2773}
2774
7313baad
UW
2775
2776/* Target file operations. */
2777
2778static struct target_ops *
2779default_fileio_target (void)
2780{
2781 /* If we're already connected to something that can perform
2782 file I/O, use it. Otherwise, try using the native target. */
2783 if (current_target.to_stratum >= process_stratum)
2784 return current_target.beneath;
2785 else
2786 return find_default_run_target ("file I/O");
2787}
2788
1c4b552b
GB
2789/* File handle for target file operations. */
2790
2791typedef struct
2792{
2793 /* The target on which this file is open. */
2794 struct target_ops *t;
2795
2796 /* The file descriptor on the target. */
2797 int fd;
2798} fileio_fh_t;
2799
2800DEF_VEC_O (fileio_fh_t);
2801
2802/* Vector of currently open file handles. The value returned by
2803 target_fileio_open and passed as the FD argument to other
2804 target_fileio_* functions is an index into this vector. This
2805 vector's entries are never freed; instead, files are marked as
2806 closed, and the handle becomes available for reuse. */
2807static VEC (fileio_fh_t) *fileio_fhandles;
2808
2809/* Macro to check whether a fileio_fh_t represents a closed file. */
2810#define is_closed_fileio_fh(fd) ((fd) < 0)
2811
2812/* Index into fileio_fhandles of the lowest handle that might be
2813 closed. This permits handle reuse without searching the whole
2814 list each time a new file is opened. */
2815static int lowest_closed_fd;
2816
2817/* Acquire a target fileio file descriptor. */
2818
2819static int
2820acquire_fileio_fd (struct target_ops *t, int fd)
2821{
870f88f7 2822 fileio_fh_t *fh;
1c4b552b
GB
2823
2824 gdb_assert (!is_closed_fileio_fh (fd));
2825
2826 /* Search for closed handles to reuse. */
2827 for (;
2828 VEC_iterate (fileio_fh_t, fileio_fhandles,
2829 lowest_closed_fd, fh);
2830 lowest_closed_fd++)
2831 if (is_closed_fileio_fh (fh->fd))
2832 break;
2833
2834 /* Push a new handle if no closed handles were found. */
2835 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2836 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2837
2838 /* Fill in the handle. */
2839 fh->t = t;
2840 fh->fd = fd;
2841
2842 /* Return its index, and start the next lookup at
2843 the next index. */
2844 return lowest_closed_fd++;
2845}
2846
2847/* Release a target fileio file descriptor. */
2848
2849static void
2850release_fileio_fd (int fd, fileio_fh_t *fh)
2851{
2852 fh->fd = -1;
2853 lowest_closed_fd = min (lowest_closed_fd, fd);
2854}
2855
2856/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2857
2858#define fileio_fd_to_fh(fd) \
2859 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2860
4313b8c0
GB
2861/* Helper for target_fileio_open and
2862 target_fileio_open_warn_if_slow. */
12e2a5fd 2863
4313b8c0
GB
2864static int
2865target_fileio_open_1 (struct inferior *inf, const char *filename,
2866 int flags, int mode, int warn_if_slow,
2867 int *target_errno)
7313baad
UW
2868{
2869 struct target_ops *t;
2870
2871 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2872 {
2873 if (t->to_fileio_open != NULL)
2874 {
07c138c8 2875 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
4313b8c0 2876 warn_if_slow, target_errno);
7313baad 2877
1c4b552b
GB
2878 if (fd < 0)
2879 fd = -1;
2880 else
2881 fd = acquire_fileio_fd (t, fd);
2882
7313baad
UW
2883 if (targetdebug)
2884 fprintf_unfiltered (gdb_stdlog,
4313b8c0 2885 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
07c138c8
GB
2886 " = %d (%d)\n",
2887 inf == NULL ? 0 : inf->num,
7313baad 2888 filename, flags, mode,
4313b8c0
GB
2889 warn_if_slow, fd,
2890 fd != -1 ? 0 : *target_errno);
7313baad
UW
2891 return fd;
2892 }
2893 }
2894
2895 *target_errno = FILEIO_ENOSYS;
2896 return -1;
2897}
2898
12e2a5fd
GB
2899/* See target.h. */
2900
4313b8c0
GB
2901int
2902target_fileio_open (struct inferior *inf, const char *filename,
2903 int flags, int mode, int *target_errno)
2904{
2905 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2906 target_errno);
2907}
2908
2909/* See target.h. */
2910
2911int
2912target_fileio_open_warn_if_slow (struct inferior *inf,
2913 const char *filename,
2914 int flags, int mode, int *target_errno)
2915{
2916 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2917 target_errno);
2918}
2919
2920/* See target.h. */
2921
7313baad
UW
2922int
2923target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2924 ULONGEST offset, int *target_errno)
2925{
1c4b552b
GB
2926 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2927 int ret = -1;
7313baad 2928
1c4b552b
GB
2929 if (is_closed_fileio_fh (fh->fd))
2930 *target_errno = EBADF;
2931 else
2932 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2933 len, offset, target_errno);
7313baad 2934
1c4b552b
GB
2935 if (targetdebug)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "target_fileio_pwrite (%d,...,%d,%s) "
2938 "= %d (%d)\n",
2939 fd, len, pulongest (offset),
2940 ret, ret != -1 ? 0 : *target_errno);
2941 return ret;
7313baad
UW
2942}
2943
12e2a5fd
GB
2944/* See target.h. */
2945
7313baad
UW
2946int
2947target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2948 ULONGEST offset, int *target_errno)
2949{
1c4b552b
GB
2950 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2951 int ret = -1;
7313baad 2952
1c4b552b
GB
2953 if (is_closed_fileio_fh (fh->fd))
2954 *target_errno = EBADF;
2955 else
2956 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2957 len, offset, target_errno);
7313baad 2958
1c4b552b
GB
2959 if (targetdebug)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "target_fileio_pread (%d,...,%d,%s) "
2962 "= %d (%d)\n",
2963 fd, len, pulongest (offset),
2964 ret, ret != -1 ? 0 : *target_errno);
9b15c1f0
GB
2965 return ret;
2966}
2967
2968/* See target.h. */
12e2a5fd 2969
9b15c1f0
GB
2970int
2971target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2972{
2973 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2974 int ret = -1;
2975
2976 if (is_closed_fileio_fh (fh->fd))
2977 *target_errno = EBADF;
2978 else
2979 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2980
2981 if (targetdebug)
2982 fprintf_unfiltered (gdb_stdlog,
2983 "target_fileio_fstat (%d) = %d (%d)\n",
2984 fd, ret, ret != -1 ? 0 : *target_errno);
1c4b552b 2985 return ret;
7313baad
UW
2986}
2987
12e2a5fd
GB
2988/* See target.h. */
2989
7313baad
UW
2990int
2991target_fileio_close (int fd, int *target_errno)
2992{
1c4b552b
GB
2993 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2994 int ret = -1;
7313baad 2995
1c4b552b
GB
2996 if (is_closed_fileio_fh (fh->fd))
2997 *target_errno = EBADF;
2998 else
7313baad 2999 {
1c4b552b
GB
3000 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3001 release_fileio_fd (fd, fh);
7313baad
UW
3002 }
3003
1c4b552b
GB
3004 if (targetdebug)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "target_fileio_close (%d) = %d (%d)\n",
3007 fd, ret, ret != -1 ? 0 : *target_errno);
3008 return ret;
7313baad
UW
3009}
3010
12e2a5fd
GB
3011/* See target.h. */
3012
7313baad 3013int
07c138c8
GB
3014target_fileio_unlink (struct inferior *inf, const char *filename,
3015 int *target_errno)
7313baad
UW
3016{
3017 struct target_ops *t;
3018
3019 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3020 {
3021 if (t->to_fileio_unlink != NULL)
3022 {
07c138c8
GB
3023 int ret = t->to_fileio_unlink (t, inf, filename,
3024 target_errno);
7313baad
UW
3025
3026 if (targetdebug)
3027 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3028 "target_fileio_unlink (%d,%s)"
3029 " = %d (%d)\n",
3030 inf == NULL ? 0 : inf->num, filename,
3031 ret, ret != -1 ? 0 : *target_errno);
7313baad
UW
3032 return ret;
3033 }
3034 }
3035
3036 *target_errno = FILEIO_ENOSYS;
3037 return -1;
3038}
3039
12e2a5fd
GB
3040/* See target.h. */
3041
b9e7b9c3 3042char *
07c138c8
GB
3043target_fileio_readlink (struct inferior *inf, const char *filename,
3044 int *target_errno)
b9e7b9c3
UW
3045{
3046 struct target_ops *t;
3047
3048 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3049 {
3050 if (t->to_fileio_readlink != NULL)
3051 {
07c138c8
GB
3052 char *ret = t->to_fileio_readlink (t, inf, filename,
3053 target_errno);
b9e7b9c3
UW
3054
3055 if (targetdebug)
3056 fprintf_unfiltered (gdb_stdlog,
07c138c8
GB
3057 "target_fileio_readlink (%d,%s)"
3058 " = %s (%d)\n",
3059 inf == NULL ? 0 : inf->num,
b9e7b9c3
UW
3060 filename, ret? ret : "(nil)",
3061 ret? 0 : *target_errno);
3062 return ret;
3063 }
3064 }
3065
3066 *target_errno = FILEIO_ENOSYS;
3067 return NULL;
3068}
3069
7313baad
UW
3070static void
3071target_fileio_close_cleanup (void *opaque)
3072{
3073 int fd = *(int *) opaque;
3074 int target_errno;
3075
3076 target_fileio_close (fd, &target_errno);
3077}
3078
07c138c8
GB
3079/* Read target file FILENAME, in the filesystem as seen by INF. If
3080 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3081 remote targets, the remote stub). Store the result in *BUF_P and
3082 return the size of the transferred data. PADDING additional bytes
3083 are available in *BUF_P. This is a helper function for
3084 target_fileio_read_alloc; see the declaration of that function for
3085 more information. */
7313baad 3086
f7af1fcd
JK
3087static LONGEST
3088target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3089 gdb_byte **buf_p, int padding)
3090{
3091 struct cleanup *close_cleanup;
db1ff28b
JK
3092 size_t buf_alloc, buf_pos;
3093 gdb_byte *buf;
3094 LONGEST n;
3095 int fd;
3096 int target_errno;
f7af1fcd 3097
db1ff28b
JK
3098 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3099 &target_errno);
f7af1fcd
JK
3100 if (fd == -1)
3101 return -1;
3102
3103 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
db1ff28b
JK
3104
3105 /* Start by reading up to 4K at a time. The target will throttle
3106 this number down if necessary. */
3107 buf_alloc = 4096;
224c3ddb 3108 buf = (gdb_byte *) xmalloc (buf_alloc);
db1ff28b
JK
3109 buf_pos = 0;
3110 while (1)
3111 {
3112 n = target_fileio_pread (fd, &buf[buf_pos],
3113 buf_alloc - buf_pos - padding, buf_pos,
3114 &target_errno);
3115 if (n < 0)
3116 {
3117 /* An error occurred. */
3118 do_cleanups (close_cleanup);
3119 xfree (buf);
3120 return -1;
3121 }
3122 else if (n == 0)
3123 {
3124 /* Read all there was. */
3125 do_cleanups (close_cleanup);
3126 if (buf_pos == 0)
3127 xfree (buf);
3128 else
3129 *buf_p = buf;
3130 return buf_pos;
3131 }
3132
3133 buf_pos += n;
3134
3135 /* If the buffer is filling up, expand it. */
3136 if (buf_alloc < buf_pos * 2)
3137 {
3138 buf_alloc *= 2;
224c3ddb 3139 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
db1ff28b
JK
3140 }
3141
3142 QUIT;
3143 }
f7af1fcd
JK
3144}
3145
12e2a5fd 3146/* See target.h. */
7313baad
UW
3147
3148LONGEST
07c138c8
GB
3149target_fileio_read_alloc (struct inferior *inf, const char *filename,
3150 gdb_byte **buf_p)
7313baad 3151{
07c138c8 3152 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
7313baad
UW
3153}
3154
db1ff28b 3155/* See target.h. */
f7af1fcd
JK
3156
3157char *
3158target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3159{
db1ff28b
JK
3160 gdb_byte *buffer;
3161 char *bufstr;
3162 LONGEST i, transferred;
3163
3164 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3165 bufstr = (char *) buffer;
3166
3167 if (transferred < 0)
3168 return NULL;
3169
3170 if (transferred == 0)
3171 return xstrdup ("");
3172
3173 bufstr[transferred] = 0;
3174
3175 /* Check for embedded NUL bytes; but allow trailing NULs. */
3176 for (i = strlen (bufstr); i < transferred; i++)
3177 if (bufstr[i] != 0)
3178 {
3179 warning (_("target file %s "
3180 "contained unexpected null characters"),
3181 filename);
3182 break;
3183 }
3184
3185 return bufstr;
f7af1fcd 3186}
7313baad 3187
db1ff28b 3188
e0d24f8d 3189static int
31568a15
TT
3190default_region_ok_for_hw_watchpoint (struct target_ops *self,
3191 CORE_ADDR addr, int len)
e0d24f8d 3192{
f5656ead 3193 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
ccaa32c7
GS
3194}
3195
5009afc5
AS
3196static int
3197default_watchpoint_addr_within_range (struct target_ops *target,
3198 CORE_ADDR addr,
3199 CORE_ADDR start, int length)
3200{
3201 return addr >= start && addr < start + length;
3202}
3203
c2250ad1
UW
3204static struct gdbarch *
3205default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3206{
f5656ead 3207 return target_gdbarch ();
c2250ad1
UW
3208}
3209
c906108c 3210static int
555bbdeb
TT
3211return_zero (struct target_ops *ignore)
3212{
3213 return 0;
3214}
3215
3216static int
3217return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
c906108c
SS
3218{
3219 return 0;
3220}
3221
ed9a39eb
JM
3222/*
3223 * Find the next target down the stack from the specified target.
3224 */
3225
3226struct target_ops *
fba45db2 3227find_target_beneath (struct target_ops *t)
ed9a39eb 3228{
258b763a 3229 return t->beneath;
ed9a39eb
JM
3230}
3231
8b06beed
TT
3232/* See target.h. */
3233
3234struct target_ops *
3235find_target_at (enum strata stratum)
3236{
3237 struct target_ops *t;
3238
3239 for (t = current_target.beneath; t != NULL; t = t->beneath)
3240 if (t->to_stratum == stratum)
3241 return t;
3242
3243 return NULL;
3244}
3245
c906108c 3246\f
0f48b757
PA
3247
3248/* See target.h */
3249
3250void
3251target_announce_detach (int from_tty)
3252{
3253 pid_t pid;
3254 char *exec_file;
3255
3256 if (!from_tty)
3257 return;
3258
3259 exec_file = get_exec_file (0);
3260 if (exec_file == NULL)
3261 exec_file = "";
3262
3263 pid = ptid_get_pid (inferior_ptid);
3264 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3265 target_pid_to_str (pid_to_ptid (pid)));
3266 gdb_flush (gdb_stdout);
3267}
3268
c906108c
SS
3269/* The inferior process has died. Long live the inferior! */
3270
3271void
fba45db2 3272generic_mourn_inferior (void)
c906108c 3273{
7f9f62ba 3274 ptid_t ptid;
c906108c 3275
7f9f62ba 3276 ptid = inferior_ptid;
39f77062 3277 inferior_ptid = null_ptid;
7f9f62ba 3278
f59f708a
PA
3279 /* Mark breakpoints uninserted in case something tries to delete a
3280 breakpoint while we delete the inferior's threads (which would
3281 fail, since the inferior is long gone). */
3282 mark_breakpoints_out ();
3283
7f9f62ba
PA
3284 if (!ptid_equal (ptid, null_ptid))
3285 {
3286 int pid = ptid_get_pid (ptid);
6c95b8df 3287 exit_inferior (pid);
7f9f62ba
PA
3288 }
3289
f59f708a
PA
3290 /* Note this wipes step-resume breakpoints, so needs to be done
3291 after exit_inferior, which ends up referencing the step-resume
3292 breakpoints through clear_thread_inferior_resources. */
c906108c 3293 breakpoint_init_inferior (inf_exited);
f59f708a 3294
c906108c
SS
3295 registers_changed ();
3296
c906108c
SS
3297 reopen_exec_file ();
3298 reinit_frame_cache ();
3299
9a4105ab
AC
3300 if (deprecated_detach_hook)
3301 deprecated_detach_hook ();
c906108c
SS
3302}
3303\f
fd0a2a6f
MK
3304/* Convert a normal process ID to a string. Returns the string in a
3305 static buffer. */
c906108c
SS
3306
3307char *
39f77062 3308normal_pid_to_str (ptid_t ptid)
c906108c 3309{
fd0a2a6f 3310 static char buf[32];
c906108c 3311
5fff8fc0 3312 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
c906108c
SS
3313 return buf;
3314}
3315
2c0b251b 3316static char *
770234d3 3317default_pid_to_str (struct target_ops *ops, ptid_t ptid)
117de6a9
PA
3318{
3319 return normal_pid_to_str (ptid);
3320}
3321
9b4eba8e
HZ
3322/* Error-catcher for target_find_memory_regions. */
3323static int
2e73927c
TT
3324dummy_find_memory_regions (struct target_ops *self,
3325 find_memory_region_ftype ignore1, void *ignore2)
be4d1333 3326{
9b4eba8e 3327 error (_("Command not implemented for this target."));
be4d1333
MS
3328 return 0;
3329}
3330
9b4eba8e
HZ
3331/* Error-catcher for target_make_corefile_notes. */
3332static char *
fc6691b2
TT
3333dummy_make_corefile_notes (struct target_ops *self,
3334 bfd *ignore1, int *ignore2)
be4d1333 3335{
9b4eba8e 3336 error (_("Command not implemented for this target."));
be4d1333
MS
3337 return NULL;
3338}
3339
c906108c
SS
3340/* Set up the handful of non-empty slots needed by the dummy target
3341 vector. */
3342
3343static void
fba45db2 3344init_dummy_target (void)
c906108c
SS
3345{
3346 dummy_target.to_shortname = "None";
3347 dummy_target.to_longname = "None";
3348 dummy_target.to_doc = "";
03583c20
UW
3349 dummy_target.to_supports_disable_randomization
3350 = find_default_supports_disable_randomization;
c906108c 3351 dummy_target.to_stratum = dummy_stratum;
555bbdeb
TT
3352 dummy_target.to_has_all_memory = return_zero;
3353 dummy_target.to_has_memory = return_zero;
3354 dummy_target.to_has_stack = return_zero;
3355 dummy_target.to_has_registers = return_zero;
3356 dummy_target.to_has_execution = return_zero_has_execution;
c906108c 3357 dummy_target.to_magic = OPS_MAGIC;
1101cb7b
TT
3358
3359 install_dummy_methods (&dummy_target);
c906108c 3360}
c906108c 3361\f
c906108c 3362
f1c07ab0 3363void
460014f5 3364target_close (struct target_ops *targ)
f1c07ab0 3365{
7fdc1521
TT
3366 gdb_assert (!target_is_pushed (targ));
3367
f1c07ab0 3368 if (targ->to_xclose != NULL)
460014f5 3369 targ->to_xclose (targ);
f1c07ab0 3370 else if (targ->to_close != NULL)
de90e03d 3371 targ->to_close (targ);
947b8855
PA
3372
3373 if (targetdebug)
460014f5 3374 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
f1c07ab0
AC
3375}
3376
28439f5e
PA
3377int
3378target_thread_alive (ptid_t ptid)
c906108c 3379{
a7068b60 3380 return current_target.to_thread_alive (&current_target, ptid);
28439f5e
PA
3381}
3382
3383void
e8032dde 3384target_update_thread_list (void)
28439f5e 3385{
e8032dde 3386 current_target.to_update_thread_list (&current_target);
c906108c
SS
3387}
3388
d914c394
SS
3389void
3390target_stop (ptid_t ptid)
3391{
3392 if (!may_stop)
3393 {
3394 warning (_("May not interrupt or stop the target, ignoring attempt"));
3395 return;
3396 }
3397
1eab8a48 3398 (*current_target.to_stop) (&current_target, ptid);
d914c394
SS
3399}
3400
bfedc46a
PA
3401void
3402target_interrupt (ptid_t ptid)
3403{
3404 if (!may_stop)
3405 {
3406 warning (_("May not interrupt or stop the target, ignoring attempt"));
3407 return;
3408 }
3409
3410 (*current_target.to_interrupt) (&current_target, ptid);
3411}
3412
abc56d60
PA
3413/* See target.h. */
3414
93692b58
PA
3415void
3416target_pass_ctrlc (void)
3417{
3418 (*current_target.to_pass_ctrlc) (&current_target);
3419}
3420
3421/* See target.h. */
3422
3423void
3424default_target_pass_ctrlc (struct target_ops *ops)
3425{
3426 target_interrupt (inferior_ptid);
3427}
3428
f8c1d06b
GB
3429/* See target/target.h. */
3430
3431void
03f4463b 3432target_stop_and_wait (ptid_t ptid)
f8c1d06b
GB
3433{
3434 struct target_waitstatus status;
3435 int was_non_stop = non_stop;
3436
3437 non_stop = 1;
3438 target_stop (ptid);
3439
3440 memset (&status, 0, sizeof (status));
3441 target_wait (ptid, &status, 0);
3442
3443 non_stop = was_non_stop;
3444}
3445
3446/* See target/target.h. */
3447
3448void
03f4463b 3449target_continue_no_signal (ptid_t ptid)
f8c1d06b
GB
3450{
3451 target_resume (ptid, 0, GDB_SIGNAL_0);
3452}
3453
049a8570
SDJ
3454/* See target/target.h. */
3455
3456void
3457target_continue (ptid_t ptid, enum gdb_signal signal)
3458{
3459 target_resume (ptid, 0, signal);
3460}
3461
09826ec5
PA
3462/* Concatenate ELEM to LIST, a comma separate list, and return the
3463 result. The LIST incoming argument is released. */
3464
3465static char *
3466str_comma_list_concat_elem (char *list, const char *elem)
3467{
3468 if (list == NULL)
3469 return xstrdup (elem);
3470 else
3471 return reconcat (list, list, ", ", elem, (char *) NULL);
3472}
3473
3474/* Helper for target_options_to_string. If OPT is present in
3475 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3476 Returns the new resulting string. OPT is removed from
3477 TARGET_OPTIONS. */
3478
3479static char *
3480do_option (int *target_options, char *ret,
3481 int opt, char *opt_str)
3482{
3483 if ((*target_options & opt) != 0)
3484 {
3485 ret = str_comma_list_concat_elem (ret, opt_str);
3486 *target_options &= ~opt;
3487 }
3488
3489 return ret;
3490}
3491
3492char *
3493target_options_to_string (int target_options)
3494{
3495 char *ret = NULL;
3496
3497#define DO_TARG_OPTION(OPT) \
3498 ret = do_option (&target_options, ret, OPT, #OPT)
3499
3500 DO_TARG_OPTION (TARGET_WNOHANG);
3501
3502 if (target_options != 0)
3503 ret = str_comma_list_concat_elem (ret, "unknown???");
3504
3505 if (ret == NULL)
3506 ret = xstrdup ("");
3507 return ret;
3508}
3509
bf0c5130 3510static void
56be3814
UW
3511debug_print_register (const char * func,
3512 struct regcache *regcache, int regno)
bf0c5130 3513{
f8d29908 3514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5d502164 3515
bf0c5130 3516 fprintf_unfiltered (gdb_stdlog, "%s ", func);
f8d29908 3517 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
f8d29908
UW
3518 && gdbarch_register_name (gdbarch, regno) != NULL
3519 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3520 fprintf_unfiltered (gdb_stdlog, "(%s)",
3521 gdbarch_register_name (gdbarch, regno));
bf0c5130
AC
3522 else
3523 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
0ff58721 3524 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
bf0c5130 3525 {
e17a4113 3526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f8d29908 3527 int i, size = register_size (gdbarch, regno);
e362b510 3528 gdb_byte buf[MAX_REGISTER_SIZE];
5d502164 3529
0ff58721 3530 regcache_raw_collect (regcache, regno, buf);
bf0c5130 3531 fprintf_unfiltered (gdb_stdlog, " = ");
81c4a259 3532 for (i = 0; i < size; i++)
bf0c5130
AC
3533 {
3534 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3535 }
81c4a259 3536 if (size <= sizeof (LONGEST))
bf0c5130 3537 {
e17a4113 3538 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
5d502164 3539
0b1553bc
UW
3540 fprintf_unfiltered (gdb_stdlog, " %s %s",
3541 core_addr_to_string_nz (val), plongest (val));
bf0c5130
AC
3542 }
3543 }
3544 fprintf_unfiltered (gdb_stdlog, "\n");
3545}
3546
28439f5e
PA
3547void
3548target_fetch_registers (struct regcache *regcache, int regno)
c906108c 3549{
ad5989bd
TT
3550 current_target.to_fetch_registers (&current_target, regcache, regno);
3551 if (targetdebug)
3552 debug_print_register ("target_fetch_registers", regcache, regno);
c906108c
SS
3553}
3554
28439f5e
PA
3555void
3556target_store_registers (struct regcache *regcache, int regno)
c906108c 3557{
d914c394
SS
3558 if (!may_write_registers)
3559 error (_("Writing to registers is not allowed (regno %d)"), regno);
3560
6b84065d
TT
3561 current_target.to_store_registers (&current_target, regcache, regno);
3562 if (targetdebug)
28439f5e 3563 {
6b84065d 3564 debug_print_register ("target_store_registers", regcache, regno);
28439f5e 3565 }
c906108c
SS
3566}
3567
dc146f7c
VP
3568int
3569target_core_of_thread (ptid_t ptid)
3570{
a7068b60 3571 return current_target.to_core_of_thread (&current_target, ptid);
dc146f7c
VP
3572}
3573
936d2992
PA
3574int
3575simple_verify_memory (struct target_ops *ops,
3576 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3577{
3578 LONGEST total_xfered = 0;
3579
3580 while (total_xfered < size)
3581 {
3582 ULONGEST xfered_len;
3583 enum target_xfer_status status;
3584 gdb_byte buf[1024];
3585 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3586
3587 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3588 buf, NULL, lma + total_xfered, howmuch,
3589 &xfered_len);
3590 if (status == TARGET_XFER_OK
3591 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3592 {
3593 total_xfered += xfered_len;
3594 QUIT;
3595 }
3596 else
3597 return 0;
3598 }
3599 return 1;
3600}
3601
3602/* Default implementation of memory verification. */
3603
3604static int
3605default_verify_memory (struct target_ops *self,
3606 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3607{
3608 /* Start over from the top of the target stack. */
3609 return simple_verify_memory (current_target.beneath,
3610 data, memaddr, size);
3611}
3612
4a5e7a5b
PA
3613int
3614target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3615{
a7068b60
TT
3616 return current_target.to_verify_memory (&current_target,
3617 data, memaddr, size);
4a5e7a5b
PA
3618}
3619
9c06b0b4
TJB
3620/* The documentation for this function is in its prototype declaration in
3621 target.h. */
3622
3623int
f4b0a671
SM
3624target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3625 enum target_hw_bp_type rw)
9c06b0b4 3626{
a7068b60
TT
3627 return current_target.to_insert_mask_watchpoint (&current_target,
3628 addr, mask, rw);
9c06b0b4
TJB
3629}
3630
3631/* The documentation for this function is in its prototype declaration in
3632 target.h. */
3633
3634int
f4b0a671
SM
3635target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3636 enum target_hw_bp_type rw)
9c06b0b4 3637{
a7068b60
TT
3638 return current_target.to_remove_mask_watchpoint (&current_target,
3639 addr, mask, rw);
9c06b0b4
TJB
3640}
3641
3642/* The documentation for this function is in its prototype declaration
3643 in target.h. */
3644
3645int
3646target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3647{
6c7e5e5c
TT
3648 return current_target.to_masked_watch_num_registers (&current_target,
3649 addr, mask);
9c06b0b4
TJB
3650}
3651
f1310107
TJB
3652/* The documentation for this function is in its prototype declaration
3653 in target.h. */
3654
3655int
3656target_ranged_break_num_registers (void)
3657{
a134316b 3658 return current_target.to_ranged_break_num_registers (&current_target);
f1310107
TJB
3659}
3660
02d27625
MM
3661/* See target.h. */
3662
043c3577
MM
3663int
3664target_supports_btrace (enum btrace_format format)
3665{
3666 return current_target.to_supports_btrace (&current_target, format);
3667}
3668
3669/* See target.h. */
3670
02d27625 3671struct btrace_target_info *
f4abbc16 3672target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
02d27625 3673{
f4abbc16 3674 return current_target.to_enable_btrace (&current_target, ptid, conf);
02d27625
MM
3675}
3676
3677/* See target.h. */
3678
3679void
3680target_disable_btrace (struct btrace_target_info *btinfo)
3681{
8dc292d3 3682 current_target.to_disable_btrace (&current_target, btinfo);
02d27625
MM
3683}
3684
3685/* See target.h. */
3686
3687void
3688target_teardown_btrace (struct btrace_target_info *btinfo)
3689{
9ace480d 3690 current_target.to_teardown_btrace (&current_target, btinfo);
02d27625
MM
3691}
3692
3693/* See target.h. */
3694
969c39fb 3695enum btrace_error
734b0e4b 3696target_read_btrace (struct btrace_data *btrace,
969c39fb 3697 struct btrace_target_info *btinfo,
02d27625
MM
3698 enum btrace_read_type type)
3699{
eb5b20d4 3700 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
02d27625
MM
3701}
3702
d02ed0bb
MM
3703/* See target.h. */
3704
f4abbc16
MM
3705const struct btrace_config *
3706target_btrace_conf (const struct btrace_target_info *btinfo)
3707{
3708 return current_target.to_btrace_conf (&current_target, btinfo);
3709}
3710
3711/* See target.h. */
3712
7c1687a9
MM
3713void
3714target_stop_recording (void)
3715{
ee97f592 3716 current_target.to_stop_recording (&current_target);
7c1687a9
MM
3717}
3718
3719/* See target.h. */
3720
d02ed0bb 3721void
85e1311a 3722target_save_record (const char *filename)
d02ed0bb 3723{
f09e2107 3724 current_target.to_save_record (&current_target, filename);
d02ed0bb
MM
3725}
3726
3727/* See target.h. */
3728
3729int
3730target_supports_delete_record (void)
3731{
3732 struct target_ops *t;
3733
3734 for (t = current_target.beneath; t != NULL; t = t->beneath)
b0ed115f
TT
3735 if (t->to_delete_record != delegate_delete_record
3736 && t->to_delete_record != tdefault_delete_record)
d02ed0bb
MM
3737 return 1;
3738
3739 return 0;
3740}
3741
3742/* See target.h. */
3743
3744void
3745target_delete_record (void)
3746{
07366925 3747 current_target.to_delete_record (&current_target);
d02ed0bb
MM
3748}
3749
3750/* See target.h. */
3751
3752int
a52eab48 3753target_record_is_replaying (ptid_t ptid)
d02ed0bb 3754{
a52eab48 3755 return current_target.to_record_is_replaying (&current_target, ptid);
d02ed0bb
MM
3756}
3757
3758/* See target.h. */
3759
7ff27e9b
MM
3760int
3761target_record_will_replay (ptid_t ptid, int dir)
3762{
3763 return current_target.to_record_will_replay (&current_target, ptid, dir);
3764}
3765
3766/* See target.h. */
3767
797094dd
MM
3768void
3769target_record_stop_replaying (void)
3770{
3771 current_target.to_record_stop_replaying (&current_target);
3772}
3773
3774/* See target.h. */
3775
d02ed0bb
MM
3776void
3777target_goto_record_begin (void)
3778{
671e76cc 3779 current_target.to_goto_record_begin (&current_target);
d02ed0bb
MM
3780}
3781
3782/* See target.h. */
3783
3784void
3785target_goto_record_end (void)
3786{
e9179bb3 3787 current_target.to_goto_record_end (&current_target);
d02ed0bb
MM
3788}
3789
3790/* See target.h. */
3791
3792void
3793target_goto_record (ULONGEST insn)
3794{
05969c84 3795 current_target.to_goto_record (&current_target, insn);
d02ed0bb
MM
3796}
3797
67c86d06
MM
3798/* See target.h. */
3799
3800void
3801target_insn_history (int size, int flags)
3802{
3679abfa 3803 current_target.to_insn_history (&current_target, size, flags);
67c86d06
MM
3804}
3805
3806/* See target.h. */
3807
3808void
3809target_insn_history_from (ULONGEST from, int size, int flags)
3810{
8444ab58 3811 current_target.to_insn_history_from (&current_target, from, size, flags);
67c86d06
MM
3812}
3813
3814/* See target.h. */
3815
3816void
3817target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3818{
c29302cc 3819 current_target.to_insn_history_range (&current_target, begin, end, flags);
67c86d06
MM
3820}
3821
15984c13
MM
3822/* See target.h. */
3823
3824void
3825target_call_history (int size, int flags)
3826{
170049d4 3827 current_target.to_call_history (&current_target, size, flags);
15984c13
MM
3828}
3829
3830/* See target.h. */
3831
3832void
3833target_call_history_from (ULONGEST begin, int size, int flags)
3834{
16fc27d6 3835 current_target.to_call_history_from (&current_target, begin, size, flags);
15984c13
MM
3836}
3837
3838/* See target.h. */
3839
3840void
3841target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3842{
115d9817 3843 current_target.to_call_history_range (&current_target, begin, end, flags);
15984c13
MM
3844}
3845
ea001bdc
MM
3846/* See target.h. */
3847
3848const struct frame_unwind *
3849target_get_unwinder (void)
3850{
ac01945b 3851 return current_target.to_get_unwinder (&current_target);
ea001bdc
MM
3852}
3853
3854/* See target.h. */
3855
3856const struct frame_unwind *
3857target_get_tailcall_unwinder (void)
3858{
ac01945b 3859 return current_target.to_get_tailcall_unwinder (&current_target);
ea001bdc
MM
3860}
3861
5fff78c4
MM
3862/* See target.h. */
3863
3864void
3865target_prepare_to_generate_core (void)
3866{
3867 current_target.to_prepare_to_generate_core (&current_target);
3868}
3869
3870/* See target.h. */
3871
3872void
3873target_done_generating_core (void)
3874{
3875 current_target.to_done_generating_core (&current_target);
3876}
3877
c906108c 3878static void
fba45db2 3879setup_target_debug (void)
c906108c
SS
3880{
3881 memcpy (&debug_target, &current_target, sizeof debug_target);
3882
a7068b60 3883 init_debug_target (&current_target);
c906108c 3884}
c906108c 3885\f
c5aa993b
JM
3886
3887static char targ_desc[] =
3e43a32a
MS
3888"Names of targets and files being debugged.\nShows the entire \
3889stack of targets currently in use (including the exec-file,\n\
c906108c
SS
3890core-file, and process, if any), as well as the symbol file name.";
3891
a53f3625 3892static void
a30bf1f1
TT
3893default_rcmd (struct target_ops *self, const char *command,
3894 struct ui_file *output)
a53f3625
TT
3895{
3896 error (_("\"monitor\" command not supported by this target."));
3897}
3898
96baa820
JM
3899static void
3900do_monitor_command (char *cmd,
3901 int from_tty)
3902{
96baa820
JM
3903 target_rcmd (cmd, gdb_stdtarg);
3904}
3905
87680a14
JB
3906/* Print the name of each layers of our target stack. */
3907
3908static void
3909maintenance_print_target_stack (char *cmd, int from_tty)
3910{
3911 struct target_ops *t;
3912
3913 printf_filtered (_("The current target stack is:\n"));
3914
3915 for (t = target_stack; t != NULL; t = t->beneath)
3916 {
3917 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3918 }
3919}
3920
372316f1
PA
3921/* See target.h. */
3922
3923void
3924target_async (int enable)
3925{
3926 infrun_async (enable);
3927 current_target.to_async (&current_target, enable);
3928}
3929
65706a29
PA
3930/* See target.h. */
3931
3932void
3933target_thread_events (int enable)
3934{
3935 current_target.to_thread_events (&current_target, enable);
3936}
3937
329ea579
PA
3938/* Controls if targets can report that they can/are async. This is
3939 just for maintainers to use when debugging gdb. */
3940int target_async_permitted = 1;
c6ebd6cf
VP
3941
3942/* The set command writes to this variable. If the inferior is
b5419e49 3943 executing, target_async_permitted is *not* updated. */
329ea579 3944static int target_async_permitted_1 = 1;
c6ebd6cf
VP
3945
3946static void
329ea579
PA
3947maint_set_target_async_command (char *args, int from_tty,
3948 struct cmd_list_element *c)
c6ebd6cf 3949{
c35b1492 3950 if (have_live_inferiors ())
c6ebd6cf
VP
3951 {
3952 target_async_permitted_1 = target_async_permitted;
3953 error (_("Cannot change this setting while the inferior is running."));
3954 }
3955
3956 target_async_permitted = target_async_permitted_1;
3957}
3958
3959static void
329ea579
PA
3960maint_show_target_async_command (struct ui_file *file, int from_tty,
3961 struct cmd_list_element *c,
3962 const char *value)
c6ebd6cf 3963{
3e43a32a
MS
3964 fprintf_filtered (file,
3965 _("Controlling the inferior in "
3966 "asynchronous mode is %s.\n"), value);
c6ebd6cf
VP
3967}
3968
fbea99ea
PA
3969/* Return true if the target operates in non-stop mode even with "set
3970 non-stop off". */
3971
3972static int
3973target_always_non_stop_p (void)
3974{
3975 return current_target.to_always_non_stop_p (&current_target);
3976}
3977
3978/* See target.h. */
3979
3980int
3981target_is_non_stop_p (void)
3982{
3983 return (non_stop
3984 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3985 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3986 && target_always_non_stop_p ()));
3987}
3988
3989/* Controls if targets can report that they always run in non-stop
3990 mode. This is just for maintainers to use when debugging gdb. */
3991enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3992
3993/* The set command writes to this variable. If the inferior is
3994 executing, target_non_stop_enabled is *not* updated. */
3995static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3996
3997/* Implementation of "maint set target-non-stop". */
3998
3999static void
4000maint_set_target_non_stop_command (char *args, int from_tty,
4001 struct cmd_list_element *c)
4002{
4003 if (have_live_inferiors ())
4004 {
4005 target_non_stop_enabled_1 = target_non_stop_enabled;
4006 error (_("Cannot change this setting while the inferior is running."));
4007 }
4008
4009 target_non_stop_enabled = target_non_stop_enabled_1;
4010}
4011
4012/* Implementation of "maint show target-non-stop". */
4013
4014static void
4015maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4016 struct cmd_list_element *c,
4017 const char *value)
4018{
4019 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4020 fprintf_filtered (file,
4021 _("Whether the target is always in non-stop mode "
4022 "is %s (currently %s).\n"), value,
4023 target_always_non_stop_p () ? "on" : "off");
4024 else
4025 fprintf_filtered (file,
4026 _("Whether the target is always in non-stop mode "
4027 "is %s.\n"), value);
4028}
4029
d914c394
SS
4030/* Temporary copies of permission settings. */
4031
4032static int may_write_registers_1 = 1;
4033static int may_write_memory_1 = 1;
4034static int may_insert_breakpoints_1 = 1;
4035static int may_insert_tracepoints_1 = 1;
4036static int may_insert_fast_tracepoints_1 = 1;
4037static int may_stop_1 = 1;
4038
4039/* Make the user-set values match the real values again. */
4040
4041void
4042update_target_permissions (void)
4043{
4044 may_write_registers_1 = may_write_registers;
4045 may_write_memory_1 = may_write_memory;
4046 may_insert_breakpoints_1 = may_insert_breakpoints;
4047 may_insert_tracepoints_1 = may_insert_tracepoints;
4048 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4049 may_stop_1 = may_stop;
4050}
4051
4052/* The one function handles (most of) the permission flags in the same
4053 way. */
4054
4055static void
4056set_target_permissions (char *args, int from_tty,
4057 struct cmd_list_element *c)
4058{
4059 if (target_has_execution)
4060 {
4061 update_target_permissions ();
4062 error (_("Cannot change this setting while the inferior is running."));
4063 }
4064
4065 /* Make the real values match the user-changed values. */
4066 may_write_registers = may_write_registers_1;
4067 may_insert_breakpoints = may_insert_breakpoints_1;
4068 may_insert_tracepoints = may_insert_tracepoints_1;
4069 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4070 may_stop = may_stop_1;
4071 update_observer_mode ();
4072}
4073
4074/* Set memory write permission independently of observer mode. */
4075
4076static void
4077set_write_memory_permission (char *args, int from_tty,
4078 struct cmd_list_element *c)
4079{
4080 /* Make the real values match the user-changed values. */
4081 may_write_memory = may_write_memory_1;
4082 update_observer_mode ();
4083}
4084
4085
c906108c 4086void
fba45db2 4087initialize_targets (void)
c906108c
SS
4088{
4089 init_dummy_target ();
4090 push_target (&dummy_target);
4091
4092 add_info ("target", target_info, targ_desc);
4093 add_info ("files", target_info, targ_desc);
4094
ccce17b0 4095 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
85c07804
AC
4096Set target debugging."), _("\
4097Show target debugging."), _("\
333dabeb 4098When non-zero, target debugging is enabled. Higher numbers are more\n\
3cecbbbe
TT
4099verbose."),
4100 set_targetdebug,
ccce17b0
YQ
4101 show_targetdebug,
4102 &setdebuglist, &showdebuglist);
3a11626d 4103
2bc416ba 4104 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
7915a72c
AC
4105 &trust_readonly, _("\
4106Set mode for reading from readonly sections."), _("\
4107Show mode for reading from readonly sections."), _("\
3a11626d
MS
4108When this mode is on, memory reads from readonly sections (such as .text)\n\
4109will be read from the object file instead of from the target. This will\n\
7915a72c 4110result in significant performance improvement for remote targets."),
2c5b56ce 4111 NULL,
920d2a44 4112 show_trust_readonly,
e707bbc2 4113 &setlist, &showlist);
96baa820
JM
4114
4115 add_com ("monitor", class_obscure, do_monitor_command,
1bedd215 4116 _("Send a command to the remote monitor (remote targets only)."));
96baa820 4117
87680a14
JB
4118 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4119 _("Print the name of each layer of the internal target stack."),
4120 &maintenanceprintlist);
4121
c6ebd6cf
VP
4122 add_setshow_boolean_cmd ("target-async", no_class,
4123 &target_async_permitted_1, _("\
4124Set whether gdb controls the inferior in asynchronous mode."), _("\
4125Show whether gdb controls the inferior in asynchronous mode."), _("\
4126Tells gdb whether to control the inferior in asynchronous mode."),
329ea579
PA
4127 maint_set_target_async_command,
4128 maint_show_target_async_command,
4129 &maintenance_set_cmdlist,
4130 &maintenance_show_cmdlist);
c6ebd6cf 4131
fbea99ea
PA
4132 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4133 &target_non_stop_enabled_1, _("\
4134Set whether gdb always controls the inferior in non-stop mode."), _("\
4135Show whether gdb always controls the inferior in non-stop mode."), _("\
4136Tells gdb whether to control the inferior in non-stop mode."),
4137 maint_set_target_non_stop_command,
4138 maint_show_target_non_stop_command,
4139 &maintenance_set_cmdlist,
4140 &maintenance_show_cmdlist);
4141
d914c394
SS
4142 add_setshow_boolean_cmd ("may-write-registers", class_support,
4143 &may_write_registers_1, _("\
4144Set permission to write into registers."), _("\
4145Show permission to write into registers."), _("\
4146When this permission is on, GDB may write into the target's registers.\n\
4147Otherwise, any sort of write attempt will result in an error."),
4148 set_target_permissions, NULL,
4149 &setlist, &showlist);
4150
4151 add_setshow_boolean_cmd ("may-write-memory", class_support,
4152 &may_write_memory_1, _("\
4153Set permission to write into target memory."), _("\
4154Show permission to write into target memory."), _("\
4155When this permission is on, GDB may write into the target's memory.\n\
4156Otherwise, any sort of write attempt will result in an error."),
4157 set_write_memory_permission, NULL,
4158 &setlist, &showlist);
4159
4160 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4161 &may_insert_breakpoints_1, _("\
4162Set permission to insert breakpoints in the target."), _("\
4163Show permission to insert breakpoints in the target."), _("\
4164When this permission is on, GDB may insert breakpoints in the program.\n\
4165Otherwise, any sort of insertion attempt will result in an error."),
4166 set_target_permissions, NULL,
4167 &setlist, &showlist);
4168
4169 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4170 &may_insert_tracepoints_1, _("\
4171Set permission to insert tracepoints in the target."), _("\
4172Show permission to insert tracepoints in the target."), _("\
4173When this permission is on, GDB may insert tracepoints in the program.\n\
4174Otherwise, any sort of insertion attempt will result in an error."),
4175 set_target_permissions, NULL,
4176 &setlist, &showlist);
4177
4178 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4179 &may_insert_fast_tracepoints_1, _("\
4180Set permission to insert fast tracepoints in the target."), _("\
4181Show permission to insert fast tracepoints in the target."), _("\
4182When this permission is on, GDB may insert fast tracepoints.\n\
4183Otherwise, any sort of insertion attempt will result in an error."),
4184 set_target_permissions, NULL,
4185 &setlist, &showlist);
4186
4187 add_setshow_boolean_cmd ("may-interrupt", class_support,
4188 &may_stop_1, _("\
4189Set permission to interrupt or signal the target."), _("\
4190Show permission to interrupt or signal the target."), _("\
4191When this permission is on, GDB may interrupt/stop the target's execution.\n\
4192Otherwise, any attempt to interrupt or stop will be ignored."),
4193 set_target_permissions, NULL,
4194 &setlist, &showlist);
6a3cb8e8
PA
4195
4196 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4197 &auto_connect_native_target, _("\
4198Set whether GDB may automatically connect to the native target."), _("\
4199Show whether GDB may automatically connect to the native target."), _("\
4200When on, and GDB is not connected to a target yet, GDB\n\
4201attempts \"run\" and other commands with the native target."),
4202 NULL, show_auto_connect_native_target,
4203 &setlist, &showlist);
c906108c 4204}
This page took 2.064839 seconds and 4 git commands to generate.