Various improvements.
[deliverable/binutils-gdb.git] / gdb / tm-arm.h
CommitLineData
dd3b648e 1/* Definitions to make GDB target for an ARM under RISCiX (4.3bsd).
fbcb5095 2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
dd3b648e
RP
3
4This file is part of GDB.
5
99a7de40 6This program is free software; you can redistribute it and/or modify
dd3b648e 7it under the terms of the GNU General Public License as published by
99a7de40
JG
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
dd3b648e 10
99a7de40 11This program is distributed in the hope that it will be useful,
dd3b648e
RP
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
99a7de40
JG
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
dd3b648e
RP
19
20#define TARGET_BYTE_ORDER LITTLE_ENDIAN
21
22/* IEEE format floating point */
23
24#define IEEE_FLOAT
25
26/* I provide my own xfer_core_file to cope with shared libraries */
27
28#define XFER_CORE_FILE
29
30/* Define this if the C compiler puts an underscore at the front
31 of external names before giving them to the linker. */
32
33#define NAMES_HAVE_UNDERSCORE
34
dd3b648e
RP
35/* Offset from address of function to start of its code.
36 Zero on most machines. */
37
38#define FUNCTION_START_OFFSET 0
39
40/* Advance PC across any function entry prologue instructions
41 to reach some "real" code. */
42
43#define SKIP_PROLOGUE(pc) pc = skip_prologue(pc)
44
45/* Immediately after a function call, return the saved pc.
46 Can't always go through the frames for this because on some machines
47 the new frame is not set up until the new function executes
48 some instructions. */
49
50#define SAVED_PC_AFTER_CALL(frame) (read_register (LR_REGNUM) & 0x03fffffc)
51
52/* I don't know the real values for these. */
53#define TARGET_UPAGES UPAGES
54#define TARGET_NBPG NBPG
55
56/* Address of end of stack space. */
57
58#define STACK_END_ADDR (0x01000000 - (TARGET_UPAGES * TARGET_NBPG))
59
60/* Stack grows downward. */
61
62#define INNER_THAN <
63
64/* Sequence of bytes for breakpoint instruction. */
65
66#define BREAKPOINT {0x00,0x00,0x18,0xef} /* BKPT_SWI from <sys/ptrace.h> */
67
68/* Amount PC must be decremented by after a breakpoint.
69 This is often the number of bytes in BREAKPOINT
70 but not always. */
71
72#define DECR_PC_AFTER_BREAK 0
73
74/* Nonzero if instruction at PC is a return instruction. */
75
76#define ABOUT_TO_RETURN(pc) \
77 ((read_memory_integer(pc, 4) & 0x0fffffff == 0x01b0f00e) || \
78 (read_memory_integer(pc, 4) & 0x0ffff800 == 0x09eba800))
79
80/* Return 1 if P points to an invalid floating point value.
81 LEN is the length in bytes. */
82
83#define INVALID_FLOAT(p, len) 0
84
85/* code to execute to print interesting information about the
86 * floating point processor (if any)
87 * No need to define if there is nothing to do.
88 */
89#define FLOAT_INFO { arm_float_info (); }
90
91/* Say how long (ordinary) registers are. */
92
93#define REGISTER_TYPE long
94
95/* Number of machine registers */
96
97/* Note: I make a fake copy of the pc in register 25 (calling it ps) so
98 that I can clear the status bits from pc (register 15) */
99
100#define NUM_REGS 26
101
102/* Initializer for an array of names of registers.
103 There should be NUM_REGS strings in this initializer. */
104
105#define REGISTER_NAMES \
106 { "a1", "a2", "a3", "a4", \
107 "v1", "v2", "v3", "v4", "v5", "v6", \
108 "sl", "fp", "ip", "sp", "lr", "pc", \
109 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "fps", "ps" }
110
111/* Register numbers of various important registers.
112 Note that some of these values are "real" register numbers,
113 and correspond to the general registers of the machine,
114 and some are "phony" register numbers which are too large
115 to be actual register numbers as far as the user is concerned
116 but do serve to get the desired values when passed to read_register. */
117
118#define AP_REGNUM 11
119#define FP_REGNUM 11 /* Contains address of executing stack frame */
120#define SP_REGNUM 13 /* Contains address of top of stack */
121#define LR_REGNUM 14 /* address to return to from a function call */
122#define PC_REGNUM 15 /* Contains program counter */
123#define F0_REGNUM 16 /* first floating point register */
124#define FPS_REGNUM 24 /* floating point status register */
125#define PS_REGNUM 25 /* Contains processor status */
126
127
128/* Total amount of space needed to store our copies of the machine's
129 register state, the array `registers'. */
130#define REGISTER_BYTES (16*4 + 12*8 + 4 + 4)
131
132/* Index within `registers' of the first byte of the space for
133 register N. */
134
135#define REGISTER_BYTE(N) (((N) < F0_REGNUM) ? (N)*4 : \
136 (((N) < PS_REGNUM) ? 16*4 + ((N) - 16)*12 : \
137 16*4 + 8*12 + ((N) - FPS_REGNUM) * 4))
138
139/* Number of bytes of storage in the actual machine representation
140 for register N. On the vax, all regs are 4 bytes. */
141
142#define REGISTER_RAW_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 12)
143
144/* Number of bytes of storage in the program's representation
145 for register N. On the vax, all regs are 4 bytes. */
146
147#define REGISTER_VIRTUAL_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 8)
148
149/* Largest value REGISTER_RAW_SIZE can have. */
150
151#define MAX_REGISTER_RAW_SIZE 12
152
153/* Largest value REGISTER_VIRTUAL_SIZE can have. */
154
155#define MAX_REGISTER_VIRTUAL_SIZE 8
156
157/* Nonzero if register N requires conversion
158 from raw format to virtual format. */
159
160#define REGISTER_CONVERTIBLE(N) ((unsigned)(N) - F0_REGNUM < 8)
161
162/* Convert data from raw format for register REGNUM
163 to virtual format for register REGNUM. */
164
165#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
166 if (REGISTER_CONVERTIBLE(REGNUM)) \
167 convert_from_extended((FROM), (TO)); \
168 else \
169 bcopy ((FROM), (TO), 4);
170
171/* Convert data from virtual format for register REGNUM
172 to raw format for register REGNUM. */
173
174#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
175 if (REGISTER_CONVERTIBLE(REGNUM)) \
176 convert_to_extended((FROM), (TO)); \
177 else \
178 bcopy ((FROM), (TO), 4);
179
180/* Return the GDB type object for the "standard" data type
181 of data in register N. */
182
183#define REGISTER_VIRTUAL_TYPE(N) \
184 (((unsigned)(N) - F0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
185\f
186/* The system C compiler uses a similar structure return convention to gcc */
187
188#define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 4)
189
190/* Store the address of the place in which to copy the structure the
191 subroutine will return. This is called from call_function. */
192
193#define STORE_STRUCT_RETURN(ADDR, SP) \
194 { write_register (0, (ADDR)); }
195
196/* Extract from an array REGBUF containing the (raw) register state
197 a function return value of type TYPE, and copy that, in virtual format,
198 into VALBUF. */
199
200#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
201 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
202 convert_from_extended(REGBUF + REGISTER_BYTE (F0_REGNUM), VALBUF); \
203 else \
204 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
205
206/* Write into appropriate registers a function return value
207 of type TYPE, given in virtual format. */
208
209#define STORE_RETURN_VALUE(TYPE,VALBUF) \
210 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
211 char _buf[MAX_REGISTER_RAW_SIZE]; \
212 convert_to_extended(VALBUF, _buf); \
213 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
214 } else \
215 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
216
217/* Extract from an array REGBUF containing the (raw) register state
218 the address in which a function should return its structure value,
219 as a CORE_ADDR (or an expression that can be used as one). */
220
221#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
222
223/* Specify that for the native compiler variables for a particular
224 lexical context are listed after the beginning LBRAC instead of
225 before in the executables list of symbols. */
226#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
227
228\f
229/* Describe the pointer in each stack frame to the previous stack frame
230 (its caller). */
231
232/* FRAME_CHAIN takes a frame's nominal address
233 and produces the frame's chain-pointer.
234
235 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
236 and produces the nominal address of the caller frame.
237
238 However, if FRAME_CHAIN_VALID returns zero,
239 it means the given frame is the outermost one and has no caller.
240 In that case, FRAME_CHAIN_COMBINE is not used. */
241
242/* In the case of the ARM, the frame's nominal address is the FP value,
243 and 12 bytes before comes the saved previous FP value as a 4-byte word. */
244
245#define FRAME_CHAIN(thisframe) \
246 ((thisframe)->pc >= first_object_file_end ? \
247 read_memory_integer ((thisframe)->frame - 12, 4) :\
248 0)
249
250#define FRAME_CHAIN_VALID(chain, thisframe) \
251 (chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
252
253#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
254
255/* Define other aspects of the stack frame. */
256
257/* A macro that tells us whether the function invocation represented
258 by FI does not have a frame on the stack associated with it. If it
259 does not, FRAMELESS is set to 1, else 0. */
260#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
261{ \
262 CORE_ADDR func_start, after_prologue; \
263 func_start = (get_pc_function_start ((FI)->pc) + \
264 FUNCTION_START_OFFSET); \
265 after_prologue = func_start; \
266 SKIP_PROLOGUE (after_prologue); \
267 (FRAMELESS) = (after_prologue == func_start); \
268}
269
270/* Saved Pc. */
271
272#define FRAME_SAVED_PC(FRAME) \
273 (read_memory_integer ((FRAME)->frame - 4, 4) & 0x03fffffc)
274
275#define FRAME_ARGS_ADDRESS(fi) (fi->frame)
276
277#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
278
279/* Return number of args passed to a frame.
280 Can return -1, meaning no way to tell. */
281
282#define FRAME_NUM_ARGS(numargs, fi) (numargs = -1)
283
284/* Return number of bytes at start of arglist that are not really args. */
285
286#define FRAME_ARGS_SKIP 0
287
288/* Put here the code to store, into a struct frame_saved_regs,
289 the addresses of the saved registers of frame described by FRAME_INFO.
290 This includes special registers such as pc and fp saved in special
291 ways in the stack frame. sp is even more special:
292 the address we return for it IS the sp for the next frame. */
293
294#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
295{ \
296 register int regnum; \
297 register int frame; \
298 register int next_addr; \
299 register int return_data_save; \
300 register int saved_register_mask; \
301 bzero (&frame_saved_regs, sizeof frame_saved_regs); \
302 frame = (frame_info)->frame; \
303 return_data_save = read_memory_integer(frame, 4) & 0x03fffffc - 12; \
304 saved_register_mask = \
305 read_memory_integer(return_data_save, 4); \
306 next_addr = frame - 12; \
307 for (regnum = 4; regnum < 10; regnum++) \
308 if (saved_register_mask & (1<<regnum)) { \
309 next_addr -= 4; \
310 (frame_saved_regs).regs[regnum] = next_addr; \
311 } \
312 if (read_memory_integer(return_data_save + 4, 4) == 0xed6d7103) { \
313 next_addr -= 12; \
314 (frame_saved_regs).regs[F0_REGNUM + 7] = next_addr; \
315 } \
316 if (read_memory_integer(return_data_save + 8, 4) == 0xed6d6103) { \
317 next_addr -= 12; \
318 (frame_saved_regs).regs[F0_REGNUM + 6] = next_addr; \
319 } \
320 if (read_memory_integer(return_data_save + 12, 4) == 0xed6d5103) { \
321 next_addr -= 12; \
322 (frame_saved_regs).regs[F0_REGNUM + 5] = next_addr; \
323 } \
324 if (read_memory_integer(return_data_save + 16, 4) == 0xed6d4103) { \
325 next_addr -= 12; \
326 (frame_saved_regs).regs[F0_REGNUM + 4] = next_addr; \
327 } \
328 (frame_saved_regs).regs[SP_REGNUM] = next_addr; \
329 (frame_saved_regs).regs[PC_REGNUM] = frame - 4; \
330 (frame_saved_regs).regs[PS_REGNUM] = frame - 4; \
331 (frame_saved_regs).regs[FP_REGNUM] = frame - 12; \
332}
333\f
334/* Things needed for making the inferior call functions. */
335
336/* Push an empty stack frame, to record the current PC, etc. */
337
338#define PUSH_DUMMY_FRAME \
339{ \
340 register CORE_ADDR sp = read_register (SP_REGNUM); \
341 register int regnum; \
342 /* opcode for ldmdb fp,{v1-v6,fp,ip,lr,pc}^ */ \
343 sp = push_word(sp, 0xe92dbf0); /* dummy return_data_save ins */ \
344 /* push a pointer to the dummy instruction minus 12 */ \
345 sp = push_word(sp, read_register (SP_REGNUM) - 16); \
346 sp = push_word(sp, read_register (PS_REGNUM)); \
347 sp = push_word(sp, read_register (SP_REGNUM)); \
348 sp = push_word(sp, read_register (FP_REGNUM)); \
349 for (regnum = 9; regnum >= 4; regnum --) \
350 sp = push_word(sp, read_register (regnum)); \
351 write_register (FP_REGNUM, read_register (SP_REGNUM) - 8); \
352 write_register (SP_REGNUM, sp); }
353
354/* Discard from the stack the innermost frame, restoring all registers. */
355
356#define POP_FRAME \
357{ \
358 register CORE_ADDR fp = read_register (FP_REGNUM); \
359 register unsigned long return_data_save = \
360 read_memory_integer ( (read_memory_integer (fp, 4) & \
361 0x03fffffc) - 12, 4); \
362 register int regnum; \
363 write_register (PS_REGNUM, read_memory_integer (fp - 4, 4)); \
364 write_register (PC_REGNUM, read_register (PS_REGNUM) & 0x03fffffc); \
365 write_register (SP_REGNUM, read_memory_integer (fp - 8, 4)); \
366 write_register (FP_REGNUM, read_memory_integer (fp - 12, 4)); \
367 fp -= 12; \
368 for (regnum = 9; regnum >= 4; regnum--) \
369 if (return_data_save & (1<<regnum)) { \
370 fp -= 4; \
371 write_register (regnum, read_memory_integer(fp, 4)); \
372 } \
373 flush_cached_frames (); \
374 set_current_frame (create_new_frame (read_register (FP_REGNUM), \
375 read_pc ())); \
376}
377
378/* This sequence of words is the instructions
379
380 ldmia sp!,{a1-a4}
381 mov lk,pc
382 bl *+8
383 swi bkpt_swi
384
385 Note this is 16 bytes. */
386
387#define CALL_DUMMY {0xe8bd000f, 0xe1a0e00f, 0xeb000000, 0xef180000}
388
389#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
390
391/* Insert the specified number of args and function address
392 into a call sequence of the above form stored at DUMMYNAME. */
393
394#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
395{ \
396 register enum type_code code = TYPE_CODE (type); \
397 register nargs_in_registers, struct_return = 0; \
398 /* fix the load-arguments mask to move the first 4 or less arguments \
399 into a1-a4 but make sure the structure return address in a1 is \
400 not disturbed if the function is returning a structure */ \
401 if ((code == TYPE_CODE_STRUCT || \
402 code == TYPE_CODE_UNION || \
403 code == TYPE_CODE_ARRAY) && \
404 TYPE_LENGTH (type) > 4) { \
405 nargs_in_registers = min(nargs + 1, 4); \
406 struct_return = 1; \
407 } else \
408 nargs_in_registers = min(nargs, 4); \
409 *(char *) dummyname = (1 << nargs_in_registers) - 1 - struct_return; \
410 *(int *)((char *) dummyname + 8) = \
411 (((fun - (pc + 16)) / 4) & 0x00ffffff) | 0xeb000000; }
This page took 0.057558 seconds and 4 git commands to generate.