* win32-nat.c (safe_symbol_file_add_cleanup): Ensure that gdb_stderr is flushed
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
d9fcf2fb 2 Copyright 1990-1994, 1999, 2000 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
c5aa993b 55 };
c906108c 56
c5aa993b
JM
57enum thread_control_capabilities
58 {
0d06e24b
JM
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 62 };
c906108c
SS
63
64/* Stuff for target_wait. */
65
66/* Generally, what has the program done? */
c5aa993b
JM
67enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
c906108c 71
0d06e24b
JM
72 /* The program has stopped with a signal. Which signal is in
73 value.sig. */
c5aa993b 74 TARGET_WAITKIND_STOPPED,
c906108c 75
c5aa993b
JM
76 /* The program has terminated with a signal. Which signal is in
77 value.sig. */
78 TARGET_WAITKIND_SIGNALLED,
c906108c 79
c5aa993b
JM
80 /* The program is letting us know that it dynamically loaded something
81 (e.g. it called load(2) on AIX). */
82 TARGET_WAITKIND_LOADED,
c906108c 83
0d06e24b
JM
84 /* The program has forked. A "related" process' ID is in
85 value.related_pid. I.e., if the child forks, value.related_pid
86 is the parent's ID. */
87
c5aa993b 88 TARGET_WAITKIND_FORKED,
c906108c 89
0d06e24b
JM
90 /* The program has vforked. A "related" process's ID is in
91 value.related_pid. */
92
c5aa993b 93 TARGET_WAITKIND_VFORKED,
c906108c 94
0d06e24b
JM
95 /* The program has exec'ed a new executable file. The new file's
96 pathname is pointed to by value.execd_pathname. */
97
c5aa993b 98 TARGET_WAITKIND_EXECD,
c906108c 99
0d06e24b
JM
100 /* The program has entered or returned from a system call. On
101 HP-UX, this is used in the hardware watchpoint implementation.
102 The syscall's unique integer ID number is in value.syscall_id */
103
c5aa993b
JM
104 TARGET_WAITKIND_SYSCALL_ENTRY,
105 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 106
c5aa993b
JM
107 /* Nothing happened, but we stopped anyway. This perhaps should be handled
108 within target_wait, but I'm not sure target_wait should be resuming the
109 inferior. */
c4093a6a
JM
110 TARGET_WAITKIND_SPURIOUS,
111
112 /* This is used for target async and extended-async
113 only. Remote_async_wait() returns this when there is an event
114 on the inferior, but the rest of the world is not interested in
115 it. The inferior has not stopped, but has just sent some output
116 to the console, for instance. In this case, we want to go back
117 to the event loop and wait there for another event from the
118 inferior, rather than being stuck in the remote_async_wait()
119 function. This way the event loop is responsive to other events,
0d06e24b 120 like for instance the user typing. */
c4093a6a 121 TARGET_WAITKIND_IGNORE
c906108c
SS
122 };
123
124/* The numbering of these signals is chosen to match traditional unix
125 signals (insofar as various unices use the same numbers, anyway).
126 It is also the numbering of the GDB remote protocol. Other remote
127 protocols, if they use a different numbering, should make sure to
cd0fc7c3 128 translate appropriately.
c906108c 129
cd0fc7c3
SS
130 Since these numbers have actually made it out into other software
131 (stubs, etc.), you mustn't disturb the assigned numbering. If you
132 need to add new signals here, add them to the end of the explicitly
133 numbered signals.
134
135 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
136 (1) This set of signals represents a widely-accepted attempt to
137 represent events of this sort in a portable fashion, (2) we want a
138 signal to make it from wait to child_wait to the user intact, (3) many
139 remote protocols use a similar encoding. However, it is
140 recognized that this set of signals has limitations (such as not
141 distinguishing between various kinds of SIGSEGV, or not
142 distinguishing hitting a breakpoint from finishing a single step).
143 So in the future we may get around this either by adding additional
144 signals for breakpoint, single-step, etc., or by adding signal
145 codes; the latter seems more in the spirit of what BSD, System V,
146 etc. are doing to address these issues. */
147
148/* For an explanation of what each signal means, see
149 target_signal_to_string. */
150
c5aa993b
JM
151enum target_signal
152 {
153 /* Used some places (e.g. stop_signal) to record the concept that
154 there is no signal. */
155 TARGET_SIGNAL_0 = 0,
156 TARGET_SIGNAL_FIRST = 0,
157 TARGET_SIGNAL_HUP = 1,
158 TARGET_SIGNAL_INT = 2,
159 TARGET_SIGNAL_QUIT = 3,
160 TARGET_SIGNAL_ILL = 4,
161 TARGET_SIGNAL_TRAP = 5,
162 TARGET_SIGNAL_ABRT = 6,
163 TARGET_SIGNAL_EMT = 7,
164 TARGET_SIGNAL_FPE = 8,
165 TARGET_SIGNAL_KILL = 9,
166 TARGET_SIGNAL_BUS = 10,
167 TARGET_SIGNAL_SEGV = 11,
168 TARGET_SIGNAL_SYS = 12,
169 TARGET_SIGNAL_PIPE = 13,
170 TARGET_SIGNAL_ALRM = 14,
171 TARGET_SIGNAL_TERM = 15,
172 TARGET_SIGNAL_URG = 16,
173 TARGET_SIGNAL_STOP = 17,
174 TARGET_SIGNAL_TSTP = 18,
175 TARGET_SIGNAL_CONT = 19,
176 TARGET_SIGNAL_CHLD = 20,
177 TARGET_SIGNAL_TTIN = 21,
178 TARGET_SIGNAL_TTOU = 22,
179 TARGET_SIGNAL_IO = 23,
180 TARGET_SIGNAL_XCPU = 24,
181 TARGET_SIGNAL_XFSZ = 25,
182 TARGET_SIGNAL_VTALRM = 26,
183 TARGET_SIGNAL_PROF = 27,
184 TARGET_SIGNAL_WINCH = 28,
185 TARGET_SIGNAL_LOST = 29,
186 TARGET_SIGNAL_USR1 = 30,
187 TARGET_SIGNAL_USR2 = 31,
188 TARGET_SIGNAL_PWR = 32,
189 /* Similar to SIGIO. Perhaps they should have the same number. */
190 TARGET_SIGNAL_POLL = 33,
191 TARGET_SIGNAL_WIND = 34,
192 TARGET_SIGNAL_PHONE = 35,
193 TARGET_SIGNAL_WAITING = 36,
194 TARGET_SIGNAL_LWP = 37,
195 TARGET_SIGNAL_DANGER = 38,
196 TARGET_SIGNAL_GRANT = 39,
197 TARGET_SIGNAL_RETRACT = 40,
198 TARGET_SIGNAL_MSG = 41,
199 TARGET_SIGNAL_SOUND = 42,
200 TARGET_SIGNAL_SAK = 43,
201 TARGET_SIGNAL_PRIO = 44,
202 TARGET_SIGNAL_REALTIME_33 = 45,
203 TARGET_SIGNAL_REALTIME_34 = 46,
204 TARGET_SIGNAL_REALTIME_35 = 47,
205 TARGET_SIGNAL_REALTIME_36 = 48,
206 TARGET_SIGNAL_REALTIME_37 = 49,
207 TARGET_SIGNAL_REALTIME_38 = 50,
208 TARGET_SIGNAL_REALTIME_39 = 51,
209 TARGET_SIGNAL_REALTIME_40 = 52,
210 TARGET_SIGNAL_REALTIME_41 = 53,
211 TARGET_SIGNAL_REALTIME_42 = 54,
212 TARGET_SIGNAL_REALTIME_43 = 55,
213 TARGET_SIGNAL_REALTIME_44 = 56,
214 TARGET_SIGNAL_REALTIME_45 = 57,
215 TARGET_SIGNAL_REALTIME_46 = 58,
216 TARGET_SIGNAL_REALTIME_47 = 59,
217 TARGET_SIGNAL_REALTIME_48 = 60,
218 TARGET_SIGNAL_REALTIME_49 = 61,
219 TARGET_SIGNAL_REALTIME_50 = 62,
220 TARGET_SIGNAL_REALTIME_51 = 63,
221 TARGET_SIGNAL_REALTIME_52 = 64,
222 TARGET_SIGNAL_REALTIME_53 = 65,
223 TARGET_SIGNAL_REALTIME_54 = 66,
224 TARGET_SIGNAL_REALTIME_55 = 67,
225 TARGET_SIGNAL_REALTIME_56 = 68,
226 TARGET_SIGNAL_REALTIME_57 = 69,
227 TARGET_SIGNAL_REALTIME_58 = 70,
228 TARGET_SIGNAL_REALTIME_59 = 71,
229 TARGET_SIGNAL_REALTIME_60 = 72,
230 TARGET_SIGNAL_REALTIME_61 = 73,
231 TARGET_SIGNAL_REALTIME_62 = 74,
232 TARGET_SIGNAL_REALTIME_63 = 75,
233
234 /* Used internally by Solaris threads. See signal(5) on Solaris. */
235 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 236
d4f3574e
SS
237 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
238 Linux does, and we can't disturb the numbering, since it's part
239 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
240 is number 76. */
241 TARGET_SIGNAL_REALTIME_32,
242
c906108c 243#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
244 /* Mach exceptions */
245 TARGET_EXC_BAD_ACCESS,
246 TARGET_EXC_BAD_INSTRUCTION,
247 TARGET_EXC_ARITHMETIC,
248 TARGET_EXC_EMULATION,
249 TARGET_EXC_SOFTWARE,
250 TARGET_EXC_BREAKPOINT,
c906108c 251#endif
c5aa993b 252 TARGET_SIGNAL_INFO,
c906108c 253
c5aa993b
JM
254 /* Some signal we don't know about. */
255 TARGET_SIGNAL_UNKNOWN,
c906108c 256
c5aa993b
JM
257 /* Use whatever signal we use when one is not specifically specified
258 (for passing to proceed and so on). */
259 TARGET_SIGNAL_DEFAULT,
c906108c 260
c5aa993b
JM
261 /* Last and unused enum value, for sizing arrays, etc. */
262 TARGET_SIGNAL_LAST
263 };
c906108c 264
c5aa993b
JM
265struct target_waitstatus
266 {
267 enum target_waitkind kind;
268
269 /* Forked child pid, execd pathname, exit status or signal number. */
270 union
271 {
272 int integer;
273 enum target_signal sig;
274 int related_pid;
275 char *execd_pathname;
276 int syscall_id;
277 }
278 value;
279 };
c906108c 280
2acceee2 281/* Possible types of events that the inferior handler will have to
0d06e24b 282 deal with. */
2acceee2
JM
283enum inferior_event_type
284 {
0d06e24b 285 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
286 INF_QUIT_REQ,
287 /* Process a normal inferior event which will result in target_wait
0d06e24b 288 being called. */
2acceee2 289 INF_REG_EVENT,
0d06e24b 290 /* Deal with an error on the inferior. */
2acceee2 291 INF_ERROR,
0d06e24b 292 /* We are called because a timer went off. */
2acceee2 293 INF_TIMER,
0d06e24b 294 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
295 INF_EXEC_COMPLETE,
296 /* We are called to do some stuff after the inferior stops, but we
297 are expected to reenter the proceed() and
298 handle_inferior_event() functions. This is used only in case of
0d06e24b 299 'step n' like commands. */
c2d11a7d 300 INF_EXEC_CONTINUE
2acceee2
JM
301 };
302
c906108c 303/* Return the string for a signal. */
a14ed312 304extern char *target_signal_to_string (enum target_signal);
c906108c
SS
305
306/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 307extern char *target_signal_to_name (enum target_signal);
c906108c
SS
308
309/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 310enum target_signal target_signal_from_name (char *);
c906108c 311\f
c5aa993b 312
c906108c
SS
313/* If certain kinds of activity happen, target_wait should perform
314 callbacks. */
315/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 316 on TARGET_ACTIVITY_FD. */
c906108c
SS
317extern int target_activity_fd;
318/* Returns zero to leave the inferior alone, one to interrupt it. */
319extern int (*target_activity_function) PARAMS ((void));
320\f
0d06e24b
JM
321struct thread_info; /* fwd decl for parameter list below: */
322
c906108c 323struct target_ops
c5aa993b
JM
324 {
325 char *to_shortname; /* Name this target type */
326 char *to_longname; /* Name for printing */
327 char *to_doc; /* Documentation. Does not include trailing
c906108c 328 newline, and starts with a one-line descrip-
0d06e24b 329 tion (probably similar to to_longname). */
c5aa993b
JM
330 void (*to_open) PARAMS ((char *, int));
331 void (*to_close) PARAMS ((int));
332 void (*to_attach) PARAMS ((char *, int));
333 void (*to_post_attach) PARAMS ((int));
334 void (*to_require_attach) PARAMS ((char *, int));
335 void (*to_detach) PARAMS ((char *, int));
336 void (*to_require_detach) PARAMS ((int, char *, int));
337 void (*to_resume) PARAMS ((int, int, enum target_signal));
338 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
339 void (*to_post_wait) PARAMS ((int, int));
340 void (*to_fetch_registers) PARAMS ((int));
341 void (*to_store_registers) PARAMS ((int));
342 void (*to_prepare_to_store) PARAMS ((void));
343
344 /* Transfer LEN bytes of memory between GDB address MYADDR and
345 target address MEMADDR. If WRITE, transfer them to the target, else
346 transfer them from the target. TARGET is the target from which we
347 get this function.
348
349 Return value, N, is one of the following:
350
351 0 means that we can't handle this. If errno has been set, it is the
352 error which prevented us from doing it (FIXME: What about bfd_error?).
353
354 positive (call it N) means that we have transferred N bytes
355 starting at MEMADDR. We might be able to handle more bytes
356 beyond this length, but no promises.
357
358 negative (call its absolute value N) means that we cannot
359 transfer right at MEMADDR, but we could transfer at least
360 something at MEMADDR + N. */
361
362 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
363 int len, int write,
364 struct target_ops * target));
c906108c
SS
365
366#if 0
c5aa993b 367 /* Enable this after 4.12. */
c906108c 368
c5aa993b
JM
369 /* Search target memory. Start at STARTADDR and take LEN bytes of
370 target memory, and them with MASK, and compare to DATA. If they
371 match, set *ADDR_FOUND to the address we found it at, store the data
372 we found at LEN bytes starting at DATA_FOUND, and return. If
373 not, add INCREMENT to the search address and keep trying until
374 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 375
0d06e24b
JM
376 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
377 return. */
378
c5aa993b
JM
379 void (*to_search) PARAMS ((int len, char *data, char *mask,
380 CORE_ADDR startaddr, int increment,
381 CORE_ADDR lorange, CORE_ADDR hirange,
382 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
383
384#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
385 (*current_target.to_search) (len, data, mask, startaddr, increment, \
386 lorange, hirange, addr_found, data_found)
c5aa993b
JM
387#endif /* 0 */
388
389 void (*to_files_info) PARAMS ((struct target_ops *));
390 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
391 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
392 void (*to_terminal_init) PARAMS ((void));
393 void (*to_terminal_inferior) PARAMS ((void));
394 void (*to_terminal_ours_for_output) PARAMS ((void));
395 void (*to_terminal_ours) PARAMS ((void));
396 void (*to_terminal_info) PARAMS ((char *, int));
397 void (*to_kill) PARAMS ((void));
398 void (*to_load) PARAMS ((char *, int));
399 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
400 void (*to_create_inferior) PARAMS ((char *, char *, char **));
401 void (*to_post_startup_inferior) PARAMS ((int));
402 void (*to_acknowledge_created_inferior) PARAMS ((int));
403 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
404 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
405 int (*to_insert_fork_catchpoint) PARAMS ((int));
406 int (*to_remove_fork_catchpoint) PARAMS ((int));
407 int (*to_insert_vfork_catchpoint) PARAMS ((int));
408 int (*to_remove_vfork_catchpoint) PARAMS ((int));
409 int (*to_has_forked) PARAMS ((int, int *));
410 int (*to_has_vforked) PARAMS ((int, int *));
411 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
412 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
413 int (*to_insert_exec_catchpoint) PARAMS ((int));
414 int (*to_remove_exec_catchpoint) PARAMS ((int));
415 int (*to_has_execd) PARAMS ((int, char **));
416 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
417 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
418 int (*to_has_exited) PARAMS ((int, int, int *));
419 void (*to_mourn_inferior) PARAMS ((void));
420 int (*to_can_run) PARAMS ((void));
421 void (*to_notice_signals) PARAMS ((int pid));
422 int (*to_thread_alive) PARAMS ((int pid));
423 void (*to_find_new_threads) PARAMS ((void));
ed9a39eb 424 char *(*to_pid_to_str) PARAMS ((int));
0d06e24b 425 char *(*to_extra_thread_info) PARAMS ((struct thread_info *));
c5aa993b
JM
426 void (*to_stop) PARAMS ((void));
427 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
d9fcf2fb 428 void (*to_rcmd) (char *command, struct ui_file *output);
c5aa993b
JM
429 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
430 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
431 char *(*to_pid_to_exec_file) PARAMS ((int pid));
432 char *(*to_core_file_to_sym_file) PARAMS ((char *));
433 enum strata to_stratum;
434 struct target_ops
435 *DONT_USE; /* formerly to_next */
436 int to_has_all_memory;
437 int to_has_memory;
438 int to_has_stack;
439 int to_has_registers;
440 int to_has_execution;
441 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
442 struct section_table
443 *to_sections;
444 struct section_table
445 *to_sections_end;
6426a772
JM
446 /* ASYNC target controls */
447 int (*to_can_async_p) (void);
448 int (*to_is_async_p) (void);
0d06e24b
JM
449 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
450 void *context);
ed9a39eb 451 int to_async_mask_value;
c5aa993b 452 int to_magic;
0d06e24b
JM
453 /* Need sub-structure for target machine related rather than comm related?
454 */
c5aa993b 455 };
c906108c
SS
456
457/* Magic number for checking ops size. If a struct doesn't end with this
458 number, somebody changed the declaration but didn't change all the
459 places that initialize one. */
460
461#define OPS_MAGIC 3840
462
463/* The ops structure for our "current" target process. This should
464 never be NULL. If there is no target, it points to the dummy_target. */
465
c5aa993b 466extern struct target_ops current_target;
c906108c
SS
467
468/* An item on the target stack. */
469
470struct target_stack_item
c5aa993b
JM
471 {
472 struct target_stack_item *next;
473 struct target_ops *target_ops;
474 };
c906108c
SS
475
476/* The target stack. */
477
478extern struct target_stack_item *target_stack;
479
480/* Define easy words for doing these operations on our current target. */
481
482#define target_shortname (current_target.to_shortname)
483#define target_longname (current_target.to_longname)
484
485/* The open routine takes the rest of the parameters from the command,
486 and (if successful) pushes a new target onto the stack.
487 Targets should supply this routine, if only to provide an error message. */
0d06e24b 488
c906108c 489#define target_open(name, from_tty) \
0d06e24b 490 (*current_target.to_open) (name, from_tty)
c906108c
SS
491
492/* Does whatever cleanup is required for a target that we are no longer
493 going to be calling. Argument says whether we are quitting gdb and
494 should not get hung in case of errors, or whether we want a clean
495 termination even if it takes a while. This routine is automatically
496 always called just before a routine is popped off the target stack.
497 Closing file descriptors and freeing memory are typical things it should
498 do. */
499
500#define target_close(quitting) \
0d06e24b 501 (*current_target.to_close) (quitting)
c906108c
SS
502
503/* Attaches to a process on the target side. Arguments are as passed
504 to the `attach' command by the user. This routine can be called
505 when the target is not on the target-stack, if the target_can_run
506 routine returns 1; in that case, it must push itself onto the stack.
507 Upon exit, the target should be ready for normal operations, and
508 should be ready to deliver the status of the process immediately
509 (without waiting) to an upcoming target_wait call. */
510
511#define target_attach(args, from_tty) \
0d06e24b 512 (*current_target.to_attach) (args, from_tty)
c906108c
SS
513
514/* The target_attach operation places a process under debugger control,
515 and stops the process.
516
517 This operation provides a target-specific hook that allows the
0d06e24b 518 necessary bookkeeping to be performed after an attach completes. */
c906108c 519#define target_post_attach(pid) \
0d06e24b 520 (*current_target.to_post_attach) (pid)
c906108c
SS
521
522/* Attaches to a process on the target side, if not already attached.
523 (If already attached, takes no action.)
524
525 This operation can be used to follow the child process of a fork.
526 On some targets, such child processes of an original inferior process
527 are automatically under debugger control, and thus do not require an
528 actual attach operation. */
529
530#define target_require_attach(args, from_tty) \
0d06e24b 531 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
532
533/* Takes a program previously attached to and detaches it.
534 The program may resume execution (some targets do, some don't) and will
535 no longer stop on signals, etc. We better not have left any breakpoints
536 in the program or it'll die when it hits one. ARGS is arguments
537 typed by the user (e.g. a signal to send the process). FROM_TTY
538 says whether to be verbose or not. */
539
a14ed312 540extern void target_detach (char *, int);
c906108c
SS
541
542/* Detaches from a process on the target side, if not already dettached.
543 (If already detached, takes no action.)
544
545 This operation can be used to follow the parent process of a fork.
546 On some targets, such child processes of an original inferior process
547 are automatically under debugger control, and thus do require an actual
548 detach operation.
549
550 PID is the process id of the child to detach from.
551 ARGS is arguments typed by the user (e.g. a signal to send the process).
552 FROM_TTY says whether to be verbose or not. */
553
0d06e24b
JM
554#define target_require_detach(pid, args, from_tty) \
555 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c
SS
556
557/* Resume execution of the target process PID. STEP says whether to
558 single-step or to run free; SIGGNAL is the signal to be given to
559 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
560 pass TARGET_SIGNAL_DEFAULT. */
561
562#define target_resume(pid, step, siggnal) \
0d06e24b 563 (*current_target.to_resume) (pid, step, siggnal)
c906108c
SS
564
565/* Wait for process pid to do something. Pid = -1 to wait for any pid
566 to do something. Return pid of child, or -1 in case of error;
567 store status through argument pointer STATUS. Note that it is
568 *not* OK to return_to_top_level out of target_wait without popping
569 the debugging target from the stack; GDB isn't prepared to get back
570 to the prompt with a debugging target but without the frame cache,
571 stop_pc, etc., set up. */
572
573#define target_wait(pid, status) \
0d06e24b 574 (*current_target.to_wait) (pid, status)
c906108c
SS
575
576/* The target_wait operation waits for a process event to occur, and
577 thereby stop the process.
578
579 On some targets, certain events may happen in sequences. gdb's
580 correct response to any single event of such a sequence may require
581 knowledge of what earlier events in the sequence have been seen.
582
583 This operation provides a target-specific hook that allows the
0d06e24b 584 necessary bookkeeping to be performed to track such sequences. */
c906108c
SS
585
586#define target_post_wait(pid, status) \
0d06e24b 587 (*current_target.to_post_wait) (pid, status)
c906108c
SS
588
589/* Fetch register REGNO, or all regs if regno == -1. No result. */
590
591#define target_fetch_registers(regno) \
0d06e24b 592 (*current_target.to_fetch_registers) (regno)
c906108c
SS
593
594/* Store at least register REGNO, or all regs if REGNO == -1.
595 It can store as many registers as it wants to, so target_prepare_to_store
596 must have been previously called. Calls error() if there are problems. */
597
598#define target_store_registers(regs) \
0d06e24b 599 (*current_target.to_store_registers) (regs)
c906108c
SS
600
601/* Get ready to modify the registers array. On machines which store
602 individual registers, this doesn't need to do anything. On machines
603 which store all the registers in one fell swoop, this makes sure
604 that REGISTERS contains all the registers from the program being
605 debugged. */
606
607#define target_prepare_to_store() \
0d06e24b 608 (*current_target.to_prepare_to_store) ()
c906108c 609
a14ed312 610extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 611
a14ed312 612extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
c906108c 613
a14ed312 614extern int target_write_memory (CORE_ADDR, char *, int);
c906108c 615
a14ed312 616extern int xfer_memory (CORE_ADDR, char *, int, int, struct target_ops *);
c906108c
SS
617
618extern int
a14ed312 619child_xfer_memory (CORE_ADDR, char *, int, int, struct target_ops *);
c906108c 620
917317f4
JM
621/* Make a single attempt at transfering LEN bytes. On a successful
622 transfer, the number of bytes actually transfered is returned and
623 ERR is set to 0. When a transfer fails, -1 is returned (the number
624 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 625 non-zero error indication. */
917317f4 626
ed9a39eb
JM
627extern int
628target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 629
ed9a39eb
JM
630extern int
631target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 632
a14ed312 633extern char *child_pid_to_exec_file (int);
c906108c 634
a14ed312 635extern char *child_core_file_to_sym_file (char *);
c906108c
SS
636
637#if defined(CHILD_POST_ATTACH)
a14ed312 638extern void child_post_attach (int);
c906108c
SS
639#endif
640
a14ed312 641extern void child_post_wait (int, int);
c906108c 642
a14ed312 643extern void child_post_startup_inferior (int);
c906108c 644
a14ed312 645extern void child_acknowledge_created_inferior (int);
c906108c 646
a14ed312 647extern void child_clone_and_follow_inferior (int, int *);
c906108c 648
a14ed312 649extern void child_post_follow_inferior_by_clone (void);
c906108c 650
a14ed312 651extern int child_insert_fork_catchpoint (int);
c906108c 652
a14ed312 653extern int child_remove_fork_catchpoint (int);
c906108c 654
a14ed312 655extern int child_insert_vfork_catchpoint (int);
c906108c 656
a14ed312 657extern int child_remove_vfork_catchpoint (int);
c906108c 658
a14ed312 659extern int child_has_forked (int, int *);
c906108c 660
a14ed312 661extern int child_has_vforked (int, int *);
c906108c 662
a14ed312 663extern void child_acknowledge_created_inferior (int);
c906108c 664
a14ed312 665extern int child_can_follow_vfork_prior_to_exec (void);
c906108c 666
a14ed312 667extern void child_post_follow_vfork (int, int, int, int);
c906108c 668
a14ed312 669extern int child_insert_exec_catchpoint (int);
c906108c 670
a14ed312 671extern int child_remove_exec_catchpoint (int);
c906108c 672
a14ed312 673extern int child_has_execd (int, char **);
c906108c 674
a14ed312 675extern int child_reported_exec_events_per_exec_call (void);
c906108c 676
a14ed312 677extern int child_has_syscall_event (int, enum target_waitkind *, int *);
c906108c 678
a14ed312 679extern int child_has_exited (int, int, int *);
c906108c 680
a14ed312 681extern int child_thread_alive (int);
c906108c
SS
682
683/* From exec.c */
684
a14ed312 685extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
686
687/* Print a line about the current target. */
688
689#define target_files_info() \
0d06e24b 690 (*current_target.to_files_info) (&current_target)
c906108c
SS
691
692/* Insert a breakpoint at address ADDR in the target machine.
693 SAVE is a pointer to memory allocated for saving the
694 target contents. It is guaranteed by the caller to be long enough
695 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
696 an errno value. */
697
698#define target_insert_breakpoint(addr, save) \
0d06e24b 699 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
700
701/* Remove a breakpoint at address ADDR in the target machine.
702 SAVE is a pointer to the same save area
703 that was previously passed to target_insert_breakpoint.
704 Result is 0 for success, or an errno value. */
705
706#define target_remove_breakpoint(addr, save) \
0d06e24b 707 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
708
709/* Initialize the terminal settings we record for the inferior,
710 before we actually run the inferior. */
711
712#define target_terminal_init() \
0d06e24b 713 (*current_target.to_terminal_init) ()
c906108c
SS
714
715/* Put the inferior's terminal settings into effect.
716 This is preparation for starting or resuming the inferior. */
717
718#define target_terminal_inferior() \
0d06e24b 719 (*current_target.to_terminal_inferior) ()
c906108c
SS
720
721/* Put some of our terminal settings into effect,
722 enough to get proper results from our output,
723 but do not change into or out of RAW mode
724 so that no input is discarded.
725
726 After doing this, either terminal_ours or terminal_inferior
727 should be called to get back to a normal state of affairs. */
728
729#define target_terminal_ours_for_output() \
0d06e24b 730 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
731
732/* Put our terminal settings into effect.
733 First record the inferior's terminal settings
734 so they can be restored properly later. */
735
736#define target_terminal_ours() \
0d06e24b 737 (*current_target.to_terminal_ours) ()
c906108c
SS
738
739/* Print useful information about our terminal status, if such a thing
740 exists. */
741
742#define target_terminal_info(arg, from_tty) \
0d06e24b 743 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
744
745/* Kill the inferior process. Make it go away. */
746
747#define target_kill() \
0d06e24b 748 (*current_target.to_kill) ()
c906108c 749
0d06e24b
JM
750/* Load an executable file into the target process. This is expected
751 to not only bring new code into the target process, but also to
752 update GDB's symbol tables to match. */
c906108c 753
11cf8741 754extern void target_load (char *arg, int from_tty);
c906108c
SS
755
756/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
757 name. ADDRP is a CORE_ADDR * pointing to where the value of the
758 symbol should be returned. The result is 0 if successful, nonzero
759 if the symbol does not exist in the target environment. This
760 function should not call error() if communication with the target
761 is interrupted, since it is called from symbol reading, but should
762 return nonzero, possibly doing a complain(). */
c906108c 763
0d06e24b
JM
764#define target_lookup_symbol(name, addrp) \
765 (*current_target.to_lookup_symbol) (name, addrp)
c906108c
SS
766
767/* Start an inferior process and set inferior_pid to its pid.
768 EXEC_FILE is the file to run.
769 ALLARGS is a string containing the arguments to the program.
770 ENV is the environment vector to pass. Errors reported with error().
771 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 772
c906108c 773#define target_create_inferior(exec_file, args, env) \
0d06e24b 774 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
775
776
777/* Some targets (such as ttrace-based HPUX) don't allow us to request
778 notification of inferior events such as fork and vork immediately
779 after the inferior is created. (This because of how gdb gets an
780 inferior created via invoking a shell to do it. In such a scenario,
781 if the shell init file has commands in it, the shell will fork and
782 exec for each of those commands, and we will see each such fork
783 event. Very bad.)
c5aa993b 784
0d06e24b
JM
785 Such targets will supply an appropriate definition for this function. */
786
c906108c 787#define target_post_startup_inferior(pid) \
0d06e24b 788 (*current_target.to_post_startup_inferior) (pid)
c906108c
SS
789
790/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
791 some synchronization between gdb and the new inferior process, PID. */
792
c906108c 793#define target_acknowledge_created_inferior(pid) \
0d06e24b 794 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
795
796/* An inferior process has been created via a fork() or similar
797 system call. This function will clone the debugger, then ensure
798 that CHILD_PID is attached to by that debugger.
799
800 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
801 and FALSE otherwise. (The original and clone debuggers can use this
802 to determine which they are, if need be.)
803
804 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
805 the two debuggers from competing for shell input.) */
806
c906108c 807#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 808 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
809
810/* This operation is intended to be used as the last in a sequence of
811 steps taken when following both parent and child of a fork. This
812 is used by a clone of the debugger, which will follow the child.
813
814 The original debugger has detached from this process, and the
815 clone has attached to it.
816
817 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
818 correctly. */
819
c906108c 820#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
821 (*current_target.to_post_follow_inferior_by_clone) ()
822
823/* On some targets, we can catch an inferior fork or vfork event when
824 it occurs. These functions insert/remove an already-created
825 catchpoint for such events. */
c906108c 826
c906108c 827#define target_insert_fork_catchpoint(pid) \
0d06e24b 828 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
829
830#define target_remove_fork_catchpoint(pid) \
0d06e24b 831 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
832
833#define target_insert_vfork_catchpoint(pid) \
0d06e24b 834 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
835
836#define target_remove_vfork_catchpoint(pid) \
0d06e24b 837 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
838
839/* Returns TRUE if PID has invoked the fork() system call. And,
840 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
841 inferior process that was created by that call. */
842
c906108c 843#define target_has_forked(pid,child_pid) \
0d06e24b
JM
844 (*current_target.to_has_forked) (pid,child_pid)
845
846/* Returns TRUE if PID has invoked the vfork() system call. And,
847 also sets CHILD_PID to the process id of the other ("child")
848 inferior process that was created by that call. */
c906108c 849
c906108c 850#define target_has_vforked(pid,child_pid) \
0d06e24b 851 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
852
853/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
854 anything to a vforked child before it subsequently calls exec().
855 On such platforms, we say that the debugger cannot "follow" the
856 child until it has vforked.
857
858 This function should be defined to return 1 by those targets
859 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
860 child, and 0 if they cannot. */
861
c906108c 862#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 863 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
864
865/* An inferior process has been created via a vfork() system call.
866 The debugger has followed the parent, the child, or both. The
867 process of setting up for that follow may have required some
868 target-specific trickery to track the sequence of reported events.
869 If so, this function should be defined by those targets that
870 require the debugger to perform cleanup or initialization after
0d06e24b
JM
871 the vfork follow. */
872
c906108c 873#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 874 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
875
876/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
877 occurs. These functions insert/remove an already-created
878 catchpoint for such events. */
879
c906108c 880#define target_insert_exec_catchpoint(pid) \
0d06e24b 881 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 882
c906108c 883#define target_remove_exec_catchpoint(pid) \
0d06e24b 884 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
885
886/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
887 And, also sets EXECD_PATHNAME to the pathname of the executable
888 file that was passed to exec(), and is now being executed. */
889
c906108c 890#define target_has_execd(pid,execd_pathname) \
0d06e24b 891 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
892
893/* Returns the number of exec events that are reported when a process
894 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
895 events are being reported. */
896
c906108c 897#define target_reported_exec_events_per_exec_call() \
0d06e24b 898 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
899
900/* Returns TRUE if PID has reported a syscall event. And, also sets
901 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
902 the unique integer ID of the syscall. */
903
c906108c 904#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 905 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
906
907/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
908 exit code of PID, if any. */
909
c906108c 910#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 911 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
912
913/* The debugger has completed a blocking wait() call. There is now
0d06e24b 914 some process event that must be processed. This function should
c906108c 915 be defined by those targets that require the debugger to perform
0d06e24b 916 cleanup or internal state changes in response to the process event. */
c906108c
SS
917
918/* The inferior process has died. Do what is right. */
919
920#define target_mourn_inferior() \
0d06e24b 921 (*current_target.to_mourn_inferior) ()
c906108c
SS
922
923/* Does target have enough data to do a run or attach command? */
924
925#define target_can_run(t) \
0d06e24b 926 ((t)->to_can_run) ()
c906108c
SS
927
928/* post process changes to signal handling in the inferior. */
929
930#define target_notice_signals(pid) \
0d06e24b 931 (*current_target.to_notice_signals) (pid)
c906108c
SS
932
933/* Check to see if a thread is still alive. */
934
935#define target_thread_alive(pid) \
0d06e24b 936 (*current_target.to_thread_alive) (pid)
c906108c 937
b83266a0
SS
938/* Query for new threads and add them to the thread list. */
939
940#define target_find_new_threads() \
0d06e24b 941 (*current_target.to_find_new_threads) (); \
b83266a0 942
0d06e24b
JM
943/* Make target stop in a continuable fashion. (For instance, under
944 Unix, this should act like SIGSTOP). This function is normally
945 used by GUIs to implement a stop button. */
c906108c
SS
946
947#define target_stop current_target.to_stop
948
949/* Queries the target side for some information. The first argument is a
950 letter specifying the type of the query, which is used to determine who
951 should process it. The second argument is a string that specifies which
952 information is desired and the third is a buffer that carries back the
953 response from the target side. The fourth parameter is the size of the
0d06e24b 954 output buffer supplied. */
c5aa993b 955
c906108c 956#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 957 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 958
96baa820
JM
959/* Send the specified COMMAND to the target's monitor
960 (shell,interpreter) for execution. The result of the query is
0d06e24b 961 placed in OUTBUF. */
96baa820
JM
962
963#define target_rcmd(command, outbuf) \
964 (*current_target.to_rcmd) (command, outbuf)
965
966
c906108c
SS
967/* Get the symbol information for a breakpointable routine called when
968 an exception event occurs.
969 Intended mainly for C++, and for those
970 platforms/implementations where such a callback mechanism is available,
971 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 972 different mechanisms for debugging exceptions. */
c906108c
SS
973
974#define target_enable_exception_callback(kind, enable) \
0d06e24b 975 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 976
0d06e24b 977/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 978
c906108c 979#define target_get_current_exception_event() \
0d06e24b 980 (*current_target.to_get_current_exception_event) ()
c906108c
SS
981
982/* Pointer to next target in the chain, e.g. a core file and an exec file. */
983
984#define target_next \
0d06e24b 985 (current_target.to_next)
c906108c
SS
986
987/* Does the target include all of memory, or only part of it? This
988 determines whether we look up the target chain for other parts of
989 memory if this target can't satisfy a request. */
990
991#define target_has_all_memory \
0d06e24b 992 (current_target.to_has_all_memory)
c906108c
SS
993
994/* Does the target include memory? (Dummy targets don't.) */
995
996#define target_has_memory \
0d06e24b 997 (current_target.to_has_memory)
c906108c
SS
998
999/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1000 we start a process.) */
c5aa993b 1001
c906108c 1002#define target_has_stack \
0d06e24b 1003 (current_target.to_has_stack)
c906108c
SS
1004
1005/* Does the target have registers? (Exec files don't.) */
1006
1007#define target_has_registers \
0d06e24b 1008 (current_target.to_has_registers)
c906108c
SS
1009
1010/* Does the target have execution? Can we make it jump (through
1011 hoops), or pop its stack a few times? FIXME: If this is to work that
1012 way, it needs to check whether an inferior actually exists.
1013 remote-udi.c and probably other targets can be the current target
1014 when the inferior doesn't actually exist at the moment. Right now
1015 this just tells us whether this target is *capable* of execution. */
1016
1017#define target_has_execution \
0d06e24b 1018 (current_target.to_has_execution)
c906108c
SS
1019
1020/* Can the target support the debugger control of thread execution?
1021 a) Can it lock the thread scheduler?
1022 b) Can it switch the currently running thread? */
1023
1024#define target_can_lock_scheduler \
0d06e24b 1025 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
1026
1027#define target_can_switch_threads \
0d06e24b 1028 (current_target.to_has_thread_control & tc_switch)
c906108c 1029
6426a772
JM
1030/* Can the target support asynchronous execution? */
1031#define target_can_async_p() (current_target.to_can_async_p ())
1032
1033/* Is the target in asynchronous execution mode? */
1034#define target_is_async_p() (current_target.to_is_async_p())
1035
1036/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
1037#define target_async(CALLBACK,CONTEXT) \
1038 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1039
ed9a39eb
JM
1040/* This is to be used ONLY within run_stack_dummy(). It
1041 provides a workaround, to have inferior function calls done in
1042 sychronous mode, even though the target is asynchronous. After
1043 target_async_mask(0) is called, calls to target_can_async_p() will
1044 return FALSE , so that target_resume() will not try to start the
1045 target asynchronously. After the inferior stops, we IMMEDIATELY
1046 restore the previous nature of the target, by calling
1047 target_async_mask(1). After that, target_can_async_p() will return
1048 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1049
1050 FIXME ezannoni 1999-12-13: we won't need this once we move
1051 the turning async on and off to the single execution commands,
0d06e24b 1052 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
1053
1054#define target_async_mask_value \
0d06e24b 1055 (current_target.to_async_mask_value)
ed9a39eb
JM
1056
1057extern int target_async_mask (int mask);
1058
a14ed312 1059extern void target_link (char *, CORE_ADDR *);
c906108c
SS
1060
1061/* Converts a process id to a string. Usually, the string just contains
1062 `process xyz', but on some systems it may contain
1063 `process xyz thread abc'. */
1064
ed9a39eb
JM
1065#undef target_pid_to_str
1066#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1067
1068#ifndef target_tid_to_str
1069#define target_tid_to_str(PID) \
0d06e24b 1070 target_pid_to_str (PID)
a14ed312 1071extern char *normal_pid_to_str (int pid);
c906108c 1072#endif
c5aa993b 1073
0d06e24b
JM
1074/* Return a short string describing extra information about PID,
1075 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1076 is okay. */
1077
1078#define target_extra_thread_info(TP) \
1079 (current_target.to_extra_thread_info (TP))
ed9a39eb 1080
11cf8741
JM
1081/*
1082 * New Objfile Event Hook:
1083 *
1084 * Sometimes a GDB component wants to get notified whenever a new
1085 * objfile is loaded. Mainly this is used by thread-debugging
1086 * implementations that need to know when symbols for the target
1087 * thread implemenation are available.
1088 *
1089 * The old way of doing this is to define a macro 'target_new_objfile'
1090 * that points to the function that you want to be called on every
1091 * objfile/shlib load.
1092 *
1093 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1094 * and point it to the function that you want to be called on every
1095 * objfile/shlib load.
1096 *
1097 * If multiple clients are willing to be cooperative, they can each
1098 * save a pointer to the previous value of target_new_objfile_hook
1099 * before modifying it, and arrange for their function to call the
1100 * previous function in the chain. In that way, multiple clients
1101 * can receive this notification (something like with signal handlers).
1102 */
c906108c 1103
11cf8741 1104extern void (*target_new_objfile_hook) PARAMS ((struct objfile *));
c906108c
SS
1105
1106#ifndef target_pid_or_tid_to_str
1107#define target_pid_or_tid_to_str(ID) \
0d06e24b 1108 target_pid_to_str (ID)
c906108c
SS
1109#endif
1110
1111/* Attempts to find the pathname of the executable file
1112 that was run to create a specified process.
1113
1114 The process PID must be stopped when this operation is used.
c5aa993b 1115
c906108c
SS
1116 If the executable file cannot be determined, NULL is returned.
1117
1118 Else, a pointer to a character string containing the pathname
1119 is returned. This string should be copied into a buffer by
1120 the client if the string will not be immediately used, or if
0d06e24b 1121 it must persist. */
c906108c
SS
1122
1123#define target_pid_to_exec_file(pid) \
0d06e24b 1124 (current_target.to_pid_to_exec_file) (pid)
c906108c 1125
0d06e24b 1126/* Hook to call target-dependant code after reading in a new symbol table. */
c906108c
SS
1127
1128#ifndef TARGET_SYMFILE_POSTREAD
1129#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1130#endif
1131
1132/* Hook to call target dependant code just after inferior target process has
1133 started. */
1134
1135#ifndef TARGET_CREATE_INFERIOR_HOOK
1136#define TARGET_CREATE_INFERIOR_HOOK(PID)
1137#endif
1138
1139/* Hardware watchpoint interfaces. */
1140
1141/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1142 write). */
1143
1144#ifndef STOPPED_BY_WATCHPOINT
1145#define STOPPED_BY_WATCHPOINT(w) 0
1146#endif
1147
1148/* HP-UX supplies these operations, which respectively disable and enable
1149 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1150 on that platform. See wait_for_inferior's use of these. */
1151
c906108c
SS
1152#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1153#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1154#endif
1155
1156#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1157#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1158#endif
1159
0d06e24b 1160/* Provide defaults for systems that don't support hardware watchpoints. */
c906108c
SS
1161
1162#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1163
1164/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1165 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1166 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1167 (including this one?). OTHERTYPE is who knows what... */
1168
1169#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1170
1171#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1172#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
0d06e24b 1173 (LONGEST)(byte_count) <= REGISTER_SIZE
c906108c
SS
1174#endif
1175
1176/* However, some addresses may not be profitable to use hardware to watch,
1177 or may be difficult to understand when the addressed object is out of
1178 scope, and hence should be unwatched. On some targets, this may have
1179 severe performance penalties, such that we might as well use regular
1180 watchpoints, and save (possibly precious) hardware watchpoints for other
0d06e24b
JM
1181 locations. */
1182
c906108c
SS
1183#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1184#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1185#endif
1186
1187
1188/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1189 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1190 success, non-zero for failure. */
1191
1192#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1193#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1194
1195#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1196
1197#ifndef target_insert_hw_breakpoint
1198#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1199#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1200#endif
1201
1202#ifndef target_stopped_data_address
1203#define target_stopped_data_address() 0
1204#endif
1205
1206/* If defined, then we need to decr pc by this much after a hardware break-
1207 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1208
1209#ifndef DECR_PC_AFTER_HW_BREAK
1210#define DECR_PC_AFTER_HW_BREAK 0
1211#endif
1212
1213/* Sometimes gdb may pick up what appears to be a valid target address
1214 from a minimal symbol, but the value really means, essentially,
1215 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1216 is run. Therefore, do not attempt to use this as a PC." */
1217
c906108c
SS
1218#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1219#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1220#endif
1221
1222/* This will only be defined by a target that supports catching vfork events,
1223 such as HP-UX.
1224
1225 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1226 child process after it has exec'd, causes the parent process to resume as
1227 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1228 define this to a function that prevents that from happening. */
c906108c
SS
1229#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1230#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1231#endif
1232
1233/* This will only be defined by a target that supports catching vfork events,
1234 such as HP-UX.
1235
1236 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1237 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1238 vfork event will be delivered to us. */
1239
c906108c
SS
1240#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1241#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1242#endif
1243
1244/* Routines for maintenance of the target structures...
1245
1246 add_target: Add a target to the list of all possible targets.
1247
1248 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1249 targets, within its particular stratum of the stack. Result
1250 is 0 if now atop the stack, nonzero if not on top (maybe
1251 should warn user).
c906108c
SS
1252
1253 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1254 no matter where it is on the list. Returns 0 if no
1255 change, 1 if removed from stack.
c906108c 1256
c5aa993b 1257 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1258
a14ed312 1259extern void add_target (struct target_ops *);
c906108c 1260
a14ed312 1261extern int push_target (struct target_ops *);
c906108c 1262
a14ed312 1263extern int unpush_target (struct target_ops *);
c906108c 1264
a14ed312 1265extern void target_preopen (int);
c906108c 1266
a14ed312 1267extern void pop_target (void);
c906108c
SS
1268
1269/* Struct section_table maps address ranges to file sections. It is
1270 mostly used with BFD files, but can be used without (e.g. for handling
1271 raw disks, or files not in formats handled by BFD). */
1272
c5aa993b
JM
1273struct section_table
1274 {
1275 CORE_ADDR addr; /* Lowest address in section */
1276 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1277
c5aa993b 1278 sec_ptr the_bfd_section;
c906108c 1279
c5aa993b
JM
1280 bfd *bfd; /* BFD file pointer */
1281 };
c906108c
SS
1282
1283/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1284 Returns 0 if OK, 1 on error. */
1285
1286extern int
a14ed312 1287build_section_table (bfd *, struct section_table **, struct section_table **);
c906108c
SS
1288
1289/* From mem-break.c */
1290
a14ed312 1291extern int memory_remove_breakpoint (CORE_ADDR, char *);
c906108c 1292
a14ed312 1293extern int memory_insert_breakpoint (CORE_ADDR, char *);
c906108c 1294
a14ed312 1295extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
917317f4 1296
a14ed312 1297extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
917317f4 1298
c906108c 1299extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
c906108c
SS
1300
1301
1302/* From target.c */
1303
a14ed312 1304extern void initialize_targets (void);
c906108c 1305
a14ed312 1306extern void noprocess (void);
c906108c 1307
a14ed312 1308extern void find_default_attach (char *, int);
c906108c 1309
a14ed312 1310extern void find_default_require_attach (char *, int);
c906108c 1311
a14ed312 1312extern void find_default_require_detach (int, char *, int);
c906108c 1313
a14ed312 1314extern void find_default_create_inferior (char *, char *, char **);
c906108c 1315
a14ed312 1316extern void find_default_clone_and_follow_inferior (int, int *);
c906108c 1317
a14ed312 1318extern struct target_ops *find_run_target (void);
7a292a7a 1319
a14ed312 1320extern struct target_ops *find_core_target (void);
6426a772 1321
a14ed312 1322extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb
JM
1323
1324extern int
a14ed312 1325target_resize_to_sections (struct target_ops *target, int num_added);
07cd4b97
JB
1326
1327extern void remove_target_sections (bfd *abfd);
1328
c906108c
SS
1329\f
1330/* Stuff that should be shared among the various remote targets. */
1331
1332/* Debugging level. 0 is off, and non-zero values mean to print some debug
1333 information (higher values, more information). */
1334extern int remote_debug;
1335
1336/* Speed in bits per second, or -1 which means don't mess with the speed. */
1337extern int baud_rate;
1338/* Timeout limit for response from target. */
1339extern int remote_timeout;
1340
c906108c
SS
1341\f
1342/* Functions for helping to write a native target. */
1343
1344/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1345extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1346
c2d11a7d 1347/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1348 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1349/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1350 to the shorter target_signal_p() because it is far less ambigious.
1351 In this context ``target_signal'' refers to GDB's internal
1352 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1353 refers to the target operating system's signal. Confused? */
1354
c2d11a7d
JM
1355extern int target_signal_to_host_p (enum target_signal signo);
1356
1357/* Convert between host signal numbers and enum target_signal's.
1358 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1359 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1360/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1361 refering to the target operating system's signal numbering.
1362 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1363 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1364 internal representation of a target operating system's signal. */
1365
a14ed312
KB
1366extern enum target_signal target_signal_from_host (int);
1367extern int target_signal_to_host (enum target_signal);
c906108c
SS
1368
1369/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1370extern enum target_signal target_signal_from_command (int);
c906108c
SS
1371
1372/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1373extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1374\f
1375/* Imported from machine dependent code */
1376
1377#ifndef SOFTWARE_SINGLE_STEP_P
1378#define SOFTWARE_SINGLE_STEP_P 0
0d06e24b
JM
1379#define SOFTWARE_SINGLE_STEP(sig,bp_p) \
1380 (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
c906108c
SS
1381#endif /* SOFTWARE_SINGLE_STEP_P */
1382
1383/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1384void target_ignore (void);
c906108c
SS
1385
1386/* Macro for getting target's idea of a frame pointer.
1387 FIXME: GDB's whole scheme for dealing with "frames" and
1388 "frame pointers" needs a serious shakedown. */
1389#ifndef TARGET_VIRTUAL_FRAME_POINTER
1390#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1391 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1392#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1393
c5aa993b 1394#endif /* !defined (TARGET_H) */
This page took 0.148009 seconds and 4 git commands to generate.