* target.c (update_current_target): Inherit to_log_command.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
c5aa993b 67 };
c906108c 68
c5aa993b
JM
69enum thread_control_capabilities
70 {
0d06e24b
JM
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 74 };
c906108c
SS
75
76/* Stuff for target_wait. */
77
78/* Generally, what has the program done? */
c5aa993b
JM
79enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
c906108c 83
0d06e24b
JM
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
c5aa993b 86 TARGET_WAITKIND_STOPPED,
c906108c 87
c5aa993b
JM
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
c906108c 91
c5aa993b
JM
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
c906108c 95
0d06e24b
JM
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
c5aa993b 100 TARGET_WAITKIND_FORKED,
c906108c 101
0d06e24b
JM
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
c5aa993b 105 TARGET_WAITKIND_VFORKED,
c906108c 106
0d06e24b
JM
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
c5aa993b 110 TARGET_WAITKIND_EXECD,
c906108c 111
0d06e24b
JM
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
c5aa993b
JM
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 118
c5aa993b
JM
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
c4093a6a
JM
122 TARGET_WAITKIND_SPURIOUS,
123
8e7d2c16
DJ
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
c4093a6a
JM
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
0d06e24b 132 like for instance the user typing. */
c4093a6a 133 TARGET_WAITKIND_IGNORE
c906108c
SS
134 };
135
c5aa993b
JM
136struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
c906108c 151
2acceee2 152/* Possible types of events that the inferior handler will have to
0d06e24b 153 deal with. */
2acceee2
JM
154enum inferior_event_type
155 {
0d06e24b 156 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
0d06e24b 159 being called. */
2146d243 160 INF_REG_EVENT,
0d06e24b 161 /* Deal with an error on the inferior. */
2acceee2 162 INF_ERROR,
0d06e24b 163 /* We are called because a timer went off. */
2acceee2 164 INF_TIMER,
0d06e24b 165 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
0d06e24b 170 'step n' like commands. */
c2d11a7d 171 INF_EXEC_CONTINUE
2acceee2
JM
172 };
173
c906108c 174/* Return the string for a signal. */
a14ed312 175extern char *target_signal_to_string (enum target_signal);
c906108c
SS
176
177/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 178extern char *target_signal_to_name (enum target_signal);
c906108c
SS
179
180/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 181enum target_signal target_signal_from_name (char *);
c906108c 182\f
13547ab6
DJ
183/* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
1e3ff5ad
AC
185
186enum target_object
187{
1e3ff5ad
AC
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
23d964e7
UW
190 /* SPU target specific transfer. See "spu-tdep.c". */
191 TARGET_OBJECT_SPU,
1e3ff5ad 192 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 193 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
194 /* Memory, avoiding GDB's data cache and trusting the executable.
195 Target implementations of to_xfer_partial never need to handle
196 this object, and most callers should not use it. */
197 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
198 /* Kernel Unwind Table. See "ia64-tdep.c". */
199 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
200 /* Transfer auxilliary vector. */
201 TARGET_OBJECT_AUXV,
baf92889 202 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
203 TARGET_OBJECT_WCOOKIE,
204 /* Target memory map in XML format. */
205 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
206 /* Flash memory. This object can be used to write contents to
207 a previously erased flash memory. Using it without erasing
208 flash can have unexpected results. Addresses are physical
209 address on target, and not relative to flash start. */
23181151
DJ
210 TARGET_OBJECT_FLASH,
211 /* Available target-specific features, e.g. registers and coprocessors.
212 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
213 TARGET_OBJECT_AVAILABLE_FEATURES,
214 /* Currently loaded libraries, in XML format. */
215 TARGET_OBJECT_LIBRARIES
2146d243 216 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
217};
218
13547ab6
DJ
219/* Request that OPS transfer up to LEN 8-bit bytes of the target's
220 OBJECT. The OFFSET, for a seekable object, specifies the
221 starting point. The ANNEX can be used to provide additional
222 data-specific information to the target.
1e3ff5ad 223
13547ab6
DJ
224 Return the number of bytes actually transfered, or -1 if the
225 transfer is not supported or otherwise fails. Return of a positive
226 value less than LEN indicates that no further transfer is possible.
227 Unlike the raw to_xfer_partial interface, callers of these
228 functions do not need to retry partial transfers. */
1e3ff5ad 229
1e3ff5ad
AC
230extern LONGEST target_read (struct target_ops *ops,
231 enum target_object object,
1b0ba102 232 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
233 ULONGEST offset, LONGEST len);
234
235extern LONGEST target_write (struct target_ops *ops,
236 enum target_object object,
1b0ba102 237 const char *annex, const gdb_byte *buf,
1e3ff5ad 238 ULONGEST offset, LONGEST len);
b6591e8b 239
a76d924d
DJ
240/* Similar to target_write, except that it also calls PROGRESS with
241 the number of bytes written and the opaque BATON after every
242 successful partial write (and before the first write). This is
243 useful for progress reporting and user interaction while writing
244 data. To abort the transfer, the progress callback can throw an
245 exception. */
246
cf7a04e8
DJ
247LONGEST target_write_with_progress (struct target_ops *ops,
248 enum target_object object,
249 const char *annex, const gdb_byte *buf,
250 ULONGEST offset, LONGEST len,
251 void (*progress) (ULONGEST, void *),
252 void *baton);
253
13547ab6
DJ
254/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
255 be read using OPS. The return value will be -1 if the transfer
256 fails or is not supported; 0 if the object is empty; or the length
257 of the object otherwise. If a positive value is returned, a
258 sufficiently large buffer will be allocated using xmalloc and
259 returned in *BUF_P containing the contents of the object.
260
261 This method should be used for objects sufficiently small to store
262 in a single xmalloc'd buffer, when no fixed bound on the object's
263 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
264 through this function. */
265
266extern LONGEST target_read_alloc (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, gdb_byte **buf_p);
269
159f81f3
DJ
270/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
271 returned as a string, allocated using xmalloc. If an error occurs
272 or the transfer is unsupported, NULL is returned. Empty objects
273 are returned as allocated but empty strings. A warning is issued
274 if the result contains any embedded NUL bytes. */
275
276extern char *target_read_stralloc (struct target_ops *ops,
277 enum target_object object,
278 const char *annex);
279
b6591e8b
AC
280/* Wrappers to target read/write that perform memory transfers. They
281 throw an error if the memory transfer fails.
282
283 NOTE: cagney/2003-10-23: The naming schema is lifted from
284 "frame.h". The parameter order is lifted from get_frame_memory,
285 which in turn lifted it from read_memory. */
286
287extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 288 gdb_byte *buf, LONGEST len);
b6591e8b
AC
289extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
290 CORE_ADDR addr, int len);
1e3ff5ad 291\f
c5aa993b 292
c906108c
SS
293/* If certain kinds of activity happen, target_wait should perform
294 callbacks. */
295/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 296 on TARGET_ACTIVITY_FD. */
c906108c
SS
297extern int target_activity_fd;
298/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 299extern int (*target_activity_function) (void);
c906108c 300\f
0d06e24b
JM
301struct thread_info; /* fwd decl for parameter list below: */
302
c906108c 303struct target_ops
c5aa993b 304 {
258b763a 305 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
306 char *to_shortname; /* Name this target type */
307 char *to_longname; /* Name for printing */
308 char *to_doc; /* Documentation. Does not include trailing
c906108c 309 newline, and starts with a one-line descrip-
0d06e24b 310 tion (probably similar to to_longname). */
bba2d28d
AC
311 /* Per-target scratch pad. */
312 void *to_data;
f1c07ab0
AC
313 /* The open routine takes the rest of the parameters from the
314 command, and (if successful) pushes a new target onto the
315 stack. Targets should supply this routine, if only to provide
316 an error message. */
507f3c78 317 void (*to_open) (char *, int);
f1c07ab0
AC
318 /* Old targets with a static target vector provide "to_close".
319 New re-entrant targets provide "to_xclose" and that is expected
320 to xfree everything (including the "struct target_ops"). */
321 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
322 void (*to_close) (int);
323 void (*to_attach) (char *, int);
324 void (*to_post_attach) (int);
507f3c78 325 void (*to_detach) (char *, int);
597320e7 326 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
327 void (*to_resume) (ptid_t, int, enum target_signal);
328 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
56be3814
UW
329 void (*to_fetch_registers) (struct regcache *, int);
330 void (*to_store_registers) (struct regcache *, int);
316f2060 331 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
332
333 /* Transfer LEN bytes of memory between GDB address MYADDR and
334 target address MEMADDR. If WRITE, transfer them to the target, else
335 transfer them from the target. TARGET is the target from which we
336 get this function.
337
338 Return value, N, is one of the following:
339
340 0 means that we can't handle this. If errno has been set, it is the
341 error which prevented us from doing it (FIXME: What about bfd_error?).
342
343 positive (call it N) means that we have transferred N bytes
344 starting at MEMADDR. We might be able to handle more bytes
345 beyond this length, but no promises.
346
347 negative (call its absolute value N) means that we cannot
348 transfer right at MEMADDR, but we could transfer at least
c8e73a31 349 something at MEMADDR + N.
c5aa993b 350
c8e73a31
AC
351 NOTE: cagney/2004-10-01: This has been entirely superseeded by
352 to_xfer_partial and inferior inheritance. */
353
1b0ba102 354 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
355 int len, int write,
356 struct mem_attrib *attrib,
357 struct target_ops *target);
c906108c 358
507f3c78 359 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
360 int (*to_insert_breakpoint) (struct bp_target_info *);
361 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 362 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
363 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
364 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
365 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
366 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
367 int (*to_stopped_by_watchpoint) (void);
74174d2e 368 int to_have_steppable_watchpoint;
7df1a324 369 int to_have_continuable_watchpoint;
4aa7a7f5 370 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 371 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
372 void (*to_terminal_init) (void);
373 void (*to_terminal_inferior) (void);
374 void (*to_terminal_ours_for_output) (void);
375 void (*to_terminal_ours) (void);
a790ad35 376 void (*to_terminal_save_ours) (void);
507f3c78
KB
377 void (*to_terminal_info) (char *, int);
378 void (*to_kill) (void);
379 void (*to_load) (char *, int);
380 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 381 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 382 void (*to_post_startup_inferior) (ptid_t);
507f3c78 383 void (*to_acknowledge_created_inferior) (int);
fa113d1a 384 void (*to_insert_fork_catchpoint) (int);
507f3c78 385 int (*to_remove_fork_catchpoint) (int);
fa113d1a 386 void (*to_insert_vfork_catchpoint) (int);
507f3c78 387 int (*to_remove_vfork_catchpoint) (int);
ee057212 388 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 389 void (*to_insert_exec_catchpoint) (int);
507f3c78 390 int (*to_remove_exec_catchpoint) (int);
507f3c78 391 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
392 int (*to_has_exited) (int, int, int *);
393 void (*to_mourn_inferior) (void);
394 int (*to_can_run) (void);
39f77062
KB
395 void (*to_notice_signals) (ptid_t ptid);
396 int (*to_thread_alive) (ptid_t ptid);
507f3c78 397 void (*to_find_new_threads) (void);
39f77062 398 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
399 char *(*to_extra_thread_info) (struct thread_info *);
400 void (*to_stop) (void);
d9fcf2fb 401 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
402 struct symtab_and_line *(*to_enable_exception_callback) (enum
403 exception_event_kind,
404 int);
405 struct exception_event_record *(*to_get_current_exception_event) (void);
406 char *(*to_pid_to_exec_file) (int pid);
49d03eab 407 void (*to_log_command) (const char *);
c5aa993b 408 enum strata to_stratum;
c5aa993b
JM
409 int to_has_all_memory;
410 int to_has_memory;
411 int to_has_stack;
412 int to_has_registers;
413 int to_has_execution;
414 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
415 struct section_table
416 *to_sections;
417 struct section_table
418 *to_sections_end;
6426a772
JM
419 /* ASYNC target controls */
420 int (*to_can_async_p) (void);
421 int (*to_is_async_p) (void);
0d06e24b
JM
422 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
423 void *context);
ed9a39eb 424 int to_async_mask_value;
2146d243
RM
425 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
426 unsigned long,
427 int, int, int,
428 void *),
be4d1333
MS
429 void *);
430 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
431
432 /* Return the thread-local address at OFFSET in the
433 thread-local storage for the thread PTID and the shared library
434 or executable file given by OBJFILE. If that block of
435 thread-local storage hasn't been allocated yet, this function
436 may return an error. */
437 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 438 CORE_ADDR load_module_addr,
3f47be5c
EZ
439 CORE_ADDR offset);
440
13547ab6
DJ
441 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
442 OBJECT. The OFFSET, for a seekable object, specifies the
443 starting point. The ANNEX can be used to provide additional
444 data-specific information to the target.
445
446 Return the number of bytes actually transfered, zero when no
447 further transfer is possible, and -1 when the transfer is not
448 supported. Return of a positive value smaller than LEN does
449 not indicate the end of the object, only the end of the
450 transfer; higher level code should continue transferring if
451 desired. This is handled in target.c.
452
453 The interface does not support a "retry" mechanism. Instead it
454 assumes that at least one byte will be transfered on each
455 successful call.
456
457 NOTE: cagney/2003-10-17: The current interface can lead to
458 fragmented transfers. Lower target levels should not implement
459 hacks, such as enlarging the transfer, in an attempt to
460 compensate for this. Instead, the target stack should be
461 extended so that it implements supply/collect methods and a
462 look-aside object cache. With that available, the lowest
463 target can safely and freely "push" data up the stack.
464
465 See target_read and target_write for more information. One,
466 and only one, of readbuf or writebuf must be non-NULL. */
467
4b8a223f 468 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 469 enum target_object object, const char *annex,
1b0ba102 470 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 471 ULONGEST offset, LONGEST len);
1e3ff5ad 472
fd79ecee
DJ
473 /* Returns the memory map for the target. A return value of NULL
474 means that no memory map is available. If a memory address
475 does not fall within any returned regions, it's assumed to be
476 RAM. The returned memory regions should not overlap.
477
478 The order of regions does not matter; target_memory_map will
479 sort regions by starting address. For that reason, this
480 function should not be called directly except via
481 target_memory_map.
482
483 This method should not cache data; if the memory map could
484 change unexpectedly, it should be invalidated, and higher
485 layers will re-fetch it. */
486 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
487
a76d924d
DJ
488 /* Erases the region of flash memory starting at ADDRESS, of
489 length LENGTH.
490
491 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
492 on flash block boundaries, as reported by 'to_memory_map'. */
493 void (*to_flash_erase) (struct target_ops *,
494 ULONGEST address, LONGEST length);
495
496 /* Finishes a flash memory write sequence. After this operation
497 all flash memory should be available for writing and the result
498 of reading from areas written by 'to_flash_write' should be
499 equal to what was written. */
500 void (*to_flash_done) (struct target_ops *);
501
424163ea
DJ
502 /* Describe the architecture-specific features of this target.
503 Returns the description found, or NULL if no description
504 was available. */
505 const struct target_desc *(*to_read_description) (struct target_ops *ops);
506
c5aa993b 507 int to_magic;
0d06e24b
JM
508 /* Need sub-structure for target machine related rather than comm related?
509 */
c5aa993b 510 };
c906108c
SS
511
512/* Magic number for checking ops size. If a struct doesn't end with this
513 number, somebody changed the declaration but didn't change all the
514 places that initialize one. */
515
516#define OPS_MAGIC 3840
517
518/* The ops structure for our "current" target process. This should
519 never be NULL. If there is no target, it points to the dummy_target. */
520
c5aa993b 521extern struct target_ops current_target;
c906108c 522
c906108c
SS
523/* Define easy words for doing these operations on our current target. */
524
525#define target_shortname (current_target.to_shortname)
526#define target_longname (current_target.to_longname)
527
f1c07ab0
AC
528/* Does whatever cleanup is required for a target that we are no
529 longer going to be calling. QUITTING indicates that GDB is exiting
530 and should not get hung on an error (otherwise it is important to
531 perform clean termination, even if it takes a while). This routine
532 is automatically always called when popping the target off the
533 target stack (to_beneath is undefined). Closing file descriptors
534 and freeing all memory allocated memory are typical things it
535 should do. */
536
537void target_close (struct target_ops *targ, int quitting);
c906108c
SS
538
539/* Attaches to a process on the target side. Arguments are as passed
540 to the `attach' command by the user. This routine can be called
541 when the target is not on the target-stack, if the target_can_run
2146d243 542 routine returns 1; in that case, it must push itself onto the stack.
c906108c 543 Upon exit, the target should be ready for normal operations, and
2146d243 544 should be ready to deliver the status of the process immediately
c906108c
SS
545 (without waiting) to an upcoming target_wait call. */
546
547#define target_attach(args, from_tty) \
0d06e24b 548 (*current_target.to_attach) (args, from_tty)
c906108c
SS
549
550/* The target_attach operation places a process under debugger control,
551 and stops the process.
552
553 This operation provides a target-specific hook that allows the
0d06e24b 554 necessary bookkeeping to be performed after an attach completes. */
c906108c 555#define target_post_attach(pid) \
0d06e24b 556 (*current_target.to_post_attach) (pid)
c906108c 557
c906108c
SS
558/* Takes a program previously attached to and detaches it.
559 The program may resume execution (some targets do, some don't) and will
560 no longer stop on signals, etc. We better not have left any breakpoints
561 in the program or it'll die when it hits one. ARGS is arguments
562 typed by the user (e.g. a signal to send the process). FROM_TTY
563 says whether to be verbose or not. */
564
a14ed312 565extern void target_detach (char *, int);
c906108c 566
6ad8ae5c
DJ
567/* Disconnect from the current target without resuming it (leaving it
568 waiting for a debugger). */
569
570extern void target_disconnect (char *, int);
571
39f77062 572/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
573 single-step or to run free; SIGGNAL is the signal to be given to
574 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
575 pass TARGET_SIGNAL_DEFAULT. */
576
39f77062 577#define target_resume(ptid, step, siggnal) \
4930751a
C
578 do { \
579 dcache_invalidate(target_dcache); \
39f77062 580 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 581 } while (0)
c906108c 582
b5a2688f
AC
583/* Wait for process pid to do something. PTID = -1 to wait for any
584 pid to do something. Return pid of child, or -1 in case of error;
c906108c 585 store status through argument pointer STATUS. Note that it is
b5a2688f 586 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
587 the debugging target from the stack; GDB isn't prepared to get back
588 to the prompt with a debugging target but without the frame cache,
589 stop_pc, etc., set up. */
590
39f77062
KB
591#define target_wait(ptid, status) \
592 (*current_target.to_wait) (ptid, status)
c906108c 593
17dee195 594/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 595
56be3814
UW
596#define target_fetch_registers(regcache, regno) \
597 (*current_target.to_fetch_registers) (regcache, regno)
c906108c
SS
598
599/* Store at least register REGNO, or all regs if REGNO == -1.
600 It can store as many registers as it wants to, so target_prepare_to_store
601 must have been previously called. Calls error() if there are problems. */
602
56be3814
UW
603#define target_store_registers(regcache, regs) \
604 (*current_target.to_store_registers) (regcache, regs)
c906108c
SS
605
606/* Get ready to modify the registers array. On machines which store
607 individual registers, this doesn't need to do anything. On machines
608 which store all the registers in one fell swoop, this makes sure
609 that REGISTERS contains all the registers from the program being
610 debugged. */
611
316f2060
UW
612#define target_prepare_to_store(regcache) \
613 (*current_target.to_prepare_to_store) (regcache)
c906108c 614
4930751a
C
615extern DCACHE *target_dcache;
616
a14ed312 617extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 618
fc1a4b47 619extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 620
fc1a4b47 621extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 622 int len);
c906108c 623
1b0ba102 624extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 625 struct mem_attrib *, struct target_ops *);
c906108c 626
fd79ecee
DJ
627/* Fetches the target's memory map. If one is found it is sorted
628 and returned, after some consistency checking. Otherwise, NULL
629 is returned. */
630VEC(mem_region_s) *target_memory_map (void);
631
a76d924d
DJ
632/* Erase the specified flash region. */
633void target_flash_erase (ULONGEST address, LONGEST length);
634
635/* Finish a sequence of flash operations. */
636void target_flash_done (void);
637
638/* Describes a request for a memory write operation. */
639struct memory_write_request
640 {
641 /* Begining address that must be written. */
642 ULONGEST begin;
643 /* Past-the-end address. */
644 ULONGEST end;
645 /* The data to write. */
646 gdb_byte *data;
647 /* A callback baton for progress reporting for this request. */
648 void *baton;
649 };
650typedef struct memory_write_request memory_write_request_s;
651DEF_VEC_O(memory_write_request_s);
652
653/* Enumeration specifying different flash preservation behaviour. */
654enum flash_preserve_mode
655 {
656 flash_preserve,
657 flash_discard
658 };
659
660/* Write several memory blocks at once. This version can be more
661 efficient than making several calls to target_write_memory, in
662 particular because it can optimize accesses to flash memory.
663
664 Moreover, this is currently the only memory access function in gdb
665 that supports writing to flash memory, and it should be used for
666 all cases where access to flash memory is desirable.
667
668 REQUESTS is the vector (see vec.h) of memory_write_request.
669 PRESERVE_FLASH_P indicates what to do with blocks which must be
670 erased, but not completely rewritten.
671 PROGRESS_CB is a function that will be periodically called to provide
672 feedback to user. It will be called with the baton corresponding
673 to the request currently being written. It may also be called
674 with a NULL baton, when preserved flash sectors are being rewritten.
675
676 The function returns 0 on success, and error otherwise. */
677int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
678 enum flash_preserve_mode preserve_flash_p,
679 void (*progress_cb) (ULONGEST, void *));
680
47932f85
DJ
681/* From infrun.c. */
682
683extern int inferior_has_forked (int pid, int *child_pid);
684
685extern int inferior_has_vforked (int pid, int *child_pid);
686
687extern int inferior_has_execd (int pid, char **execd_pathname);
688
c906108c
SS
689/* From exec.c */
690
a14ed312 691extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
692
693/* Print a line about the current target. */
694
695#define target_files_info() \
0d06e24b 696 (*current_target.to_files_info) (&current_target)
c906108c 697
8181d85f
DJ
698/* Insert a breakpoint at address BP_TGT->placed_address in the target
699 machine. Result is 0 for success, or an errno value. */
c906108c 700
8181d85f
DJ
701#define target_insert_breakpoint(bp_tgt) \
702 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 703
8181d85f
DJ
704/* Remove a breakpoint at address BP_TGT->placed_address in the target
705 machine. Result is 0 for success, or an errno value. */
c906108c 706
8181d85f
DJ
707#define target_remove_breakpoint(bp_tgt) \
708 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
709
710/* Initialize the terminal settings we record for the inferior,
711 before we actually run the inferior. */
712
713#define target_terminal_init() \
0d06e24b 714 (*current_target.to_terminal_init) ()
c906108c
SS
715
716/* Put the inferior's terminal settings into effect.
717 This is preparation for starting or resuming the inferior. */
718
719#define target_terminal_inferior() \
0d06e24b 720 (*current_target.to_terminal_inferior) ()
c906108c
SS
721
722/* Put some of our terminal settings into effect,
723 enough to get proper results from our output,
724 but do not change into or out of RAW mode
725 so that no input is discarded.
726
727 After doing this, either terminal_ours or terminal_inferior
728 should be called to get back to a normal state of affairs. */
729
730#define target_terminal_ours_for_output() \
0d06e24b 731 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
732
733/* Put our terminal settings into effect.
734 First record the inferior's terminal settings
735 so they can be restored properly later. */
736
737#define target_terminal_ours() \
0d06e24b 738 (*current_target.to_terminal_ours) ()
c906108c 739
a790ad35
SC
740/* Save our terminal settings.
741 This is called from TUI after entering or leaving the curses
742 mode. Since curses modifies our terminal this call is here
743 to take this change into account. */
744
745#define target_terminal_save_ours() \
746 (*current_target.to_terminal_save_ours) ()
747
c906108c
SS
748/* Print useful information about our terminal status, if such a thing
749 exists. */
750
751#define target_terminal_info(arg, from_tty) \
0d06e24b 752 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
753
754/* Kill the inferior process. Make it go away. */
755
756#define target_kill() \
0d06e24b 757 (*current_target.to_kill) ()
c906108c 758
0d06e24b
JM
759/* Load an executable file into the target process. This is expected
760 to not only bring new code into the target process, but also to
1986bccd
AS
761 update GDB's symbol tables to match.
762
763 ARG contains command-line arguments, to be broken down with
764 buildargv (). The first non-switch argument is the filename to
765 load, FILE; the second is a number (as parsed by strtoul (..., ...,
766 0)), which is an offset to apply to the load addresses of FILE's
767 sections. The target may define switches, or other non-switch
768 arguments, as it pleases. */
c906108c 769
11cf8741 770extern void target_load (char *arg, int from_tty);
c906108c
SS
771
772/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
773 name. ADDRP is a CORE_ADDR * pointing to where the value of the
774 symbol should be returned. The result is 0 if successful, nonzero
775 if the symbol does not exist in the target environment. This
776 function should not call error() if communication with the target
777 is interrupted, since it is called from symbol reading, but should
778 return nonzero, possibly doing a complain(). */
c906108c 779
0d06e24b
JM
780#define target_lookup_symbol(name, addrp) \
781 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 782
39f77062 783/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
784 EXEC_FILE is the file to run.
785 ALLARGS is a string containing the arguments to the program.
786 ENV is the environment vector to pass. Errors reported with error().
787 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 788
c27cda74
AC
789#define target_create_inferior(exec_file, args, env, FROM_TTY) \
790 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
791
792
793/* Some targets (such as ttrace-based HPUX) don't allow us to request
794 notification of inferior events such as fork and vork immediately
795 after the inferior is created. (This because of how gdb gets an
796 inferior created via invoking a shell to do it. In such a scenario,
797 if the shell init file has commands in it, the shell will fork and
798 exec for each of those commands, and we will see each such fork
799 event. Very bad.)
c5aa993b 800
0d06e24b
JM
801 Such targets will supply an appropriate definition for this function. */
802
39f77062
KB
803#define target_post_startup_inferior(ptid) \
804 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
805
806/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
807 some synchronization between gdb and the new inferior process, PID. */
808
c906108c 809#define target_acknowledge_created_inferior(pid) \
0d06e24b 810 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 811
0d06e24b
JM
812/* On some targets, we can catch an inferior fork or vfork event when
813 it occurs. These functions insert/remove an already-created
814 catchpoint for such events. */
c906108c 815
c906108c 816#define target_insert_fork_catchpoint(pid) \
0d06e24b 817 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
818
819#define target_remove_fork_catchpoint(pid) \
0d06e24b 820 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
821
822#define target_insert_vfork_catchpoint(pid) \
0d06e24b 823 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
824
825#define target_remove_vfork_catchpoint(pid) \
0d06e24b 826 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 827
6604731b
DJ
828/* If the inferior forks or vforks, this function will be called at
829 the next resume in order to perform any bookkeeping and fiddling
830 necessary to continue debugging either the parent or child, as
831 requested, and releasing the other. Information about the fork
832 or vfork event is available via get_last_target_status ().
833 This function returns 1 if the inferior should not be resumed
834 (i.e. there is another event pending). */
0d06e24b 835
ee057212 836int target_follow_fork (int follow_child);
c906108c
SS
837
838/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
839 occurs. These functions insert/remove an already-created
840 catchpoint for such events. */
841
c906108c 842#define target_insert_exec_catchpoint(pid) \
0d06e24b 843 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 844
c906108c 845#define target_remove_exec_catchpoint(pid) \
0d06e24b 846 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 847
c906108c
SS
848/* Returns the number of exec events that are reported when a process
849 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
850 events are being reported. */
851
c906108c 852#define target_reported_exec_events_per_exec_call() \
0d06e24b 853 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 854
c906108c 855/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
856 exit code of PID, if any. */
857
c906108c 858#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 859 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
860
861/* The debugger has completed a blocking wait() call. There is now
2146d243 862 some process event that must be processed. This function should
c906108c 863 be defined by those targets that require the debugger to perform
0d06e24b 864 cleanup or internal state changes in response to the process event. */
c906108c
SS
865
866/* The inferior process has died. Do what is right. */
867
868#define target_mourn_inferior() \
0d06e24b 869 (*current_target.to_mourn_inferior) ()
c906108c
SS
870
871/* Does target have enough data to do a run or attach command? */
872
873#define target_can_run(t) \
0d06e24b 874 ((t)->to_can_run) ()
c906108c
SS
875
876/* post process changes to signal handling in the inferior. */
877
39f77062
KB
878#define target_notice_signals(ptid) \
879 (*current_target.to_notice_signals) (ptid)
c906108c
SS
880
881/* Check to see if a thread is still alive. */
882
39f77062
KB
883#define target_thread_alive(ptid) \
884 (*current_target.to_thread_alive) (ptid)
c906108c 885
b83266a0
SS
886/* Query for new threads and add them to the thread list. */
887
888#define target_find_new_threads() \
4becf47c 889 (*current_target.to_find_new_threads) ()
b83266a0 890
0d06e24b
JM
891/* Make target stop in a continuable fashion. (For instance, under
892 Unix, this should act like SIGSTOP). This function is normally
893 used by GUIs to implement a stop button. */
c906108c
SS
894
895#define target_stop current_target.to_stop
896
96baa820
JM
897/* Send the specified COMMAND to the target's monitor
898 (shell,interpreter) for execution. The result of the query is
0d06e24b 899 placed in OUTBUF. */
96baa820
JM
900
901#define target_rcmd(command, outbuf) \
902 (*current_target.to_rcmd) (command, outbuf)
903
904
c906108c 905/* Get the symbol information for a breakpointable routine called when
2146d243 906 an exception event occurs.
c906108c
SS
907 Intended mainly for C++, and for those
908 platforms/implementations where such a callback mechanism is available,
909 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 910 different mechanisms for debugging exceptions. */
c906108c
SS
911
912#define target_enable_exception_callback(kind, enable) \
0d06e24b 913 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 914
0d06e24b 915/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 916
c906108c 917#define target_get_current_exception_event() \
0d06e24b 918 (*current_target.to_get_current_exception_event) ()
c906108c 919
c906108c
SS
920/* Does the target include all of memory, or only part of it? This
921 determines whether we look up the target chain for other parts of
922 memory if this target can't satisfy a request. */
923
924#define target_has_all_memory \
0d06e24b 925 (current_target.to_has_all_memory)
c906108c
SS
926
927/* Does the target include memory? (Dummy targets don't.) */
928
929#define target_has_memory \
0d06e24b 930 (current_target.to_has_memory)
c906108c
SS
931
932/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
933 we start a process.) */
c5aa993b 934
c906108c 935#define target_has_stack \
0d06e24b 936 (current_target.to_has_stack)
c906108c
SS
937
938/* Does the target have registers? (Exec files don't.) */
939
940#define target_has_registers \
0d06e24b 941 (current_target.to_has_registers)
c906108c
SS
942
943/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
944 hoops), or pop its stack a few times? This means that the current
945 target is currently executing; for some targets, that's the same as
946 whether or not the target is capable of execution, but there are
947 also targets which can be current while not executing. In that
948 case this will become true after target_create_inferior or
949 target_attach. */
c906108c
SS
950
951#define target_has_execution \
0d06e24b 952 (current_target.to_has_execution)
c906108c
SS
953
954/* Can the target support the debugger control of thread execution?
955 a) Can it lock the thread scheduler?
956 b) Can it switch the currently running thread? */
957
958#define target_can_lock_scheduler \
0d06e24b 959 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
960
961#define target_can_switch_threads \
0d06e24b 962 (current_target.to_has_thread_control & tc_switch)
c906108c 963
6426a772
JM
964/* Can the target support asynchronous execution? */
965#define target_can_async_p() (current_target.to_can_async_p ())
966
967/* Is the target in asynchronous execution mode? */
968#define target_is_async_p() (current_target.to_is_async_p())
969
970/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
971#define target_async(CALLBACK,CONTEXT) \
972 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 973
04714b91
AC
974/* This is to be used ONLY within call_function_by_hand(). It provides
975 a workaround, to have inferior function calls done in sychronous
976 mode, even though the target is asynchronous. After
ed9a39eb
JM
977 target_async_mask(0) is called, calls to target_can_async_p() will
978 return FALSE , so that target_resume() will not try to start the
979 target asynchronously. After the inferior stops, we IMMEDIATELY
980 restore the previous nature of the target, by calling
981 target_async_mask(1). After that, target_can_async_p() will return
04714b91 982 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
983
984 FIXME ezannoni 1999-12-13: we won't need this once we move
985 the turning async on and off to the single execution commands,
0d06e24b 986 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
987
988#define target_async_mask_value \
0d06e24b 989 (current_target.to_async_mask_value)
ed9a39eb 990
2146d243 991extern int target_async_mask (int mask);
ed9a39eb 992
c906108c
SS
993/* Converts a process id to a string. Usually, the string just contains
994 `process xyz', but on some systems it may contain
995 `process xyz thread abc'. */
996
ed9a39eb
JM
997#undef target_pid_to_str
998#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
999
1000#ifndef target_tid_to_str
1001#define target_tid_to_str(PID) \
0d06e24b 1002 target_pid_to_str (PID)
39f77062 1003extern char *normal_pid_to_str (ptid_t ptid);
c906108c 1004#endif
c5aa993b 1005
0d06e24b
JM
1006/* Return a short string describing extra information about PID,
1007 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1008 is okay. */
1009
1010#define target_extra_thread_info(TP) \
1011 (current_target.to_extra_thread_info (TP))
ed9a39eb 1012
c906108c
SS
1013#ifndef target_pid_or_tid_to_str
1014#define target_pid_or_tid_to_str(ID) \
0d06e24b 1015 target_pid_to_str (ID)
c906108c
SS
1016#endif
1017
1018/* Attempts to find the pathname of the executable file
1019 that was run to create a specified process.
1020
1021 The process PID must be stopped when this operation is used.
c5aa993b 1022
c906108c
SS
1023 If the executable file cannot be determined, NULL is returned.
1024
1025 Else, a pointer to a character string containing the pathname
1026 is returned. This string should be copied into a buffer by
1027 the client if the string will not be immediately used, or if
0d06e24b 1028 it must persist. */
c906108c
SS
1029
1030#define target_pid_to_exec_file(pid) \
0d06e24b 1031 (current_target.to_pid_to_exec_file) (pid)
c906108c 1032
be4d1333
MS
1033/*
1034 * Iterator function for target memory regions.
1035 * Calls a callback function once for each memory region 'mapped'
1036 * in the child process. Defined as a simple macro rather than
2146d243 1037 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1038 */
1039
1040#define target_find_memory_regions(FUNC, DATA) \
1041 (current_target.to_find_memory_regions) (FUNC, DATA)
1042
1043/*
1044 * Compose corefile .note section.
1045 */
1046
1047#define target_make_corefile_notes(BFD, SIZE_P) \
1048 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1049
3f47be5c
EZ
1050/* Thread-local values. */
1051#define target_get_thread_local_address \
1052 (current_target.to_get_thread_local_address)
1053#define target_get_thread_local_address_p() \
1054 (target_get_thread_local_address != NULL)
1055
c906108c
SS
1056
1057/* Hardware watchpoint interfaces. */
1058
1059/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1060 write). */
1061
1062#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1063#define STOPPED_BY_WATCHPOINT(w) \
1064 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1065#endif
7df1a324 1066
74174d2e
UW
1067/* Non-zero if we have steppable watchpoints */
1068
1069#ifndef HAVE_STEPPABLE_WATCHPOINT
1070#define HAVE_STEPPABLE_WATCHPOINT \
1071 (current_target.to_have_steppable_watchpoint)
1072#endif
1073
7df1a324
KW
1074/* Non-zero if we have continuable watchpoints */
1075
1076#ifndef HAVE_CONTINUABLE_WATCHPOINT
1077#define HAVE_CONTINUABLE_WATCHPOINT \
1078 (current_target.to_have_continuable_watchpoint)
1079#endif
c906108c 1080
ccaa32c7 1081/* Provide defaults for hardware watchpoint functions. */
c906108c 1082
2146d243 1083/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1084 elsewhere use the definitions in the target vector. */
c906108c
SS
1085
1086/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1087 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1088 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1089 (including this one?). OTHERTYPE is who knows what... */
1090
ccaa32c7
GS
1091#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1092#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1093 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1094#endif
c906108c 1095
e0d24f8d
WZ
1096#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1097#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1098 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1099#endif
1100
c906108c
SS
1101
1102/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1103 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1104 success, non-zero for failure. */
1105
ccaa32c7
GS
1106#ifndef target_insert_watchpoint
1107#define target_insert_watchpoint(addr, len, type) \
1108 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1109
ccaa32c7
GS
1110#define target_remove_watchpoint(addr, len, type) \
1111 (*current_target.to_remove_watchpoint) (addr, len, type)
1112#endif
c906108c
SS
1113
1114#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1115#define target_insert_hw_breakpoint(bp_tgt) \
1116 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1117
8181d85f
DJ
1118#define target_remove_hw_breakpoint(bp_tgt) \
1119 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1120#endif
1121
4aa7a7f5
JJ
1122extern int target_stopped_data_address_p (struct target_ops *);
1123
c906108c 1124#ifndef target_stopped_data_address
4aa7a7f5
JJ
1125#define target_stopped_data_address(target, x) \
1126 (*target.to_stopped_data_address) (target, x)
1127#else
1128/* Horrible hack to get around existing macros :-(. */
1129#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1130#endif
1131
424163ea
DJ
1132extern const struct target_desc *target_read_description (struct target_ops *);
1133
49d03eab
MR
1134/* Command logging facility. */
1135
1136#define target_log_command(p) \
1137 do \
1138 if (current_target.to_log_command) \
1139 (*current_target.to_log_command) (p); \
1140 while (0)
1141
c906108c
SS
1142/* Routines for maintenance of the target structures...
1143
1144 add_target: Add a target to the list of all possible targets.
1145
1146 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1147 targets, within its particular stratum of the stack. Result
1148 is 0 if now atop the stack, nonzero if not on top (maybe
1149 should warn user).
c906108c
SS
1150
1151 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1152 no matter where it is on the list. Returns 0 if no
1153 change, 1 if removed from stack.
c906108c 1154
c5aa993b 1155 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1156
a14ed312 1157extern void add_target (struct target_ops *);
c906108c 1158
a14ed312 1159extern int push_target (struct target_ops *);
c906108c 1160
a14ed312 1161extern int unpush_target (struct target_ops *);
c906108c 1162
fd79ecee
DJ
1163extern void target_pre_inferior (int);
1164
a14ed312 1165extern void target_preopen (int);
c906108c 1166
a14ed312 1167extern void pop_target (void);
c906108c 1168
9e35dae4
DJ
1169extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1170 CORE_ADDR offset);
1171
52bb452f
DJ
1172/* Mark a pushed target as running or exited, for targets which do not
1173 automatically pop when not active. */
1174
1175void target_mark_running (struct target_ops *);
1176
1177void target_mark_exited (struct target_ops *);
1178
c906108c
SS
1179/* Struct section_table maps address ranges to file sections. It is
1180 mostly used with BFD files, but can be used without (e.g. for handling
1181 raw disks, or files not in formats handled by BFD). */
1182
c5aa993b
JM
1183struct section_table
1184 {
1185 CORE_ADDR addr; /* Lowest address in section */
1186 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1187
7be0c536 1188 struct bfd_section *the_bfd_section;
c906108c 1189
c5aa993b
JM
1190 bfd *bfd; /* BFD file pointer */
1191 };
c906108c 1192
8db32d44
AC
1193/* Return the "section" containing the specified address. */
1194struct section_table *target_section_by_addr (struct target_ops *target,
1195 CORE_ADDR addr);
1196
1197
c906108c
SS
1198/* From mem-break.c */
1199
8181d85f 1200extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1201
8181d85f 1202extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1203
8181d85f 1204extern int default_memory_remove_breakpoint (struct bp_target_info *);
917317f4 1205
8181d85f 1206extern int default_memory_insert_breakpoint (struct bp_target_info *);
917317f4 1207
c906108c
SS
1208
1209/* From target.c */
1210
a14ed312 1211extern void initialize_targets (void);
c906108c 1212
a14ed312 1213extern void noprocess (void);
c906108c 1214
a14ed312 1215extern void find_default_attach (char *, int);
c906108c 1216
c27cda74 1217extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1218
a14ed312 1219extern struct target_ops *find_run_target (void);
7a292a7a 1220
a14ed312 1221extern struct target_ops *find_core_target (void);
6426a772 1222
a14ed312 1223extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1224
570b8f7c
AC
1225extern int target_resize_to_sections (struct target_ops *target,
1226 int num_added);
07cd4b97
JB
1227
1228extern void remove_target_sections (bfd *abfd);
1229
c906108c
SS
1230\f
1231/* Stuff that should be shared among the various remote targets. */
1232
1233/* Debugging level. 0 is off, and non-zero values mean to print some debug
1234 information (higher values, more information). */
1235extern int remote_debug;
1236
1237/* Speed in bits per second, or -1 which means don't mess with the speed. */
1238extern int baud_rate;
1239/* Timeout limit for response from target. */
1240extern int remote_timeout;
1241
c906108c
SS
1242\f
1243/* Functions for helping to write a native target. */
1244
1245/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1246extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1247
c2d11a7d 1248/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1249 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1250/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1251 to the shorter target_signal_p() because it is far less ambigious.
1252 In this context ``target_signal'' refers to GDB's internal
1253 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1254 refers to the target operating system's signal. Confused? */
1255
c2d11a7d
JM
1256extern int target_signal_to_host_p (enum target_signal signo);
1257
1258/* Convert between host signal numbers and enum target_signal's.
1259 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1260 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1261/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1262 refering to the target operating system's signal numbering.
1263 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1264 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1265 internal representation of a target operating system's signal. */
1266
a14ed312
KB
1267extern enum target_signal target_signal_from_host (int);
1268extern int target_signal_to_host (enum target_signal);
c906108c
SS
1269
1270/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1271extern enum target_signal target_signal_from_command (int);
c906108c
SS
1272
1273/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1274extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1275\f
1276/* Imported from machine dependent code */
1277
c906108c 1278/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1279void target_ignore (void);
c906108c 1280
1df84f13 1281extern struct target_ops deprecated_child_ops;
5ac10fd1 1282
c5aa993b 1283#endif /* !defined (TARGET_H) */
This page took 0.76291 seconds and 4 git commands to generate.