Allow for the possibility that the local labels won't be in the objdump output.
[deliverable/binutils-gdb.git] / gdb / utils.c
CommitLineData
c906108c 1/* General utility routines for GDB, the GNU debugger.
b6ba6518
KB
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
d9fcf2fb 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
39424bef 24#include "gdb_assert.h"
c906108c
SS
25#include <ctype.h>
26#include "gdb_string.h"
c2c6d25f 27#include "event-top.h"
c906108c
SS
28
29#ifdef HAVE_CURSES_H
30#include <curses.h>
31#endif
32#ifdef HAVE_TERM_H
33#include <term.h>
34#endif
35
9d271fd8
AC
36#ifdef __GO32__
37#include <pc.h>
38#endif
39
c906108c
SS
40/* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41#ifdef reg
42#undef reg
43#endif
44
042be3a9 45#include <signal.h>
c906108c
SS
46#include "gdbcmd.h"
47#include "serial.h"
48#include "bfd.h"
49#include "target.h"
50#include "demangle.h"
51#include "expression.h"
52#include "language.h"
53#include "annotate.h"
54
ac2e2ef7
AC
55#include "inferior.h" /* for signed_pointer_to_address */
56
c906108c
SS
57#include <readline/readline.h>
58
81b8eb80 59#ifndef MALLOC_INCOMPATIBLE
3c37485b
AC
60#ifdef NEED_DECLARATION_MALLOC
61extern PTR malloc ();
62#endif
0e52036f
AC
63#ifdef NEED_DECLARATION_REALLOC
64extern PTR realloc ();
65#endif
81b8eb80
AC
66#ifdef NEED_DECLARATION_FREE
67extern void free ();
68#endif
69#endif
70
917317f4
JM
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
c906108c
SS
74/* readline defines this. */
75#undef savestring
76
507f3c78 77void (*error_begin_hook) (void);
c906108c 78
2acceee2
JM
79/* Holds the last error message issued by gdb */
80
d9fcf2fb 81static struct ui_file *gdb_lasterr;
2acceee2 82
c906108c
SS
83/* Prototypes for local functions */
84
d9fcf2fb
JM
85static void vfprintf_maybe_filtered (struct ui_file *, const char *,
86 va_list, int);
c906108c 87
d9fcf2fb 88static void fputs_maybe_filtered (const char *, struct ui_file *, int);
c906108c
SS
89
90#if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
a14ed312 91static void malloc_botch (void);
c906108c
SS
92#endif
93
a14ed312 94static void prompt_for_continue (void);
c906108c 95
a14ed312 96static void set_width_command (char *, int, struct cmd_list_element *);
c906108c 97
a14ed312 98static void set_width (void);
c906108c 99
c906108c
SS
100/* Chain of cleanup actions established with make_cleanup,
101 to be executed if an error happens. */
102
c5aa993b
JM
103static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
104static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
105static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
106static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
6426a772
JM
107/* cleaned up on each error from within an execution command */
108static struct cleanup *exec_error_cleanup_chain;
43ff13b4
JM
109
110/* Pointer to what is left to do for an execution command after the
111 target stops. Used only in asynchronous mode, by targets that
112 support async execution. The finish and until commands use it. So
113 does the target extended-remote command. */
114struct continuation *cmd_continuation;
c2d11a7d 115struct continuation *intermediate_continuation;
c906108c
SS
116
117/* Nonzero if we have job control. */
118
119int job_control;
120
121/* Nonzero means a quit has been requested. */
122
123int quit_flag;
124
125/* Nonzero means quit immediately if Control-C is typed now, rather
126 than waiting until QUIT is executed. Be careful in setting this;
127 code which executes with immediate_quit set has to be very careful
128 about being able to deal with being interrupted at any time. It is
129 almost always better to use QUIT; the only exception I can think of
130 is being able to quit out of a system call (using EINTR loses if
131 the SIGINT happens between the previous QUIT and the system call).
132 To immediately quit in the case in which a SIGINT happens between
133 the previous QUIT and setting immediate_quit (desirable anytime we
134 expect to block), call QUIT after setting immediate_quit. */
135
136int immediate_quit;
137
138/* Nonzero means that encoded C++ names should be printed out in their
139 C++ form rather than raw. */
140
141int demangle = 1;
142
143/* Nonzero means that encoded C++ names should be printed out in their
144 C++ form even in assembler language displays. If this is set, but
145 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
146
147int asm_demangle = 0;
148
149/* Nonzero means that strings with character values >0x7F should be printed
150 as octal escapes. Zero means just print the value (e.g. it's an
151 international character, and the terminal or window can cope.) */
152
153int sevenbit_strings = 0;
154
155/* String to be printed before error messages, if any. */
156
157char *error_pre_print;
158
159/* String to be printed before quit messages, if any. */
160
161char *quit_pre_print;
162
163/* String to be printed before warning messages, if any. */
164
165char *warning_pre_print = "\nwarning: ";
166
167int pagination_enabled = 1;
c906108c 168\f
c5aa993b 169
c906108c
SS
170/* Add a new cleanup to the cleanup_chain,
171 and return the previous chain pointer
172 to be passed later to do_cleanups or discard_cleanups.
173 Args are FUNCTION to clean up with, and ARG to pass to it. */
174
175struct cleanup *
e4005526 176make_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 177{
c5aa993b 178 return make_my_cleanup (&cleanup_chain, function, arg);
c906108c
SS
179}
180
181struct cleanup *
e4005526 182make_final_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 183{
c5aa993b 184 return make_my_cleanup (&final_cleanup_chain, function, arg);
c906108c 185}
7a292a7a 186
c906108c 187struct cleanup *
e4005526 188make_run_cleanup (make_cleanup_ftype *function, void *arg)
c906108c 189{
c5aa993b 190 return make_my_cleanup (&run_cleanup_chain, function, arg);
c906108c 191}
7a292a7a 192
43ff13b4 193struct cleanup *
e4005526 194make_exec_cleanup (make_cleanup_ftype *function, void *arg)
43ff13b4 195{
c5aa993b 196 return make_my_cleanup (&exec_cleanup_chain, function, arg);
43ff13b4
JM
197}
198
6426a772 199struct cleanup *
e4005526 200make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
6426a772
JM
201{
202 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
203}
204
7a292a7a 205static void
fba45db2 206do_freeargv (void *arg)
7a292a7a 207{
c5aa993b 208 freeargv ((char **) arg);
7a292a7a
SS
209}
210
211struct cleanup *
fba45db2 212make_cleanup_freeargv (char **arg)
7a292a7a
SS
213{
214 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
215}
216
5c65bbb6
AC
217static void
218do_bfd_close_cleanup (void *arg)
219{
220 bfd_close (arg);
221}
222
223struct cleanup *
224make_cleanup_bfd_close (bfd *abfd)
225{
226 return make_cleanup (do_bfd_close_cleanup, abfd);
227}
228
f5ff8c83
AC
229static void
230do_close_cleanup (void *arg)
231{
f042532c
AC
232 int *fd = arg;
233 close (*fd);
234 xfree (fd);
f5ff8c83
AC
235}
236
237struct cleanup *
238make_cleanup_close (int fd)
239{
f042532c
AC
240 int *saved_fd = xmalloc (sizeof (fd));
241 *saved_fd = fd;
242 return make_cleanup (do_close_cleanup, saved_fd);
f5ff8c83
AC
243}
244
11cf8741 245static void
d9fcf2fb 246do_ui_file_delete (void *arg)
11cf8741 247{
d9fcf2fb 248 ui_file_delete (arg);
11cf8741
JM
249}
250
251struct cleanup *
d9fcf2fb 252make_cleanup_ui_file_delete (struct ui_file *arg)
11cf8741 253{
d9fcf2fb 254 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
11cf8741
JM
255}
256
c906108c 257struct cleanup *
e4005526
AC
258make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
259 void *arg)
c906108c
SS
260{
261 register struct cleanup *new
c5aa993b 262 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
c906108c
SS
263 register struct cleanup *old_chain = *pmy_chain;
264
265 new->next = *pmy_chain;
266 new->function = function;
267 new->arg = arg;
268 *pmy_chain = new;
269
270 return old_chain;
271}
272
273/* Discard cleanups and do the actions they describe
274 until we get back to the point OLD_CHAIN in the cleanup_chain. */
275
276void
fba45db2 277do_cleanups (register struct cleanup *old_chain)
c906108c 278{
c5aa993b 279 do_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
280}
281
282void
fba45db2 283do_final_cleanups (register struct cleanup *old_chain)
c906108c 284{
c5aa993b 285 do_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
286}
287
288void
fba45db2 289do_run_cleanups (register struct cleanup *old_chain)
c906108c 290{
c5aa993b 291 do_my_cleanups (&run_cleanup_chain, old_chain);
c906108c
SS
292}
293
43ff13b4 294void
fba45db2 295do_exec_cleanups (register struct cleanup *old_chain)
43ff13b4 296{
c5aa993b 297 do_my_cleanups (&exec_cleanup_chain, old_chain);
43ff13b4
JM
298}
299
6426a772 300void
fba45db2 301do_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
302{
303 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
304}
305
c906108c 306void
fba45db2
KB
307do_my_cleanups (register struct cleanup **pmy_chain,
308 register struct cleanup *old_chain)
c906108c
SS
309{
310 register struct cleanup *ptr;
311 while ((ptr = *pmy_chain) != old_chain)
312 {
313 *pmy_chain = ptr->next; /* Do this first incase recursion */
314 (*ptr->function) (ptr->arg);
b8c9b27d 315 xfree (ptr);
c906108c
SS
316 }
317}
318
319/* Discard cleanups, not doing the actions they describe,
320 until we get back to the point OLD_CHAIN in the cleanup_chain. */
321
322void
fba45db2 323discard_cleanups (register struct cleanup *old_chain)
c906108c 324{
c5aa993b 325 discard_my_cleanups (&cleanup_chain, old_chain);
c906108c
SS
326}
327
328void
fba45db2 329discard_final_cleanups (register struct cleanup *old_chain)
c906108c 330{
c5aa993b 331 discard_my_cleanups (&final_cleanup_chain, old_chain);
c906108c
SS
332}
333
6426a772 334void
fba45db2 335discard_exec_error_cleanups (register struct cleanup *old_chain)
6426a772
JM
336{
337 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
338}
339
c906108c 340void
fba45db2
KB
341discard_my_cleanups (register struct cleanup **pmy_chain,
342 register struct cleanup *old_chain)
c906108c
SS
343{
344 register struct cleanup *ptr;
345 while ((ptr = *pmy_chain) != old_chain)
346 {
347 *pmy_chain = ptr->next;
b8c9b27d 348 xfree (ptr);
c906108c
SS
349 }
350}
351
352/* Set the cleanup_chain to 0, and return the old cleanup chain. */
353struct cleanup *
fba45db2 354save_cleanups (void)
c906108c 355{
c5aa993b 356 return save_my_cleanups (&cleanup_chain);
c906108c
SS
357}
358
359struct cleanup *
fba45db2 360save_final_cleanups (void)
c906108c 361{
c5aa993b 362 return save_my_cleanups (&final_cleanup_chain);
c906108c
SS
363}
364
365struct cleanup *
fba45db2 366save_my_cleanups (struct cleanup **pmy_chain)
c906108c
SS
367{
368 struct cleanup *old_chain = *pmy_chain;
369
370 *pmy_chain = 0;
371 return old_chain;
372}
373
374/* Restore the cleanup chain from a previously saved chain. */
375void
fba45db2 376restore_cleanups (struct cleanup *chain)
c906108c 377{
c5aa993b 378 restore_my_cleanups (&cleanup_chain, chain);
c906108c
SS
379}
380
381void
fba45db2 382restore_final_cleanups (struct cleanup *chain)
c906108c 383{
c5aa993b 384 restore_my_cleanups (&final_cleanup_chain, chain);
c906108c
SS
385}
386
387void
fba45db2 388restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
c906108c
SS
389{
390 *pmy_chain = chain;
391}
392
393/* This function is useful for cleanups.
394 Do
395
c5aa993b
JM
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
c906108c
SS
398
399 to arrange to free the object thus allocated. */
400
401void
2f9429ae 402free_current_contents (void *ptr)
c906108c 403{
2f9429ae 404 void **location = ptr;
e2f9c474 405 if (location == NULL)
8e65ff28
AC
406 internal_error (__FILE__, __LINE__,
407 "free_current_contents: NULL pointer");
2f9429ae 408 if (*location != NULL)
e2f9c474 409 {
b8c9b27d 410 xfree (*location);
e2f9c474
AC
411 *location = NULL;
412 }
c906108c
SS
413}
414
415/* Provide a known function that does nothing, to use as a base for
416 for a possibly long chain of cleanups. This is useful where we
417 use the cleanup chain for handling normal cleanups as well as dealing
418 with cleanups that need to be done as a result of a call to error().
419 In such cases, we may not be certain where the first cleanup is, unless
420 we have a do-nothing one to always use as the base. */
421
422/* ARGSUSED */
423void
e4005526 424null_cleanup (void *arg)
c906108c
SS
425{
426}
427
74f832da 428/* Add a continuation to the continuation list, the global list
c2d11a7d 429 cmd_continuation. The new continuation will be added at the front.*/
43ff13b4 430void
74f832da
KB
431add_continuation (void (*continuation_hook) (struct continuation_arg *),
432 struct continuation_arg *arg_list)
43ff13b4 433{
c5aa993b 434 struct continuation *continuation_ptr;
43ff13b4 435
c5aa993b
JM
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
43ff13b4
JM
441}
442
443/* Walk down the cmd_continuation list, and execute all the
c2d11a7d
JM
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
c5aa993b 451void
fba45db2 452do_all_continuations (void)
c2d11a7d
JM
453{
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
b8c9b27d 470 xfree (saved_continuation);
c2d11a7d
JM
471 }
472}
473
474/* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476void
fba45db2 477discard_all_continuations (void)
43ff13b4 478{
c5aa993b 479 struct continuation *continuation_ptr;
43ff13b4 480
c5aa993b
JM
481 while (cmd_continuation)
482 {
c5aa993b
JM
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
b8c9b27d 485 xfree (continuation_ptr);
c5aa993b 486 }
43ff13b4 487}
c2c6d25f 488
57e687d9 489/* Add a continuation to the continuation list, the global list
c2d11a7d
JM
490 intermediate_continuation. The new continuation will be added at the front.*/
491void
74f832da
KB
492add_intermediate_continuation (void (*continuation_hook)
493 (struct continuation_arg *),
494 struct continuation_arg *arg_list)
c2d11a7d
JM
495{
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503}
504
505/* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513void
fba45db2 514do_all_intermediate_continuations (void)
c2d11a7d
JM
515{
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
b8c9b27d 532 xfree (saved_continuation);
c2d11a7d
JM
533 }
534}
535
c2c6d25f
JM
536/* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538void
fba45db2 539discard_all_intermediate_continuations (void)
c2c6d25f
JM
540{
541 struct continuation *continuation_ptr;
542
c2d11a7d 543 while (intermediate_continuation)
c2c6d25f 544 {
c2d11a7d
JM
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
b8c9b27d 547 xfree (continuation_ptr);
c2c6d25f
JM
548 }
549}
550
c906108c 551\f
c5aa993b 552
c906108c
SS
553/* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562void
fba45db2 563warning_begin (void)
c906108c
SS
564{
565 target_terminal_ours ();
c5aa993b 566 wrap_here (""); /* Force out any buffered output */
c906108c
SS
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570}
571
572/* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
c906108c 578void
c5aa993b 579warning (const char *string,...)
c906108c
SS
580{
581 va_list args;
c906108c 582 va_start (args, string);
c906108c
SS
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
c5aa993b
JM
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
c906108c
SS
592}
593
594/* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601void
fba45db2 602error_begin (void)
c906108c
SS
603{
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
c5aa993b 608 wrap_here (""); /* Force out any buffered output */
c906108c
SS
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615}
616
617/* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
4ce44c66
JM
621NORETURN void
622verror (const char *string, va_list args)
623{
c2d11a7d
JM
624 char *err_string;
625 struct cleanup *err_string_cleanup;
4ce44c66 626 /* FIXME: cagney/1999-11-10: All error calls should come here.
e26cc349 627 Unfortunately some code uses the sequence: error_begin(); print
4ce44c66
JM
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
c2d11a7d
JM
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
d9fcf2fb 638 ui_file_rewind (gdb_lasterr);
4ce44c66 639 vfprintf_filtered (gdb_lasterr, string, args);
c2d11a7d
JM
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
b8c9b27d 642 err_string_cleanup = make_cleanup (xfree, err_string);
c2d11a7d
JM
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
4ce44c66
JM
646 return_to_top_level (RETURN_ERROR);
647}
648
c906108c 649NORETURN void
c5aa993b 650error (const char *string,...)
c906108c
SS
651{
652 va_list args;
c906108c 653 va_start (args, string);
4ce44c66
JM
654 verror (string, args);
655 va_end (args);
c906108c
SS
656}
657
2acceee2 658NORETURN void
d9fcf2fb 659error_stream (struct ui_file *stream)
2acceee2 660{
4ce44c66 661 long size;
d9fcf2fb 662 char *msg = ui_file_xstrdup (stream, &size);
b8c9b27d 663 make_cleanup (xfree, msg);
4ce44c66 664 error ("%s", msg);
2acceee2
JM
665}
666
667/* Get the last error message issued by gdb */
668
669char *
670error_last_message (void)
671{
4ce44c66 672 long len;
d9fcf2fb 673 return ui_file_xstrdup (gdb_lasterr, &len);
2acceee2 674}
4ce44c66 675
2acceee2
JM
676/* This is to be called by main() at the very beginning */
677
678void
679error_init (void)
680{
4ce44c66 681 gdb_lasterr = mem_fileopen ();
2acceee2 682}
c906108c 683
96baa820
JM
684/* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
c906108c 686
c906108c 687NORETURN void
8e65ff28
AC
688internal_verror (const char *file, int line,
689 const char *fmt, va_list ap)
c906108c 690{
96baa820
JM
691 static char msg[] = "Internal GDB error: recursive internal error.\n";
692 static int dejavu = 0;
7be570e7
JM
693 int continue_p;
694 int dump_core_p;
c906108c 695
96baa820
JM
696 /* don't allow infinite error recursion. */
697 switch (dejavu)
698 {
699 case 0:
700 dejavu = 1;
701 break;
702 case 1:
703 dejavu = 2;
704 fputs_unfiltered (msg, gdb_stderr);
e1e9e218 705 internal_error (__FILE__, __LINE__, "failed internal consistency check");
96baa820
JM
706 default:
707 dejavu = 3;
708 write (STDERR_FILENO, msg, sizeof (msg));
709 exit (1);
710 }
c906108c 711
96baa820 712 /* Try to get the message out */
4261bedc 713 target_terminal_ours ();
8e65ff28 714 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
4ce44c66 715 vfprintf_unfiltered (gdb_stderr, fmt, ap);
96baa820 716 fputs_unfiltered ("\n", gdb_stderr);
c906108c 717
7be570e7
JM
718 /* Default (no case) is to quit GDB. When in batch mode this
719 lessens the likelhood of GDB going into an infinate loop. */
720 continue_p = query ("\
62fd9fad 721An internal GDB error was detected. This may make further\n\
7be570e7
JM
722debugging unreliable. Continue this debugging session? ");
723
724 /* Default (no case) is to not dump core. Lessen the chance of GDB
725 leaving random core files around. */
726 dump_core_p = query ("\
727Create a core file containing the current state of GDB? ");
728
729 if (continue_p)
730 {
731 if (dump_core_p)
732 {
733 if (fork () == 0)
e1e9e218 734 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
735 }
736 }
737 else
738 {
739 if (dump_core_p)
e1e9e218 740 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7be570e7
JM
741 else
742 exit (1);
743 }
96baa820
JM
744
745 dejavu = 0;
746 return_to_top_level (RETURN_ERROR);
c906108c
SS
747}
748
4ce44c66 749NORETURN void
8e65ff28 750internal_error (const char *file, int line, const char *string, ...)
4ce44c66
JM
751{
752 va_list ap;
753 va_start (ap, string);
4261bedc 754
8e65ff28 755 internal_verror (file, line, string, ap);
4ce44c66
JM
756 va_end (ap);
757}
758
c906108c
SS
759/* The strerror() function can return NULL for errno values that are
760 out of range. Provide a "safe" version that always returns a
761 printable string. */
762
763char *
fba45db2 764safe_strerror (int errnum)
c906108c
SS
765{
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775}
776
c906108c
SS
777/* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781NORETURN void
fba45db2 782perror_with_name (char *string)
c906108c
SS
783{
784 char *err;
785 char *combined;
786
787 err = safe_strerror (errno);
788 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
789 strcpy (combined, string);
790 strcat (combined, ": ");
791 strcat (combined, err);
792
793 /* I understand setting these is a matter of taste. Still, some people
794 may clear errno but not know about bfd_error. Doing this here is not
795 unreasonable. */
796 bfd_set_error (bfd_error_no_error);
797 errno = 0;
798
c5aa993b 799 error ("%s.", combined);
c906108c
SS
800}
801
802/* Print the system error message for ERRCODE, and also mention STRING
803 as the file name for which the error was encountered. */
804
805void
fba45db2 806print_sys_errmsg (char *string, int errcode)
c906108c
SS
807{
808 char *err;
809 char *combined;
810
811 err = safe_strerror (errcode);
812 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
813 strcpy (combined, string);
814 strcat (combined, ": ");
815 strcat (combined, err);
816
817 /* We want anything which was printed on stdout to come out first, before
818 this message. */
819 gdb_flush (gdb_stdout);
820 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
821}
822
823/* Control C eventually causes this to be called, at a convenient time. */
824
825void
fba45db2 826quit (void)
c906108c
SS
827{
828 serial_t gdb_stdout_serial = serial_fdopen (1);
829
830 target_terminal_ours ();
831
832 /* We want all output to appear now, before we print "Quit". We
833 have 3 levels of buffering we have to flush (it's possible that
834 some of these should be changed to flush the lower-level ones
835 too): */
836
837 /* 1. The _filtered buffer. */
c5aa993b 838 wrap_here ((char *) 0);
c906108c
SS
839
840 /* 2. The stdio buffer. */
841 gdb_flush (gdb_stdout);
842 gdb_flush (gdb_stderr);
843
844 /* 3. The system-level buffer. */
845 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
846 SERIAL_UN_FDOPEN (gdb_stdout_serial);
847
848 annotate_error_begin ();
849
850 /* Don't use *_filtered; we don't want to prompt the user to continue. */
851 if (quit_pre_print)
852 fprintf_unfiltered (gdb_stderr, quit_pre_print);
853
7be570e7
JM
854#ifdef __MSDOS__
855 /* No steenking SIGINT will ever be coming our way when the
856 program is resumed. Don't lie. */
857 fprintf_unfiltered (gdb_stderr, "Quit\n");
858#else
c906108c 859 if (job_control
c5aa993b
JM
860 /* If there is no terminal switching for this target, then we can't
861 possibly get screwed by the lack of job control. */
c906108c
SS
862 || current_target.to_terminal_ours == NULL)
863 fprintf_unfiltered (gdb_stderr, "Quit\n");
864 else
865 fprintf_unfiltered (gdb_stderr,
c5aa993b 866 "Quit (expect signal SIGINT when the program is resumed)\n");
7be570e7 867#endif
c906108c
SS
868 return_to_top_level (RETURN_QUIT);
869}
870
871
7be570e7 872#if defined(_MSC_VER) /* should test for wingdb instead? */
c906108c
SS
873
874/*
875 * Windows translates all keyboard and mouse events
876 * into a message which is appended to the message
877 * queue for the process.
878 */
879
c5aa993b 880void
fba45db2 881notice_quit (void)
c906108c 882{
c5aa993b 883 int k = win32pollquit ();
c906108c
SS
884 if (k == 1)
885 quit_flag = 1;
886 else if (k == 2)
887 immediate_quit = 1;
888}
889
4ce44c66 890#else /* !defined(_MSC_VER) */
c906108c 891
c5aa993b 892void
fba45db2 893notice_quit (void)
c906108c
SS
894{
895 /* Done by signals */
896}
897
4ce44c66 898#endif /* !defined(_MSC_VER) */
c906108c 899
c906108c 900/* Control C comes here */
c906108c 901void
fba45db2 902request_quit (int signo)
c906108c
SS
903{
904 quit_flag = 1;
905 /* Restore the signal handler. Harmless with BSD-style signals, needed
906 for System V-style signals. So just always do it, rather than worrying
907 about USG defines and stuff like that. */
908 signal (signo, request_quit);
909
910#ifdef REQUEST_QUIT
911 REQUEST_QUIT;
912#else
c5aa993b 913 if (immediate_quit)
c906108c
SS
914 quit ();
915#endif
916}
c906108c
SS
917\f
918/* Memory management stuff (malloc friends). */
919
c906108c
SS
920#if !defined (USE_MMALLOC)
921
c0e61796
AC
922/* NOTE: These must use PTR so that their definition matches the
923 declaration found in "mmalloc.h". */
ed9a39eb 924
c906108c 925PTR
fba45db2 926mmalloc (PTR md, size_t size)
c906108c 927{
c0e61796 928 return malloc (size); /* NOTE: GDB's only call to malloc() */
c906108c
SS
929}
930
931PTR
fba45db2 932mrealloc (PTR md, PTR ptr, size_t size)
c906108c 933{
c5aa993b 934 if (ptr == 0) /* Guard against old realloc's */
c0e61796 935 return mmalloc (md, size);
c906108c 936 else
c0e61796
AC
937 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
938}
939
940PTR
941mcalloc (PTR md, size_t number, size_t size)
942{
943 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
c906108c
SS
944}
945
946void
fba45db2 947mfree (PTR md, PTR ptr)
c906108c 948{
c0e61796 949 free (ptr); /* NOTE: GDB's only call to free() */
c906108c
SS
950}
951
c5aa993b 952#endif /* USE_MMALLOC */
c906108c
SS
953
954#if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
955
956void
082faf24 957init_malloc (void *md)
c906108c
SS
958{
959}
960
961#else /* Have mmalloc and want corruption checking */
962
963static void
fba45db2 964malloc_botch (void)
c906108c 965{
96baa820 966 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
e1e9e218 967 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
968}
969
970/* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
971 by MD, to detect memory corruption. Note that MD may be NULL to specify
972 the default heap that grows via sbrk.
973
974 Note that for freshly created regions, we must call mmcheckf prior to any
975 mallocs in the region. Otherwise, any region which was allocated prior to
976 installing the checking hooks, which is later reallocated or freed, will
977 fail the checks! The mmcheck function only allows initial hooks to be
978 installed before the first mmalloc. However, anytime after we have called
979 mmcheck the first time to install the checking hooks, we can call it again
980 to update the function pointer to the memory corruption handler.
981
982 Returns zero on failure, non-zero on success. */
983
984#ifndef MMCHECK_FORCE
985#define MMCHECK_FORCE 0
986#endif
987
988void
082faf24 989init_malloc (void *md)
c906108c
SS
990{
991 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
992 {
993 /* Don't use warning(), which relies on current_target being set
c5aa993b
JM
994 to something other than dummy_target, until after
995 initialize_all_files(). */
c906108c
SS
996
997 fprintf_unfiltered
998 (gdb_stderr, "warning: failed to install memory consistency checks; ");
999 fprintf_unfiltered
1000 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1001 }
1002
1003 mmtrace ();
1004}
1005
1006#endif /* Have mmalloc and want corruption checking */
1007
1008/* Called when a memory allocation fails, with the number of bytes of
1009 memory requested in SIZE. */
1010
1011NORETURN void
fba45db2 1012nomem (long size)
c906108c
SS
1013{
1014 if (size > 0)
1015 {
8e65ff28
AC
1016 internal_error (__FILE__, __LINE__,
1017 "virtual memory exhausted: can't allocate %ld bytes.", size);
c906108c
SS
1018 }
1019 else
1020 {
8e65ff28
AC
1021 internal_error (__FILE__, __LINE__,
1022 "virtual memory exhausted.");
c906108c
SS
1023 }
1024}
1025
c0e61796 1026/* The xmmalloc() family of memory management routines.
c906108c 1027
c0e61796
AC
1028 These are are like the mmalloc() family except that they implement
1029 consistent semantics and guard against typical memory management
1030 problems: if a malloc fails, an internal error is thrown; if
1031 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1032 is returned.
1033
1034 All these routines are implemented using the mmalloc() family. */
1035
1036void *
1037xmmalloc (void *md, size_t size)
c906108c 1038{
c0e61796 1039 void *val;
c906108c
SS
1040
1041 if (size == 0)
1042 {
1043 val = NULL;
1044 }
c0e61796 1045 else
c906108c 1046 {
c0e61796
AC
1047 val = mmalloc (md, size);
1048 if (val == NULL)
1049 nomem (size);
c906108c
SS
1050 }
1051 return (val);
1052}
1053
c0e61796
AC
1054void *
1055xmrealloc (void *md, void *ptr, size_t size)
c906108c 1056{
c0e61796 1057 void *val;
c906108c 1058
d7fa9de0 1059 if (size == 0)
c906108c 1060 {
d7fa9de0
KB
1061 if (ptr != NULL)
1062 mfree (md, ptr);
1063 val = NULL;
c906108c
SS
1064 }
1065 else
1066 {
d7fa9de0
KB
1067 if (ptr != NULL)
1068 {
1069 val = mrealloc (md, ptr, size);
1070 }
1071 else
1072 {
1073 val = mmalloc (md, size);
1074 }
1075 if (val == NULL)
1076 {
1077 nomem (size);
1078 }
c906108c
SS
1079 }
1080 return (val);
1081}
1082
c0e61796
AC
1083void *
1084xmcalloc (void *md, size_t number, size_t size)
ed9a39eb 1085{
d7fa9de0 1086 void *mem;
d7fa9de0
KB
1087 if (number == 0 || size == 0)
1088 mem = NULL;
1089 else
1090 {
c0e61796 1091 mem = mcalloc (md, number, size);
d7fa9de0
KB
1092 if (mem == NULL)
1093 nomem (number * size);
1094 }
ed9a39eb
JM
1095 return mem;
1096}
1097
c0e61796
AC
1098void
1099xmfree (void *md, void *ptr)
1100{
1101 if (ptr != NULL)
1102 mfree (md, ptr);
1103}
1104
1105/* The xmalloc() (libiberty.h) family of memory management routines.
1106
1107 These are like the ISO-C malloc() family except that they implement
1108 consistent semantics and guard against typical memory management
1109 problems. See xmmalloc() above for further information.
1110
1111 All these routines are wrappers to the xmmalloc() family. */
1112
1113/* NOTE: These are declared using PTR to ensure consistency with
1114 "libiberty.h". xfree() is GDB local. */
1115
1116PTR
1117xmalloc (size_t size)
1118{
1119 return xmmalloc (NULL, size);
1120}
c906108c
SS
1121
1122PTR
fba45db2 1123xrealloc (PTR ptr, size_t size)
c906108c 1124{
c0e61796 1125 return xmrealloc (NULL, ptr, size);
c906108c 1126}
b8c9b27d 1127
c0e61796
AC
1128PTR
1129xcalloc (size_t number, size_t size)
1130{
1131 return xmcalloc (NULL, number, size);
1132}
b8c9b27d
KB
1133
1134void
1135xfree (void *ptr)
1136{
c0e61796 1137 xmfree (NULL, ptr);
b8c9b27d 1138}
c906108c 1139\f
c5aa993b 1140
76995688
AC
1141/* Like asprintf/vasprintf but get an internal_error if the call
1142 fails. */
1143
1144void
1145xasprintf (char **ret, const char *format, ...)
1146{
1147 va_list args;
1148 va_start (args, format);
1149 xvasprintf (ret, format, args);
1150 va_end (args);
1151}
1152
1153void
1154xvasprintf (char **ret, const char *format, va_list ap)
1155{
1156 int status = vasprintf (ret, format, ap);
1157 /* NULL could be returned due to a memory allocation problem; a
1158 badly format string; or something else. */
1159 if ((*ret) == NULL)
8e65ff28
AC
1160 internal_error (__FILE__, __LINE__,
1161 "vasprintf returned NULL buffer (errno %d)",
1162 errno);
76995688
AC
1163 /* A negative status with a non-NULL buffer shouldn't never
1164 happen. But to be sure. */
1165 if (status < 0)
8e65ff28
AC
1166 internal_error (__FILE__, __LINE__,
1167 "vasprintf call failed (errno %d)",
1168 errno);
76995688
AC
1169}
1170
1171
c906108c
SS
1172/* My replacement for the read system call.
1173 Used like `read' but keeps going if `read' returns too soon. */
1174
1175int
fba45db2 1176myread (int desc, char *addr, int len)
c906108c
SS
1177{
1178 register int val;
1179 int orglen = len;
1180
1181 while (len > 0)
1182 {
1183 val = read (desc, addr, len);
1184 if (val < 0)
1185 return val;
1186 if (val == 0)
1187 return orglen - len;
1188 len -= val;
1189 addr += val;
1190 }
1191 return orglen;
1192}
1193\f
1194/* Make a copy of the string at PTR with SIZE characters
1195 (and add a null character at the end in the copy).
1196 Uses malloc to get the space. Returns the address of the copy. */
1197
1198char *
5565b556 1199savestring (const char *ptr, size_t size)
c906108c
SS
1200{
1201 register char *p = (char *) xmalloc (size + 1);
1202 memcpy (p, ptr, size);
1203 p[size] = 0;
1204 return p;
1205}
1206
1207char *
5565b556 1208msavestring (void *md, const char *ptr, size_t size)
c906108c
SS
1209{
1210 register char *p = (char *) xmmalloc (md, size + 1);
1211 memcpy (p, ptr, size);
1212 p[size] = 0;
1213 return p;
1214}
1215
c906108c 1216char *
082faf24 1217mstrsave (void *md, const char *ptr)
c906108c
SS
1218{
1219 return (msavestring (md, ptr, strlen (ptr)));
1220}
1221
1222void
fba45db2 1223print_spaces (register int n, register struct ui_file *file)
c906108c 1224{
392a587b 1225 fputs_unfiltered (n_spaces (n), file);
c906108c
SS
1226}
1227
1228/* Print a host address. */
1229
1230void
d9fcf2fb 1231gdb_print_host_address (void *addr, struct ui_file *stream)
c906108c
SS
1232{
1233
1234 /* We could use the %p conversion specifier to fprintf if we had any
1235 way of knowing whether this host supports it. But the following
1236 should work on the Alpha and on 32 bit machines. */
1237
c5aa993b 1238 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
c906108c
SS
1239}
1240
1241/* Ask user a y-or-n question and return 1 iff answer is yes.
1242 Takes three args which are given to printf to print the question.
1243 The first, a control string, should end in "? ".
1244 It should not say how to answer, because we do that. */
1245
1246/* VARARGS */
1247int
c5aa993b 1248query (char *ctlstr,...)
c906108c
SS
1249{
1250 va_list args;
1251 register int answer;
1252 register int ans2;
1253 int retval;
1254
c906108c 1255 va_start (args, ctlstr);
c906108c
SS
1256
1257 if (query_hook)
1258 {
1259 return query_hook (ctlstr, args);
1260 }
1261
1262 /* Automatically answer "yes" if input is not from a terminal. */
1263 if (!input_from_terminal_p ())
1264 return 1;
1265#ifdef MPW
1266 /* FIXME Automatically answer "yes" if called from MacGDB. */
1267 if (mac_app)
1268 return 1;
1269#endif /* MPW */
1270
1271 while (1)
1272 {
1273 wrap_here (""); /* Flush any buffered output */
1274 gdb_flush (gdb_stdout);
1275
1276 if (annotation_level > 1)
1277 printf_filtered ("\n\032\032pre-query\n");
1278
1279 vfprintf_filtered (gdb_stdout, ctlstr, args);
1280 printf_filtered ("(y or n) ");
1281
1282 if (annotation_level > 1)
1283 printf_filtered ("\n\032\032query\n");
1284
1285#ifdef MPW
1286 /* If not in MacGDB, move to a new line so the entered line doesn't
c5aa993b 1287 have a prompt on the front of it. */
c906108c
SS
1288 if (!mac_app)
1289 fputs_unfiltered ("\n", gdb_stdout);
1290#endif /* MPW */
1291
c5aa993b 1292 wrap_here ("");
c906108c
SS
1293 gdb_flush (gdb_stdout);
1294
1295#if defined(TUI)
c5aa993b 1296 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1297#endif
1298 answer = fgetc (stdin);
1299#if defined(TUI)
1300 else
c5aa993b 1301 answer = (unsigned char) tuiBufferGetc ();
c906108c
SS
1302
1303#endif
1304 clearerr (stdin); /* in case of C-d */
1305 if (answer == EOF) /* C-d */
c5aa993b 1306 {
c906108c
SS
1307 retval = 1;
1308 break;
1309 }
1310 /* Eat rest of input line, to EOF or newline */
1311 if ((answer != '\n') || (tui_version && answer != '\r'))
c5aa993b 1312 do
c906108c
SS
1313 {
1314#if defined(TUI)
c5aa993b 1315 if (!tui_version || cmdWin == tuiWinWithFocus ())
c906108c
SS
1316#endif
1317 ans2 = fgetc (stdin);
1318#if defined(TUI)
1319 else
c5aa993b 1320 ans2 = (unsigned char) tuiBufferGetc ();
c906108c
SS
1321#endif
1322 clearerr (stdin);
1323 }
c5aa993b
JM
1324 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1325 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
c906108c
SS
1326
1327 if (answer >= 'a')
1328 answer -= 040;
1329 if (answer == 'Y')
1330 {
1331 retval = 1;
1332 break;
1333 }
1334 if (answer == 'N')
1335 {
1336 retval = 0;
1337 break;
1338 }
1339 printf_filtered ("Please answer y or n.\n");
1340 }
1341
1342 if (annotation_level > 1)
1343 printf_filtered ("\n\032\032post-query\n");
1344 return retval;
1345}
c906108c 1346\f
c5aa993b 1347
c906108c
SS
1348/* Parse a C escape sequence. STRING_PTR points to a variable
1349 containing a pointer to the string to parse. That pointer
1350 should point to the character after the \. That pointer
1351 is updated past the characters we use. The value of the
1352 escape sequence is returned.
1353
1354 A negative value means the sequence \ newline was seen,
1355 which is supposed to be equivalent to nothing at all.
1356
1357 If \ is followed by a null character, we return a negative
1358 value and leave the string pointer pointing at the null character.
1359
1360 If \ is followed by 000, we return 0 and leave the string pointer
1361 after the zeros. A value of 0 does not mean end of string. */
1362
1363int
fba45db2 1364parse_escape (char **string_ptr)
c906108c
SS
1365{
1366 register int c = *(*string_ptr)++;
1367 switch (c)
1368 {
1369 case 'a':
1370 return 007; /* Bell (alert) char */
1371 case 'b':
1372 return '\b';
1373 case 'e': /* Escape character */
1374 return 033;
1375 case 'f':
1376 return '\f';
1377 case 'n':
1378 return '\n';
1379 case 'r':
1380 return '\r';
1381 case 't':
1382 return '\t';
1383 case 'v':
1384 return '\v';
1385 case '\n':
1386 return -2;
1387 case 0:
1388 (*string_ptr)--;
1389 return 0;
1390 case '^':
1391 c = *(*string_ptr)++;
1392 if (c == '\\')
1393 c = parse_escape (string_ptr);
1394 if (c == '?')
1395 return 0177;
1396 return (c & 0200) | (c & 037);
c5aa993b 1397
c906108c
SS
1398 case '0':
1399 case '1':
1400 case '2':
1401 case '3':
1402 case '4':
1403 case '5':
1404 case '6':
1405 case '7':
1406 {
1407 register int i = c - '0';
1408 register int count = 0;
1409 while (++count < 3)
1410 {
1411 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1412 {
1413 i *= 8;
1414 i += c - '0';
1415 }
1416 else
1417 {
1418 (*string_ptr)--;
1419 break;
1420 }
1421 }
1422 return i;
1423 }
1424 default:
1425 return c;
1426 }
1427}
1428\f
1429/* Print the character C on STREAM as part of the contents of a literal
1430 string whose delimiter is QUOTER. Note that this routine should only
1431 be call for printing things which are independent of the language
1432 of the program being debugged. */
1433
43e526b9 1434static void
74f832da
KB
1435printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1436 void (*do_fprintf) (struct ui_file *, const char *, ...),
1437 struct ui_file *stream, int quoter)
c906108c
SS
1438{
1439
1440 c &= 0xFF; /* Avoid sign bit follies */
1441
c5aa993b
JM
1442 if (c < 0x20 || /* Low control chars */
1443 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1444 (sevenbit_strings && c >= 0x80))
1445 { /* high order bit set */
1446 switch (c)
1447 {
1448 case '\n':
43e526b9 1449 do_fputs ("\\n", stream);
c5aa993b
JM
1450 break;
1451 case '\b':
43e526b9 1452 do_fputs ("\\b", stream);
c5aa993b
JM
1453 break;
1454 case '\t':
43e526b9 1455 do_fputs ("\\t", stream);
c5aa993b
JM
1456 break;
1457 case '\f':
43e526b9 1458 do_fputs ("\\f", stream);
c5aa993b
JM
1459 break;
1460 case '\r':
43e526b9 1461 do_fputs ("\\r", stream);
c5aa993b
JM
1462 break;
1463 case '\033':
43e526b9 1464 do_fputs ("\\e", stream);
c5aa993b
JM
1465 break;
1466 case '\007':
43e526b9 1467 do_fputs ("\\a", stream);
c5aa993b
JM
1468 break;
1469 default:
43e526b9 1470 do_fprintf (stream, "\\%.3o", (unsigned int) c);
c5aa993b
JM
1471 break;
1472 }
1473 }
1474 else
1475 {
1476 if (c == '\\' || c == quoter)
43e526b9
JM
1477 do_fputs ("\\", stream);
1478 do_fprintf (stream, "%c", c);
c5aa993b 1479 }
c906108c 1480}
43e526b9
JM
1481
1482/* Print the character C on STREAM as part of the contents of a
1483 literal string whose delimiter is QUOTER. Note that these routines
1484 should only be call for printing things which are independent of
1485 the language of the program being debugged. */
1486
1487void
fba45db2 1488fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1489{
1490 while (*str)
1491 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1492}
1493
1494void
fba45db2 1495fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
43e526b9
JM
1496{
1497 while (*str)
1498 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1499}
1500
1501void
fba45db2 1502fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
43e526b9
JM
1503{
1504 int i;
1505 for (i = 0; i < n; i++)
1506 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1507}
1508
c906108c 1509\f
c5aa993b 1510
c906108c
SS
1511/* Number of lines per page or UINT_MAX if paging is disabled. */
1512static unsigned int lines_per_page;
cbfbd72a 1513/* Number of chars per line or UINT_MAX if line folding is disabled. */
c906108c
SS
1514static unsigned int chars_per_line;
1515/* Current count of lines printed on this page, chars on this line. */
1516static unsigned int lines_printed, chars_printed;
1517
1518/* Buffer and start column of buffered text, for doing smarter word-
1519 wrapping. When someone calls wrap_here(), we start buffering output
1520 that comes through fputs_filtered(). If we see a newline, we just
1521 spit it out and forget about the wrap_here(). If we see another
1522 wrap_here(), we spit it out and remember the newer one. If we see
1523 the end of the line, we spit out a newline, the indent, and then
1524 the buffered output. */
1525
1526/* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1527 are waiting to be output (they have already been counted in chars_printed).
1528 When wrap_buffer[0] is null, the buffer is empty. */
1529static char *wrap_buffer;
1530
1531/* Pointer in wrap_buffer to the next character to fill. */
1532static char *wrap_pointer;
1533
1534/* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1535 is non-zero. */
1536static char *wrap_indent;
1537
1538/* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1539 is not in effect. */
1540static int wrap_column;
c906108c 1541\f
c5aa993b 1542
c906108c
SS
1543/* Inialize the lines and chars per page */
1544void
fba45db2 1545init_page_info (void)
c906108c
SS
1546{
1547#if defined(TUI)
c5aa993b 1548 if (tui_version && m_winPtrNotNull (cmdWin))
c906108c
SS
1549 {
1550 lines_per_page = cmdWin->generic.height;
1551 chars_per_line = cmdWin->generic.width;
1552 }
1553 else
1554#endif
1555 {
1556 /* These defaults will be used if we are unable to get the correct
1557 values from termcap. */
1558#if defined(__GO32__)
c5aa993b
JM
1559 lines_per_page = ScreenRows ();
1560 chars_per_line = ScreenCols ();
1561#else
c906108c
SS
1562 lines_per_page = 24;
1563 chars_per_line = 80;
1564
1565#if !defined (MPW) && !defined (_WIN32)
1566 /* No termcap under MPW, although might be cool to do something
1567 by looking at worksheet or console window sizes. */
1568 /* Initialize the screen height and width from termcap. */
1569 {
c5aa993b 1570 char *termtype = getenv ("TERM");
c906108c 1571
c5aa993b
JM
1572 /* Positive means success, nonpositive means failure. */
1573 int status;
c906108c 1574
c5aa993b
JM
1575 /* 2048 is large enough for all known terminals, according to the
1576 GNU termcap manual. */
1577 char term_buffer[2048];
c906108c 1578
c5aa993b
JM
1579 if (termtype)
1580 {
c906108c
SS
1581 status = tgetent (term_buffer, termtype);
1582 if (status > 0)
1583 {
c5aa993b 1584 int val;
c906108c 1585 int running_in_emacs = getenv ("EMACS") != NULL;
c5aa993b
JM
1586
1587 val = tgetnum ("li");
1588 if (val >= 0 && !running_in_emacs)
1589 lines_per_page = val;
1590 else
1591 /* The number of lines per page is not mentioned
c906108c
SS
1592 in the terminal description. This probably means
1593 that paging is not useful (e.g. emacs shell window),
1594 so disable paging. */
c5aa993b
JM
1595 lines_per_page = UINT_MAX;
1596
1597 val = tgetnum ("co");
1598 if (val >= 0)
1599 chars_per_line = val;
c906108c 1600 }
c5aa993b 1601 }
c906108c
SS
1602 }
1603#endif /* MPW */
1604
1605#if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1606
1607 /* If there is a better way to determine the window size, use it. */
1608 SIGWINCH_HANDLER (SIGWINCH);
1609#endif
1610#endif
1611 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 1612 if (!ui_file_isatty (gdb_stdout))
c5aa993b
JM
1613 lines_per_page = UINT_MAX;
1614 } /* the command_line_version */
1615 set_width ();
c906108c
SS
1616}
1617
1618static void
fba45db2 1619set_width (void)
c906108c
SS
1620{
1621 if (chars_per_line == 0)
c5aa993b 1622 init_page_info ();
c906108c
SS
1623
1624 if (!wrap_buffer)
1625 {
1626 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1627 wrap_buffer[0] = '\0';
1628 }
1629 else
1630 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
c5aa993b 1631 wrap_pointer = wrap_buffer; /* Start it at the beginning */
c906108c
SS
1632}
1633
1634/* ARGSUSED */
c5aa993b 1635static void
fba45db2 1636set_width_command (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1637{
1638 set_width ();
1639}
1640
1641/* Wait, so the user can read what's on the screen. Prompt the user
1642 to continue by pressing RETURN. */
1643
1644static void
fba45db2 1645prompt_for_continue (void)
c906108c
SS
1646{
1647 char *ignore;
1648 char cont_prompt[120];
1649
1650 if (annotation_level > 1)
1651 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1652
1653 strcpy (cont_prompt,
1654 "---Type <return> to continue, or q <return> to quit---");
1655 if (annotation_level > 1)
1656 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1657
1658 /* We must do this *before* we call gdb_readline, else it will eventually
1659 call us -- thinking that we're trying to print beyond the end of the
1660 screen. */
1661 reinitialize_more_filter ();
1662
1663 immediate_quit++;
1664 /* On a real operating system, the user can quit with SIGINT.
1665 But not on GO32.
1666
1667 'q' is provided on all systems so users don't have to change habits
1668 from system to system, and because telling them what to do in
1669 the prompt is more user-friendly than expecting them to think of
1670 SIGINT. */
1671 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1672 whereas control-C to gdb_readline will cause the user to get dumped
1673 out to DOS. */
1674 ignore = readline (cont_prompt);
1675
1676 if (annotation_level > 1)
1677 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1678
1679 if (ignore)
1680 {
1681 char *p = ignore;
1682 while (*p == ' ' || *p == '\t')
1683 ++p;
1684 if (p[0] == 'q')
0f71a2f6 1685 {
6426a772 1686 if (!event_loop_p)
0f71a2f6
JM
1687 request_quit (SIGINT);
1688 else
c5aa993b 1689 async_request_quit (0);
0f71a2f6 1690 }
b8c9b27d 1691 xfree (ignore);
c906108c
SS
1692 }
1693 immediate_quit--;
1694
1695 /* Now we have to do this again, so that GDB will know that it doesn't
1696 need to save the ---Type <return>--- line at the top of the screen. */
1697 reinitialize_more_filter ();
1698
1699 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1700}
1701
1702/* Reinitialize filter; ie. tell it to reset to original values. */
1703
1704void
fba45db2 1705reinitialize_more_filter (void)
c906108c
SS
1706{
1707 lines_printed = 0;
1708 chars_printed = 0;
1709}
1710
1711/* Indicate that if the next sequence of characters overflows the line,
1712 a newline should be inserted here rather than when it hits the end.
1713 If INDENT is non-null, it is a string to be printed to indent the
1714 wrapped part on the next line. INDENT must remain accessible until
1715 the next call to wrap_here() or until a newline is printed through
1716 fputs_filtered().
1717
1718 If the line is already overfull, we immediately print a newline and
1719 the indentation, and disable further wrapping.
1720
1721 If we don't know the width of lines, but we know the page height,
1722 we must not wrap words, but should still keep track of newlines
1723 that were explicitly printed.
1724
1725 INDENT should not contain tabs, as that will mess up the char count
1726 on the next line. FIXME.
1727
1728 This routine is guaranteed to force out any output which has been
1729 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1730 used to force out output from the wrap_buffer. */
1731
1732void
fba45db2 1733wrap_here (char *indent)
c906108c
SS
1734{
1735 /* This should have been allocated, but be paranoid anyway. */
1736 if (!wrap_buffer)
e1e9e218 1737 internal_error (__FILE__, __LINE__, "failed internal consistency check");
c906108c
SS
1738
1739 if (wrap_buffer[0])
1740 {
1741 *wrap_pointer = '\0';
1742 fputs_unfiltered (wrap_buffer, gdb_stdout);
1743 }
1744 wrap_pointer = wrap_buffer;
1745 wrap_buffer[0] = '\0';
c5aa993b 1746 if (chars_per_line == UINT_MAX) /* No line overflow checking */
c906108c
SS
1747 {
1748 wrap_column = 0;
1749 }
1750 else if (chars_printed >= chars_per_line)
1751 {
1752 puts_filtered ("\n");
1753 if (indent != NULL)
1754 puts_filtered (indent);
1755 wrap_column = 0;
1756 }
1757 else
1758 {
1759 wrap_column = chars_printed;
1760 if (indent == NULL)
1761 wrap_indent = "";
1762 else
1763 wrap_indent = indent;
1764 }
1765}
1766
1767/* Ensure that whatever gets printed next, using the filtered output
1768 commands, starts at the beginning of the line. I.E. if there is
1769 any pending output for the current line, flush it and start a new
1770 line. Otherwise do nothing. */
1771
1772void
fba45db2 1773begin_line (void)
c906108c
SS
1774{
1775 if (chars_printed > 0)
1776 {
1777 puts_filtered ("\n");
1778 }
1779}
1780
ac9a91a7 1781
c906108c
SS
1782/* Like fputs but if FILTER is true, pause after every screenful.
1783
1784 Regardless of FILTER can wrap at points other than the final
1785 character of a line.
1786
1787 Unlike fputs, fputs_maybe_filtered does not return a value.
1788 It is OK for LINEBUFFER to be NULL, in which case just don't print
1789 anything.
1790
1791 Note that a longjmp to top level may occur in this routine (only if
1792 FILTER is true) (since prompt_for_continue may do so) so this
1793 routine should not be called when cleanups are not in place. */
1794
1795static void
fba45db2
KB
1796fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1797 int filter)
c906108c
SS
1798{
1799 const char *lineptr;
1800
1801 if (linebuffer == 0)
1802 return;
1803
1804 /* Don't do any filtering if it is disabled. */
7a292a7a 1805 if ((stream != gdb_stdout) || !pagination_enabled
c5aa993b 1806 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
c906108c
SS
1807 {
1808 fputs_unfiltered (linebuffer, stream);
1809 return;
1810 }
1811
1812 /* Go through and output each character. Show line extension
1813 when this is necessary; prompt user for new page when this is
1814 necessary. */
c5aa993b 1815
c906108c
SS
1816 lineptr = linebuffer;
1817 while (*lineptr)
1818 {
1819 /* Possible new page. */
1820 if (filter &&
1821 (lines_printed >= lines_per_page - 1))
1822 prompt_for_continue ();
1823
1824 while (*lineptr && *lineptr != '\n')
1825 {
1826 /* Print a single line. */
1827 if (*lineptr == '\t')
1828 {
1829 if (wrap_column)
1830 *wrap_pointer++ = '\t';
1831 else
1832 fputc_unfiltered ('\t', stream);
1833 /* Shifting right by 3 produces the number of tab stops
1834 we have already passed, and then adding one and
c5aa993b 1835 shifting left 3 advances to the next tab stop. */
c906108c
SS
1836 chars_printed = ((chars_printed >> 3) + 1) << 3;
1837 lineptr++;
1838 }
1839 else
1840 {
1841 if (wrap_column)
1842 *wrap_pointer++ = *lineptr;
1843 else
c5aa993b 1844 fputc_unfiltered (*lineptr, stream);
c906108c
SS
1845 chars_printed++;
1846 lineptr++;
1847 }
c5aa993b 1848
c906108c
SS
1849 if (chars_printed >= chars_per_line)
1850 {
1851 unsigned int save_chars = chars_printed;
1852
1853 chars_printed = 0;
1854 lines_printed++;
1855 /* If we aren't actually wrapping, don't output newline --
c5aa993b
JM
1856 if chars_per_line is right, we probably just overflowed
1857 anyway; if it's wrong, let us keep going. */
c906108c
SS
1858 if (wrap_column)
1859 fputc_unfiltered ('\n', stream);
1860
1861 /* Possible new page. */
1862 if (lines_printed >= lines_per_page - 1)
1863 prompt_for_continue ();
1864
1865 /* Now output indentation and wrapped string */
1866 if (wrap_column)
1867 {
1868 fputs_unfiltered (wrap_indent, stream);
c5aa993b
JM
1869 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1870 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
c906108c
SS
1871 /* FIXME, this strlen is what prevents wrap_indent from
1872 containing tabs. However, if we recurse to print it
1873 and count its chars, we risk trouble if wrap_indent is
1874 longer than (the user settable) chars_per_line.
1875 Note also that this can set chars_printed > chars_per_line
1876 if we are printing a long string. */
1877 chars_printed = strlen (wrap_indent)
c5aa993b 1878 + (save_chars - wrap_column);
c906108c
SS
1879 wrap_pointer = wrap_buffer; /* Reset buffer */
1880 wrap_buffer[0] = '\0';
c5aa993b
JM
1881 wrap_column = 0; /* And disable fancy wrap */
1882 }
c906108c
SS
1883 }
1884 }
1885
1886 if (*lineptr == '\n')
1887 {
1888 chars_printed = 0;
c5aa993b 1889 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
c906108c
SS
1890 lines_printed++;
1891 fputc_unfiltered ('\n', stream);
1892 lineptr++;
1893 }
1894 }
1895}
1896
1897void
fba45db2 1898fputs_filtered (const char *linebuffer, struct ui_file *stream)
c906108c
SS
1899{
1900 fputs_maybe_filtered (linebuffer, stream, 1);
1901}
1902
1903int
fba45db2 1904putchar_unfiltered (int c)
c906108c 1905{
11cf8741 1906 char buf = c;
d9fcf2fb 1907 ui_file_write (gdb_stdout, &buf, 1);
c906108c
SS
1908 return c;
1909}
1910
d1f4cff8
AC
1911/* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1912 May return nonlocally. */
1913
1914int
1915putchar_filtered (int c)
1916{
1917 return fputc_filtered (c, gdb_stdout);
1918}
1919
c906108c 1920int
fba45db2 1921fputc_unfiltered (int c, struct ui_file *stream)
c906108c 1922{
11cf8741 1923 char buf = c;
d9fcf2fb 1924 ui_file_write (stream, &buf, 1);
c906108c
SS
1925 return c;
1926}
1927
1928int
fba45db2 1929fputc_filtered (int c, struct ui_file *stream)
c906108c
SS
1930{
1931 char buf[2];
1932
1933 buf[0] = c;
1934 buf[1] = 0;
1935 fputs_filtered (buf, stream);
1936 return c;
1937}
1938
1939/* puts_debug is like fputs_unfiltered, except it prints special
1940 characters in printable fashion. */
1941
1942void
fba45db2 1943puts_debug (char *prefix, char *string, char *suffix)
c906108c
SS
1944{
1945 int ch;
1946
1947 /* Print prefix and suffix after each line. */
1948 static int new_line = 1;
1949 static int return_p = 0;
1950 static char *prev_prefix = "";
1951 static char *prev_suffix = "";
1952
1953 if (*string == '\n')
1954 return_p = 0;
1955
1956 /* If the prefix is changing, print the previous suffix, a new line,
1957 and the new prefix. */
c5aa993b 1958 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
c906108c 1959 {
9846de1b
JM
1960 fputs_unfiltered (prev_suffix, gdb_stdlog);
1961 fputs_unfiltered ("\n", gdb_stdlog);
1962 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1963 }
1964
1965 /* Print prefix if we printed a newline during the previous call. */
1966 if (new_line)
1967 {
1968 new_line = 0;
9846de1b 1969 fputs_unfiltered (prefix, gdb_stdlog);
c906108c
SS
1970 }
1971
1972 prev_prefix = prefix;
1973 prev_suffix = suffix;
1974
1975 /* Output characters in a printable format. */
1976 while ((ch = *string++) != '\0')
1977 {
1978 switch (ch)
c5aa993b 1979 {
c906108c
SS
1980 default:
1981 if (isprint (ch))
9846de1b 1982 fputc_unfiltered (ch, gdb_stdlog);
c906108c
SS
1983
1984 else
9846de1b 1985 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
c906108c
SS
1986 break;
1987
c5aa993b
JM
1988 case '\\':
1989 fputs_unfiltered ("\\\\", gdb_stdlog);
1990 break;
1991 case '\b':
1992 fputs_unfiltered ("\\b", gdb_stdlog);
1993 break;
1994 case '\f':
1995 fputs_unfiltered ("\\f", gdb_stdlog);
1996 break;
1997 case '\n':
1998 new_line = 1;
1999 fputs_unfiltered ("\\n", gdb_stdlog);
2000 break;
2001 case '\r':
2002 fputs_unfiltered ("\\r", gdb_stdlog);
2003 break;
2004 case '\t':
2005 fputs_unfiltered ("\\t", gdb_stdlog);
2006 break;
2007 case '\v':
2008 fputs_unfiltered ("\\v", gdb_stdlog);
2009 break;
2010 }
c906108c
SS
2011
2012 return_p = ch == '\r';
2013 }
2014
2015 /* Print suffix if we printed a newline. */
2016 if (new_line)
2017 {
9846de1b
JM
2018 fputs_unfiltered (suffix, gdb_stdlog);
2019 fputs_unfiltered ("\n", gdb_stdlog);
c906108c
SS
2020 }
2021}
2022
2023
2024/* Print a variable number of ARGS using format FORMAT. If this
2025 information is going to put the amount written (since the last call
2026 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2027 call prompt_for_continue to get the users permision to continue.
2028
2029 Unlike fprintf, this function does not return a value.
2030
2031 We implement three variants, vfprintf (takes a vararg list and stream),
2032 fprintf (takes a stream to write on), and printf (the usual).
2033
2034 Note also that a longjmp to top level may occur in this routine
2035 (since prompt_for_continue may do so) so this routine should not be
2036 called when cleanups are not in place. */
2037
2038static void
fba45db2
KB
2039vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
2040 va_list args, int filter)
c906108c
SS
2041{
2042 char *linebuffer;
2043 struct cleanup *old_cleanups;
2044
76995688 2045 xvasprintf (&linebuffer, format, args);
b8c9b27d 2046 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
2047 fputs_maybe_filtered (linebuffer, stream, filter);
2048 do_cleanups (old_cleanups);
2049}
2050
2051
2052void
fba45db2 2053vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2054{
2055 vfprintf_maybe_filtered (stream, format, args, 1);
2056}
2057
2058void
fba45db2 2059vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
c906108c
SS
2060{
2061 char *linebuffer;
2062 struct cleanup *old_cleanups;
2063
76995688 2064 xvasprintf (&linebuffer, format, args);
b8c9b27d 2065 old_cleanups = make_cleanup (xfree, linebuffer);
c906108c
SS
2066 fputs_unfiltered (linebuffer, stream);
2067 do_cleanups (old_cleanups);
2068}
2069
2070void
fba45db2 2071vprintf_filtered (const char *format, va_list args)
c906108c
SS
2072{
2073 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2074}
2075
2076void
fba45db2 2077vprintf_unfiltered (const char *format, va_list args)
c906108c
SS
2078{
2079 vfprintf_unfiltered (gdb_stdout, format, args);
2080}
2081
c906108c 2082void
d9fcf2fb 2083fprintf_filtered (struct ui_file * stream, const char *format,...)
c906108c
SS
2084{
2085 va_list args;
c906108c 2086 va_start (args, format);
c906108c
SS
2087 vfprintf_filtered (stream, format, args);
2088 va_end (args);
2089}
2090
c906108c 2091void
d9fcf2fb 2092fprintf_unfiltered (struct ui_file * stream, const char *format,...)
c906108c
SS
2093{
2094 va_list args;
c906108c 2095 va_start (args, format);
c906108c
SS
2096 vfprintf_unfiltered (stream, format, args);
2097 va_end (args);
2098}
2099
2100/* Like fprintf_filtered, but prints its result indented.
2101 Called as fprintfi_filtered (spaces, stream, format, ...); */
2102
c906108c 2103void
d9fcf2fb 2104fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
c906108c
SS
2105{
2106 va_list args;
c906108c 2107 va_start (args, format);
c906108c
SS
2108 print_spaces_filtered (spaces, stream);
2109
2110 vfprintf_filtered (stream, format, args);
2111 va_end (args);
2112}
2113
2114
c906108c 2115void
c5aa993b 2116printf_filtered (const char *format,...)
c906108c
SS
2117{
2118 va_list args;
c906108c 2119 va_start (args, format);
c906108c
SS
2120 vfprintf_filtered (gdb_stdout, format, args);
2121 va_end (args);
2122}
2123
2124
c906108c 2125void
c5aa993b 2126printf_unfiltered (const char *format,...)
c906108c
SS
2127{
2128 va_list args;
c906108c 2129 va_start (args, format);
c906108c
SS
2130 vfprintf_unfiltered (gdb_stdout, format, args);
2131 va_end (args);
2132}
2133
2134/* Like printf_filtered, but prints it's result indented.
2135 Called as printfi_filtered (spaces, format, ...); */
2136
c906108c 2137void
c5aa993b 2138printfi_filtered (int spaces, const char *format,...)
c906108c
SS
2139{
2140 va_list args;
c906108c 2141 va_start (args, format);
c906108c
SS
2142 print_spaces_filtered (spaces, gdb_stdout);
2143 vfprintf_filtered (gdb_stdout, format, args);
2144 va_end (args);
2145}
2146
2147/* Easy -- but watch out!
2148
2149 This routine is *not* a replacement for puts()! puts() appends a newline.
2150 This one doesn't, and had better not! */
2151
2152void
fba45db2 2153puts_filtered (const char *string)
c906108c
SS
2154{
2155 fputs_filtered (string, gdb_stdout);
2156}
2157
2158void
fba45db2 2159puts_unfiltered (const char *string)
c906108c
SS
2160{
2161 fputs_unfiltered (string, gdb_stdout);
2162}
2163
2164/* Return a pointer to N spaces and a null. The pointer is good
2165 until the next call to here. */
2166char *
fba45db2 2167n_spaces (int n)
c906108c 2168{
392a587b
JM
2169 char *t;
2170 static char *spaces = 0;
2171 static int max_spaces = -1;
c906108c
SS
2172
2173 if (n > max_spaces)
2174 {
2175 if (spaces)
b8c9b27d 2176 xfree (spaces);
c5aa993b
JM
2177 spaces = (char *) xmalloc (n + 1);
2178 for (t = spaces + n; t != spaces;)
c906108c
SS
2179 *--t = ' ';
2180 spaces[n] = '\0';
2181 max_spaces = n;
2182 }
2183
2184 return spaces + max_spaces - n;
2185}
2186
2187/* Print N spaces. */
2188void
fba45db2 2189print_spaces_filtered (int n, struct ui_file *stream)
c906108c
SS
2190{
2191 fputs_filtered (n_spaces (n), stream);
2192}
2193\f
2194/* C++ demangler stuff. */
2195
2196/* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2197 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2198 If the name is not mangled, or the language for the name is unknown, or
2199 demangling is off, the name is printed in its "raw" form. */
2200
2201void
fba45db2
KB
2202fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2203 int arg_mode)
c906108c
SS
2204{
2205 char *demangled;
2206
2207 if (name != NULL)
2208 {
2209 /* If user wants to see raw output, no problem. */
2210 if (!demangle)
2211 {
2212 fputs_filtered (name, stream);
2213 }
2214 else
2215 {
2216 switch (lang)
2217 {
2218 case language_cplus:
2219 demangled = cplus_demangle (name, arg_mode);
2220 break;
2221 case language_java:
2222 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2223 break;
2224 case language_chill:
2225 demangled = chill_demangle (name);
2226 break;
2227 default:
2228 demangled = NULL;
2229 break;
2230 }
2231 fputs_filtered (demangled ? demangled : name, stream);
2232 if (demangled != NULL)
2233 {
b8c9b27d 2234 xfree (demangled);
c906108c
SS
2235 }
2236 }
2237 }
2238}
2239
2240/* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2241 differences in whitespace. Returns 0 if they match, non-zero if they
2242 don't (slightly different than strcmp()'s range of return values).
c5aa993b 2243
c906108c
SS
2244 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2245 This "feature" is useful when searching for matching C++ function names
2246 (such as if the user types 'break FOO', where FOO is a mangled C++
2247 function). */
2248
2249int
fba45db2 2250strcmp_iw (const char *string1, const char *string2)
c906108c
SS
2251{
2252 while ((*string1 != '\0') && (*string2 != '\0'))
2253 {
2254 while (isspace (*string1))
2255 {
2256 string1++;
2257 }
2258 while (isspace (*string2))
2259 {
2260 string2++;
2261 }
2262 if (*string1 != *string2)
2263 {
2264 break;
2265 }
2266 if (*string1 != '\0')
2267 {
2268 string1++;
2269 string2++;
2270 }
2271 }
2272 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2273}
c906108c 2274\f
c5aa993b 2275
c906108c 2276/*
c5aa993b
JM
2277 ** subset_compare()
2278 ** Answer whether string_to_compare is a full or partial match to
2279 ** template_string. The partial match must be in sequence starting
2280 ** at index 0.
2281 */
c906108c 2282int
fba45db2 2283subset_compare (char *string_to_compare, char *template_string)
7a292a7a
SS
2284{
2285 int match;
c5aa993b
JM
2286 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2287 strlen (string_to_compare) <= strlen (template_string))
2288 match = (strncmp (template_string,
2289 string_to_compare,
2290 strlen (string_to_compare)) == 0);
7a292a7a
SS
2291 else
2292 match = 0;
2293 return match;
2294}
c906108c
SS
2295
2296
a14ed312 2297static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2298static void
fba45db2 2299pagination_on_command (char *arg, int from_tty)
c906108c
SS
2300{
2301 pagination_enabled = 1;
2302}
2303
a14ed312 2304static void pagination_on_command (char *arg, int from_tty);
7a292a7a 2305static void
fba45db2 2306pagination_off_command (char *arg, int from_tty)
c906108c
SS
2307{
2308 pagination_enabled = 0;
2309}
c906108c 2310\f
c5aa993b 2311
c906108c 2312void
fba45db2 2313initialize_utils (void)
c906108c
SS
2314{
2315 struct cmd_list_element *c;
2316
c5aa993b
JM
2317 c = add_set_cmd ("width", class_support, var_uinteger,
2318 (char *) &chars_per_line,
2319 "Set number of characters gdb thinks are in a line.",
2320 &setlist);
c906108c
SS
2321 add_show_from_set (c, &showlist);
2322 c->function.sfunc = set_width_command;
2323
2324 add_show_from_set
2325 (add_set_cmd ("height", class_support,
c5aa993b 2326 var_uinteger, (char *) &lines_per_page,
c906108c
SS
2327 "Set number of lines gdb thinks are in a page.", &setlist),
2328 &showlist);
c5aa993b 2329
c906108c
SS
2330 init_page_info ();
2331
2332 /* If the output is not a terminal, don't paginate it. */
d9fcf2fb 2333 if (!ui_file_isatty (gdb_stdout))
c906108c
SS
2334 lines_per_page = UINT_MAX;
2335
c5aa993b 2336 set_width_command ((char *) NULL, 0, c);
c906108c
SS
2337
2338 add_show_from_set
c5aa993b
JM
2339 (add_set_cmd ("demangle", class_support, var_boolean,
2340 (char *) &demangle,
2341 "Set demangling of encoded C++ names when displaying symbols.",
c906108c
SS
2342 &setprintlist),
2343 &showprintlist);
2344
2345 add_show_from_set
2346 (add_set_cmd ("pagination", class_support,
c5aa993b 2347 var_boolean, (char *) &pagination_enabled,
c906108c
SS
2348 "Set state of pagination.", &setlist),
2349 &showlist);
4261bedc 2350
c906108c
SS
2351 if (xdb_commands)
2352 {
c5aa993b
JM
2353 add_com ("am", class_support, pagination_on_command,
2354 "Enable pagination");
2355 add_com ("sm", class_support, pagination_off_command,
2356 "Disable pagination");
c906108c
SS
2357 }
2358
2359 add_show_from_set
c5aa993b
JM
2360 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2361 (char *) &sevenbit_strings,
2362 "Set printing of 8-bit characters in strings as \\nnn.",
c906108c
SS
2363 &setprintlist),
2364 &showprintlist);
2365
2366 add_show_from_set
c5aa993b
JM
2367 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2368 (char *) &asm_demangle,
2369 "Set demangling of C++ names in disassembly listings.",
c906108c
SS
2370 &setprintlist),
2371 &showprintlist);
2372}
2373
2374/* Machine specific function to handle SIGWINCH signal. */
2375
2376#ifdef SIGWINCH_HANDLER_BODY
c5aa993b 2377SIGWINCH_HANDLER_BODY
c906108c
SS
2378#endif
2379\f
2380/* Support for converting target fp numbers into host DOUBLEST format. */
2381
2382/* XXX - This code should really be in libiberty/floatformat.c, however
2383 configuration issues with libiberty made this very difficult to do in the
2384 available time. */
2385
2386#include "floatformat.h"
2387#include <math.h> /* ldexp */
2388
2389/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2390 going to bother with trying to muck around with whether it is defined in
2391 a system header, what we do if not, etc. */
2392#define FLOATFORMAT_CHAR_BIT 8
2393
a14ed312
KB
2394static unsigned long get_field (unsigned char *,
2395 enum floatformat_byteorders,
2396 unsigned int, unsigned int, unsigned int);
c906108c
SS
2397
2398/* Extract a field which starts at START and is LEN bytes long. DATA and
2399 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2400static unsigned long
fba45db2
KB
2401get_field (unsigned char *data, enum floatformat_byteorders order,
2402 unsigned int total_len, unsigned int start, unsigned int len)
c906108c
SS
2403{
2404 unsigned long result;
2405 unsigned int cur_byte;
2406 int cur_bitshift;
2407
2408 /* Start at the least significant part of the field. */
c906108c 2409 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2410 {
2411 /* We start counting from the other end (i.e, from the high bytes
2412 rather than the low bytes). As such, we need to be concerned
2413 with what happens if bit 0 doesn't start on a byte boundary.
2414 I.e, we need to properly handle the case where total_len is
2415 not evenly divisible by 8. So we compute ``excess'' which
2416 represents the number of bits from the end of our starting
2417 byte needed to get to bit 0. */
2418 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2419 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2420 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2421 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2422 - FLOATFORMAT_CHAR_BIT;
2423 }
2424 else
2425 {
2426 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2427 cur_bitshift =
2428 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2429 }
2430 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2431 result = *(data + cur_byte) >> (-cur_bitshift);
2432 else
2433 result = 0;
c906108c
SS
2434 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2435 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2436 ++cur_byte;
2437 else
2438 --cur_byte;
2439
2440 /* Move towards the most significant part of the field. */
2441 while (cur_bitshift < len)
2442 {
0fda6bd2 2443 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
c906108c
SS
2444 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2445 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2446 ++cur_byte;
2447 else
2448 --cur_byte;
2449 }
0fda6bd2
JM
2450 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2451 /* Mask out bits which are not part of the field */
2452 result &= ((1UL << len) - 1);
c906108c
SS
2453 return result;
2454}
c5aa993b 2455
c906108c
SS
2456/* Convert from FMT to a DOUBLEST.
2457 FROM is the address of the extended float.
2458 Store the DOUBLEST in *TO. */
2459
2460void
fba45db2
KB
2461floatformat_to_doublest (const struct floatformat *fmt, char *from,
2462 DOUBLEST *to)
c906108c 2463{
c5aa993b 2464 unsigned char *ufrom = (unsigned char *) from;
c906108c
SS
2465 DOUBLEST dto;
2466 long exponent;
2467 unsigned long mant;
2468 unsigned int mant_bits, mant_off;
2469 int mant_bits_left;
2470 int special_exponent; /* It's a NaN, denorm or zero */
2471
2472 /* If the mantissa bits are not contiguous from one end of the
2473 mantissa to the other, we need to make a private copy of the
2474 source bytes that is in the right order since the unpacking
2475 algorithm assumes that the bits are contiguous.
2476
2477 Swap the bytes individually rather than accessing them through
2478 "long *" since we have no guarantee that they start on a long
2479 alignment, and also sizeof(long) for the host could be different
2480 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2481 for the target is 4. */
2482
c5aa993b 2483 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2484 {
2485 static unsigned char *newfrom;
2486 unsigned char *swapin, *swapout;
2487 int longswaps;
2488
c5aa993b 2489 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
c906108c 2490 longswaps >>= 3;
c5aa993b 2491
c906108c
SS
2492 if (newfrom == NULL)
2493 {
c5aa993b 2494 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
c906108c
SS
2495 }
2496 swapout = newfrom;
2497 swapin = ufrom;
2498 ufrom = newfrom;
2499 while (longswaps-- > 0)
2500 {
2501 /* This is ugly, but efficient */
2502 *swapout++ = swapin[4];
2503 *swapout++ = swapin[5];
2504 *swapout++ = swapin[6];
2505 *swapout++ = swapin[7];
2506 *swapout++ = swapin[0];
2507 *swapout++ = swapin[1];
2508 *swapout++ = swapin[2];
2509 *swapout++ = swapin[3];
2510 swapin += 8;
2511 }
2512 }
2513
2514 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2515 fmt->exp_start, fmt->exp_len);
2516 /* Note that if exponent indicates a NaN, we can't really do anything useful
2517 (not knowing if the host has NaN's, or how to build one). So it will
2518 end up as an infinity or something close; that is OK. */
2519
2520 mant_bits_left = fmt->man_len;
2521 mant_off = fmt->man_start;
2522 dto = 0.0;
2523
2524 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2525
11cf8741
JM
2526/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2527 we don't check for zero as the exponent doesn't matter. */
c906108c
SS
2528 if (!special_exponent)
2529 exponent -= fmt->exp_bias;
11cf8741
JM
2530 else if (exponent == 0)
2531 exponent = 1 - fmt->exp_bias;
c906108c
SS
2532
2533 /* Build the result algebraically. Might go infinite, underflow, etc;
2534 who cares. */
2535
2536/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2537 increment the exponent by one to account for the integer bit. */
2538
2539 if (!special_exponent)
7a292a7a
SS
2540 {
2541 if (fmt->intbit == floatformat_intbit_no)
2542 dto = ldexp (1.0, exponent);
2543 else
2544 exponent++;
2545 }
c906108c
SS
2546
2547 while (mant_bits_left > 0)
2548 {
2549 mant_bits = min (mant_bits_left, 32);
2550
2551 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
c5aa993b 2552 mant_off, mant_bits);
c906108c 2553
c5aa993b 2554 dto += ldexp ((double) mant, exponent - mant_bits);
c906108c
SS
2555 exponent -= mant_bits;
2556 mant_off += mant_bits;
2557 mant_bits_left -= mant_bits;
2558 }
2559
2560 /* Negate it if negative. */
2561 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2562 dto = -dto;
2563 *to = dto;
2564}
2565\f
a14ed312
KB
2566static void put_field (unsigned char *, enum floatformat_byteorders,
2567 unsigned int,
2568 unsigned int, unsigned int, unsigned long);
c906108c
SS
2569
2570/* Set a field which starts at START and is LEN bytes long. DATA and
2571 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2572static void
fba45db2
KB
2573put_field (unsigned char *data, enum floatformat_byteorders order,
2574 unsigned int total_len, unsigned int start, unsigned int len,
2575 unsigned long stuff_to_put)
c906108c
SS
2576{
2577 unsigned int cur_byte;
2578 int cur_bitshift;
2579
2580 /* Start at the least significant part of the field. */
c906108c 2581 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
0fda6bd2
JM
2582 {
2583 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2584 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2585 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2586 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2587 - FLOATFORMAT_CHAR_BIT;
2588 }
2589 else
2590 {
2591 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2592 cur_bitshift =
2593 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2594 }
2595 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2596 {
2597 *(data + cur_byte) &=
2598 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2599 << (-cur_bitshift));
2600 *(data + cur_byte) |=
2601 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2602 }
c906108c
SS
2603 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2604 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2605 ++cur_byte;
2606 else
2607 --cur_byte;
2608
2609 /* Move towards the most significant part of the field. */
2610 while (cur_bitshift < len)
2611 {
2612 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2613 {
2614 /* This is the last byte. */
2615 *(data + cur_byte) &=
2616 ~((1 << (len - cur_bitshift)) - 1);
2617 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2618 }
2619 else
2620 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2621 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2622 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2623 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2624 ++cur_byte;
2625 else
2626 --cur_byte;
2627 }
2628}
2629
2630#ifdef HAVE_LONG_DOUBLE
2631/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2632 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2633 frexp, but operates on the long double data type. */
2634
a14ed312 2635static long double ldfrexp (long double value, int *eptr);
c906108c
SS
2636
2637static long double
fba45db2 2638ldfrexp (long double value, int *eptr)
c906108c
SS
2639{
2640 long double tmp;
2641 int exp;
2642
2643 /* Unfortunately, there are no portable functions for extracting the exponent
2644 of a long double, so we have to do it iteratively by multiplying or dividing
2645 by two until the fraction is between 0.5 and 1.0. */
2646
2647 if (value < 0.0l)
2648 value = -value;
2649
2650 tmp = 1.0l;
2651 exp = 0;
2652
2653 if (value >= tmp) /* Value >= 1.0 */
2654 while (value >= tmp)
2655 {
2656 tmp *= 2.0l;
2657 exp++;
2658 }
2659 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2660 {
2661 while (value < tmp)
2662 {
2663 tmp /= 2.0l;
2664 exp--;
2665 }
2666 tmp *= 2.0l;
2667 exp++;
2668 }
2669
2670 *eptr = exp;
c5aa993b 2671 return value / tmp;
c906108c
SS
2672}
2673#endif /* HAVE_LONG_DOUBLE */
2674
2675
2676/* The converse: convert the DOUBLEST *FROM to an extended float
2677 and store where TO points. Neither FROM nor TO have any alignment
2678 restrictions. */
2679
2680void
fba45db2
KB
2681floatformat_from_doublest (CONST struct floatformat *fmt, DOUBLEST *from,
2682 char *to)
c906108c
SS
2683{
2684 DOUBLEST dfrom;
2685 int exponent;
2686 DOUBLEST mant;
2687 unsigned int mant_bits, mant_off;
2688 int mant_bits_left;
c5aa993b 2689 unsigned char *uto = (unsigned char *) to;
c906108c
SS
2690
2691 memcpy (&dfrom, from, sizeof (dfrom));
ba8966d6
KB
2692 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2693 / FLOATFORMAT_CHAR_BIT);
c906108c
SS
2694 if (dfrom == 0)
2695 return; /* Result is zero */
2696 if (dfrom != dfrom) /* Result is NaN */
2697 {
2698 /* From is NaN */
2699 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2700 fmt->exp_len, fmt->exp_nan);
2701 /* Be sure it's not infinity, but NaN value is irrel */
2702 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2703 32, 1);
2704 return;
2705 }
2706
2707 /* If negative, set the sign bit. */
2708 if (dfrom < 0)
2709 {
2710 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2711 dfrom = -dfrom;
2712 }
2713
2714 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2715 {
2716 /* Infinity exponent is same as NaN's. */
2717 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2718 fmt->exp_len, fmt->exp_nan);
2719 /* Infinity mantissa is all zeroes. */
2720 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2721 fmt->man_len, 0);
2722 return;
2723 }
2724
2725#ifdef HAVE_LONG_DOUBLE
2726 mant = ldfrexp (dfrom, &exponent);
2727#else
2728 mant = frexp (dfrom, &exponent);
2729#endif
2730
2731 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2732 exponent + fmt->exp_bias - 1);
2733
2734 mant_bits_left = fmt->man_len;
2735 mant_off = fmt->man_start;
2736 while (mant_bits_left > 0)
2737 {
2738 unsigned long mant_long;
2739 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2740
2741 mant *= 4294967296.0;
ba8966d6 2742 mant_long = ((unsigned long) mant) & 0xffffffffL;
c906108c
SS
2743 mant -= mant_long;
2744
2745 /* If the integer bit is implicit, then we need to discard it.
c5aa993b
JM
2746 If we are discarding a zero, we should be (but are not) creating
2747 a denormalized number which means adjusting the exponent
2748 (I think). */
c906108c
SS
2749 if (mant_bits_left == fmt->man_len
2750 && fmt->intbit == floatformat_intbit_no)
2751 {
2752 mant_long <<= 1;
ba8966d6 2753 mant_long &= 0xffffffffL;
c906108c
SS
2754 mant_bits -= 1;
2755 }
2756
2757 if (mant_bits < 32)
2758 {
2759 /* The bits we want are in the most significant MANT_BITS bits of
2760 mant_long. Move them to the least significant. */
2761 mant_long >>= 32 - mant_bits;
2762 }
2763
2764 put_field (uto, fmt->byteorder, fmt->totalsize,
2765 mant_off, mant_bits, mant_long);
2766 mant_off += mant_bits;
2767 mant_bits_left -= mant_bits;
2768 }
c5aa993b 2769 if (fmt->byteorder == floatformat_littlebyte_bigword)
c906108c
SS
2770 {
2771 int count;
2772 unsigned char *swaplow = uto;
2773 unsigned char *swaphigh = uto + 4;
2774 unsigned char tmp;
2775
2776 for (count = 0; count < 4; count++)
2777 {
2778 tmp = *swaplow;
2779 *swaplow++ = *swaphigh;
2780 *swaphigh++ = tmp;
2781 }
2782 }
2783}
2784
39424bef
MK
2785/* Check if VAL (which is assumed to be a floating point number whose
2786 format is described by FMT) is negative. */
2787
2788int
2789floatformat_is_negative (const struct floatformat *fmt, char *val)
2790{
2791 unsigned char *uval = (unsigned char *) val;
2792
2793 return get_field (uval, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1);
2794}
2795
2796/* Check if VAL is "not a number" (NaN) for FMT. */
2797
2798int
2799floatformat_is_nan (const struct floatformat *fmt, char *val)
2800{
2801 unsigned char *uval = (unsigned char *) val;
2802 long exponent;
2803 unsigned long mant;
2804 unsigned int mant_bits, mant_off;
2805 int mant_bits_left;
2806
2807 if (! fmt->exp_nan)
2808 return 0;
2809
2810 exponent = get_field (uval, fmt->byteorder, fmt->totalsize,
2811 fmt->exp_start, fmt->exp_len);
2812
2813 if (exponent != fmt->exp_nan)
2814 return 0;
2815
2816 mant_bits_left = fmt->man_len;
2817 mant_off = fmt->man_start;
2818
2819 while (mant_bits_left > 0)
2820 {
2821 mant_bits = min (mant_bits_left, 32);
2822
2823 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2824 mant_off, mant_bits);
2825
2826 /* If there is an explicit integer bit, mask it off. */
2827 if (mant_off == fmt->man_start
2828 && fmt->intbit == floatformat_intbit_yes)
2829 mant &= ~(1 << (mant_bits - 1));
2830
2831 if (mant)
2832 return 1;
2833
2834 mant_off += mant_bits;
2835 mant_bits_left -= mant_bits;
2836 }
2837
2838 return 0;
2839}
2840
2841/* Convert the mantissa of VAL (which is assumed to be a floating
2842 point number whose format is described by FMT) into a hexadecimal
2843 and store it in a static string. Return a pointer to that string. */
2844
2845char *
2846floatformat_mantissa (const struct floatformat *fmt, char *val)
2847{
2848 unsigned char *uval = (unsigned char *) val;
2849 unsigned long mant;
2850 unsigned int mant_bits, mant_off;
2851 int mant_bits_left;
2852 static char res[50];
2853 char buf[9];
2854
2855 /* Make sure we have enough room to store the mantissa. */
2856 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
2857
2858 mant_off = fmt->man_start;
2859 mant_bits_left = fmt->man_len;
2860 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
2861
2862 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2863 mant_off, mant_bits);
2864
2865 sprintf (res, "%lx", mant);
2866
2867 mant_off += mant_bits;
2868 mant_bits_left -= mant_bits;
2869
2870 while (mant_bits_left > 0)
2871 {
2872 mant = get_field (uval, fmt->byteorder, fmt->totalsize,
2873 mant_off, 32);
2874
2875 sprintf (buf, "%08lx", mant);
2876 strcat (res, buf);
2877
2878 mant_off += 32;
2879 mant_bits_left -= 32;
2880 }
2881
2882 return res;
2883}
2884
5683e87a
AC
2885/* print routines to handle variable size regs, etc. */
2886
c906108c
SS
2887/* temporary storage using circular buffer */
2888#define NUMCELLS 16
2889#define CELLSIZE 32
c5aa993b 2890static char *
fba45db2 2891get_cell (void)
c906108c
SS
2892{
2893 static char buf[NUMCELLS][CELLSIZE];
c5aa993b
JM
2894 static int cell = 0;
2895 if (++cell >= NUMCELLS)
2896 cell = 0;
c906108c
SS
2897 return buf[cell];
2898}
2899
d4f3574e
SS
2900int
2901strlen_paddr (void)
2902{
79496e2f 2903 return (TARGET_ADDR_BIT / 8 * 2);
d4f3574e
SS
2904}
2905
c5aa993b 2906char *
104c1213 2907paddr (CORE_ADDR addr)
c906108c 2908{
79496e2f 2909 return phex (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2910}
2911
c5aa993b 2912char *
104c1213 2913paddr_nz (CORE_ADDR addr)
c906108c 2914{
79496e2f 2915 return phex_nz (addr, TARGET_ADDR_BIT / 8);
c906108c
SS
2916}
2917
104c1213
JM
2918static void
2919decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2920{
2921 /* steal code from valprint.c:print_decimal(). Should this worry
2922 about the real size of addr as the above does? */
2923 unsigned long temp[3];
2924 int i = 0;
2925 do
2926 {
2927 temp[i] = addr % (1000 * 1000 * 1000);
2928 addr /= (1000 * 1000 * 1000);
2929 i++;
2930 }
2931 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2932 switch (i)
2933 {
2934 case 1:
2935 sprintf (paddr_str, "%s%lu",
2936 sign, temp[0]);
2937 break;
2938 case 2:
2939 sprintf (paddr_str, "%s%lu%09lu",
2940 sign, temp[1], temp[0]);
2941 break;
2942 case 3:
2943 sprintf (paddr_str, "%s%lu%09lu%09lu",
2944 sign, temp[2], temp[1], temp[0]);
2945 break;
2946 default:
e1e9e218 2947 internal_error (__FILE__, __LINE__, "failed internal consistency check");
104c1213
JM
2948 }
2949}
2950
2951char *
2952paddr_u (CORE_ADDR addr)
2953{
2954 char *paddr_str = get_cell ();
2955 decimal2str (paddr_str, "", addr);
2956 return paddr_str;
2957}
2958
2959char *
2960paddr_d (LONGEST addr)
2961{
2962 char *paddr_str = get_cell ();
2963 if (addr < 0)
2964 decimal2str (paddr_str, "-", -addr);
2965 else
2966 decimal2str (paddr_str, "", addr);
2967 return paddr_str;
2968}
2969
5683e87a
AC
2970/* eliminate warning from compiler on 32-bit systems */
2971static int thirty_two = 32;
2972
104c1213 2973char *
5683e87a 2974phex (ULONGEST l, int sizeof_l)
104c1213 2975{
5683e87a
AC
2976 char *str = get_cell ();
2977 switch (sizeof_l)
104c1213
JM
2978 {
2979 case 8:
5683e87a
AC
2980 sprintf (str, "%08lx%08lx",
2981 (unsigned long) (l >> thirty_two),
2982 (unsigned long) (l & 0xffffffff));
104c1213
JM
2983 break;
2984 case 4:
5683e87a 2985 sprintf (str, "%08lx", (unsigned long) l);
104c1213
JM
2986 break;
2987 case 2:
5683e87a 2988 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
104c1213
JM
2989 break;
2990 default:
5683e87a
AC
2991 phex (l, sizeof (l));
2992 break;
104c1213 2993 }
5683e87a 2994 return str;
104c1213
JM
2995}
2996
c5aa993b 2997char *
5683e87a 2998phex_nz (ULONGEST l, int sizeof_l)
c906108c 2999{
5683e87a
AC
3000 char *str = get_cell ();
3001 switch (sizeof_l)
c906108c 3002 {
c5aa993b
JM
3003 case 8:
3004 {
5683e87a 3005 unsigned long high = (unsigned long) (l >> thirty_two);
c5aa993b 3006 if (high == 0)
5683e87a 3007 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
c5aa993b 3008 else
5683e87a
AC
3009 sprintf (str, "%lx%08lx",
3010 high, (unsigned long) (l & 0xffffffff));
c906108c 3011 break;
c5aa993b
JM
3012 }
3013 case 4:
5683e87a 3014 sprintf (str, "%lx", (unsigned long) l);
c5aa993b
JM
3015 break;
3016 case 2:
5683e87a 3017 sprintf (str, "%x", (unsigned short) (l & 0xffff));
c5aa993b
JM
3018 break;
3019 default:
5683e87a
AC
3020 phex_nz (l, sizeof (l));
3021 break;
c906108c 3022 }
5683e87a 3023 return str;
c906108c 3024}
ac2e2ef7
AC
3025
3026
3027/* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
3028 using the target's conversion routines. */
3029CORE_ADDR
3030host_pointer_to_address (void *ptr)
3031{
3032 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
8e65ff28
AC
3033 internal_error (__FILE__, __LINE__,
3034 "core_addr_to_void_ptr: bad cast");
ac2e2ef7
AC
3035 return POINTER_TO_ADDRESS (builtin_type_ptr, &ptr);
3036}
3037
3038void *
3039address_to_host_pointer (CORE_ADDR addr)
3040{
3041 void *ptr;
3042 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
8e65ff28
AC
3043 internal_error (__FILE__, __LINE__,
3044 "core_addr_to_void_ptr: bad cast");
ac2e2ef7
AC
3045 ADDRESS_TO_POINTER (builtin_type_ptr, &ptr, addr);
3046 return ptr;
3047}
This page took 0.250885 seconds and 4 git commands to generate.