daily update
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#if !defined (TARGET_H)
27#define TARGET_H
28
da3331ec
AC
29struct objfile;
30struct ui_file;
31struct mem_attrib;
1e3ff5ad 32struct target_ops;
8181d85f 33struct bp_target_info;
56be3814 34struct regcache;
da3331ec 35
c906108c
SS
36/* This include file defines the interface between the main part
37 of the debugger, and the part which is target-specific, or
38 specific to the communications interface between us and the
39 target.
40
2146d243
RM
41 A TARGET is an interface between the debugger and a particular
42 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
43 so that more than one target can potentially respond to a request.
44 In particular, memory accesses will walk down the stack of targets
45 until they find a target that is interested in handling that particular
46 address. STRATA are artificial boundaries on the stack, within
47 which particular kinds of targets live. Strata exist so that
48 people don't get confused by pushing e.g. a process target and then
49 a file target, and wondering why they can't see the current values
50 of variables any more (the file target is handling them and they
51 never get to the process target). So when you push a file target,
52 it goes into the file stratum, which is always below the process
53 stratum. */
54
55#include "bfd.h"
56#include "symtab.h"
4930751a 57#include "dcache.h"
29e57380 58#include "memattr.h"
fd79ecee 59#include "vec.h"
c906108c 60
c5aa993b
JM
61enum strata
62 {
63 dummy_stratum, /* The lowest of the low */
64 file_stratum, /* Executable files, etc */
65 core_stratum, /* Core dump files */
66 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
67 process_stratum, /* Executing processes */
68 thread_stratum /* Executing threads */
c5aa993b 69 };
c906108c 70
c5aa993b
JM
71enum thread_control_capabilities
72 {
0d06e24b
JM
73 tc_none = 0, /* Default: can't control thread execution. */
74 tc_schedlock = 1, /* Can lock the thread scheduler. */
75 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 76 };
c906108c
SS
77
78/* Stuff for target_wait. */
79
80/* Generally, what has the program done? */
c5aa993b
JM
81enum target_waitkind
82 {
83 /* The program has exited. The exit status is in value.integer. */
84 TARGET_WAITKIND_EXITED,
c906108c 85
0d06e24b
JM
86 /* The program has stopped with a signal. Which signal is in
87 value.sig. */
c5aa993b 88 TARGET_WAITKIND_STOPPED,
c906108c 89
c5aa993b
JM
90 /* The program has terminated with a signal. Which signal is in
91 value.sig. */
92 TARGET_WAITKIND_SIGNALLED,
c906108c 93
c5aa993b
JM
94 /* The program is letting us know that it dynamically loaded something
95 (e.g. it called load(2) on AIX). */
96 TARGET_WAITKIND_LOADED,
c906108c 97
0d06e24b
JM
98 /* The program has forked. A "related" process' ID is in
99 value.related_pid. I.e., if the child forks, value.related_pid
100 is the parent's ID. */
101
c5aa993b 102 TARGET_WAITKIND_FORKED,
c906108c 103
0d06e24b
JM
104 /* The program has vforked. A "related" process's ID is in
105 value.related_pid. */
106
c5aa993b 107 TARGET_WAITKIND_VFORKED,
c906108c 108
0d06e24b
JM
109 /* The program has exec'ed a new executable file. The new file's
110 pathname is pointed to by value.execd_pathname. */
111
c5aa993b 112 TARGET_WAITKIND_EXECD,
c906108c 113
0d06e24b
JM
114 /* The program has entered or returned from a system call. On
115 HP-UX, this is used in the hardware watchpoint implementation.
116 The syscall's unique integer ID number is in value.syscall_id */
117
c5aa993b
JM
118 TARGET_WAITKIND_SYSCALL_ENTRY,
119 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 120
c5aa993b
JM
121 /* Nothing happened, but we stopped anyway. This perhaps should be handled
122 within target_wait, but I'm not sure target_wait should be resuming the
123 inferior. */
c4093a6a
JM
124 TARGET_WAITKIND_SPURIOUS,
125
8e7d2c16
DJ
126 /* An event has occured, but we should wait again.
127 Remote_async_wait() returns this when there is an event
c4093a6a
JM
128 on the inferior, but the rest of the world is not interested in
129 it. The inferior has not stopped, but has just sent some output
130 to the console, for instance. In this case, we want to go back
131 to the event loop and wait there for another event from the
132 inferior, rather than being stuck in the remote_async_wait()
133 function. This way the event loop is responsive to other events,
0d06e24b 134 like for instance the user typing. */
c4093a6a 135 TARGET_WAITKIND_IGNORE
c906108c
SS
136 };
137
c5aa993b
JM
138struct target_waitstatus
139 {
140 enum target_waitkind kind;
141
142 /* Forked child pid, execd pathname, exit status or signal number. */
143 union
144 {
145 int integer;
146 enum target_signal sig;
147 int related_pid;
148 char *execd_pathname;
149 int syscall_id;
150 }
151 value;
152 };
c906108c 153
2acceee2 154/* Possible types of events that the inferior handler will have to
0d06e24b 155 deal with. */
2acceee2
JM
156enum inferior_event_type
157 {
0d06e24b 158 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
159 INF_QUIT_REQ,
160 /* Process a normal inferior event which will result in target_wait
0d06e24b 161 being called. */
2146d243 162 INF_REG_EVENT,
0d06e24b 163 /* Deal with an error on the inferior. */
2acceee2 164 INF_ERROR,
0d06e24b 165 /* We are called because a timer went off. */
2acceee2 166 INF_TIMER,
0d06e24b 167 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
168 INF_EXEC_COMPLETE,
169 /* We are called to do some stuff after the inferior stops, but we
170 are expected to reenter the proceed() and
171 handle_inferior_event() functions. This is used only in case of
0d06e24b 172 'step n' like commands. */
c2d11a7d 173 INF_EXEC_CONTINUE
2acceee2
JM
174 };
175
c906108c 176/* Return the string for a signal. */
a14ed312 177extern char *target_signal_to_string (enum target_signal);
c906108c
SS
178
179/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 180extern char *target_signal_to_name (enum target_signal);
c906108c
SS
181
182/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 183enum target_signal target_signal_from_name (char *);
c906108c 184\f
13547ab6
DJ
185/* Target objects which can be transfered using target_read,
186 target_write, et cetera. */
1e3ff5ad
AC
187
188enum target_object
189{
1e3ff5ad
AC
190 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
191 TARGET_OBJECT_AVR,
23d964e7
UW
192 /* SPU target specific transfer. See "spu-tdep.c". */
193 TARGET_OBJECT_SPU,
1e3ff5ad 194 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 195 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
196 /* Memory, avoiding GDB's data cache and trusting the executable.
197 Target implementations of to_xfer_partial never need to handle
198 this object, and most callers should not use it. */
199 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
200 /* Kernel Unwind Table. See "ia64-tdep.c". */
201 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
202 /* Transfer auxilliary vector. */
203 TARGET_OBJECT_AUXV,
baf92889 204 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
205 TARGET_OBJECT_WCOOKIE,
206 /* Target memory map in XML format. */
207 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
208 /* Flash memory. This object can be used to write contents to
209 a previously erased flash memory. Using it without erasing
210 flash can have unexpected results. Addresses are physical
211 address on target, and not relative to flash start. */
23181151
DJ
212 TARGET_OBJECT_FLASH,
213 /* Available target-specific features, e.g. registers and coprocessors.
214 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
215 TARGET_OBJECT_AVAILABLE_FEATURES,
216 /* Currently loaded libraries, in XML format. */
217 TARGET_OBJECT_LIBRARIES
2146d243 218 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
219};
220
13547ab6
DJ
221/* Request that OPS transfer up to LEN 8-bit bytes of the target's
222 OBJECT. The OFFSET, for a seekable object, specifies the
223 starting point. The ANNEX can be used to provide additional
224 data-specific information to the target.
1e3ff5ad 225
13547ab6
DJ
226 Return the number of bytes actually transfered, or -1 if the
227 transfer is not supported or otherwise fails. Return of a positive
228 value less than LEN indicates that no further transfer is possible.
229 Unlike the raw to_xfer_partial interface, callers of these
230 functions do not need to retry partial transfers. */
1e3ff5ad 231
1e3ff5ad
AC
232extern LONGEST target_read (struct target_ops *ops,
233 enum target_object object,
1b0ba102 234 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
235 ULONGEST offset, LONGEST len);
236
237extern LONGEST target_write (struct target_ops *ops,
238 enum target_object object,
1b0ba102 239 const char *annex, const gdb_byte *buf,
1e3ff5ad 240 ULONGEST offset, LONGEST len);
b6591e8b 241
a76d924d
DJ
242/* Similar to target_write, except that it also calls PROGRESS with
243 the number of bytes written and the opaque BATON after every
244 successful partial write (and before the first write). This is
245 useful for progress reporting and user interaction while writing
246 data. To abort the transfer, the progress callback can throw an
247 exception. */
248
cf7a04e8
DJ
249LONGEST target_write_with_progress (struct target_ops *ops,
250 enum target_object object,
251 const char *annex, const gdb_byte *buf,
252 ULONGEST offset, LONGEST len,
253 void (*progress) (ULONGEST, void *),
254 void *baton);
255
13547ab6
DJ
256/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
257 be read using OPS. The return value will be -1 if the transfer
258 fails or is not supported; 0 if the object is empty; or the length
259 of the object otherwise. If a positive value is returned, a
260 sufficiently large buffer will be allocated using xmalloc and
261 returned in *BUF_P containing the contents of the object.
262
263 This method should be used for objects sufficiently small to store
264 in a single xmalloc'd buffer, when no fixed bound on the object's
265 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
266 through this function. */
267
268extern LONGEST target_read_alloc (struct target_ops *ops,
269 enum target_object object,
270 const char *annex, gdb_byte **buf_p);
271
159f81f3
DJ
272/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
273 returned as a string, allocated using xmalloc. If an error occurs
274 or the transfer is unsupported, NULL is returned. Empty objects
275 are returned as allocated but empty strings. A warning is issued
276 if the result contains any embedded NUL bytes. */
277
278extern char *target_read_stralloc (struct target_ops *ops,
279 enum target_object object,
280 const char *annex);
281
b6591e8b
AC
282/* Wrappers to target read/write that perform memory transfers. They
283 throw an error if the memory transfer fails.
284
285 NOTE: cagney/2003-10-23: The naming schema is lifted from
286 "frame.h". The parameter order is lifted from get_frame_memory,
287 which in turn lifted it from read_memory. */
288
289extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 290 gdb_byte *buf, LONGEST len);
b6591e8b
AC
291extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
292 CORE_ADDR addr, int len);
1e3ff5ad 293\f
c5aa993b 294
c906108c
SS
295/* If certain kinds of activity happen, target_wait should perform
296 callbacks. */
297/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 298 on TARGET_ACTIVITY_FD. */
c906108c
SS
299extern int target_activity_fd;
300/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 301extern int (*target_activity_function) (void);
c906108c 302\f
0d06e24b
JM
303struct thread_info; /* fwd decl for parameter list below: */
304
c906108c 305struct target_ops
c5aa993b 306 {
258b763a 307 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
308 char *to_shortname; /* Name this target type */
309 char *to_longname; /* Name for printing */
310 char *to_doc; /* Documentation. Does not include trailing
c906108c 311 newline, and starts with a one-line descrip-
0d06e24b 312 tion (probably similar to to_longname). */
bba2d28d
AC
313 /* Per-target scratch pad. */
314 void *to_data;
f1c07ab0
AC
315 /* The open routine takes the rest of the parameters from the
316 command, and (if successful) pushes a new target onto the
317 stack. Targets should supply this routine, if only to provide
318 an error message. */
507f3c78 319 void (*to_open) (char *, int);
f1c07ab0
AC
320 /* Old targets with a static target vector provide "to_close".
321 New re-entrant targets provide "to_xclose" and that is expected
322 to xfree everything (including the "struct target_ops"). */
323 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
324 void (*to_close) (int);
325 void (*to_attach) (char *, int);
326 void (*to_post_attach) (int);
507f3c78 327 void (*to_detach) (char *, int);
597320e7 328 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
329 void (*to_resume) (ptid_t, int, enum target_signal);
330 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
331 void (*to_fetch_registers) (struct regcache *, int);
332 void (*to_store_registers) (struct regcache *, int);
316f2060 333 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
334
335 /* Transfer LEN bytes of memory between GDB address MYADDR and
336 target address MEMADDR. If WRITE, transfer them to the target, else
337 transfer them from the target. TARGET is the target from which we
338 get this function.
339
340 Return value, N, is one of the following:
341
342 0 means that we can't handle this. If errno has been set, it is the
343 error which prevented us from doing it (FIXME: What about bfd_error?).
344
345 positive (call it N) means that we have transferred N bytes
346 starting at MEMADDR. We might be able to handle more bytes
347 beyond this length, but no promises.
348
349 negative (call its absolute value N) means that we cannot
350 transfer right at MEMADDR, but we could transfer at least
c8e73a31 351 something at MEMADDR + N.
c5aa993b 352
c8e73a31
AC
353 NOTE: cagney/2004-10-01: This has been entirely superseeded by
354 to_xfer_partial and inferior inheritance. */
355
1b0ba102 356 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
357 int len, int write,
358 struct mem_attrib *attrib,
359 struct target_ops *target);
c906108c 360
507f3c78 361 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
362 int (*to_insert_breakpoint) (struct bp_target_info *);
363 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 364 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
365 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
366 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
367 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
368 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
369 int (*to_stopped_by_watchpoint) (void);
74174d2e 370 int to_have_steppable_watchpoint;
7df1a324 371 int to_have_continuable_watchpoint;
4aa7a7f5 372 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 373 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
374 void (*to_terminal_init) (void);
375 void (*to_terminal_inferior) (void);
376 void (*to_terminal_ours_for_output) (void);
377 void (*to_terminal_ours) (void);
a790ad35 378 void (*to_terminal_save_ours) (void);
507f3c78
KB
379 void (*to_terminal_info) (char *, int);
380 void (*to_kill) (void);
381 void (*to_load) (char *, int);
382 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 383 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 384 void (*to_post_startup_inferior) (ptid_t);
507f3c78 385 void (*to_acknowledge_created_inferior) (int);
fa113d1a 386 void (*to_insert_fork_catchpoint) (int);
507f3c78 387 int (*to_remove_fork_catchpoint) (int);
fa113d1a 388 void (*to_insert_vfork_catchpoint) (int);
507f3c78 389 int (*to_remove_vfork_catchpoint) (int);
ee057212 390 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 391 void (*to_insert_exec_catchpoint) (int);
507f3c78 392 int (*to_remove_exec_catchpoint) (int);
507f3c78 393 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
394 int (*to_has_exited) (int, int, int *);
395 void (*to_mourn_inferior) (void);
396 int (*to_can_run) (void);
39f77062
KB
397 void (*to_notice_signals) (ptid_t ptid);
398 int (*to_thread_alive) (ptid_t ptid);
507f3c78 399 void (*to_find_new_threads) (void);
39f77062 400 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
401 char *(*to_extra_thread_info) (struct thread_info *);
402 void (*to_stop) (void);
d9fcf2fb 403 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
404 struct symtab_and_line *(*to_enable_exception_callback) (enum
405 exception_event_kind,
406 int);
407 struct exception_event_record *(*to_get_current_exception_event) (void);
408 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 409 enum strata to_stratum;
c5aa993b
JM
410 int to_has_all_memory;
411 int to_has_memory;
412 int to_has_stack;
413 int to_has_registers;
414 int to_has_execution;
415 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
416 struct section_table
417 *to_sections;
418 struct section_table
419 *to_sections_end;
6426a772
JM
420 /* ASYNC target controls */
421 int (*to_can_async_p) (void);
422 int (*to_is_async_p) (void);
0d06e24b
JM
423 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
424 void *context);
ed9a39eb 425 int to_async_mask_value;
2146d243
RM
426 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
427 unsigned long,
428 int, int, int,
429 void *),
be4d1333
MS
430 void *);
431 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
432
433 /* Return the thread-local address at OFFSET in the
434 thread-local storage for the thread PTID and the shared library
435 or executable file given by OBJFILE. If that block of
436 thread-local storage hasn't been allocated yet, this function
437 may return an error. */
438 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 439 CORE_ADDR load_module_addr,
3f47be5c
EZ
440 CORE_ADDR offset);
441
13547ab6
DJ
442 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
443 OBJECT. The OFFSET, for a seekable object, specifies the
444 starting point. The ANNEX can be used to provide additional
445 data-specific information to the target.
446
447 Return the number of bytes actually transfered, zero when no
448 further transfer is possible, and -1 when the transfer is not
449 supported. Return of a positive value smaller than LEN does
450 not indicate the end of the object, only the end of the
451 transfer; higher level code should continue transferring if
452 desired. This is handled in target.c.
453
454 The interface does not support a "retry" mechanism. Instead it
455 assumes that at least one byte will be transfered on each
456 successful call.
457
458 NOTE: cagney/2003-10-17: The current interface can lead to
459 fragmented transfers. Lower target levels should not implement
460 hacks, such as enlarging the transfer, in an attempt to
461 compensate for this. Instead, the target stack should be
462 extended so that it implements supply/collect methods and a
463 look-aside object cache. With that available, the lowest
464 target can safely and freely "push" data up the stack.
465
466 See target_read and target_write for more information. One,
467 and only one, of readbuf or writebuf must be non-NULL. */
468
4b8a223f 469 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 470 enum target_object object, const char *annex,
1b0ba102 471 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 472 ULONGEST offset, LONGEST len);
1e3ff5ad 473
fd79ecee
DJ
474 /* Returns the memory map for the target. A return value of NULL
475 means that no memory map is available. If a memory address
476 does not fall within any returned regions, it's assumed to be
477 RAM. The returned memory regions should not overlap.
478
479 The order of regions does not matter; target_memory_map will
480 sort regions by starting address. For that reason, this
481 function should not be called directly except via
482 target_memory_map.
483
484 This method should not cache data; if the memory map could
485 change unexpectedly, it should be invalidated, and higher
486 layers will re-fetch it. */
487 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
488
a76d924d
DJ
489 /* Erases the region of flash memory starting at ADDRESS, of
490 length LENGTH.
491
492 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
493 on flash block boundaries, as reported by 'to_memory_map'. */
494 void (*to_flash_erase) (struct target_ops *,
495 ULONGEST address, LONGEST length);
496
497 /* Finishes a flash memory write sequence. After this operation
498 all flash memory should be available for writing and the result
499 of reading from areas written by 'to_flash_write' should be
500 equal to what was written. */
501 void (*to_flash_done) (struct target_ops *);
502
424163ea
DJ
503 /* Describe the architecture-specific features of this target.
504 Returns the description found, or NULL if no description
505 was available. */
506 const struct target_desc *(*to_read_description) (struct target_ops *ops);
507
c5aa993b 508 int to_magic;
0d06e24b
JM
509 /* Need sub-structure for target machine related rather than comm related?
510 */
c5aa993b 511 };
c906108c
SS
512
513/* Magic number for checking ops size. If a struct doesn't end with this
514 number, somebody changed the declaration but didn't change all the
515 places that initialize one. */
516
517#define OPS_MAGIC 3840
518
519/* The ops structure for our "current" target process. This should
520 never be NULL. If there is no target, it points to the dummy_target. */
521
c5aa993b 522extern struct target_ops current_target;
c906108c 523
c906108c
SS
524/* Define easy words for doing these operations on our current target. */
525
526#define target_shortname (current_target.to_shortname)
527#define target_longname (current_target.to_longname)
528
f1c07ab0
AC
529/* Does whatever cleanup is required for a target that we are no
530 longer going to be calling. QUITTING indicates that GDB is exiting
531 and should not get hung on an error (otherwise it is important to
532 perform clean termination, even if it takes a while). This routine
533 is automatically always called when popping the target off the
534 target stack (to_beneath is undefined). Closing file descriptors
535 and freeing all memory allocated memory are typical things it
536 should do. */
537
538void target_close (struct target_ops *targ, int quitting);
c906108c
SS
539
540/* Attaches to a process on the target side. Arguments are as passed
541 to the `attach' command by the user. This routine can be called
542 when the target is not on the target-stack, if the target_can_run
2146d243 543 routine returns 1; in that case, it must push itself onto the stack.
c906108c 544 Upon exit, the target should be ready for normal operations, and
2146d243 545 should be ready to deliver the status of the process immediately
c906108c
SS
546 (without waiting) to an upcoming target_wait call. */
547
548#define target_attach(args, from_tty) \
0d06e24b 549 (*current_target.to_attach) (args, from_tty)
c906108c
SS
550
551/* The target_attach operation places a process under debugger control,
552 and stops the process.
553
554 This operation provides a target-specific hook that allows the
0d06e24b 555 necessary bookkeeping to be performed after an attach completes. */
c906108c 556#define target_post_attach(pid) \
0d06e24b 557 (*current_target.to_post_attach) (pid)
c906108c 558
c906108c
SS
559/* Takes a program previously attached to and detaches it.
560 The program may resume execution (some targets do, some don't) and will
561 no longer stop on signals, etc. We better not have left any breakpoints
562 in the program or it'll die when it hits one. ARGS is arguments
563 typed by the user (e.g. a signal to send the process). FROM_TTY
564 says whether to be verbose or not. */
565
a14ed312 566extern void target_detach (char *, int);
c906108c 567
6ad8ae5c
DJ
568/* Disconnect from the current target without resuming it (leaving it
569 waiting for a debugger). */
570
571extern void target_disconnect (char *, int);
572
39f77062 573/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
574 single-step or to run free; SIGGNAL is the signal to be given to
575 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
576 pass TARGET_SIGNAL_DEFAULT. */
577
39f77062 578#define target_resume(ptid, step, siggnal) \
4930751a
C
579 do { \
580 dcache_invalidate(target_dcache); \
39f77062 581 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 582 } while (0)
c906108c 583
b5a2688f
AC
584/* Wait for process pid to do something. PTID = -1 to wait for any
585 pid to do something. Return pid of child, or -1 in case of error;
c906108c 586 store status through argument pointer STATUS. Note that it is
b5a2688f 587 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
588 the debugging target from the stack; GDB isn't prepared to get back
589 to the prompt with a debugging target but without the frame cache,
590 stop_pc, etc., set up. */
591
39f77062
KB
592#define target_wait(ptid, status) \
593 (*current_target.to_wait) (ptid, status)
c906108c 594
17dee195 595/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 596
56be3814
UW
597#define target_fetch_registers(regcache, regno) \
598 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
599
600/* Store at least register REGNO, or all regs if REGNO == -1.
601 It can store as many registers as it wants to, so target_prepare_to_store
602 must have been previously called. Calls error() if there are problems. */
603
56be3814
UW
604#define target_store_registers(regcache, regs) \
605 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
606
607/* Get ready to modify the registers array. On machines which store
608 individual registers, this doesn't need to do anything. On machines
609 which store all the registers in one fell swoop, this makes sure
610 that REGISTERS contains all the registers from the program being
611 debugged. */
612
316f2060
UW
613#define target_prepare_to_store(regcache) \
614 (*current_target.to_prepare_to_store) (regcache)
c906108c 615
4930751a
C
616extern DCACHE *target_dcache;
617
a14ed312 618extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 619
fc1a4b47 620extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 621
fc1a4b47 622extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 623 int len);
c906108c 624
1b0ba102 625extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 626 struct mem_attrib *, struct target_ops *);
c906108c 627
fd79ecee
DJ
628/* Fetches the target's memory map. If one is found it is sorted
629 and returned, after some consistency checking. Otherwise, NULL
630 is returned. */
631VEC(mem_region_s) *target_memory_map (void);
632
a76d924d
DJ
633/* Erase the specified flash region. */
634void target_flash_erase (ULONGEST address, LONGEST length);
635
636/* Finish a sequence of flash operations. */
637void target_flash_done (void);
638
639/* Describes a request for a memory write operation. */
640struct memory_write_request
641 {
642 /* Begining address that must be written. */
643 ULONGEST begin;
644 /* Past-the-end address. */
645 ULONGEST end;
646 /* The data to write. */
647 gdb_byte *data;
648 /* A callback baton for progress reporting for this request. */
649 void *baton;
650 };
651typedef struct memory_write_request memory_write_request_s;
652DEF_VEC_O(memory_write_request_s);
653
654/* Enumeration specifying different flash preservation behaviour. */
655enum flash_preserve_mode
656 {
657 flash_preserve,
658 flash_discard
659 };
660
661/* Write several memory blocks at once. This version can be more
662 efficient than making several calls to target_write_memory, in
663 particular because it can optimize accesses to flash memory.
664
665 Moreover, this is currently the only memory access function in gdb
666 that supports writing to flash memory, and it should be used for
667 all cases where access to flash memory is desirable.
668
669 REQUESTS is the vector (see vec.h) of memory_write_request.
670 PRESERVE_FLASH_P indicates what to do with blocks which must be
671 erased, but not completely rewritten.
672 PROGRESS_CB is a function that will be periodically called to provide
673 feedback to user. It will be called with the baton corresponding
674 to the request currently being written. It may also be called
675 with a NULL baton, when preserved flash sectors are being rewritten.
676
677 The function returns 0 on success, and error otherwise. */
678int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
679 enum flash_preserve_mode preserve_flash_p,
680 void (*progress_cb) (ULONGEST, void *));
681
47932f85
DJ
682/* From infrun.c. */
683
684extern int inferior_has_forked (int pid, int *child_pid);
685
686extern int inferior_has_vforked (int pid, int *child_pid);
687
688extern int inferior_has_execd (int pid, char **execd_pathname);
689
c906108c
SS
690/* From exec.c */
691
a14ed312 692extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
693
694/* Print a line about the current target. */
695
696#define target_files_info() \
0d06e24b 697 (*current_target.to_files_info) (&current_target)
c906108c 698
8181d85f
DJ
699/* Insert a breakpoint at address BP_TGT->placed_address in the target
700 machine. Result is 0 for success, or an errno value. */
c906108c 701
8181d85f
DJ
702#define target_insert_breakpoint(bp_tgt) \
703 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 704
8181d85f
DJ
705/* Remove a breakpoint at address BP_TGT->placed_address in the target
706 machine. Result is 0 for success, or an errno value. */
c906108c 707
8181d85f
DJ
708#define target_remove_breakpoint(bp_tgt) \
709 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
710
711/* Initialize the terminal settings we record for the inferior,
712 before we actually run the inferior. */
713
714#define target_terminal_init() \
0d06e24b 715 (*current_target.to_terminal_init) ()
c906108c
SS
716
717/* Put the inferior's terminal settings into effect.
718 This is preparation for starting or resuming the inferior. */
719
720#define target_terminal_inferior() \
0d06e24b 721 (*current_target.to_terminal_inferior) ()
c906108c
SS
722
723/* Put some of our terminal settings into effect,
724 enough to get proper results from our output,
725 but do not change into or out of RAW mode
726 so that no input is discarded.
727
728 After doing this, either terminal_ours or terminal_inferior
729 should be called to get back to a normal state of affairs. */
730
731#define target_terminal_ours_for_output() \
0d06e24b 732 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
733
734/* Put our terminal settings into effect.
735 First record the inferior's terminal settings
736 so they can be restored properly later. */
737
738#define target_terminal_ours() \
0d06e24b 739 (*current_target.to_terminal_ours) ()
c906108c 740
a790ad35
SC
741/* Save our terminal settings.
742 This is called from TUI after entering or leaving the curses
743 mode. Since curses modifies our terminal this call is here
744 to take this change into account. */
745
746#define target_terminal_save_ours() \
747 (*current_target.to_terminal_save_ours) ()
748
c906108c
SS
749/* Print useful information about our terminal status, if such a thing
750 exists. */
751
752#define target_terminal_info(arg, from_tty) \
0d06e24b 753 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
754
755/* Kill the inferior process. Make it go away. */
756
757#define target_kill() \
0d06e24b 758 (*current_target.to_kill) ()
c906108c 759
0d06e24b
JM
760/* Load an executable file into the target process. This is expected
761 to not only bring new code into the target process, but also to
1986bccd
AS
762 update GDB's symbol tables to match.
763
764 ARG contains command-line arguments, to be broken down with
765 buildargv (). The first non-switch argument is the filename to
766 load, FILE; the second is a number (as parsed by strtoul (..., ...,
767 0)), which is an offset to apply to the load addresses of FILE's
768 sections. The target may define switches, or other non-switch
769 arguments, as it pleases. */
c906108c 770
11cf8741 771extern void target_load (char *arg, int from_tty);
c906108c
SS
772
773/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
774 name. ADDRP is a CORE_ADDR * pointing to where the value of the
775 symbol should be returned. The result is 0 if successful, nonzero
776 if the symbol does not exist in the target environment. This
777 function should not call error() if communication with the target
778 is interrupted, since it is called from symbol reading, but should
779 return nonzero, possibly doing a complain(). */
c906108c 780
0d06e24b
JM
781#define target_lookup_symbol(name, addrp) \
782 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 783
39f77062 784/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
785 EXEC_FILE is the file to run.
786 ALLARGS is a string containing the arguments to the program.
787 ENV is the environment vector to pass. Errors reported with error().
788 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 789
c27cda74
AC
790#define target_create_inferior(exec_file, args, env, FROM_TTY) \
791 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
792
793
794/* Some targets (such as ttrace-based HPUX) don't allow us to request
795 notification of inferior events such as fork and vork immediately
796 after the inferior is created. (This because of how gdb gets an
797 inferior created via invoking a shell to do it. In such a scenario,
798 if the shell init file has commands in it, the shell will fork and
799 exec for each of those commands, and we will see each such fork
800 event. Very bad.)
c5aa993b 801
0d06e24b
JM
802 Such targets will supply an appropriate definition for this function. */
803
39f77062
KB
804#define target_post_startup_inferior(ptid) \
805 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
806
807/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
808 some synchronization between gdb and the new inferior process, PID. */
809
c906108c 810#define target_acknowledge_created_inferior(pid) \
0d06e24b 811 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 812
0d06e24b
JM
813/* On some targets, we can catch an inferior fork or vfork event when
814 it occurs. These functions insert/remove an already-created
815 catchpoint for such events. */
c906108c 816
c906108c 817#define target_insert_fork_catchpoint(pid) \
0d06e24b 818 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
819
820#define target_remove_fork_catchpoint(pid) \
0d06e24b 821 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
822
823#define target_insert_vfork_catchpoint(pid) \
0d06e24b 824 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
825
826#define target_remove_vfork_catchpoint(pid) \
0d06e24b 827 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 828
6604731b
DJ
829/* If the inferior forks or vforks, this function will be called at
830 the next resume in order to perform any bookkeeping and fiddling
831 necessary to continue debugging either the parent or child, as
832 requested, and releasing the other. Information about the fork
833 or vfork event is available via get_last_target_status ().
834 This function returns 1 if the inferior should not be resumed
835 (i.e. there is another event pending). */
0d06e24b 836
ee057212 837int target_follow_fork (int follow_child);
c906108c
SS
838
839/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
840 occurs. These functions insert/remove an already-created
841 catchpoint for such events. */
842
c906108c 843#define target_insert_exec_catchpoint(pid) \
0d06e24b 844 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 845
c906108c 846#define target_remove_exec_catchpoint(pid) \
0d06e24b 847 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 848
c906108c
SS
849/* Returns the number of exec events that are reported when a process
850 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
851 events are being reported. */
852
c906108c 853#define target_reported_exec_events_per_exec_call() \
0d06e24b 854 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 855
c906108c 856/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
857 exit code of PID, if any. */
858
c906108c 859#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 860 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
861
862/* The debugger has completed a blocking wait() call. There is now
2146d243 863 some process event that must be processed. This function should
c906108c 864 be defined by those targets that require the debugger to perform
0d06e24b 865 cleanup or internal state changes in response to the process event. */
c906108c
SS
866
867/* The inferior process has died. Do what is right. */
868
869#define target_mourn_inferior() \
0d06e24b 870 (*current_target.to_mourn_inferior) ()
c906108c
SS
871
872/* Does target have enough data to do a run or attach command? */
873
874#define target_can_run(t) \
0d06e24b 875 ((t)->to_can_run) ()
c906108c
SS
876
877/* post process changes to signal handling in the inferior. */
878
39f77062
KB
879#define target_notice_signals(ptid) \
880 (*current_target.to_notice_signals) (ptid)
c906108c
SS
881
882/* Check to see if a thread is still alive. */
883
39f77062
KB
884#define target_thread_alive(ptid) \
885 (*current_target.to_thread_alive) (ptid)
c906108c 886
b83266a0
SS
887/* Query for new threads and add them to the thread list. */
888
889#define target_find_new_threads() \
0d06e24b 890 (*current_target.to_find_new_threads) (); \
b83266a0 891
0d06e24b
JM
892/* Make target stop in a continuable fashion. (For instance, under
893 Unix, this should act like SIGSTOP). This function is normally
894 used by GUIs to implement a stop button. */
c906108c
SS
895
896#define target_stop current_target.to_stop
897
96baa820
JM
898/* Send the specified COMMAND to the target's monitor
899 (shell,interpreter) for execution. The result of the query is
0d06e24b 900 placed in OUTBUF. */
96baa820
JM
901
902#define target_rcmd(command, outbuf) \
903 (*current_target.to_rcmd) (command, outbuf)
904
905
c906108c 906/* Get the symbol information for a breakpointable routine called when
2146d243 907 an exception event occurs.
c906108c
SS
908 Intended mainly for C++, and for those
909 platforms/implementations where such a callback mechanism is available,
910 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 911 different mechanisms for debugging exceptions. */
c906108c
SS
912
913#define target_enable_exception_callback(kind, enable) \
0d06e24b 914 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 915
0d06e24b 916/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 917
c906108c 918#define target_get_current_exception_event() \
0d06e24b 919 (*current_target.to_get_current_exception_event) ()
c906108c 920
c906108c
SS
921/* Does the target include all of memory, or only part of it? This
922 determines whether we look up the target chain for other parts of
923 memory if this target can't satisfy a request. */
924
925#define target_has_all_memory \
0d06e24b 926 (current_target.to_has_all_memory)
c906108c
SS
927
928/* Does the target include memory? (Dummy targets don't.) */
929
930#define target_has_memory \
0d06e24b 931 (current_target.to_has_memory)
c906108c
SS
932
933/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
934 we start a process.) */
c5aa993b 935
c906108c 936#define target_has_stack \
0d06e24b 937 (current_target.to_has_stack)
c906108c
SS
938
939/* Does the target have registers? (Exec files don't.) */
940
941#define target_has_registers \
0d06e24b 942 (current_target.to_has_registers)
c906108c
SS
943
944/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
945 hoops), or pop its stack a few times? This means that the current
946 target is currently executing; for some targets, that's the same as
947 whether or not the target is capable of execution, but there are
948 also targets which can be current while not executing. In that
949 case this will become true after target_create_inferior or
950 target_attach. */
c906108c
SS
951
952#define target_has_execution \
0d06e24b 953 (current_target.to_has_execution)
c906108c
SS
954
955/* Can the target support the debugger control of thread execution?
956 a) Can it lock the thread scheduler?
957 b) Can it switch the currently running thread? */
958
959#define target_can_lock_scheduler \
0d06e24b 960 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
961
962#define target_can_switch_threads \
0d06e24b 963 (current_target.to_has_thread_control & tc_switch)
c906108c 964
6426a772
JM
965/* Can the target support asynchronous execution? */
966#define target_can_async_p() (current_target.to_can_async_p ())
967
968/* Is the target in asynchronous execution mode? */
969#define target_is_async_p() (current_target.to_is_async_p())
970
971/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
972#define target_async(CALLBACK,CONTEXT) \
973 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 974
04714b91
AC
975/* This is to be used ONLY within call_function_by_hand(). It provides
976 a workaround, to have inferior function calls done in sychronous
977 mode, even though the target is asynchronous. After
ed9a39eb
JM
978 target_async_mask(0) is called, calls to target_can_async_p() will
979 return FALSE , so that target_resume() will not try to start the
980 target asynchronously. After the inferior stops, we IMMEDIATELY
981 restore the previous nature of the target, by calling
982 target_async_mask(1). After that, target_can_async_p() will return
04714b91 983 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
984
985 FIXME ezannoni 1999-12-13: we won't need this once we move
986 the turning async on and off to the single execution commands,
0d06e24b 987 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
988
989#define target_async_mask_value \
0d06e24b 990 (current_target.to_async_mask_value)
ed9a39eb 991
2146d243 992extern int target_async_mask (int mask);
ed9a39eb 993
c906108c
SS
994/* Converts a process id to a string. Usually, the string just contains
995 `process xyz', but on some systems it may contain
996 `process xyz thread abc'. */
997
ed9a39eb
JM
998#undef target_pid_to_str
999#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1000
1001#ifndef target_tid_to_str
1002#define target_tid_to_str(PID) \
0d06e24b 1003 target_pid_to_str (PID)
39f77062 1004extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1005#endif
c5aa993b 1006
0d06e24b
JM
1007/* Return a short string describing extra information about PID,
1008 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1009 is okay. */
1010
1011#define target_extra_thread_info(TP) \
1012 (current_target.to_extra_thread_info (TP))
ed9a39eb 1013
c906108c
SS
1014#ifndef target_pid_or_tid_to_str
1015#define target_pid_or_tid_to_str(ID) \
0d06e24b 1016 target_pid_to_str (ID)
c906108c
SS
1017#endif
1018
1019/* Attempts to find the pathname of the executable file
1020 that was run to create a specified process.
1021
1022 The process PID must be stopped when this operation is used.
c5aa993b 1023
c906108c
SS
1024 If the executable file cannot be determined, NULL is returned.
1025
1026 Else, a pointer to a character string containing the pathname
1027 is returned. This string should be copied into a buffer by
1028 the client if the string will not be immediately used, or if
0d06e24b 1029 it must persist. */
c906108c
SS
1030
1031#define target_pid_to_exec_file(pid) \
0d06e24b 1032 (current_target.to_pid_to_exec_file) (pid)
c906108c 1033
be4d1333
MS
1034/*
1035 * Iterator function for target memory regions.
1036 * Calls a callback function once for each memory region 'mapped'
1037 * in the child process. Defined as a simple macro rather than
2146d243 1038 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1039 */
1040
1041#define target_find_memory_regions(FUNC, DATA) \
1042 (current_target.to_find_memory_regions) (FUNC, DATA)
1043
1044/*
1045 * Compose corefile .note section.
1046 */
1047
1048#define target_make_corefile_notes(BFD, SIZE_P) \
1049 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1050
3f47be5c
EZ
1051/* Thread-local values. */
1052#define target_get_thread_local_address \
1053 (current_target.to_get_thread_local_address)
1054#define target_get_thread_local_address_p() \
1055 (target_get_thread_local_address != NULL)
1056
c906108c
SS
1057
1058/* Hardware watchpoint interfaces. */
1059
1060/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1061 write). */
1062
1063#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1064#define STOPPED_BY_WATCHPOINT(w) \
1065 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1066#endif
7df1a324 1067
74174d2e
UW
1068/* Non-zero if we have steppable watchpoints */
1069
1070#ifndef HAVE_STEPPABLE_WATCHPOINT
1071#define HAVE_STEPPABLE_WATCHPOINT \
1072 (current_target.to_have_steppable_watchpoint)
1073#endif
1074
7df1a324
KW
1075/* Non-zero if we have continuable watchpoints */
1076
1077#ifndef HAVE_CONTINUABLE_WATCHPOINT
1078#define HAVE_CONTINUABLE_WATCHPOINT \
1079 (current_target.to_have_continuable_watchpoint)
1080#endif
c906108c 1081
ccaa32c7 1082/* Provide defaults for hardware watchpoint functions. */
c906108c 1083
2146d243 1084/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1085 elsewhere use the definitions in the target vector. */
c906108c
SS
1086
1087/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1088 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1089 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1090 (including this one?). OTHERTYPE is who knows what... */
1091
ccaa32c7
GS
1092#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1093#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1094 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1095#endif
c906108c 1096
e0d24f8d
WZ
1097#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1098#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1099 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1100#endif
1101
c906108c
SS
1102
1103/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1104 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1105 success, non-zero for failure. */
1106
ccaa32c7
GS
1107#ifndef target_insert_watchpoint
1108#define target_insert_watchpoint(addr, len, type) \
1109 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1110
ccaa32c7
GS
1111#define target_remove_watchpoint(addr, len, type) \
1112 (*current_target.to_remove_watchpoint) (addr, len, type)
1113#endif
c906108c
SS
1114
1115#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1116#define target_insert_hw_breakpoint(bp_tgt) \
1117 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1118
8181d85f
DJ
1119#define target_remove_hw_breakpoint(bp_tgt) \
1120 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1121#endif
1122
4aa7a7f5
JJ
1123extern int target_stopped_data_address_p (struct target_ops *);
1124
c906108c 1125#ifndef target_stopped_data_address
4aa7a7f5
JJ
1126#define target_stopped_data_address(target, x) \
1127 (*target.to_stopped_data_address) (target, x)
1128#else
1129/* Horrible hack to get around existing macros :-(. */
1130#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1131#endif
1132
424163ea
DJ
1133extern const struct target_desc *target_read_description (struct target_ops *);
1134
c906108c
SS
1135/* Routines for maintenance of the target structures...
1136
1137 add_target: Add a target to the list of all possible targets.
1138
1139 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1140 targets, within its particular stratum of the stack. Result
1141 is 0 if now atop the stack, nonzero if not on top (maybe
1142 should warn user).
c906108c
SS
1143
1144 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1145 no matter where it is on the list. Returns 0 if no
1146 change, 1 if removed from stack.
c906108c 1147
c5aa993b 1148 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1149
a14ed312 1150extern void add_target (struct target_ops *);
c906108c 1151
a14ed312 1152extern int push_target (struct target_ops *);
c906108c 1153
a14ed312 1154extern int unpush_target (struct target_ops *);
c906108c 1155
fd79ecee
DJ
1156extern void target_pre_inferior (int);
1157
a14ed312 1158extern void target_preopen (int);
c906108c 1159
a14ed312 1160extern void pop_target (void);
c906108c 1161
9e35dae4
DJ
1162extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1163 CORE_ADDR offset);
1164
52bb452f
DJ
1165/* Mark a pushed target as running or exited, for targets which do not
1166 automatically pop when not active. */
1167
1168void target_mark_running (struct target_ops *);
1169
1170void target_mark_exited (struct target_ops *);
1171
c906108c
SS
1172/* Struct section_table maps address ranges to file sections. It is
1173 mostly used with BFD files, but can be used without (e.g. for handling
1174 raw disks, or files not in formats handled by BFD). */
1175
c5aa993b
JM
1176struct section_table
1177 {
1178 CORE_ADDR addr; /* Lowest address in section */
1179 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1180
7be0c536 1181 struct bfd_section *the_bfd_section;
c906108c 1182
c5aa993b
JM
1183 bfd *bfd; /* BFD file pointer */
1184 };
c906108c 1185
8db32d44
AC
1186/* Return the "section" containing the specified address. */
1187struct section_table *target_section_by_addr (struct target_ops *target,
1188 CORE_ADDR addr);
1189
1190
c906108c
SS
1191/* From mem-break.c */
1192
8181d85f 1193extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1194
8181d85f 1195extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1196
8181d85f 1197extern int default_memory_remove_breakpoint (struct bp_target_info *);
917317f4 1198
8181d85f 1199extern int default_memory_insert_breakpoint (struct bp_target_info *);
917317f4 1200
c906108c
SS
1201
1202/* From target.c */
1203
a14ed312 1204extern void initialize_targets (void);
c906108c 1205
a14ed312 1206extern void noprocess (void);
c906108c 1207
a14ed312 1208extern void find_default_attach (char *, int);
c906108c 1209
c27cda74 1210extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1211
a14ed312 1212extern struct target_ops *find_run_target (void);
7a292a7a 1213
a14ed312 1214extern struct target_ops *find_core_target (void);
6426a772 1215
a14ed312 1216extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1217
570b8f7c
AC
1218extern int target_resize_to_sections (struct target_ops *target,
1219 int num_added);
07cd4b97
JB
1220
1221extern void remove_target_sections (bfd *abfd);
1222
c906108c
SS
1223\f
1224/* Stuff that should be shared among the various remote targets. */
1225
1226/* Debugging level. 0 is off, and non-zero values mean to print some debug
1227 information (higher values, more information). */
1228extern int remote_debug;
1229
1230/* Speed in bits per second, or -1 which means don't mess with the speed. */
1231extern int baud_rate;
1232/* Timeout limit for response from target. */
1233extern int remote_timeout;
1234
c906108c
SS
1235\f
1236/* Functions for helping to write a native target. */
1237
1238/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1239extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1240
c2d11a7d 1241/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1242 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1243/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1244 to the shorter target_signal_p() because it is far less ambigious.
1245 In this context ``target_signal'' refers to GDB's internal
1246 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1247 refers to the target operating system's signal. Confused? */
1248
c2d11a7d
JM
1249extern int target_signal_to_host_p (enum target_signal signo);
1250
1251/* Convert between host signal numbers and enum target_signal's.
1252 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1253 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1254/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1255 refering to the target operating system's signal numbering.
1256 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1257 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1258 internal representation of a target operating system's signal. */
1259
a14ed312
KB
1260extern enum target_signal target_signal_from_host (int);
1261extern int target_signal_to_host (enum target_signal);
c906108c
SS
1262
1263/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1264extern enum target_signal target_signal_from_command (int);
c906108c
SS
1265
1266/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1267extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1268\f
1269/* Imported from machine dependent code */
1270
c906108c 1271/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1272void target_ignore (void);
c906108c 1273
1df84f13 1274extern struct target_ops deprecated_child_ops;
5ac10fd1 1275
c5aa993b 1276#endif /* !defined (TARGET_H) */
This page took 0.750497 seconds and 4 git commands to generate.