* breakpoint.c (remove_breakpoint): Do not fail if unable to remove
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
c4093a6a 131 TARGET_WAITKIND_IGNORE
c906108c
SS
132 };
133
c5aa993b
JM
134struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
3a3e9ee3 143 ptid_t related_pid;
c5aa993b
JM
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
c906108c 149
2acceee2 150/* Possible types of events that the inferior handler will have to
0d06e24b 151 deal with. */
2acceee2
JM
152enum inferior_event_type
153 {
0d06e24b 154 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
0d06e24b 157 being called. */
2146d243 158 INF_REG_EVENT,
0d06e24b 159 /* Deal with an error on the inferior. */
2acceee2 160 INF_ERROR,
0d06e24b 161 /* We are called because a timer went off. */
2acceee2 162 INF_TIMER,
0d06e24b 163 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
0d06e24b 168 'step n' like commands. */
c2d11a7d 169 INF_EXEC_CONTINUE
2acceee2
JM
170 };
171
c906108c 172/* Return the string for a signal. */
a14ed312 173extern char *target_signal_to_string (enum target_signal);
c906108c
SS
174
175/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 176extern char *target_signal_to_name (enum target_signal);
c906108c
SS
177
178/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 179enum target_signal target_signal_from_name (char *);
c906108c 180\f
13547ab6
DJ
181/* Target objects which can be transfered using target_read,
182 target_write, et cetera. */
1e3ff5ad
AC
183
184enum target_object
185{
1e3ff5ad
AC
186 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
187 TARGET_OBJECT_AVR,
23d964e7
UW
188 /* SPU target specific transfer. See "spu-tdep.c". */
189 TARGET_OBJECT_SPU,
1e3ff5ad 190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 191 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
192 /* Memory, avoiding GDB's data cache and trusting the executable.
193 Target implementations of to_xfer_partial never need to handle
194 this object, and most callers should not use it. */
195 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
196 /* Kernel Unwind Table. See "ia64-tdep.c". */
197 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
198 /* Transfer auxilliary vector. */
199 TARGET_OBJECT_AUXV,
baf92889 200 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
201 TARGET_OBJECT_WCOOKIE,
202 /* Target memory map in XML format. */
203 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
204 /* Flash memory. This object can be used to write contents to
205 a previously erased flash memory. Using it without erasing
206 flash can have unexpected results. Addresses are physical
207 address on target, and not relative to flash start. */
23181151
DJ
208 TARGET_OBJECT_FLASH,
209 /* Available target-specific features, e.g. registers and coprocessors.
210 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
211 TARGET_OBJECT_AVAILABLE_FEATURES,
212 /* Currently loaded libraries, in XML format. */
213 TARGET_OBJECT_LIBRARIES
2146d243 214 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
215};
216
13547ab6
DJ
217/* Request that OPS transfer up to LEN 8-bit bytes of the target's
218 OBJECT. The OFFSET, for a seekable object, specifies the
219 starting point. The ANNEX can be used to provide additional
220 data-specific information to the target.
1e3ff5ad 221
13547ab6
DJ
222 Return the number of bytes actually transfered, or -1 if the
223 transfer is not supported or otherwise fails. Return of a positive
224 value less than LEN indicates that no further transfer is possible.
225 Unlike the raw to_xfer_partial interface, callers of these
226 functions do not need to retry partial transfers. */
1e3ff5ad 227
1e3ff5ad
AC
228extern LONGEST target_read (struct target_ops *ops,
229 enum target_object object,
1b0ba102 230 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
231 ULONGEST offset, LONGEST len);
232
d5086790
VP
233extern LONGEST target_read_until_error (struct target_ops *ops,
234 enum target_object object,
235 const char *annex, gdb_byte *buf,
236 ULONGEST offset, LONGEST len);
237
1e3ff5ad
AC
238extern LONGEST target_write (struct target_ops *ops,
239 enum target_object object,
1b0ba102 240 const char *annex, const gdb_byte *buf,
1e3ff5ad 241 ULONGEST offset, LONGEST len);
b6591e8b 242
a76d924d
DJ
243/* Similar to target_write, except that it also calls PROGRESS with
244 the number of bytes written and the opaque BATON after every
245 successful partial write (and before the first write). This is
246 useful for progress reporting and user interaction while writing
247 data. To abort the transfer, the progress callback can throw an
248 exception. */
249
cf7a04e8
DJ
250LONGEST target_write_with_progress (struct target_ops *ops,
251 enum target_object object,
252 const char *annex, const gdb_byte *buf,
253 ULONGEST offset, LONGEST len,
254 void (*progress) (ULONGEST, void *),
255 void *baton);
256
13547ab6
DJ
257/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
258 be read using OPS. The return value will be -1 if the transfer
259 fails or is not supported; 0 if the object is empty; or the length
260 of the object otherwise. If a positive value is returned, a
261 sufficiently large buffer will be allocated using xmalloc and
262 returned in *BUF_P containing the contents of the object.
263
264 This method should be used for objects sufficiently small to store
265 in a single xmalloc'd buffer, when no fixed bound on the object's
266 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
267 through this function. */
268
269extern LONGEST target_read_alloc (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte **buf_p);
272
159f81f3
DJ
273/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
274 returned as a string, allocated using xmalloc. If an error occurs
275 or the transfer is unsupported, NULL is returned. Empty objects
276 are returned as allocated but empty strings. A warning is issued
277 if the result contains any embedded NUL bytes. */
278
279extern char *target_read_stralloc (struct target_ops *ops,
280 enum target_object object,
281 const char *annex);
282
b6591e8b
AC
283/* Wrappers to target read/write that perform memory transfers. They
284 throw an error if the memory transfer fails.
285
286 NOTE: cagney/2003-10-23: The naming schema is lifted from
287 "frame.h". The parameter order is lifted from get_frame_memory,
288 which in turn lifted it from read_memory. */
289
290extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 291 gdb_byte *buf, LONGEST len);
b6591e8b
AC
292extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
293 CORE_ADDR addr, int len);
1e3ff5ad 294\f
c5aa993b 295
c906108c
SS
296/* If certain kinds of activity happen, target_wait should perform
297 callbacks. */
298/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 299 on TARGET_ACTIVITY_FD. */
c906108c
SS
300extern int target_activity_fd;
301/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 302extern int (*target_activity_function) (void);
c906108c 303\f
0d06e24b
JM
304struct thread_info; /* fwd decl for parameter list below: */
305
c906108c 306struct target_ops
c5aa993b 307 {
258b763a 308 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
309 char *to_shortname; /* Name this target type */
310 char *to_longname; /* Name for printing */
311 char *to_doc; /* Documentation. Does not include trailing
c906108c 312 newline, and starts with a one-line descrip-
0d06e24b 313 tion (probably similar to to_longname). */
bba2d28d
AC
314 /* Per-target scratch pad. */
315 void *to_data;
f1c07ab0
AC
316 /* The open routine takes the rest of the parameters from the
317 command, and (if successful) pushes a new target onto the
318 stack. Targets should supply this routine, if only to provide
319 an error message. */
507f3c78 320 void (*to_open) (char *, int);
f1c07ab0
AC
321 /* Old targets with a static target vector provide "to_close".
322 New re-entrant targets provide "to_xclose" and that is expected
323 to xfree everything (including the "struct target_ops"). */
324 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
325 void (*to_close) (int);
326 void (*to_attach) (char *, int);
327 void (*to_post_attach) (int);
507f3c78 328 void (*to_detach) (char *, int);
597320e7 329 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
330 void (*to_resume) (ptid_t, int, enum target_signal);
331 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
332 void (*to_fetch_registers) (struct regcache *, int);
333 void (*to_store_registers) (struct regcache *, int);
316f2060 334 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
335
336 /* Transfer LEN bytes of memory between GDB address MYADDR and
337 target address MEMADDR. If WRITE, transfer them to the target, else
338 transfer them from the target. TARGET is the target from which we
339 get this function.
340
341 Return value, N, is one of the following:
342
343 0 means that we can't handle this. If errno has been set, it is the
344 error which prevented us from doing it (FIXME: What about bfd_error?).
345
346 positive (call it N) means that we have transferred N bytes
347 starting at MEMADDR. We might be able to handle more bytes
348 beyond this length, but no promises.
349
350 negative (call its absolute value N) means that we cannot
351 transfer right at MEMADDR, but we could transfer at least
c8e73a31 352 something at MEMADDR + N.
c5aa993b 353
c8e73a31
AC
354 NOTE: cagney/2004-10-01: This has been entirely superseeded by
355 to_xfer_partial and inferior inheritance. */
356
1b0ba102 357 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
358 int len, int write,
359 struct mem_attrib *attrib,
360 struct target_ops *target);
c906108c 361
507f3c78 362 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
363 int (*to_insert_breakpoint) (struct bp_target_info *);
364 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 365 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
366 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
367 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
368 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
369 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
370 int (*to_stopped_by_watchpoint) (void);
74174d2e 371 int to_have_steppable_watchpoint;
7df1a324 372 int to_have_continuable_watchpoint;
4aa7a7f5 373 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
374 int (*to_watchpoint_addr_within_range) (struct target_ops *,
375 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 376 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
377 void (*to_terminal_init) (void);
378 void (*to_terminal_inferior) (void);
379 void (*to_terminal_ours_for_output) (void);
380 void (*to_terminal_ours) (void);
a790ad35 381 void (*to_terminal_save_ours) (void);
507f3c78
KB
382 void (*to_terminal_info) (char *, int);
383 void (*to_kill) (void);
384 void (*to_load) (char *, int);
385 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 386 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 387 void (*to_post_startup_inferior) (ptid_t);
507f3c78 388 void (*to_acknowledge_created_inferior) (int);
fa113d1a 389 void (*to_insert_fork_catchpoint) (int);
507f3c78 390 int (*to_remove_fork_catchpoint) (int);
fa113d1a 391 void (*to_insert_vfork_catchpoint) (int);
507f3c78 392 int (*to_remove_vfork_catchpoint) (int);
ee057212 393 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 394 void (*to_insert_exec_catchpoint) (int);
507f3c78 395 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
396 int (*to_has_exited) (int, int, int *);
397 void (*to_mourn_inferior) (void);
398 int (*to_can_run) (void);
39f77062
KB
399 void (*to_notice_signals) (ptid_t ptid);
400 int (*to_thread_alive) (ptid_t ptid);
507f3c78 401 void (*to_find_new_threads) (void);
39f77062 402 char *(*to_pid_to_str) (ptid_t);
507f3c78 403 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 404 void (*to_stop) (ptid_t);
d9fcf2fb 405 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 406 char *(*to_pid_to_exec_file) (int pid);
49d03eab 407 void (*to_log_command) (const char *);
c5aa993b 408 enum strata to_stratum;
c5aa993b
JM
409 int to_has_all_memory;
410 int to_has_memory;
411 int to_has_stack;
412 int to_has_registers;
413 int to_has_execution;
414 int to_has_thread_control; /* control thread execution */
dc177b7a 415 int to_attach_no_wait;
c5aa993b
JM
416 struct section_table
417 *to_sections;
418 struct section_table
419 *to_sections_end;
6426a772
JM
420 /* ASYNC target controls */
421 int (*to_can_async_p) (void);
422 int (*to_is_async_p) (void);
b84876c2
PA
423 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
424 int (*to_async_mask) (int);
9908b566 425 int (*to_supports_non_stop) (void);
2146d243
RM
426 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
427 unsigned long,
428 int, int, int,
429 void *),
be4d1333
MS
430 void *);
431 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
432
433 /* Return the thread-local address at OFFSET in the
434 thread-local storage for the thread PTID and the shared library
435 or executable file given by OBJFILE. If that block of
436 thread-local storage hasn't been allocated yet, this function
437 may return an error. */
438 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 439 CORE_ADDR load_module_addr,
3f47be5c
EZ
440 CORE_ADDR offset);
441
13547ab6
DJ
442 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
443 OBJECT. The OFFSET, for a seekable object, specifies the
444 starting point. The ANNEX can be used to provide additional
445 data-specific information to the target.
446
447 Return the number of bytes actually transfered, zero when no
448 further transfer is possible, and -1 when the transfer is not
449 supported. Return of a positive value smaller than LEN does
450 not indicate the end of the object, only the end of the
451 transfer; higher level code should continue transferring if
452 desired. This is handled in target.c.
453
454 The interface does not support a "retry" mechanism. Instead it
455 assumes that at least one byte will be transfered on each
456 successful call.
457
458 NOTE: cagney/2003-10-17: The current interface can lead to
459 fragmented transfers. Lower target levels should not implement
460 hacks, such as enlarging the transfer, in an attempt to
461 compensate for this. Instead, the target stack should be
462 extended so that it implements supply/collect methods and a
463 look-aside object cache. With that available, the lowest
464 target can safely and freely "push" data up the stack.
465
466 See target_read and target_write for more information. One,
467 and only one, of readbuf or writebuf must be non-NULL. */
468
4b8a223f 469 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 470 enum target_object object, const char *annex,
1b0ba102 471 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 472 ULONGEST offset, LONGEST len);
1e3ff5ad 473
fd79ecee
DJ
474 /* Returns the memory map for the target. A return value of NULL
475 means that no memory map is available. If a memory address
476 does not fall within any returned regions, it's assumed to be
477 RAM. The returned memory regions should not overlap.
478
479 The order of regions does not matter; target_memory_map will
480 sort regions by starting address. For that reason, this
481 function should not be called directly except via
482 target_memory_map.
483
484 This method should not cache data; if the memory map could
485 change unexpectedly, it should be invalidated, and higher
486 layers will re-fetch it. */
487 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
488
a76d924d
DJ
489 /* Erases the region of flash memory starting at ADDRESS, of
490 length LENGTH.
491
492 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
493 on flash block boundaries, as reported by 'to_memory_map'. */
494 void (*to_flash_erase) (struct target_ops *,
495 ULONGEST address, LONGEST length);
496
497 /* Finishes a flash memory write sequence. After this operation
498 all flash memory should be available for writing and the result
499 of reading from areas written by 'to_flash_write' should be
500 equal to what was written. */
501 void (*to_flash_done) (struct target_ops *);
502
424163ea
DJ
503 /* Describe the architecture-specific features of this target.
504 Returns the description found, or NULL if no description
505 was available. */
506 const struct target_desc *(*to_read_description) (struct target_ops *ops);
507
c47ffbe3
VP
508 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
509 Return 0 if *READPTR is already at the end of the buffer.
510 Return -1 if there is insufficient buffer for a whole entry.
511 Return 1 if an entry was read into *TYPEP and *VALP. */
512 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
513 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
514
08388c79
DE
515 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
516 sequence of bytes in PATTERN with length PATTERN_LEN.
517
518 The result is 1 if found, 0 if not found, and -1 if there was an error
519 requiring halting of the search (e.g. memory read error).
520 If the pattern is found the address is recorded in FOUND_ADDRP. */
521 int (*to_search_memory) (struct target_ops *ops,
522 CORE_ADDR start_addr, ULONGEST search_space_len,
523 const gdb_byte *pattern, ULONGEST pattern_len,
524 CORE_ADDR *found_addrp);
525
c5aa993b 526 int to_magic;
0d06e24b
JM
527 /* Need sub-structure for target machine related rather than comm related?
528 */
c5aa993b 529 };
c906108c
SS
530
531/* Magic number for checking ops size. If a struct doesn't end with this
532 number, somebody changed the declaration but didn't change all the
533 places that initialize one. */
534
535#define OPS_MAGIC 3840
536
537/* The ops structure for our "current" target process. This should
538 never be NULL. If there is no target, it points to the dummy_target. */
539
c5aa993b 540extern struct target_ops current_target;
c906108c 541
c906108c
SS
542/* Define easy words for doing these operations on our current target. */
543
544#define target_shortname (current_target.to_shortname)
545#define target_longname (current_target.to_longname)
546
f1c07ab0
AC
547/* Does whatever cleanup is required for a target that we are no
548 longer going to be calling. QUITTING indicates that GDB is exiting
549 and should not get hung on an error (otherwise it is important to
550 perform clean termination, even if it takes a while). This routine
551 is automatically always called when popping the target off the
552 target stack (to_beneath is undefined). Closing file descriptors
553 and freeing all memory allocated memory are typical things it
554 should do. */
555
556void target_close (struct target_ops *targ, int quitting);
c906108c
SS
557
558/* Attaches to a process on the target side. Arguments are as passed
559 to the `attach' command by the user. This routine can be called
560 when the target is not on the target-stack, if the target_can_run
2146d243 561 routine returns 1; in that case, it must push itself onto the stack.
c906108c 562 Upon exit, the target should be ready for normal operations, and
2146d243 563 should be ready to deliver the status of the process immediately
c906108c
SS
564 (without waiting) to an upcoming target_wait call. */
565
566#define target_attach(args, from_tty) \
0d06e24b 567 (*current_target.to_attach) (args, from_tty)
c906108c 568
dc177b7a
PA
569/* Some targets don't generate traps when attaching to the inferior,
570 or their target_attach implementation takes care of the waiting.
571 These targets must set to_attach_no_wait. */
572
573#define target_attach_no_wait \
574 (current_target.to_attach_no_wait)
575
c906108c
SS
576/* The target_attach operation places a process under debugger control,
577 and stops the process.
578
579 This operation provides a target-specific hook that allows the
0d06e24b 580 necessary bookkeeping to be performed after an attach completes. */
c906108c 581#define target_post_attach(pid) \
0d06e24b 582 (*current_target.to_post_attach) (pid)
c906108c 583
c906108c
SS
584/* Takes a program previously attached to and detaches it.
585 The program may resume execution (some targets do, some don't) and will
586 no longer stop on signals, etc. We better not have left any breakpoints
587 in the program or it'll die when it hits one. ARGS is arguments
588 typed by the user (e.g. a signal to send the process). FROM_TTY
589 says whether to be verbose or not. */
590
a14ed312 591extern void target_detach (char *, int);
c906108c 592
6ad8ae5c
DJ
593/* Disconnect from the current target without resuming it (leaving it
594 waiting for a debugger). */
595
596extern void target_disconnect (char *, int);
597
39f77062 598/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
599 single-step or to run free; SIGGNAL is the signal to be given to
600 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
601 pass TARGET_SIGNAL_DEFAULT. */
602
e1ac3328 603extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 604
b5a2688f
AC
605/* Wait for process pid to do something. PTID = -1 to wait for any
606 pid to do something. Return pid of child, or -1 in case of error;
c906108c 607 store status through argument pointer STATUS. Note that it is
b5a2688f 608 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
609 the debugging target from the stack; GDB isn't prepared to get back
610 to the prompt with a debugging target but without the frame cache,
611 stop_pc, etc., set up. */
612
39f77062
KB
613#define target_wait(ptid, status) \
614 (*current_target.to_wait) (ptid, status)
c906108c 615
17dee195 616/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 617
56be3814
UW
618#define target_fetch_registers(regcache, regno) \
619 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
620
621/* Store at least register REGNO, or all regs if REGNO == -1.
622 It can store as many registers as it wants to, so target_prepare_to_store
623 must have been previously called. Calls error() if there are problems. */
624
56be3814
UW
625#define target_store_registers(regcache, regs) \
626 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
627
628/* Get ready to modify the registers array. On machines which store
629 individual registers, this doesn't need to do anything. On machines
630 which store all the registers in one fell swoop, this makes sure
631 that REGISTERS contains all the registers from the program being
632 debugged. */
633
316f2060
UW
634#define target_prepare_to_store(regcache) \
635 (*current_target.to_prepare_to_store) (regcache)
c906108c 636
4930751a
C
637extern DCACHE *target_dcache;
638
a14ed312 639extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 640
fc1a4b47 641extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 642
fc1a4b47 643extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 644 int len);
c906108c 645
1b0ba102 646extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 647 struct mem_attrib *, struct target_ops *);
c906108c 648
fd79ecee
DJ
649/* Fetches the target's memory map. If one is found it is sorted
650 and returned, after some consistency checking. Otherwise, NULL
651 is returned. */
652VEC(mem_region_s) *target_memory_map (void);
653
a76d924d
DJ
654/* Erase the specified flash region. */
655void target_flash_erase (ULONGEST address, LONGEST length);
656
657/* Finish a sequence of flash operations. */
658void target_flash_done (void);
659
660/* Describes a request for a memory write operation. */
661struct memory_write_request
662 {
663 /* Begining address that must be written. */
664 ULONGEST begin;
665 /* Past-the-end address. */
666 ULONGEST end;
667 /* The data to write. */
668 gdb_byte *data;
669 /* A callback baton for progress reporting for this request. */
670 void *baton;
671 };
672typedef struct memory_write_request memory_write_request_s;
673DEF_VEC_O(memory_write_request_s);
674
675/* Enumeration specifying different flash preservation behaviour. */
676enum flash_preserve_mode
677 {
678 flash_preserve,
679 flash_discard
680 };
681
682/* Write several memory blocks at once. This version can be more
683 efficient than making several calls to target_write_memory, in
684 particular because it can optimize accesses to flash memory.
685
686 Moreover, this is currently the only memory access function in gdb
687 that supports writing to flash memory, and it should be used for
688 all cases where access to flash memory is desirable.
689
690 REQUESTS is the vector (see vec.h) of memory_write_request.
691 PRESERVE_FLASH_P indicates what to do with blocks which must be
692 erased, but not completely rewritten.
693 PROGRESS_CB is a function that will be periodically called to provide
694 feedback to user. It will be called with the baton corresponding
695 to the request currently being written. It may also be called
696 with a NULL baton, when preserved flash sectors are being rewritten.
697
698 The function returns 0 on success, and error otherwise. */
699int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
700 enum flash_preserve_mode preserve_flash_p,
701 void (*progress_cb) (ULONGEST, void *));
702
47932f85
DJ
703/* From infrun.c. */
704
3a3e9ee3 705extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 706
3a3e9ee3 707extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 708
3a3e9ee3 709extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 710
c906108c
SS
711/* From exec.c */
712
a14ed312 713extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
714
715/* Print a line about the current target. */
716
717#define target_files_info() \
0d06e24b 718 (*current_target.to_files_info) (&current_target)
c906108c 719
8181d85f
DJ
720/* Insert a breakpoint at address BP_TGT->placed_address in the target
721 machine. Result is 0 for success, or an errno value. */
c906108c 722
8181d85f
DJ
723#define target_insert_breakpoint(bp_tgt) \
724 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 725
8181d85f
DJ
726/* Remove a breakpoint at address BP_TGT->placed_address in the target
727 machine. Result is 0 for success, or an errno value. */
c906108c 728
8181d85f
DJ
729#define target_remove_breakpoint(bp_tgt) \
730 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
731
732/* Initialize the terminal settings we record for the inferior,
733 before we actually run the inferior. */
734
735#define target_terminal_init() \
0d06e24b 736 (*current_target.to_terminal_init) ()
c906108c
SS
737
738/* Put the inferior's terminal settings into effect.
739 This is preparation for starting or resuming the inferior. */
740
741#define target_terminal_inferior() \
0d06e24b 742 (*current_target.to_terminal_inferior) ()
c906108c
SS
743
744/* Put some of our terminal settings into effect,
745 enough to get proper results from our output,
746 but do not change into or out of RAW mode
747 so that no input is discarded.
748
749 After doing this, either terminal_ours or terminal_inferior
750 should be called to get back to a normal state of affairs. */
751
752#define target_terminal_ours_for_output() \
0d06e24b 753 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
754
755/* Put our terminal settings into effect.
756 First record the inferior's terminal settings
757 so they can be restored properly later. */
758
759#define target_terminal_ours() \
0d06e24b 760 (*current_target.to_terminal_ours) ()
c906108c 761
a790ad35
SC
762/* Save our terminal settings.
763 This is called from TUI after entering or leaving the curses
764 mode. Since curses modifies our terminal this call is here
765 to take this change into account. */
766
767#define target_terminal_save_ours() \
768 (*current_target.to_terminal_save_ours) ()
769
c906108c
SS
770/* Print useful information about our terminal status, if such a thing
771 exists. */
772
773#define target_terminal_info(arg, from_tty) \
0d06e24b 774 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
775
776/* Kill the inferior process. Make it go away. */
777
778#define target_kill() \
0d06e24b 779 (*current_target.to_kill) ()
c906108c 780
0d06e24b
JM
781/* Load an executable file into the target process. This is expected
782 to not only bring new code into the target process, but also to
1986bccd
AS
783 update GDB's symbol tables to match.
784
785 ARG contains command-line arguments, to be broken down with
786 buildargv (). The first non-switch argument is the filename to
787 load, FILE; the second is a number (as parsed by strtoul (..., ...,
788 0)), which is an offset to apply to the load addresses of FILE's
789 sections. The target may define switches, or other non-switch
790 arguments, as it pleases. */
c906108c 791
11cf8741 792extern void target_load (char *arg, int from_tty);
c906108c
SS
793
794/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
795 name. ADDRP is a CORE_ADDR * pointing to where the value of the
796 symbol should be returned. The result is 0 if successful, nonzero
797 if the symbol does not exist in the target environment. This
798 function should not call error() if communication with the target
799 is interrupted, since it is called from symbol reading, but should
800 return nonzero, possibly doing a complain(). */
c906108c 801
0d06e24b
JM
802#define target_lookup_symbol(name, addrp) \
803 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 804
39f77062 805/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
806 EXEC_FILE is the file to run.
807 ALLARGS is a string containing the arguments to the program.
808 ENV is the environment vector to pass. Errors reported with error().
809 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 810
c27cda74
AC
811#define target_create_inferior(exec_file, args, env, FROM_TTY) \
812 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
813
814
815/* Some targets (such as ttrace-based HPUX) don't allow us to request
816 notification of inferior events such as fork and vork immediately
817 after the inferior is created. (This because of how gdb gets an
818 inferior created via invoking a shell to do it. In such a scenario,
819 if the shell init file has commands in it, the shell will fork and
820 exec for each of those commands, and we will see each such fork
821 event. Very bad.)
c5aa993b 822
0d06e24b
JM
823 Such targets will supply an appropriate definition for this function. */
824
39f77062
KB
825#define target_post_startup_inferior(ptid) \
826 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
827
828/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
829 some synchronization between gdb and the new inferior process, PID. */
830
c906108c 831#define target_acknowledge_created_inferior(pid) \
0d06e24b 832 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 833
0d06e24b
JM
834/* On some targets, we can catch an inferior fork or vfork event when
835 it occurs. These functions insert/remove an already-created
836 catchpoint for such events. */
c906108c 837
c906108c 838#define target_insert_fork_catchpoint(pid) \
0d06e24b 839 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
840
841#define target_remove_fork_catchpoint(pid) \
0d06e24b 842 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
843
844#define target_insert_vfork_catchpoint(pid) \
0d06e24b 845 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
846
847#define target_remove_vfork_catchpoint(pid) \
0d06e24b 848 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 849
6604731b
DJ
850/* If the inferior forks or vforks, this function will be called at
851 the next resume in order to perform any bookkeeping and fiddling
852 necessary to continue debugging either the parent or child, as
853 requested, and releasing the other. Information about the fork
854 or vfork event is available via get_last_target_status ().
855 This function returns 1 if the inferior should not be resumed
856 (i.e. there is another event pending). */
0d06e24b 857
ee057212 858int target_follow_fork (int follow_child);
c906108c
SS
859
860/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
861 occurs. These functions insert/remove an already-created
862 catchpoint for such events. */
863
c906108c 864#define target_insert_exec_catchpoint(pid) \
0d06e24b 865 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 866
c906108c 867#define target_remove_exec_catchpoint(pid) \
0d06e24b 868 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 869
c906108c 870/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
871 exit code of PID, if any. */
872
c906108c 873#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 874 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
875
876/* The debugger has completed a blocking wait() call. There is now
2146d243 877 some process event that must be processed. This function should
c906108c 878 be defined by those targets that require the debugger to perform
0d06e24b 879 cleanup or internal state changes in response to the process event. */
c906108c
SS
880
881/* The inferior process has died. Do what is right. */
882
883#define target_mourn_inferior() \
0d06e24b 884 (*current_target.to_mourn_inferior) ()
c906108c
SS
885
886/* Does target have enough data to do a run or attach command? */
887
888#define target_can_run(t) \
0d06e24b 889 ((t)->to_can_run) ()
c906108c
SS
890
891/* post process changes to signal handling in the inferior. */
892
39f77062
KB
893#define target_notice_signals(ptid) \
894 (*current_target.to_notice_signals) (ptid)
c906108c
SS
895
896/* Check to see if a thread is still alive. */
897
39f77062
KB
898#define target_thread_alive(ptid) \
899 (*current_target.to_thread_alive) (ptid)
c906108c 900
b83266a0
SS
901/* Query for new threads and add them to the thread list. */
902
903#define target_find_new_threads() \
4becf47c 904 (*current_target.to_find_new_threads) ()
b83266a0 905
0d06e24b
JM
906/* Make target stop in a continuable fashion. (For instance, under
907 Unix, this should act like SIGSTOP). This function is normally
908 used by GUIs to implement a stop button. */
c906108c 909
94cc34af 910#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 911
96baa820
JM
912/* Send the specified COMMAND to the target's monitor
913 (shell,interpreter) for execution. The result of the query is
0d06e24b 914 placed in OUTBUF. */
96baa820
JM
915
916#define target_rcmd(command, outbuf) \
917 (*current_target.to_rcmd) (command, outbuf)
918
919
c906108c
SS
920/* Does the target include all of memory, or only part of it? This
921 determines whether we look up the target chain for other parts of
922 memory if this target can't satisfy a request. */
923
924#define target_has_all_memory \
0d06e24b 925 (current_target.to_has_all_memory)
c906108c
SS
926
927/* Does the target include memory? (Dummy targets don't.) */
928
929#define target_has_memory \
0d06e24b 930 (current_target.to_has_memory)
c906108c
SS
931
932/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
933 we start a process.) */
c5aa993b 934
c906108c 935#define target_has_stack \
0d06e24b 936 (current_target.to_has_stack)
c906108c
SS
937
938/* Does the target have registers? (Exec files don't.) */
939
940#define target_has_registers \
0d06e24b 941 (current_target.to_has_registers)
c906108c
SS
942
943/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
944 hoops), or pop its stack a few times? This means that the current
945 target is currently executing; for some targets, that's the same as
946 whether or not the target is capable of execution, but there are
947 also targets which can be current while not executing. In that
948 case this will become true after target_create_inferior or
949 target_attach. */
c906108c
SS
950
951#define target_has_execution \
0d06e24b 952 (current_target.to_has_execution)
c906108c
SS
953
954/* Can the target support the debugger control of thread execution?
d6350901 955 Can it lock the thread scheduler? */
c906108c
SS
956
957#define target_can_lock_scheduler \
0d06e24b 958 (current_target.to_has_thread_control & tc_schedlock)
c906108c 959
c6ebd6cf
VP
960/* Should the target enable async mode if it is supported? Temporary
961 cludge until async mode is a strict superset of sync mode. */
962extern int target_async_permitted;
963
6426a772
JM
964/* Can the target support asynchronous execution? */
965#define target_can_async_p() (current_target.to_can_async_p ())
966
967/* Is the target in asynchronous execution mode? */
b84876c2 968#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 969
9908b566
VP
970int target_supports_non_stop (void);
971
6426a772 972/* Put the target in async mode with the specified callback function. */
0d06e24b 973#define target_async(CALLBACK,CONTEXT) \
b84876c2 974 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 975
04714b91
AC
976/* This is to be used ONLY within call_function_by_hand(). It provides
977 a workaround, to have inferior function calls done in sychronous
978 mode, even though the target is asynchronous. After
ed9a39eb
JM
979 target_async_mask(0) is called, calls to target_can_async_p() will
980 return FALSE , so that target_resume() will not try to start the
981 target asynchronously. After the inferior stops, we IMMEDIATELY
982 restore the previous nature of the target, by calling
983 target_async_mask(1). After that, target_can_async_p() will return
04714b91 984 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
985
986 FIXME ezannoni 1999-12-13: we won't need this once we move
987 the turning async on and off to the single execution commands,
0d06e24b 988 from where it is done currently, in remote_resume(). */
ed9a39eb 989
b84876c2
PA
990#define target_async_mask(MASK) \
991 (current_target.to_async_mask (MASK))
ed9a39eb 992
c906108c
SS
993/* Converts a process id to a string. Usually, the string just contains
994 `process xyz', but on some systems it may contain
995 `process xyz thread abc'. */
996
ed9a39eb
JM
997#undef target_pid_to_str
998#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
999
1000#ifndef target_tid_to_str
1001#define target_tid_to_str(PID) \
0d06e24b 1002 target_pid_to_str (PID)
39f77062 1003extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1004#endif
c5aa993b 1005
0d06e24b
JM
1006/* Return a short string describing extra information about PID,
1007 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1008 is okay. */
1009
1010#define target_extra_thread_info(TP) \
1011 (current_target.to_extra_thread_info (TP))
ed9a39eb 1012
c906108c
SS
1013/* Attempts to find the pathname of the executable file
1014 that was run to create a specified process.
1015
1016 The process PID must be stopped when this operation is used.
c5aa993b 1017
c906108c
SS
1018 If the executable file cannot be determined, NULL is returned.
1019
1020 Else, a pointer to a character string containing the pathname
1021 is returned. This string should be copied into a buffer by
1022 the client if the string will not be immediately used, or if
0d06e24b 1023 it must persist. */
c906108c
SS
1024
1025#define target_pid_to_exec_file(pid) \
0d06e24b 1026 (current_target.to_pid_to_exec_file) (pid)
c906108c 1027
be4d1333
MS
1028/*
1029 * Iterator function for target memory regions.
1030 * Calls a callback function once for each memory region 'mapped'
1031 * in the child process. Defined as a simple macro rather than
2146d243 1032 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1033 */
1034
1035#define target_find_memory_regions(FUNC, DATA) \
1036 (current_target.to_find_memory_regions) (FUNC, DATA)
1037
1038/*
1039 * Compose corefile .note section.
1040 */
1041
1042#define target_make_corefile_notes(BFD, SIZE_P) \
1043 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1044
3f47be5c
EZ
1045/* Thread-local values. */
1046#define target_get_thread_local_address \
1047 (current_target.to_get_thread_local_address)
1048#define target_get_thread_local_address_p() \
1049 (target_get_thread_local_address != NULL)
1050
c906108c
SS
1051
1052/* Hardware watchpoint interfaces. */
1053
1054/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1055 write). */
1056
1057#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1058#define STOPPED_BY_WATCHPOINT(w) \
1059 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1060#endif
7df1a324 1061
74174d2e
UW
1062/* Non-zero if we have steppable watchpoints */
1063
1064#ifndef HAVE_STEPPABLE_WATCHPOINT
1065#define HAVE_STEPPABLE_WATCHPOINT \
1066 (current_target.to_have_steppable_watchpoint)
1067#endif
1068
7df1a324
KW
1069/* Non-zero if we have continuable watchpoints */
1070
1071#ifndef HAVE_CONTINUABLE_WATCHPOINT
1072#define HAVE_CONTINUABLE_WATCHPOINT \
1073 (current_target.to_have_continuable_watchpoint)
1074#endif
c906108c 1075
ccaa32c7 1076/* Provide defaults for hardware watchpoint functions. */
c906108c 1077
2146d243 1078/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1079 elsewhere use the definitions in the target vector. */
c906108c
SS
1080
1081/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1082 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1083 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1084 (including this one?). OTHERTYPE is who knows what... */
1085
ccaa32c7
GS
1086#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1087#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1088 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1089#endif
c906108c 1090
e0d24f8d
WZ
1091#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1092#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1093 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1094#endif
1095
c906108c
SS
1096
1097/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1098 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1099 success, non-zero for failure. */
1100
ccaa32c7
GS
1101#ifndef target_insert_watchpoint
1102#define target_insert_watchpoint(addr, len, type) \
1103 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1104
ccaa32c7
GS
1105#define target_remove_watchpoint(addr, len, type) \
1106 (*current_target.to_remove_watchpoint) (addr, len, type)
1107#endif
c906108c
SS
1108
1109#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1110#define target_insert_hw_breakpoint(bp_tgt) \
1111 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1112
8181d85f
DJ
1113#define target_remove_hw_breakpoint(bp_tgt) \
1114 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1115#endif
1116
4aa7a7f5
JJ
1117extern int target_stopped_data_address_p (struct target_ops *);
1118
c906108c 1119#ifndef target_stopped_data_address
4aa7a7f5
JJ
1120#define target_stopped_data_address(target, x) \
1121 (*target.to_stopped_data_address) (target, x)
1122#else
1123/* Horrible hack to get around existing macros :-(. */
1124#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1125#endif
1126
5009afc5
AS
1127#define target_watchpoint_addr_within_range(target, addr, start, length) \
1128 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1129
424163ea
DJ
1130extern const struct target_desc *target_read_description (struct target_ops *);
1131
08388c79
DE
1132/* Utility implementation of searching memory. */
1133extern int simple_search_memory (struct target_ops* ops,
1134 CORE_ADDR start_addr,
1135 ULONGEST search_space_len,
1136 const gdb_byte *pattern,
1137 ULONGEST pattern_len,
1138 CORE_ADDR *found_addrp);
1139
1140/* Main entry point for searching memory. */
1141extern int target_search_memory (CORE_ADDR start_addr,
1142 ULONGEST search_space_len,
1143 const gdb_byte *pattern,
1144 ULONGEST pattern_len,
1145 CORE_ADDR *found_addrp);
1146
49d03eab
MR
1147/* Command logging facility. */
1148
1149#define target_log_command(p) \
1150 do \
1151 if (current_target.to_log_command) \
1152 (*current_target.to_log_command) (p); \
1153 while (0)
1154
c906108c
SS
1155/* Routines for maintenance of the target structures...
1156
1157 add_target: Add a target to the list of all possible targets.
1158
1159 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1160 targets, within its particular stratum of the stack. Result
1161 is 0 if now atop the stack, nonzero if not on top (maybe
1162 should warn user).
c906108c
SS
1163
1164 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1165 no matter where it is on the list. Returns 0 if no
1166 change, 1 if removed from stack.
c906108c 1167
c5aa993b 1168 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1169
a14ed312 1170extern void add_target (struct target_ops *);
c906108c 1171
a14ed312 1172extern int push_target (struct target_ops *);
c906108c 1173
a14ed312 1174extern int unpush_target (struct target_ops *);
c906108c 1175
fd79ecee
DJ
1176extern void target_pre_inferior (int);
1177
a14ed312 1178extern void target_preopen (int);
c906108c 1179
a14ed312 1180extern void pop_target (void);
c906108c 1181
aa76d38d
PA
1182/* Does whatever cleanup is required to get rid of all pushed targets.
1183 QUITTING is propagated to target_close; it indicates that GDB is
1184 exiting and should not get hung on an error (otherwise it is
1185 important to perform clean termination, even if it takes a
1186 while). */
1187extern void pop_all_targets (int quitting);
1188
87ab71f0
PA
1189/* Like pop_all_targets, but pops only targets whose stratum is
1190 strictly above ABOVE_STRATUM. */
1191extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1192
9e35dae4
DJ
1193extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1194 CORE_ADDR offset);
1195
52bb452f
DJ
1196/* Mark a pushed target as running or exited, for targets which do not
1197 automatically pop when not active. */
1198
1199void target_mark_running (struct target_ops *);
1200
1201void target_mark_exited (struct target_ops *);
1202
c906108c
SS
1203/* Struct section_table maps address ranges to file sections. It is
1204 mostly used with BFD files, but can be used without (e.g. for handling
1205 raw disks, or files not in formats handled by BFD). */
1206
c5aa993b
JM
1207struct section_table
1208 {
1209 CORE_ADDR addr; /* Lowest address in section */
1210 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1211
7be0c536 1212 struct bfd_section *the_bfd_section;
c906108c 1213
c5aa993b
JM
1214 bfd *bfd; /* BFD file pointer */
1215 };
c906108c 1216
8db32d44
AC
1217/* Return the "section" containing the specified address. */
1218struct section_table *target_section_by_addr (struct target_ops *target,
1219 CORE_ADDR addr);
1220
1221
c906108c
SS
1222/* From mem-break.c */
1223
8181d85f 1224extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1225
8181d85f 1226extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1227
ae4b2284 1228extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1229
ae4b2284 1230extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1231
c906108c
SS
1232
1233/* From target.c */
1234
a14ed312 1235extern void initialize_targets (void);
c906108c 1236
a14ed312 1237extern void noprocess (void);
c906108c 1238
8edfe269
DJ
1239extern void target_require_runnable (void);
1240
a14ed312 1241extern void find_default_attach (char *, int);
c906108c 1242
c27cda74 1243extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1244
a14ed312 1245extern struct target_ops *find_run_target (void);
7a292a7a 1246
a14ed312 1247extern struct target_ops *find_core_target (void);
6426a772 1248
a14ed312 1249extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1250
570b8f7c
AC
1251extern int target_resize_to_sections (struct target_ops *target,
1252 int num_added);
07cd4b97
JB
1253
1254extern void remove_target_sections (bfd *abfd);
1255
c906108c
SS
1256\f
1257/* Stuff that should be shared among the various remote targets. */
1258
1259/* Debugging level. 0 is off, and non-zero values mean to print some debug
1260 information (higher values, more information). */
1261extern int remote_debug;
1262
1263/* Speed in bits per second, or -1 which means don't mess with the speed. */
1264extern int baud_rate;
1265/* Timeout limit for response from target. */
1266extern int remote_timeout;
1267
c906108c
SS
1268\f
1269/* Functions for helping to write a native target. */
1270
1271/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1272extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1273
c2d11a7d 1274/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1275 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1276/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1277 to the shorter target_signal_p() because it is far less ambigious.
1278 In this context ``target_signal'' refers to GDB's internal
1279 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1280 refers to the target operating system's signal. Confused? */
1281
c2d11a7d
JM
1282extern int target_signal_to_host_p (enum target_signal signo);
1283
1284/* Convert between host signal numbers and enum target_signal's.
1285 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1286 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1287/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1288 refering to the target operating system's signal numbering.
1289 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1290 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1291 internal representation of a target operating system's signal. */
1292
a14ed312
KB
1293extern enum target_signal target_signal_from_host (int);
1294extern int target_signal_to_host (enum target_signal);
c906108c 1295
1cded358
AR
1296extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1297 int);
1298extern int default_target_signal_to_host (struct gdbarch *,
1299 enum target_signal);
1300
c906108c 1301/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1302extern enum target_signal target_signal_from_command (int);
c906108c
SS
1303
1304/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1305extern void push_remote_target (char *name, int from_tty);
8defab1a
DJ
1306
1307/* Set the show memory breakpoints mode to show, and installs a cleanup
1308 to restore it back to the current value. */
1309extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1310
c906108c
SS
1311\f
1312/* Imported from machine dependent code */
1313
c906108c 1314/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1315void target_ignore (void);
c906108c 1316
1df84f13 1317extern struct target_ops deprecated_child_ops;
5ac10fd1 1318
c5aa993b 1319#endif /* !defined (TARGET_H) */
This page took 0.888414 seconds and 4 git commands to generate.