* MAINTAINERS: Add myself under Write After Approval.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
07b82ea5 33struct target_section_table;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
2aecd87f 58#include "gdb_signals.h"
c906108c 59
c5aa993b
JM
60enum strata
61 {
62 dummy_stratum, /* The lowest of the low */
63 file_stratum, /* Executable files, etc */
4d8ac244 64 core_stratum, /* Core dump files */
d4f3574e 65 process_stratum, /* Executing processes */
81e64f55 66 thread_stratum, /* Executing threads */
85e747d2
UW
67 record_stratum, /* Support record debugging */
68 arch_stratum /* Architecture overrides */
c5aa993b 69 };
c906108c 70
c5aa993b
JM
71enum thread_control_capabilities
72 {
0d06e24b
JM
73 tc_none = 0, /* Default: can't control thread execution. */
74 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 75 };
c906108c
SS
76
77/* Stuff for target_wait. */
78
79/* Generally, what has the program done? */
c5aa993b
JM
80enum target_waitkind
81 {
82 /* The program has exited. The exit status is in value.integer. */
83 TARGET_WAITKIND_EXITED,
c906108c 84
0d06e24b
JM
85 /* The program has stopped with a signal. Which signal is in
86 value.sig. */
c5aa993b 87 TARGET_WAITKIND_STOPPED,
c906108c 88
c5aa993b
JM
89 /* The program has terminated with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_SIGNALLED,
c906108c 92
c5aa993b
JM
93 /* The program is letting us know that it dynamically loaded something
94 (e.g. it called load(2) on AIX). */
95 TARGET_WAITKIND_LOADED,
c906108c 96
3a3e9ee3 97 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
98 value.related_pid. I.e., if the child forks, value.related_pid
99 is the parent's ID. */
100
c5aa993b 101 TARGET_WAITKIND_FORKED,
c906108c 102
3a3e9ee3 103 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
104 value.related_pid. */
105
c5aa993b 106 TARGET_WAITKIND_VFORKED,
c906108c 107
0d06e24b
JM
108 /* The program has exec'ed a new executable file. The new file's
109 pathname is pointed to by value.execd_pathname. */
110
c5aa993b 111 TARGET_WAITKIND_EXECD,
c906108c 112
0d06e24b
JM
113 /* The program has entered or returned from a system call. On
114 HP-UX, this is used in the hardware watchpoint implementation.
115 The syscall's unique integer ID number is in value.syscall_id */
116
c5aa993b
JM
117 TARGET_WAITKIND_SYSCALL_ENTRY,
118 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 119
c5aa993b
JM
120 /* Nothing happened, but we stopped anyway. This perhaps should be handled
121 within target_wait, but I'm not sure target_wait should be resuming the
122 inferior. */
c4093a6a
JM
123 TARGET_WAITKIND_SPURIOUS,
124
8e7d2c16
DJ
125 /* An event has occured, but we should wait again.
126 Remote_async_wait() returns this when there is an event
c4093a6a
JM
127 on the inferior, but the rest of the world is not interested in
128 it. The inferior has not stopped, but has just sent some output
129 to the console, for instance. In this case, we want to go back
130 to the event loop and wait there for another event from the
131 inferior, rather than being stuck in the remote_async_wait()
132 function. This way the event loop is responsive to other events,
0d06e24b 133 like for instance the user typing. */
b2175913
MS
134 TARGET_WAITKIND_IGNORE,
135
136 /* The target has run out of history information,
137 and cannot run backward any further. */
138 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
139 };
140
c5aa993b
JM
141struct target_waitstatus
142 {
143 enum target_waitkind kind;
144
a96d9b2e
SDJ
145 /* Forked child pid, execd pathname, exit status, signal number or
146 syscall number. */
c5aa993b
JM
147 union
148 {
149 int integer;
150 enum target_signal sig;
3a3e9ee3 151 ptid_t related_pid;
c5aa993b 152 char *execd_pathname;
a96d9b2e 153 int syscall_number;
c5aa993b
JM
154 }
155 value;
156 };
c906108c 157
47608cb1
PA
158/* Options that can be passed to target_wait. */
159
160/* Return immediately if there's no event already queued. If this
161 options is not requested, target_wait blocks waiting for an
162 event. */
163#define TARGET_WNOHANG 1
164
a96d9b2e
SDJ
165/* The structure below stores information about a system call.
166 It is basically used in the "catch syscall" command, and in
167 every function that gives information about a system call.
168
169 It's also good to mention that its fields represent everything
170 that we currently know about a syscall in GDB. */
171struct syscall
172 {
173 /* The syscall number. */
174 int number;
175
176 /* The syscall name. */
177 const char *name;
178 };
179
f00150c9
DE
180/* Return a pretty printed form of target_waitstatus.
181 Space for the result is malloc'd, caller must free. */
182extern char *target_waitstatus_to_string (const struct target_waitstatus *);
183
2acceee2 184/* Possible types of events that the inferior handler will have to
0d06e24b 185 deal with. */
2acceee2
JM
186enum inferior_event_type
187 {
0d06e24b 188 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
189 INF_QUIT_REQ,
190 /* Process a normal inferior event which will result in target_wait
0d06e24b 191 being called. */
2146d243 192 INF_REG_EVENT,
0d06e24b 193 /* Deal with an error on the inferior. */
2acceee2 194 INF_ERROR,
0d06e24b 195 /* We are called because a timer went off. */
2acceee2 196 INF_TIMER,
0d06e24b 197 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
198 INF_EXEC_COMPLETE,
199 /* We are called to do some stuff after the inferior stops, but we
200 are expected to reenter the proceed() and
201 handle_inferior_event() functions. This is used only in case of
0d06e24b 202 'step n' like commands. */
c2d11a7d 203 INF_EXEC_CONTINUE
2acceee2 204 };
c906108c 205\f
13547ab6
DJ
206/* Target objects which can be transfered using target_read,
207 target_write, et cetera. */
1e3ff5ad
AC
208
209enum target_object
210{
1e3ff5ad
AC
211 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
212 TARGET_OBJECT_AVR,
23d964e7
UW
213 /* SPU target specific transfer. See "spu-tdep.c". */
214 TARGET_OBJECT_SPU,
1e3ff5ad 215 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 216 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
217 /* Memory, avoiding GDB's data cache and trusting the executable.
218 Target implementations of to_xfer_partial never need to handle
219 this object, and most callers should not use it. */
220 TARGET_OBJECT_RAW_MEMORY,
4e5d721f
DE
221 /* Memory known to be part of the target's stack. This is cached even
222 if it is not in a region marked as such, since it is known to be
223 "normal" RAM. */
224 TARGET_OBJECT_STACK_MEMORY,
287a334e
JJ
225 /* Kernel Unwind Table. See "ia64-tdep.c". */
226 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
227 /* Transfer auxilliary vector. */
228 TARGET_OBJECT_AUXV,
baf92889 229 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
230 TARGET_OBJECT_WCOOKIE,
231 /* Target memory map in XML format. */
232 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
233 /* Flash memory. This object can be used to write contents to
234 a previously erased flash memory. Using it without erasing
235 flash can have unexpected results. Addresses are physical
236 address on target, and not relative to flash start. */
23181151
DJ
237 TARGET_OBJECT_FLASH,
238 /* Available target-specific features, e.g. registers and coprocessors.
239 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
240 TARGET_OBJECT_AVAILABLE_FEATURES,
241 /* Currently loaded libraries, in XML format. */
07e059b5
VP
242 TARGET_OBJECT_LIBRARIES,
243 /* Get OS specific data. The ANNEX specifies the type (running
244 processes, etc.). */
4aa995e1
PA
245 TARGET_OBJECT_OSDATA,
246 /* Extra signal info. Usually the contents of `siginfo_t' on unix
247 platforms. */
248 TARGET_OBJECT_SIGNAL_INFO,
07e059b5 249 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
250};
251
13547ab6
DJ
252/* Request that OPS transfer up to LEN 8-bit bytes of the target's
253 OBJECT. The OFFSET, for a seekable object, specifies the
254 starting point. The ANNEX can be used to provide additional
255 data-specific information to the target.
1e3ff5ad 256
13547ab6
DJ
257 Return the number of bytes actually transfered, or -1 if the
258 transfer is not supported or otherwise fails. Return of a positive
259 value less than LEN indicates that no further transfer is possible.
260 Unlike the raw to_xfer_partial interface, callers of these
261 functions do not need to retry partial transfers. */
1e3ff5ad 262
1e3ff5ad
AC
263extern LONGEST target_read (struct target_ops *ops,
264 enum target_object object,
1b0ba102 265 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
266 ULONGEST offset, LONGEST len);
267
d5086790
VP
268extern LONGEST target_read_until_error (struct target_ops *ops,
269 enum target_object object,
270 const char *annex, gdb_byte *buf,
271 ULONGEST offset, LONGEST len);
272
1e3ff5ad
AC
273extern LONGEST target_write (struct target_ops *ops,
274 enum target_object object,
1b0ba102 275 const char *annex, const gdb_byte *buf,
1e3ff5ad 276 ULONGEST offset, LONGEST len);
b6591e8b 277
a76d924d
DJ
278/* Similar to target_write, except that it also calls PROGRESS with
279 the number of bytes written and the opaque BATON after every
280 successful partial write (and before the first write). This is
281 useful for progress reporting and user interaction while writing
282 data. To abort the transfer, the progress callback can throw an
283 exception. */
284
cf7a04e8
DJ
285LONGEST target_write_with_progress (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, const gdb_byte *buf,
288 ULONGEST offset, LONGEST len,
289 void (*progress) (ULONGEST, void *),
290 void *baton);
291
13547ab6
DJ
292/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
293 be read using OPS. The return value will be -1 if the transfer
294 fails or is not supported; 0 if the object is empty; or the length
295 of the object otherwise. If a positive value is returned, a
296 sufficiently large buffer will be allocated using xmalloc and
297 returned in *BUF_P containing the contents of the object.
298
299 This method should be used for objects sufficiently small to store
300 in a single xmalloc'd buffer, when no fixed bound on the object's
301 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
302 through this function. */
303
304extern LONGEST target_read_alloc (struct target_ops *ops,
305 enum target_object object,
306 const char *annex, gdb_byte **buf_p);
307
159f81f3
DJ
308/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
309 returned as a string, allocated using xmalloc. If an error occurs
310 or the transfer is unsupported, NULL is returned. Empty objects
311 are returned as allocated but empty strings. A warning is issued
312 if the result contains any embedded NUL bytes. */
313
314extern char *target_read_stralloc (struct target_ops *ops,
315 enum target_object object,
316 const char *annex);
317
b6591e8b
AC
318/* Wrappers to target read/write that perform memory transfers. They
319 throw an error if the memory transfer fails.
320
321 NOTE: cagney/2003-10-23: The naming schema is lifted from
322 "frame.h". The parameter order is lifted from get_frame_memory,
323 which in turn lifted it from read_memory. */
324
325extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 326 gdb_byte *buf, LONGEST len);
b6591e8b 327extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
e17a4113
UW
328 CORE_ADDR addr, int len,
329 enum bfd_endian byte_order);
1e3ff5ad 330\f
0d06e24b
JM
331struct thread_info; /* fwd decl for parameter list below: */
332
c906108c 333struct target_ops
c5aa993b 334 {
258b763a 335 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
336 char *to_shortname; /* Name this target type */
337 char *to_longname; /* Name for printing */
338 char *to_doc; /* Documentation. Does not include trailing
c906108c 339 newline, and starts with a one-line descrip-
0d06e24b 340 tion (probably similar to to_longname). */
bba2d28d
AC
341 /* Per-target scratch pad. */
342 void *to_data;
f1c07ab0
AC
343 /* The open routine takes the rest of the parameters from the
344 command, and (if successful) pushes a new target onto the
345 stack. Targets should supply this routine, if only to provide
346 an error message. */
507f3c78 347 void (*to_open) (char *, int);
f1c07ab0
AC
348 /* Old targets with a static target vector provide "to_close".
349 New re-entrant targets provide "to_xclose" and that is expected
350 to xfree everything (including the "struct target_ops"). */
351 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 352 void (*to_close) (int);
136d6dae 353 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 354 void (*to_post_attach) (int);
136d6dae 355 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 356 void (*to_disconnect) (struct target_ops *, char *, int);
28439f5e 357 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
117de6a9 358 ptid_t (*to_wait) (struct target_ops *,
47608cb1 359 ptid_t, struct target_waitstatus *, int);
28439f5e
PA
360 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
361 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
316f2060 362 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
363
364 /* Transfer LEN bytes of memory between GDB address MYADDR and
365 target address MEMADDR. If WRITE, transfer them to the target, else
366 transfer them from the target. TARGET is the target from which we
367 get this function.
368
369 Return value, N, is one of the following:
370
371 0 means that we can't handle this. If errno has been set, it is the
372 error which prevented us from doing it (FIXME: What about bfd_error?).
373
374 positive (call it N) means that we have transferred N bytes
375 starting at MEMADDR. We might be able to handle more bytes
376 beyond this length, but no promises.
377
378 negative (call its absolute value N) means that we cannot
379 transfer right at MEMADDR, but we could transfer at least
c8e73a31 380 something at MEMADDR + N.
c5aa993b 381
c8e73a31
AC
382 NOTE: cagney/2004-10-01: This has been entirely superseeded by
383 to_xfer_partial and inferior inheritance. */
384
1b0ba102 385 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
386 int len, int write,
387 struct mem_attrib *attrib,
388 struct target_ops *target);
c906108c 389
507f3c78 390 void (*to_files_info) (struct target_ops *);
a6d9a66e
UW
391 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
392 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7 393 int (*to_can_use_hw_breakpoint) (int, int, int);
a6d9a66e
UW
394 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
395 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
ccaa32c7
GS
396 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
397 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
398 int (*to_stopped_by_watchpoint) (void);
74174d2e 399 int to_have_steppable_watchpoint;
7df1a324 400 int to_have_continuable_watchpoint;
4aa7a7f5 401 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
402 int (*to_watchpoint_addr_within_range) (struct target_ops *,
403 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 404 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
405 void (*to_terminal_init) (void);
406 void (*to_terminal_inferior) (void);
407 void (*to_terminal_ours_for_output) (void);
408 void (*to_terminal_ours) (void);
a790ad35 409 void (*to_terminal_save_ours) (void);
507f3c78 410 void (*to_terminal_info) (char *, int);
7d85a9c0 411 void (*to_kill) (struct target_ops *);
507f3c78
KB
412 void (*to_load) (char *, int);
413 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
414 void (*to_create_inferior) (struct target_ops *,
415 char *, char *, char **, int);
39f77062 416 void (*to_post_startup_inferior) (ptid_t);
507f3c78 417 void (*to_acknowledge_created_inferior) (int);
fa113d1a 418 void (*to_insert_fork_catchpoint) (int);
507f3c78 419 int (*to_remove_fork_catchpoint) (int);
fa113d1a 420 void (*to_insert_vfork_catchpoint) (int);
507f3c78 421 int (*to_remove_vfork_catchpoint) (int);
ee057212 422 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 423 void (*to_insert_exec_catchpoint) (int);
507f3c78 424 int (*to_remove_exec_catchpoint) (int);
a96d9b2e 425 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
507f3c78 426 int (*to_has_exited) (int, int, int *);
136d6dae 427 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 428 int (*to_can_run) (void);
39f77062 429 void (*to_notice_signals) (ptid_t ptid);
28439f5e
PA
430 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
431 void (*to_find_new_threads) (struct target_ops *);
117de6a9 432 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
507f3c78 433 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 434 void (*to_stop) (ptid_t);
d9fcf2fb 435 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 436 char *(*to_pid_to_exec_file) (int pid);
49d03eab 437 void (*to_log_command) (const char *);
07b82ea5 438 struct target_section_table *(*to_get_section_table) (struct target_ops *);
c5aa993b 439 enum strata to_stratum;
c35b1492
PA
440 int (*to_has_all_memory) (struct target_ops *);
441 int (*to_has_memory) (struct target_ops *);
442 int (*to_has_stack) (struct target_ops *);
443 int (*to_has_registers) (struct target_ops *);
444 int (*to_has_execution) (struct target_ops *);
c5aa993b 445 int to_has_thread_control; /* control thread execution */
dc177b7a 446 int to_attach_no_wait;
6426a772
JM
447 /* ASYNC target controls */
448 int (*to_can_async_p) (void);
449 int (*to_is_async_p) (void);
b84876c2
PA
450 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
451 int (*to_async_mask) (int);
9908b566 452 int (*to_supports_non_stop) (void);
2146d243
RM
453 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
454 unsigned long,
455 int, int, int,
456 void *),
be4d1333
MS
457 void *);
458 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
459
460 /* Return the thread-local address at OFFSET in the
461 thread-local storage for the thread PTID and the shared library
462 or executable file given by OBJFILE. If that block of
463 thread-local storage hasn't been allocated yet, this function
464 may return an error. */
117de6a9
PA
465 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
466 ptid_t ptid,
b2756930 467 CORE_ADDR load_module_addr,
3f47be5c
EZ
468 CORE_ADDR offset);
469
13547ab6
DJ
470 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
471 OBJECT. The OFFSET, for a seekable object, specifies the
472 starting point. The ANNEX can be used to provide additional
473 data-specific information to the target.
474
475 Return the number of bytes actually transfered, zero when no
476 further transfer is possible, and -1 when the transfer is not
477 supported. Return of a positive value smaller than LEN does
478 not indicate the end of the object, only the end of the
479 transfer; higher level code should continue transferring if
480 desired. This is handled in target.c.
481
482 The interface does not support a "retry" mechanism. Instead it
483 assumes that at least one byte will be transfered on each
484 successful call.
485
486 NOTE: cagney/2003-10-17: The current interface can lead to
487 fragmented transfers. Lower target levels should not implement
488 hacks, such as enlarging the transfer, in an attempt to
489 compensate for this. Instead, the target stack should be
490 extended so that it implements supply/collect methods and a
491 look-aside object cache. With that available, the lowest
492 target can safely and freely "push" data up the stack.
493
494 See target_read and target_write for more information. One,
495 and only one, of readbuf or writebuf must be non-NULL. */
496
4b8a223f 497 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 498 enum target_object object, const char *annex,
1b0ba102 499 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 500 ULONGEST offset, LONGEST len);
1e3ff5ad 501
fd79ecee
DJ
502 /* Returns the memory map for the target. A return value of NULL
503 means that no memory map is available. If a memory address
504 does not fall within any returned regions, it's assumed to be
505 RAM. The returned memory regions should not overlap.
506
507 The order of regions does not matter; target_memory_map will
508 sort regions by starting address. For that reason, this
509 function should not be called directly except via
510 target_memory_map.
511
512 This method should not cache data; if the memory map could
513 change unexpectedly, it should be invalidated, and higher
514 layers will re-fetch it. */
515 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
516
a76d924d
DJ
517 /* Erases the region of flash memory starting at ADDRESS, of
518 length LENGTH.
519
520 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
521 on flash block boundaries, as reported by 'to_memory_map'. */
522 void (*to_flash_erase) (struct target_ops *,
523 ULONGEST address, LONGEST length);
524
525 /* Finishes a flash memory write sequence. After this operation
526 all flash memory should be available for writing and the result
527 of reading from areas written by 'to_flash_write' should be
528 equal to what was written. */
529 void (*to_flash_done) (struct target_ops *);
530
424163ea
DJ
531 /* Describe the architecture-specific features of this target.
532 Returns the description found, or NULL if no description
533 was available. */
534 const struct target_desc *(*to_read_description) (struct target_ops *ops);
535
0ef643c8
JB
536 /* Build the PTID of the thread on which a given task is running,
537 based on LWP and THREAD. These values are extracted from the
538 task Private_Data section of the Ada Task Control Block, and
539 their interpretation depends on the target. */
540 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
541
c47ffbe3
VP
542 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
543 Return 0 if *READPTR is already at the end of the buffer.
544 Return -1 if there is insufficient buffer for a whole entry.
545 Return 1 if an entry was read into *TYPEP and *VALP. */
546 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
547 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
548
08388c79
DE
549 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
550 sequence of bytes in PATTERN with length PATTERN_LEN.
551
552 The result is 1 if found, 0 if not found, and -1 if there was an error
553 requiring halting of the search (e.g. memory read error).
554 If the pattern is found the address is recorded in FOUND_ADDRP. */
555 int (*to_search_memory) (struct target_ops *ops,
556 CORE_ADDR start_addr, ULONGEST search_space_len,
557 const gdb_byte *pattern, ULONGEST pattern_len,
558 CORE_ADDR *found_addrp);
559
b2175913 560 /* Can target execute in reverse? */
2c0b251b 561 int (*to_can_execute_reverse) (void);
b2175913 562
8a305172
PA
563 /* Does this target support debugging multiple processes
564 simultaneously? */
565 int (*to_supports_multi_process) (void);
566
3a8f7b07
JK
567 /* Determine current architecture of thread PTID.
568
569 The target is supposed to determine the architecture of the code where
570 the target is currently stopped at (on Cell, if a target is in spu_run,
571 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
572 This is architecture used to perform decr_pc_after_break adjustment,
573 and also determines the frame architecture of the innermost frame.
574 ptrace operations need to operate according to target_gdbarch.
575
576 The default implementation always returns target_gdbarch. */
c2250ad1
UW
577 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
578
c5aa993b 579 int to_magic;
0d06e24b
JM
580 /* Need sub-structure for target machine related rather than comm related?
581 */
c5aa993b 582 };
c906108c
SS
583
584/* Magic number for checking ops size. If a struct doesn't end with this
585 number, somebody changed the declaration but didn't change all the
586 places that initialize one. */
587
588#define OPS_MAGIC 3840
589
590/* The ops structure for our "current" target process. This should
591 never be NULL. If there is no target, it points to the dummy_target. */
592
c5aa993b 593extern struct target_ops current_target;
c906108c 594
c906108c
SS
595/* Define easy words for doing these operations on our current target. */
596
597#define target_shortname (current_target.to_shortname)
598#define target_longname (current_target.to_longname)
599
f1c07ab0
AC
600/* Does whatever cleanup is required for a target that we are no
601 longer going to be calling. QUITTING indicates that GDB is exiting
602 and should not get hung on an error (otherwise it is important to
603 perform clean termination, even if it takes a while). This routine
604 is automatically always called when popping the target off the
605 target stack (to_beneath is undefined). Closing file descriptors
606 and freeing all memory allocated memory are typical things it
607 should do. */
608
609void target_close (struct target_ops *targ, int quitting);
c906108c
SS
610
611/* Attaches to a process on the target side. Arguments are as passed
612 to the `attach' command by the user. This routine can be called
613 when the target is not on the target-stack, if the target_can_run
2146d243 614 routine returns 1; in that case, it must push itself onto the stack.
c906108c 615 Upon exit, the target should be ready for normal operations, and
2146d243 616 should be ready to deliver the status of the process immediately
c906108c
SS
617 (without waiting) to an upcoming target_wait call. */
618
136d6dae 619void target_attach (char *, int);
c906108c 620
dc177b7a
PA
621/* Some targets don't generate traps when attaching to the inferior,
622 or their target_attach implementation takes care of the waiting.
623 These targets must set to_attach_no_wait. */
624
625#define target_attach_no_wait \
626 (current_target.to_attach_no_wait)
627
c906108c
SS
628/* The target_attach operation places a process under debugger control,
629 and stops the process.
630
631 This operation provides a target-specific hook that allows the
0d06e24b 632 necessary bookkeeping to be performed after an attach completes. */
c906108c 633#define target_post_attach(pid) \
0d06e24b 634 (*current_target.to_post_attach) (pid)
c906108c 635
c906108c
SS
636/* Takes a program previously attached to and detaches it.
637 The program may resume execution (some targets do, some don't) and will
638 no longer stop on signals, etc. We better not have left any breakpoints
639 in the program or it'll die when it hits one. ARGS is arguments
640 typed by the user (e.g. a signal to send the process). FROM_TTY
641 says whether to be verbose or not. */
642
a14ed312 643extern void target_detach (char *, int);
c906108c 644
6ad8ae5c
DJ
645/* Disconnect from the current target without resuming it (leaving it
646 waiting for a debugger). */
647
648extern void target_disconnect (char *, int);
649
39f77062 650/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
651 single-step or to run free; SIGGNAL is the signal to be given to
652 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
653 pass TARGET_SIGNAL_DEFAULT. */
654
e1ac3328 655extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 656
b5a2688f
AC
657/* Wait for process pid to do something. PTID = -1 to wait for any
658 pid to do something. Return pid of child, or -1 in case of error;
c906108c 659 store status through argument pointer STATUS. Note that it is
b5a2688f 660 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
661 the debugging target from the stack; GDB isn't prepared to get back
662 to the prompt with a debugging target but without the frame cache,
47608cb1
PA
663 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
664 options. */
c906108c 665
47608cb1
PA
666extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
667 int options);
c906108c 668
17dee195 669/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 670
28439f5e 671extern void target_fetch_registers (struct regcache *regcache, int regno);
c906108c
SS
672
673/* Store at least register REGNO, or all regs if REGNO == -1.
674 It can store as many registers as it wants to, so target_prepare_to_store
675 must have been previously called. Calls error() if there are problems. */
676
28439f5e 677extern void target_store_registers (struct regcache *regcache, int regs);
c906108c
SS
678
679/* Get ready to modify the registers array. On machines which store
680 individual registers, this doesn't need to do anything. On machines
681 which store all the registers in one fell swoop, this makes sure
682 that REGISTERS contains all the registers from the program being
683 debugged. */
684
316f2060
UW
685#define target_prepare_to_store(regcache) \
686 (*current_target.to_prepare_to_store) (regcache)
c906108c 687
8a305172
PA
688/* Returns true if this target can debug multiple processes
689 simultaneously. */
690
691#define target_supports_multi_process() \
692 (*current_target.to_supports_multi_process) ()
693
4e5d721f
DE
694/* Invalidate all target dcaches. */
695extern void target_dcache_invalidate (void);
4930751a 696
a14ed312 697extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 698
fc1a4b47 699extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 700
4e5d721f
DE
701extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
702
fc1a4b47 703extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 704 int len);
c906108c 705
fd79ecee
DJ
706/* Fetches the target's memory map. If one is found it is sorted
707 and returned, after some consistency checking. Otherwise, NULL
708 is returned. */
709VEC(mem_region_s) *target_memory_map (void);
710
a76d924d
DJ
711/* Erase the specified flash region. */
712void target_flash_erase (ULONGEST address, LONGEST length);
713
714/* Finish a sequence of flash operations. */
715void target_flash_done (void);
716
717/* Describes a request for a memory write operation. */
718struct memory_write_request
719 {
720 /* Begining address that must be written. */
721 ULONGEST begin;
722 /* Past-the-end address. */
723 ULONGEST end;
724 /* The data to write. */
725 gdb_byte *data;
726 /* A callback baton for progress reporting for this request. */
727 void *baton;
728 };
729typedef struct memory_write_request memory_write_request_s;
730DEF_VEC_O(memory_write_request_s);
731
732/* Enumeration specifying different flash preservation behaviour. */
733enum flash_preserve_mode
734 {
735 flash_preserve,
736 flash_discard
737 };
738
739/* Write several memory blocks at once. This version can be more
740 efficient than making several calls to target_write_memory, in
741 particular because it can optimize accesses to flash memory.
742
743 Moreover, this is currently the only memory access function in gdb
744 that supports writing to flash memory, and it should be used for
745 all cases where access to flash memory is desirable.
746
747 REQUESTS is the vector (see vec.h) of memory_write_request.
748 PRESERVE_FLASH_P indicates what to do with blocks which must be
749 erased, but not completely rewritten.
750 PROGRESS_CB is a function that will be periodically called to provide
751 feedback to user. It will be called with the baton corresponding
752 to the request currently being written. It may also be called
753 with a NULL baton, when preserved flash sectors are being rewritten.
754
755 The function returns 0 on success, and error otherwise. */
756int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
757 enum flash_preserve_mode preserve_flash_p,
758 void (*progress_cb) (ULONGEST, void *));
759
47932f85
DJ
760/* From infrun.c. */
761
3a3e9ee3 762extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 763
3a3e9ee3 764extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 765
3a3e9ee3 766extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 767
a96d9b2e
SDJ
768extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
769
c906108c
SS
770/* Print a line about the current target. */
771
772#define target_files_info() \
0d06e24b 773 (*current_target.to_files_info) (&current_target)
c906108c 774
8181d85f
DJ
775/* Insert a breakpoint at address BP_TGT->placed_address in the target
776 machine. Result is 0 for success, or an errno value. */
c906108c 777
a6d9a66e
UW
778#define target_insert_breakpoint(gdbarch, bp_tgt) \
779 (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
c906108c 780
8181d85f
DJ
781/* Remove a breakpoint at address BP_TGT->placed_address in the target
782 machine. Result is 0 for success, or an errno value. */
c906108c 783
a6d9a66e
UW
784#define target_remove_breakpoint(gdbarch, bp_tgt) \
785 (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
c906108c
SS
786
787/* Initialize the terminal settings we record for the inferior,
788 before we actually run the inferior. */
789
790#define target_terminal_init() \
0d06e24b 791 (*current_target.to_terminal_init) ()
c906108c
SS
792
793/* Put the inferior's terminal settings into effect.
794 This is preparation for starting or resuming the inferior. */
795
d9d2d8b6 796extern void target_terminal_inferior (void);
c906108c
SS
797
798/* Put some of our terminal settings into effect,
799 enough to get proper results from our output,
800 but do not change into or out of RAW mode
801 so that no input is discarded.
802
803 After doing this, either terminal_ours or terminal_inferior
804 should be called to get back to a normal state of affairs. */
805
806#define target_terminal_ours_for_output() \
0d06e24b 807 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
808
809/* Put our terminal settings into effect.
810 First record the inferior's terminal settings
811 so they can be restored properly later. */
812
813#define target_terminal_ours() \
0d06e24b 814 (*current_target.to_terminal_ours) ()
c906108c 815
a790ad35
SC
816/* Save our terminal settings.
817 This is called from TUI after entering or leaving the curses
818 mode. Since curses modifies our terminal this call is here
819 to take this change into account. */
820
821#define target_terminal_save_ours() \
822 (*current_target.to_terminal_save_ours) ()
823
c906108c
SS
824/* Print useful information about our terminal status, if such a thing
825 exists. */
826
827#define target_terminal_info(arg, from_tty) \
0d06e24b 828 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
829
830/* Kill the inferior process. Make it go away. */
831
7d85a9c0 832extern void target_kill (void);
c906108c 833
0d06e24b
JM
834/* Load an executable file into the target process. This is expected
835 to not only bring new code into the target process, but also to
1986bccd
AS
836 update GDB's symbol tables to match.
837
838 ARG contains command-line arguments, to be broken down with
839 buildargv (). The first non-switch argument is the filename to
840 load, FILE; the second is a number (as parsed by strtoul (..., ...,
841 0)), which is an offset to apply to the load addresses of FILE's
842 sections. The target may define switches, or other non-switch
843 arguments, as it pleases. */
c906108c 844
11cf8741 845extern void target_load (char *arg, int from_tty);
c906108c
SS
846
847/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
848 name. ADDRP is a CORE_ADDR * pointing to where the value of the
849 symbol should be returned. The result is 0 if successful, nonzero
850 if the symbol does not exist in the target environment. This
851 function should not call error() if communication with the target
852 is interrupted, since it is called from symbol reading, but should
853 return nonzero, possibly doing a complain(). */
c906108c 854
0d06e24b
JM
855#define target_lookup_symbol(name, addrp) \
856 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 857
39f77062 858/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
859 EXEC_FILE is the file to run.
860 ALLARGS is a string containing the arguments to the program.
861 ENV is the environment vector to pass. Errors reported with error().
862 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 863
136d6dae
VP
864void target_create_inferior (char *exec_file, char *args,
865 char **env, int from_tty);
c906108c
SS
866
867/* Some targets (such as ttrace-based HPUX) don't allow us to request
868 notification of inferior events such as fork and vork immediately
869 after the inferior is created. (This because of how gdb gets an
870 inferior created via invoking a shell to do it. In such a scenario,
871 if the shell init file has commands in it, the shell will fork and
872 exec for each of those commands, and we will see each such fork
873 event. Very bad.)
c5aa993b 874
0d06e24b
JM
875 Such targets will supply an appropriate definition for this function. */
876
39f77062
KB
877#define target_post_startup_inferior(ptid) \
878 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
879
880/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
881 some synchronization between gdb and the new inferior process, PID. */
882
c906108c 883#define target_acknowledge_created_inferior(pid) \
0d06e24b 884 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 885
0d06e24b
JM
886/* On some targets, we can catch an inferior fork or vfork event when
887 it occurs. These functions insert/remove an already-created
888 catchpoint for such events. */
c906108c 889
c906108c 890#define target_insert_fork_catchpoint(pid) \
0d06e24b 891 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
892
893#define target_remove_fork_catchpoint(pid) \
0d06e24b 894 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
895
896#define target_insert_vfork_catchpoint(pid) \
0d06e24b 897 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
898
899#define target_remove_vfork_catchpoint(pid) \
0d06e24b 900 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 901
6604731b
DJ
902/* If the inferior forks or vforks, this function will be called at
903 the next resume in order to perform any bookkeeping and fiddling
904 necessary to continue debugging either the parent or child, as
905 requested, and releasing the other. Information about the fork
906 or vfork event is available via get_last_target_status ().
907 This function returns 1 if the inferior should not be resumed
908 (i.e. there is another event pending). */
0d06e24b 909
ee057212 910int target_follow_fork (int follow_child);
c906108c
SS
911
912/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
913 occurs. These functions insert/remove an already-created
914 catchpoint for such events. */
915
c906108c 916#define target_insert_exec_catchpoint(pid) \
0d06e24b 917 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 918
c906108c 919#define target_remove_exec_catchpoint(pid) \
0d06e24b 920 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 921
a96d9b2e
SDJ
922/* Syscall catch.
923
924 NEEDED is nonzero if any syscall catch (of any kind) is requested.
925 If NEEDED is zero, it means the target can disable the mechanism to
926 catch system calls because there are no more catchpoints of this type.
927
928 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
929 being requested. In this case, both TABLE_SIZE and TABLE should
930 be ignored.
931
932 TABLE_SIZE is the number of elements in TABLE. It only matters if
933 ANY_COUNT is zero.
934
935 TABLE is an array of ints, indexed by syscall number. An element in
936 this array is nonzero if that syscall should be caught. This argument
937 only matters if ANY_COUNT is zero. */
938
939#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
940 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
941 table_size, table)
942
c906108c 943/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
944 exit code of PID, if any. */
945
c906108c 946#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 947 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
948
949/* The debugger has completed a blocking wait() call. There is now
2146d243 950 some process event that must be processed. This function should
c906108c 951 be defined by those targets that require the debugger to perform
0d06e24b 952 cleanup or internal state changes in response to the process event. */
c906108c
SS
953
954/* The inferior process has died. Do what is right. */
955
136d6dae 956void target_mourn_inferior (void);
c906108c
SS
957
958/* Does target have enough data to do a run or attach command? */
959
960#define target_can_run(t) \
0d06e24b 961 ((t)->to_can_run) ()
c906108c
SS
962
963/* post process changes to signal handling in the inferior. */
964
39f77062
KB
965#define target_notice_signals(ptid) \
966 (*current_target.to_notice_signals) (ptid)
c906108c
SS
967
968/* Check to see if a thread is still alive. */
969
28439f5e 970extern int target_thread_alive (ptid_t ptid);
c906108c 971
b83266a0
SS
972/* Query for new threads and add them to the thread list. */
973
28439f5e 974extern void target_find_new_threads (void);
b83266a0 975
0d06e24b
JM
976/* Make target stop in a continuable fashion. (For instance, under
977 Unix, this should act like SIGSTOP). This function is normally
978 used by GUIs to implement a stop button. */
c906108c 979
94cc34af 980#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 981
96baa820
JM
982/* Send the specified COMMAND to the target's monitor
983 (shell,interpreter) for execution. The result of the query is
0d06e24b 984 placed in OUTBUF. */
96baa820
JM
985
986#define target_rcmd(command, outbuf) \
987 (*current_target.to_rcmd) (command, outbuf)
988
989
c906108c
SS
990/* Does the target include all of memory, or only part of it? This
991 determines whether we look up the target chain for other parts of
992 memory if this target can't satisfy a request. */
993
c35b1492
PA
994extern int target_has_all_memory_1 (void);
995#define target_has_all_memory target_has_all_memory_1 ()
c906108c
SS
996
997/* Does the target include memory? (Dummy targets don't.) */
998
c35b1492
PA
999extern int target_has_memory_1 (void);
1000#define target_has_memory target_has_memory_1 ()
c906108c
SS
1001
1002/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1003 we start a process.) */
c5aa993b 1004
c35b1492
PA
1005extern int target_has_stack_1 (void);
1006#define target_has_stack target_has_stack_1 ()
c906108c
SS
1007
1008/* Does the target have registers? (Exec files don't.) */
1009
c35b1492
PA
1010extern int target_has_registers_1 (void);
1011#define target_has_registers target_has_registers_1 ()
c906108c
SS
1012
1013/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
1014 hoops), or pop its stack a few times? This means that the current
1015 target is currently executing; for some targets, that's the same as
1016 whether or not the target is capable of execution, but there are
1017 also targets which can be current while not executing. In that
1018 case this will become true after target_create_inferior or
1019 target_attach. */
c906108c 1020
c35b1492
PA
1021extern int target_has_execution_1 (void);
1022#define target_has_execution target_has_execution_1 ()
1023
1024/* Default implementations for process_stratum targets. Return true
1025 if there's a selected inferior, false otherwise. */
1026
1027extern int default_child_has_all_memory (struct target_ops *ops);
1028extern int default_child_has_memory (struct target_ops *ops);
1029extern int default_child_has_stack (struct target_ops *ops);
1030extern int default_child_has_registers (struct target_ops *ops);
1031extern int default_child_has_execution (struct target_ops *ops);
c906108c
SS
1032
1033/* Can the target support the debugger control of thread execution?
d6350901 1034 Can it lock the thread scheduler? */
c906108c
SS
1035
1036#define target_can_lock_scheduler \
0d06e24b 1037 (current_target.to_has_thread_control & tc_schedlock)
c906108c 1038
c6ebd6cf
VP
1039/* Should the target enable async mode if it is supported? Temporary
1040 cludge until async mode is a strict superset of sync mode. */
1041extern int target_async_permitted;
1042
6426a772
JM
1043/* Can the target support asynchronous execution? */
1044#define target_can_async_p() (current_target.to_can_async_p ())
1045
1046/* Is the target in asynchronous execution mode? */
b84876c2 1047#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 1048
9908b566
VP
1049int target_supports_non_stop (void);
1050
6426a772 1051/* Put the target in async mode with the specified callback function. */
0d06e24b 1052#define target_async(CALLBACK,CONTEXT) \
b84876c2 1053 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 1054
04714b91
AC
1055/* This is to be used ONLY within call_function_by_hand(). It provides
1056 a workaround, to have inferior function calls done in sychronous
1057 mode, even though the target is asynchronous. After
ed9a39eb
JM
1058 target_async_mask(0) is called, calls to target_can_async_p() will
1059 return FALSE , so that target_resume() will not try to start the
1060 target asynchronously. After the inferior stops, we IMMEDIATELY
1061 restore the previous nature of the target, by calling
1062 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1063 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1064
1065 FIXME ezannoni 1999-12-13: we won't need this once we move
1066 the turning async on and off to the single execution commands,
0d06e24b 1067 from where it is done currently, in remote_resume(). */
ed9a39eb 1068
b84876c2
PA
1069#define target_async_mask(MASK) \
1070 (current_target.to_async_mask (MASK))
ed9a39eb 1071
c906108c
SS
1072/* Converts a process id to a string. Usually, the string just contains
1073 `process xyz', but on some systems it may contain
1074 `process xyz thread abc'. */
1075
117de6a9 1076extern char *target_pid_to_str (ptid_t ptid);
c906108c 1077
39f77062 1078extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1079
0d06e24b
JM
1080/* Return a short string describing extra information about PID,
1081 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1082 is okay. */
1083
1084#define target_extra_thread_info(TP) \
1085 (current_target.to_extra_thread_info (TP))
ed9a39eb 1086
c906108c
SS
1087/* Attempts to find the pathname of the executable file
1088 that was run to create a specified process.
1089
1090 The process PID must be stopped when this operation is used.
c5aa993b 1091
c906108c
SS
1092 If the executable file cannot be determined, NULL is returned.
1093
1094 Else, a pointer to a character string containing the pathname
1095 is returned. This string should be copied into a buffer by
1096 the client if the string will not be immediately used, or if
0d06e24b 1097 it must persist. */
c906108c
SS
1098
1099#define target_pid_to_exec_file(pid) \
0d06e24b 1100 (current_target.to_pid_to_exec_file) (pid)
c906108c 1101
3a8f7b07 1102/* See the to_thread_architecture description in struct target_ops. */
c2250ad1
UW
1103
1104#define target_thread_architecture(ptid) \
1105 (current_target.to_thread_architecture (&current_target, ptid))
1106
be4d1333
MS
1107/*
1108 * Iterator function for target memory regions.
1109 * Calls a callback function once for each memory region 'mapped'
1110 * in the child process. Defined as a simple macro rather than
2146d243 1111 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1112 */
1113
1114#define target_find_memory_regions(FUNC, DATA) \
1115 (current_target.to_find_memory_regions) (FUNC, DATA)
1116
1117/*
1118 * Compose corefile .note section.
1119 */
1120
1121#define target_make_corefile_notes(BFD, SIZE_P) \
1122 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1123
c906108c
SS
1124/* Hardware watchpoint interfaces. */
1125
1126/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1127 write). */
1128
d92524f1
PM
1129#define target_stopped_by_watchpoint \
1130 (*current_target.to_stopped_by_watchpoint)
7df1a324 1131
74174d2e
UW
1132/* Non-zero if we have steppable watchpoints */
1133
d92524f1 1134#define target_have_steppable_watchpoint \
74174d2e 1135 (current_target.to_have_steppable_watchpoint)
74174d2e 1136
7df1a324
KW
1137/* Non-zero if we have continuable watchpoints */
1138
d92524f1 1139#define target_have_continuable_watchpoint \
7df1a324 1140 (current_target.to_have_continuable_watchpoint)
c906108c 1141
ccaa32c7 1142/* Provide defaults for hardware watchpoint functions. */
c906108c 1143
2146d243 1144/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1145 elsewhere use the definitions in the target vector. */
c906108c
SS
1146
1147/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1148 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1149 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1150 (including this one?). OTHERTYPE is who knows what... */
1151
d92524f1 1152#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
ccaa32c7 1153 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
c906108c 1154
d92524f1 1155#define target_region_ok_for_hw_watchpoint(addr, len) \
e0d24f8d 1156 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
e0d24f8d 1157
c906108c
SS
1158
1159/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1160 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1161 success, non-zero for failure. */
1162
ccaa32c7
GS
1163#define target_insert_watchpoint(addr, len, type) \
1164 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1165
ccaa32c7
GS
1166#define target_remove_watchpoint(addr, len, type) \
1167 (*current_target.to_remove_watchpoint) (addr, len, type)
c906108c 1168
a6d9a66e
UW
1169#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1170 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
ccaa32c7 1171
a6d9a66e
UW
1172#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1173 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
c906108c 1174
4aa7a7f5
JJ
1175#define target_stopped_data_address(target, x) \
1176 (*target.to_stopped_data_address) (target, x)
c906108c 1177
5009afc5
AS
1178#define target_watchpoint_addr_within_range(target, addr, start, length) \
1179 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1180
b2175913
MS
1181/* Target can execute in reverse? */
1182#define target_can_execute_reverse \
1183 (current_target.to_can_execute_reverse ? \
1184 current_target.to_can_execute_reverse () : 0)
1185
424163ea
DJ
1186extern const struct target_desc *target_read_description (struct target_ops *);
1187
0ef643c8
JB
1188#define target_get_ada_task_ptid(lwp, tid) \
1189 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1190
08388c79
DE
1191/* Utility implementation of searching memory. */
1192extern int simple_search_memory (struct target_ops* ops,
1193 CORE_ADDR start_addr,
1194 ULONGEST search_space_len,
1195 const gdb_byte *pattern,
1196 ULONGEST pattern_len,
1197 CORE_ADDR *found_addrp);
1198
1199/* Main entry point for searching memory. */
1200extern int target_search_memory (CORE_ADDR start_addr,
1201 ULONGEST search_space_len,
1202 const gdb_byte *pattern,
1203 ULONGEST pattern_len,
1204 CORE_ADDR *found_addrp);
1205
49d03eab
MR
1206/* Command logging facility. */
1207
1208#define target_log_command(p) \
1209 do \
1210 if (current_target.to_log_command) \
1211 (*current_target.to_log_command) (p); \
1212 while (0)
1213
c906108c
SS
1214/* Routines for maintenance of the target structures...
1215
1216 add_target: Add a target to the list of all possible targets.
1217
1218 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1219 targets, within its particular stratum of the stack. Result
1220 is 0 if now atop the stack, nonzero if not on top (maybe
1221 should warn user).
c906108c
SS
1222
1223 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1224 no matter where it is on the list. Returns 0 if no
1225 change, 1 if removed from stack.
c906108c 1226
c5aa993b 1227 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1228
a14ed312 1229extern void add_target (struct target_ops *);
c906108c 1230
a14ed312 1231extern int push_target (struct target_ops *);
c906108c 1232
a14ed312 1233extern int unpush_target (struct target_ops *);
c906108c 1234
fd79ecee
DJ
1235extern void target_pre_inferior (int);
1236
a14ed312 1237extern void target_preopen (int);
c906108c 1238
a14ed312 1239extern void pop_target (void);
c906108c 1240
aa76d38d
PA
1241/* Does whatever cleanup is required to get rid of all pushed targets.
1242 QUITTING is propagated to target_close; it indicates that GDB is
1243 exiting and should not get hung on an error (otherwise it is
1244 important to perform clean termination, even if it takes a
1245 while). */
1246extern void pop_all_targets (int quitting);
1247
87ab71f0
PA
1248/* Like pop_all_targets, but pops only targets whose stratum is
1249 strictly above ABOVE_STRATUM. */
1250extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1251
9e35dae4
DJ
1252extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1253 CORE_ADDR offset);
1254
0542c86d 1255/* Struct target_section maps address ranges to file sections. It is
c906108c
SS
1256 mostly used with BFD files, but can be used without (e.g. for handling
1257 raw disks, or files not in formats handled by BFD). */
1258
0542c86d 1259struct target_section
c5aa993b
JM
1260 {
1261 CORE_ADDR addr; /* Lowest address in section */
1262 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1263
7be0c536 1264 struct bfd_section *the_bfd_section;
c906108c 1265
c5aa993b
JM
1266 bfd *bfd; /* BFD file pointer */
1267 };
c906108c 1268
07b82ea5
PA
1269/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1270
1271struct target_section_table
1272{
1273 struct target_section *sections;
1274 struct target_section *sections_end;
1275};
1276
8db32d44 1277/* Return the "section" containing the specified address. */
0542c86d
PA
1278struct target_section *target_section_by_addr (struct target_ops *target,
1279 CORE_ADDR addr);
8db32d44 1280
07b82ea5
PA
1281/* Return the target section table this target (or the targets
1282 beneath) currently manipulate. */
1283
1284extern struct target_section_table *target_get_section_table
1285 (struct target_ops *target);
1286
c906108c
SS
1287/* From mem-break.c */
1288
a6d9a66e 1289extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1290
a6d9a66e 1291extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
c906108c 1292
ae4b2284 1293extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1294
ae4b2284 1295extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1296
c906108c
SS
1297
1298/* From target.c */
1299
a14ed312 1300extern void initialize_targets (void);
c906108c 1301
117de6a9 1302extern NORETURN void noprocess (void) ATTR_NORETURN;
c906108c 1303
8edfe269
DJ
1304extern void target_require_runnable (void);
1305
136d6dae 1306extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1307
136d6dae
VP
1308extern void find_default_create_inferior (struct target_ops *,
1309 char *, char *, char **, int);
c906108c 1310
a14ed312 1311extern struct target_ops *find_run_target (void);
7a292a7a 1312
a14ed312 1313extern struct target_ops *find_core_target (void);
6426a772 1314
a14ed312 1315extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1316
e0665bc8
PA
1317/* Read OS data object of type TYPE from the target, and return it in
1318 XML format. The result is NUL-terminated and returned as a string,
1319 allocated using xmalloc. If an error occurs or the transfer is
1320 unsupported, NULL is returned. Empty objects are returned as
1321 allocated but empty strings. */
1322
07e059b5
VP
1323extern char *target_get_osdata (const char *type);
1324
c906108c
SS
1325\f
1326/* Stuff that should be shared among the various remote targets. */
1327
1328/* Debugging level. 0 is off, and non-zero values mean to print some debug
1329 information (higher values, more information). */
1330extern int remote_debug;
1331
1332/* Speed in bits per second, or -1 which means don't mess with the speed. */
1333extern int baud_rate;
1334/* Timeout limit for response from target. */
1335extern int remote_timeout;
1336
c906108c
SS
1337\f
1338/* Functions for helping to write a native target. */
1339
1340/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1341extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1342
2aecd87f 1343/* These are in common/signals.c, but they're only used by gdb. */
1cded358
AR
1344extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1345 int);
1346extern int default_target_signal_to_host (struct gdbarch *,
1347 enum target_signal);
1348
c906108c 1349/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1350extern enum target_signal target_signal_from_command (int);
2aecd87f 1351/* End of files in common/signals.c. */
c906108c 1352
8defab1a
DJ
1353/* Set the show memory breakpoints mode to show, and installs a cleanup
1354 to restore it back to the current value. */
1355extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1356
c906108c
SS
1357\f
1358/* Imported from machine dependent code */
1359
c906108c 1360/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1361void target_ignore (void);
c906108c 1362
1df84f13 1363extern struct target_ops deprecated_child_ops;
5ac10fd1 1364
c5aa993b 1365#endif /* !defined (TARGET_H) */
This page took 1.489833 seconds and 4 git commands to generate.