import gdb-1999-09-28 snapshot
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
c5aa993b 55 };
c906108c 56
c5aa993b
JM
57enum thread_control_capabilities
58 {
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
62 };
c906108c
SS
63
64/* Stuff for target_wait. */
65
66/* Generally, what has the program done? */
c5aa993b
JM
67enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
c906108c 71
c5aa993b
JM
72 /* The program has stopped with a signal. Which signal is in value.sig. */
73 TARGET_WAITKIND_STOPPED,
c906108c 74
c5aa993b
JM
75 /* The program has terminated with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_SIGNALLED,
c906108c 78
c5aa993b
JM
79 /* The program is letting us know that it dynamically loaded something
80 (e.g. it called load(2) on AIX). */
81 TARGET_WAITKIND_LOADED,
c906108c 82
c5aa993b
JM
83 /* The program has forked. A "related" process' ID is in value.related_pid.
84 I.e., if the child forks, value.related_pid is the parent's ID.
c906108c 85 */
c5aa993b 86 TARGET_WAITKIND_FORKED,
c906108c 87
c5aa993b 88 /* The program has vforked. A "related" process's ID is in value.related_pid.
c906108c 89 */
c5aa993b 90 TARGET_WAITKIND_VFORKED,
c906108c 91
c5aa993b
JM
92 /* The program has exec'ed a new executable file. The new file's pathname
93 is pointed to by value.execd_pathname.
c906108c 94 */
c5aa993b 95 TARGET_WAITKIND_EXECD,
c906108c 96
c5aa993b
JM
97 /* The program has entered or returned from a system call. On HP-UX, this
98 is used in the hardware watchpoint implementation. The syscall's unique
99 integer ID number is in value.syscall_id;
c906108c 100 */
c5aa993b
JM
101 TARGET_WAITKIND_SYSCALL_ENTRY,
102 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 103
c5aa993b
JM
104 /* Nothing happened, but we stopped anyway. This perhaps should be handled
105 within target_wait, but I'm not sure target_wait should be resuming the
106 inferior. */
107 TARGET_WAITKIND_SPURIOUS
c906108c
SS
108 };
109
110/* The numbering of these signals is chosen to match traditional unix
111 signals (insofar as various unices use the same numbers, anyway).
112 It is also the numbering of the GDB remote protocol. Other remote
113 protocols, if they use a different numbering, should make sure to
cd0fc7c3 114 translate appropriately.
c906108c 115
cd0fc7c3
SS
116 Since these numbers have actually made it out into other software
117 (stubs, etc.), you mustn't disturb the assigned numbering. If you
118 need to add new signals here, add them to the end of the explicitly
119 numbered signals.
120
121 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
122 (1) This set of signals represents a widely-accepted attempt to
123 represent events of this sort in a portable fashion, (2) we want a
124 signal to make it from wait to child_wait to the user intact, (3) many
125 remote protocols use a similar encoding. However, it is
126 recognized that this set of signals has limitations (such as not
127 distinguishing between various kinds of SIGSEGV, or not
128 distinguishing hitting a breakpoint from finishing a single step).
129 So in the future we may get around this either by adding additional
130 signals for breakpoint, single-step, etc., or by adding signal
131 codes; the latter seems more in the spirit of what BSD, System V,
132 etc. are doing to address these issues. */
133
134/* For an explanation of what each signal means, see
135 target_signal_to_string. */
136
c5aa993b
JM
137enum target_signal
138 {
139 /* Used some places (e.g. stop_signal) to record the concept that
140 there is no signal. */
141 TARGET_SIGNAL_0 = 0,
142 TARGET_SIGNAL_FIRST = 0,
143 TARGET_SIGNAL_HUP = 1,
144 TARGET_SIGNAL_INT = 2,
145 TARGET_SIGNAL_QUIT = 3,
146 TARGET_SIGNAL_ILL = 4,
147 TARGET_SIGNAL_TRAP = 5,
148 TARGET_SIGNAL_ABRT = 6,
149 TARGET_SIGNAL_EMT = 7,
150 TARGET_SIGNAL_FPE = 8,
151 TARGET_SIGNAL_KILL = 9,
152 TARGET_SIGNAL_BUS = 10,
153 TARGET_SIGNAL_SEGV = 11,
154 TARGET_SIGNAL_SYS = 12,
155 TARGET_SIGNAL_PIPE = 13,
156 TARGET_SIGNAL_ALRM = 14,
157 TARGET_SIGNAL_TERM = 15,
158 TARGET_SIGNAL_URG = 16,
159 TARGET_SIGNAL_STOP = 17,
160 TARGET_SIGNAL_TSTP = 18,
161 TARGET_SIGNAL_CONT = 19,
162 TARGET_SIGNAL_CHLD = 20,
163 TARGET_SIGNAL_TTIN = 21,
164 TARGET_SIGNAL_TTOU = 22,
165 TARGET_SIGNAL_IO = 23,
166 TARGET_SIGNAL_XCPU = 24,
167 TARGET_SIGNAL_XFSZ = 25,
168 TARGET_SIGNAL_VTALRM = 26,
169 TARGET_SIGNAL_PROF = 27,
170 TARGET_SIGNAL_WINCH = 28,
171 TARGET_SIGNAL_LOST = 29,
172 TARGET_SIGNAL_USR1 = 30,
173 TARGET_SIGNAL_USR2 = 31,
174 TARGET_SIGNAL_PWR = 32,
175 /* Similar to SIGIO. Perhaps they should have the same number. */
176 TARGET_SIGNAL_POLL = 33,
177 TARGET_SIGNAL_WIND = 34,
178 TARGET_SIGNAL_PHONE = 35,
179 TARGET_SIGNAL_WAITING = 36,
180 TARGET_SIGNAL_LWP = 37,
181 TARGET_SIGNAL_DANGER = 38,
182 TARGET_SIGNAL_GRANT = 39,
183 TARGET_SIGNAL_RETRACT = 40,
184 TARGET_SIGNAL_MSG = 41,
185 TARGET_SIGNAL_SOUND = 42,
186 TARGET_SIGNAL_SAK = 43,
187 TARGET_SIGNAL_PRIO = 44,
188 TARGET_SIGNAL_REALTIME_33 = 45,
189 TARGET_SIGNAL_REALTIME_34 = 46,
190 TARGET_SIGNAL_REALTIME_35 = 47,
191 TARGET_SIGNAL_REALTIME_36 = 48,
192 TARGET_SIGNAL_REALTIME_37 = 49,
193 TARGET_SIGNAL_REALTIME_38 = 50,
194 TARGET_SIGNAL_REALTIME_39 = 51,
195 TARGET_SIGNAL_REALTIME_40 = 52,
196 TARGET_SIGNAL_REALTIME_41 = 53,
197 TARGET_SIGNAL_REALTIME_42 = 54,
198 TARGET_SIGNAL_REALTIME_43 = 55,
199 TARGET_SIGNAL_REALTIME_44 = 56,
200 TARGET_SIGNAL_REALTIME_45 = 57,
201 TARGET_SIGNAL_REALTIME_46 = 58,
202 TARGET_SIGNAL_REALTIME_47 = 59,
203 TARGET_SIGNAL_REALTIME_48 = 60,
204 TARGET_SIGNAL_REALTIME_49 = 61,
205 TARGET_SIGNAL_REALTIME_50 = 62,
206 TARGET_SIGNAL_REALTIME_51 = 63,
207 TARGET_SIGNAL_REALTIME_52 = 64,
208 TARGET_SIGNAL_REALTIME_53 = 65,
209 TARGET_SIGNAL_REALTIME_54 = 66,
210 TARGET_SIGNAL_REALTIME_55 = 67,
211 TARGET_SIGNAL_REALTIME_56 = 68,
212 TARGET_SIGNAL_REALTIME_57 = 69,
213 TARGET_SIGNAL_REALTIME_58 = 70,
214 TARGET_SIGNAL_REALTIME_59 = 71,
215 TARGET_SIGNAL_REALTIME_60 = 72,
216 TARGET_SIGNAL_REALTIME_61 = 73,
217 TARGET_SIGNAL_REALTIME_62 = 74,
218 TARGET_SIGNAL_REALTIME_63 = 75,
219
220 /* Used internally by Solaris threads. See signal(5) on Solaris. */
221 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 222
d4f3574e
SS
223 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
224 Linux does, and we can't disturb the numbering, since it's part
225 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
226 is number 76. */
227 TARGET_SIGNAL_REALTIME_32,
228
c906108c 229#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
230 /* Mach exceptions */
231 TARGET_EXC_BAD_ACCESS,
232 TARGET_EXC_BAD_INSTRUCTION,
233 TARGET_EXC_ARITHMETIC,
234 TARGET_EXC_EMULATION,
235 TARGET_EXC_SOFTWARE,
236 TARGET_EXC_BREAKPOINT,
c906108c 237#endif
c5aa993b 238 TARGET_SIGNAL_INFO,
c906108c 239
c5aa993b
JM
240 /* Some signal we don't know about. */
241 TARGET_SIGNAL_UNKNOWN,
c906108c 242
c5aa993b
JM
243 /* Use whatever signal we use when one is not specifically specified
244 (for passing to proceed and so on). */
245 TARGET_SIGNAL_DEFAULT,
c906108c 246
c5aa993b
JM
247 /* Last and unused enum value, for sizing arrays, etc. */
248 TARGET_SIGNAL_LAST
249 };
c906108c 250
c5aa993b
JM
251struct target_waitstatus
252 {
253 enum target_waitkind kind;
254
255 /* Forked child pid, execd pathname, exit status or signal number. */
256 union
257 {
258 int integer;
259 enum target_signal sig;
260 int related_pid;
261 char *execd_pathname;
262 int syscall_id;
263 }
264 value;
265 };
c906108c
SS
266
267/* Return the string for a signal. */
268extern char *target_signal_to_string PARAMS ((enum target_signal));
269
270/* Return the name (SIGHUP, etc.) for a signal. */
271extern char *target_signal_to_name PARAMS ((enum target_signal));
272
273/* Given a name (SIGHUP, etc.), return its signal. */
274enum target_signal target_signal_from_name PARAMS ((char *));
c906108c 275\f
c5aa993b 276
c906108c
SS
277/* If certain kinds of activity happen, target_wait should perform
278 callbacks. */
279/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
280 on TARGET_ACTIVITY_FD. */
281extern int target_activity_fd;
282/* Returns zero to leave the inferior alone, one to interrupt it. */
283extern int (*target_activity_function) PARAMS ((void));
284\f
285struct target_ops
c5aa993b
JM
286 {
287 char *to_shortname; /* Name this target type */
288 char *to_longname; /* Name for printing */
289 char *to_doc; /* Documentation. Does not include trailing
c906108c
SS
290 newline, and starts with a one-line descrip-
291 tion (probably similar to to_longname). */
c5aa993b
JM
292 void (*to_open) PARAMS ((char *, int));
293 void (*to_close) PARAMS ((int));
294 void (*to_attach) PARAMS ((char *, int));
295 void (*to_post_attach) PARAMS ((int));
296 void (*to_require_attach) PARAMS ((char *, int));
297 void (*to_detach) PARAMS ((char *, int));
298 void (*to_require_detach) PARAMS ((int, char *, int));
299 void (*to_resume) PARAMS ((int, int, enum target_signal));
300 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
301 void (*to_post_wait) PARAMS ((int, int));
302 void (*to_fetch_registers) PARAMS ((int));
303 void (*to_store_registers) PARAMS ((int));
304 void (*to_prepare_to_store) PARAMS ((void));
305
306 /* Transfer LEN bytes of memory between GDB address MYADDR and
307 target address MEMADDR. If WRITE, transfer them to the target, else
308 transfer them from the target. TARGET is the target from which we
309 get this function.
310
311 Return value, N, is one of the following:
312
313 0 means that we can't handle this. If errno has been set, it is the
314 error which prevented us from doing it (FIXME: What about bfd_error?).
315
316 positive (call it N) means that we have transferred N bytes
317 starting at MEMADDR. We might be able to handle more bytes
318 beyond this length, but no promises.
319
320 negative (call its absolute value N) means that we cannot
321 transfer right at MEMADDR, but we could transfer at least
322 something at MEMADDR + N. */
323
324 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
325 int len, int write,
326 struct target_ops * target));
c906108c
SS
327
328#if 0
c5aa993b 329 /* Enable this after 4.12. */
c906108c 330
c5aa993b
JM
331 /* Search target memory. Start at STARTADDR and take LEN bytes of
332 target memory, and them with MASK, and compare to DATA. If they
333 match, set *ADDR_FOUND to the address we found it at, store the data
334 we found at LEN bytes starting at DATA_FOUND, and return. If
335 not, add INCREMENT to the search address and keep trying until
336 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 337
c5aa993b
JM
338 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
339 void (*to_search) PARAMS ((int len, char *data, char *mask,
340 CORE_ADDR startaddr, int increment,
341 CORE_ADDR lorange, CORE_ADDR hirange,
342 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
343
344#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
345 (*current_target.to_search) (len, data, mask, startaddr, increment, \
346 lorange, hirange, addr_found, data_found)
c5aa993b
JM
347#endif /* 0 */
348
349 void (*to_files_info) PARAMS ((struct target_ops *));
350 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
351 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
352 void (*to_terminal_init) PARAMS ((void));
353 void (*to_terminal_inferior) PARAMS ((void));
354 void (*to_terminal_ours_for_output) PARAMS ((void));
355 void (*to_terminal_ours) PARAMS ((void));
356 void (*to_terminal_info) PARAMS ((char *, int));
357 void (*to_kill) PARAMS ((void));
358 void (*to_load) PARAMS ((char *, int));
359 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
360 void (*to_create_inferior) PARAMS ((char *, char *, char **));
361 void (*to_post_startup_inferior) PARAMS ((int));
362 void (*to_acknowledge_created_inferior) PARAMS ((int));
363 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
364 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
365 int (*to_insert_fork_catchpoint) PARAMS ((int));
366 int (*to_remove_fork_catchpoint) PARAMS ((int));
367 int (*to_insert_vfork_catchpoint) PARAMS ((int));
368 int (*to_remove_vfork_catchpoint) PARAMS ((int));
369 int (*to_has_forked) PARAMS ((int, int *));
370 int (*to_has_vforked) PARAMS ((int, int *));
371 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
372 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
373 int (*to_insert_exec_catchpoint) PARAMS ((int));
374 int (*to_remove_exec_catchpoint) PARAMS ((int));
375 int (*to_has_execd) PARAMS ((int, char **));
376 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
377 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
378 int (*to_has_exited) PARAMS ((int, int, int *));
379 void (*to_mourn_inferior) PARAMS ((void));
380 int (*to_can_run) PARAMS ((void));
381 void (*to_notice_signals) PARAMS ((int pid));
382 int (*to_thread_alive) PARAMS ((int pid));
383 void (*to_find_new_threads) PARAMS ((void));
384 void (*to_stop) PARAMS ((void));
385 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
96baa820 386 void (*to_rcmd) (char *command, struct gdb_file *output);
c5aa993b
JM
387 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
388 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
389 char *(*to_pid_to_exec_file) PARAMS ((int pid));
390 char *(*to_core_file_to_sym_file) PARAMS ((char *));
391 enum strata to_stratum;
392 struct target_ops
393 *DONT_USE; /* formerly to_next */
394 int to_has_all_memory;
395 int to_has_memory;
396 int to_has_stack;
397 int to_has_registers;
398 int to_has_execution;
399 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
400 struct section_table
401 *to_sections;
402 struct section_table
403 *to_sections_end;
6426a772
JM
404 /* ASYNC target controls */
405 int (*to_can_async_p) (void);
406 int (*to_is_async_p) (void);
407 void (*to_async) (void (*cb) (int error, void *context, int fd), void *context);
c5aa993b
JM
408 int to_magic;
409 /* Need sub-structure for target machine related rather than comm related? */
410 };
c906108c
SS
411
412/* Magic number for checking ops size. If a struct doesn't end with this
413 number, somebody changed the declaration but didn't change all the
414 places that initialize one. */
415
416#define OPS_MAGIC 3840
417
418/* The ops structure for our "current" target process. This should
419 never be NULL. If there is no target, it points to the dummy_target. */
420
c5aa993b 421extern struct target_ops current_target;
c906108c
SS
422
423/* An item on the target stack. */
424
425struct target_stack_item
c5aa993b
JM
426 {
427 struct target_stack_item *next;
428 struct target_ops *target_ops;
429 };
c906108c
SS
430
431/* The target stack. */
432
433extern struct target_stack_item *target_stack;
434
435/* Define easy words for doing these operations on our current target. */
436
437#define target_shortname (current_target.to_shortname)
438#define target_longname (current_target.to_longname)
439
440/* The open routine takes the rest of the parameters from the command,
441 and (if successful) pushes a new target onto the stack.
442 Targets should supply this routine, if only to provide an error message. */
443#define target_open(name, from_tty) \
444 (*current_target.to_open) (name, from_tty)
445
446/* Does whatever cleanup is required for a target that we are no longer
447 going to be calling. Argument says whether we are quitting gdb and
448 should not get hung in case of errors, or whether we want a clean
449 termination even if it takes a while. This routine is automatically
450 always called just before a routine is popped off the target stack.
451 Closing file descriptors and freeing memory are typical things it should
452 do. */
453
454#define target_close(quitting) \
455 (*current_target.to_close) (quitting)
456
457/* Attaches to a process on the target side. Arguments are as passed
458 to the `attach' command by the user. This routine can be called
459 when the target is not on the target-stack, if the target_can_run
460 routine returns 1; in that case, it must push itself onto the stack.
461 Upon exit, the target should be ready for normal operations, and
462 should be ready to deliver the status of the process immediately
463 (without waiting) to an upcoming target_wait call. */
464
465#define target_attach(args, from_tty) \
466 (*current_target.to_attach) (args, from_tty)
467
468/* The target_attach operation places a process under debugger control,
469 and stops the process.
470
471 This operation provides a target-specific hook that allows the
472 necessary bookkeeping to be performed after an attach completes.
c5aa993b 473 */
c906108c
SS
474#define target_post_attach(pid) \
475 (*current_target.to_post_attach) (pid)
476
477/* Attaches to a process on the target side, if not already attached.
478 (If already attached, takes no action.)
479
480 This operation can be used to follow the child process of a fork.
481 On some targets, such child processes of an original inferior process
482 are automatically under debugger control, and thus do not require an
483 actual attach operation. */
484
485#define target_require_attach(args, from_tty) \
486 (*current_target.to_require_attach) (args, from_tty)
487
488/* Takes a program previously attached to and detaches it.
489 The program may resume execution (some targets do, some don't) and will
490 no longer stop on signals, etc. We better not have left any breakpoints
491 in the program or it'll die when it hits one. ARGS is arguments
492 typed by the user (e.g. a signal to send the process). FROM_TTY
493 says whether to be verbose or not. */
494
495extern void
496target_detach PARAMS ((char *, int));
497
498/* Detaches from a process on the target side, if not already dettached.
499 (If already detached, takes no action.)
500
501 This operation can be used to follow the parent process of a fork.
502 On some targets, such child processes of an original inferior process
503 are automatically under debugger control, and thus do require an actual
504 detach operation.
505
506 PID is the process id of the child to detach from.
507 ARGS is arguments typed by the user (e.g. a signal to send the process).
508 FROM_TTY says whether to be verbose or not. */
509
510#define target_require_detach(pid, args, from_tty) \
511 (*current_target.to_require_detach) (pid, args, from_tty)
512
513/* Resume execution of the target process PID. STEP says whether to
514 single-step or to run free; SIGGNAL is the signal to be given to
515 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
516 pass TARGET_SIGNAL_DEFAULT. */
517
518#define target_resume(pid, step, siggnal) \
519 (*current_target.to_resume) (pid, step, siggnal)
520
521/* Wait for process pid to do something. Pid = -1 to wait for any pid
522 to do something. Return pid of child, or -1 in case of error;
523 store status through argument pointer STATUS. Note that it is
524 *not* OK to return_to_top_level out of target_wait without popping
525 the debugging target from the stack; GDB isn't prepared to get back
526 to the prompt with a debugging target but without the frame cache,
527 stop_pc, etc., set up. */
528
529#define target_wait(pid, status) \
530 (*current_target.to_wait) (pid, status)
531
532/* The target_wait operation waits for a process event to occur, and
533 thereby stop the process.
534
535 On some targets, certain events may happen in sequences. gdb's
536 correct response to any single event of such a sequence may require
537 knowledge of what earlier events in the sequence have been seen.
538
539 This operation provides a target-specific hook that allows the
540 necessary bookkeeping to be performed to track such sequences.
c5aa993b 541 */
c906108c
SS
542
543#define target_post_wait(pid, status) \
544 (*current_target.to_post_wait) (pid, status)
545
546/* Fetch register REGNO, or all regs if regno == -1. No result. */
547
548#define target_fetch_registers(regno) \
549 (*current_target.to_fetch_registers) (regno)
550
551/* Store at least register REGNO, or all regs if REGNO == -1.
552 It can store as many registers as it wants to, so target_prepare_to_store
553 must have been previously called. Calls error() if there are problems. */
554
555#define target_store_registers(regs) \
556 (*current_target.to_store_registers) (regs)
557
558/* Get ready to modify the registers array. On machines which store
559 individual registers, this doesn't need to do anything. On machines
560 which store all the registers in one fell swoop, this makes sure
561 that REGISTERS contains all the registers from the program being
562 debugged. */
563
564#define target_prepare_to_store() \
565 (*current_target.to_prepare_to_store) ()
566
567extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
568
569extern int
570target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
571
572extern int
573target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
c5aa993b 574 asection * bfd_section));
c906108c
SS
575
576extern int
577target_read_memory_partial PARAMS ((CORE_ADDR, char *, int, int *));
578
579extern int
580target_write_memory PARAMS ((CORE_ADDR, char *, int));
581
582extern int
583xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
584
585extern int
586child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
587
588extern char *
c5aa993b 589 child_pid_to_exec_file PARAMS ((int));
c906108c
SS
590
591extern char *
c5aa993b 592 child_core_file_to_sym_file PARAMS ((char *));
c906108c
SS
593
594#if defined(CHILD_POST_ATTACH)
595extern void
596child_post_attach PARAMS ((int));
597#endif
598
599extern void
600child_post_wait PARAMS ((int, int));
601
602extern void
603child_post_startup_inferior PARAMS ((int));
604
605extern void
606child_acknowledge_created_inferior PARAMS ((int));
607
608extern void
609child_clone_and_follow_inferior PARAMS ((int, int *));
610
611extern void
612child_post_follow_inferior_by_clone PARAMS ((void));
613
614extern int
615child_insert_fork_catchpoint PARAMS ((int));
616
617extern int
618child_remove_fork_catchpoint PARAMS ((int));
619
620extern int
621child_insert_vfork_catchpoint PARAMS ((int));
622
623extern int
624child_remove_vfork_catchpoint PARAMS ((int));
625
626extern int
627child_has_forked PARAMS ((int, int *));
628
629extern int
630child_has_vforked PARAMS ((int, int *));
631
632extern void
633child_acknowledge_created_inferior PARAMS ((int));
634
635extern int
636child_can_follow_vfork_prior_to_exec PARAMS ((void));
637
638extern void
639child_post_follow_vfork PARAMS ((int, int, int, int));
640
641extern int
642child_insert_exec_catchpoint PARAMS ((int));
643
644extern int
645child_remove_exec_catchpoint PARAMS ((int));
646
647extern int
648child_has_execd PARAMS ((int, char **));
649
650extern int
651child_reported_exec_events_per_exec_call PARAMS ((void));
652
653extern int
654child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
655
656extern int
657child_has_exited PARAMS ((int, int, int *));
658
659extern int
660child_thread_alive PARAMS ((int));
661
662/* From exec.c */
663
664extern void
665print_section_info PARAMS ((struct target_ops *, bfd *));
666
667/* Print a line about the current target. */
668
669#define target_files_info() \
670 (*current_target.to_files_info) (&current_target)
671
672/* Insert a breakpoint at address ADDR in the target machine.
673 SAVE is a pointer to memory allocated for saving the
674 target contents. It is guaranteed by the caller to be long enough
675 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
676 an errno value. */
677
678#define target_insert_breakpoint(addr, save) \
679 (*current_target.to_insert_breakpoint) (addr, save)
680
681/* Remove a breakpoint at address ADDR in the target machine.
682 SAVE is a pointer to the same save area
683 that was previously passed to target_insert_breakpoint.
684 Result is 0 for success, or an errno value. */
685
686#define target_remove_breakpoint(addr, save) \
687 (*current_target.to_remove_breakpoint) (addr, save)
688
689/* Initialize the terminal settings we record for the inferior,
690 before we actually run the inferior. */
691
692#define target_terminal_init() \
693 (*current_target.to_terminal_init) ()
694
695/* Put the inferior's terminal settings into effect.
696 This is preparation for starting or resuming the inferior. */
697
698#define target_terminal_inferior() \
699 (*current_target.to_terminal_inferior) ()
700
701/* Put some of our terminal settings into effect,
702 enough to get proper results from our output,
703 but do not change into or out of RAW mode
704 so that no input is discarded.
705
706 After doing this, either terminal_ours or terminal_inferior
707 should be called to get back to a normal state of affairs. */
708
709#define target_terminal_ours_for_output() \
710 (*current_target.to_terminal_ours_for_output) ()
711
712/* Put our terminal settings into effect.
713 First record the inferior's terminal settings
714 so they can be restored properly later. */
715
716#define target_terminal_ours() \
717 (*current_target.to_terminal_ours) ()
718
719/* Print useful information about our terminal status, if such a thing
720 exists. */
721
722#define target_terminal_info(arg, from_tty) \
723 (*current_target.to_terminal_info) (arg, from_tty)
724
725/* Kill the inferior process. Make it go away. */
726
727#define target_kill() \
728 (*current_target.to_kill) ()
729
730/* Load an executable file into the target process. This is expected to
731 not only bring new code into the target process, but also to update
732 GDB's symbol tables to match. */
733
734#define target_load(arg, from_tty) \
735 (*current_target.to_load) (arg, from_tty)
736
737/* Look up a symbol in the target's symbol table. NAME is the symbol
738 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
739 should be returned. The result is 0 if successful, nonzero if the
740 symbol does not exist in the target environment. This function should
741 not call error() if communication with the target is interrupted, since
742 it is called from symbol reading, but should return nonzero, possibly
743 doing a complain(). */
744
745#define target_lookup_symbol(name, addrp) \
746 (*current_target.to_lookup_symbol) (name, addrp)
747
748/* Start an inferior process and set inferior_pid to its pid.
749 EXEC_FILE is the file to run.
750 ALLARGS is a string containing the arguments to the program.
751 ENV is the environment vector to pass. Errors reported with error().
752 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 753
c906108c
SS
754#define target_create_inferior(exec_file, args, env) \
755 (*current_target.to_create_inferior) (exec_file, args, env)
756
757
758/* Some targets (such as ttrace-based HPUX) don't allow us to request
759 notification of inferior events such as fork and vork immediately
760 after the inferior is created. (This because of how gdb gets an
761 inferior created via invoking a shell to do it. In such a scenario,
762 if the shell init file has commands in it, the shell will fork and
763 exec for each of those commands, and we will see each such fork
764 event. Very bad.)
c5aa993b 765
c906108c 766 Such targets will supply an appropriate definition for this function.
c5aa993b 767 */
c906108c
SS
768#define target_post_startup_inferior(pid) \
769 (*current_target.to_post_startup_inferior) (pid)
770
771/* On some targets, the sequence of starting up an inferior requires
772 some synchronization between gdb and the new inferior process, PID.
c5aa993b 773 */
c906108c
SS
774#define target_acknowledge_created_inferior(pid) \
775 (*current_target.to_acknowledge_created_inferior) (pid)
776
777/* An inferior process has been created via a fork() or similar
778 system call. This function will clone the debugger, then ensure
779 that CHILD_PID is attached to by that debugger.
780
781 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
782 and FALSE otherwise. (The original and clone debuggers can use this
783 to determine which they are, if need be.)
784
785 (This is not a terribly useful feature without a GUI to prevent
786 the two debuggers from competing for shell input.)
c5aa993b 787 */
c906108c
SS
788#define target_clone_and_follow_inferior(child_pid,followed_child) \
789 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
790
791/* This operation is intended to be used as the last in a sequence of
792 steps taken when following both parent and child of a fork. This
793 is used by a clone of the debugger, which will follow the child.
794
795 The original debugger has detached from this process, and the
796 clone has attached to it.
797
798 On some targets, this requires a bit of cleanup to make it work
799 correctly.
c5aa993b 800 */
c906108c
SS
801#define target_post_follow_inferior_by_clone() \
802 (*current_target.to_post_follow_inferior_by_clone) ()
803
804/* On some targets, we can catch an inferior fork or vfork event when it
805 occurs. These functions insert/remove an already-created catchpoint for
806 such events.
c5aa993b 807 */
c906108c
SS
808#define target_insert_fork_catchpoint(pid) \
809 (*current_target.to_insert_fork_catchpoint) (pid)
810
811#define target_remove_fork_catchpoint(pid) \
812 (*current_target.to_remove_fork_catchpoint) (pid)
813
814#define target_insert_vfork_catchpoint(pid) \
815 (*current_target.to_insert_vfork_catchpoint) (pid)
816
817#define target_remove_vfork_catchpoint(pid) \
818 (*current_target.to_remove_vfork_catchpoint) (pid)
819
820/* Returns TRUE if PID has invoked the fork() system call. And,
821 also sets CHILD_PID to the process id of the other ("child")
822 inferior process that was created by that call.
c5aa993b 823 */
c906108c
SS
824#define target_has_forked(pid,child_pid) \
825 (*current_target.to_has_forked) (pid,child_pid)
826
827/* Returns TRUE if PID has invoked the vfork() system call. And,
828 also sets CHILD_PID to the process id of the other ("child")
829 inferior process that was created by that call.
c5aa993b 830 */
c906108c
SS
831#define target_has_vforked(pid,child_pid) \
832 (*current_target.to_has_vforked) (pid,child_pid)
833
834/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
835 anything to a vforked child before it subsequently calls exec().
836 On such platforms, we say that the debugger cannot "follow" the
837 child until it has vforked.
838
839 This function should be defined to return 1 by those targets
840 which can allow the debugger to immediately follow a vforked
841 child, and 0 if they cannot.
c5aa993b 842 */
c906108c
SS
843#define target_can_follow_vfork_prior_to_exec() \
844 (*current_target.to_can_follow_vfork_prior_to_exec) ()
845
846/* An inferior process has been created via a vfork() system call.
847 The debugger has followed the parent, the child, or both. The
848 process of setting up for that follow may have required some
849 target-specific trickery to track the sequence of reported events.
850 If so, this function should be defined by those targets that
851 require the debugger to perform cleanup or initialization after
852 the vfork follow.
c5aa993b 853 */
c906108c
SS
854#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
855 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
856
857/* On some targets, we can catch an inferior exec event when it
858 occurs. These functions insert/remove an already-created catchpoint
859 for such events.
c5aa993b 860 */
c906108c
SS
861#define target_insert_exec_catchpoint(pid) \
862 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 863
c906108c
SS
864#define target_remove_exec_catchpoint(pid) \
865 (*current_target.to_remove_exec_catchpoint) (pid)
866
867/* Returns TRUE if PID has invoked a flavor of the exec() system call.
868 And, also sets EXECD_PATHNAME to the pathname of the executable file
869 that was passed to exec(), and is now being executed.
c5aa993b 870 */
c906108c
SS
871#define target_has_execd(pid,execd_pathname) \
872 (*current_target.to_has_execd) (pid,execd_pathname)
873
874/* Returns the number of exec events that are reported when a process
875 invokes a flavor of the exec() system call on this target, if exec
876 events are being reported.
c5aa993b 877 */
c906108c
SS
878#define target_reported_exec_events_per_exec_call() \
879 (*current_target.to_reported_exec_events_per_exec_call) ()
880
881/* Returns TRUE if PID has reported a syscall event. And, also sets
882 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
883 the unique integer ID of the syscall.
c5aa993b 884 */
c906108c
SS
885#define target_has_syscall_event(pid,kind,syscall_id) \
886 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
887
888/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
889 exit code of PID, if any.
c5aa993b 890 */
c906108c
SS
891#define target_has_exited(pid,wait_status,exit_status) \
892 (*current_target.to_has_exited) (pid,wait_status,exit_status)
893
894/* The debugger has completed a blocking wait() call. There is now
895 some process event that must be processed. This function should
896 be defined by those targets that require the debugger to perform
897 cleanup or internal state changes in response to the process event.
c5aa993b 898 */
c906108c
SS
899
900/* The inferior process has died. Do what is right. */
901
902#define target_mourn_inferior() \
903 (*current_target.to_mourn_inferior) ()
904
905/* Does target have enough data to do a run or attach command? */
906
907#define target_can_run(t) \
908 ((t)->to_can_run) ()
909
910/* post process changes to signal handling in the inferior. */
911
912#define target_notice_signals(pid) \
913 (*current_target.to_notice_signals) (pid)
914
915/* Check to see if a thread is still alive. */
916
917#define target_thread_alive(pid) \
918 (*current_target.to_thread_alive) (pid)
919
b83266a0
SS
920/* Query for new threads and add them to the thread list. */
921
922#define target_find_new_threads() \
923 do { \
924 if (current_target.to_find_new_threads) \
925 (*current_target.to_find_new_threads) (); \
926 } while (0);
927
c906108c
SS
928/* Make target stop in a continuable fashion. (For instance, under Unix, this
929 should act like SIGSTOP). This function is normally used by GUIs to
930 implement a stop button. */
931
932#define target_stop current_target.to_stop
933
934/* Queries the target side for some information. The first argument is a
935 letter specifying the type of the query, which is used to determine who
936 should process it. The second argument is a string that specifies which
937 information is desired and the third is a buffer that carries back the
938 response from the target side. The fourth parameter is the size of the
939 output buffer supplied. */
c5aa993b 940
c906108c
SS
941#define target_query(query_type, query, resp_buffer, bufffer_size) \
942 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
943
96baa820
JM
944/* Send the specified COMMAND to the target's monitor
945 (shell,interpreter) for execution. The result of the query is
946 placed in OUTBUF. */
947
948#define target_rcmd(command, outbuf) \
949 (*current_target.to_rcmd) (command, outbuf)
950
951
c906108c
SS
952/* Get the symbol information for a breakpointable routine called when
953 an exception event occurs.
954 Intended mainly for C++, and for those
955 platforms/implementations where such a callback mechanism is available,
956 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
957 different mechanisms for debugging exceptions. */
958
959#define target_enable_exception_callback(kind, enable) \
960 (*current_target.to_enable_exception_callback) (kind, enable)
961
962/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 963
c906108c
SS
964#define target_get_current_exception_event() \
965 (*current_target.to_get_current_exception_event) ()
966
967/* Pointer to next target in the chain, e.g. a core file and an exec file. */
968
969#define target_next \
970 (current_target.to_next)
971
972/* Does the target include all of memory, or only part of it? This
973 determines whether we look up the target chain for other parts of
974 memory if this target can't satisfy a request. */
975
976#define target_has_all_memory \
977 (current_target.to_has_all_memory)
978
979/* Does the target include memory? (Dummy targets don't.) */
980
981#define target_has_memory \
982 (current_target.to_has_memory)
983
984/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
985 we start a process.) */
c5aa993b 986
c906108c
SS
987#define target_has_stack \
988 (current_target.to_has_stack)
989
990/* Does the target have registers? (Exec files don't.) */
991
992#define target_has_registers \
993 (current_target.to_has_registers)
994
995/* Does the target have execution? Can we make it jump (through
996 hoops), or pop its stack a few times? FIXME: If this is to work that
997 way, it needs to check whether an inferior actually exists.
998 remote-udi.c and probably other targets can be the current target
999 when the inferior doesn't actually exist at the moment. Right now
1000 this just tells us whether this target is *capable* of execution. */
1001
1002#define target_has_execution \
1003 (current_target.to_has_execution)
1004
1005/* Can the target support the debugger control of thread execution?
1006 a) Can it lock the thread scheduler?
1007 b) Can it switch the currently running thread? */
1008
1009#define target_can_lock_scheduler \
1010 (current_target.to_has_thread_control & tc_schedlock)
1011
1012#define target_can_switch_threads \
1013 (current_target.to_has_thread_control & tc_switch)
1014
6426a772
JM
1015/* Can the target support asynchronous execution? */
1016#define target_can_async_p() (current_target.to_can_async_p ())
1017
1018/* Is the target in asynchronous execution mode? */
1019#define target_is_async_p() (current_target.to_is_async_p())
1020
1021/* Put the target in async mode with the specified callback function. */
1022#define target_async(CALLBACK,CONTEXT) (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1023
c906108c
SS
1024extern void target_link PARAMS ((char *, CORE_ADDR *));
1025
1026/* Converts a process id to a string. Usually, the string just contains
1027 `process xyz', but on some systems it may contain
1028 `process xyz thread abc'. */
1029
1030#ifndef target_pid_to_str
1031#define target_pid_to_str(PID) \
1032 normal_pid_to_str (PID)
1033extern char *normal_pid_to_str PARAMS ((int pid));
1034#endif
1035
1036#ifndef target_tid_to_str
1037#define target_tid_to_str(PID) \
1038 normal_pid_to_str (PID)
1039extern char *normal_pid_to_str PARAMS ((int pid));
1040#endif
c5aa993b 1041
c906108c
SS
1042
1043#ifndef target_new_objfile
1044#define target_new_objfile(OBJFILE)
1045#endif
1046
1047#ifndef target_pid_or_tid_to_str
1048#define target_pid_or_tid_to_str(ID) \
1049 normal_pid_to_str (ID)
1050#endif
1051
1052/* Attempts to find the pathname of the executable file
1053 that was run to create a specified process.
1054
1055 The process PID must be stopped when this operation is used.
c5aa993b 1056
c906108c
SS
1057 If the executable file cannot be determined, NULL is returned.
1058
1059 Else, a pointer to a character string containing the pathname
1060 is returned. This string should be copied into a buffer by
1061 the client if the string will not be immediately used, or if
1062 it must persist.
c5aa993b 1063 */
c906108c
SS
1064
1065#define target_pid_to_exec_file(pid) \
1066 (current_target.to_pid_to_exec_file) (pid)
1067
1068/* Hook to call target-dependant code after reading in a new symbol table. */
1069
1070#ifndef TARGET_SYMFILE_POSTREAD
1071#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1072#endif
1073
1074/* Hook to call target dependant code just after inferior target process has
1075 started. */
1076
1077#ifndef TARGET_CREATE_INFERIOR_HOOK
1078#define TARGET_CREATE_INFERIOR_HOOK(PID)
1079#endif
1080
1081/* Hardware watchpoint interfaces. */
1082
1083/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1084 write). */
1085
1086#ifndef STOPPED_BY_WATCHPOINT
1087#define STOPPED_BY_WATCHPOINT(w) 0
1088#endif
1089
1090/* HP-UX supplies these operations, which respectively disable and enable
1091 the memory page-protections that are used to implement hardware watchpoints
1092 on that platform. See wait_for_inferior's use of these.
c5aa993b 1093 */
c906108c
SS
1094#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1095#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1096#endif
1097
1098#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1099#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1100#endif
1101
1102/* Provide defaults for systems that don't support hardware watchpoints. */
1103
1104#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1105
1106/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1107 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1108 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1109 (including this one?). OTHERTYPE is who knows what... */
1110
1111#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1112
1113#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1114#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1115 (LONGEST)(byte_count) <= REGISTER_SIZE
1116#endif
1117
1118/* However, some addresses may not be profitable to use hardware to watch,
1119 or may be difficult to understand when the addressed object is out of
1120 scope, and hence should be unwatched. On some targets, this may have
1121 severe performance penalties, such that we might as well use regular
1122 watchpoints, and save (possibly precious) hardware watchpoints for other
1123 locations.
c5aa993b 1124 */
c906108c
SS
1125#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1126#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1127#endif
1128
1129
1130/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1131 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1132 success, non-zero for failure. */
1133
1134#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1135#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1136
1137#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1138
1139#ifndef target_insert_hw_breakpoint
1140#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1141#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1142#endif
1143
1144#ifndef target_stopped_data_address
1145#define target_stopped_data_address() 0
1146#endif
1147
1148/* If defined, then we need to decr pc by this much after a hardware break-
1149 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1150
1151#ifndef DECR_PC_AFTER_HW_BREAK
1152#define DECR_PC_AFTER_HW_BREAK 0
1153#endif
1154
1155/* Sometimes gdb may pick up what appears to be a valid target address
1156 from a minimal symbol, but the value really means, essentially,
1157 "This is an index into a table which is populated when the inferior
1158 is run. Therefore, do not attempt to use this as a PC."
c5aa993b 1159 */
c906108c
SS
1160#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1161#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1162#endif
1163
1164/* This will only be defined by a target that supports catching vfork events,
1165 such as HP-UX.
1166
1167 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1168 child process after it has exec'd, causes the parent process to resume as
1169 well. To prevent the parent from running spontaneously, such targets should
1170 define this to a function that prevents that from happening.
c5aa993b 1171 */
c906108c
SS
1172#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1173#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1174#endif
1175
1176/* This will only be defined by a target that supports catching vfork events,
1177 such as HP-UX.
1178
1179 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1180 process must be resumed when it delivers its exec event, before the parent
1181 vfork event will be delivered to us.
c5aa993b 1182 */
c906108c
SS
1183#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1184#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1185#endif
1186
1187/* Routines for maintenance of the target structures...
1188
1189 add_target: Add a target to the list of all possible targets.
1190
1191 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1192 targets, within its particular stratum of the stack. Result
1193 is 0 if now atop the stack, nonzero if not on top (maybe
1194 should warn user).
c906108c
SS
1195
1196 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1197 no matter where it is on the list. Returns 0 if no
1198 change, 1 if removed from stack.
c906108c 1199
c5aa993b 1200 pop_target: Remove the top thing on the stack of current targets. */
c906108c
SS
1201
1202extern void
1203add_target PARAMS ((struct target_ops *));
1204
1205extern int
1206push_target PARAMS ((struct target_ops *));
1207
1208extern int
1209unpush_target PARAMS ((struct target_ops *));
1210
1211extern void
1212target_preopen PARAMS ((int));
1213
1214extern void
1215pop_target PARAMS ((void));
1216
1217/* Struct section_table maps address ranges to file sections. It is
1218 mostly used with BFD files, but can be used without (e.g. for handling
1219 raw disks, or files not in formats handled by BFD). */
1220
c5aa993b
JM
1221struct section_table
1222 {
1223 CORE_ADDR addr; /* Lowest address in section */
1224 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1225
c5aa993b 1226 sec_ptr the_bfd_section;
c906108c 1227
c5aa993b
JM
1228 bfd *bfd; /* BFD file pointer */
1229 };
c906108c
SS
1230
1231/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1232 Returns 0 if OK, 1 on error. */
1233
1234extern int
1235build_section_table PARAMS ((bfd *, struct section_table **,
1236 struct section_table **));
1237
1238/* From mem-break.c */
1239
1240extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1241
1242extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1243
1244extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1245#ifndef BREAKPOINT_FROM_PC
1246#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1247#endif
1248
1249
1250/* From target.c */
1251
1252extern void
1253initialize_targets PARAMS ((void));
1254
1255extern void
1256noprocess PARAMS ((void));
1257
1258extern void
1259find_default_attach PARAMS ((char *, int));
1260
1261void
1262find_default_require_attach PARAMS ((char *, int));
1263
1264void
1265find_default_require_detach PARAMS ((int, char *, int));
1266
1267extern void
1268find_default_create_inferior PARAMS ((char *, char *, char **));
1269
1270void
1271find_default_clone_and_follow_inferior PARAMS ((int, int *));
1272
7a292a7a
SS
1273extern struct target_ops *find_run_target PARAMS ((void));
1274
c906108c 1275extern struct target_ops *
c5aa993b 1276 find_core_target PARAMS ((void));
6426a772
JM
1277
1278int
1279target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
c906108c
SS
1280\f
1281/* Stuff that should be shared among the various remote targets. */
1282
1283/* Debugging level. 0 is off, and non-zero values mean to print some debug
1284 information (higher values, more information). */
1285extern int remote_debug;
1286
1287/* Speed in bits per second, or -1 which means don't mess with the speed. */
1288extern int baud_rate;
1289/* Timeout limit for response from target. */
1290extern int remote_timeout;
1291
1292extern asection *target_memory_bfd_section;
1293\f
1294/* Functions for helping to write a native target. */
1295
1296/* This is for native targets which use a unix/POSIX-style waitstatus. */
1297extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1298
1299/* Convert between host signal numbers and enum target_signal's. */
1300extern enum target_signal target_signal_from_host PARAMS ((int));
1301extern int target_signal_to_host PARAMS ((enum target_signal));
1302
1303/* Convert from a number used in a GDB command to an enum target_signal. */
1304extern enum target_signal target_signal_from_command PARAMS ((int));
1305
1306/* Any target can call this to switch to remote protocol (in remote.c). */
1307extern void push_remote_target PARAMS ((char *name, int from_tty));
1308\f
1309/* Imported from machine dependent code */
1310
1311#ifndef SOFTWARE_SINGLE_STEP_P
1312#define SOFTWARE_SINGLE_STEP_P 0
1313#define SOFTWARE_SINGLE_STEP(sig,bp_p) abort ()
1314#endif /* SOFTWARE_SINGLE_STEP_P */
1315
1316/* Blank target vector entries are initialized to target_ignore. */
1317void target_ignore PARAMS ((void));
1318
1319/* Macro for getting target's idea of a frame pointer.
1320 FIXME: GDB's whole scheme for dealing with "frames" and
1321 "frame pointers" needs a serious shakedown. */
1322#ifndef TARGET_VIRTUAL_FRAME_POINTER
1323#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1324 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1325#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1326
c5aa993b 1327#endif /* !defined (TARGET_H) */
This page took 0.138145 seconds and 4 git commands to generate.