2002-11-12 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
b6ba6518 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
be4d1333 3 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support. Written by John Gilmore.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#if !defined (TARGET_H)
24#define TARGET_H
25
26/* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45#include "bfd.h"
46#include "symtab.h"
4930751a 47#include "dcache.h"
29e57380 48#include "memattr.h"
c906108c 49
c5aa993b
JM
50enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
c5aa993b 58 };
c906108c 59
c5aa993b
JM
60enum thread_control_capabilities
61 {
0d06e24b
JM
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 65 };
c906108c
SS
66
67/* Stuff for target_wait. */
68
69/* Generally, what has the program done? */
c5aa993b
JM
70enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
c906108c 74
0d06e24b
JM
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
c5aa993b 77 TARGET_WAITKIND_STOPPED,
c906108c 78
c5aa993b
JM
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
c906108c 82
c5aa993b
JM
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
c906108c 86
0d06e24b
JM
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
c5aa993b 91 TARGET_WAITKIND_FORKED,
c906108c 92
0d06e24b
JM
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
c5aa993b 96 TARGET_WAITKIND_VFORKED,
c906108c 97
0d06e24b
JM
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
c5aa993b 101 TARGET_WAITKIND_EXECD,
c906108c 102
0d06e24b
JM
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
c5aa993b
JM
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 109
c5aa993b
JM
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
c4093a6a
JM
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
0d06e24b 123 like for instance the user typing. */
c4093a6a 124 TARGET_WAITKIND_IGNORE
c906108c
SS
125 };
126
c5aa993b
JM
127struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
c906108c 142
2acceee2 143/* Possible types of events that the inferior handler will have to
0d06e24b 144 deal with. */
2acceee2
JM
145enum inferior_event_type
146 {
0d06e24b 147 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
0d06e24b 150 being called. */
2acceee2 151 INF_REG_EVENT,
0d06e24b 152 /* Deal with an error on the inferior. */
2acceee2 153 INF_ERROR,
0d06e24b 154 /* We are called because a timer went off. */
2acceee2 155 INF_TIMER,
0d06e24b 156 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
0d06e24b 161 'step n' like commands. */
c2d11a7d 162 INF_EXEC_CONTINUE
2acceee2
JM
163 };
164
c906108c 165/* Return the string for a signal. */
a14ed312 166extern char *target_signal_to_string (enum target_signal);
c906108c
SS
167
168/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 169extern char *target_signal_to_name (enum target_signal);
c906108c
SS
170
171/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 172enum target_signal target_signal_from_name (char *);
c906108c 173\f
c5aa993b 174
c906108c
SS
175/* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 178 on TARGET_ACTIVITY_FD. */
c906108c
SS
179extern int target_activity_fd;
180/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 181extern int (*target_activity_function) (void);
c906108c 182\f
0d06e24b
JM
183struct thread_info; /* fwd decl for parameter list below: */
184
c906108c 185struct target_ops
c5aa993b
JM
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
c906108c 190 newline, and starts with a one-line descrip-
0d06e24b 191 tion (probably similar to to_longname). */
507f3c78
KB
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
39f77062
KB
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
507f3c78
KB
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
c5aa993b
JM
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
507f3c78 224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
c906108c
SS
228
229#if 0
c5aa993b 230 /* Enable this after 4.12. */
c906108c 231
c5aa993b
JM
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 238
0d06e24b
JM
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
507f3c78
KB
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
246
247#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
c5aa993b
JM
250#endif /* 0 */
251
507f3c78
KB
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
ccaa32c7
GS
255 int (*to_can_use_hw_breakpoint) (int, int, int);
256 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
257 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
258 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
259 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
260 int (*to_stopped_by_watchpoint) (void);
261 CORE_ADDR (*to_stopped_data_address) (void);
262 int (*to_region_size_ok_for_hw_watchpoint) (int);
507f3c78
KB
263 void (*to_terminal_init) (void);
264 void (*to_terminal_inferior) (void);
265 void (*to_terminal_ours_for_output) (void);
266 void (*to_terminal_ours) (void);
a790ad35 267 void (*to_terminal_save_ours) (void);
507f3c78
KB
268 void (*to_terminal_info) (char *, int);
269 void (*to_kill) (void);
270 void (*to_load) (char *, int);
271 int (*to_lookup_symbol) (char *, CORE_ADDR *);
272 void (*to_create_inferior) (char *, char *, char **);
39f77062 273 void (*to_post_startup_inferior) (ptid_t);
507f3c78
KB
274 void (*to_acknowledge_created_inferior) (int);
275 void (*to_clone_and_follow_inferior) (int, int *);
276 void (*to_post_follow_inferior_by_clone) (void);
277 int (*to_insert_fork_catchpoint) (int);
278 int (*to_remove_fork_catchpoint) (int);
279 int (*to_insert_vfork_catchpoint) (int);
280 int (*to_remove_vfork_catchpoint) (int);
281 int (*to_has_forked) (int, int *);
282 int (*to_has_vforked) (int, int *);
283 int (*to_can_follow_vfork_prior_to_exec) (void);
284 void (*to_post_follow_vfork) (int, int, int, int);
285 int (*to_insert_exec_catchpoint) (int);
286 int (*to_remove_exec_catchpoint) (int);
287 int (*to_has_execd) (int, char **);
288 int (*to_reported_exec_events_per_exec_call) (void);
289 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
290 int (*to_has_exited) (int, int, int *);
291 void (*to_mourn_inferior) (void);
292 int (*to_can_run) (void);
39f77062
KB
293 void (*to_notice_signals) (ptid_t ptid);
294 int (*to_thread_alive) (ptid_t ptid);
507f3c78 295 void (*to_find_new_threads) (void);
39f77062 296 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
297 char *(*to_extra_thread_info) (struct thread_info *);
298 void (*to_stop) (void);
299 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 300 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
301 struct symtab_and_line *(*to_enable_exception_callback) (enum
302 exception_event_kind,
303 int);
304 struct exception_event_record *(*to_get_current_exception_event) (void);
305 char *(*to_pid_to_exec_file) (int pid);
c5aa993b
JM
306 enum strata to_stratum;
307 struct target_ops
308 *DONT_USE; /* formerly to_next */
309 int to_has_all_memory;
310 int to_has_memory;
311 int to_has_stack;
312 int to_has_registers;
313 int to_has_execution;
314 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
315 struct section_table
316 *to_sections;
317 struct section_table
318 *to_sections_end;
6426a772
JM
319 /* ASYNC target controls */
320 int (*to_can_async_p) (void);
321 int (*to_is_async_p) (void);
0d06e24b
JM
322 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
323 void *context);
ed9a39eb 324 int to_async_mask_value;
be4d1333
MS
325 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
326 unsigned long,
327 int, int, int,
328 void *),
329 void *);
330 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
331
332 /* Return the thread-local address at OFFSET in the
333 thread-local storage for the thread PTID and the shared library
334 or executable file given by OBJFILE. If that block of
335 thread-local storage hasn't been allocated yet, this function
336 may return an error. */
337 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
338 struct objfile *objfile,
339 CORE_ADDR offset);
340
c5aa993b 341 int to_magic;
0d06e24b
JM
342 /* Need sub-structure for target machine related rather than comm related?
343 */
c5aa993b 344 };
c906108c
SS
345
346/* Magic number for checking ops size. If a struct doesn't end with this
347 number, somebody changed the declaration but didn't change all the
348 places that initialize one. */
349
350#define OPS_MAGIC 3840
351
352/* The ops structure for our "current" target process. This should
353 never be NULL. If there is no target, it points to the dummy_target. */
354
c5aa993b 355extern struct target_ops current_target;
c906108c
SS
356
357/* An item on the target stack. */
358
359struct target_stack_item
c5aa993b
JM
360 {
361 struct target_stack_item *next;
362 struct target_ops *target_ops;
363 };
c906108c
SS
364
365/* The target stack. */
366
367extern struct target_stack_item *target_stack;
368
369/* Define easy words for doing these operations on our current target. */
370
371#define target_shortname (current_target.to_shortname)
372#define target_longname (current_target.to_longname)
373
374/* The open routine takes the rest of the parameters from the command,
375 and (if successful) pushes a new target onto the stack.
376 Targets should supply this routine, if only to provide an error message. */
0d06e24b 377
4930751a
C
378#define target_open(name, from_tty) \
379 do { \
380 dcache_invalidate (target_dcache); \
381 (*current_target.to_open) (name, from_tty); \
382 } while (0)
c906108c
SS
383
384/* Does whatever cleanup is required for a target that we are no longer
385 going to be calling. Argument says whether we are quitting gdb and
386 should not get hung in case of errors, or whether we want a clean
387 termination even if it takes a while. This routine is automatically
388 always called just before a routine is popped off the target stack.
389 Closing file descriptors and freeing memory are typical things it should
390 do. */
391
392#define target_close(quitting) \
0d06e24b 393 (*current_target.to_close) (quitting)
c906108c
SS
394
395/* Attaches to a process on the target side. Arguments are as passed
396 to the `attach' command by the user. This routine can be called
397 when the target is not on the target-stack, if the target_can_run
398 routine returns 1; in that case, it must push itself onto the stack.
399 Upon exit, the target should be ready for normal operations, and
400 should be ready to deliver the status of the process immediately
401 (without waiting) to an upcoming target_wait call. */
402
403#define target_attach(args, from_tty) \
0d06e24b 404 (*current_target.to_attach) (args, from_tty)
c906108c
SS
405
406/* The target_attach operation places a process under debugger control,
407 and stops the process.
408
409 This operation provides a target-specific hook that allows the
0d06e24b 410 necessary bookkeeping to be performed after an attach completes. */
c906108c 411#define target_post_attach(pid) \
0d06e24b 412 (*current_target.to_post_attach) (pid)
c906108c
SS
413
414/* Attaches to a process on the target side, if not already attached.
415 (If already attached, takes no action.)
416
417 This operation can be used to follow the child process of a fork.
418 On some targets, such child processes of an original inferior process
419 are automatically under debugger control, and thus do not require an
420 actual attach operation. */
421
422#define target_require_attach(args, from_tty) \
0d06e24b 423 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
424
425/* Takes a program previously attached to and detaches it.
426 The program may resume execution (some targets do, some don't) and will
427 no longer stop on signals, etc. We better not have left any breakpoints
428 in the program or it'll die when it hits one. ARGS is arguments
429 typed by the user (e.g. a signal to send the process). FROM_TTY
430 says whether to be verbose or not. */
431
a14ed312 432extern void target_detach (char *, int);
c906108c
SS
433
434/* Detaches from a process on the target side, if not already dettached.
435 (If already detached, takes no action.)
436
437 This operation can be used to follow the parent process of a fork.
438 On some targets, such child processes of an original inferior process
439 are automatically under debugger control, and thus do require an actual
440 detach operation.
441
442 PID is the process id of the child to detach from.
443 ARGS is arguments typed by the user (e.g. a signal to send the process).
444 FROM_TTY says whether to be verbose or not. */
445
0d06e24b
JM
446#define target_require_detach(pid, args, from_tty) \
447 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c 448
39f77062 449/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
450 single-step or to run free; SIGGNAL is the signal to be given to
451 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
452 pass TARGET_SIGNAL_DEFAULT. */
453
39f77062 454#define target_resume(ptid, step, siggnal) \
4930751a
C
455 do { \
456 dcache_invalidate(target_dcache); \
39f77062 457 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 458 } while (0)
c906108c 459
b5a2688f
AC
460/* Wait for process pid to do something. PTID = -1 to wait for any
461 pid to do something. Return pid of child, or -1 in case of error;
c906108c 462 store status through argument pointer STATUS. Note that it is
b5a2688f 463 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
464 the debugging target from the stack; GDB isn't prepared to get back
465 to the prompt with a debugging target but without the frame cache,
466 stop_pc, etc., set up. */
467
39f77062
KB
468#define target_wait(ptid, status) \
469 (*current_target.to_wait) (ptid, status)
c906108c
SS
470
471/* The target_wait operation waits for a process event to occur, and
472 thereby stop the process.
473
474 On some targets, certain events may happen in sequences. gdb's
475 correct response to any single event of such a sequence may require
476 knowledge of what earlier events in the sequence have been seen.
477
478 This operation provides a target-specific hook that allows the
0d06e24b 479 necessary bookkeeping to be performed to track such sequences. */
c906108c 480
39f77062
KB
481#define target_post_wait(ptid, status) \
482 (*current_target.to_post_wait) (ptid, status)
c906108c 483
17dee195 484/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
485
486#define target_fetch_registers(regno) \
0d06e24b 487 (*current_target.to_fetch_registers) (regno)
c906108c
SS
488
489/* Store at least register REGNO, or all regs if REGNO == -1.
490 It can store as many registers as it wants to, so target_prepare_to_store
491 must have been previously called. Calls error() if there are problems. */
492
493#define target_store_registers(regs) \
0d06e24b 494 (*current_target.to_store_registers) (regs)
c906108c
SS
495
496/* Get ready to modify the registers array. On machines which store
497 individual registers, this doesn't need to do anything. On machines
498 which store all the registers in one fell swoop, this makes sure
499 that REGISTERS contains all the registers from the program being
500 debugged. */
501
502#define target_prepare_to_store() \
0d06e24b 503 (*current_target.to_prepare_to_store) ()
c906108c 504
4930751a
C
505extern DCACHE *target_dcache;
506
29e57380
C
507extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
508 struct mem_attrib *attrib);
4930751a 509
a14ed312 510extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 511
a14ed312 512extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 513
4930751a 514extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 515
29e57380
C
516extern int xfer_memory (CORE_ADDR, char *, int, int,
517 struct mem_attrib *, struct target_ops *);
c906108c 518
29e57380
C
519extern int child_xfer_memory (CORE_ADDR, char *, int, int,
520 struct mem_attrib *, struct target_ops *);
c906108c 521
917317f4
JM
522/* Make a single attempt at transfering LEN bytes. On a successful
523 transfer, the number of bytes actually transfered is returned and
524 ERR is set to 0. When a transfer fails, -1 is returned (the number
525 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 526 non-zero error indication. */
917317f4 527
ed9a39eb
JM
528extern int
529target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 530
ed9a39eb
JM
531extern int
532target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 533
a14ed312 534extern char *child_pid_to_exec_file (int);
c906108c 535
a14ed312 536extern char *child_core_file_to_sym_file (char *);
c906108c
SS
537
538#if defined(CHILD_POST_ATTACH)
a14ed312 539extern void child_post_attach (int);
c906108c
SS
540#endif
541
39f77062 542extern void child_post_wait (ptid_t, int);
c906108c 543
39f77062 544extern void child_post_startup_inferior (ptid_t);
c906108c 545
a14ed312 546extern void child_acknowledge_created_inferior (int);
c906108c 547
a14ed312 548extern void child_clone_and_follow_inferior (int, int *);
c906108c 549
a14ed312 550extern void child_post_follow_inferior_by_clone (void);
c906108c 551
a14ed312 552extern int child_insert_fork_catchpoint (int);
c906108c 553
a14ed312 554extern int child_remove_fork_catchpoint (int);
c906108c 555
a14ed312 556extern int child_insert_vfork_catchpoint (int);
c906108c 557
a14ed312 558extern int child_remove_vfork_catchpoint (int);
c906108c 559
a14ed312 560extern int child_has_forked (int, int *);
c906108c 561
a14ed312 562extern int child_has_vforked (int, int *);
c906108c 563
a14ed312 564extern void child_acknowledge_created_inferior (int);
c906108c 565
a14ed312 566extern int child_can_follow_vfork_prior_to_exec (void);
c906108c 567
a14ed312 568extern void child_post_follow_vfork (int, int, int, int);
c906108c 569
a14ed312 570extern int child_insert_exec_catchpoint (int);
c906108c 571
a14ed312 572extern int child_remove_exec_catchpoint (int);
c906108c 573
a14ed312 574extern int child_has_execd (int, char **);
c906108c 575
a14ed312 576extern int child_reported_exec_events_per_exec_call (void);
c906108c 577
a14ed312 578extern int child_has_syscall_event (int, enum target_waitkind *, int *);
c906108c 579
a14ed312 580extern int child_has_exited (int, int, int *);
c906108c 581
39f77062 582extern int child_thread_alive (ptid_t);
c906108c
SS
583
584/* From exec.c */
585
a14ed312 586extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
587
588/* Print a line about the current target. */
589
590#define target_files_info() \
0d06e24b 591 (*current_target.to_files_info) (&current_target)
c906108c
SS
592
593/* Insert a breakpoint at address ADDR in the target machine.
594 SAVE is a pointer to memory allocated for saving the
595 target contents. It is guaranteed by the caller to be long enough
596 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
597 an errno value. */
598
599#define target_insert_breakpoint(addr, save) \
0d06e24b 600 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
601
602/* Remove a breakpoint at address ADDR in the target machine.
603 SAVE is a pointer to the same save area
604 that was previously passed to target_insert_breakpoint.
605 Result is 0 for success, or an errno value. */
606
607#define target_remove_breakpoint(addr, save) \
0d06e24b 608 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
609
610/* Initialize the terminal settings we record for the inferior,
611 before we actually run the inferior. */
612
613#define target_terminal_init() \
0d06e24b 614 (*current_target.to_terminal_init) ()
c906108c
SS
615
616/* Put the inferior's terminal settings into effect.
617 This is preparation for starting or resuming the inferior. */
618
619#define target_terminal_inferior() \
0d06e24b 620 (*current_target.to_terminal_inferior) ()
c906108c
SS
621
622/* Put some of our terminal settings into effect,
623 enough to get proper results from our output,
624 but do not change into or out of RAW mode
625 so that no input is discarded.
626
627 After doing this, either terminal_ours or terminal_inferior
628 should be called to get back to a normal state of affairs. */
629
630#define target_terminal_ours_for_output() \
0d06e24b 631 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
632
633/* Put our terminal settings into effect.
634 First record the inferior's terminal settings
635 so they can be restored properly later. */
636
637#define target_terminal_ours() \
0d06e24b 638 (*current_target.to_terminal_ours) ()
c906108c 639
a790ad35
SC
640/* Save our terminal settings.
641 This is called from TUI after entering or leaving the curses
642 mode. Since curses modifies our terminal this call is here
643 to take this change into account. */
644
645#define target_terminal_save_ours() \
646 (*current_target.to_terminal_save_ours) ()
647
c906108c
SS
648/* Print useful information about our terminal status, if such a thing
649 exists. */
650
651#define target_terminal_info(arg, from_tty) \
0d06e24b 652 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
653
654/* Kill the inferior process. Make it go away. */
655
656#define target_kill() \
0d06e24b 657 (*current_target.to_kill) ()
c906108c 658
0d06e24b
JM
659/* Load an executable file into the target process. This is expected
660 to not only bring new code into the target process, but also to
661 update GDB's symbol tables to match. */
c906108c 662
11cf8741 663extern void target_load (char *arg, int from_tty);
c906108c
SS
664
665/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
666 name. ADDRP is a CORE_ADDR * pointing to where the value of the
667 symbol should be returned. The result is 0 if successful, nonzero
668 if the symbol does not exist in the target environment. This
669 function should not call error() if communication with the target
670 is interrupted, since it is called from symbol reading, but should
671 return nonzero, possibly doing a complain(). */
c906108c 672
0d06e24b
JM
673#define target_lookup_symbol(name, addrp) \
674 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 675
39f77062 676/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
677 EXEC_FILE is the file to run.
678 ALLARGS is a string containing the arguments to the program.
679 ENV is the environment vector to pass. Errors reported with error().
680 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 681
c906108c 682#define target_create_inferior(exec_file, args, env) \
0d06e24b 683 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
684
685
686/* Some targets (such as ttrace-based HPUX) don't allow us to request
687 notification of inferior events such as fork and vork immediately
688 after the inferior is created. (This because of how gdb gets an
689 inferior created via invoking a shell to do it. In such a scenario,
690 if the shell init file has commands in it, the shell will fork and
691 exec for each of those commands, and we will see each such fork
692 event. Very bad.)
c5aa993b 693
0d06e24b
JM
694 Such targets will supply an appropriate definition for this function. */
695
39f77062
KB
696#define target_post_startup_inferior(ptid) \
697 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
698
699/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
700 some synchronization between gdb and the new inferior process, PID. */
701
c906108c 702#define target_acknowledge_created_inferior(pid) \
0d06e24b 703 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
704
705/* An inferior process has been created via a fork() or similar
706 system call. This function will clone the debugger, then ensure
707 that CHILD_PID is attached to by that debugger.
708
709 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
710 and FALSE otherwise. (The original and clone debuggers can use this
711 to determine which they are, if need be.)
712
713 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
714 the two debuggers from competing for shell input.) */
715
c906108c 716#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 717 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
718
719/* This operation is intended to be used as the last in a sequence of
720 steps taken when following both parent and child of a fork. This
721 is used by a clone of the debugger, which will follow the child.
722
723 The original debugger has detached from this process, and the
724 clone has attached to it.
725
726 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
727 correctly. */
728
c906108c 729#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
730 (*current_target.to_post_follow_inferior_by_clone) ()
731
732/* On some targets, we can catch an inferior fork or vfork event when
733 it occurs. These functions insert/remove an already-created
734 catchpoint for such events. */
c906108c 735
c906108c 736#define target_insert_fork_catchpoint(pid) \
0d06e24b 737 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
738
739#define target_remove_fork_catchpoint(pid) \
0d06e24b 740 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
741
742#define target_insert_vfork_catchpoint(pid) \
0d06e24b 743 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
744
745#define target_remove_vfork_catchpoint(pid) \
0d06e24b 746 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
747
748/* Returns TRUE if PID has invoked the fork() system call. And,
749 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
750 inferior process that was created by that call. */
751
c906108c 752#define target_has_forked(pid,child_pid) \
0d06e24b
JM
753 (*current_target.to_has_forked) (pid,child_pid)
754
755/* Returns TRUE if PID has invoked the vfork() system call. And,
756 also sets CHILD_PID to the process id of the other ("child")
757 inferior process that was created by that call. */
c906108c 758
c906108c 759#define target_has_vforked(pid,child_pid) \
0d06e24b 760 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
761
762/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
763 anything to a vforked child before it subsequently calls exec().
764 On such platforms, we say that the debugger cannot "follow" the
765 child until it has vforked.
766
767 This function should be defined to return 1 by those targets
768 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
769 child, and 0 if they cannot. */
770
c906108c 771#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 772 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
773
774/* An inferior process has been created via a vfork() system call.
775 The debugger has followed the parent, the child, or both. The
776 process of setting up for that follow may have required some
777 target-specific trickery to track the sequence of reported events.
778 If so, this function should be defined by those targets that
779 require the debugger to perform cleanup or initialization after
0d06e24b
JM
780 the vfork follow. */
781
c906108c 782#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 783 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
784
785/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
786 occurs. These functions insert/remove an already-created
787 catchpoint for such events. */
788
c906108c 789#define target_insert_exec_catchpoint(pid) \
0d06e24b 790 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 791
c906108c 792#define target_remove_exec_catchpoint(pid) \
0d06e24b 793 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
794
795/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
796 And, also sets EXECD_PATHNAME to the pathname of the executable
797 file that was passed to exec(), and is now being executed. */
798
c906108c 799#define target_has_execd(pid,execd_pathname) \
0d06e24b 800 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
801
802/* Returns the number of exec events that are reported when a process
803 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
804 events are being reported. */
805
c906108c 806#define target_reported_exec_events_per_exec_call() \
0d06e24b 807 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
808
809/* Returns TRUE if PID has reported a syscall event. And, also sets
810 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
811 the unique integer ID of the syscall. */
812
c906108c 813#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 814 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
815
816/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
817 exit code of PID, if any. */
818
c906108c 819#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 820 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
821
822/* The debugger has completed a blocking wait() call. There is now
0d06e24b 823 some process event that must be processed. This function should
c906108c 824 be defined by those targets that require the debugger to perform
0d06e24b 825 cleanup or internal state changes in response to the process event. */
c906108c
SS
826
827/* The inferior process has died. Do what is right. */
828
829#define target_mourn_inferior() \
0d06e24b 830 (*current_target.to_mourn_inferior) ()
c906108c
SS
831
832/* Does target have enough data to do a run or attach command? */
833
834#define target_can_run(t) \
0d06e24b 835 ((t)->to_can_run) ()
c906108c
SS
836
837/* post process changes to signal handling in the inferior. */
838
39f77062
KB
839#define target_notice_signals(ptid) \
840 (*current_target.to_notice_signals) (ptid)
c906108c
SS
841
842/* Check to see if a thread is still alive. */
843
39f77062
KB
844#define target_thread_alive(ptid) \
845 (*current_target.to_thread_alive) (ptid)
c906108c 846
b83266a0
SS
847/* Query for new threads and add them to the thread list. */
848
849#define target_find_new_threads() \
0d06e24b 850 (*current_target.to_find_new_threads) (); \
b83266a0 851
0d06e24b
JM
852/* Make target stop in a continuable fashion. (For instance, under
853 Unix, this should act like SIGSTOP). This function is normally
854 used by GUIs to implement a stop button. */
c906108c
SS
855
856#define target_stop current_target.to_stop
857
858/* Queries the target side for some information. The first argument is a
859 letter specifying the type of the query, which is used to determine who
860 should process it. The second argument is a string that specifies which
861 information is desired and the third is a buffer that carries back the
862 response from the target side. The fourth parameter is the size of the
0d06e24b 863 output buffer supplied. */
c5aa993b 864
c906108c 865#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 866 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 867
96baa820
JM
868/* Send the specified COMMAND to the target's monitor
869 (shell,interpreter) for execution. The result of the query is
0d06e24b 870 placed in OUTBUF. */
96baa820
JM
871
872#define target_rcmd(command, outbuf) \
873 (*current_target.to_rcmd) (command, outbuf)
874
875
c906108c
SS
876/* Get the symbol information for a breakpointable routine called when
877 an exception event occurs.
878 Intended mainly for C++, and for those
879 platforms/implementations where such a callback mechanism is available,
880 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 881 different mechanisms for debugging exceptions. */
c906108c
SS
882
883#define target_enable_exception_callback(kind, enable) \
0d06e24b 884 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 885
0d06e24b 886/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 887
c906108c 888#define target_get_current_exception_event() \
0d06e24b 889 (*current_target.to_get_current_exception_event) ()
c906108c
SS
890
891/* Pointer to next target in the chain, e.g. a core file and an exec file. */
892
893#define target_next \
0d06e24b 894 (current_target.to_next)
c906108c
SS
895
896/* Does the target include all of memory, or only part of it? This
897 determines whether we look up the target chain for other parts of
898 memory if this target can't satisfy a request. */
899
900#define target_has_all_memory \
0d06e24b 901 (current_target.to_has_all_memory)
c906108c
SS
902
903/* Does the target include memory? (Dummy targets don't.) */
904
905#define target_has_memory \
0d06e24b 906 (current_target.to_has_memory)
c906108c
SS
907
908/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
909 we start a process.) */
c5aa993b 910
c906108c 911#define target_has_stack \
0d06e24b 912 (current_target.to_has_stack)
c906108c
SS
913
914/* Does the target have registers? (Exec files don't.) */
915
916#define target_has_registers \
0d06e24b 917 (current_target.to_has_registers)
c906108c
SS
918
919/* Does the target have execution? Can we make it jump (through
920 hoops), or pop its stack a few times? FIXME: If this is to work that
921 way, it needs to check whether an inferior actually exists.
922 remote-udi.c and probably other targets can be the current target
923 when the inferior doesn't actually exist at the moment. Right now
924 this just tells us whether this target is *capable* of execution. */
925
926#define target_has_execution \
0d06e24b 927 (current_target.to_has_execution)
c906108c
SS
928
929/* Can the target support the debugger control of thread execution?
930 a) Can it lock the thread scheduler?
931 b) Can it switch the currently running thread? */
932
933#define target_can_lock_scheduler \
0d06e24b 934 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
935
936#define target_can_switch_threads \
0d06e24b 937 (current_target.to_has_thread_control & tc_switch)
c906108c 938
6426a772
JM
939/* Can the target support asynchronous execution? */
940#define target_can_async_p() (current_target.to_can_async_p ())
941
942/* Is the target in asynchronous execution mode? */
943#define target_is_async_p() (current_target.to_is_async_p())
944
945/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
946#define target_async(CALLBACK,CONTEXT) \
947 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 948
ed9a39eb
JM
949/* This is to be used ONLY within run_stack_dummy(). It
950 provides a workaround, to have inferior function calls done in
951 sychronous mode, even though the target is asynchronous. After
952 target_async_mask(0) is called, calls to target_can_async_p() will
953 return FALSE , so that target_resume() will not try to start the
954 target asynchronously. After the inferior stops, we IMMEDIATELY
955 restore the previous nature of the target, by calling
956 target_async_mask(1). After that, target_can_async_p() will return
957 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
958
959 FIXME ezannoni 1999-12-13: we won't need this once we move
960 the turning async on and off to the single execution commands,
0d06e24b 961 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
962
963#define target_async_mask_value \
0d06e24b 964 (current_target.to_async_mask_value)
ed9a39eb
JM
965
966extern int target_async_mask (int mask);
967
a14ed312 968extern void target_link (char *, CORE_ADDR *);
c906108c
SS
969
970/* Converts a process id to a string. Usually, the string just contains
971 `process xyz', but on some systems it may contain
972 `process xyz thread abc'. */
973
ed9a39eb
JM
974#undef target_pid_to_str
975#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
976
977#ifndef target_tid_to_str
978#define target_tid_to_str(PID) \
0d06e24b 979 target_pid_to_str (PID)
39f77062 980extern char *normal_pid_to_str (ptid_t ptid);
c906108c 981#endif
c5aa993b 982
0d06e24b
JM
983/* Return a short string describing extra information about PID,
984 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
985 is okay. */
986
987#define target_extra_thread_info(TP) \
988 (current_target.to_extra_thread_info (TP))
ed9a39eb 989
11cf8741
JM
990/*
991 * New Objfile Event Hook:
992 *
993 * Sometimes a GDB component wants to get notified whenever a new
994 * objfile is loaded. Mainly this is used by thread-debugging
995 * implementations that need to know when symbols for the target
996 * thread implemenation are available.
997 *
998 * The old way of doing this is to define a macro 'target_new_objfile'
999 * that points to the function that you want to be called on every
1000 * objfile/shlib load.
1001 *
1002 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1003 * and point it to the function that you want to be called on every
1004 * objfile/shlib load.
1005 *
1006 * If multiple clients are willing to be cooperative, they can each
1007 * save a pointer to the previous value of target_new_objfile_hook
1008 * before modifying it, and arrange for their function to call the
1009 * previous function in the chain. In that way, multiple clients
1010 * can receive this notification (something like with signal handlers).
1011 */
c906108c 1012
507f3c78 1013extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
1014
1015#ifndef target_pid_or_tid_to_str
1016#define target_pid_or_tid_to_str(ID) \
0d06e24b 1017 target_pid_to_str (ID)
c906108c
SS
1018#endif
1019
1020/* Attempts to find the pathname of the executable file
1021 that was run to create a specified process.
1022
1023 The process PID must be stopped when this operation is used.
c5aa993b 1024
c906108c
SS
1025 If the executable file cannot be determined, NULL is returned.
1026
1027 Else, a pointer to a character string containing the pathname
1028 is returned. This string should be copied into a buffer by
1029 the client if the string will not be immediately used, or if
0d06e24b 1030 it must persist. */
c906108c
SS
1031
1032#define target_pid_to_exec_file(pid) \
0d06e24b 1033 (current_target.to_pid_to_exec_file) (pid)
c906108c 1034
be4d1333
MS
1035/*
1036 * Iterator function for target memory regions.
1037 * Calls a callback function once for each memory region 'mapped'
1038 * in the child process. Defined as a simple macro rather than
1039 * as a function macro so that it can be tested for nullity.
1040 */
1041
1042#define target_find_memory_regions(FUNC, DATA) \
1043 (current_target.to_find_memory_regions) (FUNC, DATA)
1044
1045/*
1046 * Compose corefile .note section.
1047 */
1048
1049#define target_make_corefile_notes(BFD, SIZE_P) \
1050 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1051
3f47be5c
EZ
1052/* Thread-local values. */
1053#define target_get_thread_local_address \
1054 (current_target.to_get_thread_local_address)
1055#define target_get_thread_local_address_p() \
1056 (target_get_thread_local_address != NULL)
1057
9d8a64cb 1058/* Hook to call target-dependent code after reading in a new symbol table. */
c906108c
SS
1059
1060#ifndef TARGET_SYMFILE_POSTREAD
1061#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1062#endif
1063
9d8a64cb 1064/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1065 started. */
1066
1067#ifndef TARGET_CREATE_INFERIOR_HOOK
1068#define TARGET_CREATE_INFERIOR_HOOK(PID)
1069#endif
1070
1071/* Hardware watchpoint interfaces. */
1072
1073/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1074 write). */
1075
1076#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1077#define STOPPED_BY_WATCHPOINT(w) \
1078 (*current_target.to_stopped_by_watchpoint) ()
c906108c
SS
1079#endif
1080
1081/* HP-UX supplies these operations, which respectively disable and enable
1082 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1083 on that platform. See wait_for_inferior's use of these. */
1084
c906108c
SS
1085#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1086#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1087#endif
1088
1089#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1090#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1091#endif
1092
ccaa32c7 1093/* Provide defaults for hardware watchpoint functions. */
c906108c 1094
ccaa32c7
GS
1095/* If the *_hw_beakpoint functions have not been defined
1096 elsewhere use the definitions in the target vector. */
c906108c
SS
1097
1098/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1099 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1100 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1101 (including this one?). OTHERTYPE is who knows what... */
1102
ccaa32c7
GS
1103#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1104#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1105 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1106#endif
c906108c
SS
1107
1108#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1109#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
ccaa32c7 1110 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
c906108c
SS
1111#endif
1112
c906108c
SS
1113
1114/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1115 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1116 success, non-zero for failure. */
1117
ccaa32c7
GS
1118#ifndef target_insert_watchpoint
1119#define target_insert_watchpoint(addr, len, type) \
1120 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1121
ccaa32c7
GS
1122#define target_remove_watchpoint(addr, len, type) \
1123 (*current_target.to_remove_watchpoint) (addr, len, type)
1124#endif
c906108c
SS
1125
1126#ifndef target_insert_hw_breakpoint
ccaa32c7
GS
1127#define target_insert_hw_breakpoint(addr, save) \
1128 (*current_target.to_insert_hw_breakpoint) (addr, save)
1129
1130#define target_remove_hw_breakpoint(addr, save) \
1131 (*current_target.to_remove_hw_breakpoint) (addr, save)
c906108c
SS
1132#endif
1133
1134#ifndef target_stopped_data_address
ccaa32c7
GS
1135#define target_stopped_data_address() \
1136 (*current_target.to_stopped_data_address) ()
c906108c
SS
1137#endif
1138
1139/* If defined, then we need to decr pc by this much after a hardware break-
1140 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1141
1142#ifndef DECR_PC_AFTER_HW_BREAK
1143#define DECR_PC_AFTER_HW_BREAK 0
1144#endif
1145
1146/* Sometimes gdb may pick up what appears to be a valid target address
1147 from a minimal symbol, but the value really means, essentially,
1148 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1149 is run. Therefore, do not attempt to use this as a PC." */
1150
c906108c
SS
1151#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1152#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1153#endif
1154
1155/* This will only be defined by a target that supports catching vfork events,
1156 such as HP-UX.
1157
1158 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1159 child process after it has exec'd, causes the parent process to resume as
1160 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1161 define this to a function that prevents that from happening. */
c906108c
SS
1162#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1163#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1164#endif
1165
1166/* This will only be defined by a target that supports catching vfork events,
1167 such as HP-UX.
1168
1169 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1170 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1171 vfork event will be delivered to us. */
1172
c906108c
SS
1173#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1174#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1175#endif
1176
1177/* Routines for maintenance of the target structures...
1178
1179 add_target: Add a target to the list of all possible targets.
1180
1181 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1182 targets, within its particular stratum of the stack. Result
1183 is 0 if now atop the stack, nonzero if not on top (maybe
1184 should warn user).
c906108c
SS
1185
1186 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1187 no matter where it is on the list. Returns 0 if no
1188 change, 1 if removed from stack.
c906108c 1189
c5aa993b 1190 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1191
a14ed312 1192extern void add_target (struct target_ops *);
c906108c 1193
a14ed312 1194extern int push_target (struct target_ops *);
c906108c 1195
a14ed312 1196extern int unpush_target (struct target_ops *);
c906108c 1197
a14ed312 1198extern void target_preopen (int);
c906108c 1199
a14ed312 1200extern void pop_target (void);
c906108c
SS
1201
1202/* Struct section_table maps address ranges to file sections. It is
1203 mostly used with BFD files, but can be used without (e.g. for handling
1204 raw disks, or files not in formats handled by BFD). */
1205
c5aa993b
JM
1206struct section_table
1207 {
1208 CORE_ADDR addr; /* Lowest address in section */
1209 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1210
c5aa993b 1211 sec_ptr the_bfd_section;
c906108c 1212
c5aa993b
JM
1213 bfd *bfd; /* BFD file pointer */
1214 };
c906108c
SS
1215
1216/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1217 Returns 0 if OK, 1 on error. */
1218
1219extern int
a14ed312 1220build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1221
1222/* From mem-break.c */
1223
a14ed312 1224extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1225
a14ed312 1226extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1227
a14ed312 1228extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1229
a14ed312 1230extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1231
f4f9705a
AC
1232extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1233 int *lenptr);
c906108c
SS
1234
1235
1236/* From target.c */
1237
a14ed312 1238extern void initialize_targets (void);
c906108c 1239
a14ed312 1240extern void noprocess (void);
c906108c 1241
a14ed312 1242extern void find_default_attach (char *, int);
c906108c 1243
a14ed312 1244extern void find_default_require_attach (char *, int);
c906108c 1245
a14ed312 1246extern void find_default_require_detach (int, char *, int);
c906108c 1247
a14ed312 1248extern void find_default_create_inferior (char *, char *, char **);
c906108c 1249
a14ed312 1250extern void find_default_clone_and_follow_inferior (int, int *);
c906108c 1251
a14ed312 1252extern struct target_ops *find_run_target (void);
7a292a7a 1253
a14ed312 1254extern struct target_ops *find_core_target (void);
6426a772 1255
a14ed312 1256extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1257
1258extern int
a14ed312 1259target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1260
1261extern void remove_target_sections (bfd *abfd);
1262
c906108c
SS
1263\f
1264/* Stuff that should be shared among the various remote targets. */
1265
1266/* Debugging level. 0 is off, and non-zero values mean to print some debug
1267 information (higher values, more information). */
1268extern int remote_debug;
1269
1270/* Speed in bits per second, or -1 which means don't mess with the speed. */
1271extern int baud_rate;
1272/* Timeout limit for response from target. */
1273extern int remote_timeout;
1274
c906108c
SS
1275\f
1276/* Functions for helping to write a native target. */
1277
1278/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1279extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1280
c2d11a7d 1281/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1282 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1283/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1284 to the shorter target_signal_p() because it is far less ambigious.
1285 In this context ``target_signal'' refers to GDB's internal
1286 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1287 refers to the target operating system's signal. Confused? */
1288
c2d11a7d
JM
1289extern int target_signal_to_host_p (enum target_signal signo);
1290
1291/* Convert between host signal numbers and enum target_signal's.
1292 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1293 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1294/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1295 refering to the target operating system's signal numbering.
1296 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1297 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1298 internal representation of a target operating system's signal. */
1299
a14ed312
KB
1300extern enum target_signal target_signal_from_host (int);
1301extern int target_signal_to_host (enum target_signal);
c906108c
SS
1302
1303/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1304extern enum target_signal target_signal_from_command (int);
c906108c
SS
1305
1306/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1307extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1308\f
1309/* Imported from machine dependent code */
1310
c906108c 1311/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1312void target_ignore (void);
c906108c 1313
c5aa993b 1314#endif /* !defined (TARGET_H) */
This page took 0.325434 seconds and 4 git commands to generate.