* exec.c (xfer_memory): Add attrib argument.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
29e57380 2 Copyright 1990-1994, 1999, 2000, 2001 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
4930751a 46#include "dcache.h"
29e57380 47#include "memattr.h"
c906108c 48
c5aa993b
JM
49enum strata
50 {
51 dummy_stratum, /* The lowest of the low */
52 file_stratum, /* Executable files, etc */
53 core_stratum, /* Core dump files */
54 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
55 process_stratum, /* Executing processes */
56 thread_stratum /* Executing threads */
c5aa993b 57 };
c906108c 58
c5aa993b
JM
59enum thread_control_capabilities
60 {
0d06e24b
JM
61 tc_none = 0, /* Default: can't control thread execution. */
62 tc_schedlock = 1, /* Can lock the thread scheduler. */
63 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 64 };
c906108c
SS
65
66/* Stuff for target_wait. */
67
68/* Generally, what has the program done? */
c5aa993b
JM
69enum target_waitkind
70 {
71 /* The program has exited. The exit status is in value.integer. */
72 TARGET_WAITKIND_EXITED,
c906108c 73
0d06e24b
JM
74 /* The program has stopped with a signal. Which signal is in
75 value.sig. */
c5aa993b 76 TARGET_WAITKIND_STOPPED,
c906108c 77
c5aa993b
JM
78 /* The program has terminated with a signal. Which signal is in
79 value.sig. */
80 TARGET_WAITKIND_SIGNALLED,
c906108c 81
c5aa993b
JM
82 /* The program is letting us know that it dynamically loaded something
83 (e.g. it called load(2) on AIX). */
84 TARGET_WAITKIND_LOADED,
c906108c 85
0d06e24b
JM
86 /* The program has forked. A "related" process' ID is in
87 value.related_pid. I.e., if the child forks, value.related_pid
88 is the parent's ID. */
89
c5aa993b 90 TARGET_WAITKIND_FORKED,
c906108c 91
0d06e24b
JM
92 /* The program has vforked. A "related" process's ID is in
93 value.related_pid. */
94
c5aa993b 95 TARGET_WAITKIND_VFORKED,
c906108c 96
0d06e24b
JM
97 /* The program has exec'ed a new executable file. The new file's
98 pathname is pointed to by value.execd_pathname. */
99
c5aa993b 100 TARGET_WAITKIND_EXECD,
c906108c 101
0d06e24b
JM
102 /* The program has entered or returned from a system call. On
103 HP-UX, this is used in the hardware watchpoint implementation.
104 The syscall's unique integer ID number is in value.syscall_id */
105
c5aa993b
JM
106 TARGET_WAITKIND_SYSCALL_ENTRY,
107 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 108
c5aa993b
JM
109 /* Nothing happened, but we stopped anyway. This perhaps should be handled
110 within target_wait, but I'm not sure target_wait should be resuming the
111 inferior. */
c4093a6a
JM
112 TARGET_WAITKIND_SPURIOUS,
113
114 /* This is used for target async and extended-async
115 only. Remote_async_wait() returns this when there is an event
116 on the inferior, but the rest of the world is not interested in
117 it. The inferior has not stopped, but has just sent some output
118 to the console, for instance. In this case, we want to go back
119 to the event loop and wait there for another event from the
120 inferior, rather than being stuck in the remote_async_wait()
121 function. This way the event loop is responsive to other events,
0d06e24b 122 like for instance the user typing. */
c4093a6a 123 TARGET_WAITKIND_IGNORE
c906108c
SS
124 };
125
126/* The numbering of these signals is chosen to match traditional unix
127 signals (insofar as various unices use the same numbers, anyway).
128 It is also the numbering of the GDB remote protocol. Other remote
129 protocols, if they use a different numbering, should make sure to
cd0fc7c3 130 translate appropriately.
c906108c 131
cd0fc7c3
SS
132 Since these numbers have actually made it out into other software
133 (stubs, etc.), you mustn't disturb the assigned numbering. If you
134 need to add new signals here, add them to the end of the explicitly
135 numbered signals.
136
137 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
138 (1) This set of signals represents a widely-accepted attempt to
139 represent events of this sort in a portable fashion, (2) we want a
140 signal to make it from wait to child_wait to the user intact, (3) many
141 remote protocols use a similar encoding. However, it is
142 recognized that this set of signals has limitations (such as not
143 distinguishing between various kinds of SIGSEGV, or not
144 distinguishing hitting a breakpoint from finishing a single step).
145 So in the future we may get around this either by adding additional
146 signals for breakpoint, single-step, etc., or by adding signal
147 codes; the latter seems more in the spirit of what BSD, System V,
148 etc. are doing to address these issues. */
149
150/* For an explanation of what each signal means, see
151 target_signal_to_string. */
152
c5aa993b
JM
153enum target_signal
154 {
155 /* Used some places (e.g. stop_signal) to record the concept that
156 there is no signal. */
157 TARGET_SIGNAL_0 = 0,
158 TARGET_SIGNAL_FIRST = 0,
159 TARGET_SIGNAL_HUP = 1,
160 TARGET_SIGNAL_INT = 2,
161 TARGET_SIGNAL_QUIT = 3,
162 TARGET_SIGNAL_ILL = 4,
163 TARGET_SIGNAL_TRAP = 5,
164 TARGET_SIGNAL_ABRT = 6,
165 TARGET_SIGNAL_EMT = 7,
166 TARGET_SIGNAL_FPE = 8,
167 TARGET_SIGNAL_KILL = 9,
168 TARGET_SIGNAL_BUS = 10,
169 TARGET_SIGNAL_SEGV = 11,
170 TARGET_SIGNAL_SYS = 12,
171 TARGET_SIGNAL_PIPE = 13,
172 TARGET_SIGNAL_ALRM = 14,
173 TARGET_SIGNAL_TERM = 15,
174 TARGET_SIGNAL_URG = 16,
175 TARGET_SIGNAL_STOP = 17,
176 TARGET_SIGNAL_TSTP = 18,
177 TARGET_SIGNAL_CONT = 19,
178 TARGET_SIGNAL_CHLD = 20,
179 TARGET_SIGNAL_TTIN = 21,
180 TARGET_SIGNAL_TTOU = 22,
181 TARGET_SIGNAL_IO = 23,
182 TARGET_SIGNAL_XCPU = 24,
183 TARGET_SIGNAL_XFSZ = 25,
184 TARGET_SIGNAL_VTALRM = 26,
185 TARGET_SIGNAL_PROF = 27,
186 TARGET_SIGNAL_WINCH = 28,
187 TARGET_SIGNAL_LOST = 29,
188 TARGET_SIGNAL_USR1 = 30,
189 TARGET_SIGNAL_USR2 = 31,
190 TARGET_SIGNAL_PWR = 32,
191 /* Similar to SIGIO. Perhaps they should have the same number. */
192 TARGET_SIGNAL_POLL = 33,
193 TARGET_SIGNAL_WIND = 34,
194 TARGET_SIGNAL_PHONE = 35,
195 TARGET_SIGNAL_WAITING = 36,
196 TARGET_SIGNAL_LWP = 37,
197 TARGET_SIGNAL_DANGER = 38,
198 TARGET_SIGNAL_GRANT = 39,
199 TARGET_SIGNAL_RETRACT = 40,
200 TARGET_SIGNAL_MSG = 41,
201 TARGET_SIGNAL_SOUND = 42,
202 TARGET_SIGNAL_SAK = 43,
203 TARGET_SIGNAL_PRIO = 44,
204 TARGET_SIGNAL_REALTIME_33 = 45,
205 TARGET_SIGNAL_REALTIME_34 = 46,
206 TARGET_SIGNAL_REALTIME_35 = 47,
207 TARGET_SIGNAL_REALTIME_36 = 48,
208 TARGET_SIGNAL_REALTIME_37 = 49,
209 TARGET_SIGNAL_REALTIME_38 = 50,
210 TARGET_SIGNAL_REALTIME_39 = 51,
211 TARGET_SIGNAL_REALTIME_40 = 52,
212 TARGET_SIGNAL_REALTIME_41 = 53,
213 TARGET_SIGNAL_REALTIME_42 = 54,
214 TARGET_SIGNAL_REALTIME_43 = 55,
215 TARGET_SIGNAL_REALTIME_44 = 56,
216 TARGET_SIGNAL_REALTIME_45 = 57,
217 TARGET_SIGNAL_REALTIME_46 = 58,
218 TARGET_SIGNAL_REALTIME_47 = 59,
219 TARGET_SIGNAL_REALTIME_48 = 60,
220 TARGET_SIGNAL_REALTIME_49 = 61,
221 TARGET_SIGNAL_REALTIME_50 = 62,
222 TARGET_SIGNAL_REALTIME_51 = 63,
223 TARGET_SIGNAL_REALTIME_52 = 64,
224 TARGET_SIGNAL_REALTIME_53 = 65,
225 TARGET_SIGNAL_REALTIME_54 = 66,
226 TARGET_SIGNAL_REALTIME_55 = 67,
227 TARGET_SIGNAL_REALTIME_56 = 68,
228 TARGET_SIGNAL_REALTIME_57 = 69,
229 TARGET_SIGNAL_REALTIME_58 = 70,
230 TARGET_SIGNAL_REALTIME_59 = 71,
231 TARGET_SIGNAL_REALTIME_60 = 72,
232 TARGET_SIGNAL_REALTIME_61 = 73,
233 TARGET_SIGNAL_REALTIME_62 = 74,
234 TARGET_SIGNAL_REALTIME_63 = 75,
235
236 /* Used internally by Solaris threads. See signal(5) on Solaris. */
237 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 238
d4f3574e
SS
239 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
240 Linux does, and we can't disturb the numbering, since it's part
241 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
242 is number 76. */
243 TARGET_SIGNAL_REALTIME_32,
d57fc352
PS
244 /* Yet another pain, IRIX 6 has SIG64. */
245 TARGET_SIGNAL_REALTIME_64,
d4f3574e 246
c906108c 247#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
248 /* Mach exceptions */
249 TARGET_EXC_BAD_ACCESS,
250 TARGET_EXC_BAD_INSTRUCTION,
251 TARGET_EXC_ARITHMETIC,
252 TARGET_EXC_EMULATION,
253 TARGET_EXC_SOFTWARE,
254 TARGET_EXC_BREAKPOINT,
c906108c 255#endif
c5aa993b 256 TARGET_SIGNAL_INFO,
c906108c 257
c5aa993b
JM
258 /* Some signal we don't know about. */
259 TARGET_SIGNAL_UNKNOWN,
c906108c 260
c5aa993b
JM
261 /* Use whatever signal we use when one is not specifically specified
262 (for passing to proceed and so on). */
263 TARGET_SIGNAL_DEFAULT,
c906108c 264
c5aa993b
JM
265 /* Last and unused enum value, for sizing arrays, etc. */
266 TARGET_SIGNAL_LAST
267 };
c906108c 268
c5aa993b
JM
269struct target_waitstatus
270 {
271 enum target_waitkind kind;
272
273 /* Forked child pid, execd pathname, exit status or signal number. */
274 union
275 {
276 int integer;
277 enum target_signal sig;
278 int related_pid;
279 char *execd_pathname;
280 int syscall_id;
281 }
282 value;
283 };
c906108c 284
2acceee2 285/* Possible types of events that the inferior handler will have to
0d06e24b 286 deal with. */
2acceee2
JM
287enum inferior_event_type
288 {
0d06e24b 289 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
290 INF_QUIT_REQ,
291 /* Process a normal inferior event which will result in target_wait
0d06e24b 292 being called. */
2acceee2 293 INF_REG_EVENT,
0d06e24b 294 /* Deal with an error on the inferior. */
2acceee2 295 INF_ERROR,
0d06e24b 296 /* We are called because a timer went off. */
2acceee2 297 INF_TIMER,
0d06e24b 298 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
299 INF_EXEC_COMPLETE,
300 /* We are called to do some stuff after the inferior stops, but we
301 are expected to reenter the proceed() and
302 handle_inferior_event() functions. This is used only in case of
0d06e24b 303 'step n' like commands. */
c2d11a7d 304 INF_EXEC_CONTINUE
2acceee2
JM
305 };
306
c906108c 307/* Return the string for a signal. */
a14ed312 308extern char *target_signal_to_string (enum target_signal);
c906108c
SS
309
310/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 311extern char *target_signal_to_name (enum target_signal);
c906108c
SS
312
313/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 314enum target_signal target_signal_from_name (char *);
c906108c 315\f
c5aa993b 316
c906108c
SS
317/* If certain kinds of activity happen, target_wait should perform
318 callbacks. */
319/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 320 on TARGET_ACTIVITY_FD. */
c906108c
SS
321extern int target_activity_fd;
322/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 323extern int (*target_activity_function) (void);
c906108c 324\f
0d06e24b
JM
325struct thread_info; /* fwd decl for parameter list below: */
326
c906108c 327struct target_ops
c5aa993b
JM
328 {
329 char *to_shortname; /* Name this target type */
330 char *to_longname; /* Name for printing */
331 char *to_doc; /* Documentation. Does not include trailing
c906108c 332 newline, and starts with a one-line descrip-
0d06e24b 333 tion (probably similar to to_longname). */
507f3c78
KB
334 void (*to_open) (char *, int);
335 void (*to_close) (int);
336 void (*to_attach) (char *, int);
337 void (*to_post_attach) (int);
338 void (*to_require_attach) (char *, int);
339 void (*to_detach) (char *, int);
340 void (*to_require_detach) (int, char *, int);
341 void (*to_resume) (int, int, enum target_signal);
342 int (*to_wait) (int, struct target_waitstatus *);
343 void (*to_post_wait) (int, int);
344 void (*to_fetch_registers) (int);
345 void (*to_store_registers) (int);
346 void (*to_prepare_to_store) (void);
c5aa993b
JM
347
348 /* Transfer LEN bytes of memory between GDB address MYADDR and
349 target address MEMADDR. If WRITE, transfer them to the target, else
350 transfer them from the target. TARGET is the target from which we
351 get this function.
352
353 Return value, N, is one of the following:
354
355 0 means that we can't handle this. If errno has been set, it is the
356 error which prevented us from doing it (FIXME: What about bfd_error?).
357
358 positive (call it N) means that we have transferred N bytes
359 starting at MEMADDR. We might be able to handle more bytes
360 beyond this length, but no promises.
361
362 negative (call its absolute value N) means that we cannot
363 transfer right at MEMADDR, but we could transfer at least
364 something at MEMADDR + N. */
365
507f3c78 366 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
29e57380
C
367 int len, int write,
368 struct mem_attrib *attrib,
369 struct target_ops *target);
c906108c
SS
370
371#if 0
c5aa993b 372 /* Enable this after 4.12. */
c906108c 373
c5aa993b
JM
374 /* Search target memory. Start at STARTADDR and take LEN bytes of
375 target memory, and them with MASK, and compare to DATA. If they
376 match, set *ADDR_FOUND to the address we found it at, store the data
377 we found at LEN bytes starting at DATA_FOUND, and return. If
378 not, add INCREMENT to the search address and keep trying until
379 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 380
0d06e24b
JM
381 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
382 return. */
383
507f3c78
KB
384 void (*to_search) (int len, char *data, char *mask,
385 CORE_ADDR startaddr, int increment,
386 CORE_ADDR lorange, CORE_ADDR hirange,
387 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
388
389#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
390 (*current_target.to_search) (len, data, mask, startaddr, increment, \
391 lorange, hirange, addr_found, data_found)
c5aa993b
JM
392#endif /* 0 */
393
507f3c78
KB
394 void (*to_files_info) (struct target_ops *);
395 int (*to_insert_breakpoint) (CORE_ADDR, char *);
396 int (*to_remove_breakpoint) (CORE_ADDR, char *);
397 void (*to_terminal_init) (void);
398 void (*to_terminal_inferior) (void);
399 void (*to_terminal_ours_for_output) (void);
400 void (*to_terminal_ours) (void);
401 void (*to_terminal_info) (char *, int);
402 void (*to_kill) (void);
403 void (*to_load) (char *, int);
404 int (*to_lookup_symbol) (char *, CORE_ADDR *);
405 void (*to_create_inferior) (char *, char *, char **);
406 void (*to_post_startup_inferior) (int);
407 void (*to_acknowledge_created_inferior) (int);
408 void (*to_clone_and_follow_inferior) (int, int *);
409 void (*to_post_follow_inferior_by_clone) (void);
410 int (*to_insert_fork_catchpoint) (int);
411 int (*to_remove_fork_catchpoint) (int);
412 int (*to_insert_vfork_catchpoint) (int);
413 int (*to_remove_vfork_catchpoint) (int);
414 int (*to_has_forked) (int, int *);
415 int (*to_has_vforked) (int, int *);
416 int (*to_can_follow_vfork_prior_to_exec) (void);
417 void (*to_post_follow_vfork) (int, int, int, int);
418 int (*to_insert_exec_catchpoint) (int);
419 int (*to_remove_exec_catchpoint) (int);
420 int (*to_has_execd) (int, char **);
421 int (*to_reported_exec_events_per_exec_call) (void);
422 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
423 int (*to_has_exited) (int, int, int *);
424 void (*to_mourn_inferior) (void);
425 int (*to_can_run) (void);
426 void (*to_notice_signals) (int pid);
427 int (*to_thread_alive) (int pid);
428 void (*to_find_new_threads) (void);
429 char *(*to_pid_to_str) (int);
430 char *(*to_extra_thread_info) (struct thread_info *);
431 void (*to_stop) (void);
432 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 433 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
434 struct symtab_and_line *(*to_enable_exception_callback) (enum
435 exception_event_kind,
436 int);
437 struct exception_event_record *(*to_get_current_exception_event) (void);
438 char *(*to_pid_to_exec_file) (int pid);
439 char *(*to_core_file_to_sym_file) (char *);
c5aa993b
JM
440 enum strata to_stratum;
441 struct target_ops
442 *DONT_USE; /* formerly to_next */
443 int to_has_all_memory;
444 int to_has_memory;
445 int to_has_stack;
446 int to_has_registers;
447 int to_has_execution;
448 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
449 struct section_table
450 *to_sections;
451 struct section_table
452 *to_sections_end;
6426a772
JM
453 /* ASYNC target controls */
454 int (*to_can_async_p) (void);
455 int (*to_is_async_p) (void);
0d06e24b
JM
456 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
457 void *context);
ed9a39eb 458 int to_async_mask_value;
c5aa993b 459 int to_magic;
0d06e24b
JM
460 /* Need sub-structure for target machine related rather than comm related?
461 */
c5aa993b 462 };
c906108c
SS
463
464/* Magic number for checking ops size. If a struct doesn't end with this
465 number, somebody changed the declaration but didn't change all the
466 places that initialize one. */
467
468#define OPS_MAGIC 3840
469
470/* The ops structure for our "current" target process. This should
471 never be NULL. If there is no target, it points to the dummy_target. */
472
c5aa993b 473extern struct target_ops current_target;
c906108c
SS
474
475/* An item on the target stack. */
476
477struct target_stack_item
c5aa993b
JM
478 {
479 struct target_stack_item *next;
480 struct target_ops *target_ops;
481 };
c906108c
SS
482
483/* The target stack. */
484
485extern struct target_stack_item *target_stack;
486
487/* Define easy words for doing these operations on our current target. */
488
489#define target_shortname (current_target.to_shortname)
490#define target_longname (current_target.to_longname)
491
492/* The open routine takes the rest of the parameters from the command,
493 and (if successful) pushes a new target onto the stack.
494 Targets should supply this routine, if only to provide an error message. */
0d06e24b 495
4930751a
C
496#define target_open(name, from_tty) \
497 do { \
498 dcache_invalidate (target_dcache); \
499 (*current_target.to_open) (name, from_tty); \
500 } while (0)
c906108c
SS
501
502/* Does whatever cleanup is required for a target that we are no longer
503 going to be calling. Argument says whether we are quitting gdb and
504 should not get hung in case of errors, or whether we want a clean
505 termination even if it takes a while. This routine is automatically
506 always called just before a routine is popped off the target stack.
507 Closing file descriptors and freeing memory are typical things it should
508 do. */
509
510#define target_close(quitting) \
0d06e24b 511 (*current_target.to_close) (quitting)
c906108c
SS
512
513/* Attaches to a process on the target side. Arguments are as passed
514 to the `attach' command by the user. This routine can be called
515 when the target is not on the target-stack, if the target_can_run
516 routine returns 1; in that case, it must push itself onto the stack.
517 Upon exit, the target should be ready for normal operations, and
518 should be ready to deliver the status of the process immediately
519 (without waiting) to an upcoming target_wait call. */
520
521#define target_attach(args, from_tty) \
0d06e24b 522 (*current_target.to_attach) (args, from_tty)
c906108c
SS
523
524/* The target_attach operation places a process under debugger control,
525 and stops the process.
526
527 This operation provides a target-specific hook that allows the
0d06e24b 528 necessary bookkeeping to be performed after an attach completes. */
c906108c 529#define target_post_attach(pid) \
0d06e24b 530 (*current_target.to_post_attach) (pid)
c906108c
SS
531
532/* Attaches to a process on the target side, if not already attached.
533 (If already attached, takes no action.)
534
535 This operation can be used to follow the child process of a fork.
536 On some targets, such child processes of an original inferior process
537 are automatically under debugger control, and thus do not require an
538 actual attach operation. */
539
540#define target_require_attach(args, from_tty) \
0d06e24b 541 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
542
543/* Takes a program previously attached to and detaches it.
544 The program may resume execution (some targets do, some don't) and will
545 no longer stop on signals, etc. We better not have left any breakpoints
546 in the program or it'll die when it hits one. ARGS is arguments
547 typed by the user (e.g. a signal to send the process). FROM_TTY
548 says whether to be verbose or not. */
549
a14ed312 550extern void target_detach (char *, int);
c906108c
SS
551
552/* Detaches from a process on the target side, if not already dettached.
553 (If already detached, takes no action.)
554
555 This operation can be used to follow the parent process of a fork.
556 On some targets, such child processes of an original inferior process
557 are automatically under debugger control, and thus do require an actual
558 detach operation.
559
560 PID is the process id of the child to detach from.
561 ARGS is arguments typed by the user (e.g. a signal to send the process).
562 FROM_TTY says whether to be verbose or not. */
563
0d06e24b
JM
564#define target_require_detach(pid, args, from_tty) \
565 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c
SS
566
567/* Resume execution of the target process PID. STEP says whether to
568 single-step or to run free; SIGGNAL is the signal to be given to
569 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
570 pass TARGET_SIGNAL_DEFAULT. */
571
4930751a
C
572#define target_resume(pid, step, siggnal) \
573 do { \
574 dcache_invalidate(target_dcache); \
575 (*current_target.to_resume) (pid, step, siggnal); \
576 } while (0)
c906108c
SS
577
578/* Wait for process pid to do something. Pid = -1 to wait for any pid
579 to do something. Return pid of child, or -1 in case of error;
580 store status through argument pointer STATUS. Note that it is
581 *not* OK to return_to_top_level out of target_wait without popping
582 the debugging target from the stack; GDB isn't prepared to get back
583 to the prompt with a debugging target but without the frame cache,
584 stop_pc, etc., set up. */
585
586#define target_wait(pid, status) \
0d06e24b 587 (*current_target.to_wait) (pid, status)
c906108c
SS
588
589/* The target_wait operation waits for a process event to occur, and
590 thereby stop the process.
591
592 On some targets, certain events may happen in sequences. gdb's
593 correct response to any single event of such a sequence may require
594 knowledge of what earlier events in the sequence have been seen.
595
596 This operation provides a target-specific hook that allows the
0d06e24b 597 necessary bookkeeping to be performed to track such sequences. */
c906108c
SS
598
599#define target_post_wait(pid, status) \
0d06e24b 600 (*current_target.to_post_wait) (pid, status)
c906108c
SS
601
602/* Fetch register REGNO, or all regs if regno == -1. No result. */
603
604#define target_fetch_registers(regno) \
0d06e24b 605 (*current_target.to_fetch_registers) (regno)
c906108c
SS
606
607/* Store at least register REGNO, or all regs if REGNO == -1.
608 It can store as many registers as it wants to, so target_prepare_to_store
609 must have been previously called. Calls error() if there are problems. */
610
611#define target_store_registers(regs) \
0d06e24b 612 (*current_target.to_store_registers) (regs)
c906108c
SS
613
614/* Get ready to modify the registers array. On machines which store
615 individual registers, this doesn't need to do anything. On machines
616 which store all the registers in one fell swoop, this makes sure
617 that REGISTERS contains all the registers from the program being
618 debugged. */
619
620#define target_prepare_to_store() \
0d06e24b 621 (*current_target.to_prepare_to_store) ()
c906108c 622
4930751a
C
623extern DCACHE *target_dcache;
624
29e57380
C
625extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
626 struct mem_attrib *attrib);
4930751a 627
a14ed312 628extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 629
a14ed312 630extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 631
4930751a 632extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 633
29e57380
C
634extern int xfer_memory (CORE_ADDR, char *, int, int,
635 struct mem_attrib *, struct target_ops *);
c906108c 636
29e57380
C
637extern int child_xfer_memory (CORE_ADDR, char *, int, int,
638 struct mem_attrib *, struct target_ops *);
c906108c 639
917317f4
JM
640/* Make a single attempt at transfering LEN bytes. On a successful
641 transfer, the number of bytes actually transfered is returned and
642 ERR is set to 0. When a transfer fails, -1 is returned (the number
643 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 644 non-zero error indication. */
917317f4 645
ed9a39eb
JM
646extern int
647target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 648
ed9a39eb
JM
649extern int
650target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 651
a14ed312 652extern char *child_pid_to_exec_file (int);
c906108c 653
a14ed312 654extern char *child_core_file_to_sym_file (char *);
c906108c
SS
655
656#if defined(CHILD_POST_ATTACH)
a14ed312 657extern void child_post_attach (int);
c906108c
SS
658#endif
659
a14ed312 660extern void child_post_wait (int, int);
c906108c 661
a14ed312 662extern void child_post_startup_inferior (int);
c906108c 663
a14ed312 664extern void child_acknowledge_created_inferior (int);
c906108c 665
a14ed312 666extern void child_clone_and_follow_inferior (int, int *);
c906108c 667
a14ed312 668extern void child_post_follow_inferior_by_clone (void);
c906108c 669
a14ed312 670extern int child_insert_fork_catchpoint (int);
c906108c 671
a14ed312 672extern int child_remove_fork_catchpoint (int);
c906108c 673
a14ed312 674extern int child_insert_vfork_catchpoint (int);
c906108c 675
a14ed312 676extern int child_remove_vfork_catchpoint (int);
c906108c 677
a14ed312 678extern int child_has_forked (int, int *);
c906108c 679
a14ed312 680extern int child_has_vforked (int, int *);
c906108c 681
a14ed312 682extern void child_acknowledge_created_inferior (int);
c906108c 683
a14ed312 684extern int child_can_follow_vfork_prior_to_exec (void);
c906108c 685
a14ed312 686extern void child_post_follow_vfork (int, int, int, int);
c906108c 687
a14ed312 688extern int child_insert_exec_catchpoint (int);
c906108c 689
a14ed312 690extern int child_remove_exec_catchpoint (int);
c906108c 691
a14ed312 692extern int child_has_execd (int, char **);
c906108c 693
a14ed312 694extern int child_reported_exec_events_per_exec_call (void);
c906108c 695
a14ed312 696extern int child_has_syscall_event (int, enum target_waitkind *, int *);
c906108c 697
a14ed312 698extern int child_has_exited (int, int, int *);
c906108c 699
a14ed312 700extern int child_thread_alive (int);
c906108c
SS
701
702/* From exec.c */
703
a14ed312 704extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
705
706/* Print a line about the current target. */
707
708#define target_files_info() \
0d06e24b 709 (*current_target.to_files_info) (&current_target)
c906108c
SS
710
711/* Insert a breakpoint at address ADDR in the target machine.
712 SAVE is a pointer to memory allocated for saving the
713 target contents. It is guaranteed by the caller to be long enough
714 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
715 an errno value. */
716
717#define target_insert_breakpoint(addr, save) \
0d06e24b 718 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
719
720/* Remove a breakpoint at address ADDR in the target machine.
721 SAVE is a pointer to the same save area
722 that was previously passed to target_insert_breakpoint.
723 Result is 0 for success, or an errno value. */
724
725#define target_remove_breakpoint(addr, save) \
0d06e24b 726 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
727
728/* Initialize the terminal settings we record for the inferior,
729 before we actually run the inferior. */
730
731#define target_terminal_init() \
0d06e24b 732 (*current_target.to_terminal_init) ()
c906108c
SS
733
734/* Put the inferior's terminal settings into effect.
735 This is preparation for starting or resuming the inferior. */
736
737#define target_terminal_inferior() \
0d06e24b 738 (*current_target.to_terminal_inferior) ()
c906108c
SS
739
740/* Put some of our terminal settings into effect,
741 enough to get proper results from our output,
742 but do not change into or out of RAW mode
743 so that no input is discarded.
744
745 After doing this, either terminal_ours or terminal_inferior
746 should be called to get back to a normal state of affairs. */
747
748#define target_terminal_ours_for_output() \
0d06e24b 749 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
750
751/* Put our terminal settings into effect.
752 First record the inferior's terminal settings
753 so they can be restored properly later. */
754
755#define target_terminal_ours() \
0d06e24b 756 (*current_target.to_terminal_ours) ()
c906108c
SS
757
758/* Print useful information about our terminal status, if such a thing
759 exists. */
760
761#define target_terminal_info(arg, from_tty) \
0d06e24b 762 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
763
764/* Kill the inferior process. Make it go away. */
765
766#define target_kill() \
0d06e24b 767 (*current_target.to_kill) ()
c906108c 768
0d06e24b
JM
769/* Load an executable file into the target process. This is expected
770 to not only bring new code into the target process, but also to
771 update GDB's symbol tables to match. */
c906108c 772
11cf8741 773extern void target_load (char *arg, int from_tty);
c906108c
SS
774
775/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
776 name. ADDRP is a CORE_ADDR * pointing to where the value of the
777 symbol should be returned. The result is 0 if successful, nonzero
778 if the symbol does not exist in the target environment. This
779 function should not call error() if communication with the target
780 is interrupted, since it is called from symbol reading, but should
781 return nonzero, possibly doing a complain(). */
c906108c 782
0d06e24b
JM
783#define target_lookup_symbol(name, addrp) \
784 (*current_target.to_lookup_symbol) (name, addrp)
c906108c
SS
785
786/* Start an inferior process and set inferior_pid to its pid.
787 EXEC_FILE is the file to run.
788 ALLARGS is a string containing the arguments to the program.
789 ENV is the environment vector to pass. Errors reported with error().
790 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 791
c906108c 792#define target_create_inferior(exec_file, args, env) \
0d06e24b 793 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
794
795
796/* Some targets (such as ttrace-based HPUX) don't allow us to request
797 notification of inferior events such as fork and vork immediately
798 after the inferior is created. (This because of how gdb gets an
799 inferior created via invoking a shell to do it. In such a scenario,
800 if the shell init file has commands in it, the shell will fork and
801 exec for each of those commands, and we will see each such fork
802 event. Very bad.)
c5aa993b 803
0d06e24b
JM
804 Such targets will supply an appropriate definition for this function. */
805
c906108c 806#define target_post_startup_inferior(pid) \
0d06e24b 807 (*current_target.to_post_startup_inferior) (pid)
c906108c
SS
808
809/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
810 some synchronization between gdb and the new inferior process, PID. */
811
c906108c 812#define target_acknowledge_created_inferior(pid) \
0d06e24b 813 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
814
815/* An inferior process has been created via a fork() or similar
816 system call. This function will clone the debugger, then ensure
817 that CHILD_PID is attached to by that debugger.
818
819 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
820 and FALSE otherwise. (The original and clone debuggers can use this
821 to determine which they are, if need be.)
822
823 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
824 the two debuggers from competing for shell input.) */
825
c906108c 826#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 827 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
828
829/* This operation is intended to be used as the last in a sequence of
830 steps taken when following both parent and child of a fork. This
831 is used by a clone of the debugger, which will follow the child.
832
833 The original debugger has detached from this process, and the
834 clone has attached to it.
835
836 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
837 correctly. */
838
c906108c 839#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
840 (*current_target.to_post_follow_inferior_by_clone) ()
841
842/* On some targets, we can catch an inferior fork or vfork event when
843 it occurs. These functions insert/remove an already-created
844 catchpoint for such events. */
c906108c 845
c906108c 846#define target_insert_fork_catchpoint(pid) \
0d06e24b 847 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
848
849#define target_remove_fork_catchpoint(pid) \
0d06e24b 850 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
851
852#define target_insert_vfork_catchpoint(pid) \
0d06e24b 853 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
854
855#define target_remove_vfork_catchpoint(pid) \
0d06e24b 856 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
857
858/* Returns TRUE if PID has invoked the fork() system call. And,
859 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
860 inferior process that was created by that call. */
861
c906108c 862#define target_has_forked(pid,child_pid) \
0d06e24b
JM
863 (*current_target.to_has_forked) (pid,child_pid)
864
865/* Returns TRUE if PID has invoked the vfork() system call. And,
866 also sets CHILD_PID to the process id of the other ("child")
867 inferior process that was created by that call. */
c906108c 868
c906108c 869#define target_has_vforked(pid,child_pid) \
0d06e24b 870 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
871
872/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
873 anything to a vforked child before it subsequently calls exec().
874 On such platforms, we say that the debugger cannot "follow" the
875 child until it has vforked.
876
877 This function should be defined to return 1 by those targets
878 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
879 child, and 0 if they cannot. */
880
c906108c 881#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 882 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
883
884/* An inferior process has been created via a vfork() system call.
885 The debugger has followed the parent, the child, or both. The
886 process of setting up for that follow may have required some
887 target-specific trickery to track the sequence of reported events.
888 If so, this function should be defined by those targets that
889 require the debugger to perform cleanup or initialization after
0d06e24b
JM
890 the vfork follow. */
891
c906108c 892#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 893 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
894
895/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
896 occurs. These functions insert/remove an already-created
897 catchpoint for such events. */
898
c906108c 899#define target_insert_exec_catchpoint(pid) \
0d06e24b 900 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 901
c906108c 902#define target_remove_exec_catchpoint(pid) \
0d06e24b 903 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
904
905/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
906 And, also sets EXECD_PATHNAME to the pathname of the executable
907 file that was passed to exec(), and is now being executed. */
908
c906108c 909#define target_has_execd(pid,execd_pathname) \
0d06e24b 910 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
911
912/* Returns the number of exec events that are reported when a process
913 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
914 events are being reported. */
915
c906108c 916#define target_reported_exec_events_per_exec_call() \
0d06e24b 917 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
918
919/* Returns TRUE if PID has reported a syscall event. And, also sets
920 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
921 the unique integer ID of the syscall. */
922
c906108c 923#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 924 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
925
926/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
927 exit code of PID, if any. */
928
c906108c 929#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 930 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
931
932/* The debugger has completed a blocking wait() call. There is now
0d06e24b 933 some process event that must be processed. This function should
c906108c 934 be defined by those targets that require the debugger to perform
0d06e24b 935 cleanup or internal state changes in response to the process event. */
c906108c
SS
936
937/* The inferior process has died. Do what is right. */
938
939#define target_mourn_inferior() \
0d06e24b 940 (*current_target.to_mourn_inferior) ()
c906108c
SS
941
942/* Does target have enough data to do a run or attach command? */
943
944#define target_can_run(t) \
0d06e24b 945 ((t)->to_can_run) ()
c906108c
SS
946
947/* post process changes to signal handling in the inferior. */
948
949#define target_notice_signals(pid) \
0d06e24b 950 (*current_target.to_notice_signals) (pid)
c906108c
SS
951
952/* Check to see if a thread is still alive. */
953
954#define target_thread_alive(pid) \
0d06e24b 955 (*current_target.to_thread_alive) (pid)
c906108c 956
b83266a0
SS
957/* Query for new threads and add them to the thread list. */
958
959#define target_find_new_threads() \
0d06e24b 960 (*current_target.to_find_new_threads) (); \
b83266a0 961
0d06e24b
JM
962/* Make target stop in a continuable fashion. (For instance, under
963 Unix, this should act like SIGSTOP). This function is normally
964 used by GUIs to implement a stop button. */
c906108c
SS
965
966#define target_stop current_target.to_stop
967
968/* Queries the target side for some information. The first argument is a
969 letter specifying the type of the query, which is used to determine who
970 should process it. The second argument is a string that specifies which
971 information is desired and the third is a buffer that carries back the
972 response from the target side. The fourth parameter is the size of the
0d06e24b 973 output buffer supplied. */
c5aa993b 974
c906108c 975#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 976 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 977
96baa820
JM
978/* Send the specified COMMAND to the target's monitor
979 (shell,interpreter) for execution. The result of the query is
0d06e24b 980 placed in OUTBUF. */
96baa820
JM
981
982#define target_rcmd(command, outbuf) \
983 (*current_target.to_rcmd) (command, outbuf)
984
985
c906108c
SS
986/* Get the symbol information for a breakpointable routine called when
987 an exception event occurs.
988 Intended mainly for C++, and for those
989 platforms/implementations where such a callback mechanism is available,
990 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 991 different mechanisms for debugging exceptions. */
c906108c
SS
992
993#define target_enable_exception_callback(kind, enable) \
0d06e24b 994 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 995
0d06e24b 996/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 997
c906108c 998#define target_get_current_exception_event() \
0d06e24b 999 (*current_target.to_get_current_exception_event) ()
c906108c
SS
1000
1001/* Pointer to next target in the chain, e.g. a core file and an exec file. */
1002
1003#define target_next \
0d06e24b 1004 (current_target.to_next)
c906108c
SS
1005
1006/* Does the target include all of memory, or only part of it? This
1007 determines whether we look up the target chain for other parts of
1008 memory if this target can't satisfy a request. */
1009
1010#define target_has_all_memory \
0d06e24b 1011 (current_target.to_has_all_memory)
c906108c
SS
1012
1013/* Does the target include memory? (Dummy targets don't.) */
1014
1015#define target_has_memory \
0d06e24b 1016 (current_target.to_has_memory)
c906108c
SS
1017
1018/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1019 we start a process.) */
c5aa993b 1020
c906108c 1021#define target_has_stack \
0d06e24b 1022 (current_target.to_has_stack)
c906108c
SS
1023
1024/* Does the target have registers? (Exec files don't.) */
1025
1026#define target_has_registers \
0d06e24b 1027 (current_target.to_has_registers)
c906108c
SS
1028
1029/* Does the target have execution? Can we make it jump (through
1030 hoops), or pop its stack a few times? FIXME: If this is to work that
1031 way, it needs to check whether an inferior actually exists.
1032 remote-udi.c and probably other targets can be the current target
1033 when the inferior doesn't actually exist at the moment. Right now
1034 this just tells us whether this target is *capable* of execution. */
1035
1036#define target_has_execution \
0d06e24b 1037 (current_target.to_has_execution)
c906108c
SS
1038
1039/* Can the target support the debugger control of thread execution?
1040 a) Can it lock the thread scheduler?
1041 b) Can it switch the currently running thread? */
1042
1043#define target_can_lock_scheduler \
0d06e24b 1044 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
1045
1046#define target_can_switch_threads \
0d06e24b 1047 (current_target.to_has_thread_control & tc_switch)
c906108c 1048
6426a772
JM
1049/* Can the target support asynchronous execution? */
1050#define target_can_async_p() (current_target.to_can_async_p ())
1051
1052/* Is the target in asynchronous execution mode? */
1053#define target_is_async_p() (current_target.to_is_async_p())
1054
1055/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
1056#define target_async(CALLBACK,CONTEXT) \
1057 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1058
ed9a39eb
JM
1059/* This is to be used ONLY within run_stack_dummy(). It
1060 provides a workaround, to have inferior function calls done in
1061 sychronous mode, even though the target is asynchronous. After
1062 target_async_mask(0) is called, calls to target_can_async_p() will
1063 return FALSE , so that target_resume() will not try to start the
1064 target asynchronously. After the inferior stops, we IMMEDIATELY
1065 restore the previous nature of the target, by calling
1066 target_async_mask(1). After that, target_can_async_p() will return
1067 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1068
1069 FIXME ezannoni 1999-12-13: we won't need this once we move
1070 the turning async on and off to the single execution commands,
0d06e24b 1071 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
1072
1073#define target_async_mask_value \
0d06e24b 1074 (current_target.to_async_mask_value)
ed9a39eb
JM
1075
1076extern int target_async_mask (int mask);
1077
a14ed312 1078extern void target_link (char *, CORE_ADDR *);
c906108c
SS
1079
1080/* Converts a process id to a string. Usually, the string just contains
1081 `process xyz', but on some systems it may contain
1082 `process xyz thread abc'. */
1083
ed9a39eb
JM
1084#undef target_pid_to_str
1085#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1086
1087#ifndef target_tid_to_str
1088#define target_tid_to_str(PID) \
0d06e24b 1089 target_pid_to_str (PID)
a14ed312 1090extern char *normal_pid_to_str (int pid);
c906108c 1091#endif
c5aa993b 1092
0d06e24b
JM
1093/* Return a short string describing extra information about PID,
1094 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1095 is okay. */
1096
1097#define target_extra_thread_info(TP) \
1098 (current_target.to_extra_thread_info (TP))
ed9a39eb 1099
11cf8741
JM
1100/*
1101 * New Objfile Event Hook:
1102 *
1103 * Sometimes a GDB component wants to get notified whenever a new
1104 * objfile is loaded. Mainly this is used by thread-debugging
1105 * implementations that need to know when symbols for the target
1106 * thread implemenation are available.
1107 *
1108 * The old way of doing this is to define a macro 'target_new_objfile'
1109 * that points to the function that you want to be called on every
1110 * objfile/shlib load.
1111 *
1112 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1113 * and point it to the function that you want to be called on every
1114 * objfile/shlib load.
1115 *
1116 * If multiple clients are willing to be cooperative, they can each
1117 * save a pointer to the previous value of target_new_objfile_hook
1118 * before modifying it, and arrange for their function to call the
1119 * previous function in the chain. In that way, multiple clients
1120 * can receive this notification (something like with signal handlers).
1121 */
c906108c 1122
507f3c78 1123extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
1124
1125#ifndef target_pid_or_tid_to_str
1126#define target_pid_or_tid_to_str(ID) \
0d06e24b 1127 target_pid_to_str (ID)
c906108c
SS
1128#endif
1129
1130/* Attempts to find the pathname of the executable file
1131 that was run to create a specified process.
1132
1133 The process PID must be stopped when this operation is used.
c5aa993b 1134
c906108c
SS
1135 If the executable file cannot be determined, NULL is returned.
1136
1137 Else, a pointer to a character string containing the pathname
1138 is returned. This string should be copied into a buffer by
1139 the client if the string will not be immediately used, or if
0d06e24b 1140 it must persist. */
c906108c
SS
1141
1142#define target_pid_to_exec_file(pid) \
0d06e24b 1143 (current_target.to_pid_to_exec_file) (pid)
c906108c 1144
9d8a64cb 1145/* Hook to call target-dependent code after reading in a new symbol table. */
c906108c
SS
1146
1147#ifndef TARGET_SYMFILE_POSTREAD
1148#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1149#endif
1150
9d8a64cb 1151/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1152 started. */
1153
1154#ifndef TARGET_CREATE_INFERIOR_HOOK
1155#define TARGET_CREATE_INFERIOR_HOOK(PID)
1156#endif
1157
1158/* Hardware watchpoint interfaces. */
1159
1160/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1161 write). */
1162
1163#ifndef STOPPED_BY_WATCHPOINT
1164#define STOPPED_BY_WATCHPOINT(w) 0
1165#endif
1166
1167/* HP-UX supplies these operations, which respectively disable and enable
1168 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1169 on that platform. See wait_for_inferior's use of these. */
1170
c906108c
SS
1171#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1172#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1173#endif
1174
1175#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1176#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1177#endif
1178
0d06e24b 1179/* Provide defaults for systems that don't support hardware watchpoints. */
c906108c
SS
1180
1181#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1182
1183/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1184 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1185 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1186 (including this one?). OTHERTYPE is who knows what... */
1187
1188#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1189
1190#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1191#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
6ab3a9c9 1192 ((LONGEST)(byte_count) <= REGISTER_SIZE)
c906108c
SS
1193#endif
1194
1195/* However, some addresses may not be profitable to use hardware to watch,
1196 or may be difficult to understand when the addressed object is out of
1197 scope, and hence should be unwatched. On some targets, this may have
1198 severe performance penalties, such that we might as well use regular
1199 watchpoints, and save (possibly precious) hardware watchpoints for other
0d06e24b
JM
1200 locations. */
1201
c906108c
SS
1202#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1203#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1204#endif
1205
1206
1207/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1208 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1209 success, non-zero for failure. */
1210
1211#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1212#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1213
1214#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1215
1216#ifndef target_insert_hw_breakpoint
1217#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1218#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1219#endif
1220
1221#ifndef target_stopped_data_address
1222#define target_stopped_data_address() 0
1223#endif
1224
1225/* If defined, then we need to decr pc by this much after a hardware break-
1226 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1227
1228#ifndef DECR_PC_AFTER_HW_BREAK
1229#define DECR_PC_AFTER_HW_BREAK 0
1230#endif
1231
1232/* Sometimes gdb may pick up what appears to be a valid target address
1233 from a minimal symbol, but the value really means, essentially,
1234 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1235 is run. Therefore, do not attempt to use this as a PC." */
1236
c906108c
SS
1237#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1238#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1239#endif
1240
1241/* This will only be defined by a target that supports catching vfork events,
1242 such as HP-UX.
1243
1244 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1245 child process after it has exec'd, causes the parent process to resume as
1246 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1247 define this to a function that prevents that from happening. */
c906108c
SS
1248#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1249#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1250#endif
1251
1252/* This will only be defined by a target that supports catching vfork events,
1253 such as HP-UX.
1254
1255 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1256 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1257 vfork event will be delivered to us. */
1258
c906108c
SS
1259#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1260#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1261#endif
1262
1263/* Routines for maintenance of the target structures...
1264
1265 add_target: Add a target to the list of all possible targets.
1266
1267 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1268 targets, within its particular stratum of the stack. Result
1269 is 0 if now atop the stack, nonzero if not on top (maybe
1270 should warn user).
c906108c
SS
1271
1272 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1273 no matter where it is on the list. Returns 0 if no
1274 change, 1 if removed from stack.
c906108c 1275
c5aa993b 1276 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1277
a14ed312 1278extern void add_target (struct target_ops *);
c906108c 1279
a14ed312 1280extern int push_target (struct target_ops *);
c906108c 1281
a14ed312 1282extern int unpush_target (struct target_ops *);
c906108c 1283
a14ed312 1284extern void target_preopen (int);
c906108c 1285
a14ed312 1286extern void pop_target (void);
c906108c
SS
1287
1288/* Struct section_table maps address ranges to file sections. It is
1289 mostly used with BFD files, but can be used without (e.g. for handling
1290 raw disks, or files not in formats handled by BFD). */
1291
c5aa993b
JM
1292struct section_table
1293 {
1294 CORE_ADDR addr; /* Lowest address in section */
1295 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1296
c5aa993b 1297 sec_ptr the_bfd_section;
c906108c 1298
c5aa993b
JM
1299 bfd *bfd; /* BFD file pointer */
1300 };
c906108c
SS
1301
1302/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1303 Returns 0 if OK, 1 on error. */
1304
1305extern int
a14ed312 1306build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1307
1308/* From mem-break.c */
1309
a14ed312 1310extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1311
a14ed312 1312extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1313
a14ed312 1314extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1315
a14ed312 1316extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1317
c906108c 1318extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
c906108c
SS
1319
1320
1321/* From target.c */
1322
a14ed312 1323extern void initialize_targets (void);
c906108c 1324
a14ed312 1325extern void noprocess (void);
c906108c 1326
a14ed312 1327extern void find_default_attach (char *, int);
c906108c 1328
a14ed312 1329extern void find_default_require_attach (char *, int);
c906108c 1330
a14ed312 1331extern void find_default_require_detach (int, char *, int);
c906108c 1332
a14ed312 1333extern void find_default_create_inferior (char *, char *, char **);
c906108c 1334
a14ed312 1335extern void find_default_clone_and_follow_inferior (int, int *);
c906108c 1336
a14ed312 1337extern struct target_ops *find_run_target (void);
7a292a7a 1338
a14ed312 1339extern struct target_ops *find_core_target (void);
6426a772 1340
a14ed312 1341extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1342
1343extern int
a14ed312 1344target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1345
1346extern void remove_target_sections (bfd *abfd);
1347
c906108c
SS
1348\f
1349/* Stuff that should be shared among the various remote targets. */
1350
1351/* Debugging level. 0 is off, and non-zero values mean to print some debug
1352 information (higher values, more information). */
1353extern int remote_debug;
1354
1355/* Speed in bits per second, or -1 which means don't mess with the speed. */
1356extern int baud_rate;
1357/* Timeout limit for response from target. */
1358extern int remote_timeout;
1359
c906108c
SS
1360\f
1361/* Functions for helping to write a native target. */
1362
1363/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1364extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1365
c2d11a7d 1366/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1367 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1368/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1369 to the shorter target_signal_p() because it is far less ambigious.
1370 In this context ``target_signal'' refers to GDB's internal
1371 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1372 refers to the target operating system's signal. Confused? */
1373
c2d11a7d
JM
1374extern int target_signal_to_host_p (enum target_signal signo);
1375
1376/* Convert between host signal numbers and enum target_signal's.
1377 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1378 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1379/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1380 refering to the target operating system's signal numbering.
1381 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1382 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1383 internal representation of a target operating system's signal. */
1384
a14ed312
KB
1385extern enum target_signal target_signal_from_host (int);
1386extern int target_signal_to_host (enum target_signal);
c906108c
SS
1387
1388/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1389extern enum target_signal target_signal_from_command (int);
c906108c
SS
1390
1391/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1392extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1393\f
1394/* Imported from machine dependent code */
1395
1396#ifndef SOFTWARE_SINGLE_STEP_P
1397#define SOFTWARE_SINGLE_STEP_P 0
0d06e24b
JM
1398#define SOFTWARE_SINGLE_STEP(sig,bp_p) \
1399 (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
c906108c
SS
1400#endif /* SOFTWARE_SINGLE_STEP_P */
1401
1402/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1403void target_ignore (void);
c906108c
SS
1404
1405/* Macro for getting target's idea of a frame pointer.
1406 FIXME: GDB's whole scheme for dealing with "frames" and
1407 "frame pointers" needs a serious shakedown. */
1408#ifndef TARGET_VIRTUAL_FRAME_POINTER
1409#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1410 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1411#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1412
c5aa993b 1413#endif /* !defined (TARGET_H) */
This page took 0.239355 seconds and 4 git commands to generate.