Allow for the possibility that the local labels won't be in the objdump output.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518
KB
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
26/* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45#include "bfd.h"
46#include "symtab.h"
4930751a 47#include "dcache.h"
29e57380 48#include "memattr.h"
c906108c 49
c5aa993b
JM
50enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
c5aa993b 58 };
c906108c 59
c5aa993b
JM
60enum thread_control_capabilities
61 {
0d06e24b
JM
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 65 };
c906108c
SS
66
67/* Stuff for target_wait. */
68
69/* Generally, what has the program done? */
c5aa993b
JM
70enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
c906108c 74
0d06e24b
JM
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
c5aa993b 77 TARGET_WAITKIND_STOPPED,
c906108c 78
c5aa993b
JM
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
c906108c 82
c5aa993b
JM
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
c906108c 86
0d06e24b
JM
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
c5aa993b 91 TARGET_WAITKIND_FORKED,
c906108c 92
0d06e24b
JM
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
c5aa993b 96 TARGET_WAITKIND_VFORKED,
c906108c 97
0d06e24b
JM
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
c5aa993b 101 TARGET_WAITKIND_EXECD,
c906108c 102
0d06e24b
JM
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
c5aa993b
JM
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 109
c5aa993b
JM
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
c4093a6a
JM
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
0d06e24b 123 like for instance the user typing. */
c4093a6a 124 TARGET_WAITKIND_IGNORE
c906108c
SS
125 };
126
c5aa993b
JM
127struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
c906108c 142
2acceee2 143/* Possible types of events that the inferior handler will have to
0d06e24b 144 deal with. */
2acceee2
JM
145enum inferior_event_type
146 {
0d06e24b 147 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
0d06e24b 150 being called. */
2acceee2 151 INF_REG_EVENT,
0d06e24b 152 /* Deal with an error on the inferior. */
2acceee2 153 INF_ERROR,
0d06e24b 154 /* We are called because a timer went off. */
2acceee2 155 INF_TIMER,
0d06e24b 156 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
0d06e24b 161 'step n' like commands. */
c2d11a7d 162 INF_EXEC_CONTINUE
2acceee2
JM
163 };
164
c906108c 165/* Return the string for a signal. */
a14ed312 166extern char *target_signal_to_string (enum target_signal);
c906108c
SS
167
168/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 169extern char *target_signal_to_name (enum target_signal);
c906108c
SS
170
171/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 172enum target_signal target_signal_from_name (char *);
c906108c 173\f
c5aa993b 174
c906108c
SS
175/* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 178 on TARGET_ACTIVITY_FD. */
c906108c
SS
179extern int target_activity_fd;
180/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 181extern int (*target_activity_function) (void);
c906108c 182\f
0d06e24b
JM
183struct thread_info; /* fwd decl for parameter list below: */
184
c906108c 185struct target_ops
c5aa993b
JM
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
c906108c 190 newline, and starts with a one-line descrip-
0d06e24b 191 tion (probably similar to to_longname). */
507f3c78
KB
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
199 void (*to_resume) (int, int, enum target_signal);
200 int (*to_wait) (int, struct target_waitstatus *);
201 void (*to_post_wait) (int, int);
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
c5aa993b
JM
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
507f3c78 224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
c906108c
SS
228
229#if 0
c5aa993b 230 /* Enable this after 4.12. */
c906108c 231
c5aa993b
JM
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 238
0d06e24b
JM
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
507f3c78
KB
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
246
247#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
c5aa993b
JM
250#endif /* 0 */
251
507f3c78
KB
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
255 void (*to_terminal_init) (void);
256 void (*to_terminal_inferior) (void);
257 void (*to_terminal_ours_for_output) (void);
258 void (*to_terminal_ours) (void);
259 void (*to_terminal_info) (char *, int);
260 void (*to_kill) (void);
261 void (*to_load) (char *, int);
262 int (*to_lookup_symbol) (char *, CORE_ADDR *);
263 void (*to_create_inferior) (char *, char *, char **);
264 void (*to_post_startup_inferior) (int);
265 void (*to_acknowledge_created_inferior) (int);
266 void (*to_clone_and_follow_inferior) (int, int *);
267 void (*to_post_follow_inferior_by_clone) (void);
268 int (*to_insert_fork_catchpoint) (int);
269 int (*to_remove_fork_catchpoint) (int);
270 int (*to_insert_vfork_catchpoint) (int);
271 int (*to_remove_vfork_catchpoint) (int);
272 int (*to_has_forked) (int, int *);
273 int (*to_has_vforked) (int, int *);
274 int (*to_can_follow_vfork_prior_to_exec) (void);
275 void (*to_post_follow_vfork) (int, int, int, int);
276 int (*to_insert_exec_catchpoint) (int);
277 int (*to_remove_exec_catchpoint) (int);
278 int (*to_has_execd) (int, char **);
279 int (*to_reported_exec_events_per_exec_call) (void);
280 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
281 int (*to_has_exited) (int, int, int *);
282 void (*to_mourn_inferior) (void);
283 int (*to_can_run) (void);
284 void (*to_notice_signals) (int pid);
285 int (*to_thread_alive) (int pid);
286 void (*to_find_new_threads) (void);
287 char *(*to_pid_to_str) (int);
288 char *(*to_extra_thread_info) (struct thread_info *);
289 void (*to_stop) (void);
290 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 291 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
292 struct symtab_and_line *(*to_enable_exception_callback) (enum
293 exception_event_kind,
294 int);
295 struct exception_event_record *(*to_get_current_exception_event) (void);
296 char *(*to_pid_to_exec_file) (int pid);
297 char *(*to_core_file_to_sym_file) (char *);
c5aa993b
JM
298 enum strata to_stratum;
299 struct target_ops
300 *DONT_USE; /* formerly to_next */
301 int to_has_all_memory;
302 int to_has_memory;
303 int to_has_stack;
304 int to_has_registers;
305 int to_has_execution;
306 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
307 struct section_table
308 *to_sections;
309 struct section_table
310 *to_sections_end;
6426a772
JM
311 /* ASYNC target controls */
312 int (*to_can_async_p) (void);
313 int (*to_is_async_p) (void);
0d06e24b
JM
314 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
315 void *context);
ed9a39eb 316 int to_async_mask_value;
c5aa993b 317 int to_magic;
0d06e24b
JM
318 /* Need sub-structure for target machine related rather than comm related?
319 */
c5aa993b 320 };
c906108c
SS
321
322/* Magic number for checking ops size. If a struct doesn't end with this
323 number, somebody changed the declaration but didn't change all the
324 places that initialize one. */
325
326#define OPS_MAGIC 3840
327
328/* The ops structure for our "current" target process. This should
329 never be NULL. If there is no target, it points to the dummy_target. */
330
c5aa993b 331extern struct target_ops current_target;
c906108c
SS
332
333/* An item on the target stack. */
334
335struct target_stack_item
c5aa993b
JM
336 {
337 struct target_stack_item *next;
338 struct target_ops *target_ops;
339 };
c906108c
SS
340
341/* The target stack. */
342
343extern struct target_stack_item *target_stack;
344
345/* Define easy words for doing these operations on our current target. */
346
347#define target_shortname (current_target.to_shortname)
348#define target_longname (current_target.to_longname)
349
350/* The open routine takes the rest of the parameters from the command,
351 and (if successful) pushes a new target onto the stack.
352 Targets should supply this routine, if only to provide an error message. */
0d06e24b 353
4930751a
C
354#define target_open(name, from_tty) \
355 do { \
356 dcache_invalidate (target_dcache); \
357 (*current_target.to_open) (name, from_tty); \
358 } while (0)
c906108c
SS
359
360/* Does whatever cleanup is required for a target that we are no longer
361 going to be calling. Argument says whether we are quitting gdb and
362 should not get hung in case of errors, or whether we want a clean
363 termination even if it takes a while. This routine is automatically
364 always called just before a routine is popped off the target stack.
365 Closing file descriptors and freeing memory are typical things it should
366 do. */
367
368#define target_close(quitting) \
0d06e24b 369 (*current_target.to_close) (quitting)
c906108c
SS
370
371/* Attaches to a process on the target side. Arguments are as passed
372 to the `attach' command by the user. This routine can be called
373 when the target is not on the target-stack, if the target_can_run
374 routine returns 1; in that case, it must push itself onto the stack.
375 Upon exit, the target should be ready for normal operations, and
376 should be ready to deliver the status of the process immediately
377 (without waiting) to an upcoming target_wait call. */
378
379#define target_attach(args, from_tty) \
0d06e24b 380 (*current_target.to_attach) (args, from_tty)
c906108c
SS
381
382/* The target_attach operation places a process under debugger control,
383 and stops the process.
384
385 This operation provides a target-specific hook that allows the
0d06e24b 386 necessary bookkeeping to be performed after an attach completes. */
c906108c 387#define target_post_attach(pid) \
0d06e24b 388 (*current_target.to_post_attach) (pid)
c906108c
SS
389
390/* Attaches to a process on the target side, if not already attached.
391 (If already attached, takes no action.)
392
393 This operation can be used to follow the child process of a fork.
394 On some targets, such child processes of an original inferior process
395 are automatically under debugger control, and thus do not require an
396 actual attach operation. */
397
398#define target_require_attach(args, from_tty) \
0d06e24b 399 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
400
401/* Takes a program previously attached to and detaches it.
402 The program may resume execution (some targets do, some don't) and will
403 no longer stop on signals, etc. We better not have left any breakpoints
404 in the program or it'll die when it hits one. ARGS is arguments
405 typed by the user (e.g. a signal to send the process). FROM_TTY
406 says whether to be verbose or not. */
407
a14ed312 408extern void target_detach (char *, int);
c906108c
SS
409
410/* Detaches from a process on the target side, if not already dettached.
411 (If already detached, takes no action.)
412
413 This operation can be used to follow the parent process of a fork.
414 On some targets, such child processes of an original inferior process
415 are automatically under debugger control, and thus do require an actual
416 detach operation.
417
418 PID is the process id of the child to detach from.
419 ARGS is arguments typed by the user (e.g. a signal to send the process).
420 FROM_TTY says whether to be verbose or not. */
421
0d06e24b
JM
422#define target_require_detach(pid, args, from_tty) \
423 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c
SS
424
425/* Resume execution of the target process PID. STEP says whether to
426 single-step or to run free; SIGGNAL is the signal to be given to
427 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
428 pass TARGET_SIGNAL_DEFAULT. */
429
4930751a
C
430#define target_resume(pid, step, siggnal) \
431 do { \
432 dcache_invalidate(target_dcache); \
433 (*current_target.to_resume) (pid, step, siggnal); \
434 } while (0)
c906108c
SS
435
436/* Wait for process pid to do something. Pid = -1 to wait for any pid
437 to do something. Return pid of child, or -1 in case of error;
438 store status through argument pointer STATUS. Note that it is
439 *not* OK to return_to_top_level out of target_wait without popping
440 the debugging target from the stack; GDB isn't prepared to get back
441 to the prompt with a debugging target but without the frame cache,
442 stop_pc, etc., set up. */
443
444#define target_wait(pid, status) \
0d06e24b 445 (*current_target.to_wait) (pid, status)
c906108c
SS
446
447/* The target_wait operation waits for a process event to occur, and
448 thereby stop the process.
449
450 On some targets, certain events may happen in sequences. gdb's
451 correct response to any single event of such a sequence may require
452 knowledge of what earlier events in the sequence have been seen.
453
454 This operation provides a target-specific hook that allows the
0d06e24b 455 necessary bookkeeping to be performed to track such sequences. */
c906108c
SS
456
457#define target_post_wait(pid, status) \
0d06e24b 458 (*current_target.to_post_wait) (pid, status)
c906108c 459
17dee195 460/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
461
462#define target_fetch_registers(regno) \
0d06e24b 463 (*current_target.to_fetch_registers) (regno)
c906108c
SS
464
465/* Store at least register REGNO, or all regs if REGNO == -1.
466 It can store as many registers as it wants to, so target_prepare_to_store
467 must have been previously called. Calls error() if there are problems. */
468
469#define target_store_registers(regs) \
0d06e24b 470 (*current_target.to_store_registers) (regs)
c906108c
SS
471
472/* Get ready to modify the registers array. On machines which store
473 individual registers, this doesn't need to do anything. On machines
474 which store all the registers in one fell swoop, this makes sure
475 that REGISTERS contains all the registers from the program being
476 debugged. */
477
478#define target_prepare_to_store() \
0d06e24b 479 (*current_target.to_prepare_to_store) ()
c906108c 480
4930751a
C
481extern DCACHE *target_dcache;
482
29e57380
C
483extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
484 struct mem_attrib *attrib);
4930751a 485
a14ed312 486extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 487
a14ed312 488extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 489
4930751a 490extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 491
29e57380
C
492extern int xfer_memory (CORE_ADDR, char *, int, int,
493 struct mem_attrib *, struct target_ops *);
c906108c 494
29e57380
C
495extern int child_xfer_memory (CORE_ADDR, char *, int, int,
496 struct mem_attrib *, struct target_ops *);
c906108c 497
917317f4
JM
498/* Make a single attempt at transfering LEN bytes. On a successful
499 transfer, the number of bytes actually transfered is returned and
500 ERR is set to 0. When a transfer fails, -1 is returned (the number
501 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 502 non-zero error indication. */
917317f4 503
ed9a39eb
JM
504extern int
505target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 506
ed9a39eb
JM
507extern int
508target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 509
a14ed312 510extern char *child_pid_to_exec_file (int);
c906108c 511
a14ed312 512extern char *child_core_file_to_sym_file (char *);
c906108c
SS
513
514#if defined(CHILD_POST_ATTACH)
a14ed312 515extern void child_post_attach (int);
c906108c
SS
516#endif
517
a14ed312 518extern void child_post_wait (int, int);
c906108c 519
a14ed312 520extern void child_post_startup_inferior (int);
c906108c 521
a14ed312 522extern void child_acknowledge_created_inferior (int);
c906108c 523
a14ed312 524extern void child_clone_and_follow_inferior (int, int *);
c906108c 525
a14ed312 526extern void child_post_follow_inferior_by_clone (void);
c906108c 527
a14ed312 528extern int child_insert_fork_catchpoint (int);
c906108c 529
a14ed312 530extern int child_remove_fork_catchpoint (int);
c906108c 531
a14ed312 532extern int child_insert_vfork_catchpoint (int);
c906108c 533
a14ed312 534extern int child_remove_vfork_catchpoint (int);
c906108c 535
a14ed312 536extern int child_has_forked (int, int *);
c906108c 537
a14ed312 538extern int child_has_vforked (int, int *);
c906108c 539
a14ed312 540extern void child_acknowledge_created_inferior (int);
c906108c 541
a14ed312 542extern int child_can_follow_vfork_prior_to_exec (void);
c906108c 543
a14ed312 544extern void child_post_follow_vfork (int, int, int, int);
c906108c 545
a14ed312 546extern int child_insert_exec_catchpoint (int);
c906108c 547
a14ed312 548extern int child_remove_exec_catchpoint (int);
c906108c 549
a14ed312 550extern int child_has_execd (int, char **);
c906108c 551
a14ed312 552extern int child_reported_exec_events_per_exec_call (void);
c906108c 553
a14ed312 554extern int child_has_syscall_event (int, enum target_waitkind *, int *);
c906108c 555
a14ed312 556extern int child_has_exited (int, int, int *);
c906108c 557
a14ed312 558extern int child_thread_alive (int);
c906108c
SS
559
560/* From exec.c */
561
a14ed312 562extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
563
564/* Print a line about the current target. */
565
566#define target_files_info() \
0d06e24b 567 (*current_target.to_files_info) (&current_target)
c906108c
SS
568
569/* Insert a breakpoint at address ADDR in the target machine.
570 SAVE is a pointer to memory allocated for saving the
571 target contents. It is guaranteed by the caller to be long enough
572 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
573 an errno value. */
574
575#define target_insert_breakpoint(addr, save) \
0d06e24b 576 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
577
578/* Remove a breakpoint at address ADDR in the target machine.
579 SAVE is a pointer to the same save area
580 that was previously passed to target_insert_breakpoint.
581 Result is 0 for success, or an errno value. */
582
583#define target_remove_breakpoint(addr, save) \
0d06e24b 584 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
585
586/* Initialize the terminal settings we record for the inferior,
587 before we actually run the inferior. */
588
589#define target_terminal_init() \
0d06e24b 590 (*current_target.to_terminal_init) ()
c906108c
SS
591
592/* Put the inferior's terminal settings into effect.
593 This is preparation for starting or resuming the inferior. */
594
595#define target_terminal_inferior() \
0d06e24b 596 (*current_target.to_terminal_inferior) ()
c906108c
SS
597
598/* Put some of our terminal settings into effect,
599 enough to get proper results from our output,
600 but do not change into or out of RAW mode
601 so that no input is discarded.
602
603 After doing this, either terminal_ours or terminal_inferior
604 should be called to get back to a normal state of affairs. */
605
606#define target_terminal_ours_for_output() \
0d06e24b 607 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
608
609/* Put our terminal settings into effect.
610 First record the inferior's terminal settings
611 so they can be restored properly later. */
612
613#define target_terminal_ours() \
0d06e24b 614 (*current_target.to_terminal_ours) ()
c906108c
SS
615
616/* Print useful information about our terminal status, if such a thing
617 exists. */
618
619#define target_terminal_info(arg, from_tty) \
0d06e24b 620 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
621
622/* Kill the inferior process. Make it go away. */
623
624#define target_kill() \
0d06e24b 625 (*current_target.to_kill) ()
c906108c 626
0d06e24b
JM
627/* Load an executable file into the target process. This is expected
628 to not only bring new code into the target process, but also to
629 update GDB's symbol tables to match. */
c906108c 630
11cf8741 631extern void target_load (char *arg, int from_tty);
c906108c
SS
632
633/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
634 name. ADDRP is a CORE_ADDR * pointing to where the value of the
635 symbol should be returned. The result is 0 if successful, nonzero
636 if the symbol does not exist in the target environment. This
637 function should not call error() if communication with the target
638 is interrupted, since it is called from symbol reading, but should
639 return nonzero, possibly doing a complain(). */
c906108c 640
0d06e24b
JM
641#define target_lookup_symbol(name, addrp) \
642 (*current_target.to_lookup_symbol) (name, addrp)
c906108c
SS
643
644/* Start an inferior process and set inferior_pid to its pid.
645 EXEC_FILE is the file to run.
646 ALLARGS is a string containing the arguments to the program.
647 ENV is the environment vector to pass. Errors reported with error().
648 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 649
c906108c 650#define target_create_inferior(exec_file, args, env) \
0d06e24b 651 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
652
653
654/* Some targets (such as ttrace-based HPUX) don't allow us to request
655 notification of inferior events such as fork and vork immediately
656 after the inferior is created. (This because of how gdb gets an
657 inferior created via invoking a shell to do it. In such a scenario,
658 if the shell init file has commands in it, the shell will fork and
659 exec for each of those commands, and we will see each such fork
660 event. Very bad.)
c5aa993b 661
0d06e24b
JM
662 Such targets will supply an appropriate definition for this function. */
663
c906108c 664#define target_post_startup_inferior(pid) \
0d06e24b 665 (*current_target.to_post_startup_inferior) (pid)
c906108c
SS
666
667/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
668 some synchronization between gdb and the new inferior process, PID. */
669
c906108c 670#define target_acknowledge_created_inferior(pid) \
0d06e24b 671 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
672
673/* An inferior process has been created via a fork() or similar
674 system call. This function will clone the debugger, then ensure
675 that CHILD_PID is attached to by that debugger.
676
677 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
678 and FALSE otherwise. (The original and clone debuggers can use this
679 to determine which they are, if need be.)
680
681 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
682 the two debuggers from competing for shell input.) */
683
c906108c 684#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 685 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
686
687/* This operation is intended to be used as the last in a sequence of
688 steps taken when following both parent and child of a fork. This
689 is used by a clone of the debugger, which will follow the child.
690
691 The original debugger has detached from this process, and the
692 clone has attached to it.
693
694 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
695 correctly. */
696
c906108c 697#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
698 (*current_target.to_post_follow_inferior_by_clone) ()
699
700/* On some targets, we can catch an inferior fork or vfork event when
701 it occurs. These functions insert/remove an already-created
702 catchpoint for such events. */
c906108c 703
c906108c 704#define target_insert_fork_catchpoint(pid) \
0d06e24b 705 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
706
707#define target_remove_fork_catchpoint(pid) \
0d06e24b 708 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
709
710#define target_insert_vfork_catchpoint(pid) \
0d06e24b 711 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
712
713#define target_remove_vfork_catchpoint(pid) \
0d06e24b 714 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
715
716/* Returns TRUE if PID has invoked the fork() system call. And,
717 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
718 inferior process that was created by that call. */
719
c906108c 720#define target_has_forked(pid,child_pid) \
0d06e24b
JM
721 (*current_target.to_has_forked) (pid,child_pid)
722
723/* Returns TRUE if PID has invoked the vfork() system call. And,
724 also sets CHILD_PID to the process id of the other ("child")
725 inferior process that was created by that call. */
c906108c 726
c906108c 727#define target_has_vforked(pid,child_pid) \
0d06e24b 728 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
729
730/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
731 anything to a vforked child before it subsequently calls exec().
732 On such platforms, we say that the debugger cannot "follow" the
733 child until it has vforked.
734
735 This function should be defined to return 1 by those targets
736 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
737 child, and 0 if they cannot. */
738
c906108c 739#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 740 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
741
742/* An inferior process has been created via a vfork() system call.
743 The debugger has followed the parent, the child, or both. The
744 process of setting up for that follow may have required some
745 target-specific trickery to track the sequence of reported events.
746 If so, this function should be defined by those targets that
747 require the debugger to perform cleanup or initialization after
0d06e24b
JM
748 the vfork follow. */
749
c906108c 750#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 751 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
752
753/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
754 occurs. These functions insert/remove an already-created
755 catchpoint for such events. */
756
c906108c 757#define target_insert_exec_catchpoint(pid) \
0d06e24b 758 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 759
c906108c 760#define target_remove_exec_catchpoint(pid) \
0d06e24b 761 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
762
763/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
764 And, also sets EXECD_PATHNAME to the pathname of the executable
765 file that was passed to exec(), and is now being executed. */
766
c906108c 767#define target_has_execd(pid,execd_pathname) \
0d06e24b 768 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
769
770/* Returns the number of exec events that are reported when a process
771 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
772 events are being reported. */
773
c906108c 774#define target_reported_exec_events_per_exec_call() \
0d06e24b 775 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
776
777/* Returns TRUE if PID has reported a syscall event. And, also sets
778 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
779 the unique integer ID of the syscall. */
780
c906108c 781#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 782 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
783
784/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
785 exit code of PID, if any. */
786
c906108c 787#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 788 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
789
790/* The debugger has completed a blocking wait() call. There is now
0d06e24b 791 some process event that must be processed. This function should
c906108c 792 be defined by those targets that require the debugger to perform
0d06e24b 793 cleanup or internal state changes in response to the process event. */
c906108c
SS
794
795/* The inferior process has died. Do what is right. */
796
797#define target_mourn_inferior() \
0d06e24b 798 (*current_target.to_mourn_inferior) ()
c906108c
SS
799
800/* Does target have enough data to do a run or attach command? */
801
802#define target_can_run(t) \
0d06e24b 803 ((t)->to_can_run) ()
c906108c
SS
804
805/* post process changes to signal handling in the inferior. */
806
807#define target_notice_signals(pid) \
0d06e24b 808 (*current_target.to_notice_signals) (pid)
c906108c
SS
809
810/* Check to see if a thread is still alive. */
811
812#define target_thread_alive(pid) \
0d06e24b 813 (*current_target.to_thread_alive) (pid)
c906108c 814
b83266a0
SS
815/* Query for new threads and add them to the thread list. */
816
817#define target_find_new_threads() \
0d06e24b 818 (*current_target.to_find_new_threads) (); \
b83266a0 819
0d06e24b
JM
820/* Make target stop in a continuable fashion. (For instance, under
821 Unix, this should act like SIGSTOP). This function is normally
822 used by GUIs to implement a stop button. */
c906108c
SS
823
824#define target_stop current_target.to_stop
825
826/* Queries the target side for some information. The first argument is a
827 letter specifying the type of the query, which is used to determine who
828 should process it. The second argument is a string that specifies which
829 information is desired and the third is a buffer that carries back the
830 response from the target side. The fourth parameter is the size of the
0d06e24b 831 output buffer supplied. */
c5aa993b 832
c906108c 833#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 834 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 835
96baa820
JM
836/* Send the specified COMMAND to the target's monitor
837 (shell,interpreter) for execution. The result of the query is
0d06e24b 838 placed in OUTBUF. */
96baa820
JM
839
840#define target_rcmd(command, outbuf) \
841 (*current_target.to_rcmd) (command, outbuf)
842
843
c906108c
SS
844/* Get the symbol information for a breakpointable routine called when
845 an exception event occurs.
846 Intended mainly for C++, and for those
847 platforms/implementations where such a callback mechanism is available,
848 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 849 different mechanisms for debugging exceptions. */
c906108c
SS
850
851#define target_enable_exception_callback(kind, enable) \
0d06e24b 852 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 853
0d06e24b 854/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 855
c906108c 856#define target_get_current_exception_event() \
0d06e24b 857 (*current_target.to_get_current_exception_event) ()
c906108c
SS
858
859/* Pointer to next target in the chain, e.g. a core file and an exec file. */
860
861#define target_next \
0d06e24b 862 (current_target.to_next)
c906108c
SS
863
864/* Does the target include all of memory, or only part of it? This
865 determines whether we look up the target chain for other parts of
866 memory if this target can't satisfy a request. */
867
868#define target_has_all_memory \
0d06e24b 869 (current_target.to_has_all_memory)
c906108c
SS
870
871/* Does the target include memory? (Dummy targets don't.) */
872
873#define target_has_memory \
0d06e24b 874 (current_target.to_has_memory)
c906108c
SS
875
876/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
877 we start a process.) */
c5aa993b 878
c906108c 879#define target_has_stack \
0d06e24b 880 (current_target.to_has_stack)
c906108c
SS
881
882/* Does the target have registers? (Exec files don't.) */
883
884#define target_has_registers \
0d06e24b 885 (current_target.to_has_registers)
c906108c
SS
886
887/* Does the target have execution? Can we make it jump (through
888 hoops), or pop its stack a few times? FIXME: If this is to work that
889 way, it needs to check whether an inferior actually exists.
890 remote-udi.c and probably other targets can be the current target
891 when the inferior doesn't actually exist at the moment. Right now
892 this just tells us whether this target is *capable* of execution. */
893
894#define target_has_execution \
0d06e24b 895 (current_target.to_has_execution)
c906108c
SS
896
897/* Can the target support the debugger control of thread execution?
898 a) Can it lock the thread scheduler?
899 b) Can it switch the currently running thread? */
900
901#define target_can_lock_scheduler \
0d06e24b 902 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
903
904#define target_can_switch_threads \
0d06e24b 905 (current_target.to_has_thread_control & tc_switch)
c906108c 906
6426a772
JM
907/* Can the target support asynchronous execution? */
908#define target_can_async_p() (current_target.to_can_async_p ())
909
910/* Is the target in asynchronous execution mode? */
911#define target_is_async_p() (current_target.to_is_async_p())
912
913/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
914#define target_async(CALLBACK,CONTEXT) \
915 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 916
ed9a39eb
JM
917/* This is to be used ONLY within run_stack_dummy(). It
918 provides a workaround, to have inferior function calls done in
919 sychronous mode, even though the target is asynchronous. After
920 target_async_mask(0) is called, calls to target_can_async_p() will
921 return FALSE , so that target_resume() will not try to start the
922 target asynchronously. After the inferior stops, we IMMEDIATELY
923 restore the previous nature of the target, by calling
924 target_async_mask(1). After that, target_can_async_p() will return
925 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
926
927 FIXME ezannoni 1999-12-13: we won't need this once we move
928 the turning async on and off to the single execution commands,
0d06e24b 929 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
930
931#define target_async_mask_value \
0d06e24b 932 (current_target.to_async_mask_value)
ed9a39eb
JM
933
934extern int target_async_mask (int mask);
935
a14ed312 936extern void target_link (char *, CORE_ADDR *);
c906108c
SS
937
938/* Converts a process id to a string. Usually, the string just contains
939 `process xyz', but on some systems it may contain
940 `process xyz thread abc'. */
941
ed9a39eb
JM
942#undef target_pid_to_str
943#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
944
945#ifndef target_tid_to_str
946#define target_tid_to_str(PID) \
0d06e24b 947 target_pid_to_str (PID)
a14ed312 948extern char *normal_pid_to_str (int pid);
c906108c 949#endif
c5aa993b 950
0d06e24b
JM
951/* Return a short string describing extra information about PID,
952 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
953 is okay. */
954
955#define target_extra_thread_info(TP) \
956 (current_target.to_extra_thread_info (TP))
ed9a39eb 957
11cf8741
JM
958/*
959 * New Objfile Event Hook:
960 *
961 * Sometimes a GDB component wants to get notified whenever a new
962 * objfile is loaded. Mainly this is used by thread-debugging
963 * implementations that need to know when symbols for the target
964 * thread implemenation are available.
965 *
966 * The old way of doing this is to define a macro 'target_new_objfile'
967 * that points to the function that you want to be called on every
968 * objfile/shlib load.
969 *
970 * The new way is to grab the function pointer, 'target_new_objfile_hook',
971 * and point it to the function that you want to be called on every
972 * objfile/shlib load.
973 *
974 * If multiple clients are willing to be cooperative, they can each
975 * save a pointer to the previous value of target_new_objfile_hook
976 * before modifying it, and arrange for their function to call the
977 * previous function in the chain. In that way, multiple clients
978 * can receive this notification (something like with signal handlers).
979 */
c906108c 980
507f3c78 981extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
982
983#ifndef target_pid_or_tid_to_str
984#define target_pid_or_tid_to_str(ID) \
0d06e24b 985 target_pid_to_str (ID)
c906108c
SS
986#endif
987
988/* Attempts to find the pathname of the executable file
989 that was run to create a specified process.
990
991 The process PID must be stopped when this operation is used.
c5aa993b 992
c906108c
SS
993 If the executable file cannot be determined, NULL is returned.
994
995 Else, a pointer to a character string containing the pathname
996 is returned. This string should be copied into a buffer by
997 the client if the string will not be immediately used, or if
0d06e24b 998 it must persist. */
c906108c
SS
999
1000#define target_pid_to_exec_file(pid) \
0d06e24b 1001 (current_target.to_pid_to_exec_file) (pid)
c906108c 1002
9d8a64cb 1003/* Hook to call target-dependent code after reading in a new symbol table. */
c906108c
SS
1004
1005#ifndef TARGET_SYMFILE_POSTREAD
1006#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1007#endif
1008
9d8a64cb 1009/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1010 started. */
1011
1012#ifndef TARGET_CREATE_INFERIOR_HOOK
1013#define TARGET_CREATE_INFERIOR_HOOK(PID)
1014#endif
1015
1016/* Hardware watchpoint interfaces. */
1017
1018/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1019 write). */
1020
1021#ifndef STOPPED_BY_WATCHPOINT
1022#define STOPPED_BY_WATCHPOINT(w) 0
1023#endif
1024
1025/* HP-UX supplies these operations, which respectively disable and enable
1026 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1027 on that platform. See wait_for_inferior's use of these. */
1028
c906108c
SS
1029#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1030#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1031#endif
1032
1033#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1034#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1035#endif
1036
0d06e24b 1037/* Provide defaults for systems that don't support hardware watchpoints. */
c906108c
SS
1038
1039#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1040
1041/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1042 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1043 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1044 (including this one?). OTHERTYPE is who knows what... */
1045
1046#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1047
1048#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1049#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
6ab3a9c9 1050 ((LONGEST)(byte_count) <= REGISTER_SIZE)
c906108c
SS
1051#endif
1052
1053/* However, some addresses may not be profitable to use hardware to watch,
1054 or may be difficult to understand when the addressed object is out of
1055 scope, and hence should be unwatched. On some targets, this may have
1056 severe performance penalties, such that we might as well use regular
1057 watchpoints, and save (possibly precious) hardware watchpoints for other
0d06e24b
JM
1058 locations. */
1059
c906108c
SS
1060#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1061#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1062#endif
1063
1064
1065/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1066 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1067 success, non-zero for failure. */
1068
1069#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1070#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1071
1072#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1073
1074#ifndef target_insert_hw_breakpoint
1075#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1076#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1077#endif
1078
1079#ifndef target_stopped_data_address
1080#define target_stopped_data_address() 0
1081#endif
1082
1083/* If defined, then we need to decr pc by this much after a hardware break-
1084 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1085
1086#ifndef DECR_PC_AFTER_HW_BREAK
1087#define DECR_PC_AFTER_HW_BREAK 0
1088#endif
1089
1090/* Sometimes gdb may pick up what appears to be a valid target address
1091 from a minimal symbol, but the value really means, essentially,
1092 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1093 is run. Therefore, do not attempt to use this as a PC." */
1094
c906108c
SS
1095#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1096#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1097#endif
1098
1099/* This will only be defined by a target that supports catching vfork events,
1100 such as HP-UX.
1101
1102 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1103 child process after it has exec'd, causes the parent process to resume as
1104 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1105 define this to a function that prevents that from happening. */
c906108c
SS
1106#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1107#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1108#endif
1109
1110/* This will only be defined by a target that supports catching vfork events,
1111 such as HP-UX.
1112
1113 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1114 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1115 vfork event will be delivered to us. */
1116
c906108c
SS
1117#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1118#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1119#endif
1120
1121/* Routines for maintenance of the target structures...
1122
1123 add_target: Add a target to the list of all possible targets.
1124
1125 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1126 targets, within its particular stratum of the stack. Result
1127 is 0 if now atop the stack, nonzero if not on top (maybe
1128 should warn user).
c906108c
SS
1129
1130 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1131 no matter where it is on the list. Returns 0 if no
1132 change, 1 if removed from stack.
c906108c 1133
c5aa993b 1134 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1135
a14ed312 1136extern void add_target (struct target_ops *);
c906108c 1137
a14ed312 1138extern int push_target (struct target_ops *);
c906108c 1139
a14ed312 1140extern int unpush_target (struct target_ops *);
c906108c 1141
a14ed312 1142extern void target_preopen (int);
c906108c 1143
a14ed312 1144extern void pop_target (void);
c906108c
SS
1145
1146/* Struct section_table maps address ranges to file sections. It is
1147 mostly used with BFD files, but can be used without (e.g. for handling
1148 raw disks, or files not in formats handled by BFD). */
1149
c5aa993b
JM
1150struct section_table
1151 {
1152 CORE_ADDR addr; /* Lowest address in section */
1153 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1154
c5aa993b 1155 sec_ptr the_bfd_section;
c906108c 1156
c5aa993b
JM
1157 bfd *bfd; /* BFD file pointer */
1158 };
c906108c
SS
1159
1160/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1161 Returns 0 if OK, 1 on error. */
1162
1163extern int
a14ed312 1164build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1165
1166/* From mem-break.c */
1167
a14ed312 1168extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1169
a14ed312 1170extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1171
a14ed312 1172extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1173
a14ed312 1174extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1175
c906108c 1176extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
c906108c
SS
1177
1178
1179/* From target.c */
1180
a14ed312 1181extern void initialize_targets (void);
c906108c 1182
a14ed312 1183extern void noprocess (void);
c906108c 1184
a14ed312 1185extern void find_default_attach (char *, int);
c906108c 1186
a14ed312 1187extern void find_default_require_attach (char *, int);
c906108c 1188
a14ed312 1189extern void find_default_require_detach (int, char *, int);
c906108c 1190
a14ed312 1191extern void find_default_create_inferior (char *, char *, char **);
c906108c 1192
a14ed312 1193extern void find_default_clone_and_follow_inferior (int, int *);
c906108c 1194
a14ed312 1195extern struct target_ops *find_run_target (void);
7a292a7a 1196
a14ed312 1197extern struct target_ops *find_core_target (void);
6426a772 1198
a14ed312 1199extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1200
1201extern int
a14ed312 1202target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1203
1204extern void remove_target_sections (bfd *abfd);
1205
c906108c
SS
1206\f
1207/* Stuff that should be shared among the various remote targets. */
1208
1209/* Debugging level. 0 is off, and non-zero values mean to print some debug
1210 information (higher values, more information). */
1211extern int remote_debug;
1212
1213/* Speed in bits per second, or -1 which means don't mess with the speed. */
1214extern int baud_rate;
1215/* Timeout limit for response from target. */
1216extern int remote_timeout;
1217
c906108c
SS
1218\f
1219/* Functions for helping to write a native target. */
1220
1221/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1222extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1223
c2d11a7d 1224/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1225 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1226/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1227 to the shorter target_signal_p() because it is far less ambigious.
1228 In this context ``target_signal'' refers to GDB's internal
1229 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1230 refers to the target operating system's signal. Confused? */
1231
c2d11a7d
JM
1232extern int target_signal_to_host_p (enum target_signal signo);
1233
1234/* Convert between host signal numbers and enum target_signal's.
1235 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1236 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1237/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1238 refering to the target operating system's signal numbering.
1239 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1240 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1241 internal representation of a target operating system's signal. */
1242
a14ed312
KB
1243extern enum target_signal target_signal_from_host (int);
1244extern int target_signal_to_host (enum target_signal);
c906108c
SS
1245
1246/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1247extern enum target_signal target_signal_from_command (int);
c906108c
SS
1248
1249/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1250extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1251\f
1252/* Imported from machine dependent code */
1253
c906108c 1254/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1255void target_ignore (void);
c906108c
SS
1256
1257/* Macro for getting target's idea of a frame pointer.
1258 FIXME: GDB's whole scheme for dealing with "frames" and
1259 "frame pointers" needs a serious shakedown. */
1260#ifndef TARGET_VIRTUAL_FRAME_POINTER
1261#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1262 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1263#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1264
c5aa993b 1265#endif /* !defined (TARGET_H) */
This page took 0.262371 seconds and 4 git commands to generate.