Commit | Line | Data |
---|---|---|
8cd64e00 YQ |
1 | /* Target dependent code for GDB on TI C6x systems. |
2 | ||
42a4f53d | 3 | Copyright (C) 2010-2019 Free Software Foundation, Inc. |
8cd64e00 YQ |
4 | Contributed by Andrew Jenner <andrew@codesourcery.com> |
5 | Contributed by Yao Qi <yao@codesourcery.com> | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "frame-unwind.h" | |
25 | #include "frame-base.h" | |
26 | #include "trad-frame.h" | |
27 | #include "dwarf2-frame.h" | |
28 | #include "symtab.h" | |
29 | #include "inferior.h" | |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcore.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "target.h" | |
34 | #include "dis-asm.h" | |
35 | #include "regcache.h" | |
36 | #include "value.h" | |
37 | #include "symfile.h" | |
38 | #include "arch-utils.h" | |
8cd64e00 YQ |
39 | #include "glibc-tdep.h" |
40 | #include "infcall.h" | |
41 | #include "regset.h" | |
42 | #include "tramp-frame.h" | |
43 | #include "linux-tdep.h" | |
44 | #include "solib.h" | |
45 | #include "objfiles.h" | |
8cd64e00 YQ |
46 | #include "osabi.h" |
47 | #include "tic6x-tdep.h" | |
48 | #include "language.h" | |
49 | #include "target-descriptions.h" | |
325fac50 | 50 | #include <algorithm> |
8cd64e00 | 51 | |
8cd64e00 YQ |
52 | #define TIC6X_OPCODE_SIZE 4 |
53 | #define TIC6X_FETCH_PACKET_SIZE 32 | |
54 | ||
55 | #define INST_S_BIT(INST) ((INST >> 1) & 1) | |
56 | #define INST_X_BIT(INST) ((INST >> 12) & 1) | |
57 | ||
85661b1e YQ |
58 | const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 }; |
59 | const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 }; | |
60 | ||
8cd64e00 YQ |
61 | struct tic6x_unwind_cache |
62 | { | |
63 | /* The frame's base, optionally used by the high-level debug info. */ | |
64 | CORE_ADDR base; | |
65 | ||
66 | /* The previous frame's inner most stack address. Used as this | |
67 | frame ID's stack_addr. */ | |
68 | CORE_ADDR cfa; | |
69 | ||
70 | /* The address of the first instruction in this function */ | |
71 | CORE_ADDR pc; | |
72 | ||
73 | /* Which register holds the return address for the frame. */ | |
74 | int return_regnum; | |
75 | ||
76 | /* The offset of register saved on stack. If register is not saved, the | |
77 | corresponding element is -1. */ | |
78 | CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS]; | |
79 | }; | |
80 | ||
81 | ||
82 | /* Name of TI C6x core registers. */ | |
83 | static const char *const tic6x_register_names[] = | |
84 | { | |
85 | "A0", "A1", "A2", "A3", /* 0 1 2 3 */ | |
86 | "A4", "A5", "A6", "A7", /* 4 5 6 7 */ | |
87 | "A8", "A9", "A10", "A11", /* 8 9 10 11 */ | |
88 | "A12", "A13", "A14", "A15", /* 12 13 14 15 */ | |
89 | "B0", "B1", "B2", "B3", /* 16 17 18 19 */ | |
90 | "B4", "B5", "B6", "B7", /* 20 21 22 23 */ | |
91 | "B8", "B9", "B10", "B11", /* 24 25 26 27 */ | |
92 | "B12", "B13", "B14", "B15", /* 28 29 30 31 */ | |
93 | "CSR", "PC", /* 32 33 */ | |
94 | }; | |
95 | ||
96 | /* This array maps the arguments to the register number which passes argument | |
97 | in function call according to C6000 ELF ABI. */ | |
98 | static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 }; | |
99 | ||
100 | /* This is the implementation of gdbarch method register_name. */ | |
101 | ||
102 | static const char * | |
103 | tic6x_register_name (struct gdbarch *gdbarch, int regno) | |
104 | { | |
105 | if (regno < 0) | |
106 | return NULL; | |
107 | ||
108 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
109 | return tdesc_register_name (gdbarch, regno); | |
110 | else if (regno >= ARRAY_SIZE (tic6x_register_names)) | |
111 | return ""; | |
112 | else | |
113 | return tic6x_register_names[regno]; | |
114 | } | |
115 | ||
116 | /* This is the implementation of gdbarch method register_type. */ | |
117 | ||
118 | static struct type * | |
119 | tic6x_register_type (struct gdbarch *gdbarch, int regno) | |
120 | { | |
121 | ||
122 | if (regno == TIC6X_PC_REGNUM) | |
123 | return builtin_type (gdbarch)->builtin_func_ptr; | |
124 | else | |
125 | return builtin_type (gdbarch)->builtin_uint32; | |
126 | } | |
127 | ||
128 | static void | |
129 | tic6x_setup_default (struct tic6x_unwind_cache *cache) | |
130 | { | |
131 | int i; | |
132 | ||
133 | for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) | |
134 | cache->reg_saved[i] = -1; | |
135 | } | |
136 | ||
137 | static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR); | |
138 | static int tic6x_register_number (int reg, int side, int crosspath); | |
139 | ||
140 | /* Do a full analysis of the prologue at START_PC and update CACHE accordingly. | |
141 | Bail out early if CURRENT_PC is reached. Returns the address of the first | |
142 | instruction after the prologue. */ | |
143 | ||
693be288 | 144 | static CORE_ADDR |
8cd64e00 YQ |
145 | tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, |
146 | const CORE_ADDR current_pc, | |
147 | struct tic6x_unwind_cache *cache, | |
148 | struct frame_info *this_frame) | |
149 | { | |
8cd64e00 YQ |
150 | unsigned int src_reg, base_reg, dst_reg; |
151 | int i; | |
152 | CORE_ADDR pc = start_pc; | |
153 | CORE_ADDR return_pc = start_pc; | |
154 | int frame_base_offset_to_sp = 0; | |
155 | /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */ | |
156 | int non_stw_insn_counter = 0; | |
157 | ||
158 | if (start_pc >= current_pc) | |
159 | return_pc = current_pc; | |
160 | ||
161 | cache->base = 0; | |
162 | ||
163 | /* The landmarks in prologue is one or two SUB instructions to SP. | |
164 | Instructions on setting up dsbt are in the last part of prologue, if | |
165 | needed. In maxim, prologue can be divided to three parts by two | |
166 | `sub sp, xx, sp' insns. */ | |
167 | ||
168 | /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the | |
169 | 2nd one is optional. */ | |
170 | while (pc < current_pc) | |
171 | { | |
8cd64e00 YQ |
172 | unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); |
173 | ||
174 | if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0 | |
175 | || (inst & 0x0ffc) == 0x9c0) | |
176 | { | |
177 | /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */ | |
178 | unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, | |
179 | INST_S_BIT (inst), 0); | |
180 | unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f, | |
181 | INST_S_BIT (inst), 0); | |
182 | ||
183 | if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM) | |
184 | { | |
185 | /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to | |
186 | offset. The constant offset is decoded in bit 13-17 in all | |
187 | these three kinds of instructions. */ | |
188 | unsigned int ucst5 = (inst >> 13) & 0x1f; | |
189 | ||
190 | if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */ | |
191 | frame_base_offset_to_sp += ucst5 << 2; | |
192 | else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */ | |
193 | frame_base_offset_to_sp += ucst5 << 1; | |
194 | else if ((inst & 0x0ffc) == 0x9c0) /* SUB */ | |
195 | frame_base_offset_to_sp += ucst5; | |
196 | else | |
197 | gdb_assert_not_reached ("unexpected instruction"); | |
198 | ||
199 | return_pc = pc + 4; | |
200 | } | |
201 | } | |
202 | else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */ | |
203 | { | |
204 | /* The y bit determines which file base is read from. */ | |
205 | base_reg = tic6x_register_number ((inst >> 18) & 0x1f, | |
206 | (inst >> 7) & 1, 0); | |
207 | ||
208 | if (base_reg == TIC6X_SP_REGNUM) | |
209 | { | |
210 | src_reg = tic6x_register_number ((inst >> 23) & 0x1f, | |
211 | INST_S_BIT (inst), 0); | |
212 | ||
213 | cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2; | |
214 | ||
215 | return_pc = pc + 4; | |
216 | } | |
217 | non_stw_insn_counter = 0; | |
218 | } | |
219 | else | |
220 | { | |
221 | non_stw_insn_counter++; | |
222 | /* Following instruction sequence may be emitted in prologue: | |
223 | ||
224 | <+0>: subah .D2 b15,28,b15 | |
225 | <+4>: or .L2X 0,a4,b0 | |
226 | <+8>: || stw .D2T2 b14,*+b15(56) | |
227 | <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220> | |
228 | <+16>:|| stw .D2T1 a10,*+b15(48) | |
229 | <+20>:stw .D2T2 b3,*+b15(52) | |
230 | <+24>:stw .D2T1 a4,*+b15(40) | |
231 | ||
232 | we should look forward for next instruction instead of breaking loop | |
233 | here. So far, we allow almost two sequential non-stw instructions | |
234 | in prologue. */ | |
235 | if (non_stw_insn_counter >= 2) | |
236 | break; | |
237 | } | |
238 | ||
239 | ||
240 | pc += 4; | |
241 | } | |
242 | /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like, | |
243 | ldw .D2T2 *+b14(0),b14 */ | |
b926417a | 244 | unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); |
8cd64e00 YQ |
245 | /* The s bit determines which file dst will be loaded into, same effect as |
246 | other places. */ | |
247 | dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0); | |
248 | /* The y bit (bit 7), instead of s bit, determines which file base be | |
249 | used. */ | |
250 | base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0); | |
251 | ||
252 | if ((inst & 0x164) == 0x64 /* ldw */ | |
253 | && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */ | |
254 | && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */ | |
255 | { | |
256 | return_pc = pc + 4; | |
257 | } | |
258 | ||
259 | if (this_frame) | |
260 | { | |
261 | cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); | |
262 | ||
263 | if (cache->reg_saved[TIC6X_FP_REGNUM] != -1) | |
264 | { | |
265 | /* If the FP now holds an offset from the CFA then this is a frame | |
266 | which uses the frame pointer. */ | |
267 | ||
268 | cache->cfa = get_frame_register_unsigned (this_frame, | |
269 | TIC6X_FP_REGNUM); | |
270 | } | |
271 | else | |
272 | { | |
273 | /* FP doesn't hold an offset from the CFA. If SP still holds an | |
274 | offset from the CFA then we might be in a function which omits | |
275 | the frame pointer. */ | |
276 | ||
277 | cache->cfa = cache->base + frame_base_offset_to_sp; | |
278 | } | |
279 | } | |
280 | ||
281 | /* Adjust all the saved registers such that they contain addresses | |
282 | instead of offsets. */ | |
283 | for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) | |
284 | if (cache->reg_saved[i] != -1) | |
285 | cache->reg_saved[i] = cache->base + cache->reg_saved[i]; | |
286 | ||
287 | return return_pc; | |
288 | } | |
289 | ||
290 | /* This is the implementation of gdbarch method skip_prologue. */ | |
291 | ||
693be288 | 292 | static CORE_ADDR |
8cd64e00 YQ |
293 | tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) |
294 | { | |
8cd64e00 YQ |
295 | CORE_ADDR func_addr; |
296 | struct tic6x_unwind_cache cache; | |
297 | ||
298 | /* See if we can determine the end of the prologue via the symbol table. | |
299 | If so, then return either PC, or the PC after the prologue, whichever is | |
300 | greater. */ | |
301 | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) | |
302 | { | |
303 | CORE_ADDR post_prologue_pc | |
304 | = skip_prologue_using_sal (gdbarch, func_addr); | |
305 | if (post_prologue_pc != 0) | |
325fac50 | 306 | return std::max (start_pc, post_prologue_pc); |
8cd64e00 YQ |
307 | } |
308 | ||
309 | /* Can't determine prologue from the symbol table, need to examine | |
310 | instructions. */ | |
311 | return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache, | |
312 | NULL); | |
313 | } | |
314 | ||
cd6c3b4f YQ |
315 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
316 | ||
d19280ad YQ |
317 | static int |
318 | tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | |
319 | { | |
320 | return 4; | |
321 | } | |
8cd64e00 | 322 | |
cd6c3b4f YQ |
323 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
324 | ||
948f8e3d | 325 | static const gdb_byte * |
d19280ad | 326 | tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) |
8cd64e00 YQ |
327 | { |
328 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
329 | ||
d19280ad | 330 | *size = kind; |
8cd64e00 YQ |
331 | |
332 | if (tdep == NULL || tdep->breakpoint == NULL) | |
333 | { | |
334 | if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch)) | |
335 | return tic6x_bkpt_illegal_opcode_be; | |
336 | else | |
337 | return tic6x_bkpt_illegal_opcode_le; | |
338 | } | |
339 | else | |
340 | return tdep->breakpoint; | |
341 | } | |
342 | ||
8cd64e00 YQ |
343 | static void |
344 | tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
345 | struct dwarf2_frame_state_reg *reg, | |
346 | struct frame_info *this_frame) | |
347 | { | |
348 | /* Mark the PC as the destination for the return address. */ | |
349 | if (regnum == gdbarch_pc_regnum (gdbarch)) | |
350 | reg->how = DWARF2_FRAME_REG_RA; | |
351 | ||
352 | /* Mark the stack pointer as the call frame address. */ | |
353 | else if (regnum == gdbarch_sp_regnum (gdbarch)) | |
354 | reg->how = DWARF2_FRAME_REG_CFA; | |
355 | ||
356 | /* The above was taken from the default init_reg in dwarf2-frame.c | |
357 | while the below is c6x specific. */ | |
358 | ||
359 | /* Callee save registers. The ABI designates A10-A15 and B10-B15 as | |
360 | callee-save. */ | |
361 | else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31)) | |
362 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
363 | else | |
364 | /* All other registers are caller-save. */ | |
365 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
366 | } | |
367 | ||
368 | /* This is the implementation of gdbarch method unwind_pc. */ | |
369 | ||
370 | static CORE_ADDR | |
371 | tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
372 | { | |
373 | gdb_byte buf[8]; | |
374 | ||
375 | frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf); | |
376 | return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); | |
377 | } | |
378 | ||
8cd64e00 YQ |
379 | /* Frame base handling. */ |
380 | ||
693be288 | 381 | static struct tic6x_unwind_cache* |
8cd64e00 YQ |
382 | tic6x_frame_unwind_cache (struct frame_info *this_frame, |
383 | void **this_prologue_cache) | |
384 | { | |
385 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
386 | CORE_ADDR current_pc; | |
387 | struct tic6x_unwind_cache *cache; | |
8cd64e00 YQ |
388 | |
389 | if (*this_prologue_cache) | |
19ba03f4 | 390 | return (struct tic6x_unwind_cache *) *this_prologue_cache; |
8cd64e00 YQ |
391 | |
392 | cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); | |
393 | (*this_prologue_cache) = cache; | |
394 | ||
395 | cache->return_regnum = TIC6X_RA_REGNUM; | |
396 | ||
397 | tic6x_setup_default (cache); | |
398 | ||
399 | cache->pc = get_frame_func (this_frame); | |
400 | current_pc = get_frame_pc (this_frame); | |
401 | ||
402 | /* Prologue analysis does the rest... */ | |
403 | if (cache->pc != 0) | |
404 | tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); | |
405 | ||
406 | return cache; | |
407 | } | |
408 | ||
409 | static void | |
410 | tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache, | |
411 | struct frame_id *this_id) | |
412 | { | |
413 | struct tic6x_unwind_cache *cache = | |
414 | tic6x_frame_unwind_cache (this_frame, this_cache); | |
415 | ||
416 | /* This marks the outermost frame. */ | |
417 | if (cache->base == 0) | |
418 | return; | |
419 | ||
420 | (*this_id) = frame_id_build (cache->cfa, cache->pc); | |
421 | } | |
422 | ||
423 | static struct value * | |
424 | tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
425 | int regnum) | |
426 | { | |
427 | struct tic6x_unwind_cache *cache = | |
428 | tic6x_frame_unwind_cache (this_frame, this_cache); | |
429 | ||
430 | gdb_assert (regnum >= 0); | |
431 | ||
432 | /* The PC of the previous frame is stored in the RA register of | |
433 | the current frame. Frob regnum so that we pull the value from | |
434 | the correct place. */ | |
435 | if (regnum == TIC6X_PC_REGNUM) | |
436 | regnum = cache->return_regnum; | |
437 | ||
438 | if (regnum == TIC6X_SP_REGNUM && cache->cfa) | |
439 | return frame_unwind_got_constant (this_frame, regnum, cache->cfa); | |
440 | ||
441 | /* If we've worked out where a register is stored then load it from | |
442 | there. */ | |
443 | if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1) | |
444 | return frame_unwind_got_memory (this_frame, regnum, | |
445 | cache->reg_saved[regnum]); | |
446 | ||
447 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
448 | } | |
449 | ||
450 | static CORE_ADDR | |
451 | tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache) | |
452 | { | |
453 | struct tic6x_unwind_cache *info | |
454 | = tic6x_frame_unwind_cache (this_frame, this_cache); | |
455 | return info->base; | |
456 | } | |
457 | ||
458 | static const struct frame_unwind tic6x_frame_unwind = | |
459 | { | |
460 | NORMAL_FRAME, | |
461 | default_frame_unwind_stop_reason, | |
462 | tic6x_frame_this_id, | |
463 | tic6x_frame_prev_register, | |
464 | NULL, | |
465 | default_frame_sniffer | |
466 | }; | |
467 | ||
468 | static const struct frame_base tic6x_frame_base = | |
469 | { | |
470 | &tic6x_frame_unwind, | |
471 | tic6x_frame_base_address, | |
472 | tic6x_frame_base_address, | |
473 | tic6x_frame_base_address | |
474 | }; | |
475 | ||
476 | ||
477 | static struct tic6x_unwind_cache * | |
478 | tic6x_make_stub_cache (struct frame_info *this_frame) | |
479 | { | |
480 | struct tic6x_unwind_cache *cache; | |
481 | ||
482 | cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); | |
483 | ||
484 | cache->return_regnum = TIC6X_RA_REGNUM; | |
485 | ||
486 | tic6x_setup_default (cache); | |
487 | ||
488 | cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); | |
489 | ||
490 | return cache; | |
491 | } | |
492 | ||
493 | static void | |
494 | tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache, | |
495 | struct frame_id *this_id) | |
496 | { | |
497 | struct tic6x_unwind_cache *cache; | |
498 | ||
499 | if (*this_cache == NULL) | |
500 | *this_cache = tic6x_make_stub_cache (this_frame); | |
19ba03f4 | 501 | cache = (struct tic6x_unwind_cache *) *this_cache; |
8cd64e00 YQ |
502 | |
503 | *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame)); | |
504 | } | |
505 | ||
506 | static int | |
507 | tic6x_stub_unwind_sniffer (const struct frame_unwind *self, | |
508 | struct frame_info *this_frame, | |
509 | void **this_prologue_cache) | |
510 | { | |
511 | CORE_ADDR addr_in_block; | |
512 | ||
513 | addr_in_block = get_frame_address_in_block (this_frame); | |
3e5d3a5a | 514 | if (in_plt_section (addr_in_block)) |
8cd64e00 YQ |
515 | return 1; |
516 | ||
517 | return 0; | |
518 | } | |
519 | ||
520 | static const struct frame_unwind tic6x_stub_unwind = | |
521 | { | |
522 | NORMAL_FRAME, | |
523 | default_frame_unwind_stop_reason, | |
524 | tic6x_stub_this_id, | |
525 | tic6x_frame_prev_register, | |
526 | NULL, | |
527 | tic6x_stub_unwind_sniffer | |
528 | }; | |
529 | ||
530 | /* Return the instruction on address PC. */ | |
531 | ||
532 | static unsigned long | |
533 | tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc) | |
534 | { | |
535 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
536 | return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order); | |
537 | } | |
538 | ||
539 | /* Compute the condition of INST if it is a conditional instruction. Always | |
540 | return 1 if INST is not a conditional instruction. */ | |
541 | ||
542 | static int | |
fb090cfa | 543 | tic6x_condition_true (struct regcache *regcache, unsigned long inst) |
8cd64e00 YQ |
544 | { |
545 | int register_number; | |
546 | int register_value; | |
547 | static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 }; | |
548 | ||
549 | register_number = register_numbers[(inst >> 29) & 7]; | |
550 | if (register_number == -1) | |
551 | return 1; | |
552 | ||
fb090cfa | 553 | register_value = regcache_raw_get_signed (regcache, register_number); |
8cd64e00 YQ |
554 | if ((inst & 0x10000000) != 0) |
555 | return register_value == 0; | |
556 | return register_value != 0; | |
557 | } | |
558 | ||
559 | /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in | |
560 | instruction. */ | |
561 | ||
562 | static int | |
563 | tic6x_register_number (int reg, int side, int crosspath) | |
564 | { | |
565 | int r = (reg & 15) | ((crosspath ^ side) << 4); | |
566 | if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */ | |
567 | r += 37; | |
568 | return r; | |
569 | } | |
570 | ||
571 | static int | |
572 | tic6x_extract_signed_field (int value, int low_bit, int bits) | |
573 | { | |
574 | int mask = (1 << bits) - 1; | |
575 | int r = (value >> low_bit) & mask; | |
576 | if ((r & (1 << (bits - 1))) != 0) | |
577 | r -= mask + 1; | |
578 | return r; | |
579 | } | |
580 | ||
581 | /* Determine where to set a single step breakpoint. */ | |
582 | ||
583 | static CORE_ADDR | |
fb090cfa | 584 | tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc) |
8cd64e00 | 585 | { |
ac7936df | 586 | struct gdbarch *gdbarch = regcache->arch (); |
8cd64e00 | 587 | unsigned long inst; |
8cd64e00 YQ |
588 | int register_number; |
589 | int last = 0; | |
590 | ||
591 | do | |
592 | { | |
593 | inst = tic6x_fetch_instruction (gdbarch, pc); | |
594 | ||
595 | last = !(inst & 1); | |
596 | ||
597 | if (inst == TIC6X_INST_SWE) | |
598 | { | |
599 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
600 | ||
601 | if (tdep->syscall_next_pc != NULL) | |
fb090cfa | 602 | return tdep->syscall_next_pc (get_current_frame ()); |
8cd64e00 YQ |
603 | } |
604 | ||
fb090cfa | 605 | if (tic6x_condition_true (regcache, inst)) |
8cd64e00 YQ |
606 | { |
607 | if ((inst & 0x0000007c) == 0x00000010) | |
608 | { | |
609 | /* B with displacement */ | |
610 | pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); | |
611 | pc += tic6x_extract_signed_field (inst, 7, 21) << 2; | |
612 | break; | |
613 | } | |
614 | if ((inst & 0x0f83effc) == 0x00000360) | |
615 | { | |
616 | /* B with register */ | |
617 | ||
618 | register_number = tic6x_register_number ((inst >> 18) & 0x1f, | |
619 | INST_S_BIT (inst), | |
620 | INST_X_BIT (inst)); | |
fb090cfa | 621 | pc = regcache_raw_get_unsigned (regcache, register_number); |
8cd64e00 YQ |
622 | break; |
623 | } | |
624 | if ((inst & 0x00001ffc) == 0x00001020) | |
625 | { | |
626 | /* BDEC */ | |
627 | register_number = tic6x_register_number ((inst >> 23) & 0x1f, | |
628 | INST_S_BIT (inst), 0); | |
fb090cfa | 629 | if (regcache_raw_get_signed (regcache, register_number) >= 0) |
8cd64e00 YQ |
630 | { |
631 | pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); | |
632 | pc += tic6x_extract_signed_field (inst, 7, 10) << 2; | |
633 | } | |
634 | break; | |
635 | } | |
636 | if ((inst & 0x00001ffc) == 0x00000120) | |
637 | { | |
638 | /* BNOP with displacement */ | |
639 | pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); | |
640 | pc += tic6x_extract_signed_field (inst, 16, 12) << 2; | |
641 | break; | |
642 | } | |
643 | if ((inst & 0x0f830ffe) == 0x00800362) | |
644 | { | |
645 | /* BNOP with register */ | |
646 | register_number = tic6x_register_number ((inst >> 18) & 0x1f, | |
647 | 1, INST_X_BIT (inst)); | |
fb090cfa | 648 | pc = regcache_raw_get_unsigned (regcache, register_number); |
8cd64e00 YQ |
649 | break; |
650 | } | |
651 | if ((inst & 0x00001ffc) == 0x00000020) | |
652 | { | |
653 | /* BPOS */ | |
654 | register_number = tic6x_register_number ((inst >> 23) & 0x1f, | |
655 | INST_S_BIT (inst), 0); | |
fb090cfa | 656 | if (regcache_raw_get_signed (regcache, register_number) >= 0) |
8cd64e00 YQ |
657 | { |
658 | pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); | |
659 | pc += tic6x_extract_signed_field (inst, 13, 10) << 2; | |
660 | } | |
661 | break; | |
662 | } | |
663 | if ((inst & 0xf000007c) == 0x10000010) | |
664 | { | |
665 | /* CALLP */ | |
666 | pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); | |
667 | pc += tic6x_extract_signed_field (inst, 7, 21) << 2; | |
668 | break; | |
669 | } | |
670 | } | |
671 | pc += TIC6X_OPCODE_SIZE; | |
672 | } | |
673 | while (!last); | |
674 | return pc; | |
675 | } | |
676 | ||
677 | /* This is the implementation of gdbarch method software_single_step. */ | |
678 | ||
a0ff9e1a | 679 | static std::vector<CORE_ADDR> |
f5ea389a | 680 | tic6x_software_single_step (struct regcache *regcache) |
8cd64e00 | 681 | { |
fb090cfa | 682 | CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache)); |
8cd64e00 | 683 | |
a0ff9e1a | 684 | return {next_pc}; |
8cd64e00 YQ |
685 | } |
686 | ||
687 | /* This is the implementation of gdbarch method frame_align. */ | |
688 | ||
689 | static CORE_ADDR | |
690 | tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
691 | { | |
692 | return align_down (addr, 8); | |
693 | } | |
694 | ||
8cd64e00 YQ |
695 | /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its |
696 | value into VALBUF. */ | |
697 | ||
698 | static void | |
699 | tic6x_extract_return_value (struct type *valtype, struct regcache *regcache, | |
700 | enum bfd_endian byte_order, gdb_byte *valbuf) | |
701 | { | |
702 | int len = TYPE_LENGTH (valtype); | |
703 | ||
704 | /* pointer types are returned in register A4, | |
705 | up to 32-bit types in A4 | |
706 | up to 64-bit types in A5:A4 */ | |
707 | if (len <= 4) | |
708 | { | |
709 | /* In big-endian, | |
710 | - one-byte structure or union occupies the LSB of single even register. | |
711 | - for two-byte structure or union, the first byte occupies byte 1 of | |
712 | register and the second byte occupies byte 0. | |
713 | so, we read the contents in VAL from the LSBs of register. */ | |
714 | if (len < 3 && byte_order == BFD_ENDIAN_BIG) | |
73bb0000 | 715 | regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf); |
8cd64e00 | 716 | else |
dca08e1f | 717 | regcache->cooked_read (TIC6X_A4_REGNUM, valbuf); |
8cd64e00 YQ |
718 | } |
719 | else if (len <= 8) | |
720 | { | |
721 | /* For a 5-8 byte structure or union in big-endian, the first byte | |
722 | occupies byte 3 (the MSB) of the upper (odd) register and the | |
723 | remaining bytes fill the decreasingly significant bytes. 5-7 | |
724 | byte structures or unions have padding in the LSBs of the | |
725 | lower (even) register. */ | |
726 | if (byte_order == BFD_ENDIAN_BIG) | |
727 | { | |
dca08e1f SM |
728 | regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4); |
729 | regcache->cooked_read (TIC6X_A5_REGNUM, valbuf); | |
8cd64e00 YQ |
730 | } |
731 | else | |
732 | { | |
dca08e1f SM |
733 | regcache->cooked_read (TIC6X_A4_REGNUM, valbuf); |
734 | regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4); | |
8cd64e00 YQ |
735 | } |
736 | } | |
737 | } | |
738 | ||
739 | /* Write into appropriate registers a function return value | |
740 | of type TYPE, given in virtual format. */ | |
741 | ||
742 | static void | |
743 | tic6x_store_return_value (struct type *valtype, struct regcache *regcache, | |
744 | enum bfd_endian byte_order, const gdb_byte *valbuf) | |
745 | { | |
746 | int len = TYPE_LENGTH (valtype); | |
747 | ||
748 | /* return values of up to 8 bytes are returned in A5:A4 */ | |
749 | ||
750 | if (len <= 4) | |
751 | { | |
752 | if (len < 3 && byte_order == BFD_ENDIAN_BIG) | |
e4c4a59b | 753 | regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf); |
8cd64e00 | 754 | else |
b66f5587 | 755 | regcache->cooked_write (TIC6X_A4_REGNUM, valbuf); |
8cd64e00 YQ |
756 | } |
757 | else if (len <= 8) | |
758 | { | |
759 | if (byte_order == BFD_ENDIAN_BIG) | |
760 | { | |
b66f5587 SM |
761 | regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4); |
762 | regcache->cooked_write (TIC6X_A5_REGNUM, valbuf); | |
8cd64e00 YQ |
763 | } |
764 | else | |
765 | { | |
b66f5587 SM |
766 | regcache->cooked_write (TIC6X_A4_REGNUM, valbuf); |
767 | regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4); | |
8cd64e00 YQ |
768 | } |
769 | } | |
770 | } | |
771 | ||
772 | /* This is the implementation of gdbarch method return_value. */ | |
773 | ||
774 | static enum return_value_convention | |
6a3a010b | 775 | tic6x_return_value (struct gdbarch *gdbarch, struct value *function, |
8cd64e00 YQ |
776 | struct type *type, struct regcache *regcache, |
777 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
778 | { | |
18648a37 YQ |
779 | /* In C++, when function returns an object, even its size is small |
780 | enough, it stii has to be passed via reference, pointed by register | |
781 | A3. */ | |
782 | if (current_language->la_language == language_cplus) | |
783 | { | |
784 | if (type != NULL) | |
785 | { | |
f168693b | 786 | type = check_typedef (type); |
18648a37 YQ |
787 | if (language_pass_by_reference (type)) |
788 | return RETURN_VALUE_STRUCT_CONVENTION; | |
789 | } | |
790 | } | |
791 | ||
8cd64e00 YQ |
792 | if (TYPE_LENGTH (type) > 8) |
793 | return RETURN_VALUE_STRUCT_CONVENTION; | |
794 | ||
795 | if (readbuf) | |
796 | tic6x_extract_return_value (type, regcache, | |
797 | gdbarch_byte_order (gdbarch), readbuf); | |
798 | if (writebuf) | |
799 | tic6x_store_return_value (type, regcache, | |
800 | gdbarch_byte_order (gdbarch), writebuf); | |
801 | ||
802 | return RETURN_VALUE_REGISTER_CONVENTION; | |
803 | } | |
804 | ||
8cd64e00 YQ |
805 | /* Get the alignment requirement of TYPE. */ |
806 | ||
807 | static int | |
808 | tic6x_arg_type_alignment (struct type *type) | |
809 | { | |
810 | int len = TYPE_LENGTH (check_typedef (type)); | |
811 | enum type_code typecode = TYPE_CODE (check_typedef (type)); | |
812 | ||
813 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
814 | { | |
815 | /* The stack alignment of a structure (and union) passed by value is the | |
816 | smallest power of two greater than or equal to its size. | |
817 | This cannot exceed 8 bytes, which is the largest allowable size for | |
818 | a structure passed by value. */ | |
819 | ||
820 | if (len <= 2) | |
821 | return len; | |
822 | else if (len <= 4) | |
823 | return 4; | |
824 | else if (len <= 8) | |
825 | return 8; | |
826 | else | |
827 | gdb_assert_not_reached ("unexpected length of data"); | |
828 | } | |
829 | else | |
830 | { | |
831 | if (len <= 4) | |
832 | return 4; | |
833 | else if (len == 8) | |
834 | { | |
835 | if (typecode == TYPE_CODE_COMPLEX) | |
836 | return 4; | |
837 | else | |
838 | return 8; | |
839 | } | |
840 | else if (len == 16) | |
841 | { | |
842 | if (typecode == TYPE_CODE_COMPLEX) | |
843 | return 8; | |
844 | else | |
845 | return 16; | |
846 | } | |
847 | else | |
848 | internal_error (__FILE__, __LINE__, _("unexpected length %d of type"), | |
849 | len); | |
850 | } | |
851 | } | |
852 | ||
853 | /* This is the implementation of gdbarch method push_dummy_call. */ | |
854 | ||
855 | static CORE_ADDR | |
856 | tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
857 | struct regcache *regcache, CORE_ADDR bp_addr, | |
858 | int nargs, struct value **args, CORE_ADDR sp, | |
cf84fa6b AH |
859 | function_call_return_method return_method, |
860 | CORE_ADDR struct_addr) | |
8cd64e00 YQ |
861 | { |
862 | int argreg = 0; | |
863 | int argnum; | |
8cd64e00 YQ |
864 | int stack_offset = 4; |
865 | int references_offset = 4; | |
8cd64e00 YQ |
866 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
867 | struct type *func_type = value_type (function); | |
868 | /* The first arg passed on stack. Mostly the first 10 args are passed by | |
869 | registers. */ | |
870 | int first_arg_on_stack = 10; | |
8cd64e00 | 871 | |
8cd64e00 YQ |
872 | /* Set the return address register to point to the entry point of |
873 | the program, where a breakpoint lies in wait. */ | |
874 | regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr); | |
875 | ||
876 | /* The caller must pass an argument in A3 containing a destination address | |
877 | for the returned value. The callee returns the object by copying it to | |
878 | the address in A3. */ | |
cf84fa6b | 879 | if (return_method == return_method_struct) |
8cd64e00 | 880 | regcache_cooked_write_unsigned (regcache, 3, struct_addr); |
8cd64e00 YQ |
881 | |
882 | /* Determine the type of this function. */ | |
883 | func_type = check_typedef (func_type); | |
884 | if (TYPE_CODE (func_type) == TYPE_CODE_PTR) | |
885 | func_type = check_typedef (TYPE_TARGET_TYPE (func_type)); | |
886 | ||
887 | gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC | |
888 | || TYPE_CODE (func_type) == TYPE_CODE_METHOD); | |
889 | ||
890 | /* For a variadic C function, the last explicitly declared argument and all | |
891 | remaining arguments are passed on the stack. */ | |
892 | if (TYPE_VARARGS (func_type)) | |
893 | first_arg_on_stack = TYPE_NFIELDS (func_type) - 1; | |
894 | ||
18648a37 YQ |
895 | /* Now make space on the stack for the args. */ |
896 | for (argnum = 0; argnum < nargs; argnum++) | |
8cd64e00 YQ |
897 | { |
898 | int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4); | |
899 | if (argnum >= 10 - argreg) | |
900 | references_offset += len; | |
901 | stack_offset += len; | |
902 | } | |
903 | sp -= stack_offset; | |
904 | /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1 | |
905 | Stack Alignment. */ | |
906 | sp = align_down (sp, 8); | |
907 | stack_offset = 4; | |
908 | ||
909 | /* Now load as many as possible of the first arguments into | |
910 | registers, and push the rest onto the stack. Loop through args | |
911 | from first to last. */ | |
18648a37 | 912 | for (argnum = 0; argnum < nargs; argnum++) |
8cd64e00 YQ |
913 | { |
914 | const gdb_byte *val; | |
915 | struct value *arg = args[argnum]; | |
916 | struct type *arg_type = check_typedef (value_type (arg)); | |
917 | int len = TYPE_LENGTH (arg_type); | |
918 | enum type_code typecode = TYPE_CODE (arg_type); | |
919 | ||
920 | val = value_contents (arg); | |
921 | ||
922 | /* Copy the argument to general registers or the stack in | |
923 | register-sized pieces. */ | |
924 | if (argreg < first_arg_on_stack) | |
925 | { | |
926 | if (len <= 4) | |
927 | { | |
928 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
929 | { | |
930 | /* In big-endian, | |
931 | - one-byte structure or union occupies the LSB of single | |
932 | even register. | |
933 | - for two-byte structure or union, the first byte | |
934 | occupies byte 1 of register and the second byte occupies | |
935 | byte 0. | |
936 | so, we write the contents in VAL to the lsp of | |
937 | register. */ | |
938 | if (len < 3 && byte_order == BFD_ENDIAN_BIG) | |
e4c4a59b SM |
939 | regcache->cooked_write_part (arg_regs[argreg], 4 - len, len, |
940 | val); | |
8cd64e00 | 941 | else |
b66f5587 | 942 | regcache->cooked_write (arg_regs[argreg], val); |
8cd64e00 YQ |
943 | } |
944 | else | |
945 | { | |
946 | /* The argument is being passed by value in a single | |
947 | register. */ | |
948 | CORE_ADDR regval = extract_unsigned_integer (val, len, | |
949 | byte_order); | |
950 | ||
951 | regcache_cooked_write_unsigned (regcache, arg_regs[argreg], | |
952 | regval); | |
953 | } | |
954 | } | |
955 | else | |
956 | { | |
957 | if (len <= 8) | |
958 | { | |
959 | if (typecode == TYPE_CODE_STRUCT | |
960 | || typecode == TYPE_CODE_UNION) | |
961 | { | |
962 | /* For a 5-8 byte structure or union in big-endian, the | |
963 | first byte occupies byte 3 (the MSB) of the upper (odd) | |
964 | register and the remaining bytes fill the decreasingly | |
965 | significant bytes. 5-7 byte structures or unions have | |
966 | padding in the LSBs of the lower (even) register. */ | |
967 | if (byte_order == BFD_ENDIAN_BIG) | |
968 | { | |
b66f5587 | 969 | regcache->cooked_write (arg_regs[argreg] + 1, val); |
e4c4a59b SM |
970 | regcache->cooked_write_part (arg_regs[argreg], 0, |
971 | len - 4, val + 4); | |
8cd64e00 YQ |
972 | } |
973 | else | |
974 | { | |
b66f5587 | 975 | regcache->cooked_write (arg_regs[argreg], val); |
e4c4a59b SM |
976 | regcache->cooked_write_part (arg_regs[argreg] + 1, 0, |
977 | len - 4, val + 4); | |
8cd64e00 YQ |
978 | } |
979 | } | |
980 | else | |
981 | { | |
982 | /* The argument is being passed by value in a pair of | |
983 | registers. */ | |
984 | ULONGEST regval = extract_unsigned_integer (val, len, | |
985 | byte_order); | |
986 | ||
987 | regcache_cooked_write_unsigned (regcache, | |
988 | arg_regs[argreg], | |
989 | regval); | |
990 | regcache_cooked_write_unsigned (regcache, | |
991 | arg_regs[argreg] + 1, | |
992 | regval >> 32); | |
993 | } | |
994 | } | |
995 | else | |
996 | { | |
997 | /* The argument is being passed by reference in a single | |
998 | register. */ | |
999 | CORE_ADDR addr; | |
1000 | ||
1001 | /* It is not necessary to adjust REFERENCES_OFFSET to | |
1002 | 8-byte aligned in some cases, in which 4-byte alignment | |
1003 | is sufficient. For simplicity, we adjust | |
1004 | REFERENCES_OFFSET to 8-byte aligned. */ | |
1005 | references_offset = align_up (references_offset, 8); | |
1006 | ||
1007 | addr = sp + references_offset; | |
1008 | write_memory (addr, val, len); | |
1009 | references_offset += align_up (len, 4); | |
1010 | regcache_cooked_write_unsigned (regcache, arg_regs[argreg], | |
1011 | addr); | |
1012 | } | |
1013 | } | |
1014 | argreg++; | |
1015 | } | |
1016 | else | |
1017 | { | |
1018 | /* The argument is being passed on the stack. */ | |
1019 | CORE_ADDR addr; | |
1020 | ||
1021 | /* There are six different cases of alignment, and these rules can | |
1022 | be found in tic6x_arg_type_alignment: | |
1023 | ||
1024 | 1) 4-byte aligned if size is less than or equal to 4 byte, such | |
1025 | as short, int, struct, union etc. | |
1026 | 2) 8-byte aligned if size is less than or equal to 8-byte, such | |
1027 | as double, long long, | |
1028 | 3) 4-byte aligned if it is of type _Complex float, even its size | |
1029 | is 8-byte. | |
1030 | 4) 8-byte aligned if it is of type _Complex double or _Complex | |
1031 | long double, even its size is 16-byte. Because, the address of | |
1032 | variable is passed as reference. | |
1033 | 5) struct and union larger than 8-byte are passed by reference, so | |
1034 | it is 4-byte aligned. | |
1035 | 6) struct and union of size between 4 byte and 8 byte varies. | |
1036 | alignment of struct variable is the alignment of its first field, | |
1037 | while alignment of union variable is the max of all its fields' | |
1038 | alignment. */ | |
1039 | ||
1040 | if (len <= 4) | |
1041 | ; /* Default is 4-byte aligned. Nothing to be done. */ | |
1042 | else if (len <= 8) | |
1043 | stack_offset = align_up (stack_offset, | |
1044 | tic6x_arg_type_alignment (arg_type)); | |
1045 | else if (len == 16) | |
1046 | { | |
1047 | /* _Complex double or _Complex long double */ | |
1048 | if (typecode == TYPE_CODE_COMPLEX) | |
1049 | { | |
1050 | /* The argument is being passed by reference on stack. */ | |
8cd64e00 YQ |
1051 | references_offset = align_up (references_offset, 8); |
1052 | ||
1053 | addr = sp + references_offset; | |
1054 | /* Store variable on stack. */ | |
1055 | write_memory (addr, val, len); | |
1056 | ||
1057 | references_offset += align_up (len, 4); | |
1058 | ||
1059 | /* Pass the address of variable on stack as reference. */ | |
1060 | store_unsigned_integer ((gdb_byte *) val, 4, byte_order, | |
1061 | addr); | |
1062 | len = 4; | |
1063 | ||
1064 | } | |
1065 | else | |
1066 | internal_error (__FILE__, __LINE__, | |
1067 | _("unexpected type %d of arg %d"), | |
1068 | typecode, argnum); | |
1069 | } | |
1070 | else | |
1071 | internal_error (__FILE__, __LINE__, | |
1072 | _("unexpected length %d of arg %d"), len, argnum); | |
1073 | ||
1074 | addr = sp + stack_offset; | |
1075 | write_memory (addr, val, len); | |
1076 | stack_offset += align_up (len, 4); | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp); | |
1081 | ||
1082 | /* Return adjusted stack pointer. */ | |
1083 | return sp; | |
1084 | } | |
1085 | ||
c9cf6e20 | 1086 | /* This is the implementation of gdbarch method stack_frame_destroyed_p. */ |
8cd64e00 YQ |
1087 | |
1088 | static int | |
c9cf6e20 | 1089 | tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
8cd64e00 YQ |
1090 | { |
1091 | unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); | |
1092 | /* Normally, the epilogue is composed by instruction `b .S2 b3'. */ | |
1093 | if ((inst & 0x0f83effc) == 0x360) | |
1094 | { | |
1095 | unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, | |
1096 | INST_S_BIT (inst), | |
1097 | INST_X_BIT (inst)); | |
1098 | if (src2 == TIC6X_RA_REGNUM) | |
1099 | return 1; | |
1100 | } | |
1101 | ||
1102 | return 0; | |
1103 | } | |
1104 | ||
1105 | /* This is the implementation of gdbarch method get_longjmp_target. */ | |
1106 | ||
1107 | static int | |
1108 | tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
1109 | { | |
1110 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
1111 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1112 | CORE_ADDR jb_addr; | |
e362b510 | 1113 | gdb_byte buf[4]; |
8cd64e00 YQ |
1114 | |
1115 | /* JMP_BUF is passed by reference in A4. */ | |
1116 | jb_addr = get_frame_register_unsigned (frame, 4); | |
1117 | ||
1118 | /* JMP_BUF contains 13 elements of type int, and return address is stored | |
1119 | in the last slot. */ | |
1120 | if (target_read_memory (jb_addr + 12 * 4, buf, 4)) | |
1121 | return 0; | |
1122 | ||
1123 | *pc = extract_unsigned_integer (buf, 4, byte_order); | |
1124 | ||
1125 | return 1; | |
1126 | } | |
1127 | ||
18648a37 YQ |
1128 | /* This is the implementation of gdbarch method |
1129 | return_in_first_hidden_param_p. */ | |
1130 | ||
1131 | static int | |
1132 | tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch, | |
1133 | struct type *type) | |
1134 | { | |
1135 | return 0; | |
1136 | } | |
1137 | ||
8cd64e00 YQ |
1138 | static struct gdbarch * |
1139 | tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1140 | { | |
1141 | struct gdbarch *gdbarch; | |
1142 | struct gdbarch_tdep *tdep; | |
1143 | struct tdesc_arch_data *tdesc_data = NULL; | |
1144 | const struct target_desc *tdesc = info.target_desc; | |
1145 | int has_gp = 0; | |
1146 | ||
1147 | /* Check any target description for validity. */ | |
1148 | if (tdesc_has_registers (tdesc)) | |
1149 | { | |
1150 | const struct tdesc_feature *feature; | |
1151 | int valid_p, i; | |
1152 | ||
1153 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core"); | |
1154 | ||
1155 | if (feature == NULL) | |
1156 | return NULL; | |
1157 | ||
1158 | tdesc_data = tdesc_data_alloc (); | |
1159 | ||
1160 | valid_p = 1; | |
1161 | for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */ | |
1162 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
1163 | tic6x_register_names[i]); | |
1164 | ||
1165 | /* CSR */ | |
1166 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, | |
1167 | tic6x_register_names[TIC6X_CSR_REGNUM]); | |
1168 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, | |
1169 | tic6x_register_names[TIC6X_PC_REGNUM]); | |
1170 | ||
1171 | if (!valid_p) | |
1172 | { | |
1173 | tdesc_data_cleanup (tdesc_data); | |
1174 | return NULL; | |
1175 | } | |
1176 | ||
1177 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp"); | |
1178 | if (feature) | |
1179 | { | |
1180 | int j = 0; | |
1181 | static const char *const gp[] = | |
1182 | { | |
1183 | "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", | |
1184 | "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", | |
1185 | "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", | |
1186 | "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", | |
1187 | }; | |
1188 | ||
1189 | has_gp = 1; | |
1190 | valid_p = 1; | |
1191 | for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */ | |
1192 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, | |
1193 | gp[j]); | |
1194 | ||
1195 | if (!valid_p) | |
1196 | { | |
1197 | tdesc_data_cleanup (tdesc_data); | |
1198 | return NULL; | |
1199 | } | |
1200 | } | |
1201 | ||
1202 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp"); | |
1203 | if (feature) | |
1204 | { | |
1205 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR"); | |
1206 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC"); | |
1207 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC"); | |
1208 | ||
1209 | if (!valid_p) | |
1210 | { | |
1211 | tdesc_data_cleanup (tdesc_data); | |
1212 | return NULL; | |
1213 | } | |
1214 | } | |
1215 | ||
1216 | } | |
1217 | ||
1218 | /* Find a candidate among extant architectures. */ | |
1219 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
1220 | arches != NULL; | |
1221 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
1222 | { | |
1223 | tdep = gdbarch_tdep (arches->gdbarch); | |
1224 | ||
1225 | if (has_gp != tdep->has_gp) | |
1226 | continue; | |
1227 | ||
1228 | if (tdep && tdep->breakpoint) | |
1229 | return arches->gdbarch; | |
1230 | } | |
1231 | ||
8d749320 | 1232 | tdep = XCNEW (struct gdbarch_tdep); |
8cd64e00 YQ |
1233 | |
1234 | tdep->has_gp = has_gp; | |
1235 | gdbarch = gdbarch_alloc (&info, tdep); | |
1236 | ||
1237 | /* Data type sizes. */ | |
1238 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1239 | set_gdbarch_addr_bit (gdbarch, 32); | |
1240 | set_gdbarch_short_bit (gdbarch, 16); | |
1241 | set_gdbarch_int_bit (gdbarch, 32); | |
1242 | set_gdbarch_long_bit (gdbarch, 32); | |
1243 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1244 | set_gdbarch_float_bit (gdbarch, 32); | |
1245 | set_gdbarch_double_bit (gdbarch, 64); | |
1246 | ||
1247 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | |
1248 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
1249 | ||
1250 | /* The register set. */ | |
1251 | set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS); | |
1252 | set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM); | |
1253 | set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM); | |
1254 | ||
1255 | set_gdbarch_register_name (gdbarch, tic6x_register_name); | |
1256 | set_gdbarch_register_type (gdbarch, tic6x_register_type); | |
1257 | ||
1258 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1259 | ||
1260 | set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue); | |
04180708 YQ |
1261 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, |
1262 | tic6x_breakpoint_kind_from_pc); | |
1263 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | |
1264 | tic6x_sw_breakpoint_from_kind); | |
8cd64e00 YQ |
1265 | |
1266 | set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc); | |
8cd64e00 YQ |
1267 | |
1268 | /* Unwinding. */ | |
1269 | dwarf2_append_unwinders (gdbarch); | |
1270 | ||
1271 | frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind); | |
1272 | frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind); | |
195abc10 | 1273 | frame_base_set_default (gdbarch, &tic6x_frame_base); |
8cd64e00 YQ |
1274 | |
1275 | dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg); | |
1276 | ||
1277 | /* Single stepping. */ | |
1278 | set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step); | |
1279 | ||
8cd64e00 YQ |
1280 | /* Call dummy code. */ |
1281 | set_gdbarch_frame_align (gdbarch, tic6x_frame_align); | |
1282 | ||
8cd64e00 YQ |
1283 | set_gdbarch_return_value (gdbarch, tic6x_return_value); |
1284 | ||
8cd64e00 YQ |
1285 | /* Enable inferior call support. */ |
1286 | set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call); | |
1287 | ||
1288 | set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target); | |
1289 | ||
c9cf6e20 | 1290 | set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p); |
8cd64e00 | 1291 | |
18648a37 YQ |
1292 | set_gdbarch_return_in_first_hidden_param_p (gdbarch, |
1293 | tic6x_return_in_first_hidden_param_p); | |
1294 | ||
8cd64e00 YQ |
1295 | /* Hook in ABI-specific overrides, if they have been registered. */ |
1296 | gdbarch_init_osabi (info, gdbarch); | |
1297 | ||
1298 | if (tdesc_data) | |
1299 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); | |
1300 | ||
1301 | return gdbarch; | |
1302 | } | |
1303 | ||
1304 | void | |
1305 | _initialize_tic6x_tdep (void) | |
1306 | { | |
1307 | register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init); | |
8cd64e00 | 1308 | } |