* config/rs6000/nm-rs6000.h (TARGET_CREATE_INFERIOR_HOOK): Remove.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#if !defined (TARGET_H)
27#define TARGET_H
28
da3331ec
AC
29struct objfile;
30struct ui_file;
31struct mem_attrib;
1e3ff5ad 32struct target_ops;
8181d85f 33struct bp_target_info;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
4930751a 56#include "dcache.h"
29e57380 57#include "memattr.h"
fd79ecee 58#include "vec.h"
c906108c 59
c5aa993b
JM
60enum strata
61 {
62 dummy_stratum, /* The lowest of the low */
63 file_stratum, /* Executable files, etc */
64 core_stratum, /* Core dump files */
65 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
66 process_stratum, /* Executing processes */
67 thread_stratum /* Executing threads */
c5aa993b 68 };
c906108c 69
c5aa993b
JM
70enum thread_control_capabilities
71 {
0d06e24b
JM
72 tc_none = 0, /* Default: can't control thread execution. */
73 tc_schedlock = 1, /* Can lock the thread scheduler. */
74 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 75 };
c906108c
SS
76
77/* Stuff for target_wait. */
78
79/* Generally, what has the program done? */
c5aa993b
JM
80enum target_waitkind
81 {
82 /* The program has exited. The exit status is in value.integer. */
83 TARGET_WAITKIND_EXITED,
c906108c 84
0d06e24b
JM
85 /* The program has stopped with a signal. Which signal is in
86 value.sig. */
c5aa993b 87 TARGET_WAITKIND_STOPPED,
c906108c 88
c5aa993b
JM
89 /* The program has terminated with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_SIGNALLED,
c906108c 92
c5aa993b
JM
93 /* The program is letting us know that it dynamically loaded something
94 (e.g. it called load(2) on AIX). */
95 TARGET_WAITKIND_LOADED,
c906108c 96
0d06e24b
JM
97 /* The program has forked. A "related" process' ID is in
98 value.related_pid. I.e., if the child forks, value.related_pid
99 is the parent's ID. */
100
c5aa993b 101 TARGET_WAITKIND_FORKED,
c906108c 102
0d06e24b
JM
103 /* The program has vforked. A "related" process's ID is in
104 value.related_pid. */
105
c5aa993b 106 TARGET_WAITKIND_VFORKED,
c906108c 107
0d06e24b
JM
108 /* The program has exec'ed a new executable file. The new file's
109 pathname is pointed to by value.execd_pathname. */
110
c5aa993b 111 TARGET_WAITKIND_EXECD,
c906108c 112
0d06e24b
JM
113 /* The program has entered or returned from a system call. On
114 HP-UX, this is used in the hardware watchpoint implementation.
115 The syscall's unique integer ID number is in value.syscall_id */
116
c5aa993b
JM
117 TARGET_WAITKIND_SYSCALL_ENTRY,
118 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 119
c5aa993b
JM
120 /* Nothing happened, but we stopped anyway. This perhaps should be handled
121 within target_wait, but I'm not sure target_wait should be resuming the
122 inferior. */
c4093a6a
JM
123 TARGET_WAITKIND_SPURIOUS,
124
8e7d2c16
DJ
125 /* An event has occured, but we should wait again.
126 Remote_async_wait() returns this when there is an event
c4093a6a
JM
127 on the inferior, but the rest of the world is not interested in
128 it. The inferior has not stopped, but has just sent some output
129 to the console, for instance. In this case, we want to go back
130 to the event loop and wait there for another event from the
131 inferior, rather than being stuck in the remote_async_wait()
132 function. This way the event loop is responsive to other events,
0d06e24b 133 like for instance the user typing. */
c4093a6a 134 TARGET_WAITKIND_IGNORE
c906108c
SS
135 };
136
c5aa993b
JM
137struct target_waitstatus
138 {
139 enum target_waitkind kind;
140
141 /* Forked child pid, execd pathname, exit status or signal number. */
142 union
143 {
144 int integer;
145 enum target_signal sig;
146 int related_pid;
147 char *execd_pathname;
148 int syscall_id;
149 }
150 value;
151 };
c906108c 152
2acceee2 153/* Possible types of events that the inferior handler will have to
0d06e24b 154 deal with. */
2acceee2
JM
155enum inferior_event_type
156 {
0d06e24b 157 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
158 INF_QUIT_REQ,
159 /* Process a normal inferior event which will result in target_wait
0d06e24b 160 being called. */
2146d243 161 INF_REG_EVENT,
0d06e24b 162 /* Deal with an error on the inferior. */
2acceee2 163 INF_ERROR,
0d06e24b 164 /* We are called because a timer went off. */
2acceee2 165 INF_TIMER,
0d06e24b 166 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
167 INF_EXEC_COMPLETE,
168 /* We are called to do some stuff after the inferior stops, but we
169 are expected to reenter the proceed() and
170 handle_inferior_event() functions. This is used only in case of
0d06e24b 171 'step n' like commands. */
c2d11a7d 172 INF_EXEC_CONTINUE
2acceee2
JM
173 };
174
c906108c 175/* Return the string for a signal. */
a14ed312 176extern char *target_signal_to_string (enum target_signal);
c906108c
SS
177
178/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 179extern char *target_signal_to_name (enum target_signal);
c906108c
SS
180
181/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 182enum target_signal target_signal_from_name (char *);
c906108c 183\f
13547ab6
DJ
184/* Target objects which can be transfered using target_read,
185 target_write, et cetera. */
1e3ff5ad
AC
186
187enum target_object
188{
1e3ff5ad
AC
189 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
190 TARGET_OBJECT_AVR,
191 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 192 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
193 /* Memory, avoiding GDB's data cache and trusting the executable.
194 Target implementations of to_xfer_partial never need to handle
195 this object, and most callers should not use it. */
196 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
197 /* Kernel Unwind Table. See "ia64-tdep.c". */
198 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
199 /* Transfer auxilliary vector. */
200 TARGET_OBJECT_AUXV,
baf92889 201 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
202 TARGET_OBJECT_WCOOKIE,
203 /* Target memory map in XML format. */
204 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
205 /* Flash memory. This object can be used to write contents to
206 a previously erased flash memory. Using it without erasing
207 flash can have unexpected results. Addresses are physical
208 address on target, and not relative to flash start. */
23181151
DJ
209 TARGET_OBJECT_FLASH,
210 /* Available target-specific features, e.g. registers and coprocessors.
211 See "target-descriptions.c". ANNEX should never be empty. */
212 TARGET_OBJECT_AVAILABLE_FEATURES
2146d243 213 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
214};
215
13547ab6
DJ
216/* Request that OPS transfer up to LEN 8-bit bytes of the target's
217 OBJECT. The OFFSET, for a seekable object, specifies the
218 starting point. The ANNEX can be used to provide additional
219 data-specific information to the target.
1e3ff5ad 220
13547ab6
DJ
221 Return the number of bytes actually transfered, or -1 if the
222 transfer is not supported or otherwise fails. Return of a positive
223 value less than LEN indicates that no further transfer is possible.
224 Unlike the raw to_xfer_partial interface, callers of these
225 functions do not need to retry partial transfers. */
1e3ff5ad 226
1e3ff5ad
AC
227extern LONGEST target_read (struct target_ops *ops,
228 enum target_object object,
1b0ba102 229 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
230 ULONGEST offset, LONGEST len);
231
232extern LONGEST target_write (struct target_ops *ops,
233 enum target_object object,
1b0ba102 234 const char *annex, const gdb_byte *buf,
1e3ff5ad 235 ULONGEST offset, LONGEST len);
b6591e8b 236
a76d924d
DJ
237/* Similar to target_write, except that it also calls PROGRESS with
238 the number of bytes written and the opaque BATON after every
239 successful partial write (and before the first write). This is
240 useful for progress reporting and user interaction while writing
241 data. To abort the transfer, the progress callback can throw an
242 exception. */
243
cf7a04e8
DJ
244LONGEST target_write_with_progress (struct target_ops *ops,
245 enum target_object object,
246 const char *annex, const gdb_byte *buf,
247 ULONGEST offset, LONGEST len,
248 void (*progress) (ULONGEST, void *),
249 void *baton);
250
13547ab6
DJ
251/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
252 be read using OPS. The return value will be -1 if the transfer
253 fails or is not supported; 0 if the object is empty; or the length
254 of the object otherwise. If a positive value is returned, a
255 sufficiently large buffer will be allocated using xmalloc and
256 returned in *BUF_P containing the contents of the object.
257
258 This method should be used for objects sufficiently small to store
259 in a single xmalloc'd buffer, when no fixed bound on the object's
260 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
261 through this function. */
262
263extern LONGEST target_read_alloc (struct target_ops *ops,
264 enum target_object object,
265 const char *annex, gdb_byte **buf_p);
266
159f81f3
DJ
267/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
268 returned as a string, allocated using xmalloc. If an error occurs
269 or the transfer is unsupported, NULL is returned. Empty objects
270 are returned as allocated but empty strings. A warning is issued
271 if the result contains any embedded NUL bytes. */
272
273extern char *target_read_stralloc (struct target_ops *ops,
274 enum target_object object,
275 const char *annex);
276
b6591e8b
AC
277/* Wrappers to target read/write that perform memory transfers. They
278 throw an error if the memory transfer fails.
279
280 NOTE: cagney/2003-10-23: The naming schema is lifted from
281 "frame.h". The parameter order is lifted from get_frame_memory,
282 which in turn lifted it from read_memory. */
283
284extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 285 gdb_byte *buf, LONGEST len);
b6591e8b
AC
286extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
287 CORE_ADDR addr, int len);
1e3ff5ad 288\f
c5aa993b 289
c906108c
SS
290/* If certain kinds of activity happen, target_wait should perform
291 callbacks. */
292/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 293 on TARGET_ACTIVITY_FD. */
c906108c
SS
294extern int target_activity_fd;
295/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 296extern int (*target_activity_function) (void);
c906108c 297\f
0d06e24b
JM
298struct thread_info; /* fwd decl for parameter list below: */
299
c906108c 300struct target_ops
c5aa993b 301 {
258b763a 302 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
303 char *to_shortname; /* Name this target type */
304 char *to_longname; /* Name for printing */
305 char *to_doc; /* Documentation. Does not include trailing
c906108c 306 newline, and starts with a one-line descrip-
0d06e24b 307 tion (probably similar to to_longname). */
bba2d28d
AC
308 /* Per-target scratch pad. */
309 void *to_data;
f1c07ab0
AC
310 /* The open routine takes the rest of the parameters from the
311 command, and (if successful) pushes a new target onto the
312 stack. Targets should supply this routine, if only to provide
313 an error message. */
507f3c78 314 void (*to_open) (char *, int);
f1c07ab0
AC
315 /* Old targets with a static target vector provide "to_close".
316 New re-entrant targets provide "to_xclose" and that is expected
317 to xfree everything (including the "struct target_ops"). */
318 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
319 void (*to_close) (int);
320 void (*to_attach) (char *, int);
321 void (*to_post_attach) (int);
507f3c78 322 void (*to_detach) (char *, int);
597320e7 323 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
324 void (*to_resume) (ptid_t, int, enum target_signal);
325 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
507f3c78
KB
326 void (*to_fetch_registers) (int);
327 void (*to_store_registers) (int);
328 void (*to_prepare_to_store) (void);
c5aa993b
JM
329
330 /* Transfer LEN bytes of memory between GDB address MYADDR and
331 target address MEMADDR. If WRITE, transfer them to the target, else
332 transfer them from the target. TARGET is the target from which we
333 get this function.
334
335 Return value, N, is one of the following:
336
337 0 means that we can't handle this. If errno has been set, it is the
338 error which prevented us from doing it (FIXME: What about bfd_error?).
339
340 positive (call it N) means that we have transferred N bytes
341 starting at MEMADDR. We might be able to handle more bytes
342 beyond this length, but no promises.
343
344 negative (call its absolute value N) means that we cannot
345 transfer right at MEMADDR, but we could transfer at least
c8e73a31 346 something at MEMADDR + N.
c5aa993b 347
c8e73a31
AC
348 NOTE: cagney/2004-10-01: This has been entirely superseeded by
349 to_xfer_partial and inferior inheritance. */
350
1b0ba102 351 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
352 int len, int write,
353 struct mem_attrib *attrib,
354 struct target_ops *target);
c906108c 355
507f3c78 356 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
357 int (*to_insert_breakpoint) (struct bp_target_info *);
358 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 359 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
360 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
361 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
362 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
363 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
364 int (*to_stopped_by_watchpoint) (void);
74174d2e 365 int to_have_steppable_watchpoint;
7df1a324 366 int to_have_continuable_watchpoint;
4aa7a7f5 367 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 368 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
369 void (*to_terminal_init) (void);
370 void (*to_terminal_inferior) (void);
371 void (*to_terminal_ours_for_output) (void);
372 void (*to_terminal_ours) (void);
a790ad35 373 void (*to_terminal_save_ours) (void);
507f3c78
KB
374 void (*to_terminal_info) (char *, int);
375 void (*to_kill) (void);
376 void (*to_load) (char *, int);
377 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 378 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 379 void (*to_post_startup_inferior) (ptid_t);
507f3c78 380 void (*to_acknowledge_created_inferior) (int);
fa113d1a 381 void (*to_insert_fork_catchpoint) (int);
507f3c78 382 int (*to_remove_fork_catchpoint) (int);
fa113d1a 383 void (*to_insert_vfork_catchpoint) (int);
507f3c78 384 int (*to_remove_vfork_catchpoint) (int);
ee057212 385 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 386 void (*to_insert_exec_catchpoint) (int);
507f3c78 387 int (*to_remove_exec_catchpoint) (int);
507f3c78 388 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
389 int (*to_has_exited) (int, int, int *);
390 void (*to_mourn_inferior) (void);
391 int (*to_can_run) (void);
39f77062
KB
392 void (*to_notice_signals) (ptid_t ptid);
393 int (*to_thread_alive) (ptid_t ptid);
507f3c78 394 void (*to_find_new_threads) (void);
39f77062 395 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
396 char *(*to_extra_thread_info) (struct thread_info *);
397 void (*to_stop) (void);
d9fcf2fb 398 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
399 struct symtab_and_line *(*to_enable_exception_callback) (enum
400 exception_event_kind,
401 int);
402 struct exception_event_record *(*to_get_current_exception_event) (void);
403 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 404 enum strata to_stratum;
c5aa993b
JM
405 int to_has_all_memory;
406 int to_has_memory;
407 int to_has_stack;
408 int to_has_registers;
409 int to_has_execution;
410 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
411 struct section_table
412 *to_sections;
413 struct section_table
414 *to_sections_end;
6426a772
JM
415 /* ASYNC target controls */
416 int (*to_can_async_p) (void);
417 int (*to_is_async_p) (void);
0d06e24b
JM
418 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
419 void *context);
ed9a39eb 420 int to_async_mask_value;
2146d243
RM
421 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
422 unsigned long,
423 int, int, int,
424 void *),
be4d1333
MS
425 void *);
426 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
427
428 /* Return the thread-local address at OFFSET in the
429 thread-local storage for the thread PTID and the shared library
430 or executable file given by OBJFILE. If that block of
431 thread-local storage hasn't been allocated yet, this function
432 may return an error. */
433 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 434 CORE_ADDR load_module_addr,
3f47be5c
EZ
435 CORE_ADDR offset);
436
13547ab6
DJ
437 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
438 OBJECT. The OFFSET, for a seekable object, specifies the
439 starting point. The ANNEX can be used to provide additional
440 data-specific information to the target.
441
442 Return the number of bytes actually transfered, zero when no
443 further transfer is possible, and -1 when the transfer is not
444 supported. Return of a positive value smaller than LEN does
445 not indicate the end of the object, only the end of the
446 transfer; higher level code should continue transferring if
447 desired. This is handled in target.c.
448
449 The interface does not support a "retry" mechanism. Instead it
450 assumes that at least one byte will be transfered on each
451 successful call.
452
453 NOTE: cagney/2003-10-17: The current interface can lead to
454 fragmented transfers. Lower target levels should not implement
455 hacks, such as enlarging the transfer, in an attempt to
456 compensate for this. Instead, the target stack should be
457 extended so that it implements supply/collect methods and a
458 look-aside object cache. With that available, the lowest
459 target can safely and freely "push" data up the stack.
460
461 See target_read and target_write for more information. One,
462 and only one, of readbuf or writebuf must be non-NULL. */
463
4b8a223f 464 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 465 enum target_object object, const char *annex,
1b0ba102 466 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 467 ULONGEST offset, LONGEST len);
1e3ff5ad 468
fd79ecee
DJ
469 /* Returns the memory map for the target. A return value of NULL
470 means that no memory map is available. If a memory address
471 does not fall within any returned regions, it's assumed to be
472 RAM. The returned memory regions should not overlap.
473
474 The order of regions does not matter; target_memory_map will
475 sort regions by starting address. For that reason, this
476 function should not be called directly except via
477 target_memory_map.
478
479 This method should not cache data; if the memory map could
480 change unexpectedly, it should be invalidated, and higher
481 layers will re-fetch it. */
482 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
483
a76d924d
DJ
484 /* Erases the region of flash memory starting at ADDRESS, of
485 length LENGTH.
486
487 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
488 on flash block boundaries, as reported by 'to_memory_map'. */
489 void (*to_flash_erase) (struct target_ops *,
490 ULONGEST address, LONGEST length);
491
492 /* Finishes a flash memory write sequence. After this operation
493 all flash memory should be available for writing and the result
494 of reading from areas written by 'to_flash_write' should be
495 equal to what was written. */
496 void (*to_flash_done) (struct target_ops *);
497
424163ea
DJ
498 /* Describe the architecture-specific features of this target.
499 Returns the description found, or NULL if no description
500 was available. */
501 const struct target_desc *(*to_read_description) (struct target_ops *ops);
502
c5aa993b 503 int to_magic;
0d06e24b
JM
504 /* Need sub-structure for target machine related rather than comm related?
505 */
c5aa993b 506 };
c906108c
SS
507
508/* Magic number for checking ops size. If a struct doesn't end with this
509 number, somebody changed the declaration but didn't change all the
510 places that initialize one. */
511
512#define OPS_MAGIC 3840
513
514/* The ops structure for our "current" target process. This should
515 never be NULL. If there is no target, it points to the dummy_target. */
516
c5aa993b 517extern struct target_ops current_target;
c906108c 518
c906108c
SS
519/* Define easy words for doing these operations on our current target. */
520
521#define target_shortname (current_target.to_shortname)
522#define target_longname (current_target.to_longname)
523
f1c07ab0
AC
524/* Does whatever cleanup is required for a target that we are no
525 longer going to be calling. QUITTING indicates that GDB is exiting
526 and should not get hung on an error (otherwise it is important to
527 perform clean termination, even if it takes a while). This routine
528 is automatically always called when popping the target off the
529 target stack (to_beneath is undefined). Closing file descriptors
530 and freeing all memory allocated memory are typical things it
531 should do. */
532
533void target_close (struct target_ops *targ, int quitting);
c906108c
SS
534
535/* Attaches to a process on the target side. Arguments are as passed
536 to the `attach' command by the user. This routine can be called
537 when the target is not on the target-stack, if the target_can_run
2146d243 538 routine returns 1; in that case, it must push itself onto the stack.
c906108c 539 Upon exit, the target should be ready for normal operations, and
2146d243 540 should be ready to deliver the status of the process immediately
c906108c
SS
541 (without waiting) to an upcoming target_wait call. */
542
543#define target_attach(args, from_tty) \
0d06e24b 544 (*current_target.to_attach) (args, from_tty)
c906108c
SS
545
546/* The target_attach operation places a process under debugger control,
547 and stops the process.
548
549 This operation provides a target-specific hook that allows the
0d06e24b 550 necessary bookkeeping to be performed after an attach completes. */
c906108c 551#define target_post_attach(pid) \
0d06e24b 552 (*current_target.to_post_attach) (pid)
c906108c 553
c906108c
SS
554/* Takes a program previously attached to and detaches it.
555 The program may resume execution (some targets do, some don't) and will
556 no longer stop on signals, etc. We better not have left any breakpoints
557 in the program or it'll die when it hits one. ARGS is arguments
558 typed by the user (e.g. a signal to send the process). FROM_TTY
559 says whether to be verbose or not. */
560
a14ed312 561extern void target_detach (char *, int);
c906108c 562
6ad8ae5c
DJ
563/* Disconnect from the current target without resuming it (leaving it
564 waiting for a debugger). */
565
566extern void target_disconnect (char *, int);
567
39f77062 568/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
569 single-step or to run free; SIGGNAL is the signal to be given to
570 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
571 pass TARGET_SIGNAL_DEFAULT. */
572
39f77062 573#define target_resume(ptid, step, siggnal) \
4930751a
C
574 do { \
575 dcache_invalidate(target_dcache); \
39f77062 576 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 577 } while (0)
c906108c 578
b5a2688f
AC
579/* Wait for process pid to do something. PTID = -1 to wait for any
580 pid to do something. Return pid of child, or -1 in case of error;
c906108c 581 store status through argument pointer STATUS. Note that it is
b5a2688f 582 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
583 the debugging target from the stack; GDB isn't prepared to get back
584 to the prompt with a debugging target but without the frame cache,
585 stop_pc, etc., set up. */
586
39f77062
KB
587#define target_wait(ptid, status) \
588 (*current_target.to_wait) (ptid, status)
c906108c 589
17dee195 590/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
591
592#define target_fetch_registers(regno) \
0d06e24b 593 (*current_target.to_fetch_registers) (regno)
c906108c
SS
594
595/* Store at least register REGNO, or all regs if REGNO == -1.
596 It can store as many registers as it wants to, so target_prepare_to_store
597 must have been previously called. Calls error() if there are problems. */
598
599#define target_store_registers(regs) \
0d06e24b 600 (*current_target.to_store_registers) (regs)
c906108c
SS
601
602/* Get ready to modify the registers array. On machines which store
603 individual registers, this doesn't need to do anything. On machines
604 which store all the registers in one fell swoop, this makes sure
605 that REGISTERS contains all the registers from the program being
606 debugged. */
607
608#define target_prepare_to_store() \
0d06e24b 609 (*current_target.to_prepare_to_store) ()
c906108c 610
4930751a
C
611extern DCACHE *target_dcache;
612
a14ed312 613extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 614
fc1a4b47 615extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 616
fc1a4b47 617extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 618 int len);
c906108c 619
1b0ba102 620extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 621 struct mem_attrib *, struct target_ops *);
c906108c 622
6c932e54 623extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 624 struct mem_attrib *, struct target_ops *);
c906108c 625
fd79ecee
DJ
626/* Fetches the target's memory map. If one is found it is sorted
627 and returned, after some consistency checking. Otherwise, NULL
628 is returned. */
629VEC(mem_region_s) *target_memory_map (void);
630
a76d924d
DJ
631/* Erase the specified flash region. */
632void target_flash_erase (ULONGEST address, LONGEST length);
633
634/* Finish a sequence of flash operations. */
635void target_flash_done (void);
636
637/* Describes a request for a memory write operation. */
638struct memory_write_request
639 {
640 /* Begining address that must be written. */
641 ULONGEST begin;
642 /* Past-the-end address. */
643 ULONGEST end;
644 /* The data to write. */
645 gdb_byte *data;
646 /* A callback baton for progress reporting for this request. */
647 void *baton;
648 };
649typedef struct memory_write_request memory_write_request_s;
650DEF_VEC_O(memory_write_request_s);
651
652/* Enumeration specifying different flash preservation behaviour. */
653enum flash_preserve_mode
654 {
655 flash_preserve,
656 flash_discard
657 };
658
659/* Write several memory blocks at once. This version can be more
660 efficient than making several calls to target_write_memory, in
661 particular because it can optimize accesses to flash memory.
662
663 Moreover, this is currently the only memory access function in gdb
664 that supports writing to flash memory, and it should be used for
665 all cases where access to flash memory is desirable.
666
667 REQUESTS is the vector (see vec.h) of memory_write_request.
668 PRESERVE_FLASH_P indicates what to do with blocks which must be
669 erased, but not completely rewritten.
670 PROGRESS_CB is a function that will be periodically called to provide
671 feedback to user. It will be called with the baton corresponding
672 to the request currently being written. It may also be called
673 with a NULL baton, when preserved flash sectors are being rewritten.
674
675 The function returns 0 on success, and error otherwise. */
676int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
677 enum flash_preserve_mode preserve_flash_p,
678 void (*progress_cb) (ULONGEST, void *));
679
680
a14ed312 681extern char *child_pid_to_exec_file (int);
c906108c 682
a14ed312 683extern char *child_core_file_to_sym_file (char *);
c906108c
SS
684
685#if defined(CHILD_POST_ATTACH)
a14ed312 686extern void child_post_attach (int);
c906108c
SS
687#endif
688
39f77062 689extern void child_post_startup_inferior (ptid_t);
c906108c 690
a14ed312 691extern void child_acknowledge_created_inferior (int);
c906108c 692
fa113d1a 693extern void child_insert_fork_catchpoint (int);
c906108c 694
a14ed312 695extern int child_remove_fork_catchpoint (int);
c906108c 696
fa113d1a 697extern void child_insert_vfork_catchpoint (int);
c906108c 698
a14ed312 699extern int child_remove_vfork_catchpoint (int);
c906108c 700
a14ed312 701extern void child_acknowledge_created_inferior (int);
c906108c 702
ee057212 703extern int child_follow_fork (struct target_ops *, int);
c906108c 704
fa113d1a 705extern void child_insert_exec_catchpoint (int);
c906108c 706
a14ed312 707extern int child_remove_exec_catchpoint (int);
c906108c 708
a14ed312 709extern int child_reported_exec_events_per_exec_call (void);
c906108c 710
a14ed312 711extern int child_has_exited (int, int, int *);
c906108c 712
39f77062 713extern int child_thread_alive (ptid_t);
c906108c 714
47932f85
DJ
715/* From infrun.c. */
716
717extern int inferior_has_forked (int pid, int *child_pid);
718
719extern int inferior_has_vforked (int pid, int *child_pid);
720
721extern int inferior_has_execd (int pid, char **execd_pathname);
722
c906108c
SS
723/* From exec.c */
724
a14ed312 725extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
726
727/* Print a line about the current target. */
728
729#define target_files_info() \
0d06e24b 730 (*current_target.to_files_info) (&current_target)
c906108c 731
8181d85f
DJ
732/* Insert a breakpoint at address BP_TGT->placed_address in the target
733 machine. Result is 0 for success, or an errno value. */
c906108c 734
8181d85f
DJ
735#define target_insert_breakpoint(bp_tgt) \
736 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 737
8181d85f
DJ
738/* Remove a breakpoint at address BP_TGT->placed_address in the target
739 machine. Result is 0 for success, or an errno value. */
c906108c 740
8181d85f
DJ
741#define target_remove_breakpoint(bp_tgt) \
742 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
743
744/* Initialize the terminal settings we record for the inferior,
745 before we actually run the inferior. */
746
747#define target_terminal_init() \
0d06e24b 748 (*current_target.to_terminal_init) ()
c906108c
SS
749
750/* Put the inferior's terminal settings into effect.
751 This is preparation for starting or resuming the inferior. */
752
753#define target_terminal_inferior() \
0d06e24b 754 (*current_target.to_terminal_inferior) ()
c906108c
SS
755
756/* Put some of our terminal settings into effect,
757 enough to get proper results from our output,
758 but do not change into or out of RAW mode
759 so that no input is discarded.
760
761 After doing this, either terminal_ours or terminal_inferior
762 should be called to get back to a normal state of affairs. */
763
764#define target_terminal_ours_for_output() \
0d06e24b 765 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
766
767/* Put our terminal settings into effect.
768 First record the inferior's terminal settings
769 so they can be restored properly later. */
770
771#define target_terminal_ours() \
0d06e24b 772 (*current_target.to_terminal_ours) ()
c906108c 773
a790ad35
SC
774/* Save our terminal settings.
775 This is called from TUI after entering or leaving the curses
776 mode. Since curses modifies our terminal this call is here
777 to take this change into account. */
778
779#define target_terminal_save_ours() \
780 (*current_target.to_terminal_save_ours) ()
781
c906108c
SS
782/* Print useful information about our terminal status, if such a thing
783 exists. */
784
785#define target_terminal_info(arg, from_tty) \
0d06e24b 786 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
787
788/* Kill the inferior process. Make it go away. */
789
790#define target_kill() \
0d06e24b 791 (*current_target.to_kill) ()
c906108c 792
0d06e24b
JM
793/* Load an executable file into the target process. This is expected
794 to not only bring new code into the target process, but also to
1986bccd
AS
795 update GDB's symbol tables to match.
796
797 ARG contains command-line arguments, to be broken down with
798 buildargv (). The first non-switch argument is the filename to
799 load, FILE; the second is a number (as parsed by strtoul (..., ...,
800 0)), which is an offset to apply to the load addresses of FILE's
801 sections. The target may define switches, or other non-switch
802 arguments, as it pleases. */
c906108c 803
11cf8741 804extern void target_load (char *arg, int from_tty);
c906108c
SS
805
806/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
807 name. ADDRP is a CORE_ADDR * pointing to where the value of the
808 symbol should be returned. The result is 0 if successful, nonzero
809 if the symbol does not exist in the target environment. This
810 function should not call error() if communication with the target
811 is interrupted, since it is called from symbol reading, but should
812 return nonzero, possibly doing a complain(). */
c906108c 813
0d06e24b
JM
814#define target_lookup_symbol(name, addrp) \
815 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 816
39f77062 817/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
818 EXEC_FILE is the file to run.
819 ALLARGS is a string containing the arguments to the program.
820 ENV is the environment vector to pass. Errors reported with error().
821 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 822
c27cda74
AC
823#define target_create_inferior(exec_file, args, env, FROM_TTY) \
824 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
825
826
827/* Some targets (such as ttrace-based HPUX) don't allow us to request
828 notification of inferior events such as fork and vork immediately
829 after the inferior is created. (This because of how gdb gets an
830 inferior created via invoking a shell to do it. In such a scenario,
831 if the shell init file has commands in it, the shell will fork and
832 exec for each of those commands, and we will see each such fork
833 event. Very bad.)
c5aa993b 834
0d06e24b
JM
835 Such targets will supply an appropriate definition for this function. */
836
39f77062
KB
837#define target_post_startup_inferior(ptid) \
838 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
839
840/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
841 some synchronization between gdb and the new inferior process, PID. */
842
c906108c 843#define target_acknowledge_created_inferior(pid) \
0d06e24b 844 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 845
0d06e24b
JM
846/* On some targets, we can catch an inferior fork or vfork event when
847 it occurs. These functions insert/remove an already-created
848 catchpoint for such events. */
c906108c 849
c906108c 850#define target_insert_fork_catchpoint(pid) \
0d06e24b 851 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
852
853#define target_remove_fork_catchpoint(pid) \
0d06e24b 854 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
855
856#define target_insert_vfork_catchpoint(pid) \
0d06e24b 857 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
858
859#define target_remove_vfork_catchpoint(pid) \
0d06e24b 860 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 861
6604731b
DJ
862/* If the inferior forks or vforks, this function will be called at
863 the next resume in order to perform any bookkeeping and fiddling
864 necessary to continue debugging either the parent or child, as
865 requested, and releasing the other. Information about the fork
866 or vfork event is available via get_last_target_status ().
867 This function returns 1 if the inferior should not be resumed
868 (i.e. there is another event pending). */
0d06e24b 869
ee057212 870int target_follow_fork (int follow_child);
c906108c
SS
871
872/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
873 occurs. These functions insert/remove an already-created
874 catchpoint for such events. */
875
c906108c 876#define target_insert_exec_catchpoint(pid) \
0d06e24b 877 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 878
c906108c 879#define target_remove_exec_catchpoint(pid) \
0d06e24b 880 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 881
c906108c
SS
882/* Returns the number of exec events that are reported when a process
883 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
884 events are being reported. */
885
c906108c 886#define target_reported_exec_events_per_exec_call() \
0d06e24b 887 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 888
c906108c 889/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
890 exit code of PID, if any. */
891
c906108c 892#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 893 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
894
895/* The debugger has completed a blocking wait() call. There is now
2146d243 896 some process event that must be processed. This function should
c906108c 897 be defined by those targets that require the debugger to perform
0d06e24b 898 cleanup or internal state changes in response to the process event. */
c906108c
SS
899
900/* The inferior process has died. Do what is right. */
901
902#define target_mourn_inferior() \
0d06e24b 903 (*current_target.to_mourn_inferior) ()
c906108c
SS
904
905/* Does target have enough data to do a run or attach command? */
906
907#define target_can_run(t) \
0d06e24b 908 ((t)->to_can_run) ()
c906108c
SS
909
910/* post process changes to signal handling in the inferior. */
911
39f77062
KB
912#define target_notice_signals(ptid) \
913 (*current_target.to_notice_signals) (ptid)
c906108c
SS
914
915/* Check to see if a thread is still alive. */
916
39f77062
KB
917#define target_thread_alive(ptid) \
918 (*current_target.to_thread_alive) (ptid)
c906108c 919
b83266a0
SS
920/* Query for new threads and add them to the thread list. */
921
922#define target_find_new_threads() \
0d06e24b 923 (*current_target.to_find_new_threads) (); \
b83266a0 924
0d06e24b
JM
925/* Make target stop in a continuable fashion. (For instance, under
926 Unix, this should act like SIGSTOP). This function is normally
927 used by GUIs to implement a stop button. */
c906108c
SS
928
929#define target_stop current_target.to_stop
930
96baa820
JM
931/* Send the specified COMMAND to the target's monitor
932 (shell,interpreter) for execution. The result of the query is
0d06e24b 933 placed in OUTBUF. */
96baa820
JM
934
935#define target_rcmd(command, outbuf) \
936 (*current_target.to_rcmd) (command, outbuf)
937
938
c906108c 939/* Get the symbol information for a breakpointable routine called when
2146d243 940 an exception event occurs.
c906108c
SS
941 Intended mainly for C++, and for those
942 platforms/implementations where such a callback mechanism is available,
943 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 944 different mechanisms for debugging exceptions. */
c906108c
SS
945
946#define target_enable_exception_callback(kind, enable) \
0d06e24b 947 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 948
0d06e24b 949/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 950
c906108c 951#define target_get_current_exception_event() \
0d06e24b 952 (*current_target.to_get_current_exception_event) ()
c906108c 953
c906108c
SS
954/* Does the target include all of memory, or only part of it? This
955 determines whether we look up the target chain for other parts of
956 memory if this target can't satisfy a request. */
957
958#define target_has_all_memory \
0d06e24b 959 (current_target.to_has_all_memory)
c906108c
SS
960
961/* Does the target include memory? (Dummy targets don't.) */
962
963#define target_has_memory \
0d06e24b 964 (current_target.to_has_memory)
c906108c
SS
965
966/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
967 we start a process.) */
c5aa993b 968
c906108c 969#define target_has_stack \
0d06e24b 970 (current_target.to_has_stack)
c906108c
SS
971
972/* Does the target have registers? (Exec files don't.) */
973
974#define target_has_registers \
0d06e24b 975 (current_target.to_has_registers)
c906108c
SS
976
977/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
978 hoops), or pop its stack a few times? This means that the current
979 target is currently executing; for some targets, that's the same as
980 whether or not the target is capable of execution, but there are
981 also targets which can be current while not executing. In that
982 case this will become true after target_create_inferior or
983 target_attach. */
c906108c
SS
984
985#define target_has_execution \
0d06e24b 986 (current_target.to_has_execution)
c906108c
SS
987
988/* Can the target support the debugger control of thread execution?
989 a) Can it lock the thread scheduler?
990 b) Can it switch the currently running thread? */
991
992#define target_can_lock_scheduler \
0d06e24b 993 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
994
995#define target_can_switch_threads \
0d06e24b 996 (current_target.to_has_thread_control & tc_switch)
c906108c 997
6426a772
JM
998/* Can the target support asynchronous execution? */
999#define target_can_async_p() (current_target.to_can_async_p ())
1000
1001/* Is the target in asynchronous execution mode? */
1002#define target_is_async_p() (current_target.to_is_async_p())
1003
1004/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
1005#define target_async(CALLBACK,CONTEXT) \
1006 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1007
04714b91
AC
1008/* This is to be used ONLY within call_function_by_hand(). It provides
1009 a workaround, to have inferior function calls done in sychronous
1010 mode, even though the target is asynchronous. After
ed9a39eb
JM
1011 target_async_mask(0) is called, calls to target_can_async_p() will
1012 return FALSE , so that target_resume() will not try to start the
1013 target asynchronously. After the inferior stops, we IMMEDIATELY
1014 restore the previous nature of the target, by calling
1015 target_async_mask(1). After that, target_can_async_p() will return
04714b91 1016 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
1017
1018 FIXME ezannoni 1999-12-13: we won't need this once we move
1019 the turning async on and off to the single execution commands,
0d06e24b 1020 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
1021
1022#define target_async_mask_value \
0d06e24b 1023 (current_target.to_async_mask_value)
ed9a39eb 1024
2146d243 1025extern int target_async_mask (int mask);
ed9a39eb 1026
c906108c
SS
1027/* Converts a process id to a string. Usually, the string just contains
1028 `process xyz', but on some systems it may contain
1029 `process xyz thread abc'. */
1030
ed9a39eb
JM
1031#undef target_pid_to_str
1032#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1033
1034#ifndef target_tid_to_str
1035#define target_tid_to_str(PID) \
0d06e24b 1036 target_pid_to_str (PID)
39f77062 1037extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1038#endif
c5aa993b 1039
0d06e24b
JM
1040/* Return a short string describing extra information about PID,
1041 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1042 is okay. */
1043
1044#define target_extra_thread_info(TP) \
1045 (current_target.to_extra_thread_info (TP))
ed9a39eb 1046
11cf8741
JM
1047/*
1048 * New Objfile Event Hook:
1049 *
1050 * Sometimes a GDB component wants to get notified whenever a new
2146d243 1051 * objfile is loaded. Mainly this is used by thread-debugging
11cf8741
JM
1052 * implementations that need to know when symbols for the target
1053 * thread implemenation are available.
1054 *
1055 * The old way of doing this is to define a macro 'target_new_objfile'
1056 * that points to the function that you want to be called on every
1057 * objfile/shlib load.
9a4105ab
AC
1058
1059 The new way is to grab the function pointer,
1060 'deprecated_target_new_objfile_hook', and point it to the function
1061 that you want to be called on every objfile/shlib load.
1062
1063 If multiple clients are willing to be cooperative, they can each
1064 save a pointer to the previous value of
1065 deprecated_target_new_objfile_hook before modifying it, and arrange
1066 for their function to call the previous function in the chain. In
1067 that way, multiple clients can receive this notification (something
1068 like with signal handlers). */
1069
1070extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c
SS
1071
1072#ifndef target_pid_or_tid_to_str
1073#define target_pid_or_tid_to_str(ID) \
0d06e24b 1074 target_pid_to_str (ID)
c906108c
SS
1075#endif
1076
1077/* Attempts to find the pathname of the executable file
1078 that was run to create a specified process.
1079
1080 The process PID must be stopped when this operation is used.
c5aa993b 1081
c906108c
SS
1082 If the executable file cannot be determined, NULL is returned.
1083
1084 Else, a pointer to a character string containing the pathname
1085 is returned. This string should be copied into a buffer by
1086 the client if the string will not be immediately used, or if
0d06e24b 1087 it must persist. */
c906108c
SS
1088
1089#define target_pid_to_exec_file(pid) \
0d06e24b 1090 (current_target.to_pid_to_exec_file) (pid)
c906108c 1091
be4d1333
MS
1092/*
1093 * Iterator function for target memory regions.
1094 * Calls a callback function once for each memory region 'mapped'
1095 * in the child process. Defined as a simple macro rather than
2146d243 1096 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1097 */
1098
1099#define target_find_memory_regions(FUNC, DATA) \
1100 (current_target.to_find_memory_regions) (FUNC, DATA)
1101
1102/*
1103 * Compose corefile .note section.
1104 */
1105
1106#define target_make_corefile_notes(BFD, SIZE_P) \
1107 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1108
3f47be5c
EZ
1109/* Thread-local values. */
1110#define target_get_thread_local_address \
1111 (current_target.to_get_thread_local_address)
1112#define target_get_thread_local_address_p() \
1113 (target_get_thread_local_address != NULL)
1114
c906108c
SS
1115
1116/* Hardware watchpoint interfaces. */
1117
1118/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1119 write). */
1120
1121#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1122#define STOPPED_BY_WATCHPOINT(w) \
1123 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1124#endif
7df1a324 1125
74174d2e
UW
1126/* Non-zero if we have steppable watchpoints */
1127
1128#ifndef HAVE_STEPPABLE_WATCHPOINT
1129#define HAVE_STEPPABLE_WATCHPOINT \
1130 (current_target.to_have_steppable_watchpoint)
1131#endif
1132
7df1a324
KW
1133/* Non-zero if we have continuable watchpoints */
1134
1135#ifndef HAVE_CONTINUABLE_WATCHPOINT
1136#define HAVE_CONTINUABLE_WATCHPOINT \
1137 (current_target.to_have_continuable_watchpoint)
1138#endif
c906108c 1139
ccaa32c7 1140/* Provide defaults for hardware watchpoint functions. */
c906108c 1141
2146d243 1142/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1143 elsewhere use the definitions in the target vector. */
c906108c
SS
1144
1145/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1146 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1147 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1148 (including this one?). OTHERTYPE is who knows what... */
1149
ccaa32c7
GS
1150#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1151#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1152 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1153#endif
c906108c 1154
e0d24f8d
WZ
1155#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1156#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1157 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1158#endif
1159
c906108c
SS
1160
1161/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1162 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1163 success, non-zero for failure. */
1164
ccaa32c7
GS
1165#ifndef target_insert_watchpoint
1166#define target_insert_watchpoint(addr, len, type) \
1167 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1168
ccaa32c7
GS
1169#define target_remove_watchpoint(addr, len, type) \
1170 (*current_target.to_remove_watchpoint) (addr, len, type)
1171#endif
c906108c
SS
1172
1173#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1174#define target_insert_hw_breakpoint(bp_tgt) \
1175 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1176
8181d85f
DJ
1177#define target_remove_hw_breakpoint(bp_tgt) \
1178 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1179#endif
1180
4aa7a7f5
JJ
1181extern int target_stopped_data_address_p (struct target_ops *);
1182
c906108c 1183#ifndef target_stopped_data_address
4aa7a7f5
JJ
1184#define target_stopped_data_address(target, x) \
1185 (*target.to_stopped_data_address) (target, x)
1186#else
1187/* Horrible hack to get around existing macros :-(. */
1188#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1189#endif
1190
424163ea
DJ
1191extern const struct target_desc *target_read_description (struct target_ops *);
1192
c906108c
SS
1193/* Routines for maintenance of the target structures...
1194
1195 add_target: Add a target to the list of all possible targets.
1196
1197 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1198 targets, within its particular stratum of the stack. Result
1199 is 0 if now atop the stack, nonzero if not on top (maybe
1200 should warn user).
c906108c
SS
1201
1202 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1203 no matter where it is on the list. Returns 0 if no
1204 change, 1 if removed from stack.
c906108c 1205
c5aa993b 1206 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1207
a14ed312 1208extern void add_target (struct target_ops *);
c906108c 1209
a14ed312 1210extern int push_target (struct target_ops *);
c906108c 1211
a14ed312 1212extern int unpush_target (struct target_ops *);
c906108c 1213
fd79ecee
DJ
1214extern void target_pre_inferior (int);
1215
a14ed312 1216extern void target_preopen (int);
c906108c 1217
a14ed312 1218extern void pop_target (void);
c906108c 1219
9e35dae4
DJ
1220extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1221 CORE_ADDR offset);
1222
52bb452f
DJ
1223/* Mark a pushed target as running or exited, for targets which do not
1224 automatically pop when not active. */
1225
1226void target_mark_running (struct target_ops *);
1227
1228void target_mark_exited (struct target_ops *);
1229
c906108c
SS
1230/* Struct section_table maps address ranges to file sections. It is
1231 mostly used with BFD files, but can be used without (e.g. for handling
1232 raw disks, or files not in formats handled by BFD). */
1233
c5aa993b
JM
1234struct section_table
1235 {
1236 CORE_ADDR addr; /* Lowest address in section */
1237 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1238
7be0c536 1239 struct bfd_section *the_bfd_section;
c906108c 1240
c5aa993b
JM
1241 bfd *bfd; /* BFD file pointer */
1242 };
c906108c 1243
8db32d44
AC
1244/* Return the "section" containing the specified address. */
1245struct section_table *target_section_by_addr (struct target_ops *target,
1246 CORE_ADDR addr);
1247
1248
c906108c
SS
1249/* From mem-break.c */
1250
8181d85f 1251extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1252
8181d85f 1253extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1254
8181d85f 1255extern int default_memory_remove_breakpoint (struct bp_target_info *);
917317f4 1256
8181d85f 1257extern int default_memory_insert_breakpoint (struct bp_target_info *);
917317f4 1258
c906108c
SS
1259
1260/* From target.c */
1261
a14ed312 1262extern void initialize_targets (void);
c906108c 1263
a14ed312 1264extern void noprocess (void);
c906108c 1265
a14ed312 1266extern void find_default_attach (char *, int);
c906108c 1267
c27cda74 1268extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1269
a14ed312 1270extern struct target_ops *find_run_target (void);
7a292a7a 1271
a14ed312 1272extern struct target_ops *find_core_target (void);
6426a772 1273
a14ed312 1274extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1275
570b8f7c
AC
1276extern int target_resize_to_sections (struct target_ops *target,
1277 int num_added);
07cd4b97
JB
1278
1279extern void remove_target_sections (bfd *abfd);
1280
c906108c
SS
1281\f
1282/* Stuff that should be shared among the various remote targets. */
1283
1284/* Debugging level. 0 is off, and non-zero values mean to print some debug
1285 information (higher values, more information). */
1286extern int remote_debug;
1287
1288/* Speed in bits per second, or -1 which means don't mess with the speed. */
1289extern int baud_rate;
1290/* Timeout limit for response from target. */
1291extern int remote_timeout;
1292
c906108c
SS
1293\f
1294/* Functions for helping to write a native target. */
1295
1296/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1297extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1298
c2d11a7d 1299/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1300 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1301/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1302 to the shorter target_signal_p() because it is far less ambigious.
1303 In this context ``target_signal'' refers to GDB's internal
1304 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1305 refers to the target operating system's signal. Confused? */
1306
c2d11a7d
JM
1307extern int target_signal_to_host_p (enum target_signal signo);
1308
1309/* Convert between host signal numbers and enum target_signal's.
1310 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1311 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1312/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1313 refering to the target operating system's signal numbering.
1314 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1315 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1316 internal representation of a target operating system's signal. */
1317
a14ed312
KB
1318extern enum target_signal target_signal_from_host (int);
1319extern int target_signal_to_host (enum target_signal);
c906108c
SS
1320
1321/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1322extern enum target_signal target_signal_from_command (int);
c906108c
SS
1323
1324/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1325extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1326\f
1327/* Imported from machine dependent code */
1328
c906108c 1329/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1330void target_ignore (void);
c906108c 1331
1df84f13 1332extern struct target_ops deprecated_child_ops;
5ac10fd1 1333
c5aa993b 1334#endif /* !defined (TARGET_H) */
This page took 0.766079 seconds and 4 git commands to generate.