*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
c5aa993b 67 };
c906108c 68
c5aa993b
JM
69enum thread_control_capabilities
70 {
0d06e24b
JM
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 74 };
c906108c
SS
75
76/* Stuff for target_wait. */
77
78/* Generally, what has the program done? */
c5aa993b
JM
79enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
c906108c 83
0d06e24b
JM
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
c5aa993b 86 TARGET_WAITKIND_STOPPED,
c906108c 87
c5aa993b
JM
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
c906108c 91
c5aa993b
JM
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
c906108c 95
0d06e24b
JM
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
c5aa993b 100 TARGET_WAITKIND_FORKED,
c906108c 101
0d06e24b
JM
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
c5aa993b 105 TARGET_WAITKIND_VFORKED,
c906108c 106
0d06e24b
JM
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
c5aa993b 110 TARGET_WAITKIND_EXECD,
c906108c 111
0d06e24b
JM
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
c5aa993b
JM
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 118
c5aa993b
JM
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
c4093a6a
JM
122 TARGET_WAITKIND_SPURIOUS,
123
8e7d2c16
DJ
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
c4093a6a
JM
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
0d06e24b 132 like for instance the user typing. */
c4093a6a 133 TARGET_WAITKIND_IGNORE
c906108c
SS
134 };
135
c5aa993b
JM
136struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
c906108c 151
2acceee2 152/* Possible types of events that the inferior handler will have to
0d06e24b 153 deal with. */
2acceee2
JM
154enum inferior_event_type
155 {
0d06e24b 156 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
0d06e24b 159 being called. */
2146d243 160 INF_REG_EVENT,
0d06e24b 161 /* Deal with an error on the inferior. */
2acceee2 162 INF_ERROR,
0d06e24b 163 /* We are called because a timer went off. */
2acceee2 164 INF_TIMER,
0d06e24b 165 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
0d06e24b 170 'step n' like commands. */
c2d11a7d 171 INF_EXEC_CONTINUE
2acceee2
JM
172 };
173
c906108c 174/* Return the string for a signal. */
a14ed312 175extern char *target_signal_to_string (enum target_signal);
c906108c
SS
176
177/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 178extern char *target_signal_to_name (enum target_signal);
c906108c
SS
179
180/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 181enum target_signal target_signal_from_name (char *);
c906108c 182\f
13547ab6
DJ
183/* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
1e3ff5ad
AC
185
186enum target_object
187{
1e3ff5ad
AC
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
23d964e7
UW
190 /* SPU target specific transfer. See "spu-tdep.c". */
191 TARGET_OBJECT_SPU,
1e3ff5ad 192 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 193 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
194 /* Memory, avoiding GDB's data cache and trusting the executable.
195 Target implementations of to_xfer_partial never need to handle
196 this object, and most callers should not use it. */
197 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
198 /* Kernel Unwind Table. See "ia64-tdep.c". */
199 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
200 /* Transfer auxilliary vector. */
201 TARGET_OBJECT_AUXV,
baf92889 202 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
203 TARGET_OBJECT_WCOOKIE,
204 /* Target memory map in XML format. */
205 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
206 /* Flash memory. This object can be used to write contents to
207 a previously erased flash memory. Using it without erasing
208 flash can have unexpected results. Addresses are physical
209 address on target, and not relative to flash start. */
23181151
DJ
210 TARGET_OBJECT_FLASH,
211 /* Available target-specific features, e.g. registers and coprocessors.
212 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
213 TARGET_OBJECT_AVAILABLE_FEATURES,
214 /* Currently loaded libraries, in XML format. */
215 TARGET_OBJECT_LIBRARIES
2146d243 216 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
217};
218
13547ab6
DJ
219/* Request that OPS transfer up to LEN 8-bit bytes of the target's
220 OBJECT. The OFFSET, for a seekable object, specifies the
221 starting point. The ANNEX can be used to provide additional
222 data-specific information to the target.
1e3ff5ad 223
13547ab6
DJ
224 Return the number of bytes actually transfered, or -1 if the
225 transfer is not supported or otherwise fails. Return of a positive
226 value less than LEN indicates that no further transfer is possible.
227 Unlike the raw to_xfer_partial interface, callers of these
228 functions do not need to retry partial transfers. */
1e3ff5ad 229
1e3ff5ad
AC
230extern LONGEST target_read (struct target_ops *ops,
231 enum target_object object,
1b0ba102 232 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
233 ULONGEST offset, LONGEST len);
234
235extern LONGEST target_write (struct target_ops *ops,
236 enum target_object object,
1b0ba102 237 const char *annex, const gdb_byte *buf,
1e3ff5ad 238 ULONGEST offset, LONGEST len);
b6591e8b 239
a76d924d
DJ
240/* Similar to target_write, except that it also calls PROGRESS with
241 the number of bytes written and the opaque BATON after every
242 successful partial write (and before the first write). This is
243 useful for progress reporting and user interaction while writing
244 data. To abort the transfer, the progress callback can throw an
245 exception. */
246
cf7a04e8
DJ
247LONGEST target_write_with_progress (struct target_ops *ops,
248 enum target_object object,
249 const char *annex, const gdb_byte *buf,
250 ULONGEST offset, LONGEST len,
251 void (*progress) (ULONGEST, void *),
252 void *baton);
253
13547ab6
DJ
254/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
255 be read using OPS. The return value will be -1 if the transfer
256 fails or is not supported; 0 if the object is empty; or the length
257 of the object otherwise. If a positive value is returned, a
258 sufficiently large buffer will be allocated using xmalloc and
259 returned in *BUF_P containing the contents of the object.
260
261 This method should be used for objects sufficiently small to store
262 in a single xmalloc'd buffer, when no fixed bound on the object's
263 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
264 through this function. */
265
266extern LONGEST target_read_alloc (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, gdb_byte **buf_p);
269
159f81f3
DJ
270/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
271 returned as a string, allocated using xmalloc. If an error occurs
272 or the transfer is unsupported, NULL is returned. Empty objects
273 are returned as allocated but empty strings. A warning is issued
274 if the result contains any embedded NUL bytes. */
275
276extern char *target_read_stralloc (struct target_ops *ops,
277 enum target_object object,
278 const char *annex);
279
b6591e8b
AC
280/* Wrappers to target read/write that perform memory transfers. They
281 throw an error if the memory transfer fails.
282
283 NOTE: cagney/2003-10-23: The naming schema is lifted from
284 "frame.h". The parameter order is lifted from get_frame_memory,
285 which in turn lifted it from read_memory. */
286
287extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 288 gdb_byte *buf, LONGEST len);
b6591e8b
AC
289extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
290 CORE_ADDR addr, int len);
1e3ff5ad 291\f
c5aa993b 292
c906108c
SS
293/* If certain kinds of activity happen, target_wait should perform
294 callbacks. */
295/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 296 on TARGET_ACTIVITY_FD. */
c906108c
SS
297extern int target_activity_fd;
298/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 299extern int (*target_activity_function) (void);
c906108c 300\f
0d06e24b
JM
301struct thread_info; /* fwd decl for parameter list below: */
302
c906108c 303struct target_ops
c5aa993b 304 {
258b763a 305 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
306 char *to_shortname; /* Name this target type */
307 char *to_longname; /* Name for printing */
308 char *to_doc; /* Documentation. Does not include trailing
c906108c 309 newline, and starts with a one-line descrip-
0d06e24b 310 tion (probably similar to to_longname). */
bba2d28d
AC
311 /* Per-target scratch pad. */
312 void *to_data;
f1c07ab0
AC
313 /* The open routine takes the rest of the parameters from the
314 command, and (if successful) pushes a new target onto the
315 stack. Targets should supply this routine, if only to provide
316 an error message. */
507f3c78 317 void (*to_open) (char *, int);
f1c07ab0
AC
318 /* Old targets with a static target vector provide "to_close".
319 New re-entrant targets provide "to_xclose" and that is expected
320 to xfree everything (including the "struct target_ops"). */
321 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
322 void (*to_close) (int);
323 void (*to_attach) (char *, int);
324 void (*to_post_attach) (int);
507f3c78 325 void (*to_detach) (char *, int);
597320e7 326 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
327 void (*to_resume) (ptid_t, int, enum target_signal);
328 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
329 void (*to_fetch_registers) (struct regcache *, int);
330 void (*to_store_registers) (struct regcache *, int);
316f2060 331 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
332
333 /* Transfer LEN bytes of memory between GDB address MYADDR and
334 target address MEMADDR. If WRITE, transfer them to the target, else
335 transfer them from the target. TARGET is the target from which we
336 get this function.
337
338 Return value, N, is one of the following:
339
340 0 means that we can't handle this. If errno has been set, it is the
341 error which prevented us from doing it (FIXME: What about bfd_error?).
342
343 positive (call it N) means that we have transferred N bytes
344 starting at MEMADDR. We might be able to handle more bytes
345 beyond this length, but no promises.
346
347 negative (call its absolute value N) means that we cannot
348 transfer right at MEMADDR, but we could transfer at least
c8e73a31 349 something at MEMADDR + N.
c5aa993b 350
c8e73a31
AC
351 NOTE: cagney/2004-10-01: This has been entirely superseeded by
352 to_xfer_partial and inferior inheritance. */
353
1b0ba102 354 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
355 int len, int write,
356 struct mem_attrib *attrib,
357 struct target_ops *target);
c906108c 358
507f3c78 359 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
360 int (*to_insert_breakpoint) (struct bp_target_info *);
361 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 362 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
363 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
364 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
365 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
366 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
367 int (*to_stopped_by_watchpoint) (void);
74174d2e 368 int to_have_steppable_watchpoint;
7df1a324 369 int to_have_continuable_watchpoint;
4aa7a7f5 370 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 371 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
372 void (*to_terminal_init) (void);
373 void (*to_terminal_inferior) (void);
374 void (*to_terminal_ours_for_output) (void);
375 void (*to_terminal_ours) (void);
a790ad35 376 void (*to_terminal_save_ours) (void);
507f3c78
KB
377 void (*to_terminal_info) (char *, int);
378 void (*to_kill) (void);
379 void (*to_load) (char *, int);
380 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 381 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 382 void (*to_post_startup_inferior) (ptid_t);
507f3c78 383 void (*to_acknowledge_created_inferior) (int);
fa113d1a 384 void (*to_insert_fork_catchpoint) (int);
507f3c78 385 int (*to_remove_fork_catchpoint) (int);
fa113d1a 386 void (*to_insert_vfork_catchpoint) (int);
507f3c78 387 int (*to_remove_vfork_catchpoint) (int);
ee057212 388 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 389 void (*to_insert_exec_catchpoint) (int);
507f3c78 390 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
391 int (*to_has_exited) (int, int, int *);
392 void (*to_mourn_inferior) (void);
393 int (*to_can_run) (void);
39f77062
KB
394 void (*to_notice_signals) (ptid_t ptid);
395 int (*to_thread_alive) (ptid_t ptid);
507f3c78 396 void (*to_find_new_threads) (void);
39f77062 397 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
398 char *(*to_extra_thread_info) (struct thread_info *);
399 void (*to_stop) (void);
d9fcf2fb 400 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 401 char *(*to_pid_to_exec_file) (int pid);
49d03eab 402 void (*to_log_command) (const char *);
c5aa993b 403 enum strata to_stratum;
c5aa993b
JM
404 int to_has_all_memory;
405 int to_has_memory;
406 int to_has_stack;
407 int to_has_registers;
408 int to_has_execution;
409 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
410 struct section_table
411 *to_sections;
412 struct section_table
413 *to_sections_end;
6426a772
JM
414 /* ASYNC target controls */
415 int (*to_can_async_p) (void);
416 int (*to_is_async_p) (void);
b84876c2
PA
417 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
418 int (*to_async_mask) (int);
2146d243
RM
419 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
420 unsigned long,
421 int, int, int,
422 void *),
be4d1333
MS
423 void *);
424 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
425
426 /* Return the thread-local address at OFFSET in the
427 thread-local storage for the thread PTID and the shared library
428 or executable file given by OBJFILE. If that block of
429 thread-local storage hasn't been allocated yet, this function
430 may return an error. */
431 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 432 CORE_ADDR load_module_addr,
3f47be5c
EZ
433 CORE_ADDR offset);
434
13547ab6
DJ
435 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
436 OBJECT. The OFFSET, for a seekable object, specifies the
437 starting point. The ANNEX can be used to provide additional
438 data-specific information to the target.
439
440 Return the number of bytes actually transfered, zero when no
441 further transfer is possible, and -1 when the transfer is not
442 supported. Return of a positive value smaller than LEN does
443 not indicate the end of the object, only the end of the
444 transfer; higher level code should continue transferring if
445 desired. This is handled in target.c.
446
447 The interface does not support a "retry" mechanism. Instead it
448 assumes that at least one byte will be transfered on each
449 successful call.
450
451 NOTE: cagney/2003-10-17: The current interface can lead to
452 fragmented transfers. Lower target levels should not implement
453 hacks, such as enlarging the transfer, in an attempt to
454 compensate for this. Instead, the target stack should be
455 extended so that it implements supply/collect methods and a
456 look-aside object cache. With that available, the lowest
457 target can safely and freely "push" data up the stack.
458
459 See target_read and target_write for more information. One,
460 and only one, of readbuf or writebuf must be non-NULL. */
461
4b8a223f 462 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 463 enum target_object object, const char *annex,
1b0ba102 464 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 465 ULONGEST offset, LONGEST len);
1e3ff5ad 466
fd79ecee
DJ
467 /* Returns the memory map for the target. A return value of NULL
468 means that no memory map is available. If a memory address
469 does not fall within any returned regions, it's assumed to be
470 RAM. The returned memory regions should not overlap.
471
472 The order of regions does not matter; target_memory_map will
473 sort regions by starting address. For that reason, this
474 function should not be called directly except via
475 target_memory_map.
476
477 This method should not cache data; if the memory map could
478 change unexpectedly, it should be invalidated, and higher
479 layers will re-fetch it. */
480 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
481
a76d924d
DJ
482 /* Erases the region of flash memory starting at ADDRESS, of
483 length LENGTH.
484
485 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
486 on flash block boundaries, as reported by 'to_memory_map'. */
487 void (*to_flash_erase) (struct target_ops *,
488 ULONGEST address, LONGEST length);
489
490 /* Finishes a flash memory write sequence. After this operation
491 all flash memory should be available for writing and the result
492 of reading from areas written by 'to_flash_write' should be
493 equal to what was written. */
494 void (*to_flash_done) (struct target_ops *);
495
424163ea
DJ
496 /* Describe the architecture-specific features of this target.
497 Returns the description found, or NULL if no description
498 was available. */
499 const struct target_desc *(*to_read_description) (struct target_ops *ops);
500
c5aa993b 501 int to_magic;
0d06e24b
JM
502 /* Need sub-structure for target machine related rather than comm related?
503 */
c5aa993b 504 };
c906108c
SS
505
506/* Magic number for checking ops size. If a struct doesn't end with this
507 number, somebody changed the declaration but didn't change all the
508 places that initialize one. */
509
510#define OPS_MAGIC 3840
511
512/* The ops structure for our "current" target process. This should
513 never be NULL. If there is no target, it points to the dummy_target. */
514
c5aa993b 515extern struct target_ops current_target;
c906108c 516
c906108c
SS
517/* Define easy words for doing these operations on our current target. */
518
519#define target_shortname (current_target.to_shortname)
520#define target_longname (current_target.to_longname)
521
f1c07ab0
AC
522/* Does whatever cleanup is required for a target that we are no
523 longer going to be calling. QUITTING indicates that GDB is exiting
524 and should not get hung on an error (otherwise it is important to
525 perform clean termination, even if it takes a while). This routine
526 is automatically always called when popping the target off the
527 target stack (to_beneath is undefined). Closing file descriptors
528 and freeing all memory allocated memory are typical things it
529 should do. */
530
531void target_close (struct target_ops *targ, int quitting);
c906108c
SS
532
533/* Attaches to a process on the target side. Arguments are as passed
534 to the `attach' command by the user. This routine can be called
535 when the target is not on the target-stack, if the target_can_run
2146d243 536 routine returns 1; in that case, it must push itself onto the stack.
c906108c 537 Upon exit, the target should be ready for normal operations, and
2146d243 538 should be ready to deliver the status of the process immediately
c906108c
SS
539 (without waiting) to an upcoming target_wait call. */
540
541#define target_attach(args, from_tty) \
0d06e24b 542 (*current_target.to_attach) (args, from_tty)
c906108c
SS
543
544/* The target_attach operation places a process under debugger control,
545 and stops the process.
546
547 This operation provides a target-specific hook that allows the
0d06e24b 548 necessary bookkeeping to be performed after an attach completes. */
c906108c 549#define target_post_attach(pid) \
0d06e24b 550 (*current_target.to_post_attach) (pid)
c906108c 551
c906108c
SS
552/* Takes a program previously attached to and detaches it.
553 The program may resume execution (some targets do, some don't) and will
554 no longer stop on signals, etc. We better not have left any breakpoints
555 in the program or it'll die when it hits one. ARGS is arguments
556 typed by the user (e.g. a signal to send the process). FROM_TTY
557 says whether to be verbose or not. */
558
a14ed312 559extern void target_detach (char *, int);
c906108c 560
6ad8ae5c
DJ
561/* Disconnect from the current target without resuming it (leaving it
562 waiting for a debugger). */
563
564extern void target_disconnect (char *, int);
565
39f77062 566/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
567 single-step or to run free; SIGGNAL is the signal to be given to
568 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
569 pass TARGET_SIGNAL_DEFAULT. */
570
39f77062 571#define target_resume(ptid, step, siggnal) \
4930751a
C
572 do { \
573 dcache_invalidate(target_dcache); \
39f77062 574 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 575 } while (0)
c906108c 576
b5a2688f
AC
577/* Wait for process pid to do something. PTID = -1 to wait for any
578 pid to do something. Return pid of child, or -1 in case of error;
c906108c 579 store status through argument pointer STATUS. Note that it is
b5a2688f 580 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
581 the debugging target from the stack; GDB isn't prepared to get back
582 to the prompt with a debugging target but without the frame cache,
583 stop_pc, etc., set up. */
584
39f77062
KB
585#define target_wait(ptid, status) \
586 (*current_target.to_wait) (ptid, status)
c906108c 587
17dee195 588/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 589
56be3814
UW
590#define target_fetch_registers(regcache, regno) \
591 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
592
593/* Store at least register REGNO, or all regs if REGNO == -1.
594 It can store as many registers as it wants to, so target_prepare_to_store
595 must have been previously called. Calls error() if there are problems. */
596
56be3814
UW
597#define target_store_registers(regcache, regs) \
598 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
599
600/* Get ready to modify the registers array. On machines which store
601 individual registers, this doesn't need to do anything. On machines
602 which store all the registers in one fell swoop, this makes sure
603 that REGISTERS contains all the registers from the program being
604 debugged. */
605
316f2060
UW
606#define target_prepare_to_store(regcache) \
607 (*current_target.to_prepare_to_store) (regcache)
c906108c 608
4930751a
C
609extern DCACHE *target_dcache;
610
a14ed312 611extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 612
fc1a4b47 613extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 614
fc1a4b47 615extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 616 int len);
c906108c 617
1b0ba102 618extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 619 struct mem_attrib *, struct target_ops *);
c906108c 620
fd79ecee
DJ
621/* Fetches the target's memory map. If one is found it is sorted
622 and returned, after some consistency checking. Otherwise, NULL
623 is returned. */
624VEC(mem_region_s) *target_memory_map (void);
625
a76d924d
DJ
626/* Erase the specified flash region. */
627void target_flash_erase (ULONGEST address, LONGEST length);
628
629/* Finish a sequence of flash operations. */
630void target_flash_done (void);
631
632/* Describes a request for a memory write operation. */
633struct memory_write_request
634 {
635 /* Begining address that must be written. */
636 ULONGEST begin;
637 /* Past-the-end address. */
638 ULONGEST end;
639 /* The data to write. */
640 gdb_byte *data;
641 /* A callback baton for progress reporting for this request. */
642 void *baton;
643 };
644typedef struct memory_write_request memory_write_request_s;
645DEF_VEC_O(memory_write_request_s);
646
647/* Enumeration specifying different flash preservation behaviour. */
648enum flash_preserve_mode
649 {
650 flash_preserve,
651 flash_discard
652 };
653
654/* Write several memory blocks at once. This version can be more
655 efficient than making several calls to target_write_memory, in
656 particular because it can optimize accesses to flash memory.
657
658 Moreover, this is currently the only memory access function in gdb
659 that supports writing to flash memory, and it should be used for
660 all cases where access to flash memory is desirable.
661
662 REQUESTS is the vector (see vec.h) of memory_write_request.
663 PRESERVE_FLASH_P indicates what to do with blocks which must be
664 erased, but not completely rewritten.
665 PROGRESS_CB is a function that will be periodically called to provide
666 feedback to user. It will be called with the baton corresponding
667 to the request currently being written. It may also be called
668 with a NULL baton, when preserved flash sectors are being rewritten.
669
670 The function returns 0 on success, and error otherwise. */
671int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
672 enum flash_preserve_mode preserve_flash_p,
673 void (*progress_cb) (ULONGEST, void *));
674
47932f85
DJ
675/* From infrun.c. */
676
677extern int inferior_has_forked (int pid, int *child_pid);
678
679extern int inferior_has_vforked (int pid, int *child_pid);
680
681extern int inferior_has_execd (int pid, char **execd_pathname);
682
c906108c
SS
683/* From exec.c */
684
a14ed312 685extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
686
687/* Print a line about the current target. */
688
689#define target_files_info() \
0d06e24b 690 (*current_target.to_files_info) (&current_target)
c906108c 691
8181d85f
DJ
692/* Insert a breakpoint at address BP_TGT->placed_address in the target
693 machine. Result is 0 for success, or an errno value. */
c906108c 694
8181d85f
DJ
695#define target_insert_breakpoint(bp_tgt) \
696 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 697
8181d85f
DJ
698/* Remove a breakpoint at address BP_TGT->placed_address in the target
699 machine. Result is 0 for success, or an errno value. */
c906108c 700
8181d85f
DJ
701#define target_remove_breakpoint(bp_tgt) \
702 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
703
704/* Initialize the terminal settings we record for the inferior,
705 before we actually run the inferior. */
706
707#define target_terminal_init() \
0d06e24b 708 (*current_target.to_terminal_init) ()
c906108c
SS
709
710/* Put the inferior's terminal settings into effect.
711 This is preparation for starting or resuming the inferior. */
712
713#define target_terminal_inferior() \
0d06e24b 714 (*current_target.to_terminal_inferior) ()
c906108c
SS
715
716/* Put some of our terminal settings into effect,
717 enough to get proper results from our output,
718 but do not change into or out of RAW mode
719 so that no input is discarded.
720
721 After doing this, either terminal_ours or terminal_inferior
722 should be called to get back to a normal state of affairs. */
723
724#define target_terminal_ours_for_output() \
0d06e24b 725 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
726
727/* Put our terminal settings into effect.
728 First record the inferior's terminal settings
729 so they can be restored properly later. */
730
731#define target_terminal_ours() \
0d06e24b 732 (*current_target.to_terminal_ours) ()
c906108c 733
a790ad35
SC
734/* Save our terminal settings.
735 This is called from TUI after entering or leaving the curses
736 mode. Since curses modifies our terminal this call is here
737 to take this change into account. */
738
739#define target_terminal_save_ours() \
740 (*current_target.to_terminal_save_ours) ()
741
c906108c
SS
742/* Print useful information about our terminal status, if such a thing
743 exists. */
744
745#define target_terminal_info(arg, from_tty) \
0d06e24b 746 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
747
748/* Kill the inferior process. Make it go away. */
749
750#define target_kill() \
0d06e24b 751 (*current_target.to_kill) ()
c906108c 752
0d06e24b
JM
753/* Load an executable file into the target process. This is expected
754 to not only bring new code into the target process, but also to
1986bccd
AS
755 update GDB's symbol tables to match.
756
757 ARG contains command-line arguments, to be broken down with
758 buildargv (). The first non-switch argument is the filename to
759 load, FILE; the second is a number (as parsed by strtoul (..., ...,
760 0)), which is an offset to apply to the load addresses of FILE's
761 sections. The target may define switches, or other non-switch
762 arguments, as it pleases. */
c906108c 763
11cf8741 764extern void target_load (char *arg, int from_tty);
c906108c
SS
765
766/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
767 name. ADDRP is a CORE_ADDR * pointing to where the value of the
768 symbol should be returned. The result is 0 if successful, nonzero
769 if the symbol does not exist in the target environment. This
770 function should not call error() if communication with the target
771 is interrupted, since it is called from symbol reading, but should
772 return nonzero, possibly doing a complain(). */
c906108c 773
0d06e24b
JM
774#define target_lookup_symbol(name, addrp) \
775 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 776
39f77062 777/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
778 EXEC_FILE is the file to run.
779 ALLARGS is a string containing the arguments to the program.
780 ENV is the environment vector to pass. Errors reported with error().
781 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 782
c27cda74
AC
783#define target_create_inferior(exec_file, args, env, FROM_TTY) \
784 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
785
786
787/* Some targets (such as ttrace-based HPUX) don't allow us to request
788 notification of inferior events such as fork and vork immediately
789 after the inferior is created. (This because of how gdb gets an
790 inferior created via invoking a shell to do it. In such a scenario,
791 if the shell init file has commands in it, the shell will fork and
792 exec for each of those commands, and we will see each such fork
793 event. Very bad.)
c5aa993b 794
0d06e24b
JM
795 Such targets will supply an appropriate definition for this function. */
796
39f77062
KB
797#define target_post_startup_inferior(ptid) \
798 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
799
800/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
801 some synchronization between gdb and the new inferior process, PID. */
802
c906108c 803#define target_acknowledge_created_inferior(pid) \
0d06e24b 804 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 805
0d06e24b
JM
806/* On some targets, we can catch an inferior fork or vfork event when
807 it occurs. These functions insert/remove an already-created
808 catchpoint for such events. */
c906108c 809
c906108c 810#define target_insert_fork_catchpoint(pid) \
0d06e24b 811 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
812
813#define target_remove_fork_catchpoint(pid) \
0d06e24b 814 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
815
816#define target_insert_vfork_catchpoint(pid) \
0d06e24b 817 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
818
819#define target_remove_vfork_catchpoint(pid) \
0d06e24b 820 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 821
6604731b
DJ
822/* If the inferior forks or vforks, this function will be called at
823 the next resume in order to perform any bookkeeping and fiddling
824 necessary to continue debugging either the parent or child, as
825 requested, and releasing the other. Information about the fork
826 or vfork event is available via get_last_target_status ().
827 This function returns 1 if the inferior should not be resumed
828 (i.e. there is another event pending). */
0d06e24b 829
ee057212 830int target_follow_fork (int follow_child);
c906108c
SS
831
832/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
833 occurs. These functions insert/remove an already-created
834 catchpoint for such events. */
835
c906108c 836#define target_insert_exec_catchpoint(pid) \
0d06e24b 837 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 838
c906108c 839#define target_remove_exec_catchpoint(pid) \
0d06e24b 840 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 841
c906108c 842/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
843 exit code of PID, if any. */
844
c906108c 845#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 846 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
847
848/* The debugger has completed a blocking wait() call. There is now
2146d243 849 some process event that must be processed. This function should
c906108c 850 be defined by those targets that require the debugger to perform
0d06e24b 851 cleanup or internal state changes in response to the process event. */
c906108c
SS
852
853/* The inferior process has died. Do what is right. */
854
855#define target_mourn_inferior() \
0d06e24b 856 (*current_target.to_mourn_inferior) ()
c906108c
SS
857
858/* Does target have enough data to do a run or attach command? */
859
860#define target_can_run(t) \
0d06e24b 861 ((t)->to_can_run) ()
c906108c
SS
862
863/* post process changes to signal handling in the inferior. */
864
39f77062
KB
865#define target_notice_signals(ptid) \
866 (*current_target.to_notice_signals) (ptid)
c906108c
SS
867
868/* Check to see if a thread is still alive. */
869
39f77062
KB
870#define target_thread_alive(ptid) \
871 (*current_target.to_thread_alive) (ptid)
c906108c 872
b83266a0
SS
873/* Query for new threads and add them to the thread list. */
874
875#define target_find_new_threads() \
4becf47c 876 (*current_target.to_find_new_threads) ()
b83266a0 877
0d06e24b
JM
878/* Make target stop in a continuable fashion. (For instance, under
879 Unix, this should act like SIGSTOP). This function is normally
880 used by GUIs to implement a stop button. */
c906108c
SS
881
882#define target_stop current_target.to_stop
883
96baa820
JM
884/* Send the specified COMMAND to the target's monitor
885 (shell,interpreter) for execution. The result of the query is
0d06e24b 886 placed in OUTBUF. */
96baa820
JM
887
888#define target_rcmd(command, outbuf) \
889 (*current_target.to_rcmd) (command, outbuf)
890
891
c906108c
SS
892/* Does the target include all of memory, or only part of it? This
893 determines whether we look up the target chain for other parts of
894 memory if this target can't satisfy a request. */
895
896#define target_has_all_memory \
0d06e24b 897 (current_target.to_has_all_memory)
c906108c
SS
898
899/* Does the target include memory? (Dummy targets don't.) */
900
901#define target_has_memory \
0d06e24b 902 (current_target.to_has_memory)
c906108c
SS
903
904/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
905 we start a process.) */
c5aa993b 906
c906108c 907#define target_has_stack \
0d06e24b 908 (current_target.to_has_stack)
c906108c
SS
909
910/* Does the target have registers? (Exec files don't.) */
911
912#define target_has_registers \
0d06e24b 913 (current_target.to_has_registers)
c906108c
SS
914
915/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
916 hoops), or pop its stack a few times? This means that the current
917 target is currently executing; for some targets, that's the same as
918 whether or not the target is capable of execution, but there are
919 also targets which can be current while not executing. In that
920 case this will become true after target_create_inferior or
921 target_attach. */
c906108c
SS
922
923#define target_has_execution \
0d06e24b 924 (current_target.to_has_execution)
c906108c
SS
925
926/* Can the target support the debugger control of thread execution?
927 a) Can it lock the thread scheduler?
928 b) Can it switch the currently running thread? */
929
930#define target_can_lock_scheduler \
0d06e24b 931 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
932
933#define target_can_switch_threads \
0d06e24b 934 (current_target.to_has_thread_control & tc_switch)
c906108c 935
6426a772
JM
936/* Can the target support asynchronous execution? */
937#define target_can_async_p() (current_target.to_can_async_p ())
938
939/* Is the target in asynchronous execution mode? */
b84876c2 940#define target_is_async_p() (current_target.to_is_async_p ())
6426a772
JM
941
942/* Put the target in async mode with the specified callback function. */
0d06e24b 943#define target_async(CALLBACK,CONTEXT) \
b84876c2 944 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 945
04714b91
AC
946/* This is to be used ONLY within call_function_by_hand(). It provides
947 a workaround, to have inferior function calls done in sychronous
948 mode, even though the target is asynchronous. After
ed9a39eb
JM
949 target_async_mask(0) is called, calls to target_can_async_p() will
950 return FALSE , so that target_resume() will not try to start the
951 target asynchronously. After the inferior stops, we IMMEDIATELY
952 restore the previous nature of the target, by calling
953 target_async_mask(1). After that, target_can_async_p() will return
04714b91 954 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
955
956 FIXME ezannoni 1999-12-13: we won't need this once we move
957 the turning async on and off to the single execution commands,
0d06e24b 958 from where it is done currently, in remote_resume(). */
ed9a39eb 959
b84876c2
PA
960#define target_async_mask(MASK) \
961 (current_target.to_async_mask (MASK))
ed9a39eb 962
c906108c
SS
963/* Converts a process id to a string. Usually, the string just contains
964 `process xyz', but on some systems it may contain
965 `process xyz thread abc'. */
966
ed9a39eb
JM
967#undef target_pid_to_str
968#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
969
970#ifndef target_tid_to_str
971#define target_tid_to_str(PID) \
0d06e24b 972 target_pid_to_str (PID)
39f77062 973extern char *normal_pid_to_str (ptid_t ptid);
c906108c 974#endif
c5aa993b 975
0d06e24b
JM
976/* Return a short string describing extra information about PID,
977 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
978 is okay. */
979
980#define target_extra_thread_info(TP) \
981 (current_target.to_extra_thread_info (TP))
ed9a39eb 982
c906108c
SS
983/* Attempts to find the pathname of the executable file
984 that was run to create a specified process.
985
986 The process PID must be stopped when this operation is used.
c5aa993b 987
c906108c
SS
988 If the executable file cannot be determined, NULL is returned.
989
990 Else, a pointer to a character string containing the pathname
991 is returned. This string should be copied into a buffer by
992 the client if the string will not be immediately used, or if
0d06e24b 993 it must persist. */
c906108c
SS
994
995#define target_pid_to_exec_file(pid) \
0d06e24b 996 (current_target.to_pid_to_exec_file) (pid)
c906108c 997
be4d1333
MS
998/*
999 * Iterator function for target memory regions.
1000 * Calls a callback function once for each memory region 'mapped'
1001 * in the child process. Defined as a simple macro rather than
2146d243 1002 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1003 */
1004
1005#define target_find_memory_regions(FUNC, DATA) \
1006 (current_target.to_find_memory_regions) (FUNC, DATA)
1007
1008/*
1009 * Compose corefile .note section.
1010 */
1011
1012#define target_make_corefile_notes(BFD, SIZE_P) \
1013 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1014
3f47be5c
EZ
1015/* Thread-local values. */
1016#define target_get_thread_local_address \
1017 (current_target.to_get_thread_local_address)
1018#define target_get_thread_local_address_p() \
1019 (target_get_thread_local_address != NULL)
1020
c906108c
SS
1021
1022/* Hardware watchpoint interfaces. */
1023
1024/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1025 write). */
1026
1027#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1028#define STOPPED_BY_WATCHPOINT(w) \
1029 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1030#endif
7df1a324 1031
74174d2e
UW
1032/* Non-zero if we have steppable watchpoints */
1033
1034#ifndef HAVE_STEPPABLE_WATCHPOINT
1035#define HAVE_STEPPABLE_WATCHPOINT \
1036 (current_target.to_have_steppable_watchpoint)
1037#endif
1038
7df1a324
KW
1039/* Non-zero if we have continuable watchpoints */
1040
1041#ifndef HAVE_CONTINUABLE_WATCHPOINT
1042#define HAVE_CONTINUABLE_WATCHPOINT \
1043 (current_target.to_have_continuable_watchpoint)
1044#endif
c906108c 1045
ccaa32c7 1046/* Provide defaults for hardware watchpoint functions. */
c906108c 1047
2146d243 1048/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1049 elsewhere use the definitions in the target vector. */
c906108c
SS
1050
1051/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1052 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1053 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1054 (including this one?). OTHERTYPE is who knows what... */
1055
ccaa32c7
GS
1056#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1057#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1058 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1059#endif
c906108c 1060
e0d24f8d
WZ
1061#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1062#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1063 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1064#endif
1065
c906108c
SS
1066
1067/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1068 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1069 success, non-zero for failure. */
1070
ccaa32c7
GS
1071#ifndef target_insert_watchpoint
1072#define target_insert_watchpoint(addr, len, type) \
1073 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1074
ccaa32c7
GS
1075#define target_remove_watchpoint(addr, len, type) \
1076 (*current_target.to_remove_watchpoint) (addr, len, type)
1077#endif
c906108c
SS
1078
1079#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1080#define target_insert_hw_breakpoint(bp_tgt) \
1081 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1082
8181d85f
DJ
1083#define target_remove_hw_breakpoint(bp_tgt) \
1084 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1085#endif
1086
4aa7a7f5
JJ
1087extern int target_stopped_data_address_p (struct target_ops *);
1088
c906108c 1089#ifndef target_stopped_data_address
4aa7a7f5
JJ
1090#define target_stopped_data_address(target, x) \
1091 (*target.to_stopped_data_address) (target, x)
1092#else
1093/* Horrible hack to get around existing macros :-(. */
1094#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1095#endif
1096
424163ea
DJ
1097extern const struct target_desc *target_read_description (struct target_ops *);
1098
49d03eab
MR
1099/* Command logging facility. */
1100
1101#define target_log_command(p) \
1102 do \
1103 if (current_target.to_log_command) \
1104 (*current_target.to_log_command) (p); \
1105 while (0)
1106
c906108c
SS
1107/* Routines for maintenance of the target structures...
1108
1109 add_target: Add a target to the list of all possible targets.
1110
1111 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1112 targets, within its particular stratum of the stack. Result
1113 is 0 if now atop the stack, nonzero if not on top (maybe
1114 should warn user).
c906108c
SS
1115
1116 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1117 no matter where it is on the list. Returns 0 if no
1118 change, 1 if removed from stack.
c906108c 1119
c5aa993b 1120 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1121
a14ed312 1122extern void add_target (struct target_ops *);
c906108c 1123
a14ed312 1124extern int push_target (struct target_ops *);
c906108c 1125
a14ed312 1126extern int unpush_target (struct target_ops *);
c906108c 1127
fd79ecee
DJ
1128extern void target_pre_inferior (int);
1129
a14ed312 1130extern void target_preopen (int);
c906108c 1131
a14ed312 1132extern void pop_target (void);
c906108c 1133
9e35dae4
DJ
1134extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1135 CORE_ADDR offset);
1136
52bb452f
DJ
1137/* Mark a pushed target as running or exited, for targets which do not
1138 automatically pop when not active. */
1139
1140void target_mark_running (struct target_ops *);
1141
1142void target_mark_exited (struct target_ops *);
1143
c906108c
SS
1144/* Struct section_table maps address ranges to file sections. It is
1145 mostly used with BFD files, but can be used without (e.g. for handling
1146 raw disks, or files not in formats handled by BFD). */
1147
c5aa993b
JM
1148struct section_table
1149 {
1150 CORE_ADDR addr; /* Lowest address in section */
1151 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1152
7be0c536 1153 struct bfd_section *the_bfd_section;
c906108c 1154
c5aa993b
JM
1155 bfd *bfd; /* BFD file pointer */
1156 };
c906108c 1157
8db32d44
AC
1158/* Return the "section" containing the specified address. */
1159struct section_table *target_section_by_addr (struct target_ops *target,
1160 CORE_ADDR addr);
1161
1162
c906108c
SS
1163/* From mem-break.c */
1164
8181d85f 1165extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1166
8181d85f 1167extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1168
ae4b2284 1169extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1170
ae4b2284 1171extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1172
c906108c
SS
1173
1174/* From target.c */
1175
a14ed312 1176extern void initialize_targets (void);
c906108c 1177
a14ed312 1178extern void noprocess (void);
c906108c 1179
8edfe269
DJ
1180extern void target_require_runnable (void);
1181
a14ed312 1182extern void find_default_attach (char *, int);
c906108c 1183
c27cda74 1184extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1185
a14ed312 1186extern struct target_ops *find_run_target (void);
7a292a7a 1187
a14ed312 1188extern struct target_ops *find_core_target (void);
6426a772 1189
a14ed312 1190extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1191
570b8f7c
AC
1192extern int target_resize_to_sections (struct target_ops *target,
1193 int num_added);
07cd4b97
JB
1194
1195extern void remove_target_sections (bfd *abfd);
1196
c906108c
SS
1197\f
1198/* Stuff that should be shared among the various remote targets. */
1199
1200/* Debugging level. 0 is off, and non-zero values mean to print some debug
1201 information (higher values, more information). */
1202extern int remote_debug;
1203
1204/* Speed in bits per second, or -1 which means don't mess with the speed. */
1205extern int baud_rate;
1206/* Timeout limit for response from target. */
1207extern int remote_timeout;
1208
c906108c
SS
1209\f
1210/* Functions for helping to write a native target. */
1211
1212/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1213extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1214
c2d11a7d 1215/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1216 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1217/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1218 to the shorter target_signal_p() because it is far less ambigious.
1219 In this context ``target_signal'' refers to GDB's internal
1220 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1221 refers to the target operating system's signal. Confused? */
1222
c2d11a7d
JM
1223extern int target_signal_to_host_p (enum target_signal signo);
1224
1225/* Convert between host signal numbers and enum target_signal's.
1226 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1227 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1228/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1229 refering to the target operating system's signal numbering.
1230 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1231 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1232 internal representation of a target operating system's signal. */
1233
a14ed312
KB
1234extern enum target_signal target_signal_from_host (int);
1235extern int target_signal_to_host (enum target_signal);
c906108c
SS
1236
1237/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1238extern enum target_signal target_signal_from_command (int);
c906108c
SS
1239
1240/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1241extern void push_remote_target (char *name, int from_tty);
8defab1a
DJ
1242
1243/* Set the show memory breakpoints mode to show, and installs a cleanup
1244 to restore it back to the current value. */
1245extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1246
c906108c
SS
1247\f
1248/* Imported from machine dependent code */
1249
c906108c 1250/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1251void target_ignore (void);
c906108c 1252
1df84f13 1253extern struct target_ops deprecated_child_ops;
5ac10fd1 1254
c5aa993b 1255#endif /* !defined (TARGET_H) */
This page took 0.802728 seconds and 4 git commands to generate.