* gdb.base/completion.exp: Update expected output following
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
b2175913
MS
131 TARGET_WAITKIND_IGNORE,
132
133 /* The target has run out of history information,
134 and cannot run backward any further. */
135 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
3a3e9ee3 147 ptid_t related_pid;
c5aa993b
JM
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
2acceee2 154/* Possible types of events that the inferior handler will have to
0d06e24b 155 deal with. */
2acceee2
JM
156enum inferior_event_type
157 {
0d06e24b 158 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
159 INF_QUIT_REQ,
160 /* Process a normal inferior event which will result in target_wait
0d06e24b 161 being called. */
2146d243 162 INF_REG_EVENT,
0d06e24b 163 /* Deal with an error on the inferior. */
2acceee2 164 INF_ERROR,
0d06e24b 165 /* We are called because a timer went off. */
2acceee2 166 INF_TIMER,
0d06e24b 167 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
168 INF_EXEC_COMPLETE,
169 /* We are called to do some stuff after the inferior stops, but we
170 are expected to reenter the proceed() and
171 handle_inferior_event() functions. This is used only in case of
0d06e24b 172 'step n' like commands. */
c2d11a7d 173 INF_EXEC_CONTINUE
2acceee2
JM
174 };
175
c906108c 176/* Return the string for a signal. */
a14ed312 177extern char *target_signal_to_string (enum target_signal);
c906108c
SS
178
179/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 180extern char *target_signal_to_name (enum target_signal);
c906108c
SS
181
182/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 183enum target_signal target_signal_from_name (char *);
c906108c 184\f
13547ab6
DJ
185/* Target objects which can be transfered using target_read,
186 target_write, et cetera. */
1e3ff5ad
AC
187
188enum target_object
189{
1e3ff5ad
AC
190 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
191 TARGET_OBJECT_AVR,
23d964e7
UW
192 /* SPU target specific transfer. See "spu-tdep.c". */
193 TARGET_OBJECT_SPU,
1e3ff5ad 194 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 195 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
196 /* Memory, avoiding GDB's data cache and trusting the executable.
197 Target implementations of to_xfer_partial never need to handle
198 this object, and most callers should not use it. */
199 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
200 /* Kernel Unwind Table. See "ia64-tdep.c". */
201 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
202 /* Transfer auxilliary vector. */
203 TARGET_OBJECT_AUXV,
baf92889 204 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
205 TARGET_OBJECT_WCOOKIE,
206 /* Target memory map in XML format. */
207 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
208 /* Flash memory. This object can be used to write contents to
209 a previously erased flash memory. Using it without erasing
210 flash can have unexpected results. Addresses are physical
211 address on target, and not relative to flash start. */
23181151
DJ
212 TARGET_OBJECT_FLASH,
213 /* Available target-specific features, e.g. registers and coprocessors.
214 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
215 TARGET_OBJECT_AVAILABLE_FEATURES,
216 /* Currently loaded libraries, in XML format. */
217 TARGET_OBJECT_LIBRARIES
2146d243 218 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
219};
220
13547ab6
DJ
221/* Request that OPS transfer up to LEN 8-bit bytes of the target's
222 OBJECT. The OFFSET, for a seekable object, specifies the
223 starting point. The ANNEX can be used to provide additional
224 data-specific information to the target.
1e3ff5ad 225
13547ab6
DJ
226 Return the number of bytes actually transfered, or -1 if the
227 transfer is not supported or otherwise fails. Return of a positive
228 value less than LEN indicates that no further transfer is possible.
229 Unlike the raw to_xfer_partial interface, callers of these
230 functions do not need to retry partial transfers. */
1e3ff5ad 231
1e3ff5ad
AC
232extern LONGEST target_read (struct target_ops *ops,
233 enum target_object object,
1b0ba102 234 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
235 ULONGEST offset, LONGEST len);
236
d5086790
VP
237extern LONGEST target_read_until_error (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, gdb_byte *buf,
240 ULONGEST offset, LONGEST len);
241
1e3ff5ad
AC
242extern LONGEST target_write (struct target_ops *ops,
243 enum target_object object,
1b0ba102 244 const char *annex, const gdb_byte *buf,
1e3ff5ad 245 ULONGEST offset, LONGEST len);
b6591e8b 246
a76d924d
DJ
247/* Similar to target_write, except that it also calls PROGRESS with
248 the number of bytes written and the opaque BATON after every
249 successful partial write (and before the first write). This is
250 useful for progress reporting and user interaction while writing
251 data. To abort the transfer, the progress callback can throw an
252 exception. */
253
cf7a04e8
DJ
254LONGEST target_write_with_progress (struct target_ops *ops,
255 enum target_object object,
256 const char *annex, const gdb_byte *buf,
257 ULONGEST offset, LONGEST len,
258 void (*progress) (ULONGEST, void *),
259 void *baton);
260
13547ab6
DJ
261/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
262 be read using OPS. The return value will be -1 if the transfer
263 fails or is not supported; 0 if the object is empty; or the length
264 of the object otherwise. If a positive value is returned, a
265 sufficiently large buffer will be allocated using xmalloc and
266 returned in *BUF_P containing the contents of the object.
267
268 This method should be used for objects sufficiently small to store
269 in a single xmalloc'd buffer, when no fixed bound on the object's
270 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
271 through this function. */
272
273extern LONGEST target_read_alloc (struct target_ops *ops,
274 enum target_object object,
275 const char *annex, gdb_byte **buf_p);
276
159f81f3
DJ
277/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
278 returned as a string, allocated using xmalloc. If an error occurs
279 or the transfer is unsupported, NULL is returned. Empty objects
280 are returned as allocated but empty strings. A warning is issued
281 if the result contains any embedded NUL bytes. */
282
283extern char *target_read_stralloc (struct target_ops *ops,
284 enum target_object object,
285 const char *annex);
286
b6591e8b
AC
287/* Wrappers to target read/write that perform memory transfers. They
288 throw an error if the memory transfer fails.
289
290 NOTE: cagney/2003-10-23: The naming schema is lifted from
291 "frame.h". The parameter order is lifted from get_frame_memory,
292 which in turn lifted it from read_memory. */
293
294extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 295 gdb_byte *buf, LONGEST len);
b6591e8b
AC
296extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
297 CORE_ADDR addr, int len);
1e3ff5ad 298\f
c5aa993b 299
c906108c
SS
300/* If certain kinds of activity happen, target_wait should perform
301 callbacks. */
302/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 303 on TARGET_ACTIVITY_FD. */
c906108c
SS
304extern int target_activity_fd;
305/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 306extern int (*target_activity_function) (void);
c906108c 307\f
0d06e24b
JM
308struct thread_info; /* fwd decl for parameter list below: */
309
c906108c 310struct target_ops
c5aa993b 311 {
258b763a 312 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
313 char *to_shortname; /* Name this target type */
314 char *to_longname; /* Name for printing */
315 char *to_doc; /* Documentation. Does not include trailing
c906108c 316 newline, and starts with a one-line descrip-
0d06e24b 317 tion (probably similar to to_longname). */
bba2d28d
AC
318 /* Per-target scratch pad. */
319 void *to_data;
f1c07ab0
AC
320 /* The open routine takes the rest of the parameters from the
321 command, and (if successful) pushes a new target onto the
322 stack. Targets should supply this routine, if only to provide
323 an error message. */
507f3c78 324 void (*to_open) (char *, int);
f1c07ab0
AC
325 /* Old targets with a static target vector provide "to_close".
326 New re-entrant targets provide "to_xclose" and that is expected
327 to xfree everything (including the "struct target_ops"). */
328 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
329 void (*to_close) (int);
330 void (*to_attach) (char *, int);
331 void (*to_post_attach) (int);
507f3c78 332 void (*to_detach) (char *, int);
597320e7 333 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
334 void (*to_resume) (ptid_t, int, enum target_signal);
335 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
336 void (*to_fetch_registers) (struct regcache *, int);
337 void (*to_store_registers) (struct regcache *, int);
316f2060 338 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
339
340 /* Transfer LEN bytes of memory between GDB address MYADDR and
341 target address MEMADDR. If WRITE, transfer them to the target, else
342 transfer them from the target. TARGET is the target from which we
343 get this function.
344
345 Return value, N, is one of the following:
346
347 0 means that we can't handle this. If errno has been set, it is the
348 error which prevented us from doing it (FIXME: What about bfd_error?).
349
350 positive (call it N) means that we have transferred N bytes
351 starting at MEMADDR. We might be able to handle more bytes
352 beyond this length, but no promises.
353
354 negative (call its absolute value N) means that we cannot
355 transfer right at MEMADDR, but we could transfer at least
c8e73a31 356 something at MEMADDR + N.
c5aa993b 357
c8e73a31
AC
358 NOTE: cagney/2004-10-01: This has been entirely superseeded by
359 to_xfer_partial and inferior inheritance. */
360
1b0ba102 361 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
362 int len, int write,
363 struct mem_attrib *attrib,
364 struct target_ops *target);
c906108c 365
507f3c78 366 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
367 int (*to_insert_breakpoint) (struct bp_target_info *);
368 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 369 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
370 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
371 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
372 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
373 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
374 int (*to_stopped_by_watchpoint) (void);
74174d2e 375 int to_have_steppable_watchpoint;
7df1a324 376 int to_have_continuable_watchpoint;
4aa7a7f5 377 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
378 int (*to_watchpoint_addr_within_range) (struct target_ops *,
379 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 380 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
381 void (*to_terminal_init) (void);
382 void (*to_terminal_inferior) (void);
383 void (*to_terminal_ours_for_output) (void);
384 void (*to_terminal_ours) (void);
a790ad35 385 void (*to_terminal_save_ours) (void);
507f3c78
KB
386 void (*to_terminal_info) (char *, int);
387 void (*to_kill) (void);
388 void (*to_load) (char *, int);
389 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 390 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 391 void (*to_post_startup_inferior) (ptid_t);
507f3c78 392 void (*to_acknowledge_created_inferior) (int);
fa113d1a 393 void (*to_insert_fork_catchpoint) (int);
507f3c78 394 int (*to_remove_fork_catchpoint) (int);
fa113d1a 395 void (*to_insert_vfork_catchpoint) (int);
507f3c78 396 int (*to_remove_vfork_catchpoint) (int);
ee057212 397 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 398 void (*to_insert_exec_catchpoint) (int);
507f3c78 399 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
400 int (*to_has_exited) (int, int, int *);
401 void (*to_mourn_inferior) (void);
402 int (*to_can_run) (void);
39f77062
KB
403 void (*to_notice_signals) (ptid_t ptid);
404 int (*to_thread_alive) (ptid_t ptid);
507f3c78 405 void (*to_find_new_threads) (void);
39f77062 406 char *(*to_pid_to_str) (ptid_t);
507f3c78 407 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 408 void (*to_stop) (ptid_t);
d9fcf2fb 409 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 410 char *(*to_pid_to_exec_file) (int pid);
49d03eab 411 void (*to_log_command) (const char *);
c5aa993b 412 enum strata to_stratum;
c5aa993b
JM
413 int to_has_all_memory;
414 int to_has_memory;
415 int to_has_stack;
416 int to_has_registers;
417 int to_has_execution;
418 int to_has_thread_control; /* control thread execution */
dc177b7a 419 int to_attach_no_wait;
c5aa993b
JM
420 struct section_table
421 *to_sections;
422 struct section_table
423 *to_sections_end;
6426a772
JM
424 /* ASYNC target controls */
425 int (*to_can_async_p) (void);
426 int (*to_is_async_p) (void);
b84876c2
PA
427 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
428 int (*to_async_mask) (int);
9908b566 429 int (*to_supports_non_stop) (void);
2146d243
RM
430 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
431 unsigned long,
432 int, int, int,
433 void *),
be4d1333
MS
434 void *);
435 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
436
437 /* Return the thread-local address at OFFSET in the
438 thread-local storage for the thread PTID and the shared library
439 or executable file given by OBJFILE. If that block of
440 thread-local storage hasn't been allocated yet, this function
441 may return an error. */
442 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 443 CORE_ADDR load_module_addr,
3f47be5c
EZ
444 CORE_ADDR offset);
445
13547ab6
DJ
446 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
447 OBJECT. The OFFSET, for a seekable object, specifies the
448 starting point. The ANNEX can be used to provide additional
449 data-specific information to the target.
450
451 Return the number of bytes actually transfered, zero when no
452 further transfer is possible, and -1 when the transfer is not
453 supported. Return of a positive value smaller than LEN does
454 not indicate the end of the object, only the end of the
455 transfer; higher level code should continue transferring if
456 desired. This is handled in target.c.
457
458 The interface does not support a "retry" mechanism. Instead it
459 assumes that at least one byte will be transfered on each
460 successful call.
461
462 NOTE: cagney/2003-10-17: The current interface can lead to
463 fragmented transfers. Lower target levels should not implement
464 hacks, such as enlarging the transfer, in an attempt to
465 compensate for this. Instead, the target stack should be
466 extended so that it implements supply/collect methods and a
467 look-aside object cache. With that available, the lowest
468 target can safely and freely "push" data up the stack.
469
470 See target_read and target_write for more information. One,
471 and only one, of readbuf or writebuf must be non-NULL. */
472
4b8a223f 473 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 474 enum target_object object, const char *annex,
1b0ba102 475 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 476 ULONGEST offset, LONGEST len);
1e3ff5ad 477
fd79ecee
DJ
478 /* Returns the memory map for the target. A return value of NULL
479 means that no memory map is available. If a memory address
480 does not fall within any returned regions, it's assumed to be
481 RAM. The returned memory regions should not overlap.
482
483 The order of regions does not matter; target_memory_map will
484 sort regions by starting address. For that reason, this
485 function should not be called directly except via
486 target_memory_map.
487
488 This method should not cache data; if the memory map could
489 change unexpectedly, it should be invalidated, and higher
490 layers will re-fetch it. */
491 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
492
a76d924d
DJ
493 /* Erases the region of flash memory starting at ADDRESS, of
494 length LENGTH.
495
496 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
497 on flash block boundaries, as reported by 'to_memory_map'. */
498 void (*to_flash_erase) (struct target_ops *,
499 ULONGEST address, LONGEST length);
500
501 /* Finishes a flash memory write sequence. After this operation
502 all flash memory should be available for writing and the result
503 of reading from areas written by 'to_flash_write' should be
504 equal to what was written. */
505 void (*to_flash_done) (struct target_ops *);
506
424163ea
DJ
507 /* Describe the architecture-specific features of this target.
508 Returns the description found, or NULL if no description
509 was available. */
510 const struct target_desc *(*to_read_description) (struct target_ops *ops);
511
0ef643c8
JB
512 /* Build the PTID of the thread on which a given task is running,
513 based on LWP and THREAD. These values are extracted from the
514 task Private_Data section of the Ada Task Control Block, and
515 their interpretation depends on the target. */
516 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
517
c47ffbe3
VP
518 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
519 Return 0 if *READPTR is already at the end of the buffer.
520 Return -1 if there is insufficient buffer for a whole entry.
521 Return 1 if an entry was read into *TYPEP and *VALP. */
522 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
523 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
524
08388c79
DE
525 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
526 sequence of bytes in PATTERN with length PATTERN_LEN.
527
528 The result is 1 if found, 0 if not found, and -1 if there was an error
529 requiring halting of the search (e.g. memory read error).
530 If the pattern is found the address is recorded in FOUND_ADDRP. */
531 int (*to_search_memory) (struct target_ops *ops,
532 CORE_ADDR start_addr, ULONGEST search_space_len,
533 const gdb_byte *pattern, ULONGEST pattern_len,
534 CORE_ADDR *found_addrp);
535
b2175913
MS
536 /* Can target execute in reverse? */
537 int (*to_can_execute_reverse) ();
538
c5aa993b 539 int to_magic;
0d06e24b
JM
540 /* Need sub-structure for target machine related rather than comm related?
541 */
c5aa993b 542 };
c906108c
SS
543
544/* Magic number for checking ops size. If a struct doesn't end with this
545 number, somebody changed the declaration but didn't change all the
546 places that initialize one. */
547
548#define OPS_MAGIC 3840
549
550/* The ops structure for our "current" target process. This should
551 never be NULL. If there is no target, it points to the dummy_target. */
552
c5aa993b 553extern struct target_ops current_target;
c906108c 554
c906108c
SS
555/* Define easy words for doing these operations on our current target. */
556
557#define target_shortname (current_target.to_shortname)
558#define target_longname (current_target.to_longname)
559
f1c07ab0
AC
560/* Does whatever cleanup is required for a target that we are no
561 longer going to be calling. QUITTING indicates that GDB is exiting
562 and should not get hung on an error (otherwise it is important to
563 perform clean termination, even if it takes a while). This routine
564 is automatically always called when popping the target off the
565 target stack (to_beneath is undefined). Closing file descriptors
566 and freeing all memory allocated memory are typical things it
567 should do. */
568
569void target_close (struct target_ops *targ, int quitting);
c906108c
SS
570
571/* Attaches to a process on the target side. Arguments are as passed
572 to the `attach' command by the user. This routine can be called
573 when the target is not on the target-stack, if the target_can_run
2146d243 574 routine returns 1; in that case, it must push itself onto the stack.
c906108c 575 Upon exit, the target should be ready for normal operations, and
2146d243 576 should be ready to deliver the status of the process immediately
c906108c
SS
577 (without waiting) to an upcoming target_wait call. */
578
579#define target_attach(args, from_tty) \
0d06e24b 580 (*current_target.to_attach) (args, from_tty)
c906108c 581
dc177b7a
PA
582/* Some targets don't generate traps when attaching to the inferior,
583 or their target_attach implementation takes care of the waiting.
584 These targets must set to_attach_no_wait. */
585
586#define target_attach_no_wait \
587 (current_target.to_attach_no_wait)
588
c906108c
SS
589/* The target_attach operation places a process under debugger control,
590 and stops the process.
591
592 This operation provides a target-specific hook that allows the
0d06e24b 593 necessary bookkeeping to be performed after an attach completes. */
c906108c 594#define target_post_attach(pid) \
0d06e24b 595 (*current_target.to_post_attach) (pid)
c906108c 596
c906108c
SS
597/* Takes a program previously attached to and detaches it.
598 The program may resume execution (some targets do, some don't) and will
599 no longer stop on signals, etc. We better not have left any breakpoints
600 in the program or it'll die when it hits one. ARGS is arguments
601 typed by the user (e.g. a signal to send the process). FROM_TTY
602 says whether to be verbose or not. */
603
a14ed312 604extern void target_detach (char *, int);
c906108c 605
6ad8ae5c
DJ
606/* Disconnect from the current target without resuming it (leaving it
607 waiting for a debugger). */
608
609extern void target_disconnect (char *, int);
610
39f77062 611/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
612 single-step or to run free; SIGGNAL is the signal to be given to
613 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
614 pass TARGET_SIGNAL_DEFAULT. */
615
e1ac3328 616extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 617
b5a2688f
AC
618/* Wait for process pid to do something. PTID = -1 to wait for any
619 pid to do something. Return pid of child, or -1 in case of error;
c906108c 620 store status through argument pointer STATUS. Note that it is
b5a2688f 621 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
622 the debugging target from the stack; GDB isn't prepared to get back
623 to the prompt with a debugging target but without the frame cache,
624 stop_pc, etc., set up. */
625
39f77062
KB
626#define target_wait(ptid, status) \
627 (*current_target.to_wait) (ptid, status)
c906108c 628
17dee195 629/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 630
56be3814
UW
631#define target_fetch_registers(regcache, regno) \
632 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
633
634/* Store at least register REGNO, or all regs if REGNO == -1.
635 It can store as many registers as it wants to, so target_prepare_to_store
636 must have been previously called. Calls error() if there are problems. */
637
56be3814
UW
638#define target_store_registers(regcache, regs) \
639 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
640
641/* Get ready to modify the registers array. On machines which store
642 individual registers, this doesn't need to do anything. On machines
643 which store all the registers in one fell swoop, this makes sure
644 that REGISTERS contains all the registers from the program being
645 debugged. */
646
316f2060
UW
647#define target_prepare_to_store(regcache) \
648 (*current_target.to_prepare_to_store) (regcache)
c906108c 649
4930751a
C
650extern DCACHE *target_dcache;
651
a14ed312 652extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 653
fc1a4b47 654extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 655
fc1a4b47 656extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 657 int len);
c906108c 658
1b0ba102 659extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 660 struct mem_attrib *, struct target_ops *);
c906108c 661
fd79ecee
DJ
662/* Fetches the target's memory map. If one is found it is sorted
663 and returned, after some consistency checking. Otherwise, NULL
664 is returned. */
665VEC(mem_region_s) *target_memory_map (void);
666
a76d924d
DJ
667/* Erase the specified flash region. */
668void target_flash_erase (ULONGEST address, LONGEST length);
669
670/* Finish a sequence of flash operations. */
671void target_flash_done (void);
672
673/* Describes a request for a memory write operation. */
674struct memory_write_request
675 {
676 /* Begining address that must be written. */
677 ULONGEST begin;
678 /* Past-the-end address. */
679 ULONGEST end;
680 /* The data to write. */
681 gdb_byte *data;
682 /* A callback baton for progress reporting for this request. */
683 void *baton;
684 };
685typedef struct memory_write_request memory_write_request_s;
686DEF_VEC_O(memory_write_request_s);
687
688/* Enumeration specifying different flash preservation behaviour. */
689enum flash_preserve_mode
690 {
691 flash_preserve,
692 flash_discard
693 };
694
695/* Write several memory blocks at once. This version can be more
696 efficient than making several calls to target_write_memory, in
697 particular because it can optimize accesses to flash memory.
698
699 Moreover, this is currently the only memory access function in gdb
700 that supports writing to flash memory, and it should be used for
701 all cases where access to flash memory is desirable.
702
703 REQUESTS is the vector (see vec.h) of memory_write_request.
704 PRESERVE_FLASH_P indicates what to do with blocks which must be
705 erased, but not completely rewritten.
706 PROGRESS_CB is a function that will be periodically called to provide
707 feedback to user. It will be called with the baton corresponding
708 to the request currently being written. It may also be called
709 with a NULL baton, when preserved flash sectors are being rewritten.
710
711 The function returns 0 on success, and error otherwise. */
712int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
713 enum flash_preserve_mode preserve_flash_p,
714 void (*progress_cb) (ULONGEST, void *));
715
47932f85
DJ
716/* From infrun.c. */
717
3a3e9ee3 718extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 719
3a3e9ee3 720extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 721
3a3e9ee3 722extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 723
c906108c
SS
724/* From exec.c */
725
a14ed312 726extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
727
728/* Print a line about the current target. */
729
730#define target_files_info() \
0d06e24b 731 (*current_target.to_files_info) (&current_target)
c906108c 732
8181d85f
DJ
733/* Insert a breakpoint at address BP_TGT->placed_address in the target
734 machine. Result is 0 for success, or an errno value. */
c906108c 735
8181d85f
DJ
736#define target_insert_breakpoint(bp_tgt) \
737 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 738
8181d85f
DJ
739/* Remove a breakpoint at address BP_TGT->placed_address in the target
740 machine. Result is 0 for success, or an errno value. */
c906108c 741
8181d85f
DJ
742#define target_remove_breakpoint(bp_tgt) \
743 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
744
745/* Initialize the terminal settings we record for the inferior,
746 before we actually run the inferior. */
747
748#define target_terminal_init() \
0d06e24b 749 (*current_target.to_terminal_init) ()
c906108c
SS
750
751/* Put the inferior's terminal settings into effect.
752 This is preparation for starting or resuming the inferior. */
753
754#define target_terminal_inferior() \
0d06e24b 755 (*current_target.to_terminal_inferior) ()
c906108c
SS
756
757/* Put some of our terminal settings into effect,
758 enough to get proper results from our output,
759 but do not change into or out of RAW mode
760 so that no input is discarded.
761
762 After doing this, either terminal_ours or terminal_inferior
763 should be called to get back to a normal state of affairs. */
764
765#define target_terminal_ours_for_output() \
0d06e24b 766 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
767
768/* Put our terminal settings into effect.
769 First record the inferior's terminal settings
770 so they can be restored properly later. */
771
772#define target_terminal_ours() \
0d06e24b 773 (*current_target.to_terminal_ours) ()
c906108c 774
a790ad35
SC
775/* Save our terminal settings.
776 This is called from TUI after entering or leaving the curses
777 mode. Since curses modifies our terminal this call is here
778 to take this change into account. */
779
780#define target_terminal_save_ours() \
781 (*current_target.to_terminal_save_ours) ()
782
c906108c
SS
783/* Print useful information about our terminal status, if such a thing
784 exists. */
785
786#define target_terminal_info(arg, from_tty) \
0d06e24b 787 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
788
789/* Kill the inferior process. Make it go away. */
790
791#define target_kill() \
0d06e24b 792 (*current_target.to_kill) ()
c906108c 793
0d06e24b
JM
794/* Load an executable file into the target process. This is expected
795 to not only bring new code into the target process, but also to
1986bccd
AS
796 update GDB's symbol tables to match.
797
798 ARG contains command-line arguments, to be broken down with
799 buildargv (). The first non-switch argument is the filename to
800 load, FILE; the second is a number (as parsed by strtoul (..., ...,
801 0)), which is an offset to apply to the load addresses of FILE's
802 sections. The target may define switches, or other non-switch
803 arguments, as it pleases. */
c906108c 804
11cf8741 805extern void target_load (char *arg, int from_tty);
c906108c
SS
806
807/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
808 name. ADDRP is a CORE_ADDR * pointing to where the value of the
809 symbol should be returned. The result is 0 if successful, nonzero
810 if the symbol does not exist in the target environment. This
811 function should not call error() if communication with the target
812 is interrupted, since it is called from symbol reading, but should
813 return nonzero, possibly doing a complain(). */
c906108c 814
0d06e24b
JM
815#define target_lookup_symbol(name, addrp) \
816 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 817
39f77062 818/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
819 EXEC_FILE is the file to run.
820 ALLARGS is a string containing the arguments to the program.
821 ENV is the environment vector to pass. Errors reported with error().
822 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 823
c27cda74
AC
824#define target_create_inferior(exec_file, args, env, FROM_TTY) \
825 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
826
827
828/* Some targets (such as ttrace-based HPUX) don't allow us to request
829 notification of inferior events such as fork and vork immediately
830 after the inferior is created. (This because of how gdb gets an
831 inferior created via invoking a shell to do it. In such a scenario,
832 if the shell init file has commands in it, the shell will fork and
833 exec for each of those commands, and we will see each such fork
834 event. Very bad.)
c5aa993b 835
0d06e24b
JM
836 Such targets will supply an appropriate definition for this function. */
837
39f77062
KB
838#define target_post_startup_inferior(ptid) \
839 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
840
841/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
842 some synchronization between gdb and the new inferior process, PID. */
843
c906108c 844#define target_acknowledge_created_inferior(pid) \
0d06e24b 845 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 846
0d06e24b
JM
847/* On some targets, we can catch an inferior fork or vfork event when
848 it occurs. These functions insert/remove an already-created
849 catchpoint for such events. */
c906108c 850
c906108c 851#define target_insert_fork_catchpoint(pid) \
0d06e24b 852 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
853
854#define target_remove_fork_catchpoint(pid) \
0d06e24b 855 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
856
857#define target_insert_vfork_catchpoint(pid) \
0d06e24b 858 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
859
860#define target_remove_vfork_catchpoint(pid) \
0d06e24b 861 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 862
6604731b
DJ
863/* If the inferior forks or vforks, this function will be called at
864 the next resume in order to perform any bookkeeping and fiddling
865 necessary to continue debugging either the parent or child, as
866 requested, and releasing the other. Information about the fork
867 or vfork event is available via get_last_target_status ().
868 This function returns 1 if the inferior should not be resumed
869 (i.e. there is another event pending). */
0d06e24b 870
ee057212 871int target_follow_fork (int follow_child);
c906108c
SS
872
873/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
874 occurs. These functions insert/remove an already-created
875 catchpoint for such events. */
876
c906108c 877#define target_insert_exec_catchpoint(pid) \
0d06e24b 878 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 879
c906108c 880#define target_remove_exec_catchpoint(pid) \
0d06e24b 881 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 882
c906108c 883/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
884 exit code of PID, if any. */
885
c906108c 886#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 887 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
888
889/* The debugger has completed a blocking wait() call. There is now
2146d243 890 some process event that must be processed. This function should
c906108c 891 be defined by those targets that require the debugger to perform
0d06e24b 892 cleanup or internal state changes in response to the process event. */
c906108c
SS
893
894/* The inferior process has died. Do what is right. */
895
896#define target_mourn_inferior() \
0d06e24b 897 (*current_target.to_mourn_inferior) ()
c906108c
SS
898
899/* Does target have enough data to do a run or attach command? */
900
901#define target_can_run(t) \
0d06e24b 902 ((t)->to_can_run) ()
c906108c
SS
903
904/* post process changes to signal handling in the inferior. */
905
39f77062
KB
906#define target_notice_signals(ptid) \
907 (*current_target.to_notice_signals) (ptid)
c906108c
SS
908
909/* Check to see if a thread is still alive. */
910
39f77062
KB
911#define target_thread_alive(ptid) \
912 (*current_target.to_thread_alive) (ptid)
c906108c 913
b83266a0
SS
914/* Query for new threads and add them to the thread list. */
915
916#define target_find_new_threads() \
4becf47c 917 (*current_target.to_find_new_threads) ()
b83266a0 918
0d06e24b
JM
919/* Make target stop in a continuable fashion. (For instance, under
920 Unix, this should act like SIGSTOP). This function is normally
921 used by GUIs to implement a stop button. */
c906108c 922
94cc34af 923#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 924
96baa820
JM
925/* Send the specified COMMAND to the target's monitor
926 (shell,interpreter) for execution. The result of the query is
0d06e24b 927 placed in OUTBUF. */
96baa820
JM
928
929#define target_rcmd(command, outbuf) \
930 (*current_target.to_rcmd) (command, outbuf)
931
932
c906108c
SS
933/* Does the target include all of memory, or only part of it? This
934 determines whether we look up the target chain for other parts of
935 memory if this target can't satisfy a request. */
936
937#define target_has_all_memory \
0d06e24b 938 (current_target.to_has_all_memory)
c906108c
SS
939
940/* Does the target include memory? (Dummy targets don't.) */
941
942#define target_has_memory \
0d06e24b 943 (current_target.to_has_memory)
c906108c
SS
944
945/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
946 we start a process.) */
c5aa993b 947
c906108c 948#define target_has_stack \
0d06e24b 949 (current_target.to_has_stack)
c906108c
SS
950
951/* Does the target have registers? (Exec files don't.) */
952
953#define target_has_registers \
0d06e24b 954 (current_target.to_has_registers)
c906108c
SS
955
956/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
957 hoops), or pop its stack a few times? This means that the current
958 target is currently executing; for some targets, that's the same as
959 whether or not the target is capable of execution, but there are
960 also targets which can be current while not executing. In that
961 case this will become true after target_create_inferior or
962 target_attach. */
c906108c
SS
963
964#define target_has_execution \
0d06e24b 965 (current_target.to_has_execution)
c906108c
SS
966
967/* Can the target support the debugger control of thread execution?
d6350901 968 Can it lock the thread scheduler? */
c906108c
SS
969
970#define target_can_lock_scheduler \
0d06e24b 971 (current_target.to_has_thread_control & tc_schedlock)
c906108c 972
c6ebd6cf
VP
973/* Should the target enable async mode if it is supported? Temporary
974 cludge until async mode is a strict superset of sync mode. */
975extern int target_async_permitted;
976
6426a772
JM
977/* Can the target support asynchronous execution? */
978#define target_can_async_p() (current_target.to_can_async_p ())
979
980/* Is the target in asynchronous execution mode? */
b84876c2 981#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 982
9908b566
VP
983int target_supports_non_stop (void);
984
6426a772 985/* Put the target in async mode with the specified callback function. */
0d06e24b 986#define target_async(CALLBACK,CONTEXT) \
b84876c2 987 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 988
04714b91
AC
989/* This is to be used ONLY within call_function_by_hand(). It provides
990 a workaround, to have inferior function calls done in sychronous
991 mode, even though the target is asynchronous. After
ed9a39eb
JM
992 target_async_mask(0) is called, calls to target_can_async_p() will
993 return FALSE , so that target_resume() will not try to start the
994 target asynchronously. After the inferior stops, we IMMEDIATELY
995 restore the previous nature of the target, by calling
996 target_async_mask(1). After that, target_can_async_p() will return
04714b91 997 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
998
999 FIXME ezannoni 1999-12-13: we won't need this once we move
1000 the turning async on and off to the single execution commands,
0d06e24b 1001 from where it is done currently, in remote_resume(). */
ed9a39eb 1002
b84876c2
PA
1003#define target_async_mask(MASK) \
1004 (current_target.to_async_mask (MASK))
ed9a39eb 1005
c906108c
SS
1006/* Converts a process id to a string. Usually, the string just contains
1007 `process xyz', but on some systems it may contain
1008 `process xyz thread abc'. */
1009
ed9a39eb
JM
1010#undef target_pid_to_str
1011#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1012
1013#ifndef target_tid_to_str
1014#define target_tid_to_str(PID) \
0d06e24b 1015 target_pid_to_str (PID)
39f77062 1016extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1017#endif
c5aa993b 1018
0d06e24b
JM
1019/* Return a short string describing extra information about PID,
1020 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1021 is okay. */
1022
1023#define target_extra_thread_info(TP) \
1024 (current_target.to_extra_thread_info (TP))
ed9a39eb 1025
c906108c
SS
1026/* Attempts to find the pathname of the executable file
1027 that was run to create a specified process.
1028
1029 The process PID must be stopped when this operation is used.
c5aa993b 1030
c906108c
SS
1031 If the executable file cannot be determined, NULL is returned.
1032
1033 Else, a pointer to a character string containing the pathname
1034 is returned. This string should be copied into a buffer by
1035 the client if the string will not be immediately used, or if
0d06e24b 1036 it must persist. */
c906108c
SS
1037
1038#define target_pid_to_exec_file(pid) \
0d06e24b 1039 (current_target.to_pid_to_exec_file) (pid)
c906108c 1040
be4d1333
MS
1041/*
1042 * Iterator function for target memory regions.
1043 * Calls a callback function once for each memory region 'mapped'
1044 * in the child process. Defined as a simple macro rather than
2146d243 1045 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1046 */
1047
1048#define target_find_memory_regions(FUNC, DATA) \
1049 (current_target.to_find_memory_regions) (FUNC, DATA)
1050
1051/*
1052 * Compose corefile .note section.
1053 */
1054
1055#define target_make_corefile_notes(BFD, SIZE_P) \
1056 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1057
3f47be5c
EZ
1058/* Thread-local values. */
1059#define target_get_thread_local_address \
1060 (current_target.to_get_thread_local_address)
1061#define target_get_thread_local_address_p() \
1062 (target_get_thread_local_address != NULL)
1063
c906108c
SS
1064
1065/* Hardware watchpoint interfaces. */
1066
1067/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1068 write). */
1069
1070#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1071#define STOPPED_BY_WATCHPOINT(w) \
1072 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1073#endif
7df1a324 1074
74174d2e
UW
1075/* Non-zero if we have steppable watchpoints */
1076
1077#ifndef HAVE_STEPPABLE_WATCHPOINT
1078#define HAVE_STEPPABLE_WATCHPOINT \
1079 (current_target.to_have_steppable_watchpoint)
1080#endif
1081
7df1a324
KW
1082/* Non-zero if we have continuable watchpoints */
1083
1084#ifndef HAVE_CONTINUABLE_WATCHPOINT
1085#define HAVE_CONTINUABLE_WATCHPOINT \
1086 (current_target.to_have_continuable_watchpoint)
1087#endif
c906108c 1088
ccaa32c7 1089/* Provide defaults for hardware watchpoint functions. */
c906108c 1090
2146d243 1091/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1092 elsewhere use the definitions in the target vector. */
c906108c
SS
1093
1094/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1095 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1096 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1097 (including this one?). OTHERTYPE is who knows what... */
1098
ccaa32c7
GS
1099#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1100#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1101 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1102#endif
c906108c 1103
e0d24f8d
WZ
1104#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1105#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1106 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1107#endif
1108
c906108c
SS
1109
1110/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1111 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1112 success, non-zero for failure. */
1113
ccaa32c7
GS
1114#ifndef target_insert_watchpoint
1115#define target_insert_watchpoint(addr, len, type) \
1116 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1117
ccaa32c7
GS
1118#define target_remove_watchpoint(addr, len, type) \
1119 (*current_target.to_remove_watchpoint) (addr, len, type)
1120#endif
c906108c
SS
1121
1122#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1123#define target_insert_hw_breakpoint(bp_tgt) \
1124 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1125
8181d85f
DJ
1126#define target_remove_hw_breakpoint(bp_tgt) \
1127 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1128#endif
1129
4aa7a7f5
JJ
1130extern int target_stopped_data_address_p (struct target_ops *);
1131
c906108c 1132#ifndef target_stopped_data_address
4aa7a7f5
JJ
1133#define target_stopped_data_address(target, x) \
1134 (*target.to_stopped_data_address) (target, x)
1135#else
1136/* Horrible hack to get around existing macros :-(. */
1137#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1138#endif
1139
5009afc5
AS
1140#define target_watchpoint_addr_within_range(target, addr, start, length) \
1141 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1142
b2175913
MS
1143/* Target can execute in reverse? */
1144#define target_can_execute_reverse \
1145 (current_target.to_can_execute_reverse ? \
1146 current_target.to_can_execute_reverse () : 0)
1147
424163ea
DJ
1148extern const struct target_desc *target_read_description (struct target_ops *);
1149
0ef643c8
JB
1150#define target_get_ada_task_ptid(lwp, tid) \
1151 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1152
08388c79
DE
1153/* Utility implementation of searching memory. */
1154extern int simple_search_memory (struct target_ops* ops,
1155 CORE_ADDR start_addr,
1156 ULONGEST search_space_len,
1157 const gdb_byte *pattern,
1158 ULONGEST pattern_len,
1159 CORE_ADDR *found_addrp);
1160
1161/* Main entry point for searching memory. */
1162extern int target_search_memory (CORE_ADDR start_addr,
1163 ULONGEST search_space_len,
1164 const gdb_byte *pattern,
1165 ULONGEST pattern_len,
1166 CORE_ADDR *found_addrp);
1167
49d03eab
MR
1168/* Command logging facility. */
1169
1170#define target_log_command(p) \
1171 do \
1172 if (current_target.to_log_command) \
1173 (*current_target.to_log_command) (p); \
1174 while (0)
1175
c906108c
SS
1176/* Routines for maintenance of the target structures...
1177
1178 add_target: Add a target to the list of all possible targets.
1179
1180 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1181 targets, within its particular stratum of the stack. Result
1182 is 0 if now atop the stack, nonzero if not on top (maybe
1183 should warn user).
c906108c
SS
1184
1185 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1186 no matter where it is on the list. Returns 0 if no
1187 change, 1 if removed from stack.
c906108c 1188
c5aa993b 1189 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1190
a14ed312 1191extern void add_target (struct target_ops *);
c906108c 1192
a14ed312 1193extern int push_target (struct target_ops *);
c906108c 1194
a14ed312 1195extern int unpush_target (struct target_ops *);
c906108c 1196
fd79ecee
DJ
1197extern void target_pre_inferior (int);
1198
a14ed312 1199extern void target_preopen (int);
c906108c 1200
a14ed312 1201extern void pop_target (void);
c906108c 1202
aa76d38d
PA
1203/* Does whatever cleanup is required to get rid of all pushed targets.
1204 QUITTING is propagated to target_close; it indicates that GDB is
1205 exiting and should not get hung on an error (otherwise it is
1206 important to perform clean termination, even if it takes a
1207 while). */
1208extern void pop_all_targets (int quitting);
1209
87ab71f0
PA
1210/* Like pop_all_targets, but pops only targets whose stratum is
1211 strictly above ABOVE_STRATUM. */
1212extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1213
9e35dae4
DJ
1214extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1215 CORE_ADDR offset);
1216
52bb452f
DJ
1217/* Mark a pushed target as running or exited, for targets which do not
1218 automatically pop when not active. */
1219
1220void target_mark_running (struct target_ops *);
1221
1222void target_mark_exited (struct target_ops *);
1223
c906108c
SS
1224/* Struct section_table maps address ranges to file sections. It is
1225 mostly used with BFD files, but can be used without (e.g. for handling
1226 raw disks, or files not in formats handled by BFD). */
1227
c5aa993b
JM
1228struct section_table
1229 {
1230 CORE_ADDR addr; /* Lowest address in section */
1231 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1232
7be0c536 1233 struct bfd_section *the_bfd_section;
c906108c 1234
c5aa993b
JM
1235 bfd *bfd; /* BFD file pointer */
1236 };
c906108c 1237
8db32d44
AC
1238/* Return the "section" containing the specified address. */
1239struct section_table *target_section_by_addr (struct target_ops *target,
1240 CORE_ADDR addr);
1241
1242
c906108c
SS
1243/* From mem-break.c */
1244
8181d85f 1245extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1246
8181d85f 1247extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1248
ae4b2284 1249extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1250
ae4b2284 1251extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1252
c906108c
SS
1253
1254/* From target.c */
1255
a14ed312 1256extern void initialize_targets (void);
c906108c 1257
a14ed312 1258extern void noprocess (void);
c906108c 1259
8edfe269
DJ
1260extern void target_require_runnable (void);
1261
a14ed312 1262extern void find_default_attach (char *, int);
c906108c 1263
c27cda74 1264extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1265
a14ed312 1266extern struct target_ops *find_run_target (void);
7a292a7a 1267
a14ed312 1268extern struct target_ops *find_core_target (void);
6426a772 1269
a14ed312 1270extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1271
570b8f7c
AC
1272extern int target_resize_to_sections (struct target_ops *target,
1273 int num_added);
07cd4b97
JB
1274
1275extern void remove_target_sections (bfd *abfd);
1276
c906108c
SS
1277\f
1278/* Stuff that should be shared among the various remote targets. */
1279
1280/* Debugging level. 0 is off, and non-zero values mean to print some debug
1281 information (higher values, more information). */
1282extern int remote_debug;
1283
1284/* Speed in bits per second, or -1 which means don't mess with the speed. */
1285extern int baud_rate;
1286/* Timeout limit for response from target. */
1287extern int remote_timeout;
1288
c906108c
SS
1289\f
1290/* Functions for helping to write a native target. */
1291
1292/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1293extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1294
c2d11a7d 1295/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1296 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1297/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1298 to the shorter target_signal_p() because it is far less ambigious.
1299 In this context ``target_signal'' refers to GDB's internal
1300 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1301 refers to the target operating system's signal. Confused? */
1302
c2d11a7d
JM
1303extern int target_signal_to_host_p (enum target_signal signo);
1304
1305/* Convert between host signal numbers and enum target_signal's.
1306 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1307 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1308/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1309 refering to the target operating system's signal numbering.
1310 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1311 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1312 internal representation of a target operating system's signal. */
1313
a14ed312
KB
1314extern enum target_signal target_signal_from_host (int);
1315extern int target_signal_to_host (enum target_signal);
c906108c 1316
1cded358
AR
1317extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1318 int);
1319extern int default_target_signal_to_host (struct gdbarch *,
1320 enum target_signal);
1321
c906108c 1322/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1323extern enum target_signal target_signal_from_command (int);
c906108c 1324
8defab1a
DJ
1325/* Set the show memory breakpoints mode to show, and installs a cleanup
1326 to restore it back to the current value. */
1327extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1328
c906108c
SS
1329\f
1330/* Imported from machine dependent code */
1331
c906108c 1332/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1333void target_ignore (void);
c906108c 1334
1df84f13 1335extern struct target_ops deprecated_child_ops;
5ac10fd1 1336
c5aa993b 1337#endif /* !defined (TARGET_H) */
This page took 0.89753 seconds and 4 git commands to generate.