2001-01-23 Kazu Hirata <kazu@hxi.com>
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
d9fcf2fb 2 Copyright 1990-1994, 1999, 2000 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
4930751a 46#include "dcache.h"
c906108c 47
c5aa993b
JM
48enum strata
49 {
50 dummy_stratum, /* The lowest of the low */
51 file_stratum, /* Executable files, etc */
52 core_stratum, /* Core dump files */
53 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
54 process_stratum, /* Executing processes */
55 thread_stratum /* Executing threads */
c5aa993b 56 };
c906108c 57
c5aa993b
JM
58enum thread_control_capabilities
59 {
0d06e24b
JM
60 tc_none = 0, /* Default: can't control thread execution. */
61 tc_schedlock = 1, /* Can lock the thread scheduler. */
62 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 63 };
c906108c
SS
64
65/* Stuff for target_wait. */
66
67/* Generally, what has the program done? */
c5aa993b
JM
68enum target_waitkind
69 {
70 /* The program has exited. The exit status is in value.integer. */
71 TARGET_WAITKIND_EXITED,
c906108c 72
0d06e24b
JM
73 /* The program has stopped with a signal. Which signal is in
74 value.sig. */
c5aa993b 75 TARGET_WAITKIND_STOPPED,
c906108c 76
c5aa993b
JM
77 /* The program has terminated with a signal. Which signal is in
78 value.sig. */
79 TARGET_WAITKIND_SIGNALLED,
c906108c 80
c5aa993b
JM
81 /* The program is letting us know that it dynamically loaded something
82 (e.g. it called load(2) on AIX). */
83 TARGET_WAITKIND_LOADED,
c906108c 84
0d06e24b
JM
85 /* The program has forked. A "related" process' ID is in
86 value.related_pid. I.e., if the child forks, value.related_pid
87 is the parent's ID. */
88
c5aa993b 89 TARGET_WAITKIND_FORKED,
c906108c 90
0d06e24b
JM
91 /* The program has vforked. A "related" process's ID is in
92 value.related_pid. */
93
c5aa993b 94 TARGET_WAITKIND_VFORKED,
c906108c 95
0d06e24b
JM
96 /* The program has exec'ed a new executable file. The new file's
97 pathname is pointed to by value.execd_pathname. */
98
c5aa993b 99 TARGET_WAITKIND_EXECD,
c906108c 100
0d06e24b
JM
101 /* The program has entered or returned from a system call. On
102 HP-UX, this is used in the hardware watchpoint implementation.
103 The syscall's unique integer ID number is in value.syscall_id */
104
c5aa993b
JM
105 TARGET_WAITKIND_SYSCALL_ENTRY,
106 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 107
c5aa993b
JM
108 /* Nothing happened, but we stopped anyway. This perhaps should be handled
109 within target_wait, but I'm not sure target_wait should be resuming the
110 inferior. */
c4093a6a
JM
111 TARGET_WAITKIND_SPURIOUS,
112
113 /* This is used for target async and extended-async
114 only. Remote_async_wait() returns this when there is an event
115 on the inferior, but the rest of the world is not interested in
116 it. The inferior has not stopped, but has just sent some output
117 to the console, for instance. In this case, we want to go back
118 to the event loop and wait there for another event from the
119 inferior, rather than being stuck in the remote_async_wait()
120 function. This way the event loop is responsive to other events,
0d06e24b 121 like for instance the user typing. */
c4093a6a 122 TARGET_WAITKIND_IGNORE
c906108c
SS
123 };
124
125/* The numbering of these signals is chosen to match traditional unix
126 signals (insofar as various unices use the same numbers, anyway).
127 It is also the numbering of the GDB remote protocol. Other remote
128 protocols, if they use a different numbering, should make sure to
cd0fc7c3 129 translate appropriately.
c906108c 130
cd0fc7c3
SS
131 Since these numbers have actually made it out into other software
132 (stubs, etc.), you mustn't disturb the assigned numbering. If you
133 need to add new signals here, add them to the end of the explicitly
134 numbered signals.
135
136 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
137 (1) This set of signals represents a widely-accepted attempt to
138 represent events of this sort in a portable fashion, (2) we want a
139 signal to make it from wait to child_wait to the user intact, (3) many
140 remote protocols use a similar encoding. However, it is
141 recognized that this set of signals has limitations (such as not
142 distinguishing between various kinds of SIGSEGV, or not
143 distinguishing hitting a breakpoint from finishing a single step).
144 So in the future we may get around this either by adding additional
145 signals for breakpoint, single-step, etc., or by adding signal
146 codes; the latter seems more in the spirit of what BSD, System V,
147 etc. are doing to address these issues. */
148
149/* For an explanation of what each signal means, see
150 target_signal_to_string. */
151
c5aa993b
JM
152enum target_signal
153 {
154 /* Used some places (e.g. stop_signal) to record the concept that
155 there is no signal. */
156 TARGET_SIGNAL_0 = 0,
157 TARGET_SIGNAL_FIRST = 0,
158 TARGET_SIGNAL_HUP = 1,
159 TARGET_SIGNAL_INT = 2,
160 TARGET_SIGNAL_QUIT = 3,
161 TARGET_SIGNAL_ILL = 4,
162 TARGET_SIGNAL_TRAP = 5,
163 TARGET_SIGNAL_ABRT = 6,
164 TARGET_SIGNAL_EMT = 7,
165 TARGET_SIGNAL_FPE = 8,
166 TARGET_SIGNAL_KILL = 9,
167 TARGET_SIGNAL_BUS = 10,
168 TARGET_SIGNAL_SEGV = 11,
169 TARGET_SIGNAL_SYS = 12,
170 TARGET_SIGNAL_PIPE = 13,
171 TARGET_SIGNAL_ALRM = 14,
172 TARGET_SIGNAL_TERM = 15,
173 TARGET_SIGNAL_URG = 16,
174 TARGET_SIGNAL_STOP = 17,
175 TARGET_SIGNAL_TSTP = 18,
176 TARGET_SIGNAL_CONT = 19,
177 TARGET_SIGNAL_CHLD = 20,
178 TARGET_SIGNAL_TTIN = 21,
179 TARGET_SIGNAL_TTOU = 22,
180 TARGET_SIGNAL_IO = 23,
181 TARGET_SIGNAL_XCPU = 24,
182 TARGET_SIGNAL_XFSZ = 25,
183 TARGET_SIGNAL_VTALRM = 26,
184 TARGET_SIGNAL_PROF = 27,
185 TARGET_SIGNAL_WINCH = 28,
186 TARGET_SIGNAL_LOST = 29,
187 TARGET_SIGNAL_USR1 = 30,
188 TARGET_SIGNAL_USR2 = 31,
189 TARGET_SIGNAL_PWR = 32,
190 /* Similar to SIGIO. Perhaps they should have the same number. */
191 TARGET_SIGNAL_POLL = 33,
192 TARGET_SIGNAL_WIND = 34,
193 TARGET_SIGNAL_PHONE = 35,
194 TARGET_SIGNAL_WAITING = 36,
195 TARGET_SIGNAL_LWP = 37,
196 TARGET_SIGNAL_DANGER = 38,
197 TARGET_SIGNAL_GRANT = 39,
198 TARGET_SIGNAL_RETRACT = 40,
199 TARGET_SIGNAL_MSG = 41,
200 TARGET_SIGNAL_SOUND = 42,
201 TARGET_SIGNAL_SAK = 43,
202 TARGET_SIGNAL_PRIO = 44,
203 TARGET_SIGNAL_REALTIME_33 = 45,
204 TARGET_SIGNAL_REALTIME_34 = 46,
205 TARGET_SIGNAL_REALTIME_35 = 47,
206 TARGET_SIGNAL_REALTIME_36 = 48,
207 TARGET_SIGNAL_REALTIME_37 = 49,
208 TARGET_SIGNAL_REALTIME_38 = 50,
209 TARGET_SIGNAL_REALTIME_39 = 51,
210 TARGET_SIGNAL_REALTIME_40 = 52,
211 TARGET_SIGNAL_REALTIME_41 = 53,
212 TARGET_SIGNAL_REALTIME_42 = 54,
213 TARGET_SIGNAL_REALTIME_43 = 55,
214 TARGET_SIGNAL_REALTIME_44 = 56,
215 TARGET_SIGNAL_REALTIME_45 = 57,
216 TARGET_SIGNAL_REALTIME_46 = 58,
217 TARGET_SIGNAL_REALTIME_47 = 59,
218 TARGET_SIGNAL_REALTIME_48 = 60,
219 TARGET_SIGNAL_REALTIME_49 = 61,
220 TARGET_SIGNAL_REALTIME_50 = 62,
221 TARGET_SIGNAL_REALTIME_51 = 63,
222 TARGET_SIGNAL_REALTIME_52 = 64,
223 TARGET_SIGNAL_REALTIME_53 = 65,
224 TARGET_SIGNAL_REALTIME_54 = 66,
225 TARGET_SIGNAL_REALTIME_55 = 67,
226 TARGET_SIGNAL_REALTIME_56 = 68,
227 TARGET_SIGNAL_REALTIME_57 = 69,
228 TARGET_SIGNAL_REALTIME_58 = 70,
229 TARGET_SIGNAL_REALTIME_59 = 71,
230 TARGET_SIGNAL_REALTIME_60 = 72,
231 TARGET_SIGNAL_REALTIME_61 = 73,
232 TARGET_SIGNAL_REALTIME_62 = 74,
233 TARGET_SIGNAL_REALTIME_63 = 75,
234
235 /* Used internally by Solaris threads. See signal(5) on Solaris. */
236 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 237
d4f3574e
SS
238 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
239 Linux does, and we can't disturb the numbering, since it's part
240 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
241 is number 76. */
242 TARGET_SIGNAL_REALTIME_32,
d57fc352
PS
243 /* Yet another pain, IRIX 6 has SIG64. */
244 TARGET_SIGNAL_REALTIME_64,
d4f3574e 245
c906108c 246#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
247 /* Mach exceptions */
248 TARGET_EXC_BAD_ACCESS,
249 TARGET_EXC_BAD_INSTRUCTION,
250 TARGET_EXC_ARITHMETIC,
251 TARGET_EXC_EMULATION,
252 TARGET_EXC_SOFTWARE,
253 TARGET_EXC_BREAKPOINT,
c906108c 254#endif
c5aa993b 255 TARGET_SIGNAL_INFO,
c906108c 256
c5aa993b
JM
257 /* Some signal we don't know about. */
258 TARGET_SIGNAL_UNKNOWN,
c906108c 259
c5aa993b
JM
260 /* Use whatever signal we use when one is not specifically specified
261 (for passing to proceed and so on). */
262 TARGET_SIGNAL_DEFAULT,
c906108c 263
c5aa993b
JM
264 /* Last and unused enum value, for sizing arrays, etc. */
265 TARGET_SIGNAL_LAST
266 };
c906108c 267
c5aa993b
JM
268struct target_waitstatus
269 {
270 enum target_waitkind kind;
271
272 /* Forked child pid, execd pathname, exit status or signal number. */
273 union
274 {
275 int integer;
276 enum target_signal sig;
277 int related_pid;
278 char *execd_pathname;
279 int syscall_id;
280 }
281 value;
282 };
c906108c 283
2acceee2 284/* Possible types of events that the inferior handler will have to
0d06e24b 285 deal with. */
2acceee2
JM
286enum inferior_event_type
287 {
0d06e24b 288 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
289 INF_QUIT_REQ,
290 /* Process a normal inferior event which will result in target_wait
0d06e24b 291 being called. */
2acceee2 292 INF_REG_EVENT,
0d06e24b 293 /* Deal with an error on the inferior. */
2acceee2 294 INF_ERROR,
0d06e24b 295 /* We are called because a timer went off. */
2acceee2 296 INF_TIMER,
0d06e24b 297 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
298 INF_EXEC_COMPLETE,
299 /* We are called to do some stuff after the inferior stops, but we
300 are expected to reenter the proceed() and
301 handle_inferior_event() functions. This is used only in case of
0d06e24b 302 'step n' like commands. */
c2d11a7d 303 INF_EXEC_CONTINUE
2acceee2
JM
304 };
305
c906108c 306/* Return the string for a signal. */
a14ed312 307extern char *target_signal_to_string (enum target_signal);
c906108c
SS
308
309/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 310extern char *target_signal_to_name (enum target_signal);
c906108c
SS
311
312/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 313enum target_signal target_signal_from_name (char *);
c906108c 314\f
c5aa993b 315
c906108c
SS
316/* If certain kinds of activity happen, target_wait should perform
317 callbacks. */
318/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 319 on TARGET_ACTIVITY_FD. */
c906108c
SS
320extern int target_activity_fd;
321/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 322extern int (*target_activity_function) (void);
c906108c 323\f
0d06e24b
JM
324struct thread_info; /* fwd decl for parameter list below: */
325
c906108c 326struct target_ops
c5aa993b
JM
327 {
328 char *to_shortname; /* Name this target type */
329 char *to_longname; /* Name for printing */
330 char *to_doc; /* Documentation. Does not include trailing
c906108c 331 newline, and starts with a one-line descrip-
0d06e24b 332 tion (probably similar to to_longname). */
507f3c78
KB
333 void (*to_open) (char *, int);
334 void (*to_close) (int);
335 void (*to_attach) (char *, int);
336 void (*to_post_attach) (int);
337 void (*to_require_attach) (char *, int);
338 void (*to_detach) (char *, int);
339 void (*to_require_detach) (int, char *, int);
340 void (*to_resume) (int, int, enum target_signal);
341 int (*to_wait) (int, struct target_waitstatus *);
342 void (*to_post_wait) (int, int);
343 void (*to_fetch_registers) (int);
344 void (*to_store_registers) (int);
345 void (*to_prepare_to_store) (void);
c5aa993b
JM
346
347 /* Transfer LEN bytes of memory between GDB address MYADDR and
348 target address MEMADDR. If WRITE, transfer them to the target, else
349 transfer them from the target. TARGET is the target from which we
350 get this function.
351
352 Return value, N, is one of the following:
353
354 0 means that we can't handle this. If errno has been set, it is the
355 error which prevented us from doing it (FIXME: What about bfd_error?).
356
357 positive (call it N) means that we have transferred N bytes
358 starting at MEMADDR. We might be able to handle more bytes
359 beyond this length, but no promises.
360
361 negative (call its absolute value N) means that we cannot
362 transfer right at MEMADDR, but we could transfer at least
363 something at MEMADDR + N. */
364
507f3c78
KB
365 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
366 int len, int write, struct target_ops * target);
c906108c
SS
367
368#if 0
c5aa993b 369 /* Enable this after 4.12. */
c906108c 370
c5aa993b
JM
371 /* Search target memory. Start at STARTADDR and take LEN bytes of
372 target memory, and them with MASK, and compare to DATA. If they
373 match, set *ADDR_FOUND to the address we found it at, store the data
374 we found at LEN bytes starting at DATA_FOUND, and return. If
375 not, add INCREMENT to the search address and keep trying until
376 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 377
0d06e24b
JM
378 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
379 return. */
380
507f3c78
KB
381 void (*to_search) (int len, char *data, char *mask,
382 CORE_ADDR startaddr, int increment,
383 CORE_ADDR lorange, CORE_ADDR hirange,
384 CORE_ADDR * addr_found, char *data_found);
c906108c
SS
385
386#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
387 (*current_target.to_search) (len, data, mask, startaddr, increment, \
388 lorange, hirange, addr_found, data_found)
c5aa993b
JM
389#endif /* 0 */
390
507f3c78
KB
391 void (*to_files_info) (struct target_ops *);
392 int (*to_insert_breakpoint) (CORE_ADDR, char *);
393 int (*to_remove_breakpoint) (CORE_ADDR, char *);
394 void (*to_terminal_init) (void);
395 void (*to_terminal_inferior) (void);
396 void (*to_terminal_ours_for_output) (void);
397 void (*to_terminal_ours) (void);
398 void (*to_terminal_info) (char *, int);
399 void (*to_kill) (void);
400 void (*to_load) (char *, int);
401 int (*to_lookup_symbol) (char *, CORE_ADDR *);
402 void (*to_create_inferior) (char *, char *, char **);
403 void (*to_post_startup_inferior) (int);
404 void (*to_acknowledge_created_inferior) (int);
405 void (*to_clone_and_follow_inferior) (int, int *);
406 void (*to_post_follow_inferior_by_clone) (void);
407 int (*to_insert_fork_catchpoint) (int);
408 int (*to_remove_fork_catchpoint) (int);
409 int (*to_insert_vfork_catchpoint) (int);
410 int (*to_remove_vfork_catchpoint) (int);
411 int (*to_has_forked) (int, int *);
412 int (*to_has_vforked) (int, int *);
413 int (*to_can_follow_vfork_prior_to_exec) (void);
414 void (*to_post_follow_vfork) (int, int, int, int);
415 int (*to_insert_exec_catchpoint) (int);
416 int (*to_remove_exec_catchpoint) (int);
417 int (*to_has_execd) (int, char **);
418 int (*to_reported_exec_events_per_exec_call) (void);
419 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
420 int (*to_has_exited) (int, int, int *);
421 void (*to_mourn_inferior) (void);
422 int (*to_can_run) (void);
423 void (*to_notice_signals) (int pid);
424 int (*to_thread_alive) (int pid);
425 void (*to_find_new_threads) (void);
426 char *(*to_pid_to_str) (int);
427 char *(*to_extra_thread_info) (struct thread_info *);
428 void (*to_stop) (void);
429 int (*to_query) (int /*char */ , char *, char *, int *);
d9fcf2fb 430 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
431 struct symtab_and_line *(*to_enable_exception_callback) (enum
432 exception_event_kind,
433 int);
434 struct exception_event_record *(*to_get_current_exception_event) (void);
435 char *(*to_pid_to_exec_file) (int pid);
436 char *(*to_core_file_to_sym_file) (char *);
c5aa993b
JM
437 enum strata to_stratum;
438 struct target_ops
439 *DONT_USE; /* formerly to_next */
440 int to_has_all_memory;
441 int to_has_memory;
442 int to_has_stack;
443 int to_has_registers;
444 int to_has_execution;
445 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
446 struct section_table
447 *to_sections;
448 struct section_table
449 *to_sections_end;
6426a772
JM
450 /* ASYNC target controls */
451 int (*to_can_async_p) (void);
452 int (*to_is_async_p) (void);
0d06e24b
JM
453 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
454 void *context);
ed9a39eb 455 int to_async_mask_value;
c5aa993b 456 int to_magic;
0d06e24b
JM
457 /* Need sub-structure for target machine related rather than comm related?
458 */
c5aa993b 459 };
c906108c
SS
460
461/* Magic number for checking ops size. If a struct doesn't end with this
462 number, somebody changed the declaration but didn't change all the
463 places that initialize one. */
464
465#define OPS_MAGIC 3840
466
467/* The ops structure for our "current" target process. This should
468 never be NULL. If there is no target, it points to the dummy_target. */
469
c5aa993b 470extern struct target_ops current_target;
c906108c
SS
471
472/* An item on the target stack. */
473
474struct target_stack_item
c5aa993b
JM
475 {
476 struct target_stack_item *next;
477 struct target_ops *target_ops;
478 };
c906108c
SS
479
480/* The target stack. */
481
482extern struct target_stack_item *target_stack;
483
484/* Define easy words for doing these operations on our current target. */
485
486#define target_shortname (current_target.to_shortname)
487#define target_longname (current_target.to_longname)
488
489/* The open routine takes the rest of the parameters from the command,
490 and (if successful) pushes a new target onto the stack.
491 Targets should supply this routine, if only to provide an error message. */
0d06e24b 492
4930751a
C
493#define target_open(name, from_tty) \
494 do { \
495 dcache_invalidate (target_dcache); \
496 (*current_target.to_open) (name, from_tty); \
497 } while (0)
c906108c
SS
498
499/* Does whatever cleanup is required for a target that we are no longer
500 going to be calling. Argument says whether we are quitting gdb and
501 should not get hung in case of errors, or whether we want a clean
502 termination even if it takes a while. This routine is automatically
503 always called just before a routine is popped off the target stack.
504 Closing file descriptors and freeing memory are typical things it should
505 do. */
506
507#define target_close(quitting) \
0d06e24b 508 (*current_target.to_close) (quitting)
c906108c
SS
509
510/* Attaches to a process on the target side. Arguments are as passed
511 to the `attach' command by the user. This routine can be called
512 when the target is not on the target-stack, if the target_can_run
513 routine returns 1; in that case, it must push itself onto the stack.
514 Upon exit, the target should be ready for normal operations, and
515 should be ready to deliver the status of the process immediately
516 (without waiting) to an upcoming target_wait call. */
517
518#define target_attach(args, from_tty) \
0d06e24b 519 (*current_target.to_attach) (args, from_tty)
c906108c
SS
520
521/* The target_attach operation places a process under debugger control,
522 and stops the process.
523
524 This operation provides a target-specific hook that allows the
0d06e24b 525 necessary bookkeeping to be performed after an attach completes. */
c906108c 526#define target_post_attach(pid) \
0d06e24b 527 (*current_target.to_post_attach) (pid)
c906108c
SS
528
529/* Attaches to a process on the target side, if not already attached.
530 (If already attached, takes no action.)
531
532 This operation can be used to follow the child process of a fork.
533 On some targets, such child processes of an original inferior process
534 are automatically under debugger control, and thus do not require an
535 actual attach operation. */
536
537#define target_require_attach(args, from_tty) \
0d06e24b 538 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
539
540/* Takes a program previously attached to and detaches it.
541 The program may resume execution (some targets do, some don't) and will
542 no longer stop on signals, etc. We better not have left any breakpoints
543 in the program or it'll die when it hits one. ARGS is arguments
544 typed by the user (e.g. a signal to send the process). FROM_TTY
545 says whether to be verbose or not. */
546
a14ed312 547extern void target_detach (char *, int);
c906108c
SS
548
549/* Detaches from a process on the target side, if not already dettached.
550 (If already detached, takes no action.)
551
552 This operation can be used to follow the parent process of a fork.
553 On some targets, such child processes of an original inferior process
554 are automatically under debugger control, and thus do require an actual
555 detach operation.
556
557 PID is the process id of the child to detach from.
558 ARGS is arguments typed by the user (e.g. a signal to send the process).
559 FROM_TTY says whether to be verbose or not. */
560
0d06e24b
JM
561#define target_require_detach(pid, args, from_tty) \
562 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c
SS
563
564/* Resume execution of the target process PID. STEP says whether to
565 single-step or to run free; SIGGNAL is the signal to be given to
566 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
567 pass TARGET_SIGNAL_DEFAULT. */
568
4930751a
C
569#define target_resume(pid, step, siggnal) \
570 do { \
571 dcache_invalidate(target_dcache); \
572 (*current_target.to_resume) (pid, step, siggnal); \
573 } while (0)
c906108c
SS
574
575/* Wait for process pid to do something. Pid = -1 to wait for any pid
576 to do something. Return pid of child, or -1 in case of error;
577 store status through argument pointer STATUS. Note that it is
578 *not* OK to return_to_top_level out of target_wait without popping
579 the debugging target from the stack; GDB isn't prepared to get back
580 to the prompt with a debugging target but without the frame cache,
581 stop_pc, etc., set up. */
582
583#define target_wait(pid, status) \
0d06e24b 584 (*current_target.to_wait) (pid, status)
c906108c
SS
585
586/* The target_wait operation waits for a process event to occur, and
587 thereby stop the process.
588
589 On some targets, certain events may happen in sequences. gdb's
590 correct response to any single event of such a sequence may require
591 knowledge of what earlier events in the sequence have been seen.
592
593 This operation provides a target-specific hook that allows the
0d06e24b 594 necessary bookkeeping to be performed to track such sequences. */
c906108c
SS
595
596#define target_post_wait(pid, status) \
0d06e24b 597 (*current_target.to_post_wait) (pid, status)
c906108c
SS
598
599/* Fetch register REGNO, or all regs if regno == -1. No result. */
600
601#define target_fetch_registers(regno) \
0d06e24b 602 (*current_target.to_fetch_registers) (regno)
c906108c
SS
603
604/* Store at least register REGNO, or all regs if REGNO == -1.
605 It can store as many registers as it wants to, so target_prepare_to_store
606 must have been previously called. Calls error() if there are problems. */
607
608#define target_store_registers(regs) \
0d06e24b 609 (*current_target.to_store_registers) (regs)
c906108c
SS
610
611/* Get ready to modify the registers array. On machines which store
612 individual registers, this doesn't need to do anything. On machines
613 which store all the registers in one fell swoop, this makes sure
614 that REGISTERS contains all the registers from the program being
615 debugged. */
616
617#define target_prepare_to_store() \
0d06e24b 618 (*current_target.to_prepare_to_store) ()
c906108c 619
4930751a
C
620extern DCACHE *target_dcache;
621
622extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write);
623
a14ed312 624extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 625
a14ed312 626extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 627
4930751a 628extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 629
a14ed312 630extern int xfer_memory (CORE_ADDR, char *, int, int, struct target_ops *);
c906108c
SS
631
632extern int
a14ed312 633child_xfer_memory (CORE_ADDR, char *, int, int, struct target_ops *);
c906108c 634
917317f4
JM
635/* Make a single attempt at transfering LEN bytes. On a successful
636 transfer, the number of bytes actually transfered is returned and
637 ERR is set to 0. When a transfer fails, -1 is returned (the number
638 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 639 non-zero error indication. */
917317f4 640
ed9a39eb
JM
641extern int
642target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 643
ed9a39eb
JM
644extern int
645target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 646
a14ed312 647extern char *child_pid_to_exec_file (int);
c906108c 648
a14ed312 649extern char *child_core_file_to_sym_file (char *);
c906108c
SS
650
651#if defined(CHILD_POST_ATTACH)
a14ed312 652extern void child_post_attach (int);
c906108c
SS
653#endif
654
a14ed312 655extern void child_post_wait (int, int);
c906108c 656
a14ed312 657extern void child_post_startup_inferior (int);
c906108c 658
a14ed312 659extern void child_acknowledge_created_inferior (int);
c906108c 660
a14ed312 661extern void child_clone_and_follow_inferior (int, int *);
c906108c 662
a14ed312 663extern void child_post_follow_inferior_by_clone (void);
c906108c 664
a14ed312 665extern int child_insert_fork_catchpoint (int);
c906108c 666
a14ed312 667extern int child_remove_fork_catchpoint (int);
c906108c 668
a14ed312 669extern int child_insert_vfork_catchpoint (int);
c906108c 670
a14ed312 671extern int child_remove_vfork_catchpoint (int);
c906108c 672
a14ed312 673extern int child_has_forked (int, int *);
c906108c 674
a14ed312 675extern int child_has_vforked (int, int *);
c906108c 676
a14ed312 677extern void child_acknowledge_created_inferior (int);
c906108c 678
a14ed312 679extern int child_can_follow_vfork_prior_to_exec (void);
c906108c 680
a14ed312 681extern void child_post_follow_vfork (int, int, int, int);
c906108c 682
a14ed312 683extern int child_insert_exec_catchpoint (int);
c906108c 684
a14ed312 685extern int child_remove_exec_catchpoint (int);
c906108c 686
a14ed312 687extern int child_has_execd (int, char **);
c906108c 688
a14ed312 689extern int child_reported_exec_events_per_exec_call (void);
c906108c 690
a14ed312 691extern int child_has_syscall_event (int, enum target_waitkind *, int *);
c906108c 692
a14ed312 693extern int child_has_exited (int, int, int *);
c906108c 694
a14ed312 695extern int child_thread_alive (int);
c906108c
SS
696
697/* From exec.c */
698
a14ed312 699extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
700
701/* Print a line about the current target. */
702
703#define target_files_info() \
0d06e24b 704 (*current_target.to_files_info) (&current_target)
c906108c
SS
705
706/* Insert a breakpoint at address ADDR in the target machine.
707 SAVE is a pointer to memory allocated for saving the
708 target contents. It is guaranteed by the caller to be long enough
709 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
710 an errno value. */
711
712#define target_insert_breakpoint(addr, save) \
0d06e24b 713 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
714
715/* Remove a breakpoint at address ADDR in the target machine.
716 SAVE is a pointer to the same save area
717 that was previously passed to target_insert_breakpoint.
718 Result is 0 for success, or an errno value. */
719
720#define target_remove_breakpoint(addr, save) \
0d06e24b 721 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
722
723/* Initialize the terminal settings we record for the inferior,
724 before we actually run the inferior. */
725
726#define target_terminal_init() \
0d06e24b 727 (*current_target.to_terminal_init) ()
c906108c
SS
728
729/* Put the inferior's terminal settings into effect.
730 This is preparation for starting or resuming the inferior. */
731
732#define target_terminal_inferior() \
0d06e24b 733 (*current_target.to_terminal_inferior) ()
c906108c
SS
734
735/* Put some of our terminal settings into effect,
736 enough to get proper results from our output,
737 but do not change into or out of RAW mode
738 so that no input is discarded.
739
740 After doing this, either terminal_ours or terminal_inferior
741 should be called to get back to a normal state of affairs. */
742
743#define target_terminal_ours_for_output() \
0d06e24b 744 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
745
746/* Put our terminal settings into effect.
747 First record the inferior's terminal settings
748 so they can be restored properly later. */
749
750#define target_terminal_ours() \
0d06e24b 751 (*current_target.to_terminal_ours) ()
c906108c
SS
752
753/* Print useful information about our terminal status, if such a thing
754 exists. */
755
756#define target_terminal_info(arg, from_tty) \
0d06e24b 757 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
758
759/* Kill the inferior process. Make it go away. */
760
761#define target_kill() \
0d06e24b 762 (*current_target.to_kill) ()
c906108c 763
0d06e24b
JM
764/* Load an executable file into the target process. This is expected
765 to not only bring new code into the target process, but also to
766 update GDB's symbol tables to match. */
c906108c 767
11cf8741 768extern void target_load (char *arg, int from_tty);
c906108c
SS
769
770/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
771 name. ADDRP is a CORE_ADDR * pointing to where the value of the
772 symbol should be returned. The result is 0 if successful, nonzero
773 if the symbol does not exist in the target environment. This
774 function should not call error() if communication with the target
775 is interrupted, since it is called from symbol reading, but should
776 return nonzero, possibly doing a complain(). */
c906108c 777
0d06e24b
JM
778#define target_lookup_symbol(name, addrp) \
779 (*current_target.to_lookup_symbol) (name, addrp)
c906108c
SS
780
781/* Start an inferior process and set inferior_pid to its pid.
782 EXEC_FILE is the file to run.
783 ALLARGS is a string containing the arguments to the program.
784 ENV is the environment vector to pass. Errors reported with error().
785 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 786
c906108c 787#define target_create_inferior(exec_file, args, env) \
0d06e24b 788 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
789
790
791/* Some targets (such as ttrace-based HPUX) don't allow us to request
792 notification of inferior events such as fork and vork immediately
793 after the inferior is created. (This because of how gdb gets an
794 inferior created via invoking a shell to do it. In such a scenario,
795 if the shell init file has commands in it, the shell will fork and
796 exec for each of those commands, and we will see each such fork
797 event. Very bad.)
c5aa993b 798
0d06e24b
JM
799 Such targets will supply an appropriate definition for this function. */
800
c906108c 801#define target_post_startup_inferior(pid) \
0d06e24b 802 (*current_target.to_post_startup_inferior) (pid)
c906108c
SS
803
804/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
805 some synchronization between gdb and the new inferior process, PID. */
806
c906108c 807#define target_acknowledge_created_inferior(pid) \
0d06e24b 808 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
809
810/* An inferior process has been created via a fork() or similar
811 system call. This function will clone the debugger, then ensure
812 that CHILD_PID is attached to by that debugger.
813
814 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
815 and FALSE otherwise. (The original and clone debuggers can use this
816 to determine which they are, if need be.)
817
818 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
819 the two debuggers from competing for shell input.) */
820
c906108c 821#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 822 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
823
824/* This operation is intended to be used as the last in a sequence of
825 steps taken when following both parent and child of a fork. This
826 is used by a clone of the debugger, which will follow the child.
827
828 The original debugger has detached from this process, and the
829 clone has attached to it.
830
831 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
832 correctly. */
833
c906108c 834#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
835 (*current_target.to_post_follow_inferior_by_clone) ()
836
837/* On some targets, we can catch an inferior fork or vfork event when
838 it occurs. These functions insert/remove an already-created
839 catchpoint for such events. */
c906108c 840
c906108c 841#define target_insert_fork_catchpoint(pid) \
0d06e24b 842 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
843
844#define target_remove_fork_catchpoint(pid) \
0d06e24b 845 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
846
847#define target_insert_vfork_catchpoint(pid) \
0d06e24b 848 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
849
850#define target_remove_vfork_catchpoint(pid) \
0d06e24b 851 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
852
853/* Returns TRUE if PID has invoked the fork() system call. And,
854 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
855 inferior process that was created by that call. */
856
c906108c 857#define target_has_forked(pid,child_pid) \
0d06e24b
JM
858 (*current_target.to_has_forked) (pid,child_pid)
859
860/* Returns TRUE if PID has invoked the vfork() system call. And,
861 also sets CHILD_PID to the process id of the other ("child")
862 inferior process that was created by that call. */
c906108c 863
c906108c 864#define target_has_vforked(pid,child_pid) \
0d06e24b 865 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
866
867/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
868 anything to a vforked child before it subsequently calls exec().
869 On such platforms, we say that the debugger cannot "follow" the
870 child until it has vforked.
871
872 This function should be defined to return 1 by those targets
873 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
874 child, and 0 if they cannot. */
875
c906108c 876#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 877 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
878
879/* An inferior process has been created via a vfork() system call.
880 The debugger has followed the parent, the child, or both. The
881 process of setting up for that follow may have required some
882 target-specific trickery to track the sequence of reported events.
883 If so, this function should be defined by those targets that
884 require the debugger to perform cleanup or initialization after
0d06e24b
JM
885 the vfork follow. */
886
c906108c 887#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 888 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
889
890/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
891 occurs. These functions insert/remove an already-created
892 catchpoint for such events. */
893
c906108c 894#define target_insert_exec_catchpoint(pid) \
0d06e24b 895 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 896
c906108c 897#define target_remove_exec_catchpoint(pid) \
0d06e24b 898 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
899
900/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
901 And, also sets EXECD_PATHNAME to the pathname of the executable
902 file that was passed to exec(), and is now being executed. */
903
c906108c 904#define target_has_execd(pid,execd_pathname) \
0d06e24b 905 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
906
907/* Returns the number of exec events that are reported when a process
908 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
909 events are being reported. */
910
c906108c 911#define target_reported_exec_events_per_exec_call() \
0d06e24b 912 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
913
914/* Returns TRUE if PID has reported a syscall event. And, also sets
915 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
916 the unique integer ID of the syscall. */
917
c906108c 918#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 919 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
920
921/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
922 exit code of PID, if any. */
923
c906108c 924#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 925 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
926
927/* The debugger has completed a blocking wait() call. There is now
0d06e24b 928 some process event that must be processed. This function should
c906108c 929 be defined by those targets that require the debugger to perform
0d06e24b 930 cleanup or internal state changes in response to the process event. */
c906108c
SS
931
932/* The inferior process has died. Do what is right. */
933
934#define target_mourn_inferior() \
0d06e24b 935 (*current_target.to_mourn_inferior) ()
c906108c
SS
936
937/* Does target have enough data to do a run or attach command? */
938
939#define target_can_run(t) \
0d06e24b 940 ((t)->to_can_run) ()
c906108c
SS
941
942/* post process changes to signal handling in the inferior. */
943
944#define target_notice_signals(pid) \
0d06e24b 945 (*current_target.to_notice_signals) (pid)
c906108c
SS
946
947/* Check to see if a thread is still alive. */
948
949#define target_thread_alive(pid) \
0d06e24b 950 (*current_target.to_thread_alive) (pid)
c906108c 951
b83266a0
SS
952/* Query for new threads and add them to the thread list. */
953
954#define target_find_new_threads() \
0d06e24b 955 (*current_target.to_find_new_threads) (); \
b83266a0 956
0d06e24b
JM
957/* Make target stop in a continuable fashion. (For instance, under
958 Unix, this should act like SIGSTOP). This function is normally
959 used by GUIs to implement a stop button. */
c906108c
SS
960
961#define target_stop current_target.to_stop
962
963/* Queries the target side for some information. The first argument is a
964 letter specifying the type of the query, which is used to determine who
965 should process it. The second argument is a string that specifies which
966 information is desired and the third is a buffer that carries back the
967 response from the target side. The fourth parameter is the size of the
0d06e24b 968 output buffer supplied. */
c5aa993b 969
c906108c 970#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 971 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 972
96baa820
JM
973/* Send the specified COMMAND to the target's monitor
974 (shell,interpreter) for execution. The result of the query is
0d06e24b 975 placed in OUTBUF. */
96baa820
JM
976
977#define target_rcmd(command, outbuf) \
978 (*current_target.to_rcmd) (command, outbuf)
979
980
c906108c
SS
981/* Get the symbol information for a breakpointable routine called when
982 an exception event occurs.
983 Intended mainly for C++, and for those
984 platforms/implementations where such a callback mechanism is available,
985 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 986 different mechanisms for debugging exceptions. */
c906108c
SS
987
988#define target_enable_exception_callback(kind, enable) \
0d06e24b 989 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 990
0d06e24b 991/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 992
c906108c 993#define target_get_current_exception_event() \
0d06e24b 994 (*current_target.to_get_current_exception_event) ()
c906108c
SS
995
996/* Pointer to next target in the chain, e.g. a core file and an exec file. */
997
998#define target_next \
0d06e24b 999 (current_target.to_next)
c906108c
SS
1000
1001/* Does the target include all of memory, or only part of it? This
1002 determines whether we look up the target chain for other parts of
1003 memory if this target can't satisfy a request. */
1004
1005#define target_has_all_memory \
0d06e24b 1006 (current_target.to_has_all_memory)
c906108c
SS
1007
1008/* Does the target include memory? (Dummy targets don't.) */
1009
1010#define target_has_memory \
0d06e24b 1011 (current_target.to_has_memory)
c906108c
SS
1012
1013/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1014 we start a process.) */
c5aa993b 1015
c906108c 1016#define target_has_stack \
0d06e24b 1017 (current_target.to_has_stack)
c906108c
SS
1018
1019/* Does the target have registers? (Exec files don't.) */
1020
1021#define target_has_registers \
0d06e24b 1022 (current_target.to_has_registers)
c906108c
SS
1023
1024/* Does the target have execution? Can we make it jump (through
1025 hoops), or pop its stack a few times? FIXME: If this is to work that
1026 way, it needs to check whether an inferior actually exists.
1027 remote-udi.c and probably other targets can be the current target
1028 when the inferior doesn't actually exist at the moment. Right now
1029 this just tells us whether this target is *capable* of execution. */
1030
1031#define target_has_execution \
0d06e24b 1032 (current_target.to_has_execution)
c906108c
SS
1033
1034/* Can the target support the debugger control of thread execution?
1035 a) Can it lock the thread scheduler?
1036 b) Can it switch the currently running thread? */
1037
1038#define target_can_lock_scheduler \
0d06e24b 1039 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
1040
1041#define target_can_switch_threads \
0d06e24b 1042 (current_target.to_has_thread_control & tc_switch)
c906108c 1043
6426a772
JM
1044/* Can the target support asynchronous execution? */
1045#define target_can_async_p() (current_target.to_can_async_p ())
1046
1047/* Is the target in asynchronous execution mode? */
1048#define target_is_async_p() (current_target.to_is_async_p())
1049
1050/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
1051#define target_async(CALLBACK,CONTEXT) \
1052 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1053
ed9a39eb
JM
1054/* This is to be used ONLY within run_stack_dummy(). It
1055 provides a workaround, to have inferior function calls done in
1056 sychronous mode, even though the target is asynchronous. After
1057 target_async_mask(0) is called, calls to target_can_async_p() will
1058 return FALSE , so that target_resume() will not try to start the
1059 target asynchronously. After the inferior stops, we IMMEDIATELY
1060 restore the previous nature of the target, by calling
1061 target_async_mask(1). After that, target_can_async_p() will return
1062 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1063
1064 FIXME ezannoni 1999-12-13: we won't need this once we move
1065 the turning async on and off to the single execution commands,
0d06e24b 1066 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
1067
1068#define target_async_mask_value \
0d06e24b 1069 (current_target.to_async_mask_value)
ed9a39eb
JM
1070
1071extern int target_async_mask (int mask);
1072
a14ed312 1073extern void target_link (char *, CORE_ADDR *);
c906108c
SS
1074
1075/* Converts a process id to a string. Usually, the string just contains
1076 `process xyz', but on some systems it may contain
1077 `process xyz thread abc'. */
1078
ed9a39eb
JM
1079#undef target_pid_to_str
1080#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1081
1082#ifndef target_tid_to_str
1083#define target_tid_to_str(PID) \
0d06e24b 1084 target_pid_to_str (PID)
a14ed312 1085extern char *normal_pid_to_str (int pid);
c906108c 1086#endif
c5aa993b 1087
0d06e24b
JM
1088/* Return a short string describing extra information about PID,
1089 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1090 is okay. */
1091
1092#define target_extra_thread_info(TP) \
1093 (current_target.to_extra_thread_info (TP))
ed9a39eb 1094
11cf8741
JM
1095/*
1096 * New Objfile Event Hook:
1097 *
1098 * Sometimes a GDB component wants to get notified whenever a new
1099 * objfile is loaded. Mainly this is used by thread-debugging
1100 * implementations that need to know when symbols for the target
1101 * thread implemenation are available.
1102 *
1103 * The old way of doing this is to define a macro 'target_new_objfile'
1104 * that points to the function that you want to be called on every
1105 * objfile/shlib load.
1106 *
1107 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1108 * and point it to the function that you want to be called on every
1109 * objfile/shlib load.
1110 *
1111 * If multiple clients are willing to be cooperative, they can each
1112 * save a pointer to the previous value of target_new_objfile_hook
1113 * before modifying it, and arrange for their function to call the
1114 * previous function in the chain. In that way, multiple clients
1115 * can receive this notification (something like with signal handlers).
1116 */
c906108c 1117
507f3c78 1118extern void (*target_new_objfile_hook) (struct objfile *);
c906108c
SS
1119
1120#ifndef target_pid_or_tid_to_str
1121#define target_pid_or_tid_to_str(ID) \
0d06e24b 1122 target_pid_to_str (ID)
c906108c
SS
1123#endif
1124
1125/* Attempts to find the pathname of the executable file
1126 that was run to create a specified process.
1127
1128 The process PID must be stopped when this operation is used.
c5aa993b 1129
c906108c
SS
1130 If the executable file cannot be determined, NULL is returned.
1131
1132 Else, a pointer to a character string containing the pathname
1133 is returned. This string should be copied into a buffer by
1134 the client if the string will not be immediately used, or if
0d06e24b 1135 it must persist. */
c906108c
SS
1136
1137#define target_pid_to_exec_file(pid) \
0d06e24b 1138 (current_target.to_pid_to_exec_file) (pid)
c906108c 1139
9d8a64cb 1140/* Hook to call target-dependent code after reading in a new symbol table. */
c906108c
SS
1141
1142#ifndef TARGET_SYMFILE_POSTREAD
1143#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1144#endif
1145
9d8a64cb 1146/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1147 started. */
1148
1149#ifndef TARGET_CREATE_INFERIOR_HOOK
1150#define TARGET_CREATE_INFERIOR_HOOK(PID)
1151#endif
1152
1153/* Hardware watchpoint interfaces. */
1154
1155/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1156 write). */
1157
1158#ifndef STOPPED_BY_WATCHPOINT
1159#define STOPPED_BY_WATCHPOINT(w) 0
1160#endif
1161
1162/* HP-UX supplies these operations, which respectively disable and enable
1163 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1164 on that platform. See wait_for_inferior's use of these. */
1165
c906108c
SS
1166#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1167#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1168#endif
1169
1170#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1171#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1172#endif
1173
0d06e24b 1174/* Provide defaults for systems that don't support hardware watchpoints. */
c906108c
SS
1175
1176#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1177
1178/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1179 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1180 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1181 (including this one?). OTHERTYPE is who knows what... */
1182
1183#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1184
1185#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1186#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
6ab3a9c9 1187 ((LONGEST)(byte_count) <= REGISTER_SIZE)
c906108c
SS
1188#endif
1189
1190/* However, some addresses may not be profitable to use hardware to watch,
1191 or may be difficult to understand when the addressed object is out of
1192 scope, and hence should be unwatched. On some targets, this may have
1193 severe performance penalties, such that we might as well use regular
1194 watchpoints, and save (possibly precious) hardware watchpoints for other
0d06e24b
JM
1195 locations. */
1196
c906108c
SS
1197#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1198#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1199#endif
1200
1201
1202/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1203 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1204 success, non-zero for failure. */
1205
1206#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1207#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1208
1209#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1210
1211#ifndef target_insert_hw_breakpoint
1212#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1213#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1214#endif
1215
1216#ifndef target_stopped_data_address
1217#define target_stopped_data_address() 0
1218#endif
1219
1220/* If defined, then we need to decr pc by this much after a hardware break-
1221 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1222
1223#ifndef DECR_PC_AFTER_HW_BREAK
1224#define DECR_PC_AFTER_HW_BREAK 0
1225#endif
1226
1227/* Sometimes gdb may pick up what appears to be a valid target address
1228 from a minimal symbol, but the value really means, essentially,
1229 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1230 is run. Therefore, do not attempt to use this as a PC." */
1231
c906108c
SS
1232#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1233#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1234#endif
1235
1236/* This will only be defined by a target that supports catching vfork events,
1237 such as HP-UX.
1238
1239 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1240 child process after it has exec'd, causes the parent process to resume as
1241 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1242 define this to a function that prevents that from happening. */
c906108c
SS
1243#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1244#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1245#endif
1246
1247/* This will only be defined by a target that supports catching vfork events,
1248 such as HP-UX.
1249
1250 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1251 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1252 vfork event will be delivered to us. */
1253
c906108c
SS
1254#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1255#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1256#endif
1257
1258/* Routines for maintenance of the target structures...
1259
1260 add_target: Add a target to the list of all possible targets.
1261
1262 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1263 targets, within its particular stratum of the stack. Result
1264 is 0 if now atop the stack, nonzero if not on top (maybe
1265 should warn user).
c906108c
SS
1266
1267 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1268 no matter where it is on the list. Returns 0 if no
1269 change, 1 if removed from stack.
c906108c 1270
c5aa993b 1271 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1272
a14ed312 1273extern void add_target (struct target_ops *);
c906108c 1274
a14ed312 1275extern int push_target (struct target_ops *);
c906108c 1276
a14ed312 1277extern int unpush_target (struct target_ops *);
c906108c 1278
a14ed312 1279extern void target_preopen (int);
c906108c 1280
a14ed312 1281extern void pop_target (void);
c906108c
SS
1282
1283/* Struct section_table maps address ranges to file sections. It is
1284 mostly used with BFD files, but can be used without (e.g. for handling
1285 raw disks, or files not in formats handled by BFD). */
1286
c5aa993b
JM
1287struct section_table
1288 {
1289 CORE_ADDR addr; /* Lowest address in section */
1290 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1291
c5aa993b 1292 sec_ptr the_bfd_section;
c906108c 1293
c5aa993b
JM
1294 bfd *bfd; /* BFD file pointer */
1295 };
c906108c
SS
1296
1297/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1298 Returns 0 if OK, 1 on error. */
1299
1300extern int
a14ed312 1301build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1302
1303/* From mem-break.c */
1304
a14ed312 1305extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1306
a14ed312 1307extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1308
a14ed312 1309extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1310
a14ed312 1311extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1312
c906108c 1313extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
c906108c
SS
1314
1315
1316/* From target.c */
1317
a14ed312 1318extern void initialize_targets (void);
c906108c 1319
a14ed312 1320extern void noprocess (void);
c906108c 1321
a14ed312 1322extern void find_default_attach (char *, int);
c906108c 1323
a14ed312 1324extern void find_default_require_attach (char *, int);
c906108c 1325
a14ed312 1326extern void find_default_require_detach (int, char *, int);
c906108c 1327
a14ed312 1328extern void find_default_create_inferior (char *, char *, char **);
c906108c 1329
a14ed312 1330extern void find_default_clone_and_follow_inferior (int, int *);
c906108c 1331
a14ed312 1332extern struct target_ops *find_run_target (void);
7a292a7a 1333
a14ed312 1334extern struct target_ops *find_core_target (void);
6426a772 1335
a14ed312 1336extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1337
1338extern int
a14ed312 1339target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1340
1341extern void remove_target_sections (bfd *abfd);
1342
c906108c
SS
1343\f
1344/* Stuff that should be shared among the various remote targets. */
1345
1346/* Debugging level. 0 is off, and non-zero values mean to print some debug
1347 information (higher values, more information). */
1348extern int remote_debug;
1349
1350/* Speed in bits per second, or -1 which means don't mess with the speed. */
1351extern int baud_rate;
1352/* Timeout limit for response from target. */
1353extern int remote_timeout;
1354
c906108c
SS
1355\f
1356/* Functions for helping to write a native target. */
1357
1358/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1359extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1360
c2d11a7d 1361/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1362 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1363/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1364 to the shorter target_signal_p() because it is far less ambigious.
1365 In this context ``target_signal'' refers to GDB's internal
1366 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1367 refers to the target operating system's signal. Confused? */
1368
c2d11a7d
JM
1369extern int target_signal_to_host_p (enum target_signal signo);
1370
1371/* Convert between host signal numbers and enum target_signal's.
1372 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1373 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1374/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1375 refering to the target operating system's signal numbering.
1376 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1377 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1378 internal representation of a target operating system's signal. */
1379
a14ed312
KB
1380extern enum target_signal target_signal_from_host (int);
1381extern int target_signal_to_host (enum target_signal);
c906108c
SS
1382
1383/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1384extern enum target_signal target_signal_from_command (int);
c906108c
SS
1385
1386/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1387extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1388\f
1389/* Imported from machine dependent code */
1390
1391#ifndef SOFTWARE_SINGLE_STEP_P
1392#define SOFTWARE_SINGLE_STEP_P 0
0d06e24b
JM
1393#define SOFTWARE_SINGLE_STEP(sig,bp_p) \
1394 (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
c906108c
SS
1395#endif /* SOFTWARE_SINGLE_STEP_P */
1396
1397/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1398void target_ignore (void);
c906108c
SS
1399
1400/* Macro for getting target's idea of a frame pointer.
1401 FIXME: GDB's whole scheme for dealing with "frames" and
1402 "frame pointers" needs a serious shakedown. */
1403#ifndef TARGET_VIRTUAL_FRAME_POINTER
1404#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1405 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1406#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1407
c5aa993b 1408#endif /* !defined (TARGET_H) */
This page took 0.154248 seconds and 4 git commands to generate.