* read.c (read_a_source_file): Rearrange evaluation order when
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
b2175913
MS
131 TARGET_WAITKIND_IGNORE,
132
133 /* The target has run out of history information,
134 and cannot run backward any further. */
135 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
3a3e9ee3 147 ptid_t related_pid;
c5aa993b
JM
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
2acceee2 154/* Possible types of events that the inferior handler will have to
0d06e24b 155 deal with. */
2acceee2
JM
156enum inferior_event_type
157 {
0d06e24b 158 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
159 INF_QUIT_REQ,
160 /* Process a normal inferior event which will result in target_wait
0d06e24b 161 being called. */
2146d243 162 INF_REG_EVENT,
0d06e24b 163 /* Deal with an error on the inferior. */
2acceee2 164 INF_ERROR,
0d06e24b 165 /* We are called because a timer went off. */
2acceee2 166 INF_TIMER,
0d06e24b 167 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
168 INF_EXEC_COMPLETE,
169 /* We are called to do some stuff after the inferior stops, but we
170 are expected to reenter the proceed() and
171 handle_inferior_event() functions. This is used only in case of
0d06e24b 172 'step n' like commands. */
c2d11a7d 173 INF_EXEC_CONTINUE
2acceee2
JM
174 };
175
c906108c 176/* Return the string for a signal. */
a14ed312 177extern char *target_signal_to_string (enum target_signal);
c906108c
SS
178
179/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 180extern char *target_signal_to_name (enum target_signal);
c906108c
SS
181
182/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 183enum target_signal target_signal_from_name (char *);
c906108c 184\f
13547ab6
DJ
185/* Target objects which can be transfered using target_read,
186 target_write, et cetera. */
1e3ff5ad
AC
187
188enum target_object
189{
1e3ff5ad
AC
190 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
191 TARGET_OBJECT_AVR,
23d964e7
UW
192 /* SPU target specific transfer. See "spu-tdep.c". */
193 TARGET_OBJECT_SPU,
1e3ff5ad 194 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 195 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
196 /* Memory, avoiding GDB's data cache and trusting the executable.
197 Target implementations of to_xfer_partial never need to handle
198 this object, and most callers should not use it. */
199 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
200 /* Kernel Unwind Table. See "ia64-tdep.c". */
201 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
202 /* Transfer auxilliary vector. */
203 TARGET_OBJECT_AUXV,
baf92889 204 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
205 TARGET_OBJECT_WCOOKIE,
206 /* Target memory map in XML format. */
207 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
208 /* Flash memory. This object can be used to write contents to
209 a previously erased flash memory. Using it without erasing
210 flash can have unexpected results. Addresses are physical
211 address on target, and not relative to flash start. */
23181151
DJ
212 TARGET_OBJECT_FLASH,
213 /* Available target-specific features, e.g. registers and coprocessors.
214 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
215 TARGET_OBJECT_AVAILABLE_FEATURES,
216 /* Currently loaded libraries, in XML format. */
217 TARGET_OBJECT_LIBRARIES
2146d243 218 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
219};
220
13547ab6
DJ
221/* Request that OPS transfer up to LEN 8-bit bytes of the target's
222 OBJECT. The OFFSET, for a seekable object, specifies the
223 starting point. The ANNEX can be used to provide additional
224 data-specific information to the target.
1e3ff5ad 225
13547ab6
DJ
226 Return the number of bytes actually transfered, or -1 if the
227 transfer is not supported or otherwise fails. Return of a positive
228 value less than LEN indicates that no further transfer is possible.
229 Unlike the raw to_xfer_partial interface, callers of these
230 functions do not need to retry partial transfers. */
1e3ff5ad 231
1e3ff5ad
AC
232extern LONGEST target_read (struct target_ops *ops,
233 enum target_object object,
1b0ba102 234 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
235 ULONGEST offset, LONGEST len);
236
d5086790
VP
237extern LONGEST target_read_until_error (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, gdb_byte *buf,
240 ULONGEST offset, LONGEST len);
241
1e3ff5ad
AC
242extern LONGEST target_write (struct target_ops *ops,
243 enum target_object object,
1b0ba102 244 const char *annex, const gdb_byte *buf,
1e3ff5ad 245 ULONGEST offset, LONGEST len);
b6591e8b 246
a76d924d
DJ
247/* Similar to target_write, except that it also calls PROGRESS with
248 the number of bytes written and the opaque BATON after every
249 successful partial write (and before the first write). This is
250 useful for progress reporting and user interaction while writing
251 data. To abort the transfer, the progress callback can throw an
252 exception. */
253
cf7a04e8
DJ
254LONGEST target_write_with_progress (struct target_ops *ops,
255 enum target_object object,
256 const char *annex, const gdb_byte *buf,
257 ULONGEST offset, LONGEST len,
258 void (*progress) (ULONGEST, void *),
259 void *baton);
260
13547ab6
DJ
261/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
262 be read using OPS. The return value will be -1 if the transfer
263 fails or is not supported; 0 if the object is empty; or the length
264 of the object otherwise. If a positive value is returned, a
265 sufficiently large buffer will be allocated using xmalloc and
266 returned in *BUF_P containing the contents of the object.
267
268 This method should be used for objects sufficiently small to store
269 in a single xmalloc'd buffer, when no fixed bound on the object's
270 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
271 through this function. */
272
273extern LONGEST target_read_alloc (struct target_ops *ops,
274 enum target_object object,
275 const char *annex, gdb_byte **buf_p);
276
159f81f3
DJ
277/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
278 returned as a string, allocated using xmalloc. If an error occurs
279 or the transfer is unsupported, NULL is returned. Empty objects
280 are returned as allocated but empty strings. A warning is issued
281 if the result contains any embedded NUL bytes. */
282
283extern char *target_read_stralloc (struct target_ops *ops,
284 enum target_object object,
285 const char *annex);
286
b6591e8b
AC
287/* Wrappers to target read/write that perform memory transfers. They
288 throw an error if the memory transfer fails.
289
290 NOTE: cagney/2003-10-23: The naming schema is lifted from
291 "frame.h". The parameter order is lifted from get_frame_memory,
292 which in turn lifted it from read_memory. */
293
294extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 295 gdb_byte *buf, LONGEST len);
b6591e8b
AC
296extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
297 CORE_ADDR addr, int len);
1e3ff5ad 298\f
c5aa993b 299
c906108c
SS
300/* If certain kinds of activity happen, target_wait should perform
301 callbacks. */
302/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 303 on TARGET_ACTIVITY_FD. */
c906108c
SS
304extern int target_activity_fd;
305/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 306extern int (*target_activity_function) (void);
c906108c 307\f
0d06e24b
JM
308struct thread_info; /* fwd decl for parameter list below: */
309
c906108c 310struct target_ops
c5aa993b 311 {
258b763a 312 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
313 char *to_shortname; /* Name this target type */
314 char *to_longname; /* Name for printing */
315 char *to_doc; /* Documentation. Does not include trailing
c906108c 316 newline, and starts with a one-line descrip-
0d06e24b 317 tion (probably similar to to_longname). */
bba2d28d
AC
318 /* Per-target scratch pad. */
319 void *to_data;
f1c07ab0
AC
320 /* The open routine takes the rest of the parameters from the
321 command, and (if successful) pushes a new target onto the
322 stack. Targets should supply this routine, if only to provide
323 an error message. */
507f3c78 324 void (*to_open) (char *, int);
f1c07ab0
AC
325 /* Old targets with a static target vector provide "to_close".
326 New re-entrant targets provide "to_xclose" and that is expected
327 to xfree everything (including the "struct target_ops"). */
328 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 329 void (*to_close) (int);
136d6dae 330 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 331 void (*to_post_attach) (int);
136d6dae 332 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 333 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
334 void (*to_resume) (ptid_t, int, enum target_signal);
335 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
336 void (*to_fetch_registers) (struct regcache *, int);
337 void (*to_store_registers) (struct regcache *, int);
316f2060 338 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
339
340 /* Transfer LEN bytes of memory between GDB address MYADDR and
341 target address MEMADDR. If WRITE, transfer them to the target, else
342 transfer them from the target. TARGET is the target from which we
343 get this function.
344
345 Return value, N, is one of the following:
346
347 0 means that we can't handle this. If errno has been set, it is the
348 error which prevented us from doing it (FIXME: What about bfd_error?).
349
350 positive (call it N) means that we have transferred N bytes
351 starting at MEMADDR. We might be able to handle more bytes
352 beyond this length, but no promises.
353
354 negative (call its absolute value N) means that we cannot
355 transfer right at MEMADDR, but we could transfer at least
c8e73a31 356 something at MEMADDR + N.
c5aa993b 357
c8e73a31
AC
358 NOTE: cagney/2004-10-01: This has been entirely superseeded by
359 to_xfer_partial and inferior inheritance. */
360
1b0ba102 361 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
362 int len, int write,
363 struct mem_attrib *attrib,
364 struct target_ops *target);
c906108c 365
507f3c78 366 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
367 int (*to_insert_breakpoint) (struct bp_target_info *);
368 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 369 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
370 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
371 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
372 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
373 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
374 int (*to_stopped_by_watchpoint) (void);
74174d2e 375 int to_have_steppable_watchpoint;
7df1a324 376 int to_have_continuable_watchpoint;
4aa7a7f5 377 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
378 int (*to_watchpoint_addr_within_range) (struct target_ops *,
379 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 380 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
381 void (*to_terminal_init) (void);
382 void (*to_terminal_inferior) (void);
383 void (*to_terminal_ours_for_output) (void);
384 void (*to_terminal_ours) (void);
a790ad35 385 void (*to_terminal_save_ours) (void);
507f3c78
KB
386 void (*to_terminal_info) (char *, int);
387 void (*to_kill) (void);
388 void (*to_load) (char *, int);
389 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
390 void (*to_create_inferior) (struct target_ops *,
391 char *, char *, char **, int);
39f77062 392 void (*to_post_startup_inferior) (ptid_t);
507f3c78 393 void (*to_acknowledge_created_inferior) (int);
fa113d1a 394 void (*to_insert_fork_catchpoint) (int);
507f3c78 395 int (*to_remove_fork_catchpoint) (int);
fa113d1a 396 void (*to_insert_vfork_catchpoint) (int);
507f3c78 397 int (*to_remove_vfork_catchpoint) (int);
ee057212 398 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 399 void (*to_insert_exec_catchpoint) (int);
507f3c78 400 int (*to_remove_exec_catchpoint) (int);
507f3c78 401 int (*to_has_exited) (int, int, int *);
136d6dae 402 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 403 int (*to_can_run) (void);
39f77062
KB
404 void (*to_notice_signals) (ptid_t ptid);
405 int (*to_thread_alive) (ptid_t ptid);
507f3c78 406 void (*to_find_new_threads) (void);
39f77062 407 char *(*to_pid_to_str) (ptid_t);
507f3c78 408 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 409 void (*to_stop) (ptid_t);
d9fcf2fb 410 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 411 char *(*to_pid_to_exec_file) (int pid);
49d03eab 412 void (*to_log_command) (const char *);
c5aa993b 413 enum strata to_stratum;
c5aa993b
JM
414 int to_has_all_memory;
415 int to_has_memory;
416 int to_has_stack;
417 int to_has_registers;
418 int to_has_execution;
419 int to_has_thread_control; /* control thread execution */
dc177b7a 420 int to_attach_no_wait;
c5aa993b
JM
421 struct section_table
422 *to_sections;
423 struct section_table
424 *to_sections_end;
6426a772
JM
425 /* ASYNC target controls */
426 int (*to_can_async_p) (void);
427 int (*to_is_async_p) (void);
b84876c2
PA
428 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
429 int (*to_async_mask) (int);
9908b566 430 int (*to_supports_non_stop) (void);
2146d243
RM
431 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
432 unsigned long,
433 int, int, int,
434 void *),
be4d1333
MS
435 void *);
436 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
437
438 /* Return the thread-local address at OFFSET in the
439 thread-local storage for the thread PTID and the shared library
440 or executable file given by OBJFILE. If that block of
441 thread-local storage hasn't been allocated yet, this function
442 may return an error. */
443 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 444 CORE_ADDR load_module_addr,
3f47be5c
EZ
445 CORE_ADDR offset);
446
13547ab6
DJ
447 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
448 OBJECT. The OFFSET, for a seekable object, specifies the
449 starting point. The ANNEX can be used to provide additional
450 data-specific information to the target.
451
452 Return the number of bytes actually transfered, zero when no
453 further transfer is possible, and -1 when the transfer is not
454 supported. Return of a positive value smaller than LEN does
455 not indicate the end of the object, only the end of the
456 transfer; higher level code should continue transferring if
457 desired. This is handled in target.c.
458
459 The interface does not support a "retry" mechanism. Instead it
460 assumes that at least one byte will be transfered on each
461 successful call.
462
463 NOTE: cagney/2003-10-17: The current interface can lead to
464 fragmented transfers. Lower target levels should not implement
465 hacks, such as enlarging the transfer, in an attempt to
466 compensate for this. Instead, the target stack should be
467 extended so that it implements supply/collect methods and a
468 look-aside object cache. With that available, the lowest
469 target can safely and freely "push" data up the stack.
470
471 See target_read and target_write for more information. One,
472 and only one, of readbuf or writebuf must be non-NULL. */
473
4b8a223f 474 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 475 enum target_object object, const char *annex,
1b0ba102 476 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 477 ULONGEST offset, LONGEST len);
1e3ff5ad 478
fd79ecee
DJ
479 /* Returns the memory map for the target. A return value of NULL
480 means that no memory map is available. If a memory address
481 does not fall within any returned regions, it's assumed to be
482 RAM. The returned memory regions should not overlap.
483
484 The order of regions does not matter; target_memory_map will
485 sort regions by starting address. For that reason, this
486 function should not be called directly except via
487 target_memory_map.
488
489 This method should not cache data; if the memory map could
490 change unexpectedly, it should be invalidated, and higher
491 layers will re-fetch it. */
492 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
493
a76d924d
DJ
494 /* Erases the region of flash memory starting at ADDRESS, of
495 length LENGTH.
496
497 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
498 on flash block boundaries, as reported by 'to_memory_map'. */
499 void (*to_flash_erase) (struct target_ops *,
500 ULONGEST address, LONGEST length);
501
502 /* Finishes a flash memory write sequence. After this operation
503 all flash memory should be available for writing and the result
504 of reading from areas written by 'to_flash_write' should be
505 equal to what was written. */
506 void (*to_flash_done) (struct target_ops *);
507
424163ea
DJ
508 /* Describe the architecture-specific features of this target.
509 Returns the description found, or NULL if no description
510 was available. */
511 const struct target_desc *(*to_read_description) (struct target_ops *ops);
512
0ef643c8
JB
513 /* Build the PTID of the thread on which a given task is running,
514 based on LWP and THREAD. These values are extracted from the
515 task Private_Data section of the Ada Task Control Block, and
516 their interpretation depends on the target. */
517 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
518
c47ffbe3
VP
519 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
520 Return 0 if *READPTR is already at the end of the buffer.
521 Return -1 if there is insufficient buffer for a whole entry.
522 Return 1 if an entry was read into *TYPEP and *VALP. */
523 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
524 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
525
08388c79
DE
526 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
527 sequence of bytes in PATTERN with length PATTERN_LEN.
528
529 The result is 1 if found, 0 if not found, and -1 if there was an error
530 requiring halting of the search (e.g. memory read error).
531 If the pattern is found the address is recorded in FOUND_ADDRP. */
532 int (*to_search_memory) (struct target_ops *ops,
533 CORE_ADDR start_addr, ULONGEST search_space_len,
534 const gdb_byte *pattern, ULONGEST pattern_len,
535 CORE_ADDR *found_addrp);
536
b2175913
MS
537 /* Can target execute in reverse? */
538 int (*to_can_execute_reverse) ();
539
8a305172
PA
540 /* Does this target support debugging multiple processes
541 simultaneously? */
542 int (*to_supports_multi_process) (void);
543
c5aa993b 544 int to_magic;
0d06e24b
JM
545 /* Need sub-structure for target machine related rather than comm related?
546 */
c5aa993b 547 };
c906108c
SS
548
549/* Magic number for checking ops size. If a struct doesn't end with this
550 number, somebody changed the declaration but didn't change all the
551 places that initialize one. */
552
553#define OPS_MAGIC 3840
554
555/* The ops structure for our "current" target process. This should
556 never be NULL. If there is no target, it points to the dummy_target. */
557
c5aa993b 558extern struct target_ops current_target;
c906108c 559
c906108c
SS
560/* Define easy words for doing these operations on our current target. */
561
562#define target_shortname (current_target.to_shortname)
563#define target_longname (current_target.to_longname)
564
f1c07ab0
AC
565/* Does whatever cleanup is required for a target that we are no
566 longer going to be calling. QUITTING indicates that GDB is exiting
567 and should not get hung on an error (otherwise it is important to
568 perform clean termination, even if it takes a while). This routine
569 is automatically always called when popping the target off the
570 target stack (to_beneath is undefined). Closing file descriptors
571 and freeing all memory allocated memory are typical things it
572 should do. */
573
574void target_close (struct target_ops *targ, int quitting);
c906108c
SS
575
576/* Attaches to a process on the target side. Arguments are as passed
577 to the `attach' command by the user. This routine can be called
578 when the target is not on the target-stack, if the target_can_run
2146d243 579 routine returns 1; in that case, it must push itself onto the stack.
c906108c 580 Upon exit, the target should be ready for normal operations, and
2146d243 581 should be ready to deliver the status of the process immediately
c906108c
SS
582 (without waiting) to an upcoming target_wait call. */
583
136d6dae 584void target_attach (char *, int);
c906108c 585
dc177b7a
PA
586/* Some targets don't generate traps when attaching to the inferior,
587 or their target_attach implementation takes care of the waiting.
588 These targets must set to_attach_no_wait. */
589
590#define target_attach_no_wait \
591 (current_target.to_attach_no_wait)
592
c906108c
SS
593/* The target_attach operation places a process under debugger control,
594 and stops the process.
595
596 This operation provides a target-specific hook that allows the
0d06e24b 597 necessary bookkeeping to be performed after an attach completes. */
c906108c 598#define target_post_attach(pid) \
0d06e24b 599 (*current_target.to_post_attach) (pid)
c906108c 600
c906108c
SS
601/* Takes a program previously attached to and detaches it.
602 The program may resume execution (some targets do, some don't) and will
603 no longer stop on signals, etc. We better not have left any breakpoints
604 in the program or it'll die when it hits one. ARGS is arguments
605 typed by the user (e.g. a signal to send the process). FROM_TTY
606 says whether to be verbose or not. */
607
a14ed312 608extern void target_detach (char *, int);
c906108c 609
6ad8ae5c
DJ
610/* Disconnect from the current target without resuming it (leaving it
611 waiting for a debugger). */
612
613extern void target_disconnect (char *, int);
614
39f77062 615/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
616 single-step or to run free; SIGGNAL is the signal to be given to
617 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
618 pass TARGET_SIGNAL_DEFAULT. */
619
e1ac3328 620extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 621
b5a2688f
AC
622/* Wait for process pid to do something. PTID = -1 to wait for any
623 pid to do something. Return pid of child, or -1 in case of error;
c906108c 624 store status through argument pointer STATUS. Note that it is
b5a2688f 625 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
626 the debugging target from the stack; GDB isn't prepared to get back
627 to the prompt with a debugging target but without the frame cache,
628 stop_pc, etc., set up. */
629
39f77062
KB
630#define target_wait(ptid, status) \
631 (*current_target.to_wait) (ptid, status)
c906108c 632
17dee195 633/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 634
56be3814
UW
635#define target_fetch_registers(regcache, regno) \
636 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
637
638/* Store at least register REGNO, or all regs if REGNO == -1.
639 It can store as many registers as it wants to, so target_prepare_to_store
640 must have been previously called. Calls error() if there are problems. */
641
56be3814
UW
642#define target_store_registers(regcache, regs) \
643 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
644
645/* Get ready to modify the registers array. On machines which store
646 individual registers, this doesn't need to do anything. On machines
647 which store all the registers in one fell swoop, this makes sure
648 that REGISTERS contains all the registers from the program being
649 debugged. */
650
316f2060
UW
651#define target_prepare_to_store(regcache) \
652 (*current_target.to_prepare_to_store) (regcache)
c906108c 653
8a305172
PA
654/* Returns true if this target can debug multiple processes
655 simultaneously. */
656
657#define target_supports_multi_process() \
658 (*current_target.to_supports_multi_process) ()
659
4930751a
C
660extern DCACHE *target_dcache;
661
a14ed312 662extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 663
fc1a4b47 664extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 665
fc1a4b47 666extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 667 int len);
c906108c 668
1b0ba102 669extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 670 struct mem_attrib *, struct target_ops *);
c906108c 671
fd79ecee
DJ
672/* Fetches the target's memory map. If one is found it is sorted
673 and returned, after some consistency checking. Otherwise, NULL
674 is returned. */
675VEC(mem_region_s) *target_memory_map (void);
676
a76d924d
DJ
677/* Erase the specified flash region. */
678void target_flash_erase (ULONGEST address, LONGEST length);
679
680/* Finish a sequence of flash operations. */
681void target_flash_done (void);
682
683/* Describes a request for a memory write operation. */
684struct memory_write_request
685 {
686 /* Begining address that must be written. */
687 ULONGEST begin;
688 /* Past-the-end address. */
689 ULONGEST end;
690 /* The data to write. */
691 gdb_byte *data;
692 /* A callback baton for progress reporting for this request. */
693 void *baton;
694 };
695typedef struct memory_write_request memory_write_request_s;
696DEF_VEC_O(memory_write_request_s);
697
698/* Enumeration specifying different flash preservation behaviour. */
699enum flash_preserve_mode
700 {
701 flash_preserve,
702 flash_discard
703 };
704
705/* Write several memory blocks at once. This version can be more
706 efficient than making several calls to target_write_memory, in
707 particular because it can optimize accesses to flash memory.
708
709 Moreover, this is currently the only memory access function in gdb
710 that supports writing to flash memory, and it should be used for
711 all cases where access to flash memory is desirable.
712
713 REQUESTS is the vector (see vec.h) of memory_write_request.
714 PRESERVE_FLASH_P indicates what to do with blocks which must be
715 erased, but not completely rewritten.
716 PROGRESS_CB is a function that will be periodically called to provide
717 feedback to user. It will be called with the baton corresponding
718 to the request currently being written. It may also be called
719 with a NULL baton, when preserved flash sectors are being rewritten.
720
721 The function returns 0 on success, and error otherwise. */
722int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
723 enum flash_preserve_mode preserve_flash_p,
724 void (*progress_cb) (ULONGEST, void *));
725
47932f85
DJ
726/* From infrun.c. */
727
3a3e9ee3 728extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 729
3a3e9ee3 730extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 731
3a3e9ee3 732extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 733
c906108c
SS
734/* From exec.c */
735
a14ed312 736extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
737
738/* Print a line about the current target. */
739
740#define target_files_info() \
0d06e24b 741 (*current_target.to_files_info) (&current_target)
c906108c 742
8181d85f
DJ
743/* Insert a breakpoint at address BP_TGT->placed_address in the target
744 machine. Result is 0 for success, or an errno value. */
c906108c 745
8181d85f
DJ
746#define target_insert_breakpoint(bp_tgt) \
747 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 748
8181d85f
DJ
749/* Remove a breakpoint at address BP_TGT->placed_address in the target
750 machine. Result is 0 for success, or an errno value. */
c906108c 751
8181d85f
DJ
752#define target_remove_breakpoint(bp_tgt) \
753 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
754
755/* Initialize the terminal settings we record for the inferior,
756 before we actually run the inferior. */
757
758#define target_terminal_init() \
0d06e24b 759 (*current_target.to_terminal_init) ()
c906108c
SS
760
761/* Put the inferior's terminal settings into effect.
762 This is preparation for starting or resuming the inferior. */
763
764#define target_terminal_inferior() \
0d06e24b 765 (*current_target.to_terminal_inferior) ()
c906108c
SS
766
767/* Put some of our terminal settings into effect,
768 enough to get proper results from our output,
769 but do not change into or out of RAW mode
770 so that no input is discarded.
771
772 After doing this, either terminal_ours or terminal_inferior
773 should be called to get back to a normal state of affairs. */
774
775#define target_terminal_ours_for_output() \
0d06e24b 776 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
777
778/* Put our terminal settings into effect.
779 First record the inferior's terminal settings
780 so they can be restored properly later. */
781
782#define target_terminal_ours() \
0d06e24b 783 (*current_target.to_terminal_ours) ()
c906108c 784
a790ad35
SC
785/* Save our terminal settings.
786 This is called from TUI after entering or leaving the curses
787 mode. Since curses modifies our terminal this call is here
788 to take this change into account. */
789
790#define target_terminal_save_ours() \
791 (*current_target.to_terminal_save_ours) ()
792
c906108c
SS
793/* Print useful information about our terminal status, if such a thing
794 exists. */
795
796#define target_terminal_info(arg, from_tty) \
0d06e24b 797 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
798
799/* Kill the inferior process. Make it go away. */
800
801#define target_kill() \
0d06e24b 802 (*current_target.to_kill) ()
c906108c 803
0d06e24b
JM
804/* Load an executable file into the target process. This is expected
805 to not only bring new code into the target process, but also to
1986bccd
AS
806 update GDB's symbol tables to match.
807
808 ARG contains command-line arguments, to be broken down with
809 buildargv (). The first non-switch argument is the filename to
810 load, FILE; the second is a number (as parsed by strtoul (..., ...,
811 0)), which is an offset to apply to the load addresses of FILE's
812 sections. The target may define switches, or other non-switch
813 arguments, as it pleases. */
c906108c 814
11cf8741 815extern void target_load (char *arg, int from_tty);
c906108c
SS
816
817/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
818 name. ADDRP is a CORE_ADDR * pointing to where the value of the
819 symbol should be returned. The result is 0 if successful, nonzero
820 if the symbol does not exist in the target environment. This
821 function should not call error() if communication with the target
822 is interrupted, since it is called from symbol reading, but should
823 return nonzero, possibly doing a complain(). */
c906108c 824
0d06e24b
JM
825#define target_lookup_symbol(name, addrp) \
826 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 827
39f77062 828/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
829 EXEC_FILE is the file to run.
830 ALLARGS is a string containing the arguments to the program.
831 ENV is the environment vector to pass. Errors reported with error().
832 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 833
136d6dae
VP
834void target_create_inferior (char *exec_file, char *args,
835 char **env, int from_tty);
c906108c
SS
836
837/* Some targets (such as ttrace-based HPUX) don't allow us to request
838 notification of inferior events such as fork and vork immediately
839 after the inferior is created. (This because of how gdb gets an
840 inferior created via invoking a shell to do it. In such a scenario,
841 if the shell init file has commands in it, the shell will fork and
842 exec for each of those commands, and we will see each such fork
843 event. Very bad.)
c5aa993b 844
0d06e24b
JM
845 Such targets will supply an appropriate definition for this function. */
846
39f77062
KB
847#define target_post_startup_inferior(ptid) \
848 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
849
850/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
851 some synchronization between gdb and the new inferior process, PID. */
852
c906108c 853#define target_acknowledge_created_inferior(pid) \
0d06e24b 854 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 855
0d06e24b
JM
856/* On some targets, we can catch an inferior fork or vfork event when
857 it occurs. These functions insert/remove an already-created
858 catchpoint for such events. */
c906108c 859
c906108c 860#define target_insert_fork_catchpoint(pid) \
0d06e24b 861 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
862
863#define target_remove_fork_catchpoint(pid) \
0d06e24b 864 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
865
866#define target_insert_vfork_catchpoint(pid) \
0d06e24b 867 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
868
869#define target_remove_vfork_catchpoint(pid) \
0d06e24b 870 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 871
6604731b
DJ
872/* If the inferior forks or vforks, this function will be called at
873 the next resume in order to perform any bookkeeping and fiddling
874 necessary to continue debugging either the parent or child, as
875 requested, and releasing the other. Information about the fork
876 or vfork event is available via get_last_target_status ().
877 This function returns 1 if the inferior should not be resumed
878 (i.e. there is another event pending). */
0d06e24b 879
ee057212 880int target_follow_fork (int follow_child);
c906108c
SS
881
882/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
883 occurs. These functions insert/remove an already-created
884 catchpoint for such events. */
885
c906108c 886#define target_insert_exec_catchpoint(pid) \
0d06e24b 887 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 888
c906108c 889#define target_remove_exec_catchpoint(pid) \
0d06e24b 890 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 891
c906108c 892/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
893 exit code of PID, if any. */
894
c906108c 895#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 896 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
897
898/* The debugger has completed a blocking wait() call. There is now
2146d243 899 some process event that must be processed. This function should
c906108c 900 be defined by those targets that require the debugger to perform
0d06e24b 901 cleanup or internal state changes in response to the process event. */
c906108c
SS
902
903/* The inferior process has died. Do what is right. */
904
136d6dae 905void target_mourn_inferior (void);
c906108c
SS
906
907/* Does target have enough data to do a run or attach command? */
908
909#define target_can_run(t) \
0d06e24b 910 ((t)->to_can_run) ()
c906108c
SS
911
912/* post process changes to signal handling in the inferior. */
913
39f77062
KB
914#define target_notice_signals(ptid) \
915 (*current_target.to_notice_signals) (ptid)
c906108c
SS
916
917/* Check to see if a thread is still alive. */
918
39f77062
KB
919#define target_thread_alive(ptid) \
920 (*current_target.to_thread_alive) (ptid)
c906108c 921
b83266a0
SS
922/* Query for new threads and add them to the thread list. */
923
924#define target_find_new_threads() \
4becf47c 925 (*current_target.to_find_new_threads) ()
b83266a0 926
0d06e24b
JM
927/* Make target stop in a continuable fashion. (For instance, under
928 Unix, this should act like SIGSTOP). This function is normally
929 used by GUIs to implement a stop button. */
c906108c 930
94cc34af 931#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 932
96baa820
JM
933/* Send the specified COMMAND to the target's monitor
934 (shell,interpreter) for execution. The result of the query is
0d06e24b 935 placed in OUTBUF. */
96baa820
JM
936
937#define target_rcmd(command, outbuf) \
938 (*current_target.to_rcmd) (command, outbuf)
939
940
c906108c
SS
941/* Does the target include all of memory, or only part of it? This
942 determines whether we look up the target chain for other parts of
943 memory if this target can't satisfy a request. */
944
945#define target_has_all_memory \
0d06e24b 946 (current_target.to_has_all_memory)
c906108c
SS
947
948/* Does the target include memory? (Dummy targets don't.) */
949
950#define target_has_memory \
0d06e24b 951 (current_target.to_has_memory)
c906108c
SS
952
953/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
954 we start a process.) */
c5aa993b 955
c906108c 956#define target_has_stack \
0d06e24b 957 (current_target.to_has_stack)
c906108c
SS
958
959/* Does the target have registers? (Exec files don't.) */
960
961#define target_has_registers \
0d06e24b 962 (current_target.to_has_registers)
c906108c
SS
963
964/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
965 hoops), or pop its stack a few times? This means that the current
966 target is currently executing; for some targets, that's the same as
967 whether or not the target is capable of execution, but there are
968 also targets which can be current while not executing. In that
969 case this will become true after target_create_inferior or
970 target_attach. */
c906108c
SS
971
972#define target_has_execution \
0d06e24b 973 (current_target.to_has_execution)
c906108c
SS
974
975/* Can the target support the debugger control of thread execution?
d6350901 976 Can it lock the thread scheduler? */
c906108c
SS
977
978#define target_can_lock_scheduler \
0d06e24b 979 (current_target.to_has_thread_control & tc_schedlock)
c906108c 980
c6ebd6cf
VP
981/* Should the target enable async mode if it is supported? Temporary
982 cludge until async mode is a strict superset of sync mode. */
983extern int target_async_permitted;
984
6426a772
JM
985/* Can the target support asynchronous execution? */
986#define target_can_async_p() (current_target.to_can_async_p ())
987
988/* Is the target in asynchronous execution mode? */
b84876c2 989#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 990
9908b566
VP
991int target_supports_non_stop (void);
992
6426a772 993/* Put the target in async mode with the specified callback function. */
0d06e24b 994#define target_async(CALLBACK,CONTEXT) \
b84876c2 995 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 996
04714b91
AC
997/* This is to be used ONLY within call_function_by_hand(). It provides
998 a workaround, to have inferior function calls done in sychronous
999 mode, even though the target is asynchronous. After
ed9a39eb
JM
1000 target_async_mask(0) is called, calls to target_can_async_p() will
1001 return FALSE , so that target_resume() will not try to start the
1002 target asynchronously. After the inferior stops, we IMMEDIATELY
1003 restore the previous nature of the target, by calling
1004 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1005 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1006
1007 FIXME ezannoni 1999-12-13: we won't need this once we move
1008 the turning async on and off to the single execution commands,
0d06e24b 1009 from where it is done currently, in remote_resume(). */
ed9a39eb 1010
b84876c2
PA
1011#define target_async_mask(MASK) \
1012 (current_target.to_async_mask (MASK))
ed9a39eb 1013
c906108c
SS
1014/* Converts a process id to a string. Usually, the string just contains
1015 `process xyz', but on some systems it may contain
1016 `process xyz thread abc'. */
1017
ed9a39eb
JM
1018#undef target_pid_to_str
1019#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1020
1021#ifndef target_tid_to_str
1022#define target_tid_to_str(PID) \
0d06e24b 1023 target_pid_to_str (PID)
39f77062 1024extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1025#endif
c5aa993b 1026
0d06e24b
JM
1027/* Return a short string describing extra information about PID,
1028 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1029 is okay. */
1030
1031#define target_extra_thread_info(TP) \
1032 (current_target.to_extra_thread_info (TP))
ed9a39eb 1033
c906108c
SS
1034/* Attempts to find the pathname of the executable file
1035 that was run to create a specified process.
1036
1037 The process PID must be stopped when this operation is used.
c5aa993b 1038
c906108c
SS
1039 If the executable file cannot be determined, NULL is returned.
1040
1041 Else, a pointer to a character string containing the pathname
1042 is returned. This string should be copied into a buffer by
1043 the client if the string will not be immediately used, or if
0d06e24b 1044 it must persist. */
c906108c
SS
1045
1046#define target_pid_to_exec_file(pid) \
0d06e24b 1047 (current_target.to_pid_to_exec_file) (pid)
c906108c 1048
be4d1333
MS
1049/*
1050 * Iterator function for target memory regions.
1051 * Calls a callback function once for each memory region 'mapped'
1052 * in the child process. Defined as a simple macro rather than
2146d243 1053 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1054 */
1055
1056#define target_find_memory_regions(FUNC, DATA) \
1057 (current_target.to_find_memory_regions) (FUNC, DATA)
1058
1059/*
1060 * Compose corefile .note section.
1061 */
1062
1063#define target_make_corefile_notes(BFD, SIZE_P) \
1064 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1065
3f47be5c
EZ
1066/* Thread-local values. */
1067#define target_get_thread_local_address \
1068 (current_target.to_get_thread_local_address)
1069#define target_get_thread_local_address_p() \
1070 (target_get_thread_local_address != NULL)
1071
c906108c
SS
1072
1073/* Hardware watchpoint interfaces. */
1074
1075/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1076 write). */
1077
1078#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1079#define STOPPED_BY_WATCHPOINT(w) \
1080 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1081#endif
7df1a324 1082
74174d2e
UW
1083/* Non-zero if we have steppable watchpoints */
1084
1085#ifndef HAVE_STEPPABLE_WATCHPOINT
1086#define HAVE_STEPPABLE_WATCHPOINT \
1087 (current_target.to_have_steppable_watchpoint)
1088#endif
1089
7df1a324
KW
1090/* Non-zero if we have continuable watchpoints */
1091
1092#ifndef HAVE_CONTINUABLE_WATCHPOINT
1093#define HAVE_CONTINUABLE_WATCHPOINT \
1094 (current_target.to_have_continuable_watchpoint)
1095#endif
c906108c 1096
ccaa32c7 1097/* Provide defaults for hardware watchpoint functions. */
c906108c 1098
2146d243 1099/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1100 elsewhere use the definitions in the target vector. */
c906108c
SS
1101
1102/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1103 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1104 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1105 (including this one?). OTHERTYPE is who knows what... */
1106
ccaa32c7
GS
1107#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1108#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1109 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1110#endif
c906108c 1111
e0d24f8d
WZ
1112#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1113#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1114 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1115#endif
1116
c906108c
SS
1117
1118/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1119 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1120 success, non-zero for failure. */
1121
ccaa32c7
GS
1122#ifndef target_insert_watchpoint
1123#define target_insert_watchpoint(addr, len, type) \
1124 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1125
ccaa32c7
GS
1126#define target_remove_watchpoint(addr, len, type) \
1127 (*current_target.to_remove_watchpoint) (addr, len, type)
1128#endif
c906108c
SS
1129
1130#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1131#define target_insert_hw_breakpoint(bp_tgt) \
1132 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1133
8181d85f
DJ
1134#define target_remove_hw_breakpoint(bp_tgt) \
1135 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1136#endif
1137
4aa7a7f5
JJ
1138extern int target_stopped_data_address_p (struct target_ops *);
1139
c906108c 1140#ifndef target_stopped_data_address
4aa7a7f5
JJ
1141#define target_stopped_data_address(target, x) \
1142 (*target.to_stopped_data_address) (target, x)
1143#else
1144/* Horrible hack to get around existing macros :-(. */
1145#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1146#endif
1147
5009afc5
AS
1148#define target_watchpoint_addr_within_range(target, addr, start, length) \
1149 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1150
b2175913
MS
1151/* Target can execute in reverse? */
1152#define target_can_execute_reverse \
1153 (current_target.to_can_execute_reverse ? \
1154 current_target.to_can_execute_reverse () : 0)
1155
424163ea
DJ
1156extern const struct target_desc *target_read_description (struct target_ops *);
1157
0ef643c8
JB
1158#define target_get_ada_task_ptid(lwp, tid) \
1159 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1160
08388c79
DE
1161/* Utility implementation of searching memory. */
1162extern int simple_search_memory (struct target_ops* ops,
1163 CORE_ADDR start_addr,
1164 ULONGEST search_space_len,
1165 const gdb_byte *pattern,
1166 ULONGEST pattern_len,
1167 CORE_ADDR *found_addrp);
1168
1169/* Main entry point for searching memory. */
1170extern int target_search_memory (CORE_ADDR start_addr,
1171 ULONGEST search_space_len,
1172 const gdb_byte *pattern,
1173 ULONGEST pattern_len,
1174 CORE_ADDR *found_addrp);
1175
49d03eab
MR
1176/* Command logging facility. */
1177
1178#define target_log_command(p) \
1179 do \
1180 if (current_target.to_log_command) \
1181 (*current_target.to_log_command) (p); \
1182 while (0)
1183
c906108c
SS
1184/* Routines for maintenance of the target structures...
1185
1186 add_target: Add a target to the list of all possible targets.
1187
1188 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1189 targets, within its particular stratum of the stack. Result
1190 is 0 if now atop the stack, nonzero if not on top (maybe
1191 should warn user).
c906108c
SS
1192
1193 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1194 no matter where it is on the list. Returns 0 if no
1195 change, 1 if removed from stack.
c906108c 1196
c5aa993b 1197 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1198
a14ed312 1199extern void add_target (struct target_ops *);
c906108c 1200
a14ed312 1201extern int push_target (struct target_ops *);
c906108c 1202
a14ed312 1203extern int unpush_target (struct target_ops *);
c906108c 1204
fd79ecee
DJ
1205extern void target_pre_inferior (int);
1206
a14ed312 1207extern void target_preopen (int);
c906108c 1208
a14ed312 1209extern void pop_target (void);
c906108c 1210
aa76d38d
PA
1211/* Does whatever cleanup is required to get rid of all pushed targets.
1212 QUITTING is propagated to target_close; it indicates that GDB is
1213 exiting and should not get hung on an error (otherwise it is
1214 important to perform clean termination, even if it takes a
1215 while). */
1216extern void pop_all_targets (int quitting);
1217
87ab71f0
PA
1218/* Like pop_all_targets, but pops only targets whose stratum is
1219 strictly above ABOVE_STRATUM. */
1220extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1221
9e35dae4
DJ
1222extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1223 CORE_ADDR offset);
1224
52bb452f
DJ
1225/* Mark a pushed target as running or exited, for targets which do not
1226 automatically pop when not active. */
1227
1228void target_mark_running (struct target_ops *);
1229
1230void target_mark_exited (struct target_ops *);
1231
c906108c
SS
1232/* Struct section_table maps address ranges to file sections. It is
1233 mostly used with BFD files, but can be used without (e.g. for handling
1234 raw disks, or files not in formats handled by BFD). */
1235
c5aa993b
JM
1236struct section_table
1237 {
1238 CORE_ADDR addr; /* Lowest address in section */
1239 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1240
7be0c536 1241 struct bfd_section *the_bfd_section;
c906108c 1242
c5aa993b
JM
1243 bfd *bfd; /* BFD file pointer */
1244 };
c906108c 1245
8db32d44
AC
1246/* Return the "section" containing the specified address. */
1247struct section_table *target_section_by_addr (struct target_ops *target,
1248 CORE_ADDR addr);
1249
1250
c906108c
SS
1251/* From mem-break.c */
1252
8181d85f 1253extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1254
8181d85f 1255extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1256
ae4b2284 1257extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1258
ae4b2284 1259extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1260
c906108c
SS
1261
1262/* From target.c */
1263
a14ed312 1264extern void initialize_targets (void);
c906108c 1265
a14ed312 1266extern void noprocess (void);
c906108c 1267
8edfe269
DJ
1268extern void target_require_runnable (void);
1269
136d6dae 1270extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1271
136d6dae
VP
1272extern void find_default_create_inferior (struct target_ops *,
1273 char *, char *, char **, int);
c906108c 1274
a14ed312 1275extern struct target_ops *find_run_target (void);
7a292a7a 1276
a14ed312 1277extern struct target_ops *find_core_target (void);
6426a772 1278
a14ed312 1279extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1280
570b8f7c
AC
1281extern int target_resize_to_sections (struct target_ops *target,
1282 int num_added);
07cd4b97
JB
1283
1284extern void remove_target_sections (bfd *abfd);
1285
c906108c
SS
1286\f
1287/* Stuff that should be shared among the various remote targets. */
1288
1289/* Debugging level. 0 is off, and non-zero values mean to print some debug
1290 information (higher values, more information). */
1291extern int remote_debug;
1292
1293/* Speed in bits per second, or -1 which means don't mess with the speed. */
1294extern int baud_rate;
1295/* Timeout limit for response from target. */
1296extern int remote_timeout;
1297
c906108c
SS
1298\f
1299/* Functions for helping to write a native target. */
1300
1301/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1302extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1303
c2d11a7d 1304/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1305 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1306/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1307 to the shorter target_signal_p() because it is far less ambigious.
1308 In this context ``target_signal'' refers to GDB's internal
1309 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1310 refers to the target operating system's signal. Confused? */
1311
c2d11a7d
JM
1312extern int target_signal_to_host_p (enum target_signal signo);
1313
1314/* Convert between host signal numbers and enum target_signal's.
1315 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1316 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1317/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1318 refering to the target operating system's signal numbering.
1319 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1320 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1321 internal representation of a target operating system's signal. */
1322
a14ed312
KB
1323extern enum target_signal target_signal_from_host (int);
1324extern int target_signal_to_host (enum target_signal);
c906108c 1325
1cded358
AR
1326extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1327 int);
1328extern int default_target_signal_to_host (struct gdbarch *,
1329 enum target_signal);
1330
c906108c 1331/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1332extern enum target_signal target_signal_from_command (int);
c906108c 1333
8defab1a
DJ
1334/* Set the show memory breakpoints mode to show, and installs a cleanup
1335 to restore it back to the current value. */
1336extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1337
c906108c
SS
1338\f
1339/* Imported from machine dependent code */
1340
c906108c 1341/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1342void target_ignore (void);
c906108c 1343
1df84f13 1344extern struct target_ops deprecated_child_ops;
5ac10fd1 1345
c5aa993b 1346#endif /* !defined (TARGET_H) */
This page took 0.861113 seconds and 4 git commands to generate.