gdb.base/foll-exec.exp: Update the expected output of a couple
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
4d8ac244 63 core_stratum, /* Core dump files */
d4f3574e
SS
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
c5aa993b 66 };
c906108c 67
c5aa993b
JM
68enum thread_control_capabilities
69 {
0d06e24b
JM
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 72 };
c906108c
SS
73
74/* Stuff for target_wait. */
75
76/* Generally, what has the program done? */
c5aa993b
JM
77enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
c906108c 81
0d06e24b
JM
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
c5aa993b 84 TARGET_WAITKIND_STOPPED,
c906108c 85
c5aa993b
JM
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
c906108c 89
c5aa993b
JM
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
c906108c 93
3a3e9ee3 94 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
c5aa993b 98 TARGET_WAITKIND_FORKED,
c906108c 99
3a3e9ee3 100 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
101 value.related_pid. */
102
c5aa993b 103 TARGET_WAITKIND_VFORKED,
c906108c 104
0d06e24b
JM
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
c5aa993b 108 TARGET_WAITKIND_EXECD,
c906108c 109
0d06e24b
JM
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
c5aa993b
JM
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 116
c5aa993b
JM
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
c4093a6a
JM
120 TARGET_WAITKIND_SPURIOUS,
121
8e7d2c16
DJ
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
c4093a6a
JM
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
0d06e24b 130 like for instance the user typing. */
b2175913
MS
131 TARGET_WAITKIND_IGNORE,
132
133 /* The target has run out of history information,
134 and cannot run backward any further. */
135 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
3a3e9ee3 147 ptid_t related_pid;
c5aa993b
JM
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
2acceee2 154/* Possible types of events that the inferior handler will have to
0d06e24b 155 deal with. */
2acceee2
JM
156enum inferior_event_type
157 {
0d06e24b 158 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
159 INF_QUIT_REQ,
160 /* Process a normal inferior event which will result in target_wait
0d06e24b 161 being called. */
2146d243 162 INF_REG_EVENT,
0d06e24b 163 /* Deal with an error on the inferior. */
2acceee2 164 INF_ERROR,
0d06e24b 165 /* We are called because a timer went off. */
2acceee2 166 INF_TIMER,
0d06e24b 167 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
168 INF_EXEC_COMPLETE,
169 /* We are called to do some stuff after the inferior stops, but we
170 are expected to reenter the proceed() and
171 handle_inferior_event() functions. This is used only in case of
0d06e24b 172 'step n' like commands. */
c2d11a7d 173 INF_EXEC_CONTINUE
2acceee2
JM
174 };
175
c906108c 176/* Return the string for a signal. */
a14ed312 177extern char *target_signal_to_string (enum target_signal);
c906108c
SS
178
179/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 180extern char *target_signal_to_name (enum target_signal);
c906108c
SS
181
182/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 183enum target_signal target_signal_from_name (char *);
c906108c 184\f
13547ab6
DJ
185/* Target objects which can be transfered using target_read,
186 target_write, et cetera. */
1e3ff5ad
AC
187
188enum target_object
189{
1e3ff5ad
AC
190 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
191 TARGET_OBJECT_AVR,
23d964e7
UW
192 /* SPU target specific transfer. See "spu-tdep.c". */
193 TARGET_OBJECT_SPU,
1e3ff5ad 194 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 195 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
196 /* Memory, avoiding GDB's data cache and trusting the executable.
197 Target implementations of to_xfer_partial never need to handle
198 this object, and most callers should not use it. */
199 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
200 /* Kernel Unwind Table. See "ia64-tdep.c". */
201 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
202 /* Transfer auxilliary vector. */
203 TARGET_OBJECT_AUXV,
baf92889 204 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
205 TARGET_OBJECT_WCOOKIE,
206 /* Target memory map in XML format. */
207 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
208 /* Flash memory. This object can be used to write contents to
209 a previously erased flash memory. Using it without erasing
210 flash can have unexpected results. Addresses are physical
211 address on target, and not relative to flash start. */
23181151
DJ
212 TARGET_OBJECT_FLASH,
213 /* Available target-specific features, e.g. registers and coprocessors.
214 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
215 TARGET_OBJECT_AVAILABLE_FEATURES,
216 /* Currently loaded libraries, in XML format. */
217 TARGET_OBJECT_LIBRARIES
2146d243 218 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
219};
220
13547ab6
DJ
221/* Request that OPS transfer up to LEN 8-bit bytes of the target's
222 OBJECT. The OFFSET, for a seekable object, specifies the
223 starting point. The ANNEX can be used to provide additional
224 data-specific information to the target.
1e3ff5ad 225
13547ab6
DJ
226 Return the number of bytes actually transfered, or -1 if the
227 transfer is not supported or otherwise fails. Return of a positive
228 value less than LEN indicates that no further transfer is possible.
229 Unlike the raw to_xfer_partial interface, callers of these
230 functions do not need to retry partial transfers. */
1e3ff5ad 231
1e3ff5ad
AC
232extern LONGEST target_read (struct target_ops *ops,
233 enum target_object object,
1b0ba102 234 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
235 ULONGEST offset, LONGEST len);
236
d5086790
VP
237extern LONGEST target_read_until_error (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, gdb_byte *buf,
240 ULONGEST offset, LONGEST len);
241
1e3ff5ad
AC
242extern LONGEST target_write (struct target_ops *ops,
243 enum target_object object,
1b0ba102 244 const char *annex, const gdb_byte *buf,
1e3ff5ad 245 ULONGEST offset, LONGEST len);
b6591e8b 246
a76d924d
DJ
247/* Similar to target_write, except that it also calls PROGRESS with
248 the number of bytes written and the opaque BATON after every
249 successful partial write (and before the first write). This is
250 useful for progress reporting and user interaction while writing
251 data. To abort the transfer, the progress callback can throw an
252 exception. */
253
cf7a04e8
DJ
254LONGEST target_write_with_progress (struct target_ops *ops,
255 enum target_object object,
256 const char *annex, const gdb_byte *buf,
257 ULONGEST offset, LONGEST len,
258 void (*progress) (ULONGEST, void *),
259 void *baton);
260
13547ab6
DJ
261/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
262 be read using OPS. The return value will be -1 if the transfer
263 fails or is not supported; 0 if the object is empty; or the length
264 of the object otherwise. If a positive value is returned, a
265 sufficiently large buffer will be allocated using xmalloc and
266 returned in *BUF_P containing the contents of the object.
267
268 This method should be used for objects sufficiently small to store
269 in a single xmalloc'd buffer, when no fixed bound on the object's
270 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
271 through this function. */
272
273extern LONGEST target_read_alloc (struct target_ops *ops,
274 enum target_object object,
275 const char *annex, gdb_byte **buf_p);
276
159f81f3
DJ
277/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
278 returned as a string, allocated using xmalloc. If an error occurs
279 or the transfer is unsupported, NULL is returned. Empty objects
280 are returned as allocated but empty strings. A warning is issued
281 if the result contains any embedded NUL bytes. */
282
283extern char *target_read_stralloc (struct target_ops *ops,
284 enum target_object object,
285 const char *annex);
286
b6591e8b
AC
287/* Wrappers to target read/write that perform memory transfers. They
288 throw an error if the memory transfer fails.
289
290 NOTE: cagney/2003-10-23: The naming schema is lifted from
291 "frame.h". The parameter order is lifted from get_frame_memory,
292 which in turn lifted it from read_memory. */
293
294extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 295 gdb_byte *buf, LONGEST len);
b6591e8b
AC
296extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
297 CORE_ADDR addr, int len);
1e3ff5ad 298\f
c5aa993b 299
c906108c
SS
300/* If certain kinds of activity happen, target_wait should perform
301 callbacks. */
302/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 303 on TARGET_ACTIVITY_FD. */
c906108c
SS
304extern int target_activity_fd;
305/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 306extern int (*target_activity_function) (void);
c906108c 307\f
0d06e24b
JM
308struct thread_info; /* fwd decl for parameter list below: */
309
c906108c 310struct target_ops
c5aa993b 311 {
258b763a 312 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
313 char *to_shortname; /* Name this target type */
314 char *to_longname; /* Name for printing */
315 char *to_doc; /* Documentation. Does not include trailing
c906108c 316 newline, and starts with a one-line descrip-
0d06e24b 317 tion (probably similar to to_longname). */
bba2d28d
AC
318 /* Per-target scratch pad. */
319 void *to_data;
f1c07ab0
AC
320 /* The open routine takes the rest of the parameters from the
321 command, and (if successful) pushes a new target onto the
322 stack. Targets should supply this routine, if only to provide
323 an error message. */
507f3c78 324 void (*to_open) (char *, int);
f1c07ab0
AC
325 /* Old targets with a static target vector provide "to_close".
326 New re-entrant targets provide "to_xclose" and that is expected
327 to xfree everything (including the "struct target_ops"). */
328 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
329 void (*to_close) (int);
330 void (*to_attach) (char *, int);
331 void (*to_post_attach) (int);
507f3c78 332 void (*to_detach) (char *, int);
597320e7 333 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
334 void (*to_resume) (ptid_t, int, enum target_signal);
335 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
336 void (*to_fetch_registers) (struct regcache *, int);
337 void (*to_store_registers) (struct regcache *, int);
316f2060 338 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
339
340 /* Transfer LEN bytes of memory between GDB address MYADDR and
341 target address MEMADDR. If WRITE, transfer them to the target, else
342 transfer them from the target. TARGET is the target from which we
343 get this function.
344
345 Return value, N, is one of the following:
346
347 0 means that we can't handle this. If errno has been set, it is the
348 error which prevented us from doing it (FIXME: What about bfd_error?).
349
350 positive (call it N) means that we have transferred N bytes
351 starting at MEMADDR. We might be able to handle more bytes
352 beyond this length, but no promises.
353
354 negative (call its absolute value N) means that we cannot
355 transfer right at MEMADDR, but we could transfer at least
c8e73a31 356 something at MEMADDR + N.
c5aa993b 357
c8e73a31
AC
358 NOTE: cagney/2004-10-01: This has been entirely superseeded by
359 to_xfer_partial and inferior inheritance. */
360
1b0ba102 361 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
362 int len, int write,
363 struct mem_attrib *attrib,
364 struct target_ops *target);
c906108c 365
507f3c78 366 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
367 int (*to_insert_breakpoint) (struct bp_target_info *);
368 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 369 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
370 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
371 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
372 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
373 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
374 int (*to_stopped_by_watchpoint) (void);
74174d2e 375 int to_have_steppable_watchpoint;
7df1a324 376 int to_have_continuable_watchpoint;
4aa7a7f5 377 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
378 int (*to_watchpoint_addr_within_range) (struct target_ops *,
379 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 380 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
381 void (*to_terminal_init) (void);
382 void (*to_terminal_inferior) (void);
383 void (*to_terminal_ours_for_output) (void);
384 void (*to_terminal_ours) (void);
a790ad35 385 void (*to_terminal_save_ours) (void);
507f3c78
KB
386 void (*to_terminal_info) (char *, int);
387 void (*to_kill) (void);
388 void (*to_load) (char *, int);
389 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 390 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 391 void (*to_post_startup_inferior) (ptid_t);
507f3c78 392 void (*to_acknowledge_created_inferior) (int);
fa113d1a 393 void (*to_insert_fork_catchpoint) (int);
507f3c78 394 int (*to_remove_fork_catchpoint) (int);
fa113d1a 395 void (*to_insert_vfork_catchpoint) (int);
507f3c78 396 int (*to_remove_vfork_catchpoint) (int);
ee057212 397 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 398 void (*to_insert_exec_catchpoint) (int);
507f3c78 399 int (*to_remove_exec_catchpoint) (int);
507f3c78
KB
400 int (*to_has_exited) (int, int, int *);
401 void (*to_mourn_inferior) (void);
402 int (*to_can_run) (void);
39f77062
KB
403 void (*to_notice_signals) (ptid_t ptid);
404 int (*to_thread_alive) (ptid_t ptid);
507f3c78 405 void (*to_find_new_threads) (void);
39f77062 406 char *(*to_pid_to_str) (ptid_t);
507f3c78 407 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 408 void (*to_stop) (ptid_t);
d9fcf2fb 409 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 410 char *(*to_pid_to_exec_file) (int pid);
49d03eab 411 void (*to_log_command) (const char *);
c5aa993b 412 enum strata to_stratum;
c5aa993b
JM
413 int to_has_all_memory;
414 int to_has_memory;
415 int to_has_stack;
416 int to_has_registers;
417 int to_has_execution;
418 int to_has_thread_control; /* control thread execution */
dc177b7a 419 int to_attach_no_wait;
c5aa993b
JM
420 struct section_table
421 *to_sections;
422 struct section_table
423 *to_sections_end;
6426a772
JM
424 /* ASYNC target controls */
425 int (*to_can_async_p) (void);
426 int (*to_is_async_p) (void);
b84876c2
PA
427 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
428 int (*to_async_mask) (int);
9908b566 429 int (*to_supports_non_stop) (void);
2146d243
RM
430 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
431 unsigned long,
432 int, int, int,
433 void *),
be4d1333
MS
434 void *);
435 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
436
437 /* Return the thread-local address at OFFSET in the
438 thread-local storage for the thread PTID and the shared library
439 or executable file given by OBJFILE. If that block of
440 thread-local storage hasn't been allocated yet, this function
441 may return an error. */
442 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 443 CORE_ADDR load_module_addr,
3f47be5c
EZ
444 CORE_ADDR offset);
445
13547ab6
DJ
446 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
447 OBJECT. The OFFSET, for a seekable object, specifies the
448 starting point. The ANNEX can be used to provide additional
449 data-specific information to the target.
450
451 Return the number of bytes actually transfered, zero when no
452 further transfer is possible, and -1 when the transfer is not
453 supported. Return of a positive value smaller than LEN does
454 not indicate the end of the object, only the end of the
455 transfer; higher level code should continue transferring if
456 desired. This is handled in target.c.
457
458 The interface does not support a "retry" mechanism. Instead it
459 assumes that at least one byte will be transfered on each
460 successful call.
461
462 NOTE: cagney/2003-10-17: The current interface can lead to
463 fragmented transfers. Lower target levels should not implement
464 hacks, such as enlarging the transfer, in an attempt to
465 compensate for this. Instead, the target stack should be
466 extended so that it implements supply/collect methods and a
467 look-aside object cache. With that available, the lowest
468 target can safely and freely "push" data up the stack.
469
470 See target_read and target_write for more information. One,
471 and only one, of readbuf or writebuf must be non-NULL. */
472
4b8a223f 473 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 474 enum target_object object, const char *annex,
1b0ba102 475 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 476 ULONGEST offset, LONGEST len);
1e3ff5ad 477
fd79ecee
DJ
478 /* Returns the memory map for the target. A return value of NULL
479 means that no memory map is available. If a memory address
480 does not fall within any returned regions, it's assumed to be
481 RAM. The returned memory regions should not overlap.
482
483 The order of regions does not matter; target_memory_map will
484 sort regions by starting address. For that reason, this
485 function should not be called directly except via
486 target_memory_map.
487
488 This method should not cache data; if the memory map could
489 change unexpectedly, it should be invalidated, and higher
490 layers will re-fetch it. */
491 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
492
a76d924d
DJ
493 /* Erases the region of flash memory starting at ADDRESS, of
494 length LENGTH.
495
496 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
497 on flash block boundaries, as reported by 'to_memory_map'. */
498 void (*to_flash_erase) (struct target_ops *,
499 ULONGEST address, LONGEST length);
500
501 /* Finishes a flash memory write sequence. After this operation
502 all flash memory should be available for writing and the result
503 of reading from areas written by 'to_flash_write' should be
504 equal to what was written. */
505 void (*to_flash_done) (struct target_ops *);
506
424163ea
DJ
507 /* Describe the architecture-specific features of this target.
508 Returns the description found, or NULL if no description
509 was available. */
510 const struct target_desc *(*to_read_description) (struct target_ops *ops);
511
0ef643c8
JB
512 /* Build the PTID of the thread on which a given task is running,
513 based on LWP and THREAD. These values are extracted from the
514 task Private_Data section of the Ada Task Control Block, and
515 their interpretation depends on the target. */
516 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
517
c47ffbe3
VP
518 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
519 Return 0 if *READPTR is already at the end of the buffer.
520 Return -1 if there is insufficient buffer for a whole entry.
521 Return 1 if an entry was read into *TYPEP and *VALP. */
522 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
523 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
524
08388c79
DE
525 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
526 sequence of bytes in PATTERN with length PATTERN_LEN.
527
528 The result is 1 if found, 0 if not found, and -1 if there was an error
529 requiring halting of the search (e.g. memory read error).
530 If the pattern is found the address is recorded in FOUND_ADDRP. */
531 int (*to_search_memory) (struct target_ops *ops,
532 CORE_ADDR start_addr, ULONGEST search_space_len,
533 const gdb_byte *pattern, ULONGEST pattern_len,
534 CORE_ADDR *found_addrp);
535
b2175913
MS
536 /* Can target execute in reverse? */
537 int (*to_can_execute_reverse) ();
538
8a305172
PA
539 /* Does this target support debugging multiple processes
540 simultaneously? */
541 int (*to_supports_multi_process) (void);
542
c5aa993b 543 int to_magic;
0d06e24b
JM
544 /* Need sub-structure for target machine related rather than comm related?
545 */
c5aa993b 546 };
c906108c
SS
547
548/* Magic number for checking ops size. If a struct doesn't end with this
549 number, somebody changed the declaration but didn't change all the
550 places that initialize one. */
551
552#define OPS_MAGIC 3840
553
554/* The ops structure for our "current" target process. This should
555 never be NULL. If there is no target, it points to the dummy_target. */
556
c5aa993b 557extern struct target_ops current_target;
c906108c 558
c906108c
SS
559/* Define easy words for doing these operations on our current target. */
560
561#define target_shortname (current_target.to_shortname)
562#define target_longname (current_target.to_longname)
563
f1c07ab0
AC
564/* Does whatever cleanup is required for a target that we are no
565 longer going to be calling. QUITTING indicates that GDB is exiting
566 and should not get hung on an error (otherwise it is important to
567 perform clean termination, even if it takes a while). This routine
568 is automatically always called when popping the target off the
569 target stack (to_beneath is undefined). Closing file descriptors
570 and freeing all memory allocated memory are typical things it
571 should do. */
572
573void target_close (struct target_ops *targ, int quitting);
c906108c
SS
574
575/* Attaches to a process on the target side. Arguments are as passed
576 to the `attach' command by the user. This routine can be called
577 when the target is not on the target-stack, if the target_can_run
2146d243 578 routine returns 1; in that case, it must push itself onto the stack.
c906108c 579 Upon exit, the target should be ready for normal operations, and
2146d243 580 should be ready to deliver the status of the process immediately
c906108c
SS
581 (without waiting) to an upcoming target_wait call. */
582
583#define target_attach(args, from_tty) \
0d06e24b 584 (*current_target.to_attach) (args, from_tty)
c906108c 585
dc177b7a
PA
586/* Some targets don't generate traps when attaching to the inferior,
587 or their target_attach implementation takes care of the waiting.
588 These targets must set to_attach_no_wait. */
589
590#define target_attach_no_wait \
591 (current_target.to_attach_no_wait)
592
c906108c
SS
593/* The target_attach operation places a process under debugger control,
594 and stops the process.
595
596 This operation provides a target-specific hook that allows the
0d06e24b 597 necessary bookkeeping to be performed after an attach completes. */
c906108c 598#define target_post_attach(pid) \
0d06e24b 599 (*current_target.to_post_attach) (pid)
c906108c 600
c906108c
SS
601/* Takes a program previously attached to and detaches it.
602 The program may resume execution (some targets do, some don't) and will
603 no longer stop on signals, etc. We better not have left any breakpoints
604 in the program or it'll die when it hits one. ARGS is arguments
605 typed by the user (e.g. a signal to send the process). FROM_TTY
606 says whether to be verbose or not. */
607
a14ed312 608extern void target_detach (char *, int);
c906108c 609
6ad8ae5c
DJ
610/* Disconnect from the current target without resuming it (leaving it
611 waiting for a debugger). */
612
613extern void target_disconnect (char *, int);
614
39f77062 615/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
616 single-step or to run free; SIGGNAL is the signal to be given to
617 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
618 pass TARGET_SIGNAL_DEFAULT. */
619
e1ac3328 620extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 621
b5a2688f
AC
622/* Wait for process pid to do something. PTID = -1 to wait for any
623 pid to do something. Return pid of child, or -1 in case of error;
c906108c 624 store status through argument pointer STATUS. Note that it is
b5a2688f 625 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
626 the debugging target from the stack; GDB isn't prepared to get back
627 to the prompt with a debugging target but without the frame cache,
628 stop_pc, etc., set up. */
629
39f77062
KB
630#define target_wait(ptid, status) \
631 (*current_target.to_wait) (ptid, status)
c906108c 632
17dee195 633/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 634
56be3814
UW
635#define target_fetch_registers(regcache, regno) \
636 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
637
638/* Store at least register REGNO, or all regs if REGNO == -1.
639 It can store as many registers as it wants to, so target_prepare_to_store
640 must have been previously called. Calls error() if there are problems. */
641
56be3814
UW
642#define target_store_registers(regcache, regs) \
643 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
644
645/* Get ready to modify the registers array. On machines which store
646 individual registers, this doesn't need to do anything. On machines
647 which store all the registers in one fell swoop, this makes sure
648 that REGISTERS contains all the registers from the program being
649 debugged. */
650
316f2060
UW
651#define target_prepare_to_store(regcache) \
652 (*current_target.to_prepare_to_store) (regcache)
c906108c 653
8a305172
PA
654/* Returns true if this target can debug multiple processes
655 simultaneously. */
656
657#define target_supports_multi_process() \
658 (*current_target.to_supports_multi_process) ()
659
4930751a
C
660extern DCACHE *target_dcache;
661
a14ed312 662extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 663
fc1a4b47 664extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 665
fc1a4b47 666extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 667 int len);
c906108c 668
1b0ba102 669extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 670 struct mem_attrib *, struct target_ops *);
c906108c 671
fd79ecee
DJ
672/* Fetches the target's memory map. If one is found it is sorted
673 and returned, after some consistency checking. Otherwise, NULL
674 is returned. */
675VEC(mem_region_s) *target_memory_map (void);
676
a76d924d
DJ
677/* Erase the specified flash region. */
678void target_flash_erase (ULONGEST address, LONGEST length);
679
680/* Finish a sequence of flash operations. */
681void target_flash_done (void);
682
683/* Describes a request for a memory write operation. */
684struct memory_write_request
685 {
686 /* Begining address that must be written. */
687 ULONGEST begin;
688 /* Past-the-end address. */
689 ULONGEST end;
690 /* The data to write. */
691 gdb_byte *data;
692 /* A callback baton for progress reporting for this request. */
693 void *baton;
694 };
695typedef struct memory_write_request memory_write_request_s;
696DEF_VEC_O(memory_write_request_s);
697
698/* Enumeration specifying different flash preservation behaviour. */
699enum flash_preserve_mode
700 {
701 flash_preserve,
702 flash_discard
703 };
704
705/* Write several memory blocks at once. This version can be more
706 efficient than making several calls to target_write_memory, in
707 particular because it can optimize accesses to flash memory.
708
709 Moreover, this is currently the only memory access function in gdb
710 that supports writing to flash memory, and it should be used for
711 all cases where access to flash memory is desirable.
712
713 REQUESTS is the vector (see vec.h) of memory_write_request.
714 PRESERVE_FLASH_P indicates what to do with blocks which must be
715 erased, but not completely rewritten.
716 PROGRESS_CB is a function that will be periodically called to provide
717 feedback to user. It will be called with the baton corresponding
718 to the request currently being written. It may also be called
719 with a NULL baton, when preserved flash sectors are being rewritten.
720
721 The function returns 0 on success, and error otherwise. */
722int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
723 enum flash_preserve_mode preserve_flash_p,
724 void (*progress_cb) (ULONGEST, void *));
725
47932f85
DJ
726/* From infrun.c. */
727
3a3e9ee3 728extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 729
3a3e9ee3 730extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 731
3a3e9ee3 732extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 733
c906108c
SS
734/* From exec.c */
735
a14ed312 736extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
737
738/* Print a line about the current target. */
739
740#define target_files_info() \
0d06e24b 741 (*current_target.to_files_info) (&current_target)
c906108c 742
8181d85f
DJ
743/* Insert a breakpoint at address BP_TGT->placed_address in the target
744 machine. Result is 0 for success, or an errno value. */
c906108c 745
8181d85f
DJ
746#define target_insert_breakpoint(bp_tgt) \
747 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 748
8181d85f
DJ
749/* Remove a breakpoint at address BP_TGT->placed_address in the target
750 machine. Result is 0 for success, or an errno value. */
c906108c 751
8181d85f
DJ
752#define target_remove_breakpoint(bp_tgt) \
753 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
754
755/* Initialize the terminal settings we record for the inferior,
756 before we actually run the inferior. */
757
758#define target_terminal_init() \
0d06e24b 759 (*current_target.to_terminal_init) ()
c906108c
SS
760
761/* Put the inferior's terminal settings into effect.
762 This is preparation for starting or resuming the inferior. */
763
764#define target_terminal_inferior() \
0d06e24b 765 (*current_target.to_terminal_inferior) ()
c906108c
SS
766
767/* Put some of our terminal settings into effect,
768 enough to get proper results from our output,
769 but do not change into or out of RAW mode
770 so that no input is discarded.
771
772 After doing this, either terminal_ours or terminal_inferior
773 should be called to get back to a normal state of affairs. */
774
775#define target_terminal_ours_for_output() \
0d06e24b 776 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
777
778/* Put our terminal settings into effect.
779 First record the inferior's terminal settings
780 so they can be restored properly later. */
781
782#define target_terminal_ours() \
0d06e24b 783 (*current_target.to_terminal_ours) ()
c906108c 784
a790ad35
SC
785/* Save our terminal settings.
786 This is called from TUI after entering or leaving the curses
787 mode. Since curses modifies our terminal this call is here
788 to take this change into account. */
789
790#define target_terminal_save_ours() \
791 (*current_target.to_terminal_save_ours) ()
792
c906108c
SS
793/* Print useful information about our terminal status, if such a thing
794 exists. */
795
796#define target_terminal_info(arg, from_tty) \
0d06e24b 797 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
798
799/* Kill the inferior process. Make it go away. */
800
801#define target_kill() \
0d06e24b 802 (*current_target.to_kill) ()
c906108c 803
0d06e24b
JM
804/* Load an executable file into the target process. This is expected
805 to not only bring new code into the target process, but also to
1986bccd
AS
806 update GDB's symbol tables to match.
807
808 ARG contains command-line arguments, to be broken down with
809 buildargv (). The first non-switch argument is the filename to
810 load, FILE; the second is a number (as parsed by strtoul (..., ...,
811 0)), which is an offset to apply to the load addresses of FILE's
812 sections. The target may define switches, or other non-switch
813 arguments, as it pleases. */
c906108c 814
11cf8741 815extern void target_load (char *arg, int from_tty);
c906108c
SS
816
817/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
818 name. ADDRP is a CORE_ADDR * pointing to where the value of the
819 symbol should be returned. The result is 0 if successful, nonzero
820 if the symbol does not exist in the target environment. This
821 function should not call error() if communication with the target
822 is interrupted, since it is called from symbol reading, but should
823 return nonzero, possibly doing a complain(). */
c906108c 824
0d06e24b
JM
825#define target_lookup_symbol(name, addrp) \
826 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 827
39f77062 828/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
829 EXEC_FILE is the file to run.
830 ALLARGS is a string containing the arguments to the program.
831 ENV is the environment vector to pass. Errors reported with error().
832 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 833
c27cda74
AC
834#define target_create_inferior(exec_file, args, env, FROM_TTY) \
835 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
836
837
838/* Some targets (such as ttrace-based HPUX) don't allow us to request
839 notification of inferior events such as fork and vork immediately
840 after the inferior is created. (This because of how gdb gets an
841 inferior created via invoking a shell to do it. In such a scenario,
842 if the shell init file has commands in it, the shell will fork and
843 exec for each of those commands, and we will see each such fork
844 event. Very bad.)
c5aa993b 845
0d06e24b
JM
846 Such targets will supply an appropriate definition for this function. */
847
39f77062
KB
848#define target_post_startup_inferior(ptid) \
849 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
850
851/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
852 some synchronization between gdb and the new inferior process, PID. */
853
c906108c 854#define target_acknowledge_created_inferior(pid) \
0d06e24b 855 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 856
0d06e24b
JM
857/* On some targets, we can catch an inferior fork or vfork event when
858 it occurs. These functions insert/remove an already-created
859 catchpoint for such events. */
c906108c 860
c906108c 861#define target_insert_fork_catchpoint(pid) \
0d06e24b 862 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
863
864#define target_remove_fork_catchpoint(pid) \
0d06e24b 865 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
866
867#define target_insert_vfork_catchpoint(pid) \
0d06e24b 868 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
869
870#define target_remove_vfork_catchpoint(pid) \
0d06e24b 871 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 872
6604731b
DJ
873/* If the inferior forks or vforks, this function will be called at
874 the next resume in order to perform any bookkeeping and fiddling
875 necessary to continue debugging either the parent or child, as
876 requested, and releasing the other. Information about the fork
877 or vfork event is available via get_last_target_status ().
878 This function returns 1 if the inferior should not be resumed
879 (i.e. there is another event pending). */
0d06e24b 880
ee057212 881int target_follow_fork (int follow_child);
c906108c
SS
882
883/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
884 occurs. These functions insert/remove an already-created
885 catchpoint for such events. */
886
c906108c 887#define target_insert_exec_catchpoint(pid) \
0d06e24b 888 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 889
c906108c 890#define target_remove_exec_catchpoint(pid) \
0d06e24b 891 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 892
c906108c 893/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
894 exit code of PID, if any. */
895
c906108c 896#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 897 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
898
899/* The debugger has completed a blocking wait() call. There is now
2146d243 900 some process event that must be processed. This function should
c906108c 901 be defined by those targets that require the debugger to perform
0d06e24b 902 cleanup or internal state changes in response to the process event. */
c906108c
SS
903
904/* The inferior process has died. Do what is right. */
905
906#define target_mourn_inferior() \
0d06e24b 907 (*current_target.to_mourn_inferior) ()
c906108c
SS
908
909/* Does target have enough data to do a run or attach command? */
910
911#define target_can_run(t) \
0d06e24b 912 ((t)->to_can_run) ()
c906108c
SS
913
914/* post process changes to signal handling in the inferior. */
915
39f77062
KB
916#define target_notice_signals(ptid) \
917 (*current_target.to_notice_signals) (ptid)
c906108c
SS
918
919/* Check to see if a thread is still alive. */
920
39f77062
KB
921#define target_thread_alive(ptid) \
922 (*current_target.to_thread_alive) (ptid)
c906108c 923
b83266a0
SS
924/* Query for new threads and add them to the thread list. */
925
926#define target_find_new_threads() \
4becf47c 927 (*current_target.to_find_new_threads) ()
b83266a0 928
0d06e24b
JM
929/* Make target stop in a continuable fashion. (For instance, under
930 Unix, this should act like SIGSTOP). This function is normally
931 used by GUIs to implement a stop button. */
c906108c 932
94cc34af 933#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 934
96baa820
JM
935/* Send the specified COMMAND to the target's monitor
936 (shell,interpreter) for execution. The result of the query is
0d06e24b 937 placed in OUTBUF. */
96baa820
JM
938
939#define target_rcmd(command, outbuf) \
940 (*current_target.to_rcmd) (command, outbuf)
941
942
c906108c
SS
943/* Does the target include all of memory, or only part of it? This
944 determines whether we look up the target chain for other parts of
945 memory if this target can't satisfy a request. */
946
947#define target_has_all_memory \
0d06e24b 948 (current_target.to_has_all_memory)
c906108c
SS
949
950/* Does the target include memory? (Dummy targets don't.) */
951
952#define target_has_memory \
0d06e24b 953 (current_target.to_has_memory)
c906108c
SS
954
955/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
956 we start a process.) */
c5aa993b 957
c906108c 958#define target_has_stack \
0d06e24b 959 (current_target.to_has_stack)
c906108c
SS
960
961/* Does the target have registers? (Exec files don't.) */
962
963#define target_has_registers \
0d06e24b 964 (current_target.to_has_registers)
c906108c
SS
965
966/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
967 hoops), or pop its stack a few times? This means that the current
968 target is currently executing; for some targets, that's the same as
969 whether or not the target is capable of execution, but there are
970 also targets which can be current while not executing. In that
971 case this will become true after target_create_inferior or
972 target_attach. */
c906108c
SS
973
974#define target_has_execution \
0d06e24b 975 (current_target.to_has_execution)
c906108c
SS
976
977/* Can the target support the debugger control of thread execution?
d6350901 978 Can it lock the thread scheduler? */
c906108c
SS
979
980#define target_can_lock_scheduler \
0d06e24b 981 (current_target.to_has_thread_control & tc_schedlock)
c906108c 982
c6ebd6cf
VP
983/* Should the target enable async mode if it is supported? Temporary
984 cludge until async mode is a strict superset of sync mode. */
985extern int target_async_permitted;
986
6426a772
JM
987/* Can the target support asynchronous execution? */
988#define target_can_async_p() (current_target.to_can_async_p ())
989
990/* Is the target in asynchronous execution mode? */
b84876c2 991#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 992
9908b566
VP
993int target_supports_non_stop (void);
994
6426a772 995/* Put the target in async mode with the specified callback function. */
0d06e24b 996#define target_async(CALLBACK,CONTEXT) \
b84876c2 997 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 998
04714b91
AC
999/* This is to be used ONLY within call_function_by_hand(). It provides
1000 a workaround, to have inferior function calls done in sychronous
1001 mode, even though the target is asynchronous. After
ed9a39eb
JM
1002 target_async_mask(0) is called, calls to target_can_async_p() will
1003 return FALSE , so that target_resume() will not try to start the
1004 target asynchronously. After the inferior stops, we IMMEDIATELY
1005 restore the previous nature of the target, by calling
1006 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1007 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1008
1009 FIXME ezannoni 1999-12-13: we won't need this once we move
1010 the turning async on and off to the single execution commands,
0d06e24b 1011 from where it is done currently, in remote_resume(). */
ed9a39eb 1012
b84876c2
PA
1013#define target_async_mask(MASK) \
1014 (current_target.to_async_mask (MASK))
ed9a39eb 1015
c906108c
SS
1016/* Converts a process id to a string. Usually, the string just contains
1017 `process xyz', but on some systems it may contain
1018 `process xyz thread abc'. */
1019
ed9a39eb
JM
1020#undef target_pid_to_str
1021#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1022
1023#ifndef target_tid_to_str
1024#define target_tid_to_str(PID) \
0d06e24b 1025 target_pid_to_str (PID)
39f77062 1026extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1027#endif
c5aa993b 1028
0d06e24b
JM
1029/* Return a short string describing extra information about PID,
1030 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1031 is okay. */
1032
1033#define target_extra_thread_info(TP) \
1034 (current_target.to_extra_thread_info (TP))
ed9a39eb 1035
c906108c
SS
1036/* Attempts to find the pathname of the executable file
1037 that was run to create a specified process.
1038
1039 The process PID must be stopped when this operation is used.
c5aa993b 1040
c906108c
SS
1041 If the executable file cannot be determined, NULL is returned.
1042
1043 Else, a pointer to a character string containing the pathname
1044 is returned. This string should be copied into a buffer by
1045 the client if the string will not be immediately used, or if
0d06e24b 1046 it must persist. */
c906108c
SS
1047
1048#define target_pid_to_exec_file(pid) \
0d06e24b 1049 (current_target.to_pid_to_exec_file) (pid)
c906108c 1050
be4d1333
MS
1051/*
1052 * Iterator function for target memory regions.
1053 * Calls a callback function once for each memory region 'mapped'
1054 * in the child process. Defined as a simple macro rather than
2146d243 1055 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1056 */
1057
1058#define target_find_memory_regions(FUNC, DATA) \
1059 (current_target.to_find_memory_regions) (FUNC, DATA)
1060
1061/*
1062 * Compose corefile .note section.
1063 */
1064
1065#define target_make_corefile_notes(BFD, SIZE_P) \
1066 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1067
3f47be5c
EZ
1068/* Thread-local values. */
1069#define target_get_thread_local_address \
1070 (current_target.to_get_thread_local_address)
1071#define target_get_thread_local_address_p() \
1072 (target_get_thread_local_address != NULL)
1073
c906108c
SS
1074
1075/* Hardware watchpoint interfaces. */
1076
1077/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1078 write). */
1079
1080#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1081#define STOPPED_BY_WATCHPOINT(w) \
1082 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1083#endif
7df1a324 1084
74174d2e
UW
1085/* Non-zero if we have steppable watchpoints */
1086
1087#ifndef HAVE_STEPPABLE_WATCHPOINT
1088#define HAVE_STEPPABLE_WATCHPOINT \
1089 (current_target.to_have_steppable_watchpoint)
1090#endif
1091
7df1a324
KW
1092/* Non-zero if we have continuable watchpoints */
1093
1094#ifndef HAVE_CONTINUABLE_WATCHPOINT
1095#define HAVE_CONTINUABLE_WATCHPOINT \
1096 (current_target.to_have_continuable_watchpoint)
1097#endif
c906108c 1098
ccaa32c7 1099/* Provide defaults for hardware watchpoint functions. */
c906108c 1100
2146d243 1101/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1102 elsewhere use the definitions in the target vector. */
c906108c
SS
1103
1104/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1105 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1106 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1107 (including this one?). OTHERTYPE is who knows what... */
1108
ccaa32c7
GS
1109#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1110#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1111 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1112#endif
c906108c 1113
e0d24f8d
WZ
1114#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1115#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1116 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1117#endif
1118
c906108c
SS
1119
1120/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1121 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1122 success, non-zero for failure. */
1123
ccaa32c7
GS
1124#ifndef target_insert_watchpoint
1125#define target_insert_watchpoint(addr, len, type) \
1126 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1127
ccaa32c7
GS
1128#define target_remove_watchpoint(addr, len, type) \
1129 (*current_target.to_remove_watchpoint) (addr, len, type)
1130#endif
c906108c
SS
1131
1132#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1133#define target_insert_hw_breakpoint(bp_tgt) \
1134 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1135
8181d85f
DJ
1136#define target_remove_hw_breakpoint(bp_tgt) \
1137 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1138#endif
1139
4aa7a7f5
JJ
1140extern int target_stopped_data_address_p (struct target_ops *);
1141
c906108c 1142#ifndef target_stopped_data_address
4aa7a7f5
JJ
1143#define target_stopped_data_address(target, x) \
1144 (*target.to_stopped_data_address) (target, x)
1145#else
1146/* Horrible hack to get around existing macros :-(. */
1147#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1148#endif
1149
5009afc5
AS
1150#define target_watchpoint_addr_within_range(target, addr, start, length) \
1151 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1152
b2175913
MS
1153/* Target can execute in reverse? */
1154#define target_can_execute_reverse \
1155 (current_target.to_can_execute_reverse ? \
1156 current_target.to_can_execute_reverse () : 0)
1157
424163ea
DJ
1158extern const struct target_desc *target_read_description (struct target_ops *);
1159
0ef643c8
JB
1160#define target_get_ada_task_ptid(lwp, tid) \
1161 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1162
08388c79
DE
1163/* Utility implementation of searching memory. */
1164extern int simple_search_memory (struct target_ops* ops,
1165 CORE_ADDR start_addr,
1166 ULONGEST search_space_len,
1167 const gdb_byte *pattern,
1168 ULONGEST pattern_len,
1169 CORE_ADDR *found_addrp);
1170
1171/* Main entry point for searching memory. */
1172extern int target_search_memory (CORE_ADDR start_addr,
1173 ULONGEST search_space_len,
1174 const gdb_byte *pattern,
1175 ULONGEST pattern_len,
1176 CORE_ADDR *found_addrp);
1177
49d03eab
MR
1178/* Command logging facility. */
1179
1180#define target_log_command(p) \
1181 do \
1182 if (current_target.to_log_command) \
1183 (*current_target.to_log_command) (p); \
1184 while (0)
1185
c906108c
SS
1186/* Routines for maintenance of the target structures...
1187
1188 add_target: Add a target to the list of all possible targets.
1189
1190 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1191 targets, within its particular stratum of the stack. Result
1192 is 0 if now atop the stack, nonzero if not on top (maybe
1193 should warn user).
c906108c
SS
1194
1195 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1196 no matter where it is on the list. Returns 0 if no
1197 change, 1 if removed from stack.
c906108c 1198
c5aa993b 1199 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1200
a14ed312 1201extern void add_target (struct target_ops *);
c906108c 1202
a14ed312 1203extern int push_target (struct target_ops *);
c906108c 1204
a14ed312 1205extern int unpush_target (struct target_ops *);
c906108c 1206
fd79ecee
DJ
1207extern void target_pre_inferior (int);
1208
a14ed312 1209extern void target_preopen (int);
c906108c 1210
a14ed312 1211extern void pop_target (void);
c906108c 1212
aa76d38d
PA
1213/* Does whatever cleanup is required to get rid of all pushed targets.
1214 QUITTING is propagated to target_close; it indicates that GDB is
1215 exiting and should not get hung on an error (otherwise it is
1216 important to perform clean termination, even if it takes a
1217 while). */
1218extern void pop_all_targets (int quitting);
1219
87ab71f0
PA
1220/* Like pop_all_targets, but pops only targets whose stratum is
1221 strictly above ABOVE_STRATUM. */
1222extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1223
9e35dae4
DJ
1224extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1225 CORE_ADDR offset);
1226
52bb452f
DJ
1227/* Mark a pushed target as running or exited, for targets which do not
1228 automatically pop when not active. */
1229
1230void target_mark_running (struct target_ops *);
1231
1232void target_mark_exited (struct target_ops *);
1233
c906108c
SS
1234/* Struct section_table maps address ranges to file sections. It is
1235 mostly used with BFD files, but can be used without (e.g. for handling
1236 raw disks, or files not in formats handled by BFD). */
1237
c5aa993b
JM
1238struct section_table
1239 {
1240 CORE_ADDR addr; /* Lowest address in section */
1241 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1242
7be0c536 1243 struct bfd_section *the_bfd_section;
c906108c 1244
c5aa993b
JM
1245 bfd *bfd; /* BFD file pointer */
1246 };
c906108c 1247
8db32d44
AC
1248/* Return the "section" containing the specified address. */
1249struct section_table *target_section_by_addr (struct target_ops *target,
1250 CORE_ADDR addr);
1251
1252
c906108c
SS
1253/* From mem-break.c */
1254
8181d85f 1255extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1256
8181d85f 1257extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1258
ae4b2284 1259extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1260
ae4b2284 1261extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1262
c906108c
SS
1263
1264/* From target.c */
1265
a14ed312 1266extern void initialize_targets (void);
c906108c 1267
a14ed312 1268extern void noprocess (void);
c906108c 1269
8edfe269
DJ
1270extern void target_require_runnable (void);
1271
a14ed312 1272extern void find_default_attach (char *, int);
c906108c 1273
c27cda74 1274extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1275
a14ed312 1276extern struct target_ops *find_run_target (void);
7a292a7a 1277
a14ed312 1278extern struct target_ops *find_core_target (void);
6426a772 1279
a14ed312 1280extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1281
570b8f7c
AC
1282extern int target_resize_to_sections (struct target_ops *target,
1283 int num_added);
07cd4b97
JB
1284
1285extern void remove_target_sections (bfd *abfd);
1286
c906108c
SS
1287\f
1288/* Stuff that should be shared among the various remote targets. */
1289
1290/* Debugging level. 0 is off, and non-zero values mean to print some debug
1291 information (higher values, more information). */
1292extern int remote_debug;
1293
1294/* Speed in bits per second, or -1 which means don't mess with the speed. */
1295extern int baud_rate;
1296/* Timeout limit for response from target. */
1297extern int remote_timeout;
1298
c906108c
SS
1299\f
1300/* Functions for helping to write a native target. */
1301
1302/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1303extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1304
c2d11a7d 1305/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1306 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1307/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1308 to the shorter target_signal_p() because it is far less ambigious.
1309 In this context ``target_signal'' refers to GDB's internal
1310 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1311 refers to the target operating system's signal. Confused? */
1312
c2d11a7d
JM
1313extern int target_signal_to_host_p (enum target_signal signo);
1314
1315/* Convert between host signal numbers and enum target_signal's.
1316 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1317 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1318/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1319 refering to the target operating system's signal numbering.
1320 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1321 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1322 internal representation of a target operating system's signal. */
1323
a14ed312
KB
1324extern enum target_signal target_signal_from_host (int);
1325extern int target_signal_to_host (enum target_signal);
c906108c 1326
1cded358
AR
1327extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1328 int);
1329extern int default_target_signal_to_host (struct gdbarch *,
1330 enum target_signal);
1331
c906108c 1332/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1333extern enum target_signal target_signal_from_command (int);
c906108c 1334
8defab1a
DJ
1335/* Set the show memory breakpoints mode to show, and installs a cleanup
1336 to restore it back to the current value. */
1337extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1338
c906108c
SS
1339\f
1340/* Imported from machine dependent code */
1341
c906108c 1342/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1343void target_ignore (void);
c906108c 1344
1df84f13 1345extern struct target_ops deprecated_child_ops;
5ac10fd1 1346
c5aa993b 1347#endif /* !defined (TARGET_H) */
This page took 0.986386 seconds and 4 git commands to generate.